code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from math import factorial A__ : dict[str, int] = {str(digit): factorial(digit) for digit in range(10)} def _snake_case ( lowerCamelCase__ : List[Any] ) -> int: if not isinstance(lowercase_ , lowercase_ ): raise TypeError("Parameter number must be int" ) if number < 0: raise ValueError("Parameter number must be greater than or equal to 0" ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(lowercase_ ) ) def _snake_case ( lowerCamelCase__ : str = 60 , lowerCamelCase__ : Tuple = 1_000_000 ) -> int: if not isinstance(lowercase_ , lowercase_ ) or not isinstance(lowercase_ , lowercase_ ): raise TypeError("Parameters chain_length and number_limit must be int" ) if chain_length <= 0 or number_limit <= 0: raise ValueError( "Parameters chain_length and number_limit must be greater than 0" ) # the counter for the chains with the exact desired length lowerCamelCase_ : Any =0 # the cached sizes of the previous chains lowerCamelCase_ : Dict ={} for start_chain_element in range(1 , lowercase_ ): # The temporary set will contain the elements of the chain lowerCamelCase_ : Any =set() lowerCamelCase_ : Optional[Any] =0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. lowerCamelCase_ : List[str] =start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(lowercase_ ) chain_set_length += 1 lowerCamelCase_ : Union[str, Any] =digit_factorial_sum(lowercase_ ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] lowerCamelCase_ : List[Any] =chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(f'{solution()}')
144
from ...processing_utils import ProcessorMixin class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''SpeechT5FeatureExtractor''' UpperCAmelCase__ = '''SpeechT5Tokenizer''' def __init__( self : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple) ->Union[str, Any]: '''simple docstring''' super().__init__(UpperCAmelCase__ , UpperCAmelCase__) def __call__( self : Dict , *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : Any) ->Optional[Any]: '''simple docstring''' A__ = kwargs.pop('''audio''' , UpperCAmelCase__) A__ = kwargs.pop('''text''' , UpperCAmelCase__) A__ = kwargs.pop('''text_target''' , UpperCAmelCase__) A__ = kwargs.pop('''audio_target''' , UpperCAmelCase__) A__ = kwargs.pop('''sampling_rate''' , UpperCAmelCase__) if audio is not None and text is not None: raise ValueError( '''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''') if audio_target is not None and text_target is not None: raise ValueError( '''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''') if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( '''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''') if audio is not None: A__ = self.feature_extractor(UpperCAmelCase__ , *UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , **UpperCAmelCase__) elif text is not None: A__ = self.tokenizer(UpperCAmelCase__ , **UpperCAmelCase__) else: A__ = None if audio_target is not None: A__ = self.feature_extractor(audio_target=UpperCAmelCase__ , *UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , **UpperCAmelCase__) A__ = targets['''input_values'''] elif text_target is not None: A__ = self.tokenizer(UpperCAmelCase__ , **UpperCAmelCase__) A__ = targets['''input_ids'''] else: A__ = None if inputs is None: return targets if targets is not None: A__ = labels A__ = targets.get('''attention_mask''') if decoder_attention_mask is not None: A__ = decoder_attention_mask return inputs def SCREAMING_SNAKE_CASE ( self : Optional[Any] , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : int) ->Optional[int]: '''simple docstring''' A__ = kwargs.pop('''input_values''' , UpperCAmelCase__) A__ = kwargs.pop('''input_ids''' , UpperCAmelCase__) A__ = kwargs.pop('''labels''' , UpperCAmelCase__) if input_values is not None and input_ids is not None: raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''') if input_values is None and input_ids is None and labels is None: raise ValueError( '''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''') if input_values is not None: A__ = self.feature_extractor.pad(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__) elif input_ids is not None: A__ = self.tokenizer.pad(UpperCAmelCase__ , **UpperCAmelCase__) else: A__ = None if labels is not None: if "input_ids" in labels or (isinstance(UpperCAmelCase__ , UpperCAmelCase__) and "input_ids" in labels[0]): A__ = self.tokenizer.pad(UpperCAmelCase__ , **UpperCAmelCase__) A__ = targets['''input_ids'''] else: A__ = self.feature_extractor.feature_size A__ = self.feature_extractor.num_mel_bins A__ = self.feature_extractor.pad(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__) A__ = feature_size_hack A__ = targets['''input_values'''] else: A__ = None if inputs is None: return targets if targets is not None: A__ = labels A__ = targets.get('''attention_mask''') if decoder_attention_mask is not None: A__ = decoder_attention_mask return inputs def SCREAMING_SNAKE_CASE ( self : Any , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : Optional[Any]) ->Optional[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase__ , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Union[str, Any]) ->Dict: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase__ , **UpperCAmelCase__)
14
0
from __future__ import annotations __UpperCamelCase : Optional[Any] = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] __UpperCamelCase : Any = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def _a ( SCREAMING_SNAKE_CASE : int ): """simple docstring""" UpperCamelCase__ : int = [] UpperCamelCase__ : Optional[Any] = len(lowercase_ ) for i in range(lowercase_ ): UpperCamelCase__ : List[str] = -1 for j in range(i + 1 , lowercase_ ): if arr[i] < arr[j]: UpperCamelCase__ : Tuple = arr[j] break result.append(lowercase_ ) return result def _a ( SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" UpperCamelCase__ : List[Any] = [] for i, outer in enumerate(lowercase_ ): UpperCamelCase__ : Optional[Any] = -1 for inner in arr[i + 1 :]: if outer < inner: UpperCamelCase__ : Dict = inner break result.append(lowercase_ ) return result def _a ( SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" UpperCamelCase__ : Dict = len(lowercase_ ) UpperCamelCase__ : List[str] = [] UpperCamelCase__ : Union[str, Any] = [-1] * arr_size for index in reversed(range(lowercase_ ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: UpperCamelCase__ : int = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) __UpperCamelCase : int = ( """from __main__ import arr, next_greatest_element_slow, """ """next_greatest_element_fast, next_greatest_element""" ) print( "next_greatest_element_slow():", timeit("next_greatest_element_slow(arr)", setup=setup), ) print( "next_greatest_element_fast():", timeit("next_greatest_element_fast(arr)", setup=setup), ) print( " next_greatest_element():", timeit("next_greatest_element(arr)", setup=setup), )
146
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Tuple = logging.get_logger(__name__) _lowerCamelCase : str = { """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''git_vision_model''' def __init__( self : Any , UpperCAmelCase__ : Any=768 , UpperCAmelCase__ : int=3_072 , UpperCAmelCase__ : List[str]=12 , UpperCAmelCase__ : Dict=12 , UpperCAmelCase__ : Optional[int]=3 , UpperCAmelCase__ : List[Any]=224 , UpperCAmelCase__ : Union[str, Any]=16 , UpperCAmelCase__ : Union[str, Any]="quick_gelu" , UpperCAmelCase__ : Dict=1e-5 , UpperCAmelCase__ : Union[str, Any]=0.0 , UpperCAmelCase__ : Any=0.02 , **UpperCAmelCase__ : Any , ) ->Optional[int]: '''simple docstring''' super().__init__(**UpperCAmelCase__) A__ = hidden_size A__ = intermediate_size A__ = num_hidden_layers A__ = num_attention_heads A__ = num_channels A__ = patch_size A__ = image_size A__ = initializer_range A__ = attention_dropout A__ = layer_norm_eps A__ = hidden_act @classmethod def SCREAMING_SNAKE_CASE ( cls : Any , UpperCAmelCase__ : Union[str, os.PathLike] , **UpperCAmelCase__ : int) ->"PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCAmelCase__) A__ , A__ = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__) # get the vision config dict if we are loading from GITConfig if config_dict.get('''model_type''') == "git": A__ = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""") return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''git''' def __init__( self : Dict , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : int=30_522 , UpperCAmelCase__ : Optional[int]=768 , UpperCAmelCase__ : Dict=6 , UpperCAmelCase__ : int=12 , UpperCAmelCase__ : List[str]=3_072 , UpperCAmelCase__ : str="gelu" , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : List[Any]=1_024 , UpperCAmelCase__ : List[str]=0.02 , UpperCAmelCase__ : Any=1e-12 , UpperCAmelCase__ : Union[str, Any]=0 , UpperCAmelCase__ : List[Any]="absolute" , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Any=False , UpperCAmelCase__ : int=101 , UpperCAmelCase__ : Tuple=102 , UpperCAmelCase__ : Dict=None , **UpperCAmelCase__ : List[str] , ) ->Any: '''simple docstring''' super().__init__(bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , pad_token_id=UpperCAmelCase__ , **UpperCAmelCase__) if vision_config is None: A__ = {} logger.info('''vision_config is None. initializing the GitVisionConfig with default values.''') A__ = GitVisionConfig(**UpperCAmelCase__) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = initializer_range A__ = layer_norm_eps A__ = position_embedding_type A__ = use_cache A__ = tie_word_embeddings A__ = num_image_with_embedding A__ = bos_token_id A__ = eos_token_id def SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: '''simple docstring''' A__ = copy.deepcopy(self.__dict__) A__ = self.vision_config.to_dict() A__ = self.__class__.model_type return output
14
0
'''simple docstring''' from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple ): """simple docstring""" for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f'Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f'Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})' def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tuple=True ): """simple docstring""" model.train() __UpperCAmelCase : str = model(lowercase_ ) __UpperCAmelCase : Tuple = F.mse_loss(lowercase_ , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(lowercase_ ) def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str]=False ): """simple docstring""" set_seed(42 ) __UpperCAmelCase : Dict = RegressionModel() __UpperCAmelCase : Optional[Any] = deepcopy(lowercase_ ) __UpperCAmelCase : Any = RegressionDataset(length=80 ) __UpperCAmelCase : Tuple = DataLoader(lowercase_ , batch_size=16 ) model.to(accelerator.device ) if sched: __UpperCAmelCase : Optional[int] = AdamW(params=model.parameters() , lr=1E-3 ) __UpperCAmelCase : Optional[int] = AdamW(params=ddp_model.parameters() , lr=1E-3 ) __UpperCAmelCase : List[Any] = LambdaLR(lowercase_ , lr_lambda=lambda lowerCAmelCase__ : epoch**0.65 ) __UpperCAmelCase : int = LambdaLR(lowercase_ , lr_lambda=lambda lowerCAmelCase__ : epoch**0.65 ) # Make a copy of `model` if sched: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = accelerator.prepare(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) else: __UpperCAmelCase , __UpperCAmelCase : Optional[int] = accelerator.prepare(lowercase_ , lowercase_ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def lowercase_ ( lowerCAmelCase__ : str ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = get_training_setup(lowercase_ ) # Use a single batch __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = next(iter(lowercase_ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase : List[str] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(lowercase_ ): step_model(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) else: # Sync grads step_model(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f'Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) __UpperCAmelCase : Union[str, Any] = ddp_input[torch.randperm(len(lowercase_ ) )] def lowercase_ ( lowerCAmelCase__ : List[Any] ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = get_training_setup(lowercase_ ) # Use a single batch __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = next(iter(lowercase_ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase : str = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase : List[str] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(lowercase_ ): step_model(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) else: # Sync grads step_model(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) __UpperCAmelCase : List[str] = ddp_input[torch.randperm(len(lowercase_ ) )] def lowercase_ ( lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : Tuple=False ): """simple docstring""" __UpperCAmelCase : Optional[Any] = Accelerator( split_batches=lowercase_ , dispatch_batches=lowercase_ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = get_training_setup(lowercase_ ) for iteration, batch in enumerate(lowercase_ ): __UpperCAmelCase , __UpperCAmelCase : List[Any] = batch.values() # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase : List[str] = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(lowercase_ ): step_model(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(lowercase_ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) __UpperCAmelCase : Any = ddp_input[torch.randperm(len(lowercase_ ) )] GradientState._reset_state() def lowercase_ ( lowerCAmelCase__ : str=False , lowerCAmelCase__ : Dict=False ): """simple docstring""" __UpperCAmelCase : List[Any] = Accelerator( split_batches=lowercase_ , dispatch_batches=lowercase_ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = get_training_setup(lowercase_ , lowercase_ ) for iteration, batch in enumerate(lowercase_ ): __UpperCAmelCase , __UpperCAmelCase : Dict = batch.values() # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase : Optional[int] = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase : str = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(lowercase_ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(lowercase_ ): step_model(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n' __UpperCAmelCase : int = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(lowercase_ )) if accelerator.num_processes > 1: check_model_parameters(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) GradientState._reset_state() def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : List[Any] = Accelerator() __UpperCAmelCase : int = RegressionDataset(length=80 ) __UpperCAmelCase : Dict = DataLoader(lowercase_ , batch_size=16 ) __UpperCAmelCase : Optional[Any] = RegressionDataset(length=96 ) __UpperCAmelCase : str = DataLoader(lowercase_ , batch_size=16 ) __UpperCAmelCase , __UpperCAmelCase : Dict = accelerator.prepare(lowercase_ , lowercase_ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(lowercase_ ): assert id(accelerator.gradient_state.active_dataloader ) == id(lowercase_ ) if iteration < len(lowercase_ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(lowercase_ ): assert id(accelerator.gradient_state.active_dataloader ) == id(lowercase_ ) if batch_num < len(lowercase_ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : List[Any] = Accelerator() __UpperCAmelCase : List[Any] = accelerator.state if state.local_process_index == 0: print("""**Test `accumulate` gradient accumulation with dataloader break**""" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("""**Test NOOP `no_sync` context manager**""" ) test_noop_sync(lowercase_ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("""**Test Distributed `no_sync` context manager**""" ) test_distributed_sync(lowercase_ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation, """ , f'`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**' , ) test_gradient_accumulation(lowercase_ , lowercase_ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("""<""" , """2.0""" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , """`split_batches=False`, `dispatch_batches=False`**""" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , f'`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**' , ) test_gradient_accumulation_with_opt_and_scheduler(lowercase_ , lowercase_ ) def lowercase_ ( lowerCAmelCase__ : str ): """simple docstring""" main() if __name__ == "__main__": main()
254
import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: """simple docstring""" A__ = BeautifulSoup(requests.get(lowercase_ , params=lowercase_ ).content , '''html.parser''' ) A__ = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} ) A__ = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' ) return anchors[2].get_text() if __name__ == "__main__": _lowerCamelCase : Optional[Any] = { """title""": ( """Precisely geometry controlled microsupercapacitors for ultrahigh areal """ """capacitance, volumetric capacitance, and energy density""" ), """journal""": """Chem. Mater.""", """volume""": 30, """pages""": """3979-3990""", """year""": 2018, """hl""": """en""", } print(get_citation("""https://scholar.google.com/scholar_lookup""", params=params))
14
0
"""simple docstring""" import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class __lowerCamelCase : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> Optional[int]: _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = scope def _UpperCAmelCase ( self ) -> Any: _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = ids_tensor([self.batch_size] , self.num_choices ) _a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self ) -> List[str]: return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: _a = LlamaModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _a = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) _a = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Dict: _a = True _a = LlamaModel(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _a = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , ) _a = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , ) _a = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Any: _a = LlamaForCausalLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _a = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Any: _a = True _a = True _a = LlamaForCausalLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() # first forward pass _a = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , use_cache=UpperCAmelCase__ , ) _a = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _a = ids_tensor((self.batch_size, 3) , config.vocab_size ) _a = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _a = torch.cat([input_ids, next_tokens] , dim=-1 ) _a = torch.cat([input_mask, next_mask] , dim=-1 ) _a = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , )['''hidden_states'''][0] _a = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , )['''hidden_states'''][0] # select random slice _a = ids_tensor((1,) , output_from_past.shape[-1] ).item() _a = output_from_no_past[:, -3:, random_slice_idx].detach() _a = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-3 ) ) def _UpperCAmelCase ( self ) -> List[Any]: _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowerCamelCase ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A_ : Union[str, Any] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () A_ : Tuple = (LlamaForCausalLM,) if is_torch_available() else () A_ : Any = ( { 'feature-extraction': LlamaModel, 'text-classification': LlamaForSequenceClassification, 'text-generation': LlamaForCausalLM, 'zero-shot': LlamaForSequenceClassification, } if is_torch_available() else {} ) A_ : Optional[Any] = False A_ : str = False def _UpperCAmelCase ( self ) -> int: _a = LlamaModelTester(self ) _a = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=37 ) def _UpperCAmelCase ( self ) -> Optional[int]: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> List[str]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def _UpperCAmelCase ( self ) -> Tuple: _a = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _a = type self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def _UpperCAmelCase ( self ) -> Optional[int]: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = input_dict['''input_ids'''] _a = input_ids.ne(1 ).to(UpperCAmelCase__ ) _a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _a = LlamaForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _a = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _UpperCAmelCase ( self ) -> List[str]: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = '''single_label_classification''' _a = input_dict['''input_ids'''] _a = input_ids.ne(1 ).to(UpperCAmelCase__ ) _a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _a = LlamaForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _a = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _UpperCAmelCase ( self ) -> Tuple: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = '''multi_label_classification''' _a = input_dict['''input_ids'''] _a = input_ids.ne(1 ).to(UpperCAmelCase__ ) _a = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _a = LlamaForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _a = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''LLaMA buffers include complex numbers, which breaks this test''' ) def _UpperCAmelCase ( self ) -> int: pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> List[str]: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = ids_tensor([1, 10] , config.vocab_size ) _a = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _a = LlamaModel(UpperCAmelCase__ ) original_model.to(UpperCAmelCase__ ) original_model.eval() _a = original_model(UpperCAmelCase__ ).last_hidden_state _a = original_model(UpperCAmelCase__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _a = {'''type''': scaling_type, '''factor''': 10.0} _a = LlamaModel(UpperCAmelCase__ ) scaled_model.to(UpperCAmelCase__ ) scaled_model.eval() _a = scaled_model(UpperCAmelCase__ ).last_hidden_state _a = scaled_model(UpperCAmelCase__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-5 ) ) @require_torch class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = [1, 306, 4658, 278, 6593, 310, 2834, 338] _a = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-7b-hf''' , device_map='''auto''' ) _a = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 _a = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCAmelCase__ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _a = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCAmelCase__ , atol=1e-5 , rtol=1e-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def _UpperCAmelCase ( self ) -> str: _a = [1, 306, 4658, 278, 6593, 310, 2834, 338] _a = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-hf''' , device_map='''auto''' ) _a = model(torch.tensor(UpperCAmelCase__ ) ) # Expected mean on dim = -1 _a = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCAmelCase__ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _a = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCAmelCase__ , atol=1e-5 , rtol=1e-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def _UpperCAmelCase ( self ) -> Any: _a = [1, 306, 4658, 278, 6593, 310, 2834, 338] _a = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' , device_map='''auto''' ) _a = model(torch.tensor(UpperCAmelCase__ ) ) # Expected mean on dim = -1 _a = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCAmelCase__ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _a = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , UpperCAmelCase__ , atol=1e-2 , rtol=1e-2 ) @unittest.skip( '''Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test''' ) @slow def _UpperCAmelCase ( self ) -> Dict: _a = [1, 306, 4658, 278, 6593, 310, 2834, 338] _a = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-70b-hf''' , device_map='''auto''' ) _a = model(torch.tensor(UpperCAmelCase__ ) ) _a = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , UpperCAmelCase__ , atol=1e-2 , rtol=1e-2 ) # fmt: off _a = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCAmelCase__ , atol=1e-5 , rtol=1e-5 ) @unittest.skip('''Model is curently gated''' ) @slow def _UpperCAmelCase ( self ) -> Optional[Any]: _a = '''Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi''' _a = '''Simply put, the theory of relativity states that ''' _a = LlamaTokenizer.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' ) _a = tokenizer.encode(UpperCAmelCase__ , return_tensors='''pt''' ) _a = LlamaForCausalLM.from_pretrained( '''meta-llama/Llama-2-13b-chat-hf''' , device_map='''sequential''' , use_safetensors=UpperCAmelCase__ ) # greedy generation outputs _a = model.generate(UpperCAmelCase__ , max_new_tokens=64 , top_p=UpperCAmelCase__ , temperature=1 , do_sample=UpperCAmelCase__ ) _a = tokenizer.decode(generated_ids[0] , skip_special_tokens=UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ )
320
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: """simple docstring""" A__ = StableDiffusionPipeline.from_pretrained(lowercase_ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors A__ = load_file(lowercase_ ) A__ = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: A__ = key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' ) A__ = pipeline.text_encoder else: A__ = key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' ) A__ = pipeline.unet # find the target layer A__ = layer_infos.pop(0 ) while len(lowercase_ ) > -1: try: A__ = curr_layer.__getattr__(lowercase_ ) if len(lowercase_ ) > 0: A__ = layer_infos.pop(0 ) elif len(lowercase_ ) == 0: break except Exception: if len(lowercase_ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: A__ = layer_infos.pop(0 ) A__ = [] if "lora_down" in key: pair_keys.append(key.replace('''lora_down''' , '''lora_up''' ) ) pair_keys.append(lowercase_ ) else: pair_keys.append(lowercase_ ) pair_keys.append(key.replace('''lora_up''' , '''lora_down''' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: A__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) A__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ ).unsqueeze(2 ).unsqueeze(3 ) else: A__ = state_dict[pair_keys[0]].to(torch.floataa ) A__ = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ ) # update visited list for item in pair_keys: visited.append(lowercase_ ) return pipeline if __name__ == "__main__": _lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") _lowerCamelCase : Tuple = parser.parse_args() _lowerCamelCase : List[Any] = args.base_model_path _lowerCamelCase : Optional[int] = args.checkpoint_path _lowerCamelCase : Dict = args.dump_path _lowerCamelCase : Optional[Any] = args.lora_prefix_unet _lowerCamelCase : Optional[int] = args.lora_prefix_text_encoder _lowerCamelCase : List[Any] = args.alpha _lowerCamelCase : int = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) _lowerCamelCase : Tuple = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
14
0
from collections import Counter from timeit import timeit def _lowerCAmelCase ( __lowerCAmelCase = "" , ) -> bool: """simple docstring""" return sum(c % 2 for c in Counter(input_str.replace(''' ''' , '''''' ).lower() ).values() ) < 2 def _lowerCAmelCase ( __lowerCAmelCase = "" ) -> bool: """simple docstring""" if len(lowercase_ ) == 0: return True snake_case__ : Optional[Any] = input_str.replace(''' ''' , '''''' ).lower() # character_freq_dict: Stores the frequency of every character in the input string snake_case__ : str = {} for character in lower_case_input_str: snake_case__ : List[Any] = character_freq_dict.get(lowercase_ , 0 ) + 1 snake_case__ : List[Any] = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def _lowerCAmelCase ( __lowerCAmelCase = "" ) -> None: """simple docstring""" print('''\nFor string = ''' , lowercase_ , ''':''' ) print( '''> can_string_be_rearranged_as_palindrome_counter()''' , '''\tans =''' , can_string_be_rearranged_as_palindrome_counter(lowercase_ ) , '''\ttime =''' , timeit( '''z.can_string_be_rearranged_as_palindrome_counter(z.check_str)''' , setup='''import __main__ as z''' , ) , '''seconds''' , ) print( '''> can_string_be_rearranged_as_palindrome()''' , '''\tans =''' , can_string_be_rearranged_as_palindrome(lowercase_ ) , '''\ttime =''' , timeit( '''z.can_string_be_rearranged_as_palindrome(z.check_str)''' , setup='''import __main__ as z''' , ) , '''seconds''' , ) if __name__ == "__main__": A__ = input( '''Enter string to determine if it can be rearranged as a palindrome or not: ''' ).strip() benchmark(check_str) A__ = can_string_be_rearranged_as_palindrome_counter(check_str) print(f"""{check_str} can {'' if status else 'not '}be rearranged as a palindrome""")
230
import os import pytest from transformers.dynamic_module_utils import get_imports _lowerCamelCase : Any = """ import os """ _lowerCamelCase : Optional[int] = """ def foo(): import os return False """ _lowerCamelCase : List[Any] = """ def foo(): def bar(): if True: import os return False return bar() """ _lowerCamelCase : List[Any] = """ import os try: import bar except ImportError: raise ValueError() """ _lowerCamelCase : Union[str, Any] = """ import os def foo(): try: import bar except ImportError: raise ValueError() """ _lowerCamelCase : List[Any] = """ import os try: import bar except (ImportError, AttributeError): raise ValueError() """ _lowerCamelCase : List[Any] = """ import os try: import bar except ImportError as e: raise ValueError() """ _lowerCamelCase : str = """ import os try: import bar except: raise ValueError() """ _lowerCamelCase : Optional[Any] = """ import os try: import bar import baz except ImportError: raise ValueError() """ _lowerCamelCase : Any = """ import os try: import bar import baz except ImportError: x = 1 raise ValueError() """ _lowerCamelCase : Dict = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" A__ = os.path.join(lowercase_ , '''test_file.py''' ) with open(lowercase_ , '''w''' ) as _tmp_file: _tmp_file.write(lowercase_ ) A__ = get_imports(lowercase_ ) assert parsed_imports == ["os"]
14
0
"""simple docstring""" def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' if num <= 0: raise ValueError("Input must be a positive integer" ) __lowerCAmelCase = [True] * (num + 1) __lowerCAmelCase = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , lowercase_ ): __lowerCAmelCase = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() A : int = int(input("Enter a positive integer: ").strip()) print(prime_sieve_eratosthenes(user_num))
57
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" return int(input_a == input_a == 0 ) def SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" print('''Truth Table of NOR Gate:''' ) print('''| Input 1 | Input 2 | Output |''' ) print(f"""| 0 | 0 | {nor_gate(0 , 0 )} |""" ) print(f"""| 0 | 1 | {nor_gate(0 , 1 )} |""" ) print(f"""| 1 | 0 | {nor_gate(1 , 0 )} |""" ) print(f"""| 1 | 1 | {nor_gate(1 , 1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
14
0
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A_ : Any = 16 A_ : Any = 32 def A ( snake_case__ , snake_case__ = 16 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) SCREAMING_SNAKE_CASE__ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(snake_case__ ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE__ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase_ , max_length=lowercase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE__ = datasets.map( lowercase_ , batched=lowercase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE__ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(snake_case__ ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE__ = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE__ = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE__ = 8 else: SCREAMING_SNAKE_CASE__ = None return tokenizer.pad( lowercase_ , padding="""longest""" , max_length=lowercase_ , pad_to_multiple_of=lowercase_ , return_tensors="""pt""" , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE__ = DataLoader( tokenized_datasets["""train"""] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ ) SCREAMING_SNAKE_CASE__ = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders A_ : Union[str, Any] = mocked_dataloaders # noqa: F811 def A ( snake_case__ , snake_case__ ): '''simple docstring''' if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , lowercase_ ) == "1": SCREAMING_SNAKE_CASE__ = 2 # Initialize accelerator SCREAMING_SNAKE_CASE__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE__ = config["""lr"""] SCREAMING_SNAKE_CASE__ = int(config["""num_epochs"""] ) SCREAMING_SNAKE_CASE__ = int(config["""seed"""] ) SCREAMING_SNAKE_CASE__ = int(config["""batch_size"""] ) SCREAMING_SNAKE_CASE__ = evaluate.load("""glue""" , """mrpc""" ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=lowercase_ ) def inner_training_loop(snake_case__ ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(lowercase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE__ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowercase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE__ = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE__ = AdamW(params=model.parameters() , lr=lowercase_ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_dataloaders(lowercase_ , lowercase_ ) # Instantiate scheduler SCREAMING_SNAKE_CASE__ = get_linear_schedule_with_warmup( optimizer=lowercase_ , num_warmup_steps=1_00 , num_training_steps=(len(lowercase_ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # Now we train the model for epoch in range(lowercase_ ): model.train() for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE__ = model(**lowercase_ ) SCREAMING_SNAKE_CASE__ = outputs.loss accelerator.backward(lowercase_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**lowercase_ ) SCREAMING_SNAKE_CASE__ = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowercase_ , references=lowercase_ , ) SCREAMING_SNAKE_CASE__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , lowercase_ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def A ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowercase_ , default=lowercase_ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowercase_ , lowercase_ ) if __name__ == "__main__": main()
165
import os import sys import unittest _lowerCamelCase : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) _lowerCamelCase : Any = os.path.join("""tests""", """models""", """bert""", """test_modeling_bert.py""") _lowerCamelCase : str = os.path.join("""tests""", """models""", """blip""", """test_modeling_blip.py""") class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : Tuple) ->Tuple: '''simple docstring''' A__ = get_test_to_tester_mapping(UpperCAmelCase__) A__ = get_test_to_tester_mapping(UpperCAmelCase__) A__ = {'''BertModelTest''': '''BertModelTester'''} A__ = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Tuple) ->List[Any]: '''simple docstring''' A__ = get_model_to_test_mapping(UpperCAmelCase__) A__ = get_model_to_test_mapping(UpperCAmelCase__) A__ = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } A__ = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->str: '''simple docstring''' A__ = get_model_to_tester_mapping(UpperCAmelCase__) A__ = get_model_to_tester_mapping(UpperCAmelCase__) A__ = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } A__ = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
14
0
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase__ ) class _UpperCamelCase ( UpperCAmelCase__ ): def __init__( self :Optional[Any] , *lowerCamelCase :List[str] , **lowerCamelCase :Dict ) -> Dict: super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ ) self.check_model_type(UpperCAmelCase__ ) def UpperCAmelCase_ ( self :List[str] , lowerCamelCase :int=None , lowerCamelCase :Optional[int]=None , lowerCamelCase :int=None , **lowerCamelCase :Any ) -> str: UpperCAmelCase__ , UpperCAmelCase__ = {}, {} if padding is not None: UpperCAmelCase__ = padding if truncation is not None: UpperCAmelCase__ = truncation if top_k is not None: UpperCAmelCase__ = top_k return preprocess_params, {}, postprocess_params def __call__( self :Dict , lowerCamelCase :Union["Image.Image", str] , lowerCamelCase :str = None , **lowerCamelCase :List[Any] ) -> List[Any]: if isinstance(UpperCAmelCase__ , (Image.Image, str) ) and isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): UpperCAmelCase__ = {"image": image, "question": question} else: UpperCAmelCase__ = image UpperCAmelCase__ = super().__call__(UpperCAmelCase__ , **UpperCAmelCase__ ) return results def UpperCAmelCase_ ( self :List[Any] , lowerCamelCase :Dict , lowerCamelCase :Union[str, Any]=False , lowerCamelCase :Tuple=False ) -> Optional[Any]: UpperCAmelCase__ = load_image(inputs["image"] ) UpperCAmelCase__ = self.tokenizer( inputs["question"] , return_tensors=self.framework , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ ) UpperCAmelCase__ = self.image_processor(images=UpperCAmelCase__ , return_tensors=self.framework ) model_inputs.update(UpperCAmelCase__ ) return model_inputs def UpperCAmelCase_ ( self :List[Any] , lowerCamelCase :List[Any] ) -> str: UpperCAmelCase__ = self.model(**UpperCAmelCase__ ) return model_outputs def UpperCAmelCase_ ( self :Union[str, Any] , lowerCamelCase :Dict , lowerCamelCase :Optional[int]=5 ) -> List[Any]: if top_k > self.model.config.num_labels: UpperCAmelCase__ = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase__ = model_outputs.logits.sigmoid()[0] UpperCAmelCase__ , UpperCAmelCase__ = probs.topk(UpperCAmelCase__ ) else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) UpperCAmelCase__ = scores.tolist() UpperCAmelCase__ = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(UpperCAmelCase__ , UpperCAmelCase__ )]
169
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class UpperCamelCase_ : '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int = 13 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : Optional[Any]=[16, 32, 64, 128] , UpperCAmelCase__ : int = 7 , UpperCAmelCase__ : int = 4 , UpperCAmelCase__ : int = 37 , UpperCAmelCase__ : str = "gelu" , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : int = 10 , UpperCAmelCase__ : float = 0.02 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : List[int] = [2, 2, 2, 2] , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 2 , ) ->List[Any]: '''simple docstring''' A__ = parent A__ = batch_size A__ = image_size A__ = patch_size A__ = num_channels A__ = is_training A__ = use_labels A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = type_sequence_label_size A__ = initializer_range A__ = encoder_stride A__ = num_attention_outputs A__ = embed_dim A__ = embed_dim + 1 A__ = resolution A__ = depths A__ = hidden_sizes A__ = dim A__ = mlp_expansion_ratio def SCREAMING_SNAKE_CASE ( self : List[Any]) ->str: '''simple docstring''' A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) A__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : int) ->str: '''simple docstring''' return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict) ->Dict: '''simple docstring''' A__ = TFEfficientFormerModel(config=UpperCAmelCase__) A__ = model(UpperCAmelCase__ , training=UpperCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str) ->Union[str, Any]: '''simple docstring''' A__ = self.type_sequence_label_size A__ = TFEfficientFormerForImageClassification(UpperCAmelCase__) A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__ , training=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images A__ = 1 A__ = TFEfficientFormerForImageClassification(UpperCAmelCase__) A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def SCREAMING_SNAKE_CASE ( self : int) ->List[str]: '''simple docstring''' A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) UpperCAmelCase__ = ( { '''feature-extraction''': TFEfficientFormerModel, '''image-classification''': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[str]: '''simple docstring''' A__ = TFEfficientFormerModelTester(self) A__ = ConfigTester( self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=37) def SCREAMING_SNAKE_CASE ( self : int) ->Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''EfficientFormer does not use inputs_embeds''') def SCREAMING_SNAKE_CASE ( self : List[str]) ->Dict: '''simple docstring''' pass @unittest.skip(reason='''EfficientFormer does not support input and output embeddings''') def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[Any]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(UpperCAmelCase__) A__ = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str) ->Any: '''simple docstring''' def check_hidden_states_output(UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict): A__ = model_class(UpperCAmelCase__) A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__) A__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A__ = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__) if hasattr(self.model_tester , '''encoder_seq_length'''): A__ = self.model_tester.encoder_seq_length if hasattr(self.model_tester , '''chunk_length''') and self.model_tester.chunk_length > 1: A__ = seq_length * self.model_tester.chunk_length else: A__ = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: A__ = outputs.decoder_hidden_states self.asseretIsInstance(UpperCAmelCase__ , (list, tuple)) self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__) A__ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''decoder_seq_length''' , UpperCAmelCase__) self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [decoder_seq_length, self.model_tester.hidden_size] , ) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict=False) ->int: '''simple docstring''' A__ = super()._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__) @unittest.skip(reason='''EfficientFormer does not implement masked image modeling yet''') def SCREAMING_SNAKE_CASE ( self : str) ->str: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any) ->Tuple: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__) @slow def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]: '''simple docstring''' for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFEfficientFormerModel.from_pretrained(UpperCAmelCase__) self.assertIsNotNone(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any) ->str: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True A__ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''encoder_seq_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''key_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''chunk_length''' , UpperCAmelCase__) if chunk_length is not None and hasattr(self.model_tester , '''num_hashes'''): A__ = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: A__ = True A__ = False A__ = True A__ = model_class(UpperCAmelCase__) A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__) A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase__) , self.model_tester.num_attention_outputs) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ = True A__ = model_class(UpperCAmelCase__) A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__) A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase__) , self.model_tester.num_attention_outputs) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:]) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[Any]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model A__ = model_class(UpperCAmelCase__) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes A__ = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=UpperCAmelCase__) for key, val in model.input_signature.items() if key in model.dummy_inputs } A__ = model(UpperCAmelCase__) self.assertTrue(outputs_dict is not None) def SCREAMING_SNAKE_CASE ( ) -> Any: """simple docstring""" A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: '''simple docstring''' return ( EfficientFormerImageProcessor.from_pretrained('''snap-research/efficientformer-l1-300''') if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any: '''simple docstring''' A__ = TFEfficientFormerForImageClassification.from_pretrained('''snap-research/efficientformer-l1-300''') A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''') # forward pass A__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__) # verify the logits A__ = tf.TensorShape((1, 1_000)) self.assertEqual(outputs.logits.shape , UpperCAmelCase__) A__ = tf.constant([-0.0555, 0.4825, -0.0852]) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4)) @slow def SCREAMING_SNAKE_CASE ( self : Dict) ->int: '''simple docstring''' A__ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( '''snap-research/efficientformer-l1-300''') A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''') # forward pass A__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__) # verify the logits A__ = tf.TensorShape((1, 1_000)) self.assertEqual(outputs.logits.shape , UpperCAmelCase__) A__ = tf.constant([-0.1312, 0.4353, -1.0499]) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4))
14
0
"""simple docstring""" import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask SCREAMING_SNAKE_CASE_ = logging.getLogger(__name__) class lowerCAmelCase_ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , snake_case_=-1 ) -> Tuple: __lowerCAmelCase = label_idx def A__ ( self , snake_case_ , snake_case_ ) -> List[InputExample]: if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): __lowerCAmelCase = mode.value __lowerCAmelCase = os.path.join(UpperCAmelCase__ , f"""{mode}.txt""" ) __lowerCAmelCase = 1 __lowerCAmelCase = [] with open(UpperCAmelCase__ , encoding="""utf-8""" ) as f: __lowerCAmelCase = [] __lowerCAmelCase = [] for line in f: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=UpperCAmelCase__ , labels=UpperCAmelCase__ ) ) guid_index += 1 __lowerCAmelCase = [] __lowerCAmelCase = [] else: __lowerCAmelCase = line.split(""" """ ) words.append(splits[0] ) if len(UpperCAmelCase__ ) > 1: labels.append(splits[self.label_idx].replace("""\n""" , """""" ) ) else: # Examples could have no label for mode = "test" labels.append("""O""" ) if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=UpperCAmelCase__ , labels=UpperCAmelCase__ ) ) return examples def A__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]: __lowerCAmelCase = 0 for line in test_input_reader: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": writer.write(UpperCAmelCase__ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: __lowerCAmelCase = line.split()[0] + """ """ + preds_list[example_id].pop(0 ) + """\n""" writer.write(UpperCAmelCase__ ) else: logger.warning("""Maximum sequence length exceeded: No prediction for \'%s\'.""" , line.split()[0] ) def A__ ( self , snake_case_ ) -> List[str]: if path: with open(UpperCAmelCase__ , """r""" ) as f: __lowerCAmelCase = f.read().splitlines() if "O" not in labels: __lowerCAmelCase = ["""O"""] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class lowerCAmelCase_ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self ) -> int: super().__init__(label_idx=-2 ) def A__ ( self , snake_case_ ) -> List[str]: if path: with open(UpperCAmelCase__ , """r""" ) as f: __lowerCAmelCase = f.read().splitlines() if "O" not in labels: __lowerCAmelCase = ["""O"""] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class lowerCAmelCase_ ( UpperCAmelCase__ ): '''simple docstring''' def A__ ( self , snake_case_ , snake_case_ ) -> List[InputExample]: if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): __lowerCAmelCase = mode.value __lowerCAmelCase = os.path.join(UpperCAmelCase__ , f"""{mode}.txt""" ) __lowerCAmelCase = 1 __lowerCAmelCase = [] with open(UpperCAmelCase__ , encoding="""utf-8""" ) as f: for sentence in parse_incr(UpperCAmelCase__ ): __lowerCAmelCase = [] __lowerCAmelCase = [] for token in sentence: words.append(token["""form"""] ) labels.append(token["""upos"""] ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=UpperCAmelCase__ , labels=UpperCAmelCase__ ) ) guid_index += 1 return examples def A__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> Dict: __lowerCAmelCase = 0 for sentence in parse_incr(UpperCAmelCase__ ): __lowerCAmelCase = preds_list[example_id] __lowerCAmelCase = """""" for token in sentence: out += f"""{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) """ out += "\n" writer.write(UpperCAmelCase__ ) example_id += 1 def A__ ( self , snake_case_ ) -> List[str]: if path: with open(UpperCAmelCase__ , """r""" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
301
from __future__ import annotations def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> tuple[float, list[float]]: """simple docstring""" A__ = list(range(len(lowercase_ ) ) ) A__ = [v / w for v, w in zip(lowercase_ , lowercase_ )] index.sort(key=lambda lowercase_ : ratio[i] , reverse=lowercase_ ) A__ = 0 A__ = [0] * len(lowercase_ ) for i in index: if weight[i] <= capacity: A__ = 1 max_value += value[i] capacity -= weight[i] else: A__ = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
14
0
import functools def lowerCamelCase__ ( a__ : Optional[int] , a__ : str ) -> int: if not isinstance(lowercase_ , lowercase_ ) or not all(isinstance(lowercase_ , lowercase_ ) for day in days ): raise ValueError("""The parameter days should be a list of integers""" ) if len(lowercase_ ) != 3 or not all(isinstance(lowercase_ , lowercase_ ) for cost in costs ): raise ValueError("""The parameter costs should be a list of three integers""" ) if len(lowercase_ ) == 0: return 0 if min(lowercase_ ) <= 0: raise ValueError("""All days elements should be greater than 0""" ) if max(lowercase_ ) >= 366: raise ValueError("""All days elements should be less than 366""" ) UpperCamelCase_ = set(lowercase_ ) @functools.cache def dynamic_programming(a__ : str ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
122
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[Any]: """simple docstring""" A__ = args.log_outputs A__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric A__ = load_metric('''wer''' ) A__ = load_metric('''cer''' ) # compute metrics A__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) A__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results A__ = f"""WER: {wer_result}\nCER: {cer_result}""" print(lowercase_ ) with open(f"""{dataset_id}_eval_results.txt""" , '''w''' ) as f: f.write(lowercase_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: A__ = f"""log_{dataset_id}_predictions.txt""" A__ = f"""log_{dataset_id}_targets.txt""" with open(lowercase_ , '''w''' ) as p, open(lowercase_ , '''w''' ) as t: # mapping function to write output def write_to_file(lowercase_ , lowercase_ ): p.write(f"""{i}""" + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(f"""{i}""" + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(lowercase_ , with_indices=lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: """simple docstring""" A__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training A__ = re.sub(lowercase_ , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! A__ = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: A__ = ''' '''.join(text.split(lowercase_ ) ) return text def SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: """simple docstring""" A__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowercase_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor A__ = AutoFeatureExtractor.from_pretrained(args.model_id ) A__ = feature_extractor.sampling_rate # resample audio A__ = dataset.cast_column('''audio''' , Audio(sampling_rate=lowercase_ ) ) # load eval pipeline if args.device is None: A__ = 0 if torch.cuda.is_available() else -1 A__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(lowercase_ ): A__ = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) A__ = prediction['''text'''] A__ = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples A__ = dataset.map(lowercase_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(lowercase_ , lowercase_ ) if __name__ == "__main__": _lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) _lowerCamelCase : str = parser.parse_args() main(args)
14
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( __snake_case : Dict , __snake_case : Optional[Any] ): '''simple docstring''' if len(lowercase_ ) != len(lowercase_ ): raise ValueError('String lengths must match!' ) lowercase = 0 for chara, chara in zip(lowercase_ , lowercase_ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
220
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowerCamelCase : int = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Tuple = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys _lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
0
"""simple docstring""" import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowercase__ ( UpperCAmelCase__ ): _UpperCAmelCase :Dict = (DDIMParallelScheduler,) _UpperCAmelCase :Tuple = (("eta", 0.0), ("num_inference_steps", 50)) def UpperCAmelCase__ ( self : str , **snake_case__ : str ): lowerCamelCase_ : Any ={ "num_train_timesteps": 1000, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**UpperCAmelCase__ ) return config def UpperCAmelCase__ ( self : int , **snake_case__ : List[Any] ): lowerCamelCase_ : Tuple =self.scheduler_classes[0] lowerCamelCase_ : Optional[int] =self.get_scheduler_config(**UpperCAmelCase__ ) lowerCamelCase_ : int =scheduler_class(**UpperCAmelCase__ ) lowerCamelCase_ , lowerCamelCase_ : Optional[Any] =10, 0.0 lowerCamelCase_ : List[str] =self.dummy_model() lowerCamelCase_ : Dict =self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase__ ) for t in scheduler.timesteps: lowerCamelCase_ : str =model(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCamelCase_ : Optional[int] =scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ).prev_sample return sample def UpperCAmelCase__ ( self : List[str] ): for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase__ ) def UpperCAmelCase__ ( self : Optional[int] ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=UpperCAmelCase__ ) lowerCamelCase_ : int =self.scheduler_classes[0] lowerCamelCase_ : List[Any] =self.get_scheduler_config(steps_offset=1 ) lowerCamelCase_ : Union[str, Any] =scheduler_class(**UpperCAmelCase__ ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def UpperCAmelCase__ ( self : str ): for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=UpperCAmelCase__ , beta_end=UpperCAmelCase__ ) def UpperCAmelCase__ ( self : Tuple ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase__ ) def UpperCAmelCase__ ( self : int ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase__ ) def UpperCAmelCase__ ( self : List[Any] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase__ ) def UpperCAmelCase__ ( self : Optional[int] ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=UpperCAmelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=UpperCAmelCase__ ) def UpperCAmelCase__ ( self : Tuple ): self.check_over_configs(thresholding=UpperCAmelCase__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase__ , prediction_type=UpperCAmelCase__ , sample_max_value=UpperCAmelCase__ , ) def UpperCAmelCase__ ( self : Tuple ): for t in [1, 10, 49]: self.check_over_forward(time_step=UpperCAmelCase__ ) def UpperCAmelCase__ ( self : Tuple ): for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=UpperCAmelCase__ , num_inference_steps=UpperCAmelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=UpperCAmelCase__ , eta=UpperCAmelCase__ ) def UpperCAmelCase__ ( self : List[Any] ): lowerCamelCase_ : Optional[Any] =self.scheduler_classes[0] lowerCamelCase_ : Union[str, Any] =self.get_scheduler_config() lowerCamelCase_ : Optional[Any] =scheduler_class(**UpperCAmelCase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.14_771 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.32_460 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.00_979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1E-5 def UpperCAmelCase__ ( self : Union[str, Any] ): lowerCamelCase_ : str =self.scheduler_classes[0] lowerCamelCase_ : Optional[Any] =self.get_scheduler_config() lowerCamelCase_ : List[str] =scheduler_class(**UpperCAmelCase__ ) lowerCamelCase_ , lowerCamelCase_ : Tuple =10, 0.0 scheduler.set_timesteps(UpperCAmelCase__ ) lowerCamelCase_ : List[str] =self.dummy_model() lowerCamelCase_ : List[str] =self.dummy_sample_deter lowerCamelCase_ : List[Any] =self.dummy_sample_deter + 0.1 lowerCamelCase_ : str =self.dummy_sample_deter - 0.1 lowerCamelCase_ : int =samplea.shape[0] lowerCamelCase_ : Union[str, Any] =torch.stack([samplea, samplea, samplea] , dim=0 ) lowerCamelCase_ : List[str] =torch.arange(UpperCAmelCase__ )[0:3, None].repeat(1 , UpperCAmelCase__ ) lowerCamelCase_ : Dict =model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) lowerCamelCase_ : Any =scheduler.batch_step_no_noise(UpperCAmelCase__ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , UpperCAmelCase__ ) lowerCamelCase_ : Any =torch.sum(torch.abs(UpperCAmelCase__ ) ) lowerCamelCase_ : Optional[Any] =torch.mean(torch.abs(UpperCAmelCase__ ) ) assert abs(result_sum.item() - 1_147.7_904 ) < 1E-2 assert abs(result_mean.item() - 0.4_982 ) < 1E-3 def UpperCAmelCase__ ( self : List[Any] ): lowerCamelCase_ : List[str] =self.full_loop() lowerCamelCase_ : str =torch.sum(torch.abs(UpperCAmelCase__ ) ) lowerCamelCase_ : Optional[int] =torch.mean(torch.abs(UpperCAmelCase__ ) ) assert abs(result_sum.item() - 172.0_067 ) < 1E-2 assert abs(result_mean.item() - 0.223_967 ) < 1E-3 def UpperCAmelCase__ ( self : Any ): lowerCamelCase_ : Any =self.full_loop(prediction_type="v_prediction" ) lowerCamelCase_ : Any =torch.sum(torch.abs(UpperCAmelCase__ ) ) lowerCamelCase_ : Tuple =torch.mean(torch.abs(UpperCAmelCase__ ) ) assert abs(result_sum.item() - 52.5_302 ) < 1E-2 assert abs(result_mean.item() - 0.0_684 ) < 1E-3 def UpperCAmelCase__ ( self : Optional[Any] ): lowerCamelCase_ : List[str] =self.full_loop(set_alpha_to_one=UpperCAmelCase__ , beta_start=0.01 ) lowerCamelCase_ : Any =torch.sum(torch.abs(UpperCAmelCase__ ) ) lowerCamelCase_ : int =torch.mean(torch.abs(UpperCAmelCase__ ) ) assert abs(result_sum.item() - 149.8_295 ) < 1E-2 assert abs(result_mean.item() - 0.1_951 ) < 1E-3 def UpperCAmelCase__ ( self : List[Any] ): lowerCamelCase_ : List[str] =self.full_loop(set_alpha_to_one=UpperCAmelCase__ , beta_start=0.01 ) lowerCamelCase_ : Optional[Any] =torch.sum(torch.abs(UpperCAmelCase__ ) ) lowerCamelCase_ : List[Any] =torch.mean(torch.abs(UpperCAmelCase__ ) ) assert abs(result_sum.item() - 149.0_784 ) < 1E-2 assert abs(result_mean.item() - 0.1_941 ) < 1E-3
144
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : List[str] = {"""configuration_vit_msn""": ["""VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMSNConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = [ """VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMSNModel""", """ViTMSNForImageClassification""", """ViTMSNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys _lowerCamelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) __UpperCamelCase : Tuple = { """configuration_speech_to_text""": ["""SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Speech2TextConfig"""], """processing_speech_to_text""": ["""Speech2TextProcessor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = ["""Speech2TextTokenizer"""] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = ["""Speech2TextFeatureExtractor"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = [ """TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSpeech2TextForConditionalGeneration""", """TFSpeech2TextModel""", """TFSpeech2TextPreTrainedModel""", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ """SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Speech2TextForConditionalGeneration""", """Speech2TextModel""", """Speech2TextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
146
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> "list[int]": """simple docstring""" if upper_limit < 0: raise ValueError('''Limit for the Catalan sequence must be ≥ 0''' ) A__ = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 A__ = 1 if upper_limit > 0: A__ = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(lowercase_ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""") print("""\n*** Enter -1 at any time to quit ***""") print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""") try: while True: _lowerCamelCase : List[Any] = int(input().strip()) if N < 0: print("""\n********* Goodbye!! ************""") break else: print(F'''The Catalan numbers from 0 through {N} are:''') print(catalan_numbers(N)) print("""Try another upper limit for the sequence: """, end="""""") except (NameError, ValueError): print("""\n********* Invalid input, goodbye! ************\n""") import doctest doctest.testmod()
14
0
'''simple docstring''' def lowercase_ ( lowerCAmelCase__ : Optional[Any] ): """simple docstring""" __UpperCAmelCase : int = [] for data in source_data: for i, el in enumerate(lowercase_ ): if len(lowercase_ ) < i + 1: data_lists.append([] ) data_lists[i].append(float(lowercase_ ) ) return data_lists def lowercase_ ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Any ): """simple docstring""" __UpperCAmelCase : Any = [] for dlist, weight in zip(lowercase_ , lowercase_ ): __UpperCAmelCase : List[str] = min(lowercase_ ) __UpperCAmelCase : Dict = max(lowercase_ ) __UpperCAmelCase : Optional[int] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: __UpperCAmelCase : Tuple = f'Invalid weight of {weight:f} provided' raise ValueError(lowercase_ ) score_lists.append(lowercase_ ) return score_lists def lowercase_ ( lowerCAmelCase__ : Optional[int] ): """simple docstring""" __UpperCAmelCase : List[Any] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(lowercase_ ): __UpperCAmelCase : Any = final_scores[j] + ele return final_scores def lowercase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any ): """simple docstring""" __UpperCAmelCase : Tuple = get_data(lowercase_ ) __UpperCAmelCase : Union[str, Any] = calculate_each_score(lowercase_ , lowercase_ ) __UpperCAmelCase : Tuple = generate_final_scores(lowercase_ ) # append scores to source data for i, ele in enumerate(lowercase_ ): source_data[i].append(lowercase_ ) return source_data
254
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict: """simple docstring""" A__ = args.pruning_method A__ = args.threshold A__ = args.model_name_or_path.rstrip('''/''' ) A__ = args.target_model_path print(f"""Load fine-pruned model from {model_name_or_path}""" ) A__ = torch.load(os.path.join(lowercase_ , '''pytorch_model.bin''' ) ) A__ = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: A__ = tensor print(f"""Copied layer {name}""" ) elif "classifier" in name or "qa_output" in name: A__ = tensor print(f"""Copied layer {name}""" ) elif "bias" in name: A__ = tensor print(f"""Copied layer {name}""" ) else: if pruning_method == "magnitude": A__ = MagnitudeBinarizer.apply(inputs=lowercase_ , threshold=lowercase_ ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "topK": if "mask_scores" in name: continue A__ = name[:-6] A__ = model[f"""{prefix_}mask_scores"""] A__ = TopKBinarizer.apply(lowercase_ , lowercase_ ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue A__ = name[:-6] A__ = model[f"""{prefix_}mask_scores"""] A__ = ThresholdBinarizer.apply(lowercase_ , lowercase_ , lowercase_ ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "l0": if "mask_scores" in name: continue A__ = name[:-6] A__ = model[f"""{prefix_}mask_scores"""] A__ , A__ = -0.1, 1.1 A__ = torch.sigmoid(lowercase_ ) A__ = s * (r - l) + l A__ = s_bar.clamp(min=0.0 , max=1.0 ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) else: raise ValueError('''Unknown pruning method''' ) if target_model_path is None: A__ = os.path.join( os.path.dirname(lowercase_ ) , f"""bertarized_{os.path.basename(lowercase_ )}""" ) if not os.path.isdir(lowercase_ ): shutil.copytree(lowercase_ , lowercase_ ) print(f"""\nCreated folder {target_model_path}""" ) torch.save(lowercase_ , os.path.join(lowercase_ , '''pytorch_model.bin''' ) ) print('''\nPruned model saved! See you later!''' ) if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( """--pruning_method""", choices=["""l0""", """magnitude""", """topK""", """sigmoied_threshold"""], type=str, required=True, help=( """Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,""" """ sigmoied_threshold = Soft movement pruning)""" ), ) parser.add_argument( """--threshold""", type=float, required=False, help=( """For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.""" """For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.""" """Not needed for `l0`""" ), ) parser.add_argument( """--model_name_or_path""", type=str, required=True, help="""Folder containing the model that was previously fine-pruned""", ) parser.add_argument( """--target_model_path""", default=None, type=str, required=False, help="""Folder containing the model that was previously fine-pruned""", ) _lowerCamelCase : int = parser.parse_args() main(args)
14
0
"""simple docstring""" def A_ ( _lowerCAmelCase : Any, _lowerCAmelCase : Dict ): """simple docstring""" _a = len(lowercase_ ) _a = [] for i in range(len(lowercase_ ) - pat_len + 1 ): _a = True for j in range(lowercase_ ): if s[i + j] != pattern[j]: _a = False break if match_found: position.append(lowercase_ ) return position if __name__ == "__main__": assert naive_pattern_search('''ABCDEFG''', '''DE''') == [3] print(naive_pattern_search('''ABAAABCDBBABCDDEBCABC''', '''ABC'''))
320
_lowerCamelCase : Optional[int] = 65521 def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: """simple docstring""" A__ = 1 A__ = 0 for plain_chr in plain_text: A__ = (a + ord(lowercase_ )) % MOD_ADLER A__ = (b + a) % MOD_ADLER return (b << 16) | a
14
0
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class a ( UpperCAmelCase__ ): __lowerCAmelCase : List[str] = (DDPMScheduler,) def __lowerCamelCase ( self :Optional[int] ,**__lowercase :Any ): snake_case__ : Optional[int] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**UpperCAmelCase__ ) return config def __lowerCamelCase ( self :Optional[int] ): for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCAmelCase__ ) def __lowerCamelCase ( self :Dict ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] ,[0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=UpperCAmelCase__ ,beta_end=UpperCAmelCase__ ) def __lowerCamelCase ( self :List[Any] ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase__ ) def __lowerCamelCase ( self :str ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCAmelCase__ ) def __lowerCamelCase ( self :List[str] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase__ ) def __lowerCamelCase ( self :List[str] ): self.check_over_configs(thresholding=UpperCAmelCase__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase__ ,prediction_type=UpperCAmelCase__ ,sample_max_value=UpperCAmelCase__ ,) def __lowerCamelCase ( self :Dict ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase__ ) def __lowerCamelCase ( self :List[Any] ): for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=UpperCAmelCase__ ) def __lowerCamelCase ( self :List[str] ): snake_case__ : str = self.scheduler_classes[0] snake_case__ : Union[str, Any] = self.get_scheduler_config() snake_case__ : int = scheduler_class(**UpperCAmelCase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1e-5 def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : List[Any] = self.scheduler_classes[0] snake_case__ : Tuple = self.get_scheduler_config() snake_case__ : str = scheduler_class(**UpperCAmelCase__ ) snake_case__ : int = len(UpperCAmelCase__ ) snake_case__ : List[str] = self.dummy_model() snake_case__ : int = self.dummy_sample_deter snake_case__ : List[str] = torch.manual_seed(0 ) for t in reversed(range(UpperCAmelCase__ ) ): # 1. predict noise residual snake_case__ : Union[str, Any] = model(UpperCAmelCase__ ,UpperCAmelCase__ ) # 2. predict previous mean of sample x_t-1 snake_case__ : List[Any] = scheduler.step(UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,generator=UpperCAmelCase__ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance snake_case__ : List[Any] = pred_prev_sample snake_case__ : Dict = torch.sum(torch.abs(UpperCAmelCase__ ) ) snake_case__ : Dict = torch.mean(torch.abs(UpperCAmelCase__ ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def __lowerCamelCase ( self :List[Any] ): snake_case__ : List[str] = self.scheduler_classes[0] snake_case__ : Optional[Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) snake_case__ : int = scheduler_class(**UpperCAmelCase__ ) snake_case__ : Any = len(UpperCAmelCase__ ) snake_case__ : int = self.dummy_model() snake_case__ : Optional[Any] = self.dummy_sample_deter snake_case__ : Tuple = torch.manual_seed(0 ) for t in reversed(range(UpperCAmelCase__ ) ): # 1. predict noise residual snake_case__ : Optional[Any] = model(UpperCAmelCase__ ,UpperCAmelCase__ ) # 2. predict previous mean of sample x_t-1 snake_case__ : List[str] = scheduler.step(UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,generator=UpperCAmelCase__ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance snake_case__ : Tuple = pred_prev_sample snake_case__ : Tuple = torch.sum(torch.abs(UpperCAmelCase__ ) ) snake_case__ : str = torch.mean(torch.abs(UpperCAmelCase__ ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def __lowerCamelCase ( self :List[Any] ): snake_case__ : Any = self.scheduler_classes[0] snake_case__ : str = self.get_scheduler_config() snake_case__ : str = scheduler_class(**UpperCAmelCase__ ) snake_case__ : List[str] = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=UpperCAmelCase__ ) snake_case__ : List[Any] = scheduler.timesteps for i, timestep in enumerate(UpperCAmelCase__ ): if i == len(UpperCAmelCase__ ) - 1: snake_case__ : Dict = -1 else: snake_case__ : int = timesteps[i + 1] snake_case__ : Any = scheduler.previous_timestep(UpperCAmelCase__ ) snake_case__ : List[Any] = prev_t.item() self.assertEqual(UpperCAmelCase__ ,UpperCAmelCase__ ) def __lowerCamelCase ( self :str ): snake_case__ : List[Any] = self.scheduler_classes[0] snake_case__ : Dict = self.get_scheduler_config() snake_case__ : Union[str, Any] = scheduler_class(**UpperCAmelCase__ ) snake_case__ : Optional[Any] = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(UpperCAmelCase__ ,msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=UpperCAmelCase__ ) def __lowerCamelCase ( self :List[str] ): snake_case__ : int = self.scheduler_classes[0] snake_case__ : Optional[Any] = self.get_scheduler_config() snake_case__ : Optional[int] = scheduler_class(**UpperCAmelCase__ ) snake_case__ : str = [1_0_0, 8_7, 5_0, 1, 0] snake_case__ : Union[str, Any] = len(UpperCAmelCase__ ) with self.assertRaises(UpperCAmelCase__ ,msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=UpperCAmelCase__ ,timesteps=UpperCAmelCase__ ) def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : Optional[int] = self.scheduler_classes[0] snake_case__ : Union[str, Any] = self.get_scheduler_config() snake_case__ : Dict = scheduler_class(**UpperCAmelCase__ ) snake_case__ : Tuple = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCAmelCase__ ,msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' ,): scheduler.set_timesteps(timesteps=UpperCAmelCase__ )
230
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : Tuple = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCamelCase : Union[str, Any] = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCamelCase : str = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCamelCase : str = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCamelCase : Any = { """facebook/dpr-ctx_encoder-single-nq-base""": 512, """facebook/dpr-ctx_encoder-multiset-base""": 512, } _lowerCamelCase : List[str] = { """facebook/dpr-question_encoder-single-nq-base""": 512, """facebook/dpr-question_encoder-multiset-base""": 512, } _lowerCamelCase : Tuple = { """facebook/dpr-reader-single-nq-base""": 512, """facebook/dpr-reader-multiset-base""": 512, } _lowerCamelCase : Optional[Any] = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCamelCase : Optional[int] = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCamelCase : Optional[Any] = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = DPRContextEncoderTokenizer class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = DPRQuestionEncoderTokenizer _lowerCamelCase : int = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) _lowerCamelCase : Any = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) _lowerCamelCase : Dict = r""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(UpperCAmelCase__ ) class UpperCamelCase_ : '''simple docstring''' def __call__( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Union[bool, str] = False , UpperCAmelCase__ : Union[bool, str] = False , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : Optional[bool] = None , **UpperCAmelCase__ : Optional[int] , ) ->BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , ) elif titles is None or texts is None: A__ = titles if texts is None else texts return super().__call__( UpperCAmelCase__ , UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , ) A__ = titles if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [titles] A__ = texts if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [texts] A__ = len(UpperCAmelCase__) A__ = questions if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [questions] * n_passages assert len(UpperCAmelCase__) == len( UpperCAmelCase__), f"""There should be as many titles than texts but got {len(UpperCAmelCase__)} titles and {len(UpperCAmelCase__)} texts.""" A__ = super().__call__(UpperCAmelCase__ , UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__)['''input_ids'''] A__ = super().__call__(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__)['''input_ids'''] A__ = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(UpperCAmelCase__ , UpperCAmelCase__) ] } if return_attention_mask is not False: A__ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids]) A__ = attention_mask return self.pad(UpperCAmelCase__ , padding=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : BatchEncoding , UpperCAmelCase__ : DPRReaderOutput , UpperCAmelCase__ : int = 16 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 4 , ) ->List[DPRSpanPrediction]: '''simple docstring''' A__ = reader_input['''input_ids'''] A__ , A__ , A__ = reader_output[:3] A__ = len(UpperCAmelCase__) A__ = sorted(range(UpperCAmelCase__) , reverse=UpperCAmelCase__ , key=relevance_logits.__getitem__) A__ = [] for doc_id in sorted_docs: A__ = list(input_ids[doc_id]) # assuming question & title information is at the beginning of the sequence A__ = sequence_ids.index(self.sep_token_id , 2) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: A__ = sequence_ids.index(self.pad_token_id) else: A__ = len(UpperCAmelCase__) A__ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=UpperCAmelCase__ , top_spans=UpperCAmelCase__ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=UpperCAmelCase__ , start_index=UpperCAmelCase__ , end_index=UpperCAmelCase__ , text=self.decode(sequence_ids[start_index : end_index + 1]) , )) if len(UpperCAmelCase__) >= num_spans: break return nbest_spans_predictions[:num_spans] def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , ) ->List[DPRSpanPrediction]: '''simple docstring''' A__ = [] for start_index, start_score in enumerate(UpperCAmelCase__): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]): scores.append(((start_index, start_index + answer_length), start_score + end_score)) A__ = sorted(UpperCAmelCase__ , key=lambda UpperCAmelCase__: x[1] , reverse=UpperCAmelCase__) A__ = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f"""Wrong span indices: [{start_index}:{end_index}]""" A__ = end_index - start_index + 1 assert length <= max_answer_length, f"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals): continue chosen_span_intervals.append((start_index, end_index)) if len(UpperCAmelCase__) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCAmelCase__ ) class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = READER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = READER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = ['''input_ids''', '''attention_mask'''] UpperCAmelCase__ = DPRReaderTokenizer
14
0
"""simple docstring""" from math import ceil def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = list(range(0 , lowercase_ ) ) __lowerCAmelCase = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check __lowerCAmelCase = [] for i in device_map_blocks: if device_map_blocks.count(lowercase_ ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(lowercase_ ) # Missing blocks __lowerCAmelCase = [i for i in blocks if i not in device_map_blocks] __lowerCAmelCase = [i for i in device_map_blocks if i not in blocks] if len(lowercase_ ) != 0: raise ValueError( "Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device." " These attention blocks were specified more than once: " + str(lowercase_ ) ) if len(lowercase_ ) != 0: raise ValueError( "There are attention blocks for this model that are not specified in the device_map. Add these attention " "blocks to a device on the device_map: " + str(lowercase_ ) ) if len(lowercase_ ) != 0: raise ValueError( "The device_map contains more attention blocks than this model has. Remove these from the device_map:" + str(lowercase_ ) ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = list(range(lowercase_ ) ) __lowerCAmelCase = int(ceil(n_layers / len(lowercase_ ) ) ) __lowerCAmelCase = [layers[i : i + n_blocks] for i in range(0 , lowercase_ , lowercase_ )] return dict(zip(lowercase_ , lowercase_ ) )
57
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Any = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''encoder-decoder''' UpperCAmelCase__ = True def __init__( self : List[str] , **UpperCAmelCase__ : Union[str, Any]) ->List[Any]: '''simple docstring''' super().__init__(**UpperCAmelCase__) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" A__ = kwargs.pop('''encoder''') A__ = encoder_config.pop('''model_type''') A__ = kwargs.pop('''decoder''') A__ = decoder_config.pop('''model_type''') from ..auto.configuration_auto import AutoConfig A__ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__) A__ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__) A__ = True @classmethod def SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , UpperCAmelCase__ : PretrainedConfig , UpperCAmelCase__ : PretrainedConfig , **UpperCAmelCase__ : Union[str, Any]) ->PretrainedConfig: '''simple docstring''' logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''') A__ = True A__ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str) ->Optional[Any]: '''simple docstring''' A__ = copy.deepcopy(self.__dict__) A__ = self.encoder.to_dict() A__ = self.decoder.to_dict() A__ = self.__class__.model_type return output
14
0
"""simple docstring""" def A ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: SCREAMING_SNAKE_CASE__ = mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ ) else: SCREAMING_SNAKE_CASE__ = max( mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ ) , mf_knapsack(i - 1 , lowercase_ , lowercase_ , j - wt[i - 1] ) + val[i - 1] , ) SCREAMING_SNAKE_CASE__ = val return f[i][j] def A ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: SCREAMING_SNAKE_CASE__ = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: SCREAMING_SNAKE_CASE__ = dp[i - 1][w_] return dp[n][w_], dp def A ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' if not (isinstance(lowercase_ , (list, tuple) ) and isinstance(lowercase_ , (list, tuple) )): raise ValueError( """Both the weights and values vectors must be either lists or tuples""" ) SCREAMING_SNAKE_CASE__ = len(lowercase_ ) if num_items != len(lowercase_ ): SCREAMING_SNAKE_CASE__ = ( """The number of weights must be the same as the number of values.\n""" f"""But got {num_items} weights and {len(lowercase_ )} values""" ) raise ValueError(lowercase_ ) for i in range(lowercase_ ): if not isinstance(wt[i] , lowercase_ ): SCREAMING_SNAKE_CASE__ = ( """All weights must be integers but got weight of """ f"""type {type(wt[i] )} at index {i}""" ) raise TypeError(lowercase_ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = knapsack(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) SCREAMING_SNAKE_CASE__ = set() _construct_solution(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) return optimal_val, example_optional_set def A ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(lowercase_ , lowercase_ , i - 1 , lowercase_ , lowercase_ ) else: optimal_set.add(lowercase_ ) _construct_solution(lowercase_ , lowercase_ , i - 1 , j - wt[i - 1] , lowercase_ ) if __name__ == "__main__": A_ : str = [3, 2, 4, 4] A_ : Tuple = [4, 3, 2, 3] A_ : int = 4 A_ : Any = 6 A_ : Optional[int] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] A_ : str = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 A_ : str = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("optimal_value = ", optimal_solution) print("An optimal subset corresponding to the optimal value", optimal_subset)
165
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any: """simple docstring""" A__ = [0] * len(lowercase_ ) A__ = [] A__ = [1] * len(lowercase_ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(lowercase_ ) ): if indegree[i] == 0: queue.append(lowercase_ ) while queue: A__ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: A__ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(lowercase_ ) print(max(lowercase_ ) ) # Adjacency list of Graph _lowerCamelCase : Optional[int] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
14
0
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor _lowerCAmelCase : str = logging.get_logger(__name__) class _UpperCamelCase ( UpperCAmelCase__ ): def __init__( self :int , *lowerCamelCase :Dict , **lowerCamelCase :List[Any] ) -> None: warnings.warn( "The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use FlavaImageProcessor instead." , UpperCAmelCase__ , ) super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ )
169
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline _lowerCamelCase : Optional[Any] = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCamelCase_ ( datasets.BuilderConfig ): '''simple docstring''' UpperCAmelCase__ = None UpperCAmelCase__ = "utf-8" UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = True # deprecated UpperCAmelCase__ = None # deprecated UpperCAmelCase__ = 10 << 20 # 10MB UpperCAmelCase__ = None class UpperCamelCase_ ( datasets.ArrowBasedBuilder ): '''simple docstring''' UpperCAmelCase__ = JsonConfig def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str: '''simple docstring''' if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''') A__ = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''') if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''') return datasets.DatasetInfo(features=self.config.features) def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : List[Any]) ->Dict: '''simple docstring''' if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""") A__ = dl_manager.download_and_extract(self.config.data_files) if isinstance(UpperCAmelCase__ , (str, list, tuple)): A__ = data_files if isinstance(UpperCAmelCase__ , UpperCAmelCase__): A__ = [files] A__ = [dl_manager.iter_files(UpperCAmelCase__) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files})] A__ = [] for split_name, files in data_files.items(): if isinstance(UpperCAmelCase__ , UpperCAmelCase__): A__ = [files] A__ = [dl_manager.iter_files(UpperCAmelCase__) for file in files] splits.append(datasets.SplitGenerator(name=UpperCAmelCase__ , gen_kwargs={'''files''': files})) return splits def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : pa.Table) ->pa.Table: '''simple docstring''' if self.config.features is not None: # adding missing columns for column_name in set(self.config.features) - set(pa_table.column_names): A__ = self.config.features.arrow_schema.field(UpperCAmelCase__).type A__ = pa_table.append_column(UpperCAmelCase__ , pa.array([None] * len(UpperCAmelCase__) , type=UpperCAmelCase__)) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example A__ = table_cast(UpperCAmelCase__ , self.config.features.arrow_schema) return pa_table def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Tuple) ->str: '''simple docstring''' for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase__)): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(UpperCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: A__ = json.load(UpperCAmelCase__) # We keep only the field we are interested in A__ = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(UpperCAmelCase__ , (list, tuple)): A__ = set().union(*[row.keys() for row in dataset]) A__ = {col: [row.get(UpperCAmelCase__) for row in dataset] for col in keys} else: A__ = dataset A__ = pa.Table.from_pydict(UpperCAmelCase__) yield file_idx, self._cast_table(UpperCAmelCase__) # If the file has one json object per line else: with open(UpperCAmelCase__ , '''rb''') as f: A__ = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small A__ = max(self.config.chunksize // 32 , 16 << 10) A__ = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: A__ = f.read(self.config.chunksize) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(UpperCAmelCase__) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": A__ = batch.decode(self.config.encoding , errors=UpperCAmelCase__).encode('''utf-8''') try: while True: try: A__ = paj.read_json( io.BytesIO(UpperCAmelCase__) , read_options=paj.ReadOptions(block_size=UpperCAmelCase__)) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(UpperCAmelCase__ , pa.ArrowInvalid) and "straddling" not in str(UpperCAmelCase__) or block_size > len(UpperCAmelCase__) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f"""Batch of {len(UpperCAmelCase__)} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""") block_size *= 2 except pa.ArrowInvalid as e: try: with open( UpperCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: A__ = json.load(UpperCAmelCase__) except json.JSONDecodeError: logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""") raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(UpperCAmelCase__ , UpperCAmelCase__): # list is the only sequence type supported in JSON try: A__ = set().union(*[row.keys() for row in dataset]) A__ = {col: [row.get(UpperCAmelCase__) for row in dataset] for col in keys} A__ = pa.Table.from_pydict(UpperCAmelCase__) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""") raise ValueError(f"""Not able to read records in the JSON file at {file}.""") from None yield file_idx, self._cast_table(UpperCAmelCase__) break else: logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""") raise ValueError( f"""Not able to read records in the JSON file at {file}. """ f"""You should probably indicate the field of the JSON file containing your records. """ f"""This JSON file contain the following fields: {str(list(dataset.keys()))}. """ f"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase__) batch_idx += 1
14
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { """microsoft/swinv2-tiny-patch4-window8-256""": ( """https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json""" ), } class lowerCAmelCase_ ( UpperCAmelCase__ ): '''simple docstring''' _snake_case = '''swinv2''' _snake_case = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , snake_case_=224 , snake_case_=4 , snake_case_=3 , snake_case_=96 , snake_case_=[2, 2, 6, 2] , snake_case_=[3, 6, 12, 24] , snake_case_=7 , snake_case_=4.0 , snake_case_=True , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_="gelu" , snake_case_=False , snake_case_=0.02 , snake_case_=1e-5 , snake_case_=32 , **snake_case_ , ) -> Any: super().__init__(**UpperCAmelCase__ ) __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = embed_dim __lowerCAmelCase = depths __lowerCAmelCase = len(UpperCAmelCase__ ) __lowerCAmelCase = num_heads __lowerCAmelCase = window_size __lowerCAmelCase = mlp_ratio __lowerCAmelCase = qkv_bias __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = drop_path_rate __lowerCAmelCase = hidden_act __lowerCAmelCase = use_absolute_embeddings __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = initializer_range __lowerCAmelCase = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __lowerCAmelCase = int(embed_dim * 2 ** (len(UpperCAmelCase__ ) - 1) ) __lowerCAmelCase = (0, 0, 0, 0)
301
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch _lowerCamelCase : List[Any] = """sshleifer/bart-tiny-random""" _lowerCamelCase : List[Any] = """patrickvonplaten/t5-tiny-random""" @require_torch class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int: '''simple docstring''' return AutoConfig.from_pretrained(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any: '''simple docstring''' A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.num_hidden_layers , 1) def SCREAMING_SNAKE_CASE ( self : int) ->Any: '''simple docstring''' A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase__) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers) def SCREAMING_SNAKE_CASE ( self : Dict) ->int: '''simple docstring''' A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , 1) def SCREAMING_SNAKE_CASE ( self : str) ->List[Any]: '''simple docstring''' with self.assertRaises(UpperCAmelCase__): create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=UpperCAmelCase__ , d=UpperCAmelCase__)
14
0
from __future__ import annotations from fractions import Fraction def lowerCamelCase__ ( a__ : int , a__ : List[str] ) -> bool: return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def lowerCamelCase__ ( a__ : Union[str, Any] ) -> list[str]: UpperCamelCase_ = [] UpperCamelCase_ = 11 UpperCamelCase_ = int("""1""" + """0""" * digit_len ) for num in range(lowercase_ , lowercase_ ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(lowercase_ , lowercase_ ): solutions.append(f'''{num}/{den}''' ) den += 1 num += 1 UpperCamelCase_ = 10 return solutions def lowerCamelCase__ ( a__ : int = 2 ) -> int: UpperCamelCase_ = 1.0 for fraction in fraction_list(lowercase_ ): UpperCamelCase_ = Fraction(lowercase_ ) result *= frac.denominator / frac.numerator return int(lowercase_ ) if __name__ == "__main__": print(solution())
122
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[str] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int=7 , UpperCAmelCase__ : Dict=3 , UpperCAmelCase__ : List[Any]=30 , UpperCAmelCase__ : Any=400 , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Optional[Any]=[0.5, 0.5, 0.5] , UpperCAmelCase__ : Any=[0.5, 0.5, 0.5] , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Optional[int]=1 / 255 , UpperCAmelCase__ : Optional[Any]=True , ) ->str: '''simple docstring''' A__ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1_333} A__ = parent A__ = batch_size A__ = num_channels A__ = min_resolution A__ = max_resolution A__ = do_resize A__ = size A__ = do_normalize A__ = image_mean A__ = image_std A__ = do_rescale A__ = rescale_factor A__ = do_pad def SCREAMING_SNAKE_CASE ( self : Any) ->List[str]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int=False) ->Optional[Any]: '''simple docstring''' if not batched: A__ = image_inputs[0] if isinstance(UpperCAmelCase__ , Image.Image): A__ , A__ = image.size else: A__ , A__ = image.shape[1], image.shape[2] if w < h: A__ = int(self.size['''shortest_edge'''] * h / w) A__ = self.size['''shortest_edge'''] elif w > h: A__ = self.size['''shortest_edge'''] A__ = int(self.size['''shortest_edge'''] * w / h) else: A__ = self.size['''shortest_edge'''] A__ = self.size['''shortest_edge'''] else: A__ = [] for image in image_inputs: A__ , A__ = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) A__ = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__: item[0])[0] A__ = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__: item[1])[1] return expected_height, expected_width @require_torch @require_vision class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = DeformableDetrImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self : List[str]) ->Tuple: '''simple docstring''' A__ = DeformableDetrImageProcessingTester(self) @property def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(UpperCAmelCase__ , '''image_mean''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''image_std''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_normalize''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_resize''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_rescale''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_pad''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''size''')) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int: '''simple docstring''' A__ = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1_333}) self.assertEqual(image_processor.do_pad , UpperCAmelCase__) A__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCAmelCase__) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84}) self.assertEqual(image_processor.do_pad , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any) ->List[str]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict) # create random PIL images A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__) A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , np.ndarray) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self : int) ->Tuple: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[str]: '''simple docstring''' A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''') as f: A__ = json.loads(f.read()) A__ = {'''image_id''': 39_769, '''annotations''': target} # encode them A__ = DeformableDetrImageProcessor() A__ = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , return_tensors='''pt''') # verify pixel values A__ = torch.Size([1, 3, 800, 1_066]) self.assertEqual(encoding['''pixel_values'''].shape , UpperCAmelCase__) A__ = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCAmelCase__ , atol=1e-4)) # verify area A__ = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCAmelCase__)) # verify boxes A__ = torch.Size([6, 4]) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCAmelCase__) A__ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCAmelCase__ , atol=1e-3)) # verify image_id A__ = torch.tensor([39_769]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCAmelCase__)) # verify is_crowd A__ = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCAmelCase__)) # verify class_labels A__ = torch.tensor([75, 75, 63, 65, 17, 17]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCAmelCase__)) # verify orig_size A__ = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCAmelCase__)) # verify size A__ = torch.tensor([800, 1_066]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCAmelCase__)) @slow def SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[int]: '''simple docstring''' A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''') as f: A__ = json.loads(f.read()) A__ = {'''file_name''': '''000000039769.png''', '''image_id''': 39_769, '''segments_info''': target} A__ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''') # encode them A__ = DeformableDetrImageProcessor(format='''coco_panoptic''') A__ = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , masks_path=UpperCAmelCase__ , return_tensors='''pt''') # verify pixel values A__ = torch.Size([1, 3, 800, 1_066]) self.assertEqual(encoding['''pixel_values'''].shape , UpperCAmelCase__) A__ = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCAmelCase__ , atol=1e-4)) # verify area A__ = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCAmelCase__)) # verify boxes A__ = torch.Size([6, 4]) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCAmelCase__) A__ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCAmelCase__ , atol=1e-3)) # verify image_id A__ = torch.tensor([39_769]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCAmelCase__)) # verify is_crowd A__ = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCAmelCase__)) # verify class_labels A__ = torch.tensor([17, 17, 63, 75, 75, 93]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCAmelCase__)) # verify masks A__ = 822_873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , UpperCAmelCase__) # verify orig_size A__ = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCAmelCase__)) # verify size A__ = torch.tensor([800, 1_066]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCAmelCase__))
14
0
"""simple docstring""" from __future__ import annotations import typing from collections.abc import Iterable import numpy as np _UpperCamelCase : str = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 _UpperCamelCase : Tuple = typing.Union[np.floataa, int, float] # noqa: UP007 def _SCREAMING_SNAKE_CASE ( __snake_case : Union[str, Any] , __snake_case : List[str] ): '''simple docstring''' return np.sqrt(np.sum((np.asarray(lowercase_ ) - np.asarray(lowercase_ )) ** 2 ) ) def _SCREAMING_SNAKE_CASE ( __snake_case : Union[str, Any] , __snake_case : List[str] ): '''simple docstring''' return sum((va - va) ** 2 for va, va in zip(lowercase_ , lowercase_ ) ) ** (1 / 2) if __name__ == "__main__": def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' from timeit import timeit print('Without Numpy' ) print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=1_00_00 , globals=globals() , ) ) print('With Numpy' ) print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=1_00_00 , globals=globals() , ) ) benchmark()
220
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np _lowerCamelCase : str = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 _lowerCamelCase : Tuple = typing.Union[np.floataa, int, float] # noqa: UP007 def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> VectorOut: """simple docstring""" return np.sqrt(np.sum((np.asarray(lowercase_ ) - np.asarray(lowercase_ )) ** 2 ) ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> VectorOut: """simple docstring""" return sum((va - va) ** 2 for va, va in zip(lowercase_ , lowercase_ ) ) ** (1 / 2) if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) ) benchmark()
14
0
"""simple docstring""" import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowercase__ : def __init__( self : List[str] , snake_case__ : Optional[int] , snake_case__ : List[str]=13 , snake_case__ : List[Any]=64 , snake_case__ : Optional[int]=2 , snake_case__ : List[str]=3 , snake_case__ : int=True , snake_case__ : Optional[int]=True , snake_case__ : List[Any]=32 , snake_case__ : Any=5 , snake_case__ : List[str]=4 , snake_case__ : Any=37 , snake_case__ : Dict="gelu" , snake_case__ : List[Any]=0.1 , snake_case__ : Union[str, Any]=0.1 , snake_case__ : int=10 , snake_case__ : Tuple=0.02 , snake_case__ : Tuple=[1, 16, 4, 4] , snake_case__ : Any=None , ): lowerCamelCase_ : Optional[Any] =parent lowerCamelCase_ : Dict =batch_size lowerCamelCase_ : str =image_size lowerCamelCase_ : Tuple =patch_size lowerCamelCase_ : Any =num_channels lowerCamelCase_ : str =is_training lowerCamelCase_ : List[str] =use_labels lowerCamelCase_ : Union[str, Any] =hidden_size lowerCamelCase_ : Optional[Any] =num_hidden_layers lowerCamelCase_ : Dict =num_attention_heads lowerCamelCase_ : List[Any] =intermediate_size lowerCamelCase_ : str =hidden_act lowerCamelCase_ : List[Any] =hidden_dropout_prob lowerCamelCase_ : int =attention_probs_dropout_prob lowerCamelCase_ : Union[str, Any] =type_sequence_label_size lowerCamelCase_ : Optional[Any] =initializer_range lowerCamelCase_ : List[Any] =scope lowerCamelCase_ : Any =backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size lowerCamelCase_ : Tuple =(self.image_size // 32) ** 2 lowerCamelCase_ : Dict =num_patches + 1 def UpperCAmelCase__ ( self : int ): lowerCamelCase_ : List[str] =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ : str =None if self.use_labels: lowerCamelCase_ : Union[str, Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ : Optional[int] =self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : Optional[Any] ): lowerCamelCase_ : List[Any] ={ "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [4, 8, 16, 32], "num_groups": 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=UpperCAmelCase__ , ) def UpperCAmelCase__ ( self : Optional[int] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : int ): lowerCamelCase_ : str =ViTHybridModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCamelCase_ : Any =model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Tuple , snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] ): lowerCamelCase_ : Tuple =self.type_sequence_label_size lowerCamelCase_ : Any =ViTHybridForImageClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCamelCase_ : Optional[Any] =model(UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase__ ( self : Any ): lowerCamelCase_ : Optional[int] =self.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Optional[Any] =config_and_inputs lowerCamelCase_ : str ={"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase__ ( UpperCAmelCase__, UpperCAmelCase__, unittest.TestCase ): _UpperCAmelCase :Optional[int] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () _UpperCAmelCase :int = ( {"feature-extraction": ViTHybridModel, "image-classification": ViTHybridForImageClassification} if is_torch_available() else {} ) _UpperCAmelCase :str = False _UpperCAmelCase :List[str] = False _UpperCAmelCase :str = False def UpperCAmelCase__ ( self : Dict ): lowerCamelCase_ : Optional[int] =ViTHybridModelTester(self ) lowerCamelCase_ : Any =ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=37 ) def UpperCAmelCase__ ( self : Optional[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def UpperCAmelCase__ ( self : str ): pass def UpperCAmelCase__ ( self : str ): lowerCamelCase_ , lowerCamelCase_ : Dict =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ : List[Any] =model_class(UpperCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase_ : Optional[Any] =model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase__ , nn.Linear ) ) def UpperCAmelCase__ ( self : List[Any] ): lowerCamelCase_ , lowerCamelCase_ : List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ : Dict =model_class(UpperCAmelCase__ ) lowerCamelCase_ : Union[str, Any] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ : Tuple =[*signature.parameters.keys()] lowerCamelCase_ : Union[str, Any] =["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase__ ) def UpperCAmelCase__ ( self : int ): lowerCamelCase_ : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def UpperCAmelCase__ ( self : Union[str, Any] ): lowerCamelCase_ : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ ) def UpperCAmelCase__ ( self : Optional[int] ): lowerCamelCase_ , lowerCamelCase_ : str =self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ : int =_config_zero_init(UpperCAmelCase__ ) for model_class in self.all_model_classes: lowerCamelCase_ : Dict =model_class(config=UpperCAmelCase__ ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": lowerCamelCase_ : int =[F"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @slow def UpperCAmelCase__ ( self : Optional[int] ): for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ : str =ViTHybridModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) def _snake_case ( ) -> List[str]: lowerCamelCase_ : int =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self : List[str] ): return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase__ ( self : Tuple ): lowerCamelCase_ : Optional[Any] =ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( UpperCAmelCase__ ) lowerCamelCase_ : Union[str, Any] =self.default_image_processor lowerCamelCase_ : Union[str, Any] =prepare_img() lowerCamelCase_ : List[str] =image_processor(images=UpperCAmelCase__ , return_tensors="pt" ).to(UpperCAmelCase__ ) # forward pass with torch.no_grad(): lowerCamelCase_ : Union[str, Any] =model(**UpperCAmelCase__ ) # verify the logits lowerCamelCase_ : Optional[Any] =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase__ ) lowerCamelCase_ : Dict =torch.tensor([-1.9_090, -0.4_993, -0.2_389] ).to(UpperCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1E-4 ) ) @slow @require_accelerate def UpperCAmelCase__ ( self : Union[str, Any] ): lowerCamelCase_ : List[Any] =ViTHybridImageProcessor.from_pretrained("google/vit-hybrid-base-bit-384" ) lowerCamelCase_ : Any =ViTHybridForImageClassification.from_pretrained("google/vit-hybrid-base-bit-384" , device_map="auto" ) lowerCamelCase_ : Dict =prepare_img() lowerCamelCase_ : Union[str, Any] =image_processor(images=UpperCAmelCase__ , return_tensors="pt" ) lowerCamelCase_ : Tuple =model(**UpperCAmelCase__ ) lowerCamelCase_ : Tuple =outputs.logits # model predicts one of the 1000 ImageNet classes lowerCamelCase_ : str =logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , "tabby, tabby cat" )
144
from ...processing_utils import ProcessorMixin class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''SpeechT5FeatureExtractor''' UpperCAmelCase__ = '''SpeechT5Tokenizer''' def __init__( self : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple) ->Union[str, Any]: '''simple docstring''' super().__init__(UpperCAmelCase__ , UpperCAmelCase__) def __call__( self : Dict , *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : Any) ->Optional[Any]: '''simple docstring''' A__ = kwargs.pop('''audio''' , UpperCAmelCase__) A__ = kwargs.pop('''text''' , UpperCAmelCase__) A__ = kwargs.pop('''text_target''' , UpperCAmelCase__) A__ = kwargs.pop('''audio_target''' , UpperCAmelCase__) A__ = kwargs.pop('''sampling_rate''' , UpperCAmelCase__) if audio is not None and text is not None: raise ValueError( '''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''') if audio_target is not None and text_target is not None: raise ValueError( '''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''') if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( '''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''') if audio is not None: A__ = self.feature_extractor(UpperCAmelCase__ , *UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , **UpperCAmelCase__) elif text is not None: A__ = self.tokenizer(UpperCAmelCase__ , **UpperCAmelCase__) else: A__ = None if audio_target is not None: A__ = self.feature_extractor(audio_target=UpperCAmelCase__ , *UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , **UpperCAmelCase__) A__ = targets['''input_values'''] elif text_target is not None: A__ = self.tokenizer(UpperCAmelCase__ , **UpperCAmelCase__) A__ = targets['''input_ids'''] else: A__ = None if inputs is None: return targets if targets is not None: A__ = labels A__ = targets.get('''attention_mask''') if decoder_attention_mask is not None: A__ = decoder_attention_mask return inputs def SCREAMING_SNAKE_CASE ( self : Optional[Any] , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : int) ->Optional[int]: '''simple docstring''' A__ = kwargs.pop('''input_values''' , UpperCAmelCase__) A__ = kwargs.pop('''input_ids''' , UpperCAmelCase__) A__ = kwargs.pop('''labels''' , UpperCAmelCase__) if input_values is not None and input_ids is not None: raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''') if input_values is None and input_ids is None and labels is None: raise ValueError( '''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''') if input_values is not None: A__ = self.feature_extractor.pad(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__) elif input_ids is not None: A__ = self.tokenizer.pad(UpperCAmelCase__ , **UpperCAmelCase__) else: A__ = None if labels is not None: if "input_ids" in labels or (isinstance(UpperCAmelCase__ , UpperCAmelCase__) and "input_ids" in labels[0]): A__ = self.tokenizer.pad(UpperCAmelCase__ , **UpperCAmelCase__) A__ = targets['''input_ids'''] else: A__ = self.feature_extractor.feature_size A__ = self.feature_extractor.num_mel_bins A__ = self.feature_extractor.pad(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__) A__ = feature_size_hack A__ = targets['''input_values'''] else: A__ = None if inputs is None: return targets if targets is not None: A__ = labels A__ = targets.get('''attention_mask''') if decoder_attention_mask is not None: A__ = decoder_attention_mask return inputs def SCREAMING_SNAKE_CASE ( self : Any , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : Optional[Any]) ->Optional[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase__ , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Union[str, Any]) ->Dict: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase__ , **UpperCAmelCase__)
14
0
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __UpperCamelCase : List[Any] = logging.get_logger(__name__) __UpperCamelCase : Tuple = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class __magic_name__ ( UpperCAmelCase__): A: Union[str, Any] = "detr" A: str = ["past_key_values"] A: str = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : Dict , lowerCamelCase__ : str=True , lowerCamelCase__ : int=None , lowerCamelCase__ : List[Any]=3 , lowerCamelCase__ : List[str]=100 , lowerCamelCase__ : Dict=6 , lowerCamelCase__ : Any=2048 , lowerCamelCase__ : str=8 , lowerCamelCase__ : Any=6 , lowerCamelCase__ : Any=2048 , lowerCamelCase__ : Any=8 , lowerCamelCase__ : Union[str, Any]=0.0 , lowerCamelCase__ : List[str]=0.0 , lowerCamelCase__ : int=True , lowerCamelCase__ : Optional[Any]="relu" , lowerCamelCase__ : int=256 , lowerCamelCase__ : Dict=0.1 , lowerCamelCase__ : Dict=0.0 , lowerCamelCase__ : Optional[int]=0.0 , lowerCamelCase__ : Optional[Any]=0.02 , lowerCamelCase__ : Optional[int]=1.0 , lowerCamelCase__ : Any=False , lowerCamelCase__ : Optional[int]="sine" , lowerCamelCase__ : Union[str, Any]="resnet50" , lowerCamelCase__ : str=True , lowerCamelCase__ : Union[str, Any]=False , lowerCamelCase__ : Optional[Any]=1 , lowerCamelCase__ : Optional[Any]=5 , lowerCamelCase__ : Dict=2 , lowerCamelCase__ : Optional[Any]=1 , lowerCamelCase__ : Dict=1 , lowerCamelCase__ : Tuple=5 , lowerCamelCase__ : int=2 , lowerCamelCase__ : str=0.1 , **lowerCamelCase__ : str , ) -> List[Any]: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) UpperCamelCase__ : List[Any] = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): UpperCamelCase__ : Tuple = backbone_config.get('''model_type''' ) UpperCamelCase__ : List[str] = CONFIG_MAPPING[backbone_model_type] UpperCamelCase__ : List[str] = config_class.from_dict(UpperCAmelCase__ ) # set timm attributes to None UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : int = None, None, None UpperCamelCase__ : Optional[int] = use_timm_backbone UpperCamelCase__ : Optional[Any] = backbone_config UpperCamelCase__ : Optional[Any] = num_channels UpperCamelCase__ : Dict = num_queries UpperCamelCase__ : Tuple = d_model UpperCamelCase__ : List[str] = encoder_ffn_dim UpperCamelCase__ : Any = encoder_layers UpperCamelCase__ : List[Any] = encoder_attention_heads UpperCamelCase__ : List[str] = decoder_ffn_dim UpperCamelCase__ : Union[str, Any] = decoder_layers UpperCamelCase__ : Dict = decoder_attention_heads UpperCamelCase__ : Optional[int] = dropout UpperCamelCase__ : Union[str, Any] = attention_dropout UpperCamelCase__ : int = activation_dropout UpperCamelCase__ : Any = activation_function UpperCamelCase__ : List[str] = init_std UpperCamelCase__ : int = init_xavier_std UpperCamelCase__ : Optional[int] = encoder_layerdrop UpperCamelCase__ : str = decoder_layerdrop UpperCamelCase__ : Dict = encoder_layers UpperCamelCase__ : Optional[int] = auxiliary_loss UpperCamelCase__ : Tuple = position_embedding_type UpperCamelCase__ : Tuple = backbone UpperCamelCase__ : Union[str, Any] = use_pretrained_backbone UpperCamelCase__ : int = dilation # Hungarian matcher UpperCamelCase__ : Any = class_cost UpperCamelCase__ : int = bbox_cost UpperCamelCase__ : int = giou_cost # Loss coefficients UpperCamelCase__ : Optional[int] = mask_loss_coefficient UpperCamelCase__ : Tuple = dice_loss_coefficient UpperCamelCase__ : List[Any] = bbox_loss_coefficient UpperCamelCase__ : Optional[int] = giou_loss_coefficient UpperCamelCase__ : Union[str, Any] = eos_coefficient super().__init__(is_encoder_decoder=UpperCAmelCase__ , **UpperCAmelCase__ ) @property def UpperCAmelCase__ ( self : Any ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase__ ( self : Any ) -> int: '''simple docstring''' return self.d_model @classmethod def UpperCAmelCase__ ( cls : int , lowerCamelCase__ : PretrainedConfig , **lowerCamelCase__ : Optional[Any] ) -> str: '''simple docstring''' return cls(backbone_config=UpperCAmelCase__ , **UpperCAmelCase__ ) def UpperCAmelCase__ ( self : str ) -> Dict[str, any]: '''simple docstring''' UpperCamelCase__ : List[Any] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCamelCase__ : Tuple = self.backbone_config.to_dict() UpperCamelCase__ : Optional[int] = self.__class__.model_type return output class __magic_name__ ( UpperCAmelCase__): A: Union[str, Any] = version.parse("1.11") @property def UpperCAmelCase__ ( self : str ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def UpperCAmelCase__ ( self : Union[str, Any] ) -> float: '''simple docstring''' return 1E-5 @property def UpperCAmelCase__ ( self : str ) -> int: '''simple docstring''' return 12
146
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Tuple = logging.get_logger(__name__) _lowerCamelCase : str = { """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''git_vision_model''' def __init__( self : Any , UpperCAmelCase__ : Any=768 , UpperCAmelCase__ : int=3_072 , UpperCAmelCase__ : List[str]=12 , UpperCAmelCase__ : Dict=12 , UpperCAmelCase__ : Optional[int]=3 , UpperCAmelCase__ : List[Any]=224 , UpperCAmelCase__ : Union[str, Any]=16 , UpperCAmelCase__ : Union[str, Any]="quick_gelu" , UpperCAmelCase__ : Dict=1e-5 , UpperCAmelCase__ : Union[str, Any]=0.0 , UpperCAmelCase__ : Any=0.02 , **UpperCAmelCase__ : Any , ) ->Optional[int]: '''simple docstring''' super().__init__(**UpperCAmelCase__) A__ = hidden_size A__ = intermediate_size A__ = num_hidden_layers A__ = num_attention_heads A__ = num_channels A__ = patch_size A__ = image_size A__ = initializer_range A__ = attention_dropout A__ = layer_norm_eps A__ = hidden_act @classmethod def SCREAMING_SNAKE_CASE ( cls : Any , UpperCAmelCase__ : Union[str, os.PathLike] , **UpperCAmelCase__ : int) ->"PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCAmelCase__) A__ , A__ = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__) # get the vision config dict if we are loading from GITConfig if config_dict.get('''model_type''') == "git": A__ = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""") return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''git''' def __init__( self : Dict , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : int=30_522 , UpperCAmelCase__ : Optional[int]=768 , UpperCAmelCase__ : Dict=6 , UpperCAmelCase__ : int=12 , UpperCAmelCase__ : List[str]=3_072 , UpperCAmelCase__ : str="gelu" , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : List[Any]=1_024 , UpperCAmelCase__ : List[str]=0.02 , UpperCAmelCase__ : Any=1e-12 , UpperCAmelCase__ : Union[str, Any]=0 , UpperCAmelCase__ : List[Any]="absolute" , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Any=False , UpperCAmelCase__ : int=101 , UpperCAmelCase__ : Tuple=102 , UpperCAmelCase__ : Dict=None , **UpperCAmelCase__ : List[str] , ) ->Any: '''simple docstring''' super().__init__(bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , pad_token_id=UpperCAmelCase__ , **UpperCAmelCase__) if vision_config is None: A__ = {} logger.info('''vision_config is None. initializing the GitVisionConfig with default values.''') A__ = GitVisionConfig(**UpperCAmelCase__) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = initializer_range A__ = layer_norm_eps A__ = position_embedding_type A__ = use_cache A__ = tie_word_embeddings A__ = num_image_with_embedding A__ = bos_token_id A__ = eos_token_id def SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: '''simple docstring''' A__ = copy.deepcopy(self.__dict__) A__ = self.vision_config.to_dict() A__ = self.__class__.model_type return output
14
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _UpperCamelCase = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } _UpperCamelCase = { """google/realm-cc-news-pretrained-embedder""": 512, """google/realm-cc-news-pretrained-encoder""": 512, """google/realm-cc-news-pretrained-scorer""": 512, """google/realm-cc-news-pretrained-openqa""": 512, """google/realm-orqa-nq-openqa""": 512, """google/realm-orqa-nq-reader""": 512, """google/realm-orqa-wq-openqa""": 512, """google/realm-orqa-wq-reader""": 512, } _UpperCamelCase = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class _A ( UpperCAmelCase__ ): _SCREAMING_SNAKE_CASE : Dict = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_INIT_CONFIGURATION _SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : List[Any] = RealmTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Union[str, Any]: '''simple docstring''' super().__init__( UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , do_lower_case=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , tokenize_chinese_chars=UpperCAmelCase__ , strip_accents=UpperCAmelCase__ , **UpperCAmelCase__ , ) __UpperCAmelCase : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , UpperCAmelCase__ ) != do_lower_case or normalizer_state.get("""strip_accents""" , UpperCAmelCase__ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , UpperCAmelCase__ ) != tokenize_chinese_chars ): __UpperCAmelCase : Optional[int] = getattr(UpperCAmelCase__ , normalizer_state.pop("""type""" ) ) __UpperCAmelCase : Tuple = do_lower_case __UpperCAmelCase : int = strip_accents __UpperCAmelCase : Optional[Any] = tokenize_chinese_chars __UpperCAmelCase : Union[str, Any] = normalizer_class(**UpperCAmelCase__ ) __UpperCAmelCase : Optional[int] = do_lower_case def __A ( self , __UpperCAmelCase , **__UpperCAmelCase ) -> str: '''simple docstring''' __UpperCAmelCase : Tuple = PaddingStrategy.MAX_LENGTH __UpperCAmelCase : Tuple = text __UpperCAmelCase : Tuple = kwargs.pop("""text_pair""" , UpperCAmelCase__ ) __UpperCAmelCase : str = kwargs.pop("""return_tensors""" , UpperCAmelCase__ ) __UpperCAmelCase : Any = { """input_ids""": [], """attention_mask""": [], """token_type_ids""": [], } for idx, candidate_text in enumerate(UpperCAmelCase__ ): if batch_text_pair is not None: __UpperCAmelCase : Tuple = batch_text_pair[idx] else: __UpperCAmelCase : int = None __UpperCAmelCase : Dict = super().__call__(UpperCAmelCase__ , UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , **UpperCAmelCase__ ) __UpperCAmelCase : Optional[Any] = encoded_candidates.get("""input_ids""" ) __UpperCAmelCase : Tuple = encoded_candidates.get("""attention_mask""" ) __UpperCAmelCase : Optional[Any] = encoded_candidates.get("""token_type_ids""" ) if encoded_input_ids is not None: output_data["input_ids"].append(UpperCAmelCase__ ) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCAmelCase__ ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCAmelCase__ ) __UpperCAmelCase : str = {key: item for key, item in output_data.items() if len(UpperCAmelCase__ ) != 0} return BatchEncoding(UpperCAmelCase__ , tensor_type=UpperCAmelCase__ ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> str: '''simple docstring''' __UpperCAmelCase : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' __UpperCAmelCase : str = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__ ) return tuple(UpperCAmelCase__ )
254
import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: """simple docstring""" A__ = BeautifulSoup(requests.get(lowercase_ , params=lowercase_ ).content , '''html.parser''' ) A__ = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} ) A__ = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' ) return anchors[2].get_text() if __name__ == "__main__": _lowerCamelCase : Optional[Any] = { """title""": ( """Precisely geometry controlled microsupercapacitors for ultrahigh areal """ """capacitance, volumetric capacitance, and energy density""" ), """journal""": """Chem. Mater.""", """volume""": 30, """pages""": """3979-3990""", """year""": 2018, """hl""": """en""", } print(get_citation("""https://scholar.google.com/scholar_lookup""", params=params))
14
0
"""simple docstring""" from __future__ import annotations import csv import requests from bsa import BeautifulSoup def A_ ( _lowerCAmelCase : Optional[int] = "" ): """simple docstring""" _a = url or '''https://www.imdb.com/chart/top/?ref_=nv_mv_250''' _a = BeautifulSoup(requests.get(lowercase_ ).text, '''html.parser''' ) _a = soup.find_all('''td''', attrs='''titleColumn''' ) _a = soup.find_all('''td''', class_='''ratingColumn imdbRating''' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(lowercase_, lowercase_ ) } def A_ ( _lowerCAmelCase : Optional[Any] = "IMDb_Top_250_Movies.csv" ): """simple docstring""" _a = get_imdb_top_aaa_movies() with open(lowercase_, '''w''', newline='''''' ) as out_file: _a = csv.writer(lowercase_ ) writer.writerow(['''Movie title''', '''IMDb rating'''] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
320
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: """simple docstring""" A__ = StableDiffusionPipeline.from_pretrained(lowercase_ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors A__ = load_file(lowercase_ ) A__ = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: A__ = key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' ) A__ = pipeline.text_encoder else: A__ = key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' ) A__ = pipeline.unet # find the target layer A__ = layer_infos.pop(0 ) while len(lowercase_ ) > -1: try: A__ = curr_layer.__getattr__(lowercase_ ) if len(lowercase_ ) > 0: A__ = layer_infos.pop(0 ) elif len(lowercase_ ) == 0: break except Exception: if len(lowercase_ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: A__ = layer_infos.pop(0 ) A__ = [] if "lora_down" in key: pair_keys.append(key.replace('''lora_down''' , '''lora_up''' ) ) pair_keys.append(lowercase_ ) else: pair_keys.append(lowercase_ ) pair_keys.append(key.replace('''lora_up''' , '''lora_down''' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: A__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) A__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ ).unsqueeze(2 ).unsqueeze(3 ) else: A__ = state_dict[pair_keys[0]].to(torch.floataa ) A__ = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ ) # update visited list for item in pair_keys: visited.append(lowercase_ ) return pipeline if __name__ == "__main__": _lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") _lowerCamelCase : Tuple = parser.parse_args() _lowerCamelCase : List[Any] = args.base_model_path _lowerCamelCase : Optional[int] = args.checkpoint_path _lowerCamelCase : Dict = args.dump_path _lowerCamelCase : Optional[Any] = args.lora_prefix_unet _lowerCamelCase : Optional[int] = args.lora_prefix_text_encoder _lowerCamelCase : List[Any] = args.alpha _lowerCamelCase : int = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) _lowerCamelCase : Tuple = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
14
0
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters A__ = (720, 1280) # Height, Width A__ = (0.4, 0.6) # if height or width lower than this scale, drop it. A__ = 1 / 100 A__ = """""" A__ = """""" A__ = """""" A__ = 250 def _lowerCAmelCase ( ) -> None: """simple docstring""" snake_case__ , snake_case__ : Optional[Any] = get_dataset(lowercase_ , lowercase_ ) for index in range(lowercase_ ): snake_case__ : Optional[Any] = random.sample(range(len(lowercase_ ) ) , 4 ) snake_case__ , snake_case__ , snake_case__ : List[str] = update_image_and_anno( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , filter_scale=lowercase_ , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' snake_case__ : Dict = random_chars(32 ) snake_case__ : Dict = path.split(os.sep )[-1].rsplit('''.''' , 1 )[0] snake_case__ : Optional[Any] = f"""{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}""" cva.imwrite(f"""{file_root}.jpg""" , lowercase_ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"""Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}""" ) snake_case__ : Optional[Any] = [] for anno in new_annos: snake_case__ : Optional[int] = anno[3] - anno[1] snake_case__ : Dict = anno[4] - anno[2] snake_case__ : str = anno[1] + width / 2 snake_case__ : Optional[int] = anno[2] + height / 2 snake_case__ : Optional[int] = f"""{anno[0]} {x_center} {y_center} {width} {height}""" annos_list.append(lowercase_ ) with open(f"""{file_root}.txt""" , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> tuple[list, list]: """simple docstring""" snake_case__ : int = [] snake_case__ : Optional[Any] = [] for label_file in glob.glob(os.path.join(lowercase_ , '''*.txt''' ) ): snake_case__ : Union[str, Any] = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(lowercase_ ) as in_file: snake_case__ : List[str] = in_file.readlines() snake_case__ : int = os.path.join(lowercase_ , f"""{label_name}.jpg""" ) snake_case__ : int = [] for obj_list in obj_lists: snake_case__ : int = obj_list.rstrip('''\n''' ).split(''' ''' ) snake_case__ : Tuple = float(obj[1] ) - float(obj[3] ) / 2 snake_case__ : Optional[Any] = float(obj[2] ) - float(obj[4] ) / 2 snake_case__ : Tuple = float(obj[1] ) + float(obj[3] ) / 2 snake_case__ : int = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(lowercase_ ) labels.append(lowercase_ ) return img_paths, labels def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0.0 , ) -> tuple[list, list, str]: """simple docstring""" snake_case__ : Union[str, Any] = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) snake_case__ : Any = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) snake_case__ : Dict = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) snake_case__ : Optional[int] = int(scale_x * output_size[1] ) snake_case__ : List[str] = int(scale_y * output_size[0] ) snake_case__ : str = [] snake_case__ : Optional[int] = [] for i, index in enumerate(lowercase_ ): snake_case__ : str = all_img_list[index] path_list.append(lowercase_ ) snake_case__ : int = all_annos[index] snake_case__ : Optional[Any] = cva.imread(lowercase_ ) if i == 0: # top-left snake_case__ : Tuple = cva.resize(lowercase_ , (divid_point_x, divid_point_y) ) snake_case__ : Optional[Any] = img for bbox in img_annos: snake_case__ : int = bbox[1] * scale_x snake_case__ : str = bbox[2] * scale_y snake_case__ : Optional[int] = bbox[3] * scale_x snake_case__ : Tuple = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right snake_case__ : Tuple = cva.resize(lowercase_ , (output_size[1] - divid_point_x, divid_point_y) ) snake_case__ : Tuple = img for bbox in img_annos: snake_case__ : Optional[int] = scale_x + bbox[1] * (1 - scale_x) snake_case__ : Dict = bbox[2] * scale_y snake_case__ : Optional[Any] = scale_x + bbox[3] * (1 - scale_x) snake_case__ : List[Any] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left snake_case__ : int = cva.resize(lowercase_ , (divid_point_x, output_size[0] - divid_point_y) ) snake_case__ : Union[str, Any] = img for bbox in img_annos: snake_case__ : Optional[int] = bbox[1] * scale_x snake_case__ : Union[str, Any] = scale_y + bbox[2] * (1 - scale_y) snake_case__ : List[str] = bbox[3] * scale_x snake_case__ : Dict = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right snake_case__ : List[str] = cva.resize( lowercase_ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) snake_case__ : List[str] = img for bbox in img_annos: snake_case__ : int = scale_x + bbox[1] * (1 - scale_x) snake_case__ : Any = scale_y + bbox[2] * (1 - scale_y) snake_case__ : Optional[int] = scale_x + bbox[3] * (1 - scale_x) snake_case__ : int = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: snake_case__ : Optional[Any] = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def _lowerCAmelCase ( __lowerCAmelCase ) -> str: """simple docstring""" assert number_char > 1, "The number of character should greater than 1" snake_case__ : Union[str, Any] = ascii_lowercase + digits return "".join(random.choice(lowercase_ ) for _ in range(lowercase_ ) ) if __name__ == "__main__": main() print('''DONE ✅''')
230
import os import pytest from transformers.dynamic_module_utils import get_imports _lowerCamelCase : Any = """ import os """ _lowerCamelCase : Optional[int] = """ def foo(): import os return False """ _lowerCamelCase : List[Any] = """ def foo(): def bar(): if True: import os return False return bar() """ _lowerCamelCase : List[Any] = """ import os try: import bar except ImportError: raise ValueError() """ _lowerCamelCase : Union[str, Any] = """ import os def foo(): try: import bar except ImportError: raise ValueError() """ _lowerCamelCase : List[Any] = """ import os try: import bar except (ImportError, AttributeError): raise ValueError() """ _lowerCamelCase : List[Any] = """ import os try: import bar except ImportError as e: raise ValueError() """ _lowerCamelCase : str = """ import os try: import bar except: raise ValueError() """ _lowerCamelCase : Optional[Any] = """ import os try: import bar import baz except ImportError: raise ValueError() """ _lowerCamelCase : Any = """ import os try: import bar import baz except ImportError: x = 1 raise ValueError() """ _lowerCamelCase : Dict = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" A__ = os.path.join(lowercase_ , '''test_file.py''' ) with open(lowercase_ , '''w''' ) as _tmp_file: _tmp_file.write(lowercase_ ) A__ = get_imports(lowercase_ ) assert parsed_imports == ["os"]
14
0
"""simple docstring""" import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin A : Tuple = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right A : Tuple = 2_5_6_0_4_7 A : int = 2_5_6_1_4_5 @require_sentencepiece @require_tokenizers class _UpperCamelCase ( UpperCAmelCase__ ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[str] =NllbTokenizer __UpperCAmelCase : Optional[int] =NllbTokenizerFast __UpperCAmelCase : Union[str, Any] =True __UpperCAmelCase : List[Any] =True __UpperCAmelCase : Tuple ={} def snake_case ( self ): super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase = NllbTokenizer(UpperCAmelCase__ , keep_accents=UpperCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case ( self ): __lowerCAmelCase = NllbTokenizer(UpperCAmelCase__ , keep_accents=UpperCAmelCase__ ) __lowerCAmelCase = tokenizer.tokenize("This is a test" ) self.assertListEqual(UpperCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __lowerCAmelCase = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( UpperCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) __lowerCAmelCase = tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) self.assertListEqual( UpperCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(UpperCAmelCase__ ) self.assertListEqual( UpperCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def snake_case ( self ): __lowerCAmelCase = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-nllb", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) __lowerCAmelCase = self.tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = tokenizer_r.save_pretrained(UpperCAmelCase__ ) __lowerCAmelCase = tokenizer_p.save_pretrained(UpperCAmelCase__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) __lowerCAmelCase = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(UpperCAmelCase__ , UpperCAmelCase__ ) # Checks everything loads correctly in the same way __lowerCAmelCase = tokenizer_r.from_pretrained(UpperCAmelCase__ ) __lowerCAmelCase = tokenizer_p.from_pretrained(UpperCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase__ , UpperCAmelCase__ ) ) shutil.rmtree(UpperCAmelCase__ ) # Save tokenizer rust, legacy_format=True __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = tokenizer_r.save_pretrained(UpperCAmelCase__ , legacy_format=UpperCAmelCase__ ) __lowerCAmelCase = tokenizer_p.save_pretrained(UpperCAmelCase__ ) # Checks it save with the same files self.assertSequenceEqual(UpperCAmelCase__ , UpperCAmelCase__ ) # Checks everything loads correctly in the same way __lowerCAmelCase = tokenizer_r.from_pretrained(UpperCAmelCase__ ) __lowerCAmelCase = tokenizer_p.from_pretrained(UpperCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase__ , UpperCAmelCase__ ) ) shutil.rmtree(UpperCAmelCase__ ) # Save tokenizer rust, legacy_format=False __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = tokenizer_r.save_pretrained(UpperCAmelCase__ , legacy_format=UpperCAmelCase__ ) __lowerCAmelCase = tokenizer_p.save_pretrained(UpperCAmelCase__ ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __lowerCAmelCase = tokenizer_r.from_pretrained(UpperCAmelCase__ ) __lowerCAmelCase = tokenizer_p.from_pretrained(UpperCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase__ , UpperCAmelCase__ ) ) shutil.rmtree(UpperCAmelCase__ ) @require_torch def snake_case ( self ): if not self.test_seqaseq: return __lowerCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Longer text that will definitely require truncation. __lowerCAmelCase = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for" " Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons" " will only worsen the violence and misery for millions of people.", ] __lowerCAmelCase = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al" " Rusiei pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi" " că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] try: __lowerCAmelCase = tokenizer.prepare_seqaseq_batch( src_texts=UpperCAmelCase__ , tgt_texts=UpperCAmelCase__ , max_length=3 , max_target_length=10 , return_tensors="pt" , src_lang="eng_Latn" , tgt_lang="ron_Latn" , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified __lowerCAmelCase = tokenizer.prepare_seqaseq_batch( UpperCAmelCase__ , tgt_texts=UpperCAmelCase__ , max_length=3 , return_tensors="pt" ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) __lowerCAmelCase = tokenizer.prepare_seqaseq_batch( src_texts=UpperCAmelCase__ , max_length=3 , max_target_length=10 , return_tensors="pt" ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn("decoder_input_ids" , UpperCAmelCase__ ) @unittest.skip("Unfortunately way too slow to build a BPE with SentencePiece." ) def snake_case ( self ): pass def snake_case ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowerCAmelCase = [AddedToken("<special>" , lstrip=UpperCAmelCase__ )] __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , **UpperCAmelCase__ ) __lowerCAmelCase = tokenizer_r.encode("Hey this is a <special> token" ) __lowerCAmelCase = tokenizer_r.encode("<special>" , add_special_tokens=UpperCAmelCase__ )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , **UpperCAmelCase__ , ) __lowerCAmelCase = self.tokenizer_class.from_pretrained( UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , **UpperCAmelCase__ ) __lowerCAmelCase = tokenizer_p.encode("Hey this is a <special> token" ) __lowerCAmelCase = tokenizer_cr.encode("Hey this is a <special> token" ) self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[int] ="""facebook/nllb-200-distilled-600M""" __UpperCAmelCase : int =[ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] __UpperCAmelCase : Optional[Any] =[ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] __UpperCAmelCase : List[Any] =[ 2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 8_1_6_5, 2_4_8_0_6_6, 1_4_7_3_4, 9_5_0, 1_1_3_5, 1_0_5_7_2_1, 3_5_7_3, 8_3, 2_7_3_5_2, 1_0_8, 4_9_4_8_6, 2, ] @classmethod def snake_case ( cls ): __lowerCAmelCase = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang="eng_Latn" , tgt_lang="ron_Latn" ) __lowerCAmelCase = 1 return cls def snake_case ( self ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ace_Arab"] , 25_60_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ace_Latn"] , 25_60_02 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["fra_Latn"] , 25_60_57 ) def snake_case ( self ): __lowerCAmelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , UpperCAmelCase__ ) def snake_case ( self ): self.assertIn(UpperCAmelCase__ , self.tokenizer.all_special_ids ) # fmt: off __lowerCAmelCase = [RO_CODE, 42_54, 9_80_68, 11_29_23, 3_90_72, 39_09, 7_13, 10_27_67, 26, 1_73_14, 3_56_42, 1_46_83, 3_31_18, 20_22, 6_69_87, 2, 25_60_47] # fmt: on __lowerCAmelCase = self.tokenizer.decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ ) __lowerCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertNotIn(self.tokenizer.eos_token , UpperCAmelCase__ ) def snake_case ( self ): __lowerCAmelCase = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0] , UpperCAmelCase__ ) __lowerCAmelCase = 10 __lowerCAmelCase = self.tokenizer(UpperCAmelCase__ , max_length=UpperCAmelCase__ , truncation=UpperCAmelCase__ ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , UpperCAmelCase__ ) self.assertEqual(len(UpperCAmelCase__ ) , UpperCAmelCase__ ) def snake_case ( self ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [25_62_03, 3] ) def snake_case ( self ): __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(UpperCAmelCase__ ) __lowerCAmelCase = NllbTokenizer.from_pretrained(UpperCAmelCase__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , UpperCAmelCase__ ) @require_torch def snake_case ( self ): __lowerCAmelCase = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) __lowerCAmelCase = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id["ron_Latn"] ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) __lowerCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def snake_case ( self ): __lowerCAmelCase = self.tokenizer(self.src_text , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=3 , return_tensors="pt" ) __lowerCAmelCase = self.tokenizer( text_target=self.tgt_text , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=10 , return_tensors="pt" ) __lowerCAmelCase = targets["input_ids"] __lowerCAmelCase = shift_tokens_right( UpperCAmelCase__ , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def snake_case ( self ): __lowerCAmelCase = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="eng_Latn" , tgt_lang="fra_Latn" ) self.assertEqual( nested_simplify(UpperCAmelCase__ ) , { # A, test, EOS, en_XX "input_ids": [[25_60_47, 70, 73_56, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 25_60_57, } , ) @require_torch def snake_case ( self ): __lowerCAmelCase = True __lowerCAmelCase = self.tokenizer( "UN Chief says there is no military solution in Syria" , src_lang="eng_Latn" , tgt_lang="fra_Latn" ) self.assertEqual( inputs.input_ids , [1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2, 25_60_47] ) __lowerCAmelCase = False __lowerCAmelCase = self.tokenizer( "UN Chief says there is no military solution in Syria" , src_lang="eng_Latn" , tgt_lang="fra_Latn" ) self.assertEqual( inputs.input_ids , [25_60_47, 1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2] )
57
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" return int(input_a == input_a == 0 ) def SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" print('''Truth Table of NOR Gate:''' ) print('''| Input 1 | Input 2 | Output |''' ) print(f"""| 0 | 0 | {nor_gate(0 , 0 )} |""" ) print(f"""| 0 | 1 | {nor_gate(0 , 1 )} |""" ) print(f"""| 1 | 0 | {nor_gate(1 , 0 )} |""" ) print(f"""| 1 | 1 | {nor_gate(1 , 1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
14
0
"""simple docstring""" from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class lowerCamelCase (UpperCAmelCase__ ): @slow @require_torch def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: SCREAMING_SNAKE_CASE__ = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" ) SCREAMING_SNAKE_CASE__ = BertTokenizer.from_pretrained("""bert-base-uncased""" ) SCREAMING_SNAKE_CASE__ = bertabert.config.encoder.vocab_size SCREAMING_SNAKE_CASE__ = tokenizer.sep_token_id SCREAMING_SNAKE_CASE__ = tokenizer.cls_token_id SCREAMING_SNAKE_CASE__ = 1_2_8 SCREAMING_SNAKE_CASE__ = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" ) SCREAMING_SNAKE_CASE__ = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" ) SCREAMING_SNAKE_CASE__ = train_dataset.select(range(3_2 ) ) SCREAMING_SNAKE_CASE__ = val_dataset.select(range(1_6 ) ) SCREAMING_SNAKE_CASE__ = 4 def _map_to_encoder_decoder_inputs(__UpperCAmelCase : List[str] ): # Tokenizer will automatically set [BOS] <text> [EOS] SCREAMING_SNAKE_CASE__ = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=UpperCAmelCase__ , max_length=5_1_2 ) SCREAMING_SNAKE_CASE__ = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=UpperCAmelCase__ , max_length=1_2_8 ) SCREAMING_SNAKE_CASE__ = inputs.input_ids SCREAMING_SNAKE_CASE__ = inputs.attention_mask SCREAMING_SNAKE_CASE__ = outputs.input_ids SCREAMING_SNAKE_CASE__ = outputs.input_ids.copy() SCREAMING_SNAKE_CASE__ = [ [-1_0_0 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] SCREAMING_SNAKE_CASE__ = outputs.attention_mask assert all(len(UpperCAmelCase__ ) == 5_1_2 for x in inputs.input_ids ) assert all(len(UpperCAmelCase__ ) == 1_2_8 for x in outputs.input_ids ) return batch def _compute_metrics(__UpperCAmelCase : Tuple ): SCREAMING_SNAKE_CASE__ = pred.label_ids SCREAMING_SNAKE_CASE__ = pred.predictions # all unnecessary tokens are removed SCREAMING_SNAKE_CASE__ = tokenizer.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ = tokenizer.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(UpperCAmelCase__ ) )] ) / len(UpperCAmelCase__ ) return {"accuracy": accuracy} # map train dataset SCREAMING_SNAKE_CASE__ = train_dataset.map( _map_to_encoder_decoder_inputs , batched=UpperCAmelCase__ , batch_size=UpperCAmelCase__ , remove_columns=["""article""", """highlights"""] , ) train_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) # same for validation dataset SCREAMING_SNAKE_CASE__ = val_dataset.map( _map_to_encoder_decoder_inputs , batched=UpperCAmelCase__ , batch_size=UpperCAmelCase__ , remove_columns=["""article""", """highlights"""] , ) val_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) SCREAMING_SNAKE_CASE__ = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE__ = SeqaSeqTrainingArguments( output_dir=UpperCAmelCase__ , per_device_train_batch_size=UpperCAmelCase__ , per_device_eval_batch_size=UpperCAmelCase__ , predict_with_generate=UpperCAmelCase__ , evaluation_strategy="""steps""" , do_train=UpperCAmelCase__ , do_eval=UpperCAmelCase__ , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer SCREAMING_SNAKE_CASE__ = SeqaSeqTrainer( model=UpperCAmelCase__ , args=UpperCAmelCase__ , compute_metrics=_compute_metrics , train_dataset=UpperCAmelCase__ , eval_dataset=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , ) # start training trainer.train()
165
import os import sys import unittest _lowerCamelCase : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) _lowerCamelCase : Any = os.path.join("""tests""", """models""", """bert""", """test_modeling_bert.py""") _lowerCamelCase : str = os.path.join("""tests""", """models""", """blip""", """test_modeling_blip.py""") class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : Tuple) ->Tuple: '''simple docstring''' A__ = get_test_to_tester_mapping(UpperCAmelCase__) A__ = get_test_to_tester_mapping(UpperCAmelCase__) A__ = {'''BertModelTest''': '''BertModelTester'''} A__ = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Tuple) ->List[Any]: '''simple docstring''' A__ = get_model_to_test_mapping(UpperCAmelCase__) A__ = get_model_to_test_mapping(UpperCAmelCase__) A__ = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } A__ = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->str: '''simple docstring''' A__ = get_model_to_tester_mapping(UpperCAmelCase__) A__ = get_model_to_tester_mapping(UpperCAmelCase__) A__ = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } A__ = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
14
0
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def lowerCAmelCase ( _lowerCAmelCase : Tuple ): """simple docstring""" UpperCAmelCase__ = FileLock(str(tmpdir / "foo.lock" ) ) UpperCAmelCase__ = FileLock(str(tmpdir / "foo.lock" ) ) UpperCAmelCase__ = 0.01 with locka.acquire(): with pytest.raises(lowercase_ ): UpperCAmelCase__ = time.time() locka.acquire(lowercase_ ) assert time.time() - _start > timeout def lowerCAmelCase ( _lowerCAmelCase : Optional[int] ): """simple docstring""" UpperCAmelCase__ = "a" * 1000 + ".lock" UpperCAmelCase__ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(".lock" ) assert not locka._lock_file.endswith(lowercase_ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 UpperCAmelCase__ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(lowercase_ ): locka.acquire(0 )
169
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class UpperCamelCase_ : '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int = 13 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : Optional[Any]=[16, 32, 64, 128] , UpperCAmelCase__ : int = 7 , UpperCAmelCase__ : int = 4 , UpperCAmelCase__ : int = 37 , UpperCAmelCase__ : str = "gelu" , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : int = 10 , UpperCAmelCase__ : float = 0.02 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : List[int] = [2, 2, 2, 2] , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 2 , ) ->List[Any]: '''simple docstring''' A__ = parent A__ = batch_size A__ = image_size A__ = patch_size A__ = num_channels A__ = is_training A__ = use_labels A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = type_sequence_label_size A__ = initializer_range A__ = encoder_stride A__ = num_attention_outputs A__ = embed_dim A__ = embed_dim + 1 A__ = resolution A__ = depths A__ = hidden_sizes A__ = dim A__ = mlp_expansion_ratio def SCREAMING_SNAKE_CASE ( self : List[Any]) ->str: '''simple docstring''' A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) A__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : int) ->str: '''simple docstring''' return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict) ->Dict: '''simple docstring''' A__ = TFEfficientFormerModel(config=UpperCAmelCase__) A__ = model(UpperCAmelCase__ , training=UpperCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str) ->Union[str, Any]: '''simple docstring''' A__ = self.type_sequence_label_size A__ = TFEfficientFormerForImageClassification(UpperCAmelCase__) A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__ , training=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images A__ = 1 A__ = TFEfficientFormerForImageClassification(UpperCAmelCase__) A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def SCREAMING_SNAKE_CASE ( self : int) ->List[str]: '''simple docstring''' A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) UpperCAmelCase__ = ( { '''feature-extraction''': TFEfficientFormerModel, '''image-classification''': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[str]: '''simple docstring''' A__ = TFEfficientFormerModelTester(self) A__ = ConfigTester( self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=37) def SCREAMING_SNAKE_CASE ( self : int) ->Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''EfficientFormer does not use inputs_embeds''') def SCREAMING_SNAKE_CASE ( self : List[str]) ->Dict: '''simple docstring''' pass @unittest.skip(reason='''EfficientFormer does not support input and output embeddings''') def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[Any]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(UpperCAmelCase__) A__ = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str) ->Any: '''simple docstring''' def check_hidden_states_output(UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict): A__ = model_class(UpperCAmelCase__) A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__) A__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A__ = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__) if hasattr(self.model_tester , '''encoder_seq_length'''): A__ = self.model_tester.encoder_seq_length if hasattr(self.model_tester , '''chunk_length''') and self.model_tester.chunk_length > 1: A__ = seq_length * self.model_tester.chunk_length else: A__ = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: A__ = outputs.decoder_hidden_states self.asseretIsInstance(UpperCAmelCase__ , (list, tuple)) self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__) A__ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''decoder_seq_length''' , UpperCAmelCase__) self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [decoder_seq_length, self.model_tester.hidden_size] , ) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict=False) ->int: '''simple docstring''' A__ = super()._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__) @unittest.skip(reason='''EfficientFormer does not implement masked image modeling yet''') def SCREAMING_SNAKE_CASE ( self : str) ->str: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any) ->Tuple: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__) @slow def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]: '''simple docstring''' for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFEfficientFormerModel.from_pretrained(UpperCAmelCase__) self.assertIsNotNone(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any) ->str: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True A__ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''encoder_seq_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''key_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''chunk_length''' , UpperCAmelCase__) if chunk_length is not None and hasattr(self.model_tester , '''num_hashes'''): A__ = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: A__ = True A__ = False A__ = True A__ = model_class(UpperCAmelCase__) A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__) A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase__) , self.model_tester.num_attention_outputs) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ = True A__ = model_class(UpperCAmelCase__) A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__) A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase__) , self.model_tester.num_attention_outputs) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:]) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[Any]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model A__ = model_class(UpperCAmelCase__) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes A__ = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=UpperCAmelCase__) for key, val in model.input_signature.items() if key in model.dummy_inputs } A__ = model(UpperCAmelCase__) self.assertTrue(outputs_dict is not None) def SCREAMING_SNAKE_CASE ( ) -> Any: """simple docstring""" A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: '''simple docstring''' return ( EfficientFormerImageProcessor.from_pretrained('''snap-research/efficientformer-l1-300''') if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any: '''simple docstring''' A__ = TFEfficientFormerForImageClassification.from_pretrained('''snap-research/efficientformer-l1-300''') A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''') # forward pass A__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__) # verify the logits A__ = tf.TensorShape((1, 1_000)) self.assertEqual(outputs.logits.shape , UpperCAmelCase__) A__ = tf.constant([-0.0555, 0.4825, -0.0852]) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4)) @slow def SCREAMING_SNAKE_CASE ( self : Dict) ->int: '''simple docstring''' A__ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( '''snap-research/efficientformer-l1-300''') A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''') # forward pass A__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__) # verify the logits A__ = tf.TensorShape((1, 1_000)) self.assertEqual(outputs.logits.shape , UpperCAmelCase__) A__ = tf.constant([-0.1312, 0.4353, -1.0499]) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4))
14
0
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class lowerCAmelCase_ : '''simple docstring''' _snake_case = 4_2 _snake_case = None _snake_case = None SCREAMING_SNAKE_CASE_ = namedtuple('''CoinsDistribResult''', '''moves excess''') def lowercase (_lowerCAmelCase ): if root is None: return 0 # Validation def count_nodes(_lowerCAmelCase ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_lowerCAmelCase ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(lowercase_ ) != count_coins(lowercase_ ): raise ValueError("""The nodes number should be same as the number of coins""" ) # Main calculation def get_distrib(_lowerCAmelCase ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) __lowerCAmelCase , __lowerCAmelCase = get_distrib(node.left ) __lowerCAmelCase , __lowerCAmelCase = get_distrib(node.right ) __lowerCAmelCase = 1 - left_distrib_excess __lowerCAmelCase = 1 - right_distrib_excess __lowerCAmelCase = ( left_distrib_moves + right_distrib_moves + abs(lowercase_ ) + abs(lowercase_ ) ) __lowerCAmelCase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowercase_ , lowercase_ ) return get_distrib(lowercase_ )[0] if __name__ == "__main__": import doctest doctest.testmod()
301
from __future__ import annotations def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> tuple[float, list[float]]: """simple docstring""" A__ = list(range(len(lowercase_ ) ) ) A__ = [v / w for v, w in zip(lowercase_ , lowercase_ )] index.sort(key=lambda lowercase_ : ratio[i] , reverse=lowercase_ ) A__ = 0 A__ = [0] * len(lowercase_ ) for i in index: if weight[i] <= capacity: A__ = 1 max_value += value[i] capacity -= weight[i] else: A__ = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
14
0
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _A = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase__ ) class lowercase_ ( UpperCAmelCase__ ): def __init__( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def lowerCamelCase_ ( self , __UpperCamelCase=None ): """simple docstring""" UpperCamelCase_ = {} if top_k is not None: UpperCamelCase_ = top_k return {}, {}, postprocess_params def __call__( self , __UpperCamelCase , **__UpperCamelCase ): """simple docstring""" return super().__call__(UpperCAmelCase__ , **UpperCAmelCase__ ) def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = load_image(UpperCAmelCase__ ) UpperCamelCase_ = self.image_processor(images=UpperCAmelCase__ , return_tensors=self.framework ) return model_inputs def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = self.model(**UpperCAmelCase__ ) return model_outputs def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase=5 ): """simple docstring""" if top_k > self.model.config.num_labels: UpperCamelCase_ = self.model.config.num_labels if self.framework == "pt": UpperCamelCase_ = model_outputs.logits.softmax(-1 )[0] UpperCamelCase_ , UpperCamelCase_ = probs.topk(UpperCAmelCase__ ) elif self.framework == "tf": UpperCamelCase_ = stable_softmax(model_outputs.logits , axis=-1 )[0] UpperCamelCase_ = tf.math.top_k(UpperCAmelCase__ , k=UpperCAmelCase__ ) UpperCamelCase_ , UpperCamelCase_ = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) UpperCamelCase_ = scores.tolist() UpperCamelCase_ = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(UpperCAmelCase__ , UpperCAmelCase__ )]
122
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[Any]: """simple docstring""" A__ = args.log_outputs A__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric A__ = load_metric('''wer''' ) A__ = load_metric('''cer''' ) # compute metrics A__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) A__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results A__ = f"""WER: {wer_result}\nCER: {cer_result}""" print(lowercase_ ) with open(f"""{dataset_id}_eval_results.txt""" , '''w''' ) as f: f.write(lowercase_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: A__ = f"""log_{dataset_id}_predictions.txt""" A__ = f"""log_{dataset_id}_targets.txt""" with open(lowercase_ , '''w''' ) as p, open(lowercase_ , '''w''' ) as t: # mapping function to write output def write_to_file(lowercase_ , lowercase_ ): p.write(f"""{i}""" + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(f"""{i}""" + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(lowercase_ , with_indices=lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: """simple docstring""" A__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training A__ = re.sub(lowercase_ , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! A__ = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: A__ = ''' '''.join(text.split(lowercase_ ) ) return text def SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: """simple docstring""" A__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowercase_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor A__ = AutoFeatureExtractor.from_pretrained(args.model_id ) A__ = feature_extractor.sampling_rate # resample audio A__ = dataset.cast_column('''audio''' , Audio(sampling_rate=lowercase_ ) ) # load eval pipeline if args.device is None: A__ = 0 if torch.cuda.is_available() else -1 A__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(lowercase_ ): A__ = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) A__ = prediction['''text'''] A__ = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples A__ = dataset.map(lowercase_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(lowercase_ , lowercase_ ) if __name__ == "__main__": _lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) _lowerCamelCase : str = parser.parse_args() main(args)
14
0
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _UpperCamelCase : List[str] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class a ( UpperCAmelCase__, unittest.TestCase ): UpperCAmelCase_ : Dict =XGLMTokenizer UpperCAmelCase_ : Any =XGLMTokenizerFast UpperCAmelCase_ : List[str] =True UpperCAmelCase_ : Tuple =True def UpperCamelCase_ ( self ): super().setUp() # We have a SentencePiece fixture for testing lowercase = XGLMTokenizer(UpperCAmelCase__ , keep_accents=UpperCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self ): lowercase = '<pad>' lowercase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__ ) , UpperCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__ ) , UpperCAmelCase__ ) def UpperCamelCase_ ( self ): lowercase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(len(UpperCAmelCase__ ) , 1_0_0_8 ) def UpperCamelCase_ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_8 ) def UpperCamelCase_ ( self ): lowercase = XGLMTokenizer(UpperCAmelCase__ , keep_accents=UpperCAmelCase__ ) lowercase = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCAmelCase__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) lowercase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCAmelCase__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowercase = tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) self.assertListEqual( UpperCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) lowercase = tokenizer.convert_ids_to_tokens(UpperCAmelCase__ ) self.assertListEqual( UpperCAmelCase__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def UpperCamelCase_ ( self ): return XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) def UpperCamelCase_ ( self ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(UpperCAmelCase__ , f.name ) lowercase = XGLMTokenizer(f.name , keep_accents=UpperCAmelCase__ ) lowercase = pickle.dumps(UpperCAmelCase__ ) pickle.loads(UpperCAmelCase__ ) def UpperCamelCase_ ( self ): if not self.test_rust_tokenizer: return lowercase = self.get_tokenizer() lowercase = self.get_rust_tokenizer() lowercase = 'I was born in 92000, and this is falsé.' lowercase = tokenizer.tokenize(UpperCAmelCase__ ) lowercase = rust_tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) lowercase = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase = self.get_rust_tokenizer() lowercase = tokenizer.encode(UpperCAmelCase__ ) lowercase = rust_tokenizer.encode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def UpperCamelCase_ ( self ): lowercase = 'Hello World!' lowercase = [2, 3_1_2_2_7, 4_4_4_7, 3_5] self.assertListEqual(UpperCAmelCase__ , self.big_tokenizer.encode(UpperCAmelCase__ ) ) @slow def UpperCamelCase_ ( self ): lowercase = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth' ) # fmt: off lowercase = [2, 1_0_1_8, 6_7, 1_1, 1_9_8_8, 2_6_1_7, 5_6_3_1, 2_7_8, 1_1, 3_4_0_7, 4_8, 7_1_6_3_0, 2_8_0_8_5, 4, 3_2_3_4, 1_5_7, 1_3, 6, 5, 6, 4, 3_5_2_6, 7_6_8, 1_5, 6_5_9, 5_7, 2_9_8, 3_9_8_3, 8_6_4, 1_2_9, 2_1, 6, 5, 1_3_6_7_5, 3_7_7, 6_5_2, 7_5_8_0, 1_0_3_4_1, 1_5_5, 2_8_1_7, 4_2_2, 1_6_6_6, 7, 1_6_7_4, 5_3, 1_1_3, 2_0_2_2_7_7, 1_7_8_9_2, 3_3, 6_0, 8_7, 4, 3_2_3_4, 1_5_7, 6_1, 2_6_6_7, 5_2_3_7_6, 1_9, 8_8, 2_3, 7_3_5] # fmt: on self.assertListEqual(UpperCAmelCase__ , self.big_tokenizer.encode(UpperCAmelCase__ ) ) @slow def UpperCamelCase_ ( self ): lowercase = { 'input_ids': [[2, 1_0_8_8_2_5, 1_1_6_3, 1_5, 8_8_0_1_0, 4_7_3, 1_5_8_9_8, 1_5_7, 1_3_6_7_2, 1_8_5_7, 3_1_2, 8, 2_3_8_0_2_1, 1_1_6_3, 5_3, 1_3_6_7_2, 1_8_5_7, 3_1_2, 8, 5_3_2_8_3, 1_8_2_3_9_6, 8, 1_8_5_6_6, 1_6, 3_6_7_3_3, 4_1_0_1, 8, 2_3_0, 2_4_4_0_1_7, 1_2_2_5_5_3, 7, 1_5, 1_3_2_5_9_7, 4, 2_9_3, 1_2_5_1_1, 7_6_1_0, 4, 3_4_1_4, 1_3_2_5_9_7, 9, 4, 3_2_3_6_1, 3_6_2, 4, 7_3_4, 2_8_5_1_2, 3_2_5_6_9, 1_8, 4, 3_2_3_6_1, 2_6_0_9_6, 1_4_9_8_2, 7_3, 1_8_7_1_5, 2_1_4_3_3, 2_3_5_2_6_1, 1_5, 4_9_2, 1_2_4_2_7, 1_6, 5_3, 1_8_7_1_5, 2_1_4_3_3, 6_5_4_5_4, 1_5, 2_3_6_5_9, 5_6_3, 1_6, 2_7_8, 5_9_7, 2_8_4_3, 5_9_5, 7_9_3_1, 1_8_2_3_9_6, 6_4_1_8_6, 2_2, 8_8_6, 5_9_5, 1_3_2_9_8_1, 5_3, 2_5_5_4_0, 3_4_4_9, 4_3_9_8_2, 3_9_9_0_1, 5_9_5_1, 8_7_8, 3_3_0, 4, 2_7_6_9_4, 8_0_2_6_9, 3_1_2, 5_3, 6_5_1_7, 1_1_7_8_0, 6_1_1, 2_0_4_0_8, 5], [2, 6, 1_3_2_5_9_7, 6_7, 4_2_8_9_7, 3_3, 5_9_2, 8, 1_6_3_7_2_9, 2_5_5_4_0, 3_6_1, 1_3_6_9_9_7, 1_0_9_5_1_4, 1_7_3_2_3_0, 7, 5_0_1, 6_0, 1_0_2_9_1_3, 1_9_6, 5_6_3_1, 2_3_5, 6_3_2_4_3, 4_7_3, 6, 2_3_1_7_5_7, 7_4, 5_2_7_7, 7_9_0_5, 5_3, 3_0_9_5, 3_7_3_1_7, 2_2, 4_5_4, 1_8_3_8_7_4, 5], [2, 2_6_8, 3_1_2_9_8, 4_6_5_3_0, 6, 1_3_2_9_3_5, 4_3_8_3_1, 7, 5_9_7, 3_2, 2_4, 3_6_8_8, 9_8_6_5, 5]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase__ , model_name='facebook/xglm-564M' , padding=UpperCAmelCase__ , )
220
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowerCamelCase : int = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Tuple = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys _lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
0
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html A__ : Tuple = """platform""" import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def _snake_case ( lowerCamelCase__ : Dict , lowerCamelCase__ : Any , lowerCamelCase__ : List[str]=None , lowerCamelCase__ : Dict=None , lowerCamelCase__ : str=None , lowerCamelCase__ : Tuple=None , lowerCamelCase__ : Tuple=None , lowerCamelCase__ : Union[str, Any]=None , ) -> Optional[Any]: if attention_mask is None: lowerCamelCase_ : List[str] =np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowerCamelCase_ : List[Any] =np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowerCamelCase_ : List[Any] =np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase_ : int =np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase_ : Tuple =np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class lowercase__ : def __init__( self : Tuple , snake_case__ : str , snake_case__ : Optional[int]=13 , snake_case__ : str=7 , snake_case__ : List[str]=True , snake_case__ : Optional[int]=False , snake_case__ : List[Any]=99 , snake_case__ : Tuple=16 , snake_case__ : Optional[Any]=2 , snake_case__ : Tuple=4 , snake_case__ : Union[str, Any]=4 , snake_case__ : Optional[int]="gelu" , snake_case__ : int=0.1 , snake_case__ : Tuple=0.1 , snake_case__ : Any=32 , snake_case__ : Any=2 , snake_case__ : Any=1 , snake_case__ : Tuple=0 , snake_case__ : Dict=0.02 , ): lowerCamelCase_ : int =parent lowerCamelCase_ : Any =batch_size lowerCamelCase_ : str =seq_length lowerCamelCase_ : List[str] =is_training lowerCamelCase_ : List[Any] =use_labels lowerCamelCase_ : str =vocab_size lowerCamelCase_ : Optional[int] =hidden_size lowerCamelCase_ : int =num_hidden_layers lowerCamelCase_ : int =num_attention_heads lowerCamelCase_ : Union[str, Any] =intermediate_size lowerCamelCase_ : Any =hidden_act lowerCamelCase_ : Dict =hidden_dropout_prob lowerCamelCase_ : int =attention_probs_dropout_prob lowerCamelCase_ : Tuple =max_position_embeddings lowerCamelCase_ : Optional[Any] =eos_token_id lowerCamelCase_ : Any =pad_token_id lowerCamelCase_ : str =bos_token_id lowerCamelCase_ : Union[str, Any] =initializer_range def UpperCAmelCase__ ( self : List[str] ): lowerCamelCase_ : Tuple =np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) lowerCamelCase_ : List[str] =np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) lowerCamelCase_ : Union[str, Any] =shift_tokens_right(UpperCAmelCase__ , 1 , 2 ) lowerCamelCase_ : Optional[int] =BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCAmelCase__ , ) lowerCamelCase_ : Optional[int] =prepare_blenderbot_inputs_dict(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return config, inputs_dict def UpperCAmelCase__ ( self : Optional[int] ): lowerCamelCase_ , lowerCamelCase_ : Dict =self.prepare_config_and_inputs() return config, inputs_dict def UpperCAmelCase__ ( self : Tuple , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : Union[str, Any] ): lowerCamelCase_ : Dict =20 lowerCamelCase_ : Tuple =model_class_name(UpperCAmelCase__ ) lowerCamelCase_ : int =model.encode(inputs_dict["input_ids"] ) lowerCamelCase_ , lowerCamelCase_ : Dict =( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCamelCase_ : Optional[Any] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase__ , UpperCAmelCase__ ) lowerCamelCase_ : Tuple =jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) lowerCamelCase_ : List[str] =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase_ : List[Any] =model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , decoder_position_ids=UpperCAmelCase__ , ) lowerCamelCase_ : Union[str, Any] =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) lowerCamelCase_ : List[str] =model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase__ , ) lowerCamelCase_ : List[str] =model.decode(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCamelCase_ : Union[str, Any] =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def UpperCAmelCase__ ( self : List[str] , snake_case__ : Union[str, Any] , snake_case__ : str , snake_case__ : Union[str, Any] ): lowerCamelCase_ : Any =20 lowerCamelCase_ : Dict =model_class_name(UpperCAmelCase__ ) lowerCamelCase_ : Optional[int] =model.encode(inputs_dict["input_ids"] ) lowerCamelCase_ , lowerCamelCase_ : Optional[Any] =( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCamelCase_ : Optional[int] =jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) lowerCamelCase_ : Optional[int] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase__ , UpperCAmelCase__ ) lowerCamelCase_ : Optional[Any] =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase_ : Dict =model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , decoder_position_ids=UpperCAmelCase__ , ) lowerCamelCase_ : Dict =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) lowerCamelCase_ : Tuple =model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase__ , decoder_position_ids=UpperCAmelCase__ , ) lowerCamelCase_ : int =model.decode(UpperCAmelCase__ , UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ ) lowerCamelCase_ : List[str] =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) @require_flax class lowercase__ ( unittest.TestCase ): _UpperCAmelCase :List[Any] = 99 def UpperCAmelCase__ ( self : List[str] ): lowerCamelCase_ : str =np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) lowerCamelCase_ : List[str] =input_ids.shape[0] lowerCamelCase_ : Optional[int] =BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def UpperCAmelCase__ ( self : Union[str, Any] ): lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Any =self._get_config_and_data() lowerCamelCase_ : str =FlaxBlenderbotSmallForConditionalGeneration(UpperCAmelCase__ ) lowerCamelCase_ : Optional[Any] =lm_model(input_ids=UpperCAmelCase__ ) lowerCamelCase_ : List[Any] =(batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , UpperCAmelCase__ ) def UpperCAmelCase__ ( self : Optional[int] ): lowerCamelCase_ : Optional[int] =BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) lowerCamelCase_ : int =FlaxBlenderbotSmallForConditionalGeneration(UpperCAmelCase__ ) lowerCamelCase_ : List[Any] =np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) lowerCamelCase_ : Tuple =np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) lowerCamelCase_ : Union[str, Any] =lm_model(input_ids=UpperCAmelCase__ , decoder_input_ids=UpperCAmelCase__ ) lowerCamelCase_ : Union[str, Any] =(*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , UpperCAmelCase__ ) def UpperCAmelCase__ ( self : List[str] ): lowerCamelCase_ : List[str] =np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) lowerCamelCase_ : Optional[Any] =shift_tokens_right(UpperCAmelCase__ , 1 , 2 ) lowerCamelCase_ : List[str] =np.equal(UpperCAmelCase__ , 1 ).astype(np.floataa ).sum() lowerCamelCase_ : Any =np.equal(UpperCAmelCase__ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(UpperCAmelCase__ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class lowercase__ ( UpperCAmelCase__, unittest.TestCase, UpperCAmelCase__ ): _UpperCAmelCase :Optional[int] = True _UpperCAmelCase :List[str] = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) _UpperCAmelCase :List[Any] = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def UpperCAmelCase__ ( self : Dict ): lowerCamelCase_ : Tuple =FlaxBlenderbotSmallModelTester(self ) def UpperCAmelCase__ ( self : Optional[Any] ): lowerCamelCase_ , lowerCamelCase_ : Tuple =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def UpperCAmelCase__ ( self : Tuple ): lowerCamelCase_ , lowerCamelCase_ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def UpperCAmelCase__ ( self : Dict ): lowerCamelCase_ , lowerCamelCase_ : Dict =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase_ : Union[str, Any] =self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCamelCase_ : Tuple =model_class(UpperCAmelCase__ ) @jax.jit def encode_jitted(snake_case__ : Tuple , snake_case__ : List[Any]=None , **snake_case__ : str ): return model.encode(input_ids=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) with self.subTest("JIT Enabled" ): lowerCamelCase_ : Optional[int] =encode_jitted(**UpperCAmelCase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): lowerCamelCase_ : str =encode_jitted(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ) , len(UpperCAmelCase__ ) ) for jitted_output, output in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCAmelCase__ ( self : Optional[int] ): lowerCamelCase_ , lowerCamelCase_ : Optional[int] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase_ : Optional[int] =model_class(UpperCAmelCase__ ) lowerCamelCase_ : Union[str, Any] =model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) lowerCamelCase_ : Optional[Any] ={ "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(snake_case__ : int , snake_case__ : Any , snake_case__ : Any ): return model.decode( decoder_input_ids=UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , encoder_outputs=UpperCAmelCase__ , ) with self.subTest("JIT Enabled" ): lowerCamelCase_ : int =decode_jitted(**UpperCAmelCase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): lowerCamelCase_ : Union[str, Any] =decode_jitted(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ) , len(UpperCAmelCase__ ) ) for jitted_output, output in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def UpperCAmelCase__ ( self : Any ): for model_class_name in self.all_model_classes: lowerCamelCase_ : Dict =model_class_name.from_pretrained("facebook/blenderbot_small-90M" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowerCamelCase_ : List[Any] =np.ones((1, 1) ) * model.config.eos_token_id lowerCamelCase_ : Optional[int] =model(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ )
144
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : List[str] = {"""configuration_vit_msn""": ["""VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMSNConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = [ """VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMSNModel""", """ViTMSNForImageClassification""", """ViTMSNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys _lowerCamelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
0
from graphs.minimum_spanning_tree_kruskal import kruskal def _a ( ): """simple docstring""" UpperCamelCase__ : str = 9 UpperCamelCase__ : Any = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] UpperCamelCase__ : Optional[Any] = kruskal(lowercase_ , lowercase_ ) UpperCamelCase__ : str = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(lowercase_ ) == sorted(lowercase_ )
146
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> "list[int]": """simple docstring""" if upper_limit < 0: raise ValueError('''Limit for the Catalan sequence must be ≥ 0''' ) A__ = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 A__ = 1 if upper_limit > 0: A__ = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(lowercase_ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""") print("""\n*** Enter -1 at any time to quit ***""") print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""") try: while True: _lowerCamelCase : List[Any] = int(input().strip()) if N < 0: print("""\n********* Goodbye!! ************""") break else: print(F'''The Catalan numbers from 0 through {N} are:''') print(catalan_numbers(N)) print("""Try another upper limit for the sequence: """, end="""""") except (NameError, ValueError): print("""\n********* Invalid input, goodbye! ************\n""") import doctest doctest.testmod()
14
0
'''simple docstring''' from __future__ import annotations _UpperCamelCase = 10 def lowercase_ ( lowerCAmelCase__ : Optional[int] ): """simple docstring""" __UpperCAmelCase : Any = 1 __UpperCAmelCase : Optional[int] = max(lowercase_ ) while placement <= max_digit: # declare and initialize empty buckets __UpperCAmelCase : Any = [[] for _ in range(lowercase_ )] # split list_of_ints between the buckets for i in list_of_ints: __UpperCAmelCase : Tuple = int((i / placement) % RADIX ) buckets[tmp].append(lowercase_ ) # put each buckets' contents into list_of_ints __UpperCAmelCase : Any = 0 for b in range(lowercase_ ): for i in buckets[b]: __UpperCAmelCase : Union[str, Any] = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
254
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict: """simple docstring""" A__ = args.pruning_method A__ = args.threshold A__ = args.model_name_or_path.rstrip('''/''' ) A__ = args.target_model_path print(f"""Load fine-pruned model from {model_name_or_path}""" ) A__ = torch.load(os.path.join(lowercase_ , '''pytorch_model.bin''' ) ) A__ = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: A__ = tensor print(f"""Copied layer {name}""" ) elif "classifier" in name or "qa_output" in name: A__ = tensor print(f"""Copied layer {name}""" ) elif "bias" in name: A__ = tensor print(f"""Copied layer {name}""" ) else: if pruning_method == "magnitude": A__ = MagnitudeBinarizer.apply(inputs=lowercase_ , threshold=lowercase_ ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "topK": if "mask_scores" in name: continue A__ = name[:-6] A__ = model[f"""{prefix_}mask_scores"""] A__ = TopKBinarizer.apply(lowercase_ , lowercase_ ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue A__ = name[:-6] A__ = model[f"""{prefix_}mask_scores"""] A__ = ThresholdBinarizer.apply(lowercase_ , lowercase_ , lowercase_ ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "l0": if "mask_scores" in name: continue A__ = name[:-6] A__ = model[f"""{prefix_}mask_scores"""] A__ , A__ = -0.1, 1.1 A__ = torch.sigmoid(lowercase_ ) A__ = s * (r - l) + l A__ = s_bar.clamp(min=0.0 , max=1.0 ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) else: raise ValueError('''Unknown pruning method''' ) if target_model_path is None: A__ = os.path.join( os.path.dirname(lowercase_ ) , f"""bertarized_{os.path.basename(lowercase_ )}""" ) if not os.path.isdir(lowercase_ ): shutil.copytree(lowercase_ , lowercase_ ) print(f"""\nCreated folder {target_model_path}""" ) torch.save(lowercase_ , os.path.join(lowercase_ , '''pytorch_model.bin''' ) ) print('''\nPruned model saved! See you later!''' ) if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( """--pruning_method""", choices=["""l0""", """magnitude""", """topK""", """sigmoied_threshold"""], type=str, required=True, help=( """Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,""" """ sigmoied_threshold = Soft movement pruning)""" ), ) parser.add_argument( """--threshold""", type=float, required=False, help=( """For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.""" """For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.""" """Not needed for `l0`""" ), ) parser.add_argument( """--model_name_or_path""", type=str, required=True, help="""Folder containing the model that was previously fine-pruned""", ) parser.add_argument( """--target_model_path""", default=None, type=str, required=False, help="""Folder containing the model that was previously fine-pruned""", ) _lowerCamelCase : int = parser.parse_args() main(args)
14
0
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata __snake_case = """""" if version.parse(importlib_metadata.version('''jiwer''')) < version.parse('''2.3.0'''): class __lowerCamelCase ( tr.AbstractTransform ): '''simple docstring''' def __init__( self , __UpperCAmelCase = " " ) -> Union[str, Any]: _a = sentence_delimiter def _UpperCAmelCase ( self , __UpperCAmelCase ) -> int: return list(UpperCAmelCase__ ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> str: _a = [] for sent_idx, sentence in enumerate(UpperCAmelCase__ ): chars.extend(self.process_string(UpperCAmelCase__ ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(UpperCAmelCase__ ) - 1: chars.append(self.sentence_delimiter ) return chars __snake_case = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: __snake_case = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) __snake_case = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ __snake_case = """\ Character error rate (CER) is a common metric of the performance of an automatic speech recognition system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information. Character error rate can be computed as: CER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct characters, N is the number of characters in the reference (N=S+D+C). CER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the performance of the ASR system with a CER of 0 being a perfect score. """ __snake_case = """ Computes CER score of transcribed segments against references. Args: references: list of references for each speech input. predictions: list of transcribtions to score. concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result. Returns: (float): the character error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> cer = datasets.load_metric(\"cer\") >>> cer_score = cer.compute(predictions=predictions, references=references) >>> print(cer_score) 0.34146341463414637 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): '''simple docstring''' def _UpperCAmelCase ( self ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', '''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''', ] , ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> Any: if concatenate_texts: return jiwer.compute_measures( UpperCAmelCase__ , UpperCAmelCase__ , truth_transform=UpperCAmelCase__ , hypothesis_transform=UpperCAmelCase__ , )["wer"] _a = 0 _a = 0 for prediction, reference in zip(UpperCAmelCase__ , UpperCAmelCase__ ): _a = jiwer.compute_measures( UpperCAmelCase__ , UpperCAmelCase__ , truth_transform=UpperCAmelCase__ , hypothesis_transform=UpperCAmelCase__ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
320
_lowerCamelCase : Optional[int] = 65521 def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: """simple docstring""" A__ = 1 A__ = 0 for plain_chr in plain_text: A__ = (a + ord(lowercase_ )) % MOD_ADLER A__ = (b + a) % MOD_ADLER return (b << 16) | a
14
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A__ = logging.get_logger(__name__) def _lowerCAmelCase ( __lowerCAmelCase ) -> List[Any]: """simple docstring""" snake_case__ : Tuple = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: snake_case__ : Any = [144, 192, 240] snake_case__ : List[str] = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: snake_case__ : List[str] = [96, 120, 144] snake_case__ : Tuple = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: snake_case__ : str = [64, 80, 96] snake_case__ : str = [16, 16, 24, 48, 64, 80, 320] snake_case__ : List[str] = 0.05 snake_case__ : List[Any] = 2.0 if mobilevit_name.startswith('''deeplabv3_''' ): snake_case__ : Optional[Any] = 512 snake_case__ : List[str] = 16 snake_case__ : Tuple = 21 snake_case__ : Any = '''pascal-voc-id2label.json''' else: snake_case__ : Any = 1000 snake_case__ : Optional[int] = '''imagenet-1k-id2label.json''' snake_case__ : Tuple = '''huggingface/label-files''' snake_case__ : Union[str, Any] = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type='''dataset''' ) , '''r''' ) ) snake_case__ : Optional[Any] = {int(lowercase_ ): v for k, v in idalabel.items()} snake_case__ : str = idalabel snake_case__ : List[Any] = {v: k for k, v in idalabel.items()} return config def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase=False ) -> Tuple: """simple docstring""" for i in range(1 , 6 ): if f"""layer_{i}.""" in name: snake_case__ : int = name.replace(f"""layer_{i}.""" , f"""encoder.layer.{i - 1}.""" ) if "conv_1." in name: snake_case__ : List[str] = name.replace('''conv_1.''' , '''conv_stem.''' ) if ".block." in name: snake_case__ : List[Any] = name.replace('''.block.''' , '''.''' ) if "exp_1x1" in name: snake_case__ : Optional[int] = name.replace('''exp_1x1''' , '''expand_1x1''' ) if "red_1x1" in name: snake_case__ : Optional[int] = name.replace('''red_1x1''' , '''reduce_1x1''' ) if ".local_rep.conv_3x3." in name: snake_case__ : Optional[Any] = name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' ) if ".local_rep.conv_1x1." in name: snake_case__ : Dict = name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' ) if ".norm." in name: snake_case__ : List[Any] = name.replace('''.norm.''' , '''.normalization.''' ) if ".conv." in name: snake_case__ : int = name.replace('''.conv.''' , '''.convolution.''' ) if ".conv_proj." in name: snake_case__ : Dict = name.replace('''.conv_proj.''' , '''.conv_projection.''' ) for i in range(0 , 2 ): for j in range(0 , 4 ): if f""".{i}.{j}.""" in name: snake_case__ : int = name.replace(f""".{i}.{j}.""" , f""".{i}.layer.{j}.""" ) for i in range(2 , 6 ): for j in range(0 , 4 ): if f""".{i}.{j}.""" in name: snake_case__ : Tuple = name.replace(f""".{i}.{j}.""" , f""".{i}.""" ) if "expand_1x1" in name: snake_case__ : List[str] = name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' ) if "conv_3x3" in name: snake_case__ : Any = name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' ) if "reduce_1x1" in name: snake_case__ : int = name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' ) for i in range(2 , 5 ): if f""".global_rep.{i}.weight""" in name: snake_case__ : List[Any] = name.replace(f""".global_rep.{i}.weight""" , '''.layernorm.weight''' ) if f""".global_rep.{i}.bias""" in name: snake_case__ : Union[str, Any] = name.replace(f""".global_rep.{i}.bias""" , '''.layernorm.bias''' ) if ".global_rep." in name: snake_case__ : int = name.replace('''.global_rep.''' , '''.transformer.''' ) if ".pre_norm_mha.0." in name: snake_case__ : Any = name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' ) if ".pre_norm_mha.1.out_proj." in name: snake_case__ : Dict = name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' ) if ".pre_norm_ffn.0." in name: snake_case__ : str = name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' ) if ".pre_norm_ffn.1." in name: snake_case__ : Union[str, Any] = name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' ) if ".pre_norm_ffn.4." in name: snake_case__ : str = name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' ) if ".transformer." in name: snake_case__ : str = name.replace('''.transformer.''' , '''.transformer.layer.''' ) if ".aspp_layer." in name: snake_case__ : Any = name.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in name: snake_case__ : str = name.replace('''.aspp_pool.''' , '''.''' ) if "seg_head." in name: snake_case__ : List[str] = name.replace('''seg_head.''' , '''segmentation_head.''' ) if "segmentation_head.classifier.classifier." in name: snake_case__ : List[Any] = name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' ) if "classifier.fc." in name: snake_case__ : Any = name.replace('''classifier.fc.''' , '''classifier.''' ) elif (not base_model) and ("segmentation_head." not in name): snake_case__ : Optional[int] = '''mobilevit.''' + name return name def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> Union[str, Any]: """simple docstring""" if base_model: snake_case__ : Union[str, Any] = '''''' else: snake_case__ : List[str] = '''mobilevit.''' for key in orig_state_dict.copy().keys(): snake_case__ : List[str] = orig_state_dict.pop(lowercase_ ) if key[:8] == "encoder.": snake_case__ : Union[str, Any] = key[8:] if "qkv" in key: snake_case__ : Optional[int] = key.split('''.''' ) snake_case__ : Dict = int(key_split[0][6:] ) - 1 snake_case__ : Dict = int(key_split[3] ) snake_case__ : Union[str, Any] = model.get_submodule(f"""{model_prefix}encoder.layer.{layer_num}""" ) snake_case__ : str = layer.transformer.layer[transformer_num].attention.attention.all_head_size snake_case__ : List[Any] = ( f"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.""" ) if "weight" in key: snake_case__ : Tuple = val[:dim, :] snake_case__ : List[Any] = val[dim : dim * 2, :] snake_case__ : Dict = val[-dim:, :] else: snake_case__ : str = val[:dim] snake_case__ : Optional[Any] = val[dim : dim * 2] snake_case__ : Union[str, Any] = val[-dim:] else: snake_case__ : str = val return orig_state_dict def _lowerCAmelCase ( ) -> List[Any]: """simple docstring""" snake_case__ : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case__ : Any = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> Optional[Any]: """simple docstring""" snake_case__ : List[Any] = get_mobilevit_config(lowercase_ ) # load original state_dict snake_case__ : Any = torch.load(lowercase_ , map_location='''cpu''' ) # load 🤗 model if mobilevit_name.startswith('''deeplabv3_''' ): snake_case__ : List[Any] = MobileViTForSemanticSegmentation(lowercase_ ).eval() else: snake_case__ : Any = MobileViTForImageClassification(lowercase_ ).eval() snake_case__ : Any = convert_state_dict(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ ) # Check outputs on an image, prepared by MobileViTImageProcessor snake_case__ : List[Any] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) snake_case__ : str = image_processor(images=prepare_img() , return_tensors='''pt''' ) snake_case__ : Union[str, Any] = model(**lowercase_ ) snake_case__ : Any = outputs.logits if mobilevit_name.startswith('''deeplabv3_''' ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": snake_case__ : Any = torch.tensor( [ [[6.2_065, 6.1_292, 6.2_070], [6.1_079, 6.1_254, 6.1_747], [6.0_042, 6.1_071, 6.1_034]], [[-6.9_253, -6.8_653, -7.0_398], [-7.3_218, -7.3_983, -7.3_670], [-7.1_961, -7.2_482, -7.1_569]], [[-4.4_723, -4.4_348, -4.3_769], [-5.3_629, -5.4_632, -5.4_598], [-5.1_587, -5.3_402, -5.5_059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": snake_case__ : Optional[Any] = torch.tensor( [ [[5.4_449, 5.5_733, 5.6_314], [5.1_815, 5.3_930, 5.5_963], [5.1_656, 5.4_333, 5.4_853]], [[-9.4_423, -9.7_766, -9.6_714], [-9.1_581, -9.5_720, -9.5_519], [-9.1_006, -9.6_458, -9.5_703]], [[-7.7_721, -7.3_716, -7.1_583], [-8.4_599, -8.0_624, -7.7_944], [-8.4_172, -7.8_366, -7.5_025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": snake_case__ : Union[str, Any] = torch.tensor( [ [[6.9_811, 6.9_743, 7.3_123], [7.1_777, 7.1_931, 7.3_938], [7.5_633, 7.8_050, 7.8_901]], [[-10.5_536, -10.2_332, -10.2_924], [-10.2_336, -9.8_624, -9.5_964], [-10.8_840, -10.8_158, -10.6_659]], [[-3.4_938, -3.0_631, -2.8_620], [-3.4_205, -2.8_135, -2.6_875], [-3.4_179, -2.7_945, -2.8_750]], ] ) else: raise ValueError(f"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3, :3, :3] , lowercase_ , atol=1E-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": snake_case__ : Optional[int] = torch.tensor([-0.9_866, 0.2_392, -1.1_241] ) elif mobilevit_name == "mobilevit_xs": snake_case__ : List[str] = torch.tensor([-2.4_761, -0.9_399, -1.9_587] ) elif mobilevit_name == "mobilevit_xxs": snake_case__ : List[str] = torch.tensor([-1.9_364, -1.2_327, -0.4_653] ) else: raise ValueError(f"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3] , lowercase_ , atol=1E-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(f"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: snake_case__ : Optional[Any] = { '''mobilevit_s''': '''mobilevit-small''', '''mobilevit_xs''': '''mobilevit-x-small''', '''mobilevit_xxs''': '''mobilevit-xx-small''', '''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''', '''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''', '''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''', } print('''Pushing to the hub...''' ) snake_case__ : str = model_mapping[mobilevit_name] image_processor.push_to_hub(lowercase_ , organization='''apple''' ) model.push_to_hub(lowercase_ , organization='''apple''' ) if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) A__ = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
230
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : Tuple = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCamelCase : Union[str, Any] = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCamelCase : str = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCamelCase : str = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCamelCase : Any = { """facebook/dpr-ctx_encoder-single-nq-base""": 512, """facebook/dpr-ctx_encoder-multiset-base""": 512, } _lowerCamelCase : List[str] = { """facebook/dpr-question_encoder-single-nq-base""": 512, """facebook/dpr-question_encoder-multiset-base""": 512, } _lowerCamelCase : Tuple = { """facebook/dpr-reader-single-nq-base""": 512, """facebook/dpr-reader-multiset-base""": 512, } _lowerCamelCase : Optional[Any] = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCamelCase : Optional[int] = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCamelCase : Optional[Any] = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = DPRContextEncoderTokenizer class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = DPRQuestionEncoderTokenizer _lowerCamelCase : int = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) _lowerCamelCase : Any = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) _lowerCamelCase : Dict = r""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(UpperCAmelCase__ ) class UpperCamelCase_ : '''simple docstring''' def __call__( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Union[bool, str] = False , UpperCAmelCase__ : Union[bool, str] = False , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : Optional[bool] = None , **UpperCAmelCase__ : Optional[int] , ) ->BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , ) elif titles is None or texts is None: A__ = titles if texts is None else texts return super().__call__( UpperCAmelCase__ , UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , ) A__ = titles if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [titles] A__ = texts if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [texts] A__ = len(UpperCAmelCase__) A__ = questions if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [questions] * n_passages assert len(UpperCAmelCase__) == len( UpperCAmelCase__), f"""There should be as many titles than texts but got {len(UpperCAmelCase__)} titles and {len(UpperCAmelCase__)} texts.""" A__ = super().__call__(UpperCAmelCase__ , UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__)['''input_ids'''] A__ = super().__call__(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__)['''input_ids'''] A__ = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(UpperCAmelCase__ , UpperCAmelCase__) ] } if return_attention_mask is not False: A__ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids]) A__ = attention_mask return self.pad(UpperCAmelCase__ , padding=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : BatchEncoding , UpperCAmelCase__ : DPRReaderOutput , UpperCAmelCase__ : int = 16 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 4 , ) ->List[DPRSpanPrediction]: '''simple docstring''' A__ = reader_input['''input_ids'''] A__ , A__ , A__ = reader_output[:3] A__ = len(UpperCAmelCase__) A__ = sorted(range(UpperCAmelCase__) , reverse=UpperCAmelCase__ , key=relevance_logits.__getitem__) A__ = [] for doc_id in sorted_docs: A__ = list(input_ids[doc_id]) # assuming question & title information is at the beginning of the sequence A__ = sequence_ids.index(self.sep_token_id , 2) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: A__ = sequence_ids.index(self.pad_token_id) else: A__ = len(UpperCAmelCase__) A__ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=UpperCAmelCase__ , top_spans=UpperCAmelCase__ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=UpperCAmelCase__ , start_index=UpperCAmelCase__ , end_index=UpperCAmelCase__ , text=self.decode(sequence_ids[start_index : end_index + 1]) , )) if len(UpperCAmelCase__) >= num_spans: break return nbest_spans_predictions[:num_spans] def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , ) ->List[DPRSpanPrediction]: '''simple docstring''' A__ = [] for start_index, start_score in enumerate(UpperCAmelCase__): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]): scores.append(((start_index, start_index + answer_length), start_score + end_score)) A__ = sorted(UpperCAmelCase__ , key=lambda UpperCAmelCase__: x[1] , reverse=UpperCAmelCase__) A__ = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f"""Wrong span indices: [{start_index}:{end_index}]""" A__ = end_index - start_index + 1 assert length <= max_answer_length, f"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals): continue chosen_span_intervals.append((start_index, end_index)) if len(UpperCAmelCase__) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCAmelCase__ ) class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = READER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = READER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = ['''input_ids''', '''attention_mask'''] UpperCAmelCase__ = DPRReaderTokenizer
14
0
"""simple docstring""" from sklearn.metrics import fa_score import datasets A : Dict = """ The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) """ A : Any = """ Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives. - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {'f1': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results['f1'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results['f1'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\") >>> print(round(results['f1'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\") >>> print(round(results['f1'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\") >>> print(round(results['f1'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'f1': array([0.8, 0. , 0. ])} """ A : List[Any] = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): '''simple docstring''' def snake_case ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32" ) ), "references": datasets.Sequence(datasets.Value("int32" ) ), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"] , ) def snake_case ( self , __a , __a , __a=None , __a=1 , __a="binary" , __a=None ): __lowerCAmelCase = fa_score( UpperCAmelCase__ , UpperCAmelCase__ , labels=UpperCAmelCase__ , pos_label=UpperCAmelCase__ , average=UpperCAmelCase__ , sample_weight=UpperCAmelCase__ ) return {"f1": float(UpperCAmelCase__ ) if score.size == 1 else score}
57
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Any = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''encoder-decoder''' UpperCAmelCase__ = True def __init__( self : List[str] , **UpperCAmelCase__ : Union[str, Any]) ->List[Any]: '''simple docstring''' super().__init__(**UpperCAmelCase__) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" A__ = kwargs.pop('''encoder''') A__ = encoder_config.pop('''model_type''') A__ = kwargs.pop('''decoder''') A__ = decoder_config.pop('''model_type''') from ..auto.configuration_auto import AutoConfig A__ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__) A__ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__) A__ = True @classmethod def SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , UpperCAmelCase__ : PretrainedConfig , UpperCAmelCase__ : PretrainedConfig , **UpperCAmelCase__ : Union[str, Any]) ->PretrainedConfig: '''simple docstring''' logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''') A__ = True A__ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str) ->Optional[Any]: '''simple docstring''' A__ = copy.deepcopy(self.__dict__) A__ = self.encoder.to_dict() A__ = self.decoder.to_dict() A__ = self.__class__.model_type return output
14
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowerCamelCase (UpperCAmelCase__ ): lowerCamelCase__ : Tuple = 'facebook/bart-large-mnli' lowerCamelCase__ : List[str] = ( 'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ' 'should be the text to classify, and `labels`, which should be the list of labels to use for classification. ' 'It returns the most likely label in the list of provided `labels` for the input text.' ) lowerCamelCase__ : str = 'text_classifier' lowerCamelCase__ : int = AutoTokenizer lowerCamelCase__ : Union[str, Any] = AutoModelForSequenceClassification lowerCamelCase__ : Any = ['text', ['text']] lowerCamelCase__ : Optional[int] = ['text'] def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: super().setup() SCREAMING_SNAKE_CASE__ = self.model.config SCREAMING_SNAKE_CASE__ = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("""entail""" ): SCREAMING_SNAKE_CASE__ = int(UpperCAmelCase__ ) if self.entailment_id == -1: raise ValueError("""Could not determine the entailment ID from the model config, please pass it at init.""" ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : List[str] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = labels return self.pre_processor( [text] * len(UpperCAmelCase__ ) , [F"""This example is {label}""" for label in labels] , return_tensors="""pt""" , padding="""max_length""" , ) def SCREAMING_SNAKE_CASE ( self : List[str] , __UpperCAmelCase : Tuple ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = outputs.logits SCREAMING_SNAKE_CASE__ = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
165
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any: """simple docstring""" A__ = [0] * len(lowercase_ ) A__ = [] A__ = [1] * len(lowercase_ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(lowercase_ ) ): if indegree[i] == 0: queue.append(lowercase_ ) while queue: A__ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: A__ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(lowercase_ ) print(max(lowercase_ ) ) # Adjacency list of Graph _lowerCamelCase : Optional[int] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
14
0
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def lowerCAmelCase ( ): """simple docstring""" UpperCAmelCase__ = [randint(-1000 , 1000 ) for i in range(10 )] UpperCAmelCase__ = randint(-5000 , 5000 ) return (arr, r) _lowerCAmelCase : Tuple = make_dataset() def lowerCAmelCase ( _lowerCAmelCase : str , _lowerCAmelCase : Tuple ): """simple docstring""" for triplet in permutations(lowercase_ , 3 ): if sum(lowercase_ ) == target: return tuple(sorted(lowercase_ ) ) return (0, 0, 0) def lowerCAmelCase ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] ): """simple docstring""" arr.sort() UpperCAmelCase__ = len(lowercase_ ) for i in range(n - 1 ): UpperCAmelCase__ , UpperCAmelCase__ = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def lowerCAmelCase ( ): """simple docstring""" UpperCAmelCase__ = "\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n" UpperCAmelCase__ = "\ntriplet_sum1(*dataset)\n" UpperCAmelCase__ = "\ntriplet_sum2(*dataset)\n" UpperCAmelCase__ = repeat(setup=lowercase_ , stmt=lowercase_ , repeat=5 , number=1_0000 ) UpperCAmelCase__ = repeat(setup=lowercase_ , stmt=lowercase_ , repeat=5 , number=1_0000 ) return (min(lowercase_ ), min(lowercase_ )) if __name__ == "__main__": from doctest import testmod testmod() _lowerCAmelCase : Optional[Any] = solution_times() print(F'''The time for naive implementation is {times[0]}.''') print(F'''The time for optimized implementation is {times[1]}.''')
169
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline _lowerCamelCase : Optional[Any] = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCamelCase_ ( datasets.BuilderConfig ): '''simple docstring''' UpperCAmelCase__ = None UpperCAmelCase__ = "utf-8" UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = True # deprecated UpperCAmelCase__ = None # deprecated UpperCAmelCase__ = 10 << 20 # 10MB UpperCAmelCase__ = None class UpperCamelCase_ ( datasets.ArrowBasedBuilder ): '''simple docstring''' UpperCAmelCase__ = JsonConfig def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str: '''simple docstring''' if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''') A__ = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''') if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''') return datasets.DatasetInfo(features=self.config.features) def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : List[Any]) ->Dict: '''simple docstring''' if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""") A__ = dl_manager.download_and_extract(self.config.data_files) if isinstance(UpperCAmelCase__ , (str, list, tuple)): A__ = data_files if isinstance(UpperCAmelCase__ , UpperCAmelCase__): A__ = [files] A__ = [dl_manager.iter_files(UpperCAmelCase__) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files})] A__ = [] for split_name, files in data_files.items(): if isinstance(UpperCAmelCase__ , UpperCAmelCase__): A__ = [files] A__ = [dl_manager.iter_files(UpperCAmelCase__) for file in files] splits.append(datasets.SplitGenerator(name=UpperCAmelCase__ , gen_kwargs={'''files''': files})) return splits def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : pa.Table) ->pa.Table: '''simple docstring''' if self.config.features is not None: # adding missing columns for column_name in set(self.config.features) - set(pa_table.column_names): A__ = self.config.features.arrow_schema.field(UpperCAmelCase__).type A__ = pa_table.append_column(UpperCAmelCase__ , pa.array([None] * len(UpperCAmelCase__) , type=UpperCAmelCase__)) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example A__ = table_cast(UpperCAmelCase__ , self.config.features.arrow_schema) return pa_table def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Tuple) ->str: '''simple docstring''' for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase__)): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(UpperCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: A__ = json.load(UpperCAmelCase__) # We keep only the field we are interested in A__ = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(UpperCAmelCase__ , (list, tuple)): A__ = set().union(*[row.keys() for row in dataset]) A__ = {col: [row.get(UpperCAmelCase__) for row in dataset] for col in keys} else: A__ = dataset A__ = pa.Table.from_pydict(UpperCAmelCase__) yield file_idx, self._cast_table(UpperCAmelCase__) # If the file has one json object per line else: with open(UpperCAmelCase__ , '''rb''') as f: A__ = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small A__ = max(self.config.chunksize // 32 , 16 << 10) A__ = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: A__ = f.read(self.config.chunksize) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(UpperCAmelCase__) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": A__ = batch.decode(self.config.encoding , errors=UpperCAmelCase__).encode('''utf-8''') try: while True: try: A__ = paj.read_json( io.BytesIO(UpperCAmelCase__) , read_options=paj.ReadOptions(block_size=UpperCAmelCase__)) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(UpperCAmelCase__ , pa.ArrowInvalid) and "straddling" not in str(UpperCAmelCase__) or block_size > len(UpperCAmelCase__) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f"""Batch of {len(UpperCAmelCase__)} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""") block_size *= 2 except pa.ArrowInvalid as e: try: with open( UpperCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: A__ = json.load(UpperCAmelCase__) except json.JSONDecodeError: logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""") raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(UpperCAmelCase__ , UpperCAmelCase__): # list is the only sequence type supported in JSON try: A__ = set().union(*[row.keys() for row in dataset]) A__ = {col: [row.get(UpperCAmelCase__) for row in dataset] for col in keys} A__ = pa.Table.from_pydict(UpperCAmelCase__) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""") raise ValueError(f"""Not able to read records in the JSON file at {file}.""") from None yield file_idx, self._cast_table(UpperCAmelCase__) break else: logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""") raise ValueError( f"""Not able to read records in the JSON file at {file}. """ f"""You should probably indicate the field of the JSON file containing your records. """ f"""This JSON file contain the following fields: {str(list(dataset.keys()))}. """ f"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase__) batch_idx += 1
14
0
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase_ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ ) -> List[str]: super().__init__() self.register_modules(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) @torch.no_grad() def __call__( self , snake_case_ = 1 , snake_case_ = 100 , snake_case_ = None , snake_case_ = None , snake_case_ = True , ) -> Union[AudioPipelineOutput, Tuple]: if audio_length_in_s is None: __lowerCAmelCase = self.unet.config.sample_size / self.unet.config.sample_rate __lowerCAmelCase = audio_length_in_s * self.unet.config.sample_rate __lowerCAmelCase = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f"""{audio_length_in_s} is too small. Make sure it's bigger or equal to""" f""" {3 * down_scale_factor / self.unet.config.sample_rate}.""" ) __lowerCAmelCase = int(UpperCAmelCase__ ) if sample_size % down_scale_factor != 0: __lowerCAmelCase = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f"""{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled""" f""" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising""" """ process.""" ) __lowerCAmelCase = int(UpperCAmelCase__ ) __lowerCAmelCase = next(iter(self.unet.parameters() ) ).dtype __lowerCAmelCase = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and len(UpperCAmelCase__ ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(UpperCAmelCase__ )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) __lowerCAmelCase = randn_tensor(UpperCAmelCase__ , generator=UpperCAmelCase__ , device=self.device , dtype=UpperCAmelCase__ ) # set step values self.scheduler.set_timesteps(UpperCAmelCase__ , device=audio.device ) __lowerCAmelCase = self.scheduler.timesteps.to(UpperCAmelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __lowerCAmelCase = self.unet(UpperCAmelCase__ , UpperCAmelCase__ ).sample # 2. compute previous image: x_t -> t_t-1 __lowerCAmelCase = self.scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ).prev_sample __lowerCAmelCase = audio.clamp(-1 , 1 ).float().cpu().numpy() __lowerCAmelCase = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=UpperCAmelCase__ )
301
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch _lowerCamelCase : List[Any] = """sshleifer/bart-tiny-random""" _lowerCamelCase : List[Any] = """patrickvonplaten/t5-tiny-random""" @require_torch class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int: '''simple docstring''' return AutoConfig.from_pretrained(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any: '''simple docstring''' A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.num_hidden_layers , 1) def SCREAMING_SNAKE_CASE ( self : int) ->Any: '''simple docstring''' A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase__) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers) def SCREAMING_SNAKE_CASE ( self : Dict) ->int: '''simple docstring''' A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , 1) def SCREAMING_SNAKE_CASE ( self : str) ->List[Any]: '''simple docstring''' with self.assertRaises(UpperCAmelCase__): create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=UpperCAmelCase__ , d=UpperCAmelCase__)
14
0
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging _A = logging.get_logger(__name__) _A = { """deepmind/language-perceiver""": """https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json""", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class lowercase_ ( UpperCAmelCase__ ): A__ : List[str] = """perceiver""" def __init__( self , __UpperCamelCase=2_5_6 , __UpperCamelCase=1_2_8_0 , __UpperCamelCase=7_6_8 , __UpperCamelCase=1 , __UpperCamelCase=2_6 , __UpperCamelCase=8 , __UpperCamelCase=8 , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase="kv" , __UpperCamelCase=1 , __UpperCamelCase=1 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.02 , __UpperCamelCase=1e-12 , __UpperCamelCase=True , __UpperCamelCase=2_6_2 , __UpperCamelCase=2_0_4_8 , __UpperCamelCase=5_6 , __UpperCamelCase=[3_6_8, 4_9_6] , __UpperCamelCase=1_6 , __UpperCamelCase=1_9_2_0 , __UpperCamelCase=1_6 , __UpperCamelCase=[1, 1_6, 2_2_4, 2_2_4] , **__UpperCamelCase , ): """simple docstring""" super().__init__(**UpperCAmelCase__ ) UpperCamelCase_ = num_latents UpperCamelCase_ = d_latents UpperCamelCase_ = d_model UpperCamelCase_ = num_blocks UpperCamelCase_ = num_self_attends_per_block UpperCamelCase_ = num_self_attention_heads UpperCamelCase_ = num_cross_attention_heads UpperCamelCase_ = qk_channels UpperCamelCase_ = v_channels UpperCamelCase_ = cross_attention_shape_for_attention UpperCamelCase_ = self_attention_widening_factor UpperCamelCase_ = cross_attention_widening_factor UpperCamelCase_ = hidden_act UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = initializer_range UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = use_query_residual # masked language modeling attributes UpperCamelCase_ = vocab_size UpperCamelCase_ = max_position_embeddings # image classification attributes UpperCamelCase_ = image_size # flow attributes UpperCamelCase_ = train_size # multimodal autoencoding attributes UpperCamelCase_ = num_frames UpperCamelCase_ = audio_samples_per_frame UpperCamelCase_ = samples_per_patch UpperCamelCase_ = output_shape class lowercase_ ( UpperCAmelCase__ ): @property def lowerCamelCase_ ( self ): """simple docstring""" if self.task == "multiple-choice": UpperCamelCase_ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: UpperCamelCase_ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""inputs""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] ) @property def lowerCamelCase_ ( self ): """simple docstring""" return 1e-4 def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase = -1 , __UpperCamelCase = -1 , __UpperCamelCase = -1 , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = 3 , __UpperCamelCase = 4_0 , __UpperCamelCase = 4_0 , ): """simple docstring""" if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase_ = compute_effective_axis_dimension( UpperCAmelCase__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase_ = preprocessor.num_special_tokens_to_add(UpperCAmelCase__ ) UpperCamelCase_ = compute_effective_axis_dimension( UpperCAmelCase__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCAmelCase__ ) # Generate dummy inputs according to compute batch and sequence UpperCamelCase_ = [""" """.join(["""a"""] ) * seq_length] * batch_size UpperCamelCase_ = dict(preprocessor(UpperCAmelCase__ , return_tensors=UpperCAmelCase__ ) ) UpperCamelCase_ = inputs.pop("""input_ids""" ) return inputs elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase_ = compute_effective_axis_dimension(UpperCAmelCase__ , fixed_dimension=OnnxConfig.default_fixed_batch ) UpperCamelCase_ = self._generate_dummy_images(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_ = dict(preprocessor(images=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ ) ) UpperCamelCase_ = inputs.pop("""pixel_values""" ) return inputs else: raise ValueError( """Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.""" )
122
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[str] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int=7 , UpperCAmelCase__ : Dict=3 , UpperCAmelCase__ : List[Any]=30 , UpperCAmelCase__ : Any=400 , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Optional[Any]=[0.5, 0.5, 0.5] , UpperCAmelCase__ : Any=[0.5, 0.5, 0.5] , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Optional[int]=1 / 255 , UpperCAmelCase__ : Optional[Any]=True , ) ->str: '''simple docstring''' A__ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1_333} A__ = parent A__ = batch_size A__ = num_channels A__ = min_resolution A__ = max_resolution A__ = do_resize A__ = size A__ = do_normalize A__ = image_mean A__ = image_std A__ = do_rescale A__ = rescale_factor A__ = do_pad def SCREAMING_SNAKE_CASE ( self : Any) ->List[str]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int=False) ->Optional[Any]: '''simple docstring''' if not batched: A__ = image_inputs[0] if isinstance(UpperCAmelCase__ , Image.Image): A__ , A__ = image.size else: A__ , A__ = image.shape[1], image.shape[2] if w < h: A__ = int(self.size['''shortest_edge'''] * h / w) A__ = self.size['''shortest_edge'''] elif w > h: A__ = self.size['''shortest_edge'''] A__ = int(self.size['''shortest_edge'''] * w / h) else: A__ = self.size['''shortest_edge'''] A__ = self.size['''shortest_edge'''] else: A__ = [] for image in image_inputs: A__ , A__ = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) A__ = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__: item[0])[0] A__ = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__: item[1])[1] return expected_height, expected_width @require_torch @require_vision class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = DeformableDetrImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self : List[str]) ->Tuple: '''simple docstring''' A__ = DeformableDetrImageProcessingTester(self) @property def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(UpperCAmelCase__ , '''image_mean''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''image_std''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_normalize''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_resize''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_rescale''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_pad''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''size''')) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int: '''simple docstring''' A__ = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1_333}) self.assertEqual(image_processor.do_pad , UpperCAmelCase__) A__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCAmelCase__) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84}) self.assertEqual(image_processor.do_pad , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any) ->List[str]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict) # create random PIL images A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__) A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , np.ndarray) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self : int) ->Tuple: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[str]: '''simple docstring''' A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''') as f: A__ = json.loads(f.read()) A__ = {'''image_id''': 39_769, '''annotations''': target} # encode them A__ = DeformableDetrImageProcessor() A__ = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , return_tensors='''pt''') # verify pixel values A__ = torch.Size([1, 3, 800, 1_066]) self.assertEqual(encoding['''pixel_values'''].shape , UpperCAmelCase__) A__ = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCAmelCase__ , atol=1e-4)) # verify area A__ = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCAmelCase__)) # verify boxes A__ = torch.Size([6, 4]) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCAmelCase__) A__ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCAmelCase__ , atol=1e-3)) # verify image_id A__ = torch.tensor([39_769]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCAmelCase__)) # verify is_crowd A__ = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCAmelCase__)) # verify class_labels A__ = torch.tensor([75, 75, 63, 65, 17, 17]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCAmelCase__)) # verify orig_size A__ = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCAmelCase__)) # verify size A__ = torch.tensor([800, 1_066]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCAmelCase__)) @slow def SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[int]: '''simple docstring''' A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''') as f: A__ = json.loads(f.read()) A__ = {'''file_name''': '''000000039769.png''', '''image_id''': 39_769, '''segments_info''': target} A__ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''') # encode them A__ = DeformableDetrImageProcessor(format='''coco_panoptic''') A__ = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , masks_path=UpperCAmelCase__ , return_tensors='''pt''') # verify pixel values A__ = torch.Size([1, 3, 800, 1_066]) self.assertEqual(encoding['''pixel_values'''].shape , UpperCAmelCase__) A__ = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCAmelCase__ , atol=1e-4)) # verify area A__ = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCAmelCase__)) # verify boxes A__ = torch.Size([6, 4]) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCAmelCase__) A__ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCAmelCase__ , atol=1e-3)) # verify image_id A__ = torch.tensor([39_769]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCAmelCase__)) # verify is_crowd A__ = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCAmelCase__)) # verify class_labels A__ = torch.tensor([17, 17, 63, 75, 75, 93]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCAmelCase__)) # verify masks A__ = 822_873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , UpperCAmelCase__) # verify orig_size A__ = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCAmelCase__)) # verify size A__ = torch.tensor([800, 1_066]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCAmelCase__))
14
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase : List[Any] = logging.get_logger(__name__) _UpperCamelCase : Optional[int] = { """studio-ousia/luke-base""": """https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json""", """studio-ousia/luke-large""": """https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json""", } class a ( UpperCAmelCase__ ): UpperCAmelCase_ : Dict ="luke" def __init__( self , _lowerCamelCase=5_0_2_6_7 , _lowerCamelCase=5_0_0_0_0_0 , _lowerCamelCase=7_6_8 , _lowerCamelCase=2_5_6 , _lowerCamelCase=1_2 , _lowerCamelCase=1_2 , _lowerCamelCase=3_0_7_2 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=5_1_2 , _lowerCamelCase=2 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-12 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=1 , _lowerCamelCase=0 , _lowerCamelCase=2 , **_lowerCamelCase , ): super().__init__(pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) lowercase = vocab_size lowercase = entity_vocab_size lowercase = hidden_size lowercase = entity_emb_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = hidden_act lowercase = intermediate_size lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = initializer_range lowercase = layer_norm_eps lowercase = use_entity_aware_attention lowercase = classifier_dropout
220
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np _lowerCamelCase : str = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 _lowerCamelCase : Tuple = typing.Union[np.floataa, int, float] # noqa: UP007 def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> VectorOut: """simple docstring""" return np.sqrt(np.sum((np.asarray(lowercase_ ) - np.asarray(lowercase_ )) ** 2 ) ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> VectorOut: """simple docstring""" return sum((va - va) ** 2 for va, va in zip(lowercase_ , lowercase_ ) ) ** (1 / 2) if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) ) benchmark()
14
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Any = logging.get_logger(__name__) class lowercase__ ( UpperCAmelCase__ ): _UpperCAmelCase :Dict = "encoder-decoder" _UpperCAmelCase :Optional[int] = True def __init__( self : List[str] , **snake_case__ : Union[str, Any] ): super().__init__(**UpperCAmelCase__ ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" lowerCamelCase_ : Union[str, Any] =kwargs.pop("encoder" ) lowerCamelCase_ : str =encoder_config.pop("model_type" ) lowerCamelCase_ : Tuple =kwargs.pop("decoder" ) lowerCamelCase_ : Optional[int] =decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig lowerCamelCase_ : int =AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__ ) lowerCamelCase_ : Optional[Any] =AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__ ) lowerCamelCase_ : Optional[Any] =True @classmethod def UpperCAmelCase__ ( cls : Union[str, Any] , snake_case__ : PretrainedConfig , snake_case__ : PretrainedConfig , **snake_case__ : Union[str, Any] ): logger.info("Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config" ) lowerCamelCase_ : int =True lowerCamelCase_ : Optional[int] =True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCAmelCase__ ) def UpperCAmelCase__ ( self : str ): lowerCamelCase_ : List[Any] =copy.deepcopy(self.__dict__ ) lowerCamelCase_ : List[Any] =self.encoder.to_dict() lowerCamelCase_ : Optional[Any] =self.decoder.to_dict() lowerCamelCase_ : Union[str, Any] =self.__class__.model_type return output
144
from ...processing_utils import ProcessorMixin class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''SpeechT5FeatureExtractor''' UpperCAmelCase__ = '''SpeechT5Tokenizer''' def __init__( self : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple) ->Union[str, Any]: '''simple docstring''' super().__init__(UpperCAmelCase__ , UpperCAmelCase__) def __call__( self : Dict , *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : Any) ->Optional[Any]: '''simple docstring''' A__ = kwargs.pop('''audio''' , UpperCAmelCase__) A__ = kwargs.pop('''text''' , UpperCAmelCase__) A__ = kwargs.pop('''text_target''' , UpperCAmelCase__) A__ = kwargs.pop('''audio_target''' , UpperCAmelCase__) A__ = kwargs.pop('''sampling_rate''' , UpperCAmelCase__) if audio is not None and text is not None: raise ValueError( '''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''') if audio_target is not None and text_target is not None: raise ValueError( '''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''') if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( '''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''') if audio is not None: A__ = self.feature_extractor(UpperCAmelCase__ , *UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , **UpperCAmelCase__) elif text is not None: A__ = self.tokenizer(UpperCAmelCase__ , **UpperCAmelCase__) else: A__ = None if audio_target is not None: A__ = self.feature_extractor(audio_target=UpperCAmelCase__ , *UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , **UpperCAmelCase__) A__ = targets['''input_values'''] elif text_target is not None: A__ = self.tokenizer(UpperCAmelCase__ , **UpperCAmelCase__) A__ = targets['''input_ids'''] else: A__ = None if inputs is None: return targets if targets is not None: A__ = labels A__ = targets.get('''attention_mask''') if decoder_attention_mask is not None: A__ = decoder_attention_mask return inputs def SCREAMING_SNAKE_CASE ( self : Optional[Any] , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : int) ->Optional[int]: '''simple docstring''' A__ = kwargs.pop('''input_values''' , UpperCAmelCase__) A__ = kwargs.pop('''input_ids''' , UpperCAmelCase__) A__ = kwargs.pop('''labels''' , UpperCAmelCase__) if input_values is not None and input_ids is not None: raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''') if input_values is None and input_ids is None and labels is None: raise ValueError( '''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''') if input_values is not None: A__ = self.feature_extractor.pad(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__) elif input_ids is not None: A__ = self.tokenizer.pad(UpperCAmelCase__ , **UpperCAmelCase__) else: A__ = None if labels is not None: if "input_ids" in labels or (isinstance(UpperCAmelCase__ , UpperCAmelCase__) and "input_ids" in labels[0]): A__ = self.tokenizer.pad(UpperCAmelCase__ , **UpperCAmelCase__) A__ = targets['''input_ids'''] else: A__ = self.feature_extractor.feature_size A__ = self.feature_extractor.num_mel_bins A__ = self.feature_extractor.pad(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__) A__ = feature_size_hack A__ = targets['''input_values'''] else: A__ = None if inputs is None: return targets if targets is not None: A__ = labels A__ = targets.get('''attention_mask''') if decoder_attention_mask is not None: A__ = decoder_attention_mask return inputs def SCREAMING_SNAKE_CASE ( self : Any , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : Optional[Any]) ->Optional[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase__ , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Union[str, Any]) ->Dict: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase__ , **UpperCAmelCase__)
14
0
def _a ( SCREAMING_SNAKE_CASE : Any ): """simple docstring""" if upper_limit < 0: raise ValueError('''Limit for the Catalan sequence must be ≥ 0''' ) UpperCamelCase__ : Optional[Any] = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 UpperCamelCase__ : Union[str, Any] = 1 if upper_limit > 0: UpperCamelCase__ : List[str] = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(lowercase_ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("\n********* Catalan Numbers Using Dynamic Programming ************\n") print("\n*** Enter -1 at any time to quit ***") print("\nEnter the upper limit (≥ 0) for the Catalan number sequence: ", end="") try: while True: __UpperCamelCase : List[Any] = int(input().strip()) if N < 0: print("\n********* Goodbye!! ************") break else: print(f"The Catalan numbers from 0 through {N} are:") print(catalan_numbers(N)) print("Try another upper limit for the sequence: ", end="") except (NameError, ValueError): print("\n********* Invalid input, goodbye! ************\n") import doctest doctest.testmod()
146
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Tuple = logging.get_logger(__name__) _lowerCamelCase : str = { """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''git_vision_model''' def __init__( self : Any , UpperCAmelCase__ : Any=768 , UpperCAmelCase__ : int=3_072 , UpperCAmelCase__ : List[str]=12 , UpperCAmelCase__ : Dict=12 , UpperCAmelCase__ : Optional[int]=3 , UpperCAmelCase__ : List[Any]=224 , UpperCAmelCase__ : Union[str, Any]=16 , UpperCAmelCase__ : Union[str, Any]="quick_gelu" , UpperCAmelCase__ : Dict=1e-5 , UpperCAmelCase__ : Union[str, Any]=0.0 , UpperCAmelCase__ : Any=0.02 , **UpperCAmelCase__ : Any , ) ->Optional[int]: '''simple docstring''' super().__init__(**UpperCAmelCase__) A__ = hidden_size A__ = intermediate_size A__ = num_hidden_layers A__ = num_attention_heads A__ = num_channels A__ = patch_size A__ = image_size A__ = initializer_range A__ = attention_dropout A__ = layer_norm_eps A__ = hidden_act @classmethod def SCREAMING_SNAKE_CASE ( cls : Any , UpperCAmelCase__ : Union[str, os.PathLike] , **UpperCAmelCase__ : int) ->"PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCAmelCase__) A__ , A__ = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__) # get the vision config dict if we are loading from GITConfig if config_dict.get('''model_type''') == "git": A__ = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""") return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''git''' def __init__( self : Dict , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : int=30_522 , UpperCAmelCase__ : Optional[int]=768 , UpperCAmelCase__ : Dict=6 , UpperCAmelCase__ : int=12 , UpperCAmelCase__ : List[str]=3_072 , UpperCAmelCase__ : str="gelu" , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : List[Any]=1_024 , UpperCAmelCase__ : List[str]=0.02 , UpperCAmelCase__ : Any=1e-12 , UpperCAmelCase__ : Union[str, Any]=0 , UpperCAmelCase__ : List[Any]="absolute" , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Any=False , UpperCAmelCase__ : int=101 , UpperCAmelCase__ : Tuple=102 , UpperCAmelCase__ : Dict=None , **UpperCAmelCase__ : List[str] , ) ->Any: '''simple docstring''' super().__init__(bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , pad_token_id=UpperCAmelCase__ , **UpperCAmelCase__) if vision_config is None: A__ = {} logger.info('''vision_config is None. initializing the GitVisionConfig with default values.''') A__ = GitVisionConfig(**UpperCAmelCase__) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = initializer_range A__ = layer_norm_eps A__ = position_embedding_type A__ = use_cache A__ = tie_word_embeddings A__ = num_image_with_embedding A__ = bos_token_id A__ = eos_token_id def SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: '''simple docstring''' A__ = copy.deepcopy(self.__dict__) A__ = self.vision_config.to_dict() A__ = self.__class__.model_type return output
14
0
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class _A ( unittest.TestCase ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=7 , __UpperCAmelCase=3 , __UpperCAmelCase=30 , __UpperCAmelCase=400 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=[0.5, 0.5, 0.5] , __UpperCAmelCase=[0.5, 0.5, 0.5] , __UpperCAmelCase=True , __UpperCAmelCase=1 / 255 , __UpperCAmelCase=True , ) -> str: '''simple docstring''' __UpperCAmelCase : str = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1_333} __UpperCAmelCase : Optional[int] = parent __UpperCAmelCase : List[str] = batch_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : Dict = min_resolution __UpperCAmelCase : List[str] = max_resolution __UpperCAmelCase : str = do_resize __UpperCAmelCase : int = size __UpperCAmelCase : Optional[Any] = do_normalize __UpperCAmelCase : List[Any] = image_mean __UpperCAmelCase : Optional[int] = image_std __UpperCAmelCase : Any = do_rescale __UpperCAmelCase : Any = rescale_factor __UpperCAmelCase : List[Any] = do_pad def __A ( self ) -> List[str]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __A ( self , __UpperCAmelCase , __UpperCAmelCase=False ) -> Optional[Any]: '''simple docstring''' if not batched: __UpperCAmelCase : Union[str, Any] = image_inputs[0] if isinstance(UpperCAmelCase__ , Image.Image ): __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = image.size else: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = image.shape[1], image.shape[2] if w < h: __UpperCAmelCase : int = int(self.size["""shortest_edge"""] * h / w ) __UpperCAmelCase : Tuple = self.size["""shortest_edge"""] elif w > h: __UpperCAmelCase : Union[str, Any] = self.size["""shortest_edge"""] __UpperCAmelCase : Optional[Any] = int(self.size["""shortest_edge"""] * w / h ) else: __UpperCAmelCase : Optional[int] = self.size["""shortest_edge"""] __UpperCAmelCase : int = self.size["""shortest_edge"""] else: __UpperCAmelCase : Union[str, Any] = [] for image in image_inputs: __UpperCAmelCase , __UpperCAmelCase : Any = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __UpperCAmelCase : int = max(UpperCAmelCase__ , key=lambda __UpperCAmelCase : item[0] )[0] __UpperCAmelCase : List[str] = max(UpperCAmelCase__ , key=lambda __UpperCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _A ( UpperCAmelCase__ , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Any = DeformableDetrImageProcessor if is_vision_available() else None def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Dict = DeformableDetrImageProcessingTester(self ) @property def __A ( self ) -> Any: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , """image_std""" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , """do_rescale""" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , """do_pad""" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , """size""" ) ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1_333} ) self.assertEqual(image_processor.do_pad , UpperCAmelCase__ ) __UpperCAmelCase : Any = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCAmelCase__ ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , UpperCAmelCase__ ) def __A ( self ) -> List[str]: '''simple docstring''' pass def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image ) # Test not batched input __UpperCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __UpperCAmelCase , __UpperCAmelCase : Dict = self.image_processor_tester.get_expected_values(UpperCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCAmelCase , __UpperCAmelCase : Any = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__ ) __UpperCAmelCase : Optional[int] = image_processing(UpperCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCAmelCase : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , np.ndarray ) # Test not batched input __UpperCAmelCase : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __UpperCAmelCase , __UpperCAmelCase : str = self.image_processor_tester.get_expected_values(UpperCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCAmelCase : int = image_processing(UpperCAmelCase__ , return_tensors="""pt""" ).pixel_values __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor ) # Test not batched input __UpperCAmelCase : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __UpperCAmelCase , __UpperCAmelCase : int = self.image_processor_tester.get_expected_values(UpperCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCAmelCase : List[Any] = image_processing(UpperCAmelCase__ , return_tensors="""pt""" ).pixel_values __UpperCAmelCase , __UpperCAmelCase : List[str] = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: __UpperCAmelCase : Any = json.loads(f.read() ) __UpperCAmelCase : str = {"""image_id""": 39_769, """annotations""": target} # encode them __UpperCAmelCase : List[str] = DeformableDetrImageProcessor() __UpperCAmelCase : List[Any] = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , return_tensors="""pt""" ) # verify pixel values __UpperCAmelCase : Any = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["""pixel_values"""].shape , UpperCAmelCase__ ) __UpperCAmelCase : Dict = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , UpperCAmelCase__ , atol=1E-4 ) ) # verify area __UpperCAmelCase : str = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , UpperCAmelCase__ ) ) # verify boxes __UpperCAmelCase : str = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , UpperCAmelCase__ ) __UpperCAmelCase : Optional[Any] = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , UpperCAmelCase__ , atol=1E-3 ) ) # verify image_id __UpperCAmelCase : Optional[Any] = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , UpperCAmelCase__ ) ) # verify is_crowd __UpperCAmelCase : Optional[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , UpperCAmelCase__ ) ) # verify class_labels __UpperCAmelCase : Dict = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , UpperCAmelCase__ ) ) # verify orig_size __UpperCAmelCase : Optional[Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , UpperCAmelCase__ ) ) # verify size __UpperCAmelCase : str = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , UpperCAmelCase__ ) ) @slow def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: __UpperCAmelCase : List[str] = json.loads(f.read() ) __UpperCAmelCase : str = {"""file_name""": """000000039769.png""", """image_id""": 39_769, """segments_info""": target} __UpperCAmelCase : Optional[Any] = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them __UpperCAmelCase : Dict = DeformableDetrImageProcessor(format="""coco_panoptic""" ) __UpperCAmelCase : List[str] = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , masks_path=UpperCAmelCase__ , return_tensors="""pt""" ) # verify pixel values __UpperCAmelCase : Any = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["""pixel_values"""].shape , UpperCAmelCase__ ) __UpperCAmelCase : int = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , UpperCAmelCase__ , atol=1E-4 ) ) # verify area __UpperCAmelCase : Optional[Any] = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , UpperCAmelCase__ ) ) # verify boxes __UpperCAmelCase : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , UpperCAmelCase__ ) __UpperCAmelCase : Dict = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , UpperCAmelCase__ , atol=1E-3 ) ) # verify image_id __UpperCAmelCase : List[Any] = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , UpperCAmelCase__ ) ) # verify is_crowd __UpperCAmelCase : str = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , UpperCAmelCase__ ) ) # verify class_labels __UpperCAmelCase : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , UpperCAmelCase__ ) ) # verify masks __UpperCAmelCase : List[Any] = 822_873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , UpperCAmelCase__ ) # verify orig_size __UpperCAmelCase : List[str] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , UpperCAmelCase__ ) ) # verify size __UpperCAmelCase : Optional[int] = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , UpperCAmelCase__ ) )
254
import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: """simple docstring""" A__ = BeautifulSoup(requests.get(lowercase_ , params=lowercase_ ).content , '''html.parser''' ) A__ = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} ) A__ = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' ) return anchors[2].get_text() if __name__ == "__main__": _lowerCamelCase : Optional[Any] = { """title""": ( """Precisely geometry controlled microsupercapacitors for ultrahigh areal """ """capacitance, volumetric capacitance, and energy density""" ), """journal""": """Chem. Mater.""", """volume""": 30, """pages""": """3979-3990""", """year""": 2018, """hl""": """en""", } print(get_citation("""https://scholar.google.com/scholar_lookup""", params=params))
14
0
"""simple docstring""" from __future__ import annotations import pandas as pd def A_ ( _lowerCAmelCase : Any, _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Any ): """simple docstring""" _a = [0] * no_of_processes _a = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(lowercase_ ): _a = burst_time[i] _a = 0 _a = 0 _a = 9_99_99_99_99 _a = 0 _a = False # Process until all processes are completed while complete != no_of_processes: for j in range(lowercase_ ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: _a = remaining_time[j] _a = j _a = True if not check: increment_time += 1 continue remaining_time[short] -= 1 _a = remaining_time[short] if minm == 0: _a = 9_99_99_99_99 if remaining_time[short] == 0: complete += 1 _a = False # Find finish time of current process _a = increment_time + 1 # Calculate waiting time _a = finish_time - arrival_time[short] _a = finar - burst_time[short] if waiting_time[short] < 0: _a = 0 # Increment time increment_time += 1 return waiting_time def A_ ( _lowerCAmelCase : int, _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : int ): """simple docstring""" _a = [0] * no_of_processes for i in range(lowercase_ ): _a = burst_time[i] + waiting_time[i] return turn_around_time def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : str, _lowerCAmelCase : Tuple ): """simple docstring""" _a = 0 _a = 0 for i in range(lowercase_ ): _a = total_waiting_time + waiting_time[i] _a = total_turn_around_time + turn_around_time[i] print(f'Average waiting time = {total_waiting_time / no_of_processes:.5f}' ) print('''Average turn around time =''', total_turn_around_time / no_of_processes ) if __name__ == "__main__": print('''Enter how many process you want to analyze''') __snake_case = int(input()) __snake_case = [0] * no_of_processes __snake_case = [0] * no_of_processes __snake_case = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print('''Enter the arrival time and burst time for process:--''' + str(i + 1)) __snake_case = map(int, input().split()) __snake_case = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __snake_case = burst_time __snake_case = no_of_processes __snake_case = waiting_time __snake_case = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) __snake_case = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ '''Process''', '''BurstTime''', '''ArrivalTime''', '''WaitingTime''', '''TurnAroundTime''', ], ) # Printing the dataFrame pd.set_option('''display.max_rows''', fcfs.shape[0] + 1) print(fcfs)
320
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: """simple docstring""" A__ = StableDiffusionPipeline.from_pretrained(lowercase_ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors A__ = load_file(lowercase_ ) A__ = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: A__ = key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' ) A__ = pipeline.text_encoder else: A__ = key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' ) A__ = pipeline.unet # find the target layer A__ = layer_infos.pop(0 ) while len(lowercase_ ) > -1: try: A__ = curr_layer.__getattr__(lowercase_ ) if len(lowercase_ ) > 0: A__ = layer_infos.pop(0 ) elif len(lowercase_ ) == 0: break except Exception: if len(lowercase_ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: A__ = layer_infos.pop(0 ) A__ = [] if "lora_down" in key: pair_keys.append(key.replace('''lora_down''' , '''lora_up''' ) ) pair_keys.append(lowercase_ ) else: pair_keys.append(lowercase_ ) pair_keys.append(key.replace('''lora_up''' , '''lora_down''' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: A__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) A__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ ).unsqueeze(2 ).unsqueeze(3 ) else: A__ = state_dict[pair_keys[0]].to(torch.floataa ) A__ = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ ) # update visited list for item in pair_keys: visited.append(lowercase_ ) return pipeline if __name__ == "__main__": _lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") _lowerCamelCase : Tuple = parser.parse_args() _lowerCamelCase : List[Any] = args.base_model_path _lowerCamelCase : Optional[int] = args.checkpoint_path _lowerCamelCase : Dict = args.dump_path _lowerCamelCase : Optional[Any] = args.lora_prefix_unet _lowerCamelCase : Optional[int] = args.lora_prefix_text_encoder _lowerCamelCase : List[Any] = args.alpha _lowerCamelCase : int = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) _lowerCamelCase : Tuple = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
14
0
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class a ( UpperCAmelCase__ ): __lowerCAmelCase : Optional[Any] = ["""vqvae"""] def __init__( self :Optional[int] ,__lowercase :AutoencoderKL ,__lowercase :UNetaDConditionModel ,__lowercase :Mel ,__lowercase :Union[DDIMScheduler, DDPMScheduler] ,): super().__init__() self.register_modules(unet=UpperCAmelCase__ ,scheduler=UpperCAmelCase__ ,mel=UpperCAmelCase__ ,vqvae=UpperCAmelCase__ ) def __lowerCamelCase ( self :List[Any] ): return 5_0 if isinstance(self.scheduler ,UpperCAmelCase__ ) else 1_0_0_0 @torch.no_grad() def __call__( self :Tuple ,__lowercase :int = 1 ,__lowercase :str = None ,__lowercase :np.ndarray = None ,__lowercase :int = 0 ,__lowercase :int = 0 ,__lowercase :int = None ,__lowercase :torch.Generator = None ,__lowercase :float = 0 ,__lowercase :float = 0 ,__lowercase :torch.Generator = None ,__lowercase :float = 0 ,__lowercase :torch.Tensor = None ,__lowercase :torch.Tensor = None ,__lowercase :Union[str, Any]=True ,): snake_case__ : Union[str, Any] = steps or self.get_default_steps() self.scheduler.set_timesteps(UpperCAmelCase__ ) snake_case__ : List[str] = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: snake_case__ : str = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: snake_case__ : Optional[Any] = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) ,generator=UpperCAmelCase__ ,device=self.device ,) snake_case__ : List[Any] = noise snake_case__ : int = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(UpperCAmelCase__ ,UpperCAmelCase__ ) snake_case__ : Optional[Any] = self.mel.audio_slice_to_image(UpperCAmelCase__ ) snake_case__ : Tuple = np.frombuffer(input_image.tobytes() ,dtype='''uint8''' ).reshape( (input_image.height, input_image.width) ) snake_case__ : Optional[int] = (input_image / 2_5_5) * 2 - 1 snake_case__ : List[str] = torch.tensor(input_image[np.newaxis, :, :] ,dtype=torch.float ).to(self.device ) if self.vqvae is not None: snake_case__ : int = self.vqvae.encode(torch.unsqueeze(UpperCAmelCase__ ,0 ) ).latent_dist.sample( generator=UpperCAmelCase__ )[0] snake_case__ : Tuple = self.vqvae.config.scaling_factor * input_images if start_step > 0: snake_case__ : int = self.scheduler.add_noise(UpperCAmelCase__ ,UpperCAmelCase__ ,self.scheduler.timesteps[start_step - 1] ) snake_case__ : Any = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) snake_case__ : int = int(mask_start_secs * pixels_per_second ) snake_case__ : Optional[Any] = int(mask_end_secs * pixels_per_second ) snake_case__ : Optional[Any] = self.scheduler.add_noise(UpperCAmelCase__ ,UpperCAmelCase__ ,torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet ,UpperCAmelCase__ ): snake_case__ : Any = self.unet(UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ )['''sample'''] else: snake_case__ : str = self.unet(UpperCAmelCase__ ,UpperCAmelCase__ )['''sample'''] if isinstance(self.scheduler ,UpperCAmelCase__ ): snake_case__ : Dict = self.scheduler.step( model_output=UpperCAmelCase__ ,timestep=UpperCAmelCase__ ,sample=UpperCAmelCase__ ,eta=UpperCAmelCase__ ,generator=UpperCAmelCase__ ,)['''prev_sample'''] else: snake_case__ : List[str] = self.scheduler.step( model_output=UpperCAmelCase__ ,timestep=UpperCAmelCase__ ,sample=UpperCAmelCase__ ,generator=UpperCAmelCase__ ,)['''prev_sample'''] if mask is not None: if mask_start > 0: snake_case__ : List[Any] = mask[:, step, :, :mask_start] if mask_end > 0: snake_case__ : Optional[int] = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance snake_case__ : Any = 1 / self.vqvae.config.scaling_factor * images snake_case__ : Any = self.vqvae.decode(UpperCAmelCase__ )['''sample'''] snake_case__ : List[str] = (images / 2 + 0.5).clamp(0 ,1 ) snake_case__ : str = images.cpu().permute(0 ,2 ,3 ,1 ).numpy() snake_case__ : Tuple = (images * 2_5_5).round().astype('''uint8''' ) snake_case__ : Any = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(UpperCAmelCase__ ,mode='''RGB''' ).convert('''L''' ) for _ in images) ) snake_case__ : Dict = [self.mel.image_to_audio(UpperCAmelCase__ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(UpperCAmelCase__ )[:, np.newaxis, :] ) ,**ImagePipelineOutput(UpperCAmelCase__ ) ) @torch.no_grad() def __lowerCamelCase ( self :Optional[Any] ,__lowercase :List[Image.Image] ,__lowercase :int = 5_0 ): assert isinstance(self.scheduler ,UpperCAmelCase__ ) self.scheduler.set_timesteps(UpperCAmelCase__ ) snake_case__ : int = np.array( [np.frombuffer(image.tobytes() ,dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] ) snake_case__ : str = (sample / 2_5_5) * 2 - 1 snake_case__ : int = torch.Tensor(UpperCAmelCase__ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps ,(0,) ) ): snake_case__ : Union[str, Any] = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps snake_case__ : Tuple = self.scheduler.alphas_cumprod[t] snake_case__ : Any = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) snake_case__ : Dict = 1 - alpha_prod_t snake_case__ : List[Any] = self.unet(UpperCAmelCase__ ,UpperCAmelCase__ )['''sample'''] snake_case__ : Optional[int] = (1 - alpha_prod_t_prev) ** 0.5 * model_output snake_case__ : Tuple = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) snake_case__ : Optional[Any] = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def __lowerCamelCase ( __lowercase :torch.Tensor ,__lowercase :torch.Tensor ,__lowercase :float ): snake_case__ : Optional[int] = acos(torch.dot(torch.flatten(UpperCAmelCase__ ) ,torch.flatten(UpperCAmelCase__ ) ) / torch.norm(UpperCAmelCase__ ) / torch.norm(UpperCAmelCase__ ) ) return sin((1 - alpha) * theta ) * xa / sin(UpperCAmelCase__ ) + sin(alpha * theta ) * xa / sin(UpperCAmelCase__ )
230
import os import pytest from transformers.dynamic_module_utils import get_imports _lowerCamelCase : Any = """ import os """ _lowerCamelCase : Optional[int] = """ def foo(): import os return False """ _lowerCamelCase : List[Any] = """ def foo(): def bar(): if True: import os return False return bar() """ _lowerCamelCase : List[Any] = """ import os try: import bar except ImportError: raise ValueError() """ _lowerCamelCase : Union[str, Any] = """ import os def foo(): try: import bar except ImportError: raise ValueError() """ _lowerCamelCase : List[Any] = """ import os try: import bar except (ImportError, AttributeError): raise ValueError() """ _lowerCamelCase : List[Any] = """ import os try: import bar except ImportError as e: raise ValueError() """ _lowerCamelCase : str = """ import os try: import bar except: raise ValueError() """ _lowerCamelCase : Optional[Any] = """ import os try: import bar import baz except ImportError: raise ValueError() """ _lowerCamelCase : Any = """ import os try: import bar import baz except ImportError: x = 1 raise ValueError() """ _lowerCamelCase : Dict = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" A__ = os.path.join(lowercase_ , '''test_file.py''' ) with open(lowercase_ , '''w''' ) as _tmp_file: _tmp_file.write(lowercase_ ) A__ = get_imports(lowercase_ ) assert parsed_imports == ["os"]
14
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A : str = { """configuration_vision_text_dual_encoder""": ["""VisionTextDualEncoderConfig"""], """processing_vision_text_dual_encoder""": ["""VisionTextDualEncoderProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Any = ["""VisionTextDualEncoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Dict = ["""FlaxVisionTextDualEncoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = ["""TFVisionTextDualEncoderModel"""] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys A : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure)
57
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" return int(input_a == input_a == 0 ) def SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" print('''Truth Table of NOR Gate:''' ) print('''| Input 1 | Input 2 | Output |''' ) print(f"""| 0 | 0 | {nor_gate(0 , 0 )} |""" ) print(f"""| 0 | 1 | {nor_gate(0 , 1 )} |""" ) print(f"""| 1 | 0 | {nor_gate(1 , 0 )} |""" ) print(f"""| 1 | 1 | {nor_gate(1 , 1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
14
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : Union[str, Any] = { """configuration_clap""": [ """CLAP_PRETRAINED_MODEL_ARCHIVE_LIST""", """ClapAudioConfig""", """ClapConfig""", """ClapTextConfig""", ], """processing_clap""": ["""ClapProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Tuple = [ """CLAP_PRETRAINED_MODEL_ARCHIVE_LIST""", """ClapModel""", """ClapPreTrainedModel""", """ClapTextModel""", """ClapTextModelWithProjection""", """ClapAudioModel""", """ClapAudioModelWithProjection""", ] A_ : str = ["""ClapFeatureExtractor"""] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys A_ : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
165
import os import sys import unittest _lowerCamelCase : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) _lowerCamelCase : Any = os.path.join("""tests""", """models""", """bert""", """test_modeling_bert.py""") _lowerCamelCase : str = os.path.join("""tests""", """models""", """blip""", """test_modeling_blip.py""") class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : Tuple) ->Tuple: '''simple docstring''' A__ = get_test_to_tester_mapping(UpperCAmelCase__) A__ = get_test_to_tester_mapping(UpperCAmelCase__) A__ = {'''BertModelTest''': '''BertModelTester'''} A__ = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Tuple) ->List[Any]: '''simple docstring''' A__ = get_model_to_test_mapping(UpperCAmelCase__) A__ = get_model_to_test_mapping(UpperCAmelCase__) A__ = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } A__ = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->str: '''simple docstring''' A__ = get_model_to_tester_mapping(UpperCAmelCase__) A__ = get_model_to_tester_mapping(UpperCAmelCase__) A__ = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } A__ = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
14
0
from random import shuffle import tensorflow as tf from numpy import array def lowerCAmelCase ( _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] ): """simple docstring""" UpperCAmelCase__ = int(lowercase_ ) assert noofclusters < len(lowercase_ ) # Find out the dimensionality UpperCAmelCase__ = len(vectors[0] ) # Will help select random centroids from among the available vectors UpperCAmelCase__ = list(range(len(lowercase_ ) ) ) shuffle(lowercase_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. UpperCAmelCase__ = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION UpperCAmelCase__ = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points UpperCAmelCase__ = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values UpperCAmelCase__ = tf.placeholder("float64" , [dim] ) UpperCAmelCase__ = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) UpperCAmelCase__ = [tf.Variable(0 ) for i in range(len(lowercase_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value UpperCAmelCase__ = tf.placeholder("int32" ) UpperCAmelCase__ = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input UpperCAmelCase__ = tf.placeholder("float" , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors UpperCAmelCase__ = tf.reduce_mean(lowercase_ , 0 ) ##Node for computing Euclidean distances # Placeholders for input UpperCAmelCase__ = tf.placeholder("float" , [dim] ) UpperCAmelCase__ = tf.placeholder("float" , [dim] ) UpperCAmelCase__ = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase_ , lowercase_ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input UpperCAmelCase__ = tf.placeholder("float" , [noofclusters] ) UpperCAmelCase__ = tf.argmin(lowercase_ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. UpperCAmelCase__ = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. UpperCAmelCase__ = 100 for _ in range(lowercase_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase_ ) ): UpperCAmelCase__ = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. UpperCAmelCase__ = [ sess.run(lowercase_ , feed_dict={va: vect, va: sess.run(lowercase_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input UpperCAmelCase__ = sess.run( lowercase_ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase_ ): # Collect all the vectors assigned to this cluster UpperCAmelCase__ = [ vectors[i] for i in range(len(lowercase_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location UpperCAmelCase__ = sess.run( lowercase_ , feed_dict={mean_input: array(lowercase_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments UpperCAmelCase__ = sess.run(lowercase_ ) UpperCAmelCase__ = sess.run(lowercase_ ) return centroids, assignments
169
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class UpperCamelCase_ : '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int = 13 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : Optional[Any]=[16, 32, 64, 128] , UpperCAmelCase__ : int = 7 , UpperCAmelCase__ : int = 4 , UpperCAmelCase__ : int = 37 , UpperCAmelCase__ : str = "gelu" , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : int = 10 , UpperCAmelCase__ : float = 0.02 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : List[int] = [2, 2, 2, 2] , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 2 , ) ->List[Any]: '''simple docstring''' A__ = parent A__ = batch_size A__ = image_size A__ = patch_size A__ = num_channels A__ = is_training A__ = use_labels A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = type_sequence_label_size A__ = initializer_range A__ = encoder_stride A__ = num_attention_outputs A__ = embed_dim A__ = embed_dim + 1 A__ = resolution A__ = depths A__ = hidden_sizes A__ = dim A__ = mlp_expansion_ratio def SCREAMING_SNAKE_CASE ( self : List[Any]) ->str: '''simple docstring''' A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) A__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : int) ->str: '''simple docstring''' return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict) ->Dict: '''simple docstring''' A__ = TFEfficientFormerModel(config=UpperCAmelCase__) A__ = model(UpperCAmelCase__ , training=UpperCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str) ->Union[str, Any]: '''simple docstring''' A__ = self.type_sequence_label_size A__ = TFEfficientFormerForImageClassification(UpperCAmelCase__) A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__ , training=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images A__ = 1 A__ = TFEfficientFormerForImageClassification(UpperCAmelCase__) A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def SCREAMING_SNAKE_CASE ( self : int) ->List[str]: '''simple docstring''' A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) UpperCAmelCase__ = ( { '''feature-extraction''': TFEfficientFormerModel, '''image-classification''': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[str]: '''simple docstring''' A__ = TFEfficientFormerModelTester(self) A__ = ConfigTester( self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=37) def SCREAMING_SNAKE_CASE ( self : int) ->Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''EfficientFormer does not use inputs_embeds''') def SCREAMING_SNAKE_CASE ( self : List[str]) ->Dict: '''simple docstring''' pass @unittest.skip(reason='''EfficientFormer does not support input and output embeddings''') def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[Any]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(UpperCAmelCase__) A__ = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str) ->Any: '''simple docstring''' def check_hidden_states_output(UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict): A__ = model_class(UpperCAmelCase__) A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__) A__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A__ = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__) if hasattr(self.model_tester , '''encoder_seq_length'''): A__ = self.model_tester.encoder_seq_length if hasattr(self.model_tester , '''chunk_length''') and self.model_tester.chunk_length > 1: A__ = seq_length * self.model_tester.chunk_length else: A__ = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: A__ = outputs.decoder_hidden_states self.asseretIsInstance(UpperCAmelCase__ , (list, tuple)) self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__) A__ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''decoder_seq_length''' , UpperCAmelCase__) self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [decoder_seq_length, self.model_tester.hidden_size] , ) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict=False) ->int: '''simple docstring''' A__ = super()._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__) @unittest.skip(reason='''EfficientFormer does not implement masked image modeling yet''') def SCREAMING_SNAKE_CASE ( self : str) ->str: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any) ->Tuple: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__) @slow def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]: '''simple docstring''' for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFEfficientFormerModel.from_pretrained(UpperCAmelCase__) self.assertIsNotNone(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any) ->str: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True A__ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''encoder_seq_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''key_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''chunk_length''' , UpperCAmelCase__) if chunk_length is not None and hasattr(self.model_tester , '''num_hashes'''): A__ = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: A__ = True A__ = False A__ = True A__ = model_class(UpperCAmelCase__) A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__) A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase__) , self.model_tester.num_attention_outputs) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ = True A__ = model_class(UpperCAmelCase__) A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__) A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase__) , self.model_tester.num_attention_outputs) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:]) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[Any]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model A__ = model_class(UpperCAmelCase__) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes A__ = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=UpperCAmelCase__) for key, val in model.input_signature.items() if key in model.dummy_inputs } A__ = model(UpperCAmelCase__) self.assertTrue(outputs_dict is not None) def SCREAMING_SNAKE_CASE ( ) -> Any: """simple docstring""" A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: '''simple docstring''' return ( EfficientFormerImageProcessor.from_pretrained('''snap-research/efficientformer-l1-300''') if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any: '''simple docstring''' A__ = TFEfficientFormerForImageClassification.from_pretrained('''snap-research/efficientformer-l1-300''') A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''') # forward pass A__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__) # verify the logits A__ = tf.TensorShape((1, 1_000)) self.assertEqual(outputs.logits.shape , UpperCAmelCase__) A__ = tf.constant([-0.0555, 0.4825, -0.0852]) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4)) @slow def SCREAMING_SNAKE_CASE ( self : Dict) ->int: '''simple docstring''' A__ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( '''snap-research/efficientformer-l1-300''') A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''') # forward pass A__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__) # verify the logits A__ = tf.TensorShape((1, 1_000)) self.assertEqual(outputs.logits.shape , UpperCAmelCase__) A__ = tf.constant([-0.1312, 0.4353, -1.0499]) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4))
14
0
"""simple docstring""" import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument SCREAMING_SNAKE_CASE_ = { """/attention/""": """/0/SelfAttention/""", """/self_attention/""": """/0/SelfAttention/""", """/encoder_decoder_attention/""": """/1/EncDecAttention/""", """value""": """v""", """query""": """q""", """key""": """k""", """out""": """o""", """pre_self_attention_layer_norm""": """0/layer_norm""", """pre_cross_attention_layer_norm""": """1/layer_norm""", """pre_attention_layer_norm""": """0/layer_norm""", # previously 1, but seems wrong """token_embedder""": """shared""", """encoder_norm""": """final_layer_norm""", """decoder_norm""": """final_layer_norm""", """relpos_bias/rel_embedding""": """block/0/layer/0/SelfAttention/relative_attention_bias/weight""", """router/router_weights/w/""": """router/classifier/""", """roer/roer_weights/w/""": """router/classifier/""", """logits_dense""": """lm_head""", } def lowercase (_lowerCAmelCase ): __lowerCAmelCase = list(s_dict.keys() ) for key in keys: __lowerCAmelCase = r""".*/layers_(\d+)""" __lowerCAmelCase = key if re.match(lowercase_ , lowercase_ ): __lowerCAmelCase = re.sub(r"""layers_(\d+)""" , r"""block/\1/layer""" , lowercase_ ) __lowerCAmelCase = r"""(encoder|decoder)\/""" if re.match(lowercase_ , lowercase_ ): __lowerCAmelCase = re.match(lowercase_ , lowercase_ ).groups() if groups[0] == "encoder": __lowerCAmelCase = re.sub(r"""/mlp/""" , r"""/1/mlp/""" , lowercase_ ) __lowerCAmelCase = re.sub(r"""/pre_mlp_layer_norm/""" , r"""/1/layer_norm/""" , lowercase_ ) elif groups[0] == "decoder": __lowerCAmelCase = re.sub(r"""/mlp/""" , r"""/2/mlp/""" , lowercase_ ) __lowerCAmelCase = re.sub(r"""/pre_mlp_layer_norm/""" , r"""/2/layer_norm/""" , lowercase_ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: __lowerCAmelCase = new_key.replace(lowercase_ , lowercase_ ) print(f"""{key} -> {new_key}""" ) __lowerCAmelCase = s_dict.pop(lowercase_ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: __lowerCAmelCase = s_dict[ """encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: __lowerCAmelCase = s_dict[ """decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: __lowerCAmelCase = s_dict[key].shape[0] __lowerCAmelCase = s_dict[key] for idx in range(lowercase_ ): __lowerCAmelCase = expert_weihts[idx] print(f"""{key} -> {key.replace("expert/" , "nested fstring" )}""" ) s_dict.pop(lowercase_ ) return s_dict SCREAMING_SNAKE_CASE_ = { """NUM_ENCODER_LAYERS""": """num_layers""", """NUM_DECODER_LAYERS""": """num_decoder_layers""", """NUM_HEADS""": """num_heads""", """HEAD_DIM""": """d_kv""", """EMBED_DIM""": """d_model""", """MLP_DIM""": """d_ff""", """NUM_SELECTED_EXPERTS""": """num_selected_experts""", """NUM_ENCODER_SPARSE_LAYERS""": """num_sparse_encoder_layers""", """NUM_DECODER_SPARSE_LAYERS""": """num_sparse_decoder_layers""", """dense.MlpBlock.activations""": """feed_forward_proj""", } def lowercase (_lowerCAmelCase , _lowerCAmelCase ): import regex as re with open(lowercase_ , """r""" ) as f: __lowerCAmelCase = f.read() __lowerCAmelCase = re.findall(r"""(.*) = ([0-9.]*)""" , lowercase_ ) __lowerCAmelCase = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": __lowerCAmelCase = float(lowercase_ ) if """.""" in value else int(lowercase_ ) __lowerCAmelCase = re.findall(r"""(.*activations) = \(\'(.*)\',\)""" , lowercase_ )[0] __lowerCAmelCase = str(activation[1] ) __lowerCAmelCase = num_experts __lowerCAmelCase = SwitchTransformersConfig(**lowercase_ ) return config def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase="./" , _lowerCAmelCase=8 ): print(f"""Loading flax weights from : {flax_checkpoint_path}""" ) __lowerCAmelCase = checkpoints.load_tax_checkpoint(lowercase_ ) if gin_file is not None: __lowerCAmelCase = convert_gin_to_config(lowercase_ , lowercase_ ) else: __lowerCAmelCase = SwitchTransformersConfig.from_pretrained(lowercase_ ) __lowerCAmelCase = SwitchTransformersForConditionalGeneration(lowercase_ ) __lowerCAmelCase = flax_params["""target"""] __lowerCAmelCase = flatten_dict(lowercase_ , sep="""/""" ) __lowerCAmelCase = rename_keys(lowercase_ ) __lowerCAmelCase = unflatten_dict(lowercase_ , sep="""/""" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(lowercase_ , lowercase_ ) print(f"""Save PyTorch model to {pytorch_dump_path}""" ) pt_model.save_pretrained(lowercase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
301
from __future__ import annotations def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> tuple[float, list[float]]: """simple docstring""" A__ = list(range(len(lowercase_ ) ) ) A__ = [v / w for v, w in zip(lowercase_ , lowercase_ )] index.sort(key=lambda lowercase_ : ratio[i] , reverse=lowercase_ ) A__ = 0 A__ = [0] * len(lowercase_ ) for i in index: if weight[i] <= capacity: A__ = 1 max_value += value[i] capacity -= weight[i] else: A__ = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
14
0
_A = 65_521 def lowerCamelCase__ ( a__ : Any ) -> int: UpperCamelCase_ = 1 UpperCamelCase_ = 0 for plain_chr in plain_text: UpperCamelCase_ = (a + ord(lowercase_ )) % MOD_ADLER UpperCamelCase_ = (b + a) % MOD_ADLER return (b << 16) | a
122
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[Any]: """simple docstring""" A__ = args.log_outputs A__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric A__ = load_metric('''wer''' ) A__ = load_metric('''cer''' ) # compute metrics A__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) A__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results A__ = f"""WER: {wer_result}\nCER: {cer_result}""" print(lowercase_ ) with open(f"""{dataset_id}_eval_results.txt""" , '''w''' ) as f: f.write(lowercase_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: A__ = f"""log_{dataset_id}_predictions.txt""" A__ = f"""log_{dataset_id}_targets.txt""" with open(lowercase_ , '''w''' ) as p, open(lowercase_ , '''w''' ) as t: # mapping function to write output def write_to_file(lowercase_ , lowercase_ ): p.write(f"""{i}""" + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(f"""{i}""" + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(lowercase_ , with_indices=lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: """simple docstring""" A__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training A__ = re.sub(lowercase_ , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! A__ = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: A__ = ''' '''.join(text.split(lowercase_ ) ) return text def SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: """simple docstring""" A__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowercase_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor A__ = AutoFeatureExtractor.from_pretrained(args.model_id ) A__ = feature_extractor.sampling_rate # resample audio A__ = dataset.cast_column('''audio''' , Audio(sampling_rate=lowercase_ ) ) # load eval pipeline if args.device is None: A__ = 0 if torch.cuda.is_available() else -1 A__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(lowercase_ ): A__ = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) A__ = prediction['''text'''] A__ = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples A__ = dataset.map(lowercase_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(lowercase_ , lowercase_ ) if __name__ == "__main__": _lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) _lowerCamelCase : str = parser.parse_args() main(args)
14
0
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class a ( UpperCAmelCase__ ): UpperCAmelCase_ : Union[str, Any] =42 class a ( UpperCAmelCase__, UpperCAmelCase__ ): @register_to_config def __init__( self , _lowerCamelCase = 3_2 , _lowerCamelCase = 6_4 , _lowerCamelCase = 2_0 , _lowerCamelCase = 7_6_8 , _lowerCamelCase=7_7 , _lowerCamelCase=4 , _lowerCamelCase = 0.0 , _lowerCamelCase = "silu" , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "linear" , _lowerCamelCase = "prd" , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ): super().__init__() lowercase = num_attention_heads lowercase = attention_head_dim lowercase = num_attention_heads * attention_head_dim lowercase = additional_embeddings lowercase = time_embed_dim or inner_dim lowercase = embedding_proj_dim or embedding_dim lowercase = clip_embed_dim or embedding_dim lowercase = Timesteps(UpperCAmelCase__ , UpperCAmelCase__ , 0 ) lowercase = TimestepEmbedding(UpperCAmelCase__ , UpperCAmelCase__ , out_dim=UpperCAmelCase__ , act_fn=UpperCAmelCase__ ) lowercase = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__ ) if embedding_proj_norm_type is None: lowercase = None elif embedding_proj_norm_type == "layer": lowercase = nn.LayerNorm(UpperCAmelCase__ ) else: raise ValueError(F'unsupported embedding_proj_norm_type: {embedding_proj_norm_type}' ) lowercase = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__ ) if encoder_hid_proj_type is None: lowercase = None elif encoder_hid_proj_type == "linear": lowercase = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__ ) else: raise ValueError(F'unsupported encoder_hid_proj_type: {encoder_hid_proj_type}' ) lowercase = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , UpperCAmelCase__ ) ) if added_emb_type == "prd": lowercase = nn.Parameter(torch.zeros(1 , 1 , UpperCAmelCase__ ) ) elif added_emb_type is None: lowercase = None else: raise ValueError( F'`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.' ) lowercase = nn.ModuleList( [ BasicTransformerBlock( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , dropout=UpperCAmelCase__ , activation_fn='gelu' , attention_bias=UpperCAmelCase__ , ) for d in range(UpperCAmelCase__ ) ] ) if norm_in_type == "layer": lowercase = nn.LayerNorm(UpperCAmelCase__ ) elif norm_in_type is None: lowercase = None else: raise ValueError(F'Unsupported norm_in_type: {norm_in_type}.' ) lowercase = nn.LayerNorm(UpperCAmelCase__ ) lowercase = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_0_0_0_0.0 ) causal_attention_mask.triu_(1 ) lowercase = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , UpperCAmelCase__ , persistent=UpperCAmelCase__ ) lowercase = nn.Parameter(torch.zeros(1 , UpperCAmelCase__ ) ) lowercase = nn.Parameter(torch.zeros(1 , UpperCAmelCase__ ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCamelCase_ ( self ): lowercase = {} def fn_recursive_add_processors(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if hasattr(UpperCAmelCase__ , 'set_processor' ): lowercase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'{name}.{sub_name}' , UpperCAmelCase__ , UpperCAmelCase__ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return processors def UpperCamelCase_ ( self , _lowerCamelCase ): lowercase = len(self.attn_processors.keys() ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and len(UpperCAmelCase__ ) != count: raise ValueError( F'A dict of processors was passed, but the number of processors {len(UpperCAmelCase__ )} does not match the' F' number of attention layers: {count}. Please make sure to pass {count} processor classes.' ) def fn_recursive_attn_processor(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if hasattr(UpperCAmelCase__ , 'set_processor' ): if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): module.set_processor(UpperCAmelCase__ ) else: module.set_processor(processor.pop(F'{name}.processor' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'{name}.{sub_name}' , UpperCAmelCase__ , UpperCAmelCase__ ) for name, module in self.named_children(): fn_recursive_attn_processor(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def UpperCamelCase_ ( self ): self.set_attn_processor(AttnProcessor() ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = True , ): lowercase = hidden_states.shape[0] lowercase = timestep if not torch.is_tensor(UpperCAmelCase__ ): lowercase = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(UpperCAmelCase__ ) and len(timesteps.shape ) == 0: lowercase = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowercase = timesteps * torch.ones(UpperCAmelCase__ , dtype=timesteps.dtype , device=timesteps.device ) lowercase = self.time_proj(UpperCAmelCase__ ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. lowercase = timesteps_projected.to(dtype=self.dtype ) lowercase = self.time_embedding(UpperCAmelCase__ ) if self.embedding_proj_norm is not None: lowercase = self.embedding_proj_norm(UpperCAmelCase__ ) lowercase = self.embedding_proj(UpperCAmelCase__ ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: lowercase = self.encoder_hidden_states_proj(UpperCAmelCase__ ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) lowercase = self.proj_in(UpperCAmelCase__ ) lowercase = self.positional_embedding.to(hidden_states.dtype ) lowercase = [] lowercase = 0 if encoder_hidden_states is not None: additional_embeds.append(UpperCAmelCase__ ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: lowercase = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: lowercase = hidden_states[:, None, :] lowercase = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: lowercase = self.prd_embedding.to(hidden_states.dtype ).expand(UpperCAmelCase__ , -1 , -1 ) additional_embeds.append(UpperCAmelCase__ ) lowercase = torch.cat( UpperCAmelCase__ , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens lowercase = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: lowercase = F.pad( UpperCAmelCase__ , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) lowercase = hidden_states + positional_embeddings if attention_mask is not None: lowercase = (1 - attention_mask.to(hidden_states.dtype )) * -1_0_0_0_0.0 lowercase = F.pad(UpperCAmelCase__ , (0, self.additional_embeddings) , value=0.0 ) lowercase = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) lowercase = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: lowercase = self.norm_in(UpperCAmelCase__ ) for block in self.transformer_blocks: lowercase = block(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) lowercase = self.norm_out(UpperCAmelCase__ ) if self.prd_embedding is not None: lowercase = hidden_states[:, -1] else: lowercase = hidden_states[:, additional_embeddings_len:] lowercase = self.proj_to_clip_embeddings(UpperCAmelCase__ ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=UpperCAmelCase__ ) def UpperCamelCase_ ( self , _lowerCamelCase ): lowercase = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
220
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowerCamelCase : int = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Tuple = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys _lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
0
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class lowercase__ ( UpperCAmelCase__, UpperCAmelCase__ ): @register_to_config def __init__( self : Dict , snake_case__ : int = 768 , ): super().__init__() lowerCamelCase_ : Union[str, Any] =nn.Parameter(torch.zeros(1 , UpperCAmelCase__ ) ) lowerCamelCase_ : Any =nn.Parameter(torch.ones(1 , UpperCAmelCase__ ) ) def UpperCAmelCase__ ( self : Union[str, Any] , snake_case__ : Optional[Union[str, torch.device]] = None , snake_case__ : Optional[torch.dtype] = None , ): lowerCamelCase_ : Optional[Any] =nn.Parameter(self.mean.to(UpperCAmelCase__ ).to(UpperCAmelCase__ ) ) lowerCamelCase_ : str =nn.Parameter(self.std.to(UpperCAmelCase__ ).to(UpperCAmelCase__ ) ) return self def UpperCAmelCase__ ( self : Tuple , snake_case__ : Tuple ): lowerCamelCase_ : List[str] =(embeds - self.mean) * 1.0 / self.std return embeds def UpperCAmelCase__ ( self : str , snake_case__ : Union[str, Any] ): lowerCamelCase_ : Tuple =(embeds * self.std) + self.mean return embeds
144
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : List[str] = {"""configuration_vit_msn""": ["""VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMSNConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = [ """VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMSNModel""", """ViTMSNForImageClassification""", """ViTMSNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys _lowerCamelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCamelCase : int = { """configuration_owlvit""": [ """OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """OwlViTConfig""", """OwlViTOnnxConfig""", """OwlViTTextConfig""", """OwlViTVisionConfig""", ], """processing_owlvit""": ["""OwlViTProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = ["""OwlViTFeatureExtractor"""] __UpperCamelCase : str = ["""OwlViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = [ """OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """OwlViTModel""", """OwlViTPreTrainedModel""", """OwlViTTextModel""", """OwlViTVisionModel""", """OwlViTForObjectDetection""", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
146
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> "list[int]": """simple docstring""" if upper_limit < 0: raise ValueError('''Limit for the Catalan sequence must be ≥ 0''' ) A__ = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 A__ = 1 if upper_limit > 0: A__ = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(lowercase_ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""") print("""\n*** Enter -1 at any time to quit ***""") print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""") try: while True: _lowerCamelCase : List[Any] = int(input().strip()) if N < 0: print("""\n********* Goodbye!! ************""") break else: print(F'''The Catalan numbers from 0 through {N} are:''') print(catalan_numbers(N)) print("""Try another upper limit for the sequence: """, end="""""") except (NameError, ValueError): print("""\n********* Invalid input, goodbye! ************\n""") import doctest doctest.testmod()
14
0
'''simple docstring''' import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class _A ( UpperCAmelCase__ ): def __init__( self , __UpperCAmelCase = "▁" , __UpperCAmelCase = True , __UpperCAmelCase = "<unk>" , __UpperCAmelCase = "</s>" , __UpperCAmelCase = "<pad>" , ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : int = { """pad""": {"""id""": 0, """token""": pad_token}, """eos""": {"""id""": 1, """token""": eos_token}, """unk""": {"""id""": 2, """token""": unk_token}, } __UpperCAmelCase : Optional[Any] = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): __UpperCAmelCase : Optional[Any] = token_dict["""token"""] __UpperCAmelCase : List[str] = Tokenizer(Unigram() ) __UpperCAmelCase : Optional[int] = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(""" {2,}""" ) , """ """ ), normalizers.Lowercase(), ] ) __UpperCAmelCase : List[Any] = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ ), pre_tokenizers.Digits(individual_digits=UpperCAmelCase__ ), pre_tokenizers.Punctuation(), ] ) __UpperCAmelCase : int = decoders.Metaspace(replacement=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ ) __UpperCAmelCase : Optional[Any] = TemplateProcessing( single=f'$A {self.special_tokens["eos"]["token"]}' , special_tokens=[(self.special_tokens["""eos"""]["""token"""], self.special_tokens["""eos"""]["""id"""])] , ) __UpperCAmelCase : int = { """model""": """SentencePieceUnigram""", """replacement""": replacement, """add_prefix_space""": add_prefix_space, } super().__init__(UpperCAmelCase__ , UpperCAmelCase__ ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase = 8_000 , __UpperCAmelCase = True , ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Dict = trainers.UnigramTrainer( vocab_size=UpperCAmelCase__ , special_tokens=self.special_tokens_list , show_progress=UpperCAmelCase__ , ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): __UpperCAmelCase : int = [files] self._tokenizer.train(UpperCAmelCase__ , trainer=UpperCAmelCase__ ) self.add_unk_id() def __A ( self , __UpperCAmelCase , __UpperCAmelCase = 8_000 , __UpperCAmelCase = True , ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = trainers.UnigramTrainer( vocab_size=UpperCAmelCase__ , special_tokens=self.special_tokens_list , show_progress=UpperCAmelCase__ , ) self._tokenizer.train_from_iterator(UpperCAmelCase__ , trainer=UpperCAmelCase__ ) self.add_unk_id() def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = json.loads(self._tokenizer.to_str() ) __UpperCAmelCase : Optional[Any] = self.special_tokens["""unk"""]["""id"""] __UpperCAmelCase : str = Tokenizer.from_str(json.dumps(UpperCAmelCase__ ) )
254
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict: """simple docstring""" A__ = args.pruning_method A__ = args.threshold A__ = args.model_name_or_path.rstrip('''/''' ) A__ = args.target_model_path print(f"""Load fine-pruned model from {model_name_or_path}""" ) A__ = torch.load(os.path.join(lowercase_ , '''pytorch_model.bin''' ) ) A__ = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: A__ = tensor print(f"""Copied layer {name}""" ) elif "classifier" in name or "qa_output" in name: A__ = tensor print(f"""Copied layer {name}""" ) elif "bias" in name: A__ = tensor print(f"""Copied layer {name}""" ) else: if pruning_method == "magnitude": A__ = MagnitudeBinarizer.apply(inputs=lowercase_ , threshold=lowercase_ ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "topK": if "mask_scores" in name: continue A__ = name[:-6] A__ = model[f"""{prefix_}mask_scores"""] A__ = TopKBinarizer.apply(lowercase_ , lowercase_ ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue A__ = name[:-6] A__ = model[f"""{prefix_}mask_scores"""] A__ = ThresholdBinarizer.apply(lowercase_ , lowercase_ , lowercase_ ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "l0": if "mask_scores" in name: continue A__ = name[:-6] A__ = model[f"""{prefix_}mask_scores"""] A__ , A__ = -0.1, 1.1 A__ = torch.sigmoid(lowercase_ ) A__ = s * (r - l) + l A__ = s_bar.clamp(min=0.0 , max=1.0 ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) else: raise ValueError('''Unknown pruning method''' ) if target_model_path is None: A__ = os.path.join( os.path.dirname(lowercase_ ) , f"""bertarized_{os.path.basename(lowercase_ )}""" ) if not os.path.isdir(lowercase_ ): shutil.copytree(lowercase_ , lowercase_ ) print(f"""\nCreated folder {target_model_path}""" ) torch.save(lowercase_ , os.path.join(lowercase_ , '''pytorch_model.bin''' ) ) print('''\nPruned model saved! See you later!''' ) if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( """--pruning_method""", choices=["""l0""", """magnitude""", """topK""", """sigmoied_threshold"""], type=str, required=True, help=( """Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,""" """ sigmoied_threshold = Soft movement pruning)""" ), ) parser.add_argument( """--threshold""", type=float, required=False, help=( """For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.""" """For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.""" """Not needed for `l0`""" ), ) parser.add_argument( """--model_name_or_path""", type=str, required=True, help="""Folder containing the model that was previously fine-pruned""", ) parser.add_argument( """--target_model_path""", default=None, type=str, required=False, help="""Folder containing the model that was previously fine-pruned""", ) _lowerCamelCase : int = parser.parse_args() main(args)
14
0
"""simple docstring""" import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]: _a = 3 _a = 250 _a = ids_tensor((batch_size, length) , UpperCAmelCase__ ) _a = torch.ones((batch_size, length) , device=UpperCAmelCase__ , dtype=torch.float ) / length return input_ids, scores def _UpperCAmelCase ( self ) -> Dict: _a , _a = self._get_tensors(5 ) _a = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(UpperCAmelCase__ , UpperCAmelCase__ ) ) _a , _a = self._get_tensors(9 ) self.assertFalse(criteria(UpperCAmelCase__ , UpperCAmelCase__ ) ) _a , _a = self._get_tensors(10 ) self.assertTrue(criteria(UpperCAmelCase__ , UpperCAmelCase__ ) ) def _UpperCAmelCase ( self ) -> int: _a = MaxLengthCriteria(max_length=10 ) _a , _a = self._get_tensors(5 ) self.assertFalse(criteria(UpperCAmelCase__ , UpperCAmelCase__ ) ) _a , _a = self._get_tensors(9 ) self.assertFalse(criteria(UpperCAmelCase__ , UpperCAmelCase__ ) ) _a , _a = self._get_tensors(10 ) self.assertTrue(criteria(UpperCAmelCase__ , UpperCAmelCase__ ) ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) _a , _a = self._get_tensors(5 ) self.assertFalse(criteria(UpperCAmelCase__ , UpperCAmelCase__ ) ) _a , _a = self._get_tensors(9 ) self.assertFalse(criteria(UpperCAmelCase__ , UpperCAmelCase__ ) ) _a , _a = self._get_tensors(10 ) self.assertTrue(criteria(UpperCAmelCase__ , UpperCAmelCase__ ) ) _a = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def _UpperCAmelCase ( self ) -> Optional[int]: _a , _a = self._get_tensors(5 ) _a = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(UpperCAmelCase__ , UpperCAmelCase__ ) ) _a = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(UpperCAmelCase__ , UpperCAmelCase__ ) ) def _UpperCAmelCase ( self ) -> Dict: validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(UpperCAmelCase__ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) _a = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(UpperCAmelCase__ ) , 1 )
320
_lowerCamelCase : Optional[int] = 65521 def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: """simple docstring""" A__ = 1 A__ = 0 for plain_chr in plain_text: A__ = (a + ord(lowercase_ )) % MOD_ADLER A__ = (b + a) % MOD_ADLER return (b << 16) | a
14
0
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class a ( UpperCAmelCase__ ): __lowerCAmelCase : int = ["""image_processor""", """tokenizer"""] __lowerCAmelCase : int = """LayoutLMv3ImageProcessor""" __lowerCAmelCase : Tuple = ("""LayoutLMv3Tokenizer""", """LayoutLMv3TokenizerFast""") def __init__( self :Optional[int] ,__lowercase :int=None ,__lowercase :List[str]=None ,**__lowercase :str ): snake_case__ : Tuple = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' ,UpperCAmelCase__ ,) snake_case__ : int = kwargs.pop('''feature_extractor''' ) snake_case__ : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCAmelCase__ ,UpperCAmelCase__ ) def __call__( self :Any ,__lowercase :Dict ,__lowercase :Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None ,__lowercase :Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None ,__lowercase :Union[List[List[int]], List[List[List[int]]]] = None ,__lowercase :Optional[Union[List[int], List[List[int]]]] = None ,__lowercase :bool = True ,__lowercase :Union[bool, str, PaddingStrategy] = False ,__lowercase :Union[bool, str, TruncationStrategy] = None ,__lowercase :Optional[int] = None ,__lowercase :int = 0 ,__lowercase :Optional[int] = None ,__lowercase :Optional[bool] = None ,__lowercase :Optional[bool] = None ,__lowercase :bool = False ,__lowercase :bool = False ,__lowercase :bool = False ,__lowercase :bool = False ,__lowercase :bool = True ,__lowercase :Optional[Union[str, TensorType]] = None ,**__lowercase :List[str] ,): if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) # first, apply the image processor snake_case__ : Tuple = self.image_processor(images=UpperCAmelCase__ ,return_tensors=UpperCAmelCase__ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase__ ,UpperCAmelCase__ ): snake_case__ : str = [text] # add batch dimension (as the image processor always adds a batch dimension) snake_case__ : int = features['''words'''] snake_case__ : int = self.tokenizer( text=text if text is not None else features['''words'''] ,text_pair=text_pair if text_pair is not None else None ,boxes=boxes if boxes is not None else features['''boxes'''] ,word_labels=UpperCAmelCase__ ,add_special_tokens=UpperCAmelCase__ ,padding=UpperCAmelCase__ ,truncation=UpperCAmelCase__ ,max_length=UpperCAmelCase__ ,stride=UpperCAmelCase__ ,pad_to_multiple_of=UpperCAmelCase__ ,return_token_type_ids=UpperCAmelCase__ ,return_attention_mask=UpperCAmelCase__ ,return_overflowing_tokens=UpperCAmelCase__ ,return_special_tokens_mask=UpperCAmelCase__ ,return_offsets_mapping=UpperCAmelCase__ ,return_length=UpperCAmelCase__ ,verbose=UpperCAmelCase__ ,return_tensors=UpperCAmelCase__ ,**UpperCAmelCase__ ,) # add pixel values snake_case__ : Union[str, Any] = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: snake_case__ : str = self.get_overflowing_images(UpperCAmelCase__ ,encoded_inputs['''overflow_to_sample_mapping'''] ) snake_case__ : Optional[Any] = images return encoded_inputs def __lowerCamelCase ( self :int ,__lowercase :Dict ,__lowercase :List[str] ): snake_case__ : Tuple = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' F""" {len(UpperCAmelCase__ )} and {len(UpperCAmelCase__ )}""" ) return images_with_overflow def __lowerCamelCase ( self :int ,*__lowercase :List[Any] ,**__lowercase :Dict ): return self.tokenizer.batch_decode(*UpperCAmelCase__ ,**UpperCAmelCase__ ) def __lowerCamelCase ( self :Dict ,*__lowercase :Optional[Any] ,**__lowercase :Optional[Any] ): return self.tokenizer.decode(*UpperCAmelCase__ ,**UpperCAmelCase__ ) @property def __lowerCamelCase ( self :Tuple ): return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def __lowerCamelCase ( self :int ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' ,UpperCAmelCase__ ,) return self.image_processor_class @property def __lowerCamelCase ( self :Tuple ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' ,UpperCAmelCase__ ,) return self.image_processor
230
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : Tuple = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCamelCase : Union[str, Any] = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCamelCase : str = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCamelCase : str = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCamelCase : Any = { """facebook/dpr-ctx_encoder-single-nq-base""": 512, """facebook/dpr-ctx_encoder-multiset-base""": 512, } _lowerCamelCase : List[str] = { """facebook/dpr-question_encoder-single-nq-base""": 512, """facebook/dpr-question_encoder-multiset-base""": 512, } _lowerCamelCase : Tuple = { """facebook/dpr-reader-single-nq-base""": 512, """facebook/dpr-reader-multiset-base""": 512, } _lowerCamelCase : Optional[Any] = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCamelCase : Optional[int] = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCamelCase : Optional[Any] = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = DPRContextEncoderTokenizer class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = DPRQuestionEncoderTokenizer _lowerCamelCase : int = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) _lowerCamelCase : Any = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) _lowerCamelCase : Dict = r""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(UpperCAmelCase__ ) class UpperCamelCase_ : '''simple docstring''' def __call__( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Union[bool, str] = False , UpperCAmelCase__ : Union[bool, str] = False , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : Optional[bool] = None , **UpperCAmelCase__ : Optional[int] , ) ->BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , ) elif titles is None or texts is None: A__ = titles if texts is None else texts return super().__call__( UpperCAmelCase__ , UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , ) A__ = titles if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [titles] A__ = texts if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [texts] A__ = len(UpperCAmelCase__) A__ = questions if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [questions] * n_passages assert len(UpperCAmelCase__) == len( UpperCAmelCase__), f"""There should be as many titles than texts but got {len(UpperCAmelCase__)} titles and {len(UpperCAmelCase__)} texts.""" A__ = super().__call__(UpperCAmelCase__ , UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__)['''input_ids'''] A__ = super().__call__(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__)['''input_ids'''] A__ = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(UpperCAmelCase__ , UpperCAmelCase__) ] } if return_attention_mask is not False: A__ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids]) A__ = attention_mask return self.pad(UpperCAmelCase__ , padding=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : BatchEncoding , UpperCAmelCase__ : DPRReaderOutput , UpperCAmelCase__ : int = 16 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 4 , ) ->List[DPRSpanPrediction]: '''simple docstring''' A__ = reader_input['''input_ids'''] A__ , A__ , A__ = reader_output[:3] A__ = len(UpperCAmelCase__) A__ = sorted(range(UpperCAmelCase__) , reverse=UpperCAmelCase__ , key=relevance_logits.__getitem__) A__ = [] for doc_id in sorted_docs: A__ = list(input_ids[doc_id]) # assuming question & title information is at the beginning of the sequence A__ = sequence_ids.index(self.sep_token_id , 2) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: A__ = sequence_ids.index(self.pad_token_id) else: A__ = len(UpperCAmelCase__) A__ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=UpperCAmelCase__ , top_spans=UpperCAmelCase__ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=UpperCAmelCase__ , start_index=UpperCAmelCase__ , end_index=UpperCAmelCase__ , text=self.decode(sequence_ids[start_index : end_index + 1]) , )) if len(UpperCAmelCase__) >= num_spans: break return nbest_spans_predictions[:num_spans] def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , ) ->List[DPRSpanPrediction]: '''simple docstring''' A__ = [] for start_index, start_score in enumerate(UpperCAmelCase__): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]): scores.append(((start_index, start_index + answer_length), start_score + end_score)) A__ = sorted(UpperCAmelCase__ , key=lambda UpperCAmelCase__: x[1] , reverse=UpperCAmelCase__) A__ = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f"""Wrong span indices: [{start_index}:{end_index}]""" A__ = end_index - start_index + 1 assert length <= max_answer_length, f"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals): continue chosen_span_intervals.append((start_index, end_index)) if len(UpperCAmelCase__) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCAmelCase__ ) class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = READER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = READER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = ['''input_ids''', '''attention_mask'''] UpperCAmelCase__ = DPRReaderTokenizer
14
0
"""simple docstring""" import colorsys from PIL import Image # type: ignore def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = x __lowerCAmelCase = y for step in range(lowercase_ ): # noqa: B007 __lowerCAmelCase = a * a - b * b + x __lowerCAmelCase = 2 * a * b + y __lowerCAmelCase = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(lowercase_ , 1 , 1 ) ) def _lowerCamelCase ( _UpperCamelCase = 800 , _UpperCamelCase = 600 , _UpperCamelCase = -0.6 , _UpperCamelCase = 0 , _UpperCamelCase = 3.2 , _UpperCamelCase = 50 , _UpperCamelCase = True , ): '''simple docstring''' __lowerCAmelCase = Image.new("RGB" , (image_width, image_height) ) __lowerCAmelCase = img.load() # loop through the image-coordinates for image_x in range(lowercase_ ): for image_y in range(lowercase_ ): # determine the figure-coordinates based on the image-coordinates __lowerCAmelCase = figure_width / image_width * image_height __lowerCAmelCase = figure_center_x + (image_x / image_width - 0.5) * figure_width __lowerCAmelCase = figure_center_y + (image_y / image_height - 0.5) * figure_height __lowerCAmelCase = get_distance(lowercase_ , lowercase_ , lowercase_ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: __lowerCAmelCase = get_color_coded_rgb(lowercase_ ) else: __lowerCAmelCase = get_black_and_white_rgb(lowercase_ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure A : List[str] = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
57
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Any = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''encoder-decoder''' UpperCAmelCase__ = True def __init__( self : List[str] , **UpperCAmelCase__ : Union[str, Any]) ->List[Any]: '''simple docstring''' super().__init__(**UpperCAmelCase__) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" A__ = kwargs.pop('''encoder''') A__ = encoder_config.pop('''model_type''') A__ = kwargs.pop('''decoder''') A__ = decoder_config.pop('''model_type''') from ..auto.configuration_auto import AutoConfig A__ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__) A__ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__) A__ = True @classmethod def SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , UpperCAmelCase__ : PretrainedConfig , UpperCAmelCase__ : PretrainedConfig , **UpperCAmelCase__ : Union[str, Any]) ->PretrainedConfig: '''simple docstring''' logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''') A__ = True A__ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str) ->Optional[Any]: '''simple docstring''' A__ = copy.deepcopy(self.__dict__) A__ = self.encoder.to_dict() A__ = self.decoder.to_dict() A__ = self.__class__.model_type return output
14
0
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer A_ : List[str] = logging.get_logger(__name__) A_ : Optional[int] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} A_ : Optional[Any] = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } A_ : Dict = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } A_ : str = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } A_ : Any = { """facebook/dpr-ctx_encoder-single-nq-base""": 512, """facebook/dpr-ctx_encoder-multiset-base""": 512, } A_ : Dict = { """facebook/dpr-question_encoder-single-nq-base""": 512, """facebook/dpr-question_encoder-multiset-base""": 512, } A_ : Optional[int] = { """facebook/dpr-reader-single-nq-base""": 512, """facebook/dpr-reader-multiset-base""": 512, } A_ : Optional[Any] = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } A_ : List[str] = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } A_ : Tuple = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class lowerCamelCase (UpperCAmelCase__ ): lowerCamelCase__ : str = VOCAB_FILES_NAMES lowerCamelCase__ : Optional[int] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : str = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : Tuple = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class lowerCamelCase (UpperCAmelCase__ ): lowerCamelCase__ : Any = VOCAB_FILES_NAMES lowerCamelCase__ : Any = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : Optional[int] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : Any = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION A_ : List[str] = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) A_ : str = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) A_ : Optional[int] = r""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(UpperCAmelCase__ ) class lowerCamelCase : def __call__( self : Union[str, Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[str] = None , __UpperCAmelCase : Optional[str] = None , __UpperCAmelCase : Union[bool, str] = False , __UpperCAmelCase : Union[bool, str] = False , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : Optional[Union[str, TensorType]] = None , __UpperCAmelCase : Optional[bool] = None , **__UpperCAmelCase : List[str] , ) -> BatchEncoding: if titles is None and texts is None: return super().__call__( UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , ) elif titles is None or texts is None: SCREAMING_SNAKE_CASE__ = titles if texts is None else texts return super().__call__( UpperCAmelCase__ , UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , ) SCREAMING_SNAKE_CASE__ = titles if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else [titles] SCREAMING_SNAKE_CASE__ = texts if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else [texts] SCREAMING_SNAKE_CASE__ = len(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ = questions if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else [questions] * n_passages if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError( F"""There should be as many titles than texts but got {len(UpperCAmelCase__ )} titles and {len(UpperCAmelCase__ )} texts.""" ) SCREAMING_SNAKE_CASE__ = super().__call__(UpperCAmelCase__ , UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ )["""input_ids"""] SCREAMING_SNAKE_CASE__ = super().__call__(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ )["""input_ids"""] SCREAMING_SNAKE_CASE__ = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(UpperCAmelCase__ , UpperCAmelCase__ ) ] } if return_attention_mask is not False: SCREAMING_SNAKE_CASE__ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) SCREAMING_SNAKE_CASE__ = attention_mask return self.pad(UpperCAmelCase__ , padding=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ ) def SCREAMING_SNAKE_CASE ( self : Dict , __UpperCAmelCase : BatchEncoding , __UpperCAmelCase : DPRReaderOutput , __UpperCAmelCase : int = 1_6 , __UpperCAmelCase : int = 6_4 , __UpperCAmelCase : int = 4 , ) -> List[DPRSpanPrediction]: SCREAMING_SNAKE_CASE__ = reader_input["""input_ids"""] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = reader_output[:3] SCREAMING_SNAKE_CASE__ = len(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ = sorted(range(UpperCAmelCase__ ) , reverse=UpperCAmelCase__ , key=relevance_logits.__getitem__ ) SCREAMING_SNAKE_CASE__ = [] for doc_id in sorted_docs: SCREAMING_SNAKE_CASE__ = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence SCREAMING_SNAKE_CASE__ = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: SCREAMING_SNAKE_CASE__ = sequence_ids.index(self.pad_token_id ) else: SCREAMING_SNAKE_CASE__ = len(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=UpperCAmelCase__ , top_spans=UpperCAmelCase__ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=UpperCAmelCase__ , start_index=UpperCAmelCase__ , end_index=UpperCAmelCase__ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(UpperCAmelCase__ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def SCREAMING_SNAKE_CASE ( self : Dict , __UpperCAmelCase : List[int] , __UpperCAmelCase : List[int] , __UpperCAmelCase : int , __UpperCAmelCase : int , ) -> List[DPRSpanPrediction]: SCREAMING_SNAKE_CASE__ = [] for start_index, start_score in enumerate(UpperCAmelCase__ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) SCREAMING_SNAKE_CASE__ = sorted(UpperCAmelCase__ , key=lambda __UpperCAmelCase : x[1] , reverse=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F"""Wrong span indices: [{start_index}:{end_index}]""" ) SCREAMING_SNAKE_CASE__ = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(UpperCAmelCase__ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCAmelCase__ ) class lowerCamelCase (UpperCAmelCase__ ,UpperCAmelCase__ ): lowerCamelCase__ : List[Any] = VOCAB_FILES_NAMES lowerCamelCase__ : Tuple = READER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : Tuple = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : int = READER_PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ : Optional[int] = ['input_ids', 'attention_mask']
165
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any: """simple docstring""" A__ = [0] * len(lowercase_ ) A__ = [] A__ = [1] * len(lowercase_ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(lowercase_ ) ): if indegree[i] == 0: queue.append(lowercase_ ) while queue: A__ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: A__ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(lowercase_ ) print(max(lowercase_ ) ) # Adjacency list of Graph _lowerCamelCase : Optional[int] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
14
0
def lowerCAmelCase ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any ): """simple docstring""" UpperCAmelCase__ = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowerCAmelCase ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict ): """simple docstring""" UpperCAmelCase__ = 0 while b > 0: if b & 1: UpperCAmelCase__ = ((res % c) + (a % c)) % c a += a b >>= 1 return res
169
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline _lowerCamelCase : Optional[Any] = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCamelCase_ ( datasets.BuilderConfig ): '''simple docstring''' UpperCAmelCase__ = None UpperCAmelCase__ = "utf-8" UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = True # deprecated UpperCAmelCase__ = None # deprecated UpperCAmelCase__ = 10 << 20 # 10MB UpperCAmelCase__ = None class UpperCamelCase_ ( datasets.ArrowBasedBuilder ): '''simple docstring''' UpperCAmelCase__ = JsonConfig def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str: '''simple docstring''' if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''') A__ = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''') if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''') return datasets.DatasetInfo(features=self.config.features) def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : List[Any]) ->Dict: '''simple docstring''' if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""") A__ = dl_manager.download_and_extract(self.config.data_files) if isinstance(UpperCAmelCase__ , (str, list, tuple)): A__ = data_files if isinstance(UpperCAmelCase__ , UpperCAmelCase__): A__ = [files] A__ = [dl_manager.iter_files(UpperCAmelCase__) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files})] A__ = [] for split_name, files in data_files.items(): if isinstance(UpperCAmelCase__ , UpperCAmelCase__): A__ = [files] A__ = [dl_manager.iter_files(UpperCAmelCase__) for file in files] splits.append(datasets.SplitGenerator(name=UpperCAmelCase__ , gen_kwargs={'''files''': files})) return splits def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : pa.Table) ->pa.Table: '''simple docstring''' if self.config.features is not None: # adding missing columns for column_name in set(self.config.features) - set(pa_table.column_names): A__ = self.config.features.arrow_schema.field(UpperCAmelCase__).type A__ = pa_table.append_column(UpperCAmelCase__ , pa.array([None] * len(UpperCAmelCase__) , type=UpperCAmelCase__)) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example A__ = table_cast(UpperCAmelCase__ , self.config.features.arrow_schema) return pa_table def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Tuple) ->str: '''simple docstring''' for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase__)): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(UpperCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: A__ = json.load(UpperCAmelCase__) # We keep only the field we are interested in A__ = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(UpperCAmelCase__ , (list, tuple)): A__ = set().union(*[row.keys() for row in dataset]) A__ = {col: [row.get(UpperCAmelCase__) for row in dataset] for col in keys} else: A__ = dataset A__ = pa.Table.from_pydict(UpperCAmelCase__) yield file_idx, self._cast_table(UpperCAmelCase__) # If the file has one json object per line else: with open(UpperCAmelCase__ , '''rb''') as f: A__ = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small A__ = max(self.config.chunksize // 32 , 16 << 10) A__ = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: A__ = f.read(self.config.chunksize) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(UpperCAmelCase__) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": A__ = batch.decode(self.config.encoding , errors=UpperCAmelCase__).encode('''utf-8''') try: while True: try: A__ = paj.read_json( io.BytesIO(UpperCAmelCase__) , read_options=paj.ReadOptions(block_size=UpperCAmelCase__)) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(UpperCAmelCase__ , pa.ArrowInvalid) and "straddling" not in str(UpperCAmelCase__) or block_size > len(UpperCAmelCase__) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f"""Batch of {len(UpperCAmelCase__)} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""") block_size *= 2 except pa.ArrowInvalid as e: try: with open( UpperCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: A__ = json.load(UpperCAmelCase__) except json.JSONDecodeError: logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""") raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(UpperCAmelCase__ , UpperCAmelCase__): # list is the only sequence type supported in JSON try: A__ = set().union(*[row.keys() for row in dataset]) A__ = {col: [row.get(UpperCAmelCase__) for row in dataset] for col in keys} A__ = pa.Table.from_pydict(UpperCAmelCase__) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""") raise ValueError(f"""Not able to read records in the JSON file at {file}.""") from None yield file_idx, self._cast_table(UpperCAmelCase__) break else: logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""") raise ValueError( f"""Not able to read records in the JSON file at {file}. """ f"""You should probably indicate the field of the JSON file containing your records. """ f"""This JSON file contain the following fields: {str(list(dataset.keys()))}. """ f"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase__) batch_idx += 1
14
0
"""simple docstring""" import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def lowercase (_lowerCAmelCase ): __lowerCAmelCase = args.pruning_method __lowerCAmelCase = args.threshold __lowerCAmelCase = args.model_name_or_path.rstrip("""/""" ) __lowerCAmelCase = args.target_model_path print(f"""Load fine-pruned model from {model_name_or_path}""" ) __lowerCAmelCase = torch.load(os.path.join(lowercase_ , """pytorch_model.bin""" ) ) __lowerCAmelCase = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: __lowerCAmelCase = tensor print(f"""Copied layer {name}""" ) elif "classifier" in name or "qa_output" in name: __lowerCAmelCase = tensor print(f"""Copied layer {name}""" ) elif "bias" in name: __lowerCAmelCase = tensor print(f"""Copied layer {name}""" ) else: if pruning_method == "magnitude": __lowerCAmelCase = MagnitudeBinarizer.apply(inputs=lowercase_ , threshold=lowercase_ ) __lowerCAmelCase = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "topK": if "mask_scores" in name: continue __lowerCAmelCase = name[:-6] __lowerCAmelCase = model[f"""{prefix_}mask_scores"""] __lowerCAmelCase = TopKBinarizer.apply(lowercase_ , lowercase_ ) __lowerCAmelCase = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue __lowerCAmelCase = name[:-6] __lowerCAmelCase = model[f"""{prefix_}mask_scores"""] __lowerCAmelCase = ThresholdBinarizer.apply(lowercase_ , lowercase_ , lowercase_ ) __lowerCAmelCase = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "l0": if "mask_scores" in name: continue __lowerCAmelCase = name[:-6] __lowerCAmelCase = model[f"""{prefix_}mask_scores"""] __lowerCAmelCase , __lowerCAmelCase = -0.1, 1.1 __lowerCAmelCase = torch.sigmoid(lowercase_ ) __lowerCAmelCase = s * (r - l) + l __lowerCAmelCase = s_bar.clamp(min=0.0 , max=1.0 ) __lowerCAmelCase = tensor * mask print(f"""Pruned layer {name}""" ) else: raise ValueError("""Unknown pruning method""" ) if target_model_path is None: __lowerCAmelCase = os.path.join( os.path.dirname(lowercase_ ) , f"""bertarized_{os.path.basename(lowercase_ )}""" ) if not os.path.isdir(lowercase_ ): shutil.copytree(lowercase_ , lowercase_ ) print(f"""\nCreated folder {target_model_path}""" ) torch.save(lowercase_ , os.path.join(lowercase_ , """pytorch_model.bin""" ) ) print("""\nPruned model saved! See you later!""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument( '''--pruning_method''', choices=['''l0''', '''magnitude''', '''topK''', '''sigmoied_threshold'''], type=str, required=True, help=( '''Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,''' ''' sigmoied_threshold = Soft movement pruning)''' ), ) parser.add_argument( '''--threshold''', type=float, required=False, help=( '''For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.''' '''For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.''' '''Not needed for `l0`''' ), ) parser.add_argument( '''--model_name_or_path''', type=str, required=True, help='''Folder containing the model that was previously fine-pruned''', ) parser.add_argument( '''--target_model_path''', default=None, type=str, required=False, help='''Folder containing the model that was previously fine-pruned''', ) SCREAMING_SNAKE_CASE_ = parser.parse_args() main(args)
301
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch _lowerCamelCase : List[Any] = """sshleifer/bart-tiny-random""" _lowerCamelCase : List[Any] = """patrickvonplaten/t5-tiny-random""" @require_torch class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int: '''simple docstring''' return AutoConfig.from_pretrained(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any: '''simple docstring''' A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.num_hidden_layers , 1) def SCREAMING_SNAKE_CASE ( self : int) ->Any: '''simple docstring''' A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase__) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers) def SCREAMING_SNAKE_CASE ( self : Dict) ->int: '''simple docstring''' A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , 1) def SCREAMING_SNAKE_CASE ( self : str) ->List[Any]: '''simple docstring''' with self.assertRaises(UpperCAmelCase__): create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=UpperCAmelCase__ , d=UpperCAmelCase__)
14
0
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer _A = ["""gpt2"""] _A = """gpt2""" if is_tf_available(): class lowercase_ ( tf.Module ): def __init__( self , __UpperCamelCase ): """simple docstring""" super().__init__() UpperCamelCase_ = tokenizer UpperCamelCase_ = AutoConfig.from_pretrained(UpperCAmelCase__ ) UpperCamelCase_ = TFGPTaLMHeadModel.from_config(UpperCAmelCase__ ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="""text""" ),) ) def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = self.tokenizer(UpperCAmelCase__ ) UpperCamelCase_ = tokenized["""input_ids"""].to_tensor() UpperCamelCase_ = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) UpperCamelCase_ = self.model(input_ids=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ )["""logits"""] return outputs @require_tf @require_keras_nlp class lowercase_ ( unittest.TestCase ): def lowerCamelCase_ ( self ): """simple docstring""" super().setUp() UpperCamelCase_ = [GPTaTokenizer.from_pretrained(UpperCAmelCase__ ) for checkpoint in (TOKENIZER_CHECKPOINTS)] UpperCamelCase_ = [TFGPTaTokenizer.from_pretrained(UpperCAmelCase__ ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) UpperCamelCase_ = [ """This is a straightforward English test sentence.""", """This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""", """Now we\'re going to add some Chinese: 一 二 三 一二三""", """And some much more rare Chinese: 齉 堃 齉堃""", """Je vais aussi écrire en français pour tester les accents""", """Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""", ] UpperCamelCase_ = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def lowerCamelCase_ ( self ): """simple docstring""" for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: UpperCamelCase_ = tokenizer([test_inputs] , return_tensors="""tf""" ) UpperCamelCase_ = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors UpperCamelCase_ = python_outputs[key].numpy() UpperCamelCase_ = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(UpperCAmelCase__ , tf.intaa ) == tf_outputs_values ) ) @slow def lowerCamelCase_ ( self ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: UpperCamelCase_ = tf.function(UpperCAmelCase__ ) for test_inputs in self.test_sentences: UpperCamelCase_ = tf.constant(UpperCAmelCase__ ) UpperCamelCase_ = compiled_tokenizer(UpperCAmelCase__ ) UpperCamelCase_ = tf_tokenizer(UpperCAmelCase__ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def lowerCamelCase_ ( self ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: UpperCamelCase_ = ModelToSave(tokenizer=UpperCAmelCase__ ) UpperCamelCase_ = tf.convert_to_tensor([self.test_sentences[0]] ) UpperCamelCase_ = model.serving(UpperCAmelCase__ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: UpperCamelCase_ = Path(UpperCAmelCase__ ) / """saved.model""" tf.saved_model.save(UpperCAmelCase__ , UpperCAmelCase__ , signatures={"""serving_default""": model.serving} ) UpperCamelCase_ = tf.saved_model.load(UpperCAmelCase__ ) UpperCamelCase_ = loaded_model.signatures["""serving_default"""](UpperCAmelCase__ )["""output_0"""] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def lowerCamelCase_ ( self ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: UpperCamelCase_ = tf.convert_to_tensor([self.test_sentences[0]] ) UpperCamelCase_ = tf_tokenizer(UpperCAmelCase__ ) # Build model with some sample inputs UpperCamelCase_ = tf_tokenizer.get_config() UpperCamelCase_ = TFGPTaTokenizer.from_config(UpperCAmelCase__ ) UpperCamelCase_ = model_from_config(UpperCAmelCase__ ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def lowerCamelCase_ ( self ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: # for the test to run UpperCamelCase_ = 1_2_3_1_2_3 for max_length in [3, 5, 1_0_2_4]: UpperCamelCase_ = tf.convert_to_tensor([self.test_sentences[0]] ) UpperCamelCase_ = tf_tokenizer(UpperCAmelCase__ , max_length=UpperCAmelCase__ ) UpperCamelCase_ = out["""input_ids"""].numpy().shape[1] assert out_length == max_length
122
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[str] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int=7 , UpperCAmelCase__ : Dict=3 , UpperCAmelCase__ : List[Any]=30 , UpperCAmelCase__ : Any=400 , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Optional[Any]=[0.5, 0.5, 0.5] , UpperCAmelCase__ : Any=[0.5, 0.5, 0.5] , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Optional[int]=1 / 255 , UpperCAmelCase__ : Optional[Any]=True , ) ->str: '''simple docstring''' A__ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1_333} A__ = parent A__ = batch_size A__ = num_channels A__ = min_resolution A__ = max_resolution A__ = do_resize A__ = size A__ = do_normalize A__ = image_mean A__ = image_std A__ = do_rescale A__ = rescale_factor A__ = do_pad def SCREAMING_SNAKE_CASE ( self : Any) ->List[str]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int=False) ->Optional[Any]: '''simple docstring''' if not batched: A__ = image_inputs[0] if isinstance(UpperCAmelCase__ , Image.Image): A__ , A__ = image.size else: A__ , A__ = image.shape[1], image.shape[2] if w < h: A__ = int(self.size['''shortest_edge'''] * h / w) A__ = self.size['''shortest_edge'''] elif w > h: A__ = self.size['''shortest_edge'''] A__ = int(self.size['''shortest_edge'''] * w / h) else: A__ = self.size['''shortest_edge'''] A__ = self.size['''shortest_edge'''] else: A__ = [] for image in image_inputs: A__ , A__ = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) A__ = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__: item[0])[0] A__ = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__: item[1])[1] return expected_height, expected_width @require_torch @require_vision class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = DeformableDetrImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self : List[str]) ->Tuple: '''simple docstring''' A__ = DeformableDetrImageProcessingTester(self) @property def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(UpperCAmelCase__ , '''image_mean''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''image_std''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_normalize''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_resize''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_rescale''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_pad''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''size''')) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int: '''simple docstring''' A__ = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1_333}) self.assertEqual(image_processor.do_pad , UpperCAmelCase__) A__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCAmelCase__) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84}) self.assertEqual(image_processor.do_pad , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any) ->List[str]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict) # create random PIL images A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__) A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , np.ndarray) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self : int) ->Tuple: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[str]: '''simple docstring''' A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''') as f: A__ = json.loads(f.read()) A__ = {'''image_id''': 39_769, '''annotations''': target} # encode them A__ = DeformableDetrImageProcessor() A__ = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , return_tensors='''pt''') # verify pixel values A__ = torch.Size([1, 3, 800, 1_066]) self.assertEqual(encoding['''pixel_values'''].shape , UpperCAmelCase__) A__ = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCAmelCase__ , atol=1e-4)) # verify area A__ = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCAmelCase__)) # verify boxes A__ = torch.Size([6, 4]) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCAmelCase__) A__ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCAmelCase__ , atol=1e-3)) # verify image_id A__ = torch.tensor([39_769]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCAmelCase__)) # verify is_crowd A__ = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCAmelCase__)) # verify class_labels A__ = torch.tensor([75, 75, 63, 65, 17, 17]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCAmelCase__)) # verify orig_size A__ = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCAmelCase__)) # verify size A__ = torch.tensor([800, 1_066]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCAmelCase__)) @slow def SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[int]: '''simple docstring''' A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''') as f: A__ = json.loads(f.read()) A__ = {'''file_name''': '''000000039769.png''', '''image_id''': 39_769, '''segments_info''': target} A__ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''') # encode them A__ = DeformableDetrImageProcessor(format='''coco_panoptic''') A__ = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , masks_path=UpperCAmelCase__ , return_tensors='''pt''') # verify pixel values A__ = torch.Size([1, 3, 800, 1_066]) self.assertEqual(encoding['''pixel_values'''].shape , UpperCAmelCase__) A__ = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCAmelCase__ , atol=1e-4)) # verify area A__ = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCAmelCase__)) # verify boxes A__ = torch.Size([6, 4]) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCAmelCase__) A__ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCAmelCase__ , atol=1e-3)) # verify image_id A__ = torch.tensor([39_769]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCAmelCase__)) # verify is_crowd A__ = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCAmelCase__)) # verify class_labels A__ = torch.tensor([17, 17, 63, 75, 75, 93]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCAmelCase__)) # verify masks A__ = 822_873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , UpperCAmelCase__) # verify orig_size A__ = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCAmelCase__)) # verify size A__ = torch.tensor([800, 1_066]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCAmelCase__))
14
0
"""simple docstring""" from __future__ import annotations import queue class a : def __init__( self , _lowerCamelCase ): lowercase = data lowercase = None lowercase = None def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' print('\n********Press N to stop entering at any point of time********\n' ) lowercase = input('Enter the value of the root node: ' ).strip().lower() lowercase = queue.Queue() lowercase = TreeNode(int(lowercase_ ) ) q.put(lowercase_ ) while not q.empty(): lowercase = q.get() lowercase = f'Enter the left node of {node_found.data}: ' lowercase = input(lowercase_ ).strip().lower() or 'n' if check == "n": return tree_node lowercase = TreeNode(int(lowercase_ ) ) lowercase = left_node q.put(lowercase_ ) lowercase = f'Enter the right node of {node_found.data}: ' lowercase = input(lowercase_ ).strip().lower() or 'n' if check == "n": return tree_node lowercase = TreeNode(int(lowercase_ ) ) lowercase = right_node q.put(lowercase_ ) raise def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[Any] ): '''simple docstring''' if not isinstance(lowercase_ , lowercase_ ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def _SCREAMING_SNAKE_CASE ( __snake_case : Any ): '''simple docstring''' if not isinstance(lowercase_ , lowercase_ ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def _SCREAMING_SNAKE_CASE ( __snake_case : int ): '''simple docstring''' if not isinstance(lowercase_ , lowercase_ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def _SCREAMING_SNAKE_CASE ( __snake_case : List[Any] ): '''simple docstring''' if not isinstance(lowercase_ , lowercase_ ) or not node: return lowercase = queue.Queue() q.put(lowercase_ ) while not q.empty(): lowercase = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def _SCREAMING_SNAKE_CASE ( __snake_case : Any ): '''simple docstring''' if not isinstance(lowercase_ , lowercase_ ) or not node: return lowercase = queue.Queue() q.put(lowercase_ ) while not q.empty(): lowercase = [] while not q.empty(): lowercase = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(lowercase_ ) def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[int] ): '''simple docstring''' if not isinstance(lowercase_ , lowercase_ ) or not node: return lowercase = [] lowercase = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(lowercase_ ) lowercase = n.left # end of while means current node doesn't have left child lowercase = stack.pop() # start to traverse its right child lowercase = n.right def _SCREAMING_SNAKE_CASE ( __snake_case : Tuple ): '''simple docstring''' if not isinstance(lowercase_ , lowercase_ ) or not node: return lowercase = [] lowercase = node while n or stack: while n: stack.append(lowercase_ ) lowercase = n.left lowercase = stack.pop() print(n.data , end=',' ) lowercase = n.right def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[Any] ): '''simple docstring''' if not isinstance(lowercase_ , lowercase_ ) or not node: return lowercase , lowercase = [], [] lowercase = node stacka.append(lowercase_ ) while stacka: # to find the reversed order of post order, store it in stack2 lowercase = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(lowercase_ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def _SCREAMING_SNAKE_CASE ( __snake_case : Union[str, Any] = "" , __snake_case : Any=50 , __snake_case : Optional[int]="*" ): '''simple docstring''' if not s: return "\n" + width * char lowercase , lowercase = divmod(width - len(lowercase_ ) - 2 , 2 ) return f'{left * char} {s} {(left + extra) * char}' if __name__ == "__main__": import doctest doctest.testmod() print(prompt('Binary Tree Traversals')) _UpperCamelCase : TreeNode = build_tree() print(prompt('Pre Order Traversal')) pre_order(node) print(prompt() + '\n') print(prompt('In Order Traversal')) in_order(node) print(prompt() + '\n') print(prompt('Post Order Traversal')) post_order(node) print(prompt() + '\n') print(prompt('Level Order Traversal')) level_order(node) print(prompt() + '\n') print(prompt('Actual Level Order Traversal')) level_order_actual(node) print('*' * 5_0 + '\n') print(prompt('Pre Order Traversal - Iteration Version')) pre_order_iter(node) print(prompt() + '\n') print(prompt('In Order Traversal - Iteration Version')) in_order_iter(node) print(prompt() + '\n') print(prompt('Post Order Traversal - Iteration Version')) post_order_iter(node) print(prompt())
220
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np _lowerCamelCase : str = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 _lowerCamelCase : Tuple = typing.Union[np.floataa, int, float] # noqa: UP007 def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> VectorOut: """simple docstring""" return np.sqrt(np.sum((np.asarray(lowercase_ ) - np.asarray(lowercase_ )) ** 2 ) ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> VectorOut: """simple docstring""" return sum((va - va) ** 2 for va, va in zip(lowercase_ , lowercase_ ) ) ** (1 / 2) if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) ) benchmark()
14
0
"""simple docstring""" def _snake_case ( lowerCamelCase__ : Union[str, Any] ) -> int: assert column_title.isupper() lowerCamelCase_ : int =0 lowerCamelCase_ : str =len(lowercase_ ) - 1 lowerCamelCase_ : Union[str, Any] =0 while index >= 0: lowerCamelCase_ : List[Any] =(ord(column_title[index] ) - 64) * pow(26 , lowercase_ ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
144
from ...processing_utils import ProcessorMixin class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''SpeechT5FeatureExtractor''' UpperCAmelCase__ = '''SpeechT5Tokenizer''' def __init__( self : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple) ->Union[str, Any]: '''simple docstring''' super().__init__(UpperCAmelCase__ , UpperCAmelCase__) def __call__( self : Dict , *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : Any) ->Optional[Any]: '''simple docstring''' A__ = kwargs.pop('''audio''' , UpperCAmelCase__) A__ = kwargs.pop('''text''' , UpperCAmelCase__) A__ = kwargs.pop('''text_target''' , UpperCAmelCase__) A__ = kwargs.pop('''audio_target''' , UpperCAmelCase__) A__ = kwargs.pop('''sampling_rate''' , UpperCAmelCase__) if audio is not None and text is not None: raise ValueError( '''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''') if audio_target is not None and text_target is not None: raise ValueError( '''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''') if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( '''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''') if audio is not None: A__ = self.feature_extractor(UpperCAmelCase__ , *UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , **UpperCAmelCase__) elif text is not None: A__ = self.tokenizer(UpperCAmelCase__ , **UpperCAmelCase__) else: A__ = None if audio_target is not None: A__ = self.feature_extractor(audio_target=UpperCAmelCase__ , *UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , **UpperCAmelCase__) A__ = targets['''input_values'''] elif text_target is not None: A__ = self.tokenizer(UpperCAmelCase__ , **UpperCAmelCase__) A__ = targets['''input_ids'''] else: A__ = None if inputs is None: return targets if targets is not None: A__ = labels A__ = targets.get('''attention_mask''') if decoder_attention_mask is not None: A__ = decoder_attention_mask return inputs def SCREAMING_SNAKE_CASE ( self : Optional[Any] , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : int) ->Optional[int]: '''simple docstring''' A__ = kwargs.pop('''input_values''' , UpperCAmelCase__) A__ = kwargs.pop('''input_ids''' , UpperCAmelCase__) A__ = kwargs.pop('''labels''' , UpperCAmelCase__) if input_values is not None and input_ids is not None: raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''') if input_values is None and input_ids is None and labels is None: raise ValueError( '''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''') if input_values is not None: A__ = self.feature_extractor.pad(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__) elif input_ids is not None: A__ = self.tokenizer.pad(UpperCAmelCase__ , **UpperCAmelCase__) else: A__ = None if labels is not None: if "input_ids" in labels or (isinstance(UpperCAmelCase__ , UpperCAmelCase__) and "input_ids" in labels[0]): A__ = self.tokenizer.pad(UpperCAmelCase__ , **UpperCAmelCase__) A__ = targets['''input_ids'''] else: A__ = self.feature_extractor.feature_size A__ = self.feature_extractor.num_mel_bins A__ = self.feature_extractor.pad(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__) A__ = feature_size_hack A__ = targets['''input_values'''] else: A__ = None if inputs is None: return targets if targets is not None: A__ = labels A__ = targets.get('''attention_mask''') if decoder_attention_mask is not None: A__ = decoder_attention_mask return inputs def SCREAMING_SNAKE_CASE ( self : Any , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : Optional[Any]) ->Optional[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase__ , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Union[str, Any]) ->Dict: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase__ , **UpperCAmelCase__)
14
0
import baseaa def _a ( SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" return baseaa.baaencode(string.encode('''utf-8''' ) ) def _a ( SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" return baseaa.baadecode(lowercase_ ).decode('''utf-8''' ) if __name__ == "__main__": __UpperCamelCase : List[str] = """Hello World!""" __UpperCamelCase : Union[str, Any] = baseaa_encode(test) print(encoded) __UpperCamelCase : Union[str, Any] = baseaa_decode(encoded) print(decoded)
146
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Tuple = logging.get_logger(__name__) _lowerCamelCase : str = { """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''git_vision_model''' def __init__( self : Any , UpperCAmelCase__ : Any=768 , UpperCAmelCase__ : int=3_072 , UpperCAmelCase__ : List[str]=12 , UpperCAmelCase__ : Dict=12 , UpperCAmelCase__ : Optional[int]=3 , UpperCAmelCase__ : List[Any]=224 , UpperCAmelCase__ : Union[str, Any]=16 , UpperCAmelCase__ : Union[str, Any]="quick_gelu" , UpperCAmelCase__ : Dict=1e-5 , UpperCAmelCase__ : Union[str, Any]=0.0 , UpperCAmelCase__ : Any=0.02 , **UpperCAmelCase__ : Any , ) ->Optional[int]: '''simple docstring''' super().__init__(**UpperCAmelCase__) A__ = hidden_size A__ = intermediate_size A__ = num_hidden_layers A__ = num_attention_heads A__ = num_channels A__ = patch_size A__ = image_size A__ = initializer_range A__ = attention_dropout A__ = layer_norm_eps A__ = hidden_act @classmethod def SCREAMING_SNAKE_CASE ( cls : Any , UpperCAmelCase__ : Union[str, os.PathLike] , **UpperCAmelCase__ : int) ->"PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCAmelCase__) A__ , A__ = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__) # get the vision config dict if we are loading from GITConfig if config_dict.get('''model_type''') == "git": A__ = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""") return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''git''' def __init__( self : Dict , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : int=30_522 , UpperCAmelCase__ : Optional[int]=768 , UpperCAmelCase__ : Dict=6 , UpperCAmelCase__ : int=12 , UpperCAmelCase__ : List[str]=3_072 , UpperCAmelCase__ : str="gelu" , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : List[Any]=1_024 , UpperCAmelCase__ : List[str]=0.02 , UpperCAmelCase__ : Any=1e-12 , UpperCAmelCase__ : Union[str, Any]=0 , UpperCAmelCase__ : List[Any]="absolute" , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Any=False , UpperCAmelCase__ : int=101 , UpperCAmelCase__ : Tuple=102 , UpperCAmelCase__ : Dict=None , **UpperCAmelCase__ : List[str] , ) ->Any: '''simple docstring''' super().__init__(bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , pad_token_id=UpperCAmelCase__ , **UpperCAmelCase__) if vision_config is None: A__ = {} logger.info('''vision_config is None. initializing the GitVisionConfig with default values.''') A__ = GitVisionConfig(**UpperCAmelCase__) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = initializer_range A__ = layer_norm_eps A__ = position_embedding_type A__ = use_cache A__ = tie_word_embeddings A__ = num_image_with_embedding A__ = bos_token_id A__ = eos_token_id def SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: '''simple docstring''' A__ = copy.deepcopy(self.__dict__) A__ = self.vision_config.to_dict() A__ = self.__class__.model_type return output
14
0
'''simple docstring''' import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin _UpperCamelCase = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') class _A ( UpperCAmelCase__ , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Dict = BartphoTokenizer _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : Optional[int] = True def __A ( self ) -> Union[str, Any]: '''simple docstring''' super().setUp() __UpperCAmelCase : List[Any] = ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] __UpperCAmelCase : Dict = dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__ ) ) ) ) __UpperCAmelCase : Union[str, Any] = {"""unk_token""": """<unk>"""} __UpperCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""monolingual_vocab_file"""] ) with open(self.monolingual_vocab_file , """w""" , encoding="""utf-8""" ) as fp: for token in vocab_tokens: fp.write(f'{token} {vocab_tokens[token]}\n' ) __UpperCAmelCase : Union[str, Any] = BartphoTokenizer(UpperCAmelCase__ , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def __A ( self , **__UpperCAmelCase ) -> Any: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ) def __A ( self , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Any = """This is a là test""" __UpperCAmelCase : List[Any] = """This is a<unk><unk> test""" return input_text, output_text def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : Optional[Any] = BartphoTokenizer(UpperCAmelCase__ , self.monolingual_vocab_file , **self.special_tokens_map ) __UpperCAmelCase : Dict = """This is a là test""" __UpperCAmelCase : Union[str, Any] = """▁This ▁is ▁a ▁l à ▁t est""".split() __UpperCAmelCase : Tuple = tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) __UpperCAmelCase : Dict = tokens + [tokenizer.unk_token] __UpperCAmelCase : str = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , UpperCAmelCase__ )
254
import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: """simple docstring""" A__ = BeautifulSoup(requests.get(lowercase_ , params=lowercase_ ).content , '''html.parser''' ) A__ = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} ) A__ = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' ) return anchors[2].get_text() if __name__ == "__main__": _lowerCamelCase : Optional[Any] = { """title""": ( """Precisely geometry controlled microsupercapacitors for ultrahigh areal """ """capacitance, volumetric capacitance, and energy density""" ), """journal""": """Chem. Mater.""", """volume""": 30, """pages""": """3979-3990""", """year""": 2018, """hl""": """en""", } print(get_citation("""https://scholar.google.com/scholar_lookup""", params=params))
14
0
"""simple docstring""" import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __snake_case = { """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } __snake_case = logging.get_logger(__name__) class __lowerCamelCase ( UpperCAmelCase__ ): '''simple docstring''' A_ : int = 'mask2former' A_ : Any = ['swin'] A_ : Optional[int] = {'hidden_size': 'hidden_dim'} def __init__( self , __UpperCAmelCase = None , __UpperCAmelCase = 256 , __UpperCAmelCase = 256 , __UpperCAmelCase = 256 , __UpperCAmelCase = 1024 , __UpperCAmelCase = "relu" , __UpperCAmelCase = 6 , __UpperCAmelCase = 10 , __UpperCAmelCase = 8 , __UpperCAmelCase = 0.0 , __UpperCAmelCase = 2048 , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = 4 , __UpperCAmelCase = 255 , __UpperCAmelCase = 100 , __UpperCAmelCase = 0.1 , __UpperCAmelCase = 2.0 , __UpperCAmelCase = 5.0 , __UpperCAmelCase = 5.0 , __UpperCAmelCase = 12544 , __UpperCAmelCase = 3.0 , __UpperCAmelCase = 0.75 , __UpperCAmelCase = 0.02 , __UpperCAmelCase = 1.0 , __UpperCAmelCase = True , __UpperCAmelCase = [4, 8, 16, 32] , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Optional[Any]: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.''' ) _a = CONFIG_MAPPING['''swin''']( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=UpperCAmelCase__ , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): _a = backbone_config.pop('''model_type''' ) _a = CONFIG_MAPPING[backbone_model_type] _a = config_class.from_dict(UpperCAmelCase__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ' F'Supported model types: {",".join(self.backbones_supported )}' ) _a = backbone_config _a = feature_size _a = mask_feature_size _a = hidden_dim _a = encoder_feedforward_dim _a = activation_function _a = encoder_layers _a = decoder_layers _a = num_attention_heads _a = dropout _a = dim_feedforward _a = pre_norm _a = enforce_input_projection _a = common_stride _a = ignore_value _a = num_queries _a = no_object_weight _a = class_weight _a = mask_weight _a = dice_weight _a = train_num_points _a = oversample_ratio _a = importance_sample_ratio _a = init_std _a = init_xavier_std _a = use_auxiliary_loss _a = feature_strides _a = output_auxiliary_logits _a = decoder_layers super().__init__(**UpperCAmelCase__ ) @classmethod def _UpperCAmelCase ( cls , __UpperCAmelCase , **__UpperCAmelCase ) -> str: return cls( backbone_config=UpperCAmelCase__ , **UpperCAmelCase__ , ) def _UpperCAmelCase ( self ) -> Dict[str, any]: _a = copy.deepcopy(self.__dict__ ) _a = self.backbone_config.to_dict() _a = self.__class__.model_type return output
320
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: """simple docstring""" A__ = StableDiffusionPipeline.from_pretrained(lowercase_ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors A__ = load_file(lowercase_ ) A__ = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: A__ = key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' ) A__ = pipeline.text_encoder else: A__ = key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' ) A__ = pipeline.unet # find the target layer A__ = layer_infos.pop(0 ) while len(lowercase_ ) > -1: try: A__ = curr_layer.__getattr__(lowercase_ ) if len(lowercase_ ) > 0: A__ = layer_infos.pop(0 ) elif len(lowercase_ ) == 0: break except Exception: if len(lowercase_ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: A__ = layer_infos.pop(0 ) A__ = [] if "lora_down" in key: pair_keys.append(key.replace('''lora_down''' , '''lora_up''' ) ) pair_keys.append(lowercase_ ) else: pair_keys.append(lowercase_ ) pair_keys.append(key.replace('''lora_up''' , '''lora_down''' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: A__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) A__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ ).unsqueeze(2 ).unsqueeze(3 ) else: A__ = state_dict[pair_keys[0]].to(torch.floataa ) A__ = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ ) # update visited list for item in pair_keys: visited.append(lowercase_ ) return pipeline if __name__ == "__main__": _lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") _lowerCamelCase : Tuple = parser.parse_args() _lowerCamelCase : List[Any] = args.base_model_path _lowerCamelCase : Optional[int] = args.checkpoint_path _lowerCamelCase : Dict = args.dump_path _lowerCamelCase : Optional[Any] = args.lora_prefix_unet _lowerCamelCase : Optional[int] = args.lora_prefix_text_encoder _lowerCamelCase : List[Any] = args.alpha _lowerCamelCase : int = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) _lowerCamelCase : Tuple = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
14
0
import collections import importlib.util import os import re from pathlib import Path A__ = """src/transformers""" # Matches is_xxx_available() A__ = re.compile(r'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} A__ = re.compile(r'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] A__ = re.compile(r'''\s+\"\S*\":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available A__ = re.compile(r'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") A__ = re.compile(r'''^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] A__ = re.compile(r'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", A__ = re.compile('''^\s+\"([^\"]+)\",''') # Catches a line with objects between brackets only: ["foo", "bar"], A__ = re.compile('''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo A__ = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: A__ = re.compile(r'''^\s*try:''') # Catches a line with else: A__ = re.compile(r'''^\s*else:''') def _lowerCAmelCase ( __lowerCAmelCase ) -> Any: """simple docstring""" if _re_test_backend.search(lowercase_ ) is None: return None snake_case__ : str = [b[0] for b in _re_backend.findall(lowercase_ )] backends.sort() return "_and_".join(lowercase_ ) def _lowerCAmelCase ( __lowerCAmelCase ) -> int: """simple docstring""" with open(lowercase_ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: snake_case__ : Optional[Any] = f.readlines() snake_case__ : Optional[Any] = 0 while line_index < len(lowercase_ ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(lowercase_ ): return None # First grab the objects without a specific backend in _import_structure snake_case__ : Dict = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: snake_case__ : int = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(lowercase_ ): snake_case__ : List[Any] = _re_one_line_import_struct.search(lowercase_ ).groups()[0] snake_case__ : Optional[Any] = re.findall('''\[([^\]]+)\]''' , lowercase_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue snake_case__ : Any = _re_import_struct_key_value.search(lowercase_ ) if single_line_import_search is not None: snake_case__ : Optional[Any] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(lowercase_ ) > 0] objects.extend(lowercase_ ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 snake_case__ : List[str] = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. snake_case__ : Union[str, Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: snake_case__ : List[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 snake_case__ : Union[str, Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): snake_case__ : Optional[Any] = lines[line_index] if _re_import_struct_add_one.search(lowercase_ ) is not None: objects.append(_re_import_struct_add_one.search(lowercase_ ).groups()[0] ) elif _re_import_struct_add_many.search(lowercase_ ) is not None: snake_case__ : Tuple = _re_import_struct_add_many.search(lowercase_ ).groups()[0].split(''', ''' ) snake_case__ : List[str] = [obj[1:-1] for obj in imports if len(lowercase_ ) > 0] objects.extend(lowercase_ ) elif _re_between_brackets.search(lowercase_ ) is not None: snake_case__ : Union[str, Any] = _re_between_brackets.search(lowercase_ ).groups()[0].split(''', ''' ) snake_case__ : Union[str, Any] = [obj[1:-1] for obj in imports if len(lowercase_ ) > 0] objects.extend(lowercase_ ) elif _re_quote_object.search(lowercase_ ) is not None: objects.append(_re_quote_object.search(lowercase_ ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 snake_case__ : Any = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend snake_case__ : int = [] while ( line_index < len(lowercase_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): snake_case__ : Optional[int] = lines[line_index] snake_case__ : Optional[Any] = _re_import.search(lowercase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 snake_case__ : Dict = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(lowercase_ ): # If the line is an if is_backend_available, we grab all objects associated. snake_case__ : List[Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: snake_case__ : List[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 snake_case__ : Optional[Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): snake_case__ : Optional[int] = lines[line_index] snake_case__ : Dict = _re_import.search(lowercase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 snake_case__ : List[Any] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> int: """simple docstring""" def find_duplicates(__lowerCAmelCase ): return [k for k, v in collections.Counter(lowercase_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] snake_case__ : Union[str, Any] = [] for key in import_dict_objects.keys(): snake_case__ : Optional[Any] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) snake_case__ : Dict = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): snake_case__ : Tuple = '''base imports''' if key == '''none''' else f"""{key} backend""" errors.append(f"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def _lowerCAmelCase ( ) -> List[Any]: """simple docstring""" snake_case__ : str = [] for root, _, files in os.walk(lowercase_ ): if "__init__.py" in files: snake_case__ : List[Any] = os.path.join(lowercase_ , '''__init__.py''' ) snake_case__ : Any = parse_init(lowercase_ ) if objects is not None: snake_case__ : Any = analyze_results(*lowercase_ ) if len(lowercase_ ) > 0: snake_case__ : Union[str, Any] = f"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append('''\n'''.join(lowercase_ ) ) if len(lowercase_ ) > 0: raise ValueError('''\n\n'''.join(lowercase_ ) ) def _lowerCAmelCase ( ) -> Any: """simple docstring""" snake_case__ : Optional[int] = [] for path, directories, files in os.walk(lowercase_ ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(lowercase_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(lowercase_ ) / folder).glob('''*.py''' ) ) ) == 0: continue snake_case__ : Dict = str((Path(lowercase_ ) / folder).relative_to(lowercase_ ) ) snake_case__ : Optional[int] = short_path.replace(os.path.sep , '''.''' ) submodules.append(lowercase_ ) for fname in files: if fname == "__init__.py": continue snake_case__ : Tuple = str((Path(lowercase_ ) / fname).relative_to(lowercase_ ) ) snake_case__ : Optional[int] = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(lowercase_ ) return submodules A__ = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", ] def _lowerCAmelCase ( ) -> Optional[int]: """simple docstring""" snake_case__ : Any = importlib.util.spec_from_file_location( '''transformers''' , os.path.join(lowercase_ , '''__init__.py''' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) snake_case__ : Union[str, Any] = spec.loader.load_module() snake_case__ : Dict = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(lowercase_ ) > 0: snake_case__ : Any = '''\n'''.join(f"""- {module}""" for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registered in the main init of Transformers:\n''' f"""{list_of_modules}\n""" '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
230
import os import pytest from transformers.dynamic_module_utils import get_imports _lowerCamelCase : Any = """ import os """ _lowerCamelCase : Optional[int] = """ def foo(): import os return False """ _lowerCamelCase : List[Any] = """ def foo(): def bar(): if True: import os return False return bar() """ _lowerCamelCase : List[Any] = """ import os try: import bar except ImportError: raise ValueError() """ _lowerCamelCase : Union[str, Any] = """ import os def foo(): try: import bar except ImportError: raise ValueError() """ _lowerCamelCase : List[Any] = """ import os try: import bar except (ImportError, AttributeError): raise ValueError() """ _lowerCamelCase : List[Any] = """ import os try: import bar except ImportError as e: raise ValueError() """ _lowerCamelCase : str = """ import os try: import bar except: raise ValueError() """ _lowerCamelCase : Optional[Any] = """ import os try: import bar import baz except ImportError: raise ValueError() """ _lowerCamelCase : Any = """ import os try: import bar import baz except ImportError: x = 1 raise ValueError() """ _lowerCamelCase : Dict = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" A__ = os.path.join(lowercase_ , '''test_file.py''' ) with open(lowercase_ , '''w''' ) as _tmp_file: _tmp_file.write(lowercase_ ) A__ = get_imports(lowercase_ ) assert parsed_imports == ["os"]
14
0
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer A : Union[str, Any] = logging.get_logger(__name__) A : Tuple = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} A : Union[str, Any] = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } A : str = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } A : str = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } A : Any = { """facebook/dpr-ctx_encoder-single-nq-base""": 5_1_2, """facebook/dpr-ctx_encoder-multiset-base""": 5_1_2, } A : List[str] = { """facebook/dpr-question_encoder-single-nq-base""": 5_1_2, """facebook/dpr-question_encoder-multiset-base""": 5_1_2, } A : Tuple = { """facebook/dpr-reader-single-nq-base""": 5_1_2, """facebook/dpr-reader-multiset-base""": 5_1_2, } A : Optional[Any] = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } A : Optional[int] = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } A : Optional[Any] = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class _UpperCamelCase ( UpperCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[int] =VOCAB_FILES_NAMES __UpperCAmelCase : List[str] =CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Optional[Any] =CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : int =CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION __UpperCAmelCase : List[str] =DPRContextEncoderTokenizer class _UpperCamelCase ( UpperCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : List[str] =VOCAB_FILES_NAMES __UpperCAmelCase : Optional[int] =QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Any =QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Any =QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __UpperCAmelCase : str =DPRQuestionEncoderTokenizer A : int = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) A : Any = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) A : Dict = r""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(UpperCAmelCase__ ) class _UpperCamelCase : '''simple docstring''' def __call__( self , __a , __a = None , __a = None , __a = False , __a = False , __a = None , __a = None , __a = None , **__a , ): if titles is None and texts is None: return super().__call__( UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , ) elif titles is None or texts is None: __lowerCAmelCase = titles if texts is None else texts return super().__call__( UpperCAmelCase__ , UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , ) __lowerCAmelCase = titles if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else [titles] __lowerCAmelCase = texts if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else [texts] __lowerCAmelCase = len(UpperCAmelCase__ ) __lowerCAmelCase = questions if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else [questions] * n_passages assert len(UpperCAmelCase__ ) == len( UpperCAmelCase__ ), f"There should be as many titles than texts but got {len(UpperCAmelCase__ )} titles and {len(UpperCAmelCase__ )} texts." __lowerCAmelCase = super().__call__(UpperCAmelCase__ , UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ )["input_ids"] __lowerCAmelCase = super().__call__(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ )["input_ids"] __lowerCAmelCase = { "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(UpperCAmelCase__ , UpperCAmelCase__ ) ] } if return_attention_mask is not False: __lowerCAmelCase = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) __lowerCAmelCase = attention_mask return self.pad(UpperCAmelCase__ , padding=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ ) def snake_case ( self , __a , __a , __a = 16 , __a = 64 , __a = 4 , ): __lowerCAmelCase = reader_input["input_ids"] __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = reader_output[:3] __lowerCAmelCase = len(UpperCAmelCase__ ) __lowerCAmelCase = sorted(range(UpperCAmelCase__ ) , reverse=UpperCAmelCase__ , key=relevance_logits.__getitem__ ) __lowerCAmelCase = [] for doc_id in sorted_docs: __lowerCAmelCase = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence __lowerCAmelCase = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: __lowerCAmelCase = sequence_ids.index(self.pad_token_id ) else: __lowerCAmelCase = len(UpperCAmelCase__ ) __lowerCAmelCase = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=UpperCAmelCase__ , top_spans=UpperCAmelCase__ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=UpperCAmelCase__ , start_index=UpperCAmelCase__ , end_index=UpperCAmelCase__ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(UpperCAmelCase__ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def snake_case ( self , __a , __a , __a , __a , ): __lowerCAmelCase = [] for start_index, start_score in enumerate(UpperCAmelCase__ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) __lowerCAmelCase = sorted(UpperCAmelCase__ , key=lambda __a : x[1] , reverse=UpperCAmelCase__ ) __lowerCAmelCase = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f"Wrong span indices: [{start_index}:{end_index}]" __lowerCAmelCase = end_index - start_index + 1 assert length <= max_answer_length, f"Span is too long: {length} > {max_answer_length}" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(UpperCAmelCase__ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCAmelCase__ ) class _UpperCamelCase ( UpperCAmelCase__ ,UpperCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Dict =VOCAB_FILES_NAMES __UpperCAmelCase : Any =READER_PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Dict =READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Optional[int] =READER_PRETRAINED_INIT_CONFIGURATION __UpperCAmelCase : int =["""input_ids""", """attention_mask"""] __UpperCAmelCase : Optional[int] =DPRReaderTokenizer
57
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" return int(input_a == input_a == 0 ) def SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" print('''Truth Table of NOR Gate:''' ) print('''| Input 1 | Input 2 | Output |''' ) print(f"""| 0 | 0 | {nor_gate(0 , 0 )} |""" ) print(f"""| 0 | 1 | {nor_gate(0 , 1 )} |""" ) print(f"""| 1 | 0 | {nor_gate(1 , 0 )} |""" ) print(f"""| 1 | 1 | {nor_gate(1 , 1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
14
0
"""simple docstring""" import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures A_ : List[str] = logging.get_logger(__name__) @dataclass class lowerCamelCase : lowerCamelCase__ : List[Any] = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(glue_processors.keys() )} ) lowerCamelCase__ : Tuple = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) lowerCamelCase__ : Any = field( default=1_2_8 ,metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } ,) lowerCamelCase__ : Tuple = field( default=UpperCAmelCase__ ,metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def SCREAMING_SNAKE_CASE ( self : str ) -> str: SCREAMING_SNAKE_CASE__ = self.task_name.lower() class lowerCamelCase (UpperCAmelCase__ ): lowerCamelCase__ : str = 'train' lowerCamelCase__ : str = 'dev' lowerCamelCase__ : int = 'test' class lowerCamelCase (UpperCAmelCase__ ): lowerCamelCase__ : List[Any] = 4_2 lowerCamelCase__ : List[str] = 4_2 lowerCamelCase__ : Dict = 4_2 def __init__( self : int , __UpperCAmelCase : GlueDataTrainingArguments , __UpperCAmelCase : PreTrainedTokenizerBase , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : Union[str, Split] = Split.train , __UpperCAmelCase : Optional[str] = None , ) -> str: warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , UpperCAmelCase__ , ) SCREAMING_SNAKE_CASE__ = args SCREAMING_SNAKE_CASE__ = glue_processors[args.task_name]() SCREAMING_SNAKE_CASE__ = glue_output_modes[args.task_name] if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): try: SCREAMING_SNAKE_CASE__ = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file SCREAMING_SNAKE_CASE__ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}""" , ) SCREAMING_SNAKE_CASE__ = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = label_list[2], label_list[1] SCREAMING_SNAKE_CASE__ = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. SCREAMING_SNAKE_CASE__ = cached_features_file + """.lock""" with FileLock(UpperCAmelCase__ ): if os.path.exists(UpperCAmelCase__ ) and not args.overwrite_cache: SCREAMING_SNAKE_CASE__ = time.time() SCREAMING_SNAKE_CASE__ = torch.load(UpperCAmelCase__ ) logger.info( F"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) else: logger.info(F"""Creating features from dataset file at {args.data_dir}""" ) if mode == Split.dev: SCREAMING_SNAKE_CASE__ = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: SCREAMING_SNAKE_CASE__ = self.processor.get_test_examples(args.data_dir ) else: SCREAMING_SNAKE_CASE__ = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: SCREAMING_SNAKE_CASE__ = examples[:limit_length] SCREAMING_SNAKE_CASE__ = glue_convert_examples_to_features( UpperCAmelCase__ , UpperCAmelCase__ , max_length=args.max_seq_length , label_list=UpperCAmelCase__ , output_mode=self.output_mode , ) SCREAMING_SNAKE_CASE__ = time.time() torch.save(self.features , UpperCAmelCase__ ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self : Optional[Any] ) -> Dict: return len(self.features ) def __getitem__( self : int , __UpperCAmelCase : int ) -> InputFeatures: return self.features[i] def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: return self.label_list
165
import os import sys import unittest _lowerCamelCase : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) _lowerCamelCase : Any = os.path.join("""tests""", """models""", """bert""", """test_modeling_bert.py""") _lowerCamelCase : str = os.path.join("""tests""", """models""", """blip""", """test_modeling_blip.py""") class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : Tuple) ->Tuple: '''simple docstring''' A__ = get_test_to_tester_mapping(UpperCAmelCase__) A__ = get_test_to_tester_mapping(UpperCAmelCase__) A__ = {'''BertModelTest''': '''BertModelTester'''} A__ = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Tuple) ->List[Any]: '''simple docstring''' A__ = get_model_to_test_mapping(UpperCAmelCase__) A__ = get_model_to_test_mapping(UpperCAmelCase__) A__ = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } A__ = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->str: '''simple docstring''' A__ = get_model_to_tester_mapping(UpperCAmelCase__) A__ = get_model_to_tester_mapping(UpperCAmelCase__) A__ = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } A__ = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
14
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : List[str] = """▁""" _lowerCAmelCase : List[Any] = {"""vocab_file""": """spiece.model"""} _lowerCAmelCase : List[str] = { """vocab_file""": { """google/reformer-crime-and-punishment""": ( """https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model""" ) } } _lowerCAmelCase : Optional[int] = { """google/reformer-crime-and-punishment""": 5_2_4_2_8_8, } class _UpperCamelCase ( UpperCAmelCase__ ): UpperCAmelCase_ = VOCAB_FILES_NAMES UpperCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ = ["""input_ids""", """attention_mask"""] def __init__( self :Union[str, Any] , lowerCamelCase :Dict , lowerCamelCase :List[str]="</s>" , lowerCamelCase :Optional[Any]="<unk>" , lowerCamelCase :List[str]=[] , lowerCamelCase :Optional[Dict[str, Any]] = None , **lowerCamelCase :Dict , ) -> None: UpperCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase__ , ) UpperCAmelCase__ = vocab_file UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase__ ) @property def UpperCAmelCase_ ( self :List[Any] ) -> List[str]: return self.sp_model.get_piece_size() def UpperCAmelCase_ ( self :Optional[Any] ) -> Dict[str, int]: UpperCAmelCase__ = {self.convert_ids_to_tokens(UpperCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self :Any ) -> Dict: UpperCAmelCase__ = self.__dict__.copy() UpperCAmelCase__ = None return state def __setstate__( self :int , lowerCamelCase :List[str] ) -> Dict: UpperCAmelCase__ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase__ = {} UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase_ ( self :List[str] , lowerCamelCase :str ) -> List[str]: return self.sp_model.encode(UpperCAmelCase__ , out_type=UpperCAmelCase__ ) def UpperCAmelCase_ ( self :List[str] , lowerCamelCase :Any ) -> int: return self.sp_model.piece_to_id(UpperCAmelCase__ ) def UpperCAmelCase_ ( self :List[str] , lowerCamelCase :List[str] ) -> Tuple: if index < self.sp_model.get_piece_size(): UpperCAmelCase__ = self.sp_model.IdToPiece(UpperCAmelCase__ ) return token def UpperCAmelCase_ ( self :List[str] , lowerCamelCase :Dict ) -> Tuple: UpperCAmelCase__ = [] UpperCAmelCase__ = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(UpperCAmelCase__ ) + token UpperCAmelCase__ = [] else: current_sub_tokens.append(UpperCAmelCase__ ) out_string += self.sp_model.decode(UpperCAmelCase__ ) return out_string.strip() def UpperCAmelCase_ ( self :List[str] , lowerCamelCase :str , lowerCamelCase :Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(UpperCAmelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase__ = os.path.join( UpperCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase__ , "wb" ) as fi: UpperCAmelCase__ = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase__ ) return (out_vocab_file,)
169
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class UpperCamelCase_ : '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int = 13 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : Optional[Any]=[16, 32, 64, 128] , UpperCAmelCase__ : int = 7 , UpperCAmelCase__ : int = 4 , UpperCAmelCase__ : int = 37 , UpperCAmelCase__ : str = "gelu" , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : int = 10 , UpperCAmelCase__ : float = 0.02 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : List[int] = [2, 2, 2, 2] , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 2 , ) ->List[Any]: '''simple docstring''' A__ = parent A__ = batch_size A__ = image_size A__ = patch_size A__ = num_channels A__ = is_training A__ = use_labels A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = type_sequence_label_size A__ = initializer_range A__ = encoder_stride A__ = num_attention_outputs A__ = embed_dim A__ = embed_dim + 1 A__ = resolution A__ = depths A__ = hidden_sizes A__ = dim A__ = mlp_expansion_ratio def SCREAMING_SNAKE_CASE ( self : List[Any]) ->str: '''simple docstring''' A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) A__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : int) ->str: '''simple docstring''' return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict) ->Dict: '''simple docstring''' A__ = TFEfficientFormerModel(config=UpperCAmelCase__) A__ = model(UpperCAmelCase__ , training=UpperCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str) ->Union[str, Any]: '''simple docstring''' A__ = self.type_sequence_label_size A__ = TFEfficientFormerForImageClassification(UpperCAmelCase__) A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__ , training=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images A__ = 1 A__ = TFEfficientFormerForImageClassification(UpperCAmelCase__) A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def SCREAMING_SNAKE_CASE ( self : int) ->List[str]: '''simple docstring''' A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) UpperCAmelCase__ = ( { '''feature-extraction''': TFEfficientFormerModel, '''image-classification''': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[str]: '''simple docstring''' A__ = TFEfficientFormerModelTester(self) A__ = ConfigTester( self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=37) def SCREAMING_SNAKE_CASE ( self : int) ->Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''EfficientFormer does not use inputs_embeds''') def SCREAMING_SNAKE_CASE ( self : List[str]) ->Dict: '''simple docstring''' pass @unittest.skip(reason='''EfficientFormer does not support input and output embeddings''') def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[Any]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(UpperCAmelCase__) A__ = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str) ->Any: '''simple docstring''' def check_hidden_states_output(UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict): A__ = model_class(UpperCAmelCase__) A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__) A__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A__ = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__) if hasattr(self.model_tester , '''encoder_seq_length'''): A__ = self.model_tester.encoder_seq_length if hasattr(self.model_tester , '''chunk_length''') and self.model_tester.chunk_length > 1: A__ = seq_length * self.model_tester.chunk_length else: A__ = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: A__ = outputs.decoder_hidden_states self.asseretIsInstance(UpperCAmelCase__ , (list, tuple)) self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__) A__ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''decoder_seq_length''' , UpperCAmelCase__) self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [decoder_seq_length, self.model_tester.hidden_size] , ) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict=False) ->int: '''simple docstring''' A__ = super()._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__) @unittest.skip(reason='''EfficientFormer does not implement masked image modeling yet''') def SCREAMING_SNAKE_CASE ( self : str) ->str: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any) ->Tuple: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__) @slow def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]: '''simple docstring''' for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFEfficientFormerModel.from_pretrained(UpperCAmelCase__) self.assertIsNotNone(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any) ->str: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True A__ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''encoder_seq_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''key_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''chunk_length''' , UpperCAmelCase__) if chunk_length is not None and hasattr(self.model_tester , '''num_hashes'''): A__ = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: A__ = True A__ = False A__ = True A__ = model_class(UpperCAmelCase__) A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__) A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase__) , self.model_tester.num_attention_outputs) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ = True A__ = model_class(UpperCAmelCase__) A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__) A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase__) , self.model_tester.num_attention_outputs) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:]) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[Any]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model A__ = model_class(UpperCAmelCase__) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes A__ = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=UpperCAmelCase__) for key, val in model.input_signature.items() if key in model.dummy_inputs } A__ = model(UpperCAmelCase__) self.assertTrue(outputs_dict is not None) def SCREAMING_SNAKE_CASE ( ) -> Any: """simple docstring""" A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: '''simple docstring''' return ( EfficientFormerImageProcessor.from_pretrained('''snap-research/efficientformer-l1-300''') if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any: '''simple docstring''' A__ = TFEfficientFormerForImageClassification.from_pretrained('''snap-research/efficientformer-l1-300''') A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''') # forward pass A__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__) # verify the logits A__ = tf.TensorShape((1, 1_000)) self.assertEqual(outputs.logits.shape , UpperCAmelCase__) A__ = tf.constant([-0.0555, 0.4825, -0.0852]) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4)) @slow def SCREAMING_SNAKE_CASE ( self : Dict) ->int: '''simple docstring''' A__ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( '''snap-research/efficientformer-l1-300''') A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''') # forward pass A__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__) # verify the logits A__ = tf.TensorShape((1, 1_000)) self.assertEqual(outputs.logits.shape , UpperCAmelCase__) A__ = tf.constant([-0.1312, 0.4353, -1.0499]) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4))
14
0
"""simple docstring""" from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
301
from __future__ import annotations def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> tuple[float, list[float]]: """simple docstring""" A__ = list(range(len(lowercase_ ) ) ) A__ = [v / w for v, w in zip(lowercase_ , lowercase_ )] index.sort(key=lambda lowercase_ : ratio[i] , reverse=lowercase_ ) A__ = 0 A__ = [0] * len(lowercase_ ) for i in index: if weight[i] <= capacity: A__ = 1 max_value += value[i] capacity -= weight[i] else: A__ = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
14
0
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint _A = { """169M""": 12, """430M""": 24, """1B5""": 24, """3B""": 32, """7B""": 32, """14B""": 40, } _A = { """169M""": 768, """430M""": 1_024, """1B5""": 2_048, """3B""": 2_560, """7B""": 4_096, """14B""": 5_120, } def lowerCamelCase__ ( a__ : Tuple ) -> int: UpperCamelCase_ = list(state_dict.keys() ) for name in state_dict_keys: UpperCamelCase_ = state_dict.pop(lowercase_ ) # emb -> embedding if name.startswith("""emb.""" ): UpperCamelCase_ = name.replace("""emb.""" , """embeddings.""" ) # ln_0 -> pre_ln (only present at block 0) if name.startswith("""blocks.0.ln0""" ): UpperCamelCase_ = name.replace("""blocks.0.ln0""" , """blocks.0.pre_ln""" ) # att -> attention UpperCamelCase_ = re.sub(r"""blocks\.(\d+)\.att""" , r"""blocks.\1.attention""" , lowercase_ ) # ffn -> feed_forward UpperCamelCase_ = re.sub(r"""blocks\.(\d+)\.ffn""" , r"""blocks.\1.feed_forward""" , lowercase_ ) # time_mix_k -> time_mix_key and reshape if name.endswith(""".time_mix_k""" ): UpperCamelCase_ = name.replace(""".time_mix_k""" , """.time_mix_key""" ) # time_mix_v -> time_mix_value and reshape if name.endswith(""".time_mix_v""" ): UpperCamelCase_ = name.replace(""".time_mix_v""" , """.time_mix_value""" ) # time_mix_r -> time_mix_key and reshape if name.endswith(""".time_mix_r""" ): UpperCamelCase_ = name.replace(""".time_mix_r""" , """.time_mix_receptance""" ) if name != "head.weight": UpperCamelCase_ = """rwkv.""" + name UpperCamelCase_ = weight return state_dict def lowerCamelCase__ ( a__ : Tuple , a__ : Optional[int] , a__ : List[str] , a__ : Tuple=None , a__ : List[str]=None , a__ : Dict=False , a__ : str=None ) -> Any: if tokenizer_file is None: print("""No `--tokenizer_file` provided, we will use the default tokenizer.""" ) UpperCamelCase_ = 5_0277 UpperCamelCase_ = AutoTokenizer.from_pretrained("""EleutherAI/gpt-neox-20b""" ) else: UpperCamelCase_ = PreTrainedTokenizerFast(tokenizer_file=lowercase_ ) UpperCamelCase_ = len(lowercase_ ) tokenizer.save_pretrained(lowercase_ ) # 2. Build the config UpperCamelCase_ = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: UpperCamelCase_ = candidate break if size is None: raise ValueError("""Could not infer the size, please provide it with the `--size` argument.""" ) if size not in possible_sizes: raise ValueError(f'''`size` should be one of {possible_sizes}, got {size}.''' ) UpperCamelCase_ = RwkvConfig( vocab_size=lowercase_ , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(lowercase_ ) # 3. Download model file then convert state_dict UpperCamelCase_ = hf_hub_download(lowercase_ , lowercase_ ) UpperCamelCase_ = torch.load(lowercase_ , map_location="""cpu""" ) UpperCamelCase_ = convert_state_dict(lowercase_ ) # 4. Split in shards and save UpperCamelCase_ , UpperCamelCase_ = shard_checkpoint(lowercase_ ) for shard_file, shard in shards.items(): torch.save(lowercase_ , os.path.join(lowercase_ , lowercase_ ) ) if index is not None: UpperCamelCase_ = os.path.join(lowercase_ , lowercase_ ) # Save the index as well with open(lowercase_ , """w""" , encoding="""utf-8""" ) as f: UpperCamelCase_ = json.dumps(lowercase_ , indent=2 , sort_keys=lowercase_ ) + """\n""" f.write(lowercase_ ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( """Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.""" ) UpperCamelCase_ = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: UpperCamelCase_ = torch.load(os.path.join(lowercase_ , lowercase_ ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(lowercase_ , lowercase_ ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError("""Please provide a `model_name` to push the model to the Hub.""" ) UpperCamelCase_ = AutoModelForCausalLM.from_pretrained(lowercase_ ) model.push_to_hub(lowercase_ , max_shard_size="""2GB""" ) tokenizer.push_to_hub(lowercase_ ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--repo_id''', default=None, type=str, required=True, help='''Repo ID from which to pull the checkpoint.''' ) parser.add_argument( '''--checkpoint_file''', default=None, type=str, required=True, help='''Name of the checkpoint file in the repo.''' ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''Where to save the converted model.''' ) parser.add_argument( '''--tokenizer_file''', default=None, type=str, help='''Path to the tokenizer file to use (if not provided, only the model is converted).''', ) parser.add_argument( '''--size''', default=None, type=str, help='''Size of the model. Will be inferred from the `checkpoint_file` if not passed.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Push to the Hub the converted model.''', ) parser.add_argument( '''--model_name''', default=None, type=str, help='''Name of the pushed model on the Hub, including the username / organization.''', ) _A = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
122
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[Any]: """simple docstring""" A__ = args.log_outputs A__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric A__ = load_metric('''wer''' ) A__ = load_metric('''cer''' ) # compute metrics A__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) A__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results A__ = f"""WER: {wer_result}\nCER: {cer_result}""" print(lowercase_ ) with open(f"""{dataset_id}_eval_results.txt""" , '''w''' ) as f: f.write(lowercase_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: A__ = f"""log_{dataset_id}_predictions.txt""" A__ = f"""log_{dataset_id}_targets.txt""" with open(lowercase_ , '''w''' ) as p, open(lowercase_ , '''w''' ) as t: # mapping function to write output def write_to_file(lowercase_ , lowercase_ ): p.write(f"""{i}""" + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(f"""{i}""" + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(lowercase_ , with_indices=lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: """simple docstring""" A__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training A__ = re.sub(lowercase_ , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! A__ = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: A__ = ''' '''.join(text.split(lowercase_ ) ) return text def SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: """simple docstring""" A__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowercase_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor A__ = AutoFeatureExtractor.from_pretrained(args.model_id ) A__ = feature_extractor.sampling_rate # resample audio A__ = dataset.cast_column('''audio''' , Audio(sampling_rate=lowercase_ ) ) # load eval pipeline if args.device is None: A__ = 0 if torch.cuda.is_available() else -1 A__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(lowercase_ ): A__ = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) A__ = prediction['''text'''] A__ = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples A__ = dataset.map(lowercase_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(lowercase_ , lowercase_ ) if __name__ == "__main__": _lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) _lowerCamelCase : str = parser.parse_args() main(args)
14
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer _UpperCamelCase : str = logging.get_logger(__name__) _UpperCamelCase : Optional[int] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _UpperCamelCase : Optional[int] = { """vocab_file""": { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt""" ), } } _UpperCamelCase : Optional[Any] = { """junnyu/roformer_chinese_small""": 1_5_3_6, """junnyu/roformer_chinese_base""": 1_5_3_6, """junnyu/roformer_chinese_char_small""": 5_1_2, """junnyu/roformer_chinese_char_base""": 5_1_2, """junnyu/roformer_small_discriminator""": 1_2_8, """junnyu/roformer_small_generator""": 1_2_8, } _UpperCamelCase : List[Any] = { """junnyu/roformer_chinese_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_base""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_base""": {"""do_lower_case""": True}, """junnyu/roformer_small_discriminator""": {"""do_lower_case""": True}, """junnyu/roformer_small_generator""": {"""do_lower_case""": True}, } class a ( UpperCAmelCase__ ): UpperCAmelCase_ : List[str] =VOCAB_FILES_NAMES UpperCAmelCase_ : str =PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : str =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Dict =PRETRAINED_INIT_CONFIGURATION UpperCAmelCase_ : Union[str, Any] =RoFormerTokenizer def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase="[UNK]" , _lowerCamelCase="[SEP]" , _lowerCamelCase="[PAD]" , _lowerCamelCase="[CLS]" , _lowerCamelCase="[MASK]" , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ): super().__init__( UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , do_lower_case=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , tokenize_chinese_chars=UpperCAmelCase__ , strip_accents=UpperCAmelCase__ , **UpperCAmelCase__ , ) lowercase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('lowercase' , UpperCAmelCase__ ) != do_lower_case or pre_tok_state.get('strip_accents' , UpperCAmelCase__ ) != strip_accents ): lowercase = getattr(UpperCAmelCase__ , pre_tok_state.pop('type' ) ) lowercase = do_lower_case lowercase = strip_accents lowercase = pre_tok_class(**UpperCAmelCase__ ) lowercase = do_lower_case def __getstate__( self ): lowercase = self.__dict__.copy() lowercase = BertPreTokenizer() return state def __setstate__( self , _lowerCamelCase ): lowercase = d lowercase = self.__dict__['_tokenizer'].get_vocab() lowercase = PreTokenizer.custom(JiebaPreTokenizer(UpperCAmelCase__ ) ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase=None ): lowercase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ): lowercase = [self.sep_token_id] lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ): lowercase = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__ ) return tuple(UpperCAmelCase__ ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=False , **_lowerCamelCase , ): lowercase = BertPreTokenizer() return super().save_pretrained(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ )
220
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowerCamelCase : int = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Tuple = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys _lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
0
"""simple docstring""" from random import randint, random def _snake_case ( lowerCamelCase__ : int , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Optional[Any] = False , lowerCamelCase__ : int = False , lowerCamelCase__ : List[str] = 5 , ) -> list: lowerCamelCase_ : Optional[int] =[[-1] * number_of_cells] # Create a highway without any car lowerCamelCase_ : Dict =0 lowerCamelCase_ : Optional[Any] =max(lowercase_ , 0 ) while i < number_of_cells: lowerCamelCase_ : List[str] =( randint(0 , lowercase_ ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def _snake_case ( lowerCamelCase__ : Optional[int] , lowerCamelCase__ : int ) -> int: lowerCamelCase_ : Optional[int] =0 lowerCamelCase_ : Tuple =highway_now[car_index + 1 :] for cell in range(len(lowercase_ ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(lowercase_ , -1 ) def _snake_case ( lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[Any] ) -> list: lowerCamelCase_ : str =len(lowercase_ ) # Beforce calculations, the highway is empty lowerCamelCase_ : Tuple =[-1] * number_of_cells for car_index in range(lowercase_ ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed lowerCamelCase_ : Dict =min(highway_now[car_index] + 1 , lowercase_ ) # Number of empty cell before the next car lowerCamelCase_ : Tuple =get_distance(lowercase_ , lowercase_ ) - 1 # We can't have the car causing an accident lowerCamelCase_ : Any =min(next_highway[car_index] , lowercase_ ) if random() < probability: # Randomly, a driver will slow down lowerCamelCase_ : Tuple =max(next_highway[car_index] - 1 , 0 ) return next_highway def _snake_case ( lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : List[str] ) -> list: lowerCamelCase_ : Optional[Any] =len(highway[0] ) for i in range(lowercase_ ): lowerCamelCase_ : Dict =update(highway[i] , lowercase_ , lowercase_ ) lowerCamelCase_ : Optional[Any] =[-1] * number_of_cells for car_index in range(lowercase_ ): lowerCamelCase_ : List[str] =next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) lowerCamelCase_ : Tuple =(car_index + speed) % number_of_cells # Commit the change of position lowerCamelCase_ : int =speed highway.append(lowercase_ ) return highway if __name__ == "__main__": import doctest doctest.testmod()
144
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : List[str] = {"""configuration_vit_msn""": ["""VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMSNConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = [ """VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMSNModel""", """ViTMSNForImageClassification""", """ViTMSNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys _lowerCamelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
0
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def _a ( SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" UpperCamelCase__ : Dict = tmp_path / '''file.csv''' UpperCamelCase__ : Any = textwrap.dedent( '''\ header1,header2 1,2 10,20 ''' ) with open(lowercase_ , '''w''' ) as f: f.write(lowercase_ ) return str(lowercase_ ) @pytest.fixture def _a ( SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" UpperCamelCase__ : Union[str, Any] = tmp_path / '''malformed_file.csv''' UpperCamelCase__ : Any = textwrap.dedent( '''\ header1,header2 1,2 10,20, ''' ) with open(lowercase_ , '''w''' ) as f: f.write(lowercase_ ) return str(lowercase_ ) @pytest.fixture def _a ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Any ): """simple docstring""" UpperCamelCase__ : Any = tmp_path / '''csv_with_image.csv''' UpperCamelCase__ : str = textwrap.dedent( F"\\n image\n {image_file}\n " ) with open(lowercase_ , '''w''' ) as f: f.write(lowercase_ ) return str(lowercase_ ) @pytest.fixture def _a ( SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" UpperCamelCase__ : Any = tmp_path / '''csv_with_label.csv''' UpperCamelCase__ : List[str] = textwrap.dedent( '''\ label good bad good ''' ) with open(lowercase_ , '''w''' ) as f: f.write(lowercase_ ) return str(lowercase_ ) @pytest.fixture def _a ( SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" UpperCamelCase__ : Union[str, Any] = tmp_path / '''csv_with_int_list.csv''' UpperCamelCase__ : Tuple = textwrap.dedent( '''\ int_list 1 2 3 4 5 6 7 8 9 ''' ) with open(lowercase_ , '''w''' ) as f: f.write(lowercase_ ) return str(lowercase_ ) def _a ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" UpperCamelCase__ : Optional[int] = Csv() UpperCamelCase__ : List[str] = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(lowercase_ , match='''Error tokenizing data''' ): for _ in generator: pass assert any( record.levelname == '''ERROR''' and '''Failed to read file''' in record.message and os.path.basename(lowercase_ ) in record.message for record in caplog.records ) @require_pil def _a ( SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" with open(lowercase_ , encoding='''utf-8''' ) as f: UpperCamelCase__ : List[Any] = f.read().splitlines()[1] UpperCamelCase__ : List[str] = Csv(encoding='''utf-8''' , features=Features({'''image''': Image()} ) ) UpperCamelCase__ : str = csv._generate_tables([[csv_file_with_image]] ) UpperCamelCase__ : List[str] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''image''' ).type == Image()() UpperCamelCase__ : Any = pa_table.to_pydict()['''image'''] assert generated_content == [{"path": image_file, "bytes": None}] def _a ( SCREAMING_SNAKE_CASE : Any ): """simple docstring""" with open(lowercase_ , encoding='''utf-8''' ) as f: UpperCamelCase__ : Any = f.read().splitlines()[1:] UpperCamelCase__ : str = Csv(encoding='''utf-8''' , features=Features({'''label''': ClassLabel(names=['''good''', '''bad'''] )} ) ) UpperCamelCase__ : Union[str, Any] = csv._generate_tables([[csv_file_with_label]] ) UpperCamelCase__ : Dict = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''label''' ).type == ClassLabel(names=['''good''', '''bad'''] )() UpperCamelCase__ : Tuple = pa_table.to_pydict()['''label'''] assert generated_content == [ClassLabel(names=['''good''', '''bad'''] ).straint(lowercase_ ) for label in labels] def _a ( SCREAMING_SNAKE_CASE : Any ): """simple docstring""" UpperCamelCase__ : Dict = Csv(encoding='''utf-8''' , sep=''',''' , converters={'''int_list''': lambda SCREAMING_SNAKE_CASE : [int(lowercase_ ) for i in x.split()]} ) UpperCamelCase__ : str = csv._generate_tables([[csv_file_with_int_list]] ) UpperCamelCase__ : Optional[Any] = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('''int_list''' ).type ) UpperCamelCase__ : Dict = pa_table.to_pydict()['''int_list'''] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
146
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> "list[int]": """simple docstring""" if upper_limit < 0: raise ValueError('''Limit for the Catalan sequence must be ≥ 0''' ) A__ = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 A__ = 1 if upper_limit > 0: A__ = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(lowercase_ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""") print("""\n*** Enter -1 at any time to quit ***""") print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""") try: while True: _lowerCamelCase : List[Any] = int(input().strip()) if N < 0: print("""\n********* Goodbye!! ************""") break else: print(F'''The Catalan numbers from 0 through {N} are:''') print(catalan_numbers(N)) print("""Try another upper limit for the sequence: """, end="""""") except (NameError, ValueError): print("""\n********* Invalid input, goodbye! ************\n""") import doctest doctest.testmod()
14
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { """shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""", # See all Nat models at https://huggingface.co/models?filter=nat } class _A ( UpperCAmelCase__ , UpperCAmelCase__ ): _SCREAMING_SNAKE_CASE : List[Any] = "nat" _SCREAMING_SNAKE_CASE : Optional[int] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , __UpperCAmelCase=4 , __UpperCAmelCase=3 , __UpperCAmelCase=64 , __UpperCAmelCase=[3, 4, 6, 5] , __UpperCAmelCase=[2, 4, 8, 16] , __UpperCAmelCase=7 , __UpperCAmelCase=3.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=0.0 , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> str: '''simple docstring''' super().__init__(**UpperCAmelCase__ ) __UpperCAmelCase : Tuple = patch_size __UpperCAmelCase : Union[str, Any] = num_channels __UpperCAmelCase : str = embed_dim __UpperCAmelCase : List[str] = depths __UpperCAmelCase : List[str] = len(UpperCAmelCase__ ) __UpperCAmelCase : Optional[Any] = num_heads __UpperCAmelCase : int = kernel_size __UpperCAmelCase : Any = mlp_ratio __UpperCAmelCase : int = qkv_bias __UpperCAmelCase : int = hidden_dropout_prob __UpperCAmelCase : Any = attention_probs_dropout_prob __UpperCAmelCase : List[str] = drop_path_rate __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : str = layer_norm_eps __UpperCAmelCase : Union[str, Any] = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __UpperCAmelCase : Union[str, Any] = int(embed_dim * 2 ** (len(UpperCAmelCase__ ) - 1) ) __UpperCAmelCase : int = layer_scale_init_value __UpperCAmelCase : Optional[int] = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(UpperCAmelCase__ ) + 1 )] __UpperCAmelCase , __UpperCAmelCase : List[Any] = get_aligned_output_features_output_indices( out_features=UpperCAmelCase__ , out_indices=UpperCAmelCase__ , stage_names=self.stage_names )
254
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict: """simple docstring""" A__ = args.pruning_method A__ = args.threshold A__ = args.model_name_or_path.rstrip('''/''' ) A__ = args.target_model_path print(f"""Load fine-pruned model from {model_name_or_path}""" ) A__ = torch.load(os.path.join(lowercase_ , '''pytorch_model.bin''' ) ) A__ = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: A__ = tensor print(f"""Copied layer {name}""" ) elif "classifier" in name or "qa_output" in name: A__ = tensor print(f"""Copied layer {name}""" ) elif "bias" in name: A__ = tensor print(f"""Copied layer {name}""" ) else: if pruning_method == "magnitude": A__ = MagnitudeBinarizer.apply(inputs=lowercase_ , threshold=lowercase_ ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "topK": if "mask_scores" in name: continue A__ = name[:-6] A__ = model[f"""{prefix_}mask_scores"""] A__ = TopKBinarizer.apply(lowercase_ , lowercase_ ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue A__ = name[:-6] A__ = model[f"""{prefix_}mask_scores"""] A__ = ThresholdBinarizer.apply(lowercase_ , lowercase_ , lowercase_ ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "l0": if "mask_scores" in name: continue A__ = name[:-6] A__ = model[f"""{prefix_}mask_scores"""] A__ , A__ = -0.1, 1.1 A__ = torch.sigmoid(lowercase_ ) A__ = s * (r - l) + l A__ = s_bar.clamp(min=0.0 , max=1.0 ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) else: raise ValueError('''Unknown pruning method''' ) if target_model_path is None: A__ = os.path.join( os.path.dirname(lowercase_ ) , f"""bertarized_{os.path.basename(lowercase_ )}""" ) if not os.path.isdir(lowercase_ ): shutil.copytree(lowercase_ , lowercase_ ) print(f"""\nCreated folder {target_model_path}""" ) torch.save(lowercase_ , os.path.join(lowercase_ , '''pytorch_model.bin''' ) ) print('''\nPruned model saved! See you later!''' ) if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( """--pruning_method""", choices=["""l0""", """magnitude""", """topK""", """sigmoied_threshold"""], type=str, required=True, help=( """Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,""" """ sigmoied_threshold = Soft movement pruning)""" ), ) parser.add_argument( """--threshold""", type=float, required=False, help=( """For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.""" """For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.""" """Not needed for `l0`""" ), ) parser.add_argument( """--model_name_or_path""", type=str, required=True, help="""Folder containing the model that was previously fine-pruned""", ) parser.add_argument( """--target_model_path""", default=None, type=str, required=False, help="""Folder containing the model that was previously fine-pruned""", ) _lowerCamelCase : int = parser.parse_args() main(args)
14
0
"""simple docstring""" def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : str ): """simple docstring""" return int(input_a == input_a == 0 ) def A_ ( ): """simple docstring""" print('''Truth Table of NOR Gate:''' ) print('''| Input 1 | Input 2 | Output |''' ) print(f'| 0 | 0 | {nor_gate(0, 0 )} |' ) print(f'| 0 | 1 | {nor_gate(0, 1 )} |' ) print(f'| 1 | 0 | {nor_gate(1, 0 )} |' ) print(f'| 1 | 1 | {nor_gate(1, 1 )} |' ) if __name__ == "__main__": import doctest doctest.testmod() main()
320
_lowerCamelCase : Optional[int] = 65521 def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: """simple docstring""" A__ = 1 A__ = 0 for plain_chr in plain_text: A__ = (a + ord(lowercase_ )) % MOD_ADLER A__ = (b + a) % MOD_ADLER return (b << 16) | a
14
0
from __future__ import annotations def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = False , ) -> tuple[int, float, str]: """simple docstring""" snake_case__ : Union[str, Any] = cipher_alphabet or [chr(lowercase_ ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) snake_case__ : Dict = { '''a''': 0.08_497, '''b''': 0.01_492, '''c''': 0.02_202, '''d''': 0.04_253, '''e''': 0.11_162, '''f''': 0.02_228, '''g''': 0.02_015, '''h''': 0.06_094, '''i''': 0.07_546, '''j''': 0.00_153, '''k''': 0.01_292, '''l''': 0.04_025, '''m''': 0.02_406, '''n''': 0.06_749, '''o''': 0.07_507, '''p''': 0.01_929, '''q''': 0.00_095, '''r''': 0.07_587, '''s''': 0.06_327, '''t''': 0.09_356, '''u''': 0.02_758, '''v''': 0.00_978, '''w''': 0.02_560, '''x''': 0.00_150, '''y''': 0.01_994, '''z''': 0.00_077, } else: # Custom frequencies dictionary snake_case__ : int = frequencies_dict if not case_sensitive: snake_case__ : Dict = ciphertext.lower() # Chi squared statistic values snake_case__ : List[Any] = {} # cycle through all of the shifts for shift in range(len(lowercase_ ) ): snake_case__ : Union[str, Any] = '''''' # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet snake_case__ : List[str] = (alphabet_letters.index(letter.lower() ) - shift) % len( lowercase_ ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter snake_case__ : Any = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: snake_case__ : Union[str, Any] = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message snake_case__ : List[str] = decrypted_with_shift.lower().count(lowercase_ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies snake_case__ : int = frequencies[letter] * occurrences # Complete the chi squared statistic formula snake_case__ : int = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message snake_case__ : List[str] = decrypted_with_shift.count(lowercase_ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies snake_case__ : Dict = frequencies[letter] * occurrences # Complete the chi squared statistic formula snake_case__ : Optional[int] = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary snake_case__ : int = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(__lowerCAmelCase ) -> tuple[float, str]: return chi_squared_statistic_values[key] snake_case__ : Dict = min( lowercase_ , key=lowercase_ , ) # Get all the data from the most likely cipher (key, decoded message) ( ( snake_case__ ) , ( snake_case__ ) , ) : Union[str, Any] = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
230
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : Tuple = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCamelCase : Union[str, Any] = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCamelCase : str = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCamelCase : str = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCamelCase : Any = { """facebook/dpr-ctx_encoder-single-nq-base""": 512, """facebook/dpr-ctx_encoder-multiset-base""": 512, } _lowerCamelCase : List[str] = { """facebook/dpr-question_encoder-single-nq-base""": 512, """facebook/dpr-question_encoder-multiset-base""": 512, } _lowerCamelCase : Tuple = { """facebook/dpr-reader-single-nq-base""": 512, """facebook/dpr-reader-multiset-base""": 512, } _lowerCamelCase : Optional[Any] = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCamelCase : Optional[int] = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCamelCase : Optional[Any] = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = DPRContextEncoderTokenizer class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = DPRQuestionEncoderTokenizer _lowerCamelCase : int = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) _lowerCamelCase : Any = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) _lowerCamelCase : Dict = r""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(UpperCAmelCase__ ) class UpperCamelCase_ : '''simple docstring''' def __call__( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Union[bool, str] = False , UpperCAmelCase__ : Union[bool, str] = False , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : Optional[bool] = None , **UpperCAmelCase__ : Optional[int] , ) ->BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , ) elif titles is None or texts is None: A__ = titles if texts is None else texts return super().__call__( UpperCAmelCase__ , UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , ) A__ = titles if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [titles] A__ = texts if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [texts] A__ = len(UpperCAmelCase__) A__ = questions if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [questions] * n_passages assert len(UpperCAmelCase__) == len( UpperCAmelCase__), f"""There should be as many titles than texts but got {len(UpperCAmelCase__)} titles and {len(UpperCAmelCase__)} texts.""" A__ = super().__call__(UpperCAmelCase__ , UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__)['''input_ids'''] A__ = super().__call__(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__)['''input_ids'''] A__ = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(UpperCAmelCase__ , UpperCAmelCase__) ] } if return_attention_mask is not False: A__ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids]) A__ = attention_mask return self.pad(UpperCAmelCase__ , padding=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : BatchEncoding , UpperCAmelCase__ : DPRReaderOutput , UpperCAmelCase__ : int = 16 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 4 , ) ->List[DPRSpanPrediction]: '''simple docstring''' A__ = reader_input['''input_ids'''] A__ , A__ , A__ = reader_output[:3] A__ = len(UpperCAmelCase__) A__ = sorted(range(UpperCAmelCase__) , reverse=UpperCAmelCase__ , key=relevance_logits.__getitem__) A__ = [] for doc_id in sorted_docs: A__ = list(input_ids[doc_id]) # assuming question & title information is at the beginning of the sequence A__ = sequence_ids.index(self.sep_token_id , 2) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: A__ = sequence_ids.index(self.pad_token_id) else: A__ = len(UpperCAmelCase__) A__ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=UpperCAmelCase__ , top_spans=UpperCAmelCase__ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=UpperCAmelCase__ , start_index=UpperCAmelCase__ , end_index=UpperCAmelCase__ , text=self.decode(sequence_ids[start_index : end_index + 1]) , )) if len(UpperCAmelCase__) >= num_spans: break return nbest_spans_predictions[:num_spans] def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , ) ->List[DPRSpanPrediction]: '''simple docstring''' A__ = [] for start_index, start_score in enumerate(UpperCAmelCase__): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]): scores.append(((start_index, start_index + answer_length), start_score + end_score)) A__ = sorted(UpperCAmelCase__ , key=lambda UpperCAmelCase__: x[1] , reverse=UpperCAmelCase__) A__ = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f"""Wrong span indices: [{start_index}:{end_index}]""" A__ = end_index - start_index + 1 assert length <= max_answer_length, f"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals): continue chosen_span_intervals.append((start_index, end_index)) if len(UpperCAmelCase__) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCAmelCase__ ) class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = READER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = READER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = ['''input_ids''', '''attention_mask'''] UpperCAmelCase__ = DPRReaderTokenizer
14
0
"""simple docstring""" import requests from bsa import BeautifulSoup def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = BeautifulSoup(requests.get(lowercase_ , params=lowercase_ ).content , "html.parser" ) __lowerCAmelCase = soup.find("div" , attrs={"class": "gs_ri"} ) __lowerCAmelCase = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": A : Optional[Any] = { """title""": ( """Precisely geometry controlled microsupercapacitors for ultrahigh areal """ """capacitance, volumetric capacitance, and energy density""" ), """journal""": """Chem. Mater.""", """volume""": 3_0, """pages""": """3979-3990""", """year""": 2_0_1_8, """hl""": """en""", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
57
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Any = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''encoder-decoder''' UpperCAmelCase__ = True def __init__( self : List[str] , **UpperCAmelCase__ : Union[str, Any]) ->List[Any]: '''simple docstring''' super().__init__(**UpperCAmelCase__) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" A__ = kwargs.pop('''encoder''') A__ = encoder_config.pop('''model_type''') A__ = kwargs.pop('''decoder''') A__ = decoder_config.pop('''model_type''') from ..auto.configuration_auto import AutoConfig A__ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__) A__ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__) A__ = True @classmethod def SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , UpperCAmelCase__ : PretrainedConfig , UpperCAmelCase__ : PretrainedConfig , **UpperCAmelCase__ : Union[str, Any]) ->PretrainedConfig: '''simple docstring''' logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''') A__ = True A__ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str) ->Optional[Any]: '''simple docstring''' A__ = copy.deepcopy(self.__dict__) A__ = self.encoder.to_dict() A__ = self.decoder.to_dict() A__ = self.__class__.model_type return output
14
0
"""simple docstring""" from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer A_ : Tuple = logging.get_logger(__name__) A_ : Tuple = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } A_ : Optional[Any] = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } A_ : str = { """facebook/blenderbot_small-90M""": 512, } class lowerCamelCase (UpperCAmelCase__ ): lowerCamelCase__ : str = VOCAB_FILES_NAMES lowerCamelCase__ : List[str] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : str = BlenderbotSmallTokenizer def __init__( self : List[str] , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : Tuple=None , __UpperCAmelCase : Optional[Any]="<|endoftext|>" , __UpperCAmelCase : Union[str, Any]="<|endoftext|>" , __UpperCAmelCase : Any="<|endoftext|>" , __UpperCAmelCase : Union[str, Any]=False , __UpperCAmelCase : int=True , **__UpperCAmelCase : Dict , ) -> Tuple: super().__init__( ByteLevelBPETokenizer( vocab=UpperCAmelCase__ , merges=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ , ) , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , **UpperCAmelCase__ , ) SCREAMING_SNAKE_CASE__ = add_prefix_space def SCREAMING_SNAKE_CASE ( self : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[Any]=None ) -> Dict: SCREAMING_SNAKE_CASE__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE ( self : Dict , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
165
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any: """simple docstring""" A__ = [0] * len(lowercase_ ) A__ = [] A__ = [1] * len(lowercase_ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(lowercase_ ) ): if indegree[i] == 0: queue.append(lowercase_ ) while queue: A__ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: A__ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(lowercase_ ) print(max(lowercase_ ) ) # Adjacency list of Graph _lowerCamelCase : Optional[int] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
14
0
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class _UpperCamelCase : def __init__( self :Optional[int] , lowerCamelCase :List[Any] , lowerCamelCase :int = 13 , lowerCamelCase :int = 64 , lowerCamelCase :int = 2 , lowerCamelCase :int = 3 , lowerCamelCase :int = 3 , lowerCamelCase :bool = True , lowerCamelCase :bool = True , lowerCamelCase :int = 128 , lowerCamelCase :Optional[Any]=[16, 32, 64, 128] , lowerCamelCase :int = 7 , lowerCamelCase :int = 4 , lowerCamelCase :int = 37 , lowerCamelCase :str = "gelu" , lowerCamelCase :float = 0.1 , lowerCamelCase :float = 0.1 , lowerCamelCase :int = 10 , lowerCamelCase :float = 0.02 , lowerCamelCase :int = 2 , lowerCamelCase :int = 1 , lowerCamelCase :int = 128 , lowerCamelCase :List[int] = [2, 2, 2, 2] , lowerCamelCase :int = 2 , lowerCamelCase :int = 2 , ) -> List[Any]: UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = image_size UpperCAmelCase__ = patch_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = is_training UpperCAmelCase__ = use_labels UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = encoder_stride UpperCAmelCase__ = num_attention_outputs UpperCAmelCase__ = embed_dim UpperCAmelCase__ = embed_dim + 1 UpperCAmelCase__ = resolution UpperCAmelCase__ = depths UpperCAmelCase__ = hidden_sizes UpperCAmelCase__ = dim UpperCAmelCase__ = mlp_expansion_ratio def UpperCAmelCase_ ( self :List[Any] ) -> str: UpperCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self :int ) -> str: return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def UpperCAmelCase_ ( self :Optional[int] , lowerCamelCase :Dict , lowerCamelCase :List[str] , lowerCamelCase :Dict ) -> Dict: UpperCAmelCase__ = TFEfficientFormerModel(config=UpperCAmelCase__ ) UpperCAmelCase__ = model(UpperCAmelCase__ , training=UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self :int , lowerCamelCase :Dict , lowerCamelCase :Dict , lowerCamelCase :str ) -> Union[str, Any]: UpperCAmelCase__ = self.type_sequence_label_size UpperCAmelCase__ = TFEfficientFormerForImageClassification(UpperCAmelCase__ ) UpperCAmelCase__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__ , training=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase__ = 1 UpperCAmelCase__ = TFEfficientFormerForImageClassification(UpperCAmelCase__ ) UpperCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase_ ( self :int ) -> List[str]: UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class _UpperCamelCase ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): UpperCAmelCase_ = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) UpperCAmelCase_ = ( { """feature-extraction""": TFEfficientFormerModel, """image-classification""": ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False def UpperCAmelCase_ ( self :Optional[Any] ) -> List[str]: UpperCAmelCase__ = TFEfficientFormerModelTester(self ) UpperCAmelCase__ = ConfigTester( self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=37 ) def UpperCAmelCase_ ( self :int ) -> Any: self.config_tester.run_common_tests() @unittest.skip(reason="EfficientFormer does not use inputs_embeds" ) def UpperCAmelCase_ ( self :List[str] ) -> Dict: pass @unittest.skip(reason="EfficientFormer does not support input and output embeddings" ) def UpperCAmelCase_ ( self :List[Any] ) -> Optional[Any]: pass def UpperCAmelCase_ ( self :Any ) -> Optional[Any]: UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(UpperCAmelCase__ ) UpperCAmelCase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ = [*signature.parameters.keys()] UpperCAmelCase__ = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase__ ) def UpperCAmelCase_ ( self :str ) -> Any: def check_hidden_states_output(lowerCamelCase :Optional[Any] , lowerCamelCase :Any , lowerCamelCase :Dict ): UpperCAmelCase__ = model_class(UpperCAmelCase__ ) UpperCAmelCase__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) , training=UpperCAmelCase__ ) UpperCAmelCase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase__ = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCAmelCase__ ) , UpperCAmelCase__ ) if hasattr(self.model_tester , "encoder_seq_length" ): UpperCAmelCase__ = self.model_tester.encoder_seq_length if hasattr(self.model_tester , "chunk_length" ) and self.model_tester.chunk_length > 1: UpperCAmelCase__ = seq_length * self.model_tester.chunk_length else: UpperCAmelCase__ = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: UpperCAmelCase__ = outputs.decoder_hidden_states self.asseretIsInstance(UpperCAmelCase__ , (list, tuple) ) self.assertEqual(len(UpperCAmelCase__ ) , UpperCAmelCase__ ) UpperCAmelCase__ = getattr(self.model_tester , "seq_length" , UpperCAmelCase__ ) UpperCAmelCase__ = getattr(self.model_tester , "decoder_seq_length" , UpperCAmelCase__ ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def UpperCAmelCase_ ( self :Optional[Any] , lowerCamelCase :Dict , lowerCamelCase :Dict , lowerCamelCase :Dict=False ) -> int: UpperCAmelCase__ = super()._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__ ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCAmelCase_ ( self :Optional[Any] ) -> Union[str, Any]: UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) @unittest.skip(reason="EfficientFormer does not implement masked image modeling yet" ) def UpperCAmelCase_ ( self :str ) -> str: UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self :Any ) -> Tuple: UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ ) @slow def UpperCAmelCase_ ( self :Tuple ) -> Optional[int]: for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = TFEfficientFormerModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) def UpperCAmelCase_ ( self :Any ) -> str: UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = True UpperCAmelCase__ = getattr(self.model_tester , "seq_length" , UpperCAmelCase__ ) UpperCAmelCase__ = getattr(self.model_tester , "encoder_seq_length" , UpperCAmelCase__ ) UpperCAmelCase__ = getattr(self.model_tester , "key_length" , UpperCAmelCase__ ) UpperCAmelCase__ = getattr(self.model_tester , "chunk_length" , UpperCAmelCase__ ) if chunk_length is not None and hasattr(self.model_tester , "num_hashes" ): UpperCAmelCase__ = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = model_class(UpperCAmelCase__ ) UpperCAmelCase__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) , training=UpperCAmelCase__ ) UpperCAmelCase__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase__ ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase__ = True UpperCAmelCase__ = model_class(UpperCAmelCase__ ) UpperCAmelCase__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) , training=UpperCAmelCase__ ) UpperCAmelCase__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase__ ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def UpperCAmelCase_ ( self :List[str] ) -> Optional[Any]: UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model UpperCAmelCase__ = model_class(UpperCAmelCase__ ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes UpperCAmelCase__ = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=UpperCAmelCase__ ) for key, val in model.input_signature.items() if key in model.dummy_inputs } UpperCAmelCase__ = model(UpperCAmelCase__ ) self.assertTrue(outputs_dict is not None ) def lowerCAmelCase ( ): """simple docstring""" UpperCAmelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class _UpperCamelCase ( unittest.TestCase ): @cached_property def UpperCAmelCase_ ( self :List[str] ) -> List[str]: return ( EfficientFormerImageProcessor.from_pretrained("snap-research/efficientformer-l1-300" ) if is_vision_available() else None ) @slow def UpperCAmelCase_ ( self :List[str] ) -> Any: UpperCAmelCase__ = TFEfficientFormerForImageClassification.from_pretrained("snap-research/efficientformer-l1-300" ) UpperCAmelCase__ = self.default_image_processor UpperCAmelCase__ = prepare_img() UpperCAmelCase__ = image_processor(images=UpperCAmelCase__ , return_tensors="tf" ) # forward pass UpperCAmelCase__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__ ) # verify the logits UpperCAmelCase__ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase__ ) UpperCAmelCase__ = tf.constant([-0.05_55, 0.48_25, -0.08_52] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4 ) ) @slow def UpperCAmelCase_ ( self :Dict ) -> int: UpperCAmelCase__ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( "snap-research/efficientformer-l1-300" ) UpperCAmelCase__ = self.default_image_processor UpperCAmelCase__ = prepare_img() UpperCAmelCase__ = image_processor(images=UpperCAmelCase__ , return_tensors="tf" ) # forward pass UpperCAmelCase__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__ ) # verify the logits UpperCAmelCase__ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase__ ) UpperCAmelCase__ = tf.constant([-0.13_12, 0.43_53, -1.04_99] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4 ) )
169
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline _lowerCamelCase : Optional[Any] = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCamelCase_ ( datasets.BuilderConfig ): '''simple docstring''' UpperCAmelCase__ = None UpperCAmelCase__ = "utf-8" UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = True # deprecated UpperCAmelCase__ = None # deprecated UpperCAmelCase__ = 10 << 20 # 10MB UpperCAmelCase__ = None class UpperCamelCase_ ( datasets.ArrowBasedBuilder ): '''simple docstring''' UpperCAmelCase__ = JsonConfig def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str: '''simple docstring''' if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''') A__ = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''') if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''') return datasets.DatasetInfo(features=self.config.features) def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : List[Any]) ->Dict: '''simple docstring''' if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""") A__ = dl_manager.download_and_extract(self.config.data_files) if isinstance(UpperCAmelCase__ , (str, list, tuple)): A__ = data_files if isinstance(UpperCAmelCase__ , UpperCAmelCase__): A__ = [files] A__ = [dl_manager.iter_files(UpperCAmelCase__) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files})] A__ = [] for split_name, files in data_files.items(): if isinstance(UpperCAmelCase__ , UpperCAmelCase__): A__ = [files] A__ = [dl_manager.iter_files(UpperCAmelCase__) for file in files] splits.append(datasets.SplitGenerator(name=UpperCAmelCase__ , gen_kwargs={'''files''': files})) return splits def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : pa.Table) ->pa.Table: '''simple docstring''' if self.config.features is not None: # adding missing columns for column_name in set(self.config.features) - set(pa_table.column_names): A__ = self.config.features.arrow_schema.field(UpperCAmelCase__).type A__ = pa_table.append_column(UpperCAmelCase__ , pa.array([None] * len(UpperCAmelCase__) , type=UpperCAmelCase__)) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example A__ = table_cast(UpperCAmelCase__ , self.config.features.arrow_schema) return pa_table def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Tuple) ->str: '''simple docstring''' for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase__)): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(UpperCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: A__ = json.load(UpperCAmelCase__) # We keep only the field we are interested in A__ = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(UpperCAmelCase__ , (list, tuple)): A__ = set().union(*[row.keys() for row in dataset]) A__ = {col: [row.get(UpperCAmelCase__) for row in dataset] for col in keys} else: A__ = dataset A__ = pa.Table.from_pydict(UpperCAmelCase__) yield file_idx, self._cast_table(UpperCAmelCase__) # If the file has one json object per line else: with open(UpperCAmelCase__ , '''rb''') as f: A__ = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small A__ = max(self.config.chunksize // 32 , 16 << 10) A__ = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: A__ = f.read(self.config.chunksize) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(UpperCAmelCase__) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": A__ = batch.decode(self.config.encoding , errors=UpperCAmelCase__).encode('''utf-8''') try: while True: try: A__ = paj.read_json( io.BytesIO(UpperCAmelCase__) , read_options=paj.ReadOptions(block_size=UpperCAmelCase__)) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(UpperCAmelCase__ , pa.ArrowInvalid) and "straddling" not in str(UpperCAmelCase__) or block_size > len(UpperCAmelCase__) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f"""Batch of {len(UpperCAmelCase__)} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""") block_size *= 2 except pa.ArrowInvalid as e: try: with open( UpperCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: A__ = json.load(UpperCAmelCase__) except json.JSONDecodeError: logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""") raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(UpperCAmelCase__ , UpperCAmelCase__): # list is the only sequence type supported in JSON try: A__ = set().union(*[row.keys() for row in dataset]) A__ = {col: [row.get(UpperCAmelCase__) for row in dataset] for col in keys} A__ = pa.Table.from_pydict(UpperCAmelCase__) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""") raise ValueError(f"""Not able to read records in the JSON file at {file}.""") from None yield file_idx, self._cast_table(UpperCAmelCase__) break else: logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""") raise ValueError( f"""Not able to read records in the JSON file at {file}. """ f"""You should probably indicate the field of the JSON file containing your records. """ f"""This JSON file contain the following fields: {str(list(dataset.keys()))}. """ f"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase__) batch_idx += 1
14
0
"""simple docstring""" import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class lowerCAmelCase_ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=False , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ) -> Dict: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_input_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = num_labels __lowerCAmelCase = num_choices __lowerCAmelCase = scope def A__ ( self ) -> Optional[int]: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_input_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self ) -> str: return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def A__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Dict: __lowerCAmelCase = DistilBertModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowerCAmelCase = model(UpperCAmelCase__ , UpperCAmelCase__ ) __lowerCAmelCase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: __lowerCAmelCase = DistilBertForMaskedLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowerCAmelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: __lowerCAmelCase = DistilBertForQuestionAnswering(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowerCAmelCase = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , start_positions=UpperCAmelCase__ , end_positions=UpperCAmelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Union[str, Any]: __lowerCAmelCase = self.num_labels __lowerCAmelCase = DistilBertForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowerCAmelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]: __lowerCAmelCase = self.num_labels __lowerCAmelCase = DistilBertForTokenClassification(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowerCAmelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Dict: __lowerCAmelCase = self.num_choices __lowerCAmelCase = DistilBertForMultipleChoice(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self ) -> List[Any]: __lowerCAmelCase = self.prepare_config_and_inputs() ((__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase)) = config_and_inputs __lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' _snake_case = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) _snake_case = ( { '''feature-extraction''': DistilBertModel, '''fill-mask''': DistilBertForMaskedLM, '''question-answering''': DistilBertForQuestionAnswering, '''text-classification''': DistilBertForSequenceClassification, '''token-classification''': DistilBertForTokenClassification, '''zero-shot''': DistilBertForSequenceClassification, } if is_torch_available() else {} ) _snake_case = True _snake_case = True _snake_case = True _snake_case = True def A__ ( self ) -> List[str]: __lowerCAmelCase = DistilBertModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=UpperCAmelCase__ , dim=37 ) def A__ ( self ) -> List[Any]: self.config_tester.run_common_tests() def A__ ( self ) -> Optional[int]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*UpperCAmelCase__ ) def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCAmelCase__ ) def A__ ( self ) -> Any: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCAmelCase__ ) def A__ ( self ) -> Dict: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCAmelCase__ ) def A__ ( self ) -> List[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCAmelCase__ ) def A__ ( self ) -> str: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCAmelCase__ ) @slow def A__ ( self ) -> Tuple: for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = DistilBertModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @slow @require_torch_gpu def A__ ( self ) -> Dict: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __lowerCAmelCase = True __lowerCAmelCase = model_class(config=UpperCAmelCase__ ) __lowerCAmelCase = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) __lowerCAmelCase = torch.jit.trace( UpperCAmelCase__ , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(UpperCAmelCase__ , os.path.join(UpperCAmelCase__ , """traced_model.pt""" ) ) __lowerCAmelCase = torch.jit.load(os.path.join(UpperCAmelCase__ , """traced_model.pt""" ) , map_location=UpperCAmelCase__ ) loaded(inputs_dict["""input_ids"""].to(UpperCAmelCase__ ) , inputs_dict["""attention_mask"""].to(UpperCAmelCase__ ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def A__ ( self ) -> int: __lowerCAmelCase = DistilBertModel.from_pretrained("""distilbert-base-uncased""" ) __lowerCAmelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) __lowerCAmelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowerCAmelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ )[0] __lowerCAmelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , UpperCAmelCase__ ) __lowerCAmelCase = torch.tensor( [[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCAmelCase__ , atol=1e-4 ) )
301
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch _lowerCamelCase : List[Any] = """sshleifer/bart-tiny-random""" _lowerCamelCase : List[Any] = """patrickvonplaten/t5-tiny-random""" @require_torch class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int: '''simple docstring''' return AutoConfig.from_pretrained(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any: '''simple docstring''' A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.num_hidden_layers , 1) def SCREAMING_SNAKE_CASE ( self : int) ->Any: '''simple docstring''' A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase__) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers) def SCREAMING_SNAKE_CASE ( self : Dict) ->int: '''simple docstring''' A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , 1) def SCREAMING_SNAKE_CASE ( self : str) ->List[Any]: '''simple docstring''' with self.assertRaises(UpperCAmelCase__): create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=UpperCAmelCase__ , d=UpperCAmelCase__)
14
0
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def lowerCamelCase__ ( a__ : Optional[int] , a__ : Union[str, Any] ) -> Tuple: UpperCamelCase_ = [] for part_id in partition_order: UpperCamelCase_ = df.where(f'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(lowercase_ ): expected_row_ids_and_row_dicts.append((f'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase__ ( ) -> str: UpperCamelCase_ = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() UpperCamelCase_ = spark.range(100 ).repartition(1 ) UpperCamelCase_ = Spark(lowercase_ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase__ ( ) -> Dict: UpperCamelCase_ = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() UpperCamelCase_ = spark.range(10 ).repartition(2 ) UpperCamelCase_ = [1, 0] UpperCamelCase_ = _generate_iterable_examples(lowercase_ , lowercase_ ) # Reverse the partitions. UpperCamelCase_ = _get_expected_row_ids_and_row_dicts_for_partition_order(lowercase_ , lowercase_ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): UpperCamelCase_ , UpperCamelCase_ = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase__ ( ) -> Dict: UpperCamelCase_ = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() UpperCamelCase_ = spark.range(10 ).repartition(1 ) UpperCamelCase_ = SparkExamplesIterable(lowercase_ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(lowercase_ ): assert row_id == f'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase__ ( ) -> Optional[Any]: UpperCamelCase_ = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() UpperCamelCase_ = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("""numpy.random.Generator""" ) as generator_mock: UpperCamelCase_ = lambda a__ : x.reverse() UpperCamelCase_ = _get_expected_row_ids_and_row_dicts_for_partition_order(lowercase_ , [2, 1, 0] ) UpperCamelCase_ = SparkExamplesIterable(lowercase_ ).shuffle_data_sources(lowercase_ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(lowercase_ ): UpperCamelCase_ , UpperCamelCase_ = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase__ ( ) -> Tuple: UpperCamelCase_ = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() UpperCamelCase_ = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 UpperCamelCase_ = SparkExamplesIterable(lowercase_ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 UpperCamelCase_ = _get_expected_row_ids_and_row_dicts_for_partition_order(lowercase_ , [0, 2] ) for i, (row_id, row_dict) in enumerate(lowercase_ ): UpperCamelCase_ , UpperCamelCase_ = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 UpperCamelCase_ = SparkExamplesIterable(lowercase_ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 UpperCamelCase_ = _get_expected_row_ids_and_row_dicts_for_partition_order(lowercase_ , [1, 3] ) for i, (row_id, row_dict) in enumerate(lowercase_ ): UpperCamelCase_ , UpperCamelCase_ = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase__ ( ) -> str: UpperCamelCase_ = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() UpperCamelCase_ = spark.range(100 ).repartition(1 ) UpperCamelCase_ = Spark(lowercase_ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
122
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[str] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int=7 , UpperCAmelCase__ : Dict=3 , UpperCAmelCase__ : List[Any]=30 , UpperCAmelCase__ : Any=400 , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Optional[Any]=[0.5, 0.5, 0.5] , UpperCAmelCase__ : Any=[0.5, 0.5, 0.5] , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Optional[int]=1 / 255 , UpperCAmelCase__ : Optional[Any]=True , ) ->str: '''simple docstring''' A__ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1_333} A__ = parent A__ = batch_size A__ = num_channels A__ = min_resolution A__ = max_resolution A__ = do_resize A__ = size A__ = do_normalize A__ = image_mean A__ = image_std A__ = do_rescale A__ = rescale_factor A__ = do_pad def SCREAMING_SNAKE_CASE ( self : Any) ->List[str]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int=False) ->Optional[Any]: '''simple docstring''' if not batched: A__ = image_inputs[0] if isinstance(UpperCAmelCase__ , Image.Image): A__ , A__ = image.size else: A__ , A__ = image.shape[1], image.shape[2] if w < h: A__ = int(self.size['''shortest_edge'''] * h / w) A__ = self.size['''shortest_edge'''] elif w > h: A__ = self.size['''shortest_edge'''] A__ = int(self.size['''shortest_edge'''] * w / h) else: A__ = self.size['''shortest_edge'''] A__ = self.size['''shortest_edge'''] else: A__ = [] for image in image_inputs: A__ , A__ = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) A__ = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__: item[0])[0] A__ = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__: item[1])[1] return expected_height, expected_width @require_torch @require_vision class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = DeformableDetrImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self : List[str]) ->Tuple: '''simple docstring''' A__ = DeformableDetrImageProcessingTester(self) @property def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(UpperCAmelCase__ , '''image_mean''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''image_std''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_normalize''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_resize''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_rescale''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_pad''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''size''')) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int: '''simple docstring''' A__ = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1_333}) self.assertEqual(image_processor.do_pad , UpperCAmelCase__) A__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCAmelCase__) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84}) self.assertEqual(image_processor.do_pad , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any) ->List[str]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict) # create random PIL images A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__) A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , np.ndarray) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self : int) ->Tuple: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[str]: '''simple docstring''' A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''') as f: A__ = json.loads(f.read()) A__ = {'''image_id''': 39_769, '''annotations''': target} # encode them A__ = DeformableDetrImageProcessor() A__ = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , return_tensors='''pt''') # verify pixel values A__ = torch.Size([1, 3, 800, 1_066]) self.assertEqual(encoding['''pixel_values'''].shape , UpperCAmelCase__) A__ = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCAmelCase__ , atol=1e-4)) # verify area A__ = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCAmelCase__)) # verify boxes A__ = torch.Size([6, 4]) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCAmelCase__) A__ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCAmelCase__ , atol=1e-3)) # verify image_id A__ = torch.tensor([39_769]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCAmelCase__)) # verify is_crowd A__ = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCAmelCase__)) # verify class_labels A__ = torch.tensor([75, 75, 63, 65, 17, 17]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCAmelCase__)) # verify orig_size A__ = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCAmelCase__)) # verify size A__ = torch.tensor([800, 1_066]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCAmelCase__)) @slow def SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[int]: '''simple docstring''' A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''') as f: A__ = json.loads(f.read()) A__ = {'''file_name''': '''000000039769.png''', '''image_id''': 39_769, '''segments_info''': target} A__ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''') # encode them A__ = DeformableDetrImageProcessor(format='''coco_panoptic''') A__ = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , masks_path=UpperCAmelCase__ , return_tensors='''pt''') # verify pixel values A__ = torch.Size([1, 3, 800, 1_066]) self.assertEqual(encoding['''pixel_values'''].shape , UpperCAmelCase__) A__ = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCAmelCase__ , atol=1e-4)) # verify area A__ = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCAmelCase__)) # verify boxes A__ = torch.Size([6, 4]) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCAmelCase__) A__ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCAmelCase__ , atol=1e-3)) # verify image_id A__ = torch.tensor([39_769]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCAmelCase__)) # verify is_crowd A__ = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCAmelCase__)) # verify class_labels A__ = torch.tensor([17, 17, 63, 75, 75, 93]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCAmelCase__)) # verify masks A__ = 822_873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , UpperCAmelCase__) # verify orig_size A__ = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCAmelCase__)) # verify size A__ = torch.tensor([800, 1_066]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCAmelCase__))
14
0
"""simple docstring""" class a : def __init__( self , _lowerCamelCase , _lowerCamelCase ): lowercase = name lowercase = val def __str__( self ): return F'{self.__class__.__name__}({self.name}, {self.val})' def __lt__( self , _lowerCamelCase ): return self.val < other.val class a : def __init__( self , _lowerCamelCase ): lowercase = {} lowercase = {} lowercase = self.build_heap(UpperCAmelCase__ ) def __getitem__( self , _lowerCamelCase ): return self.get_value(UpperCAmelCase__ ) def UpperCamelCase_ ( self , _lowerCamelCase ): return (idx - 1) // 2 def UpperCamelCase_ ( self , _lowerCamelCase ): return idx * 2 + 1 def UpperCamelCase_ ( self , _lowerCamelCase ): return idx * 2 + 2 def UpperCamelCase_ ( self , _lowerCamelCase ): return self.heap_dict[key] def UpperCamelCase_ ( self , _lowerCamelCase ): lowercase = len(UpperCAmelCase__ ) - 1 lowercase = self.get_parent_idx(UpperCAmelCase__ ) for idx, i in enumerate(UpperCAmelCase__ ): lowercase = idx lowercase = i.val for i in range(UpperCAmelCase__ , -1 , -1 ): self.sift_down(UpperCAmelCase__ , UpperCAmelCase__ ) return array def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase ): while True: lowercase = self.get_left_child_idx(UpperCAmelCase__ ) # noqa: E741 lowercase = self.get_right_child_idx(UpperCAmelCase__ ) lowercase = idx if l < len(UpperCAmelCase__ ) and array[l] < array[idx]: lowercase = l if r < len(UpperCAmelCase__ ) and array[r] < array[smallest]: lowercase = r if smallest != idx: lowercase , lowercase = array[smallest], array[idx] ( ( lowercase ) , ( lowercase ) , ) = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) lowercase = smallest else: break def UpperCamelCase_ ( self , _lowerCamelCase ): lowercase = self.get_parent_idx(UpperCAmelCase__ ) while p >= 0 and self.heap[p] > self.heap[idx]: lowercase , lowercase = self.heap[idx], self.heap[p] lowercase , lowercase = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) lowercase = p lowercase = self.get_parent_idx(UpperCAmelCase__ ) def UpperCamelCase_ ( self ): return self.heap[0] def UpperCamelCase_ ( self ): lowercase , lowercase = self.heap[-1], self.heap[0] lowercase , lowercase = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) lowercase = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def UpperCamelCase_ ( self , _lowerCamelCase ): self.heap.append(UpperCAmelCase__ ) lowercase = len(self.heap ) - 1 lowercase = node.val self.sift_up(len(self.heap ) - 1 ) def UpperCamelCase_ ( self ): return len(self.heap ) == 0 def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase ): assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" lowercase = new_value lowercase = new_value self.sift_up(self.idx_of_element[node] ) _UpperCamelCase : Optional[Any] = Node('R', -1) _UpperCamelCase : int = Node('B', 6) _UpperCamelCase : Dict = Node('A', 3) _UpperCamelCase : Union[str, Any] = Node('X', 1) _UpperCamelCase : Any = Node('E', 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array _UpperCamelCase : Dict = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print('Min Heap - before decrease key') for i in my_min_heap.heap: print(i) print('Min Heap - After decrease key of node [B -> -17]') my_min_heap.decrease_key(b, -1_7) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
220
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np _lowerCamelCase : str = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 _lowerCamelCase : Tuple = typing.Union[np.floataa, int, float] # noqa: UP007 def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> VectorOut: """simple docstring""" return np.sqrt(np.sum((np.asarray(lowercase_ ) - np.asarray(lowercase_ )) ** 2 ) ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> VectorOut: """simple docstring""" return sum((va - va) ** 2 for va, va in zip(lowercase_ , lowercase_ ) ) ** (1 / 2) if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) ) benchmark()
14
0
"""simple docstring""" import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch A__ : List[Any] = """sshleifer/bart-tiny-random""" A__ : List[Any] = """patrickvonplaten/t5-tiny-random""" @require_torch class lowercase__ ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self : Union[str, Any] ): return AutoConfig.from_pretrained(UpperCAmelCase__ ) def UpperCAmelCase__ ( self : List[str] ): lowerCamelCase_ , *lowerCamelCase_ : int =create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def UpperCAmelCase__ ( self : int ): lowerCamelCase_ , *lowerCamelCase_ : List[Any] =create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase__ ) def UpperCAmelCase__ ( self : Union[str, Any] ): lowerCamelCase_ , *lowerCamelCase_ : Union[str, Any] =create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase__ ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def UpperCAmelCase__ ( self : Dict ): lowerCamelCase_ , *lowerCamelCase_ : Optional[int] =create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def UpperCAmelCase__ ( self : str ): with self.assertRaises(UpperCAmelCase__ ): create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=UpperCAmelCase__ , d=UpperCAmelCase__ )
144
from ...processing_utils import ProcessorMixin class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''SpeechT5FeatureExtractor''' UpperCAmelCase__ = '''SpeechT5Tokenizer''' def __init__( self : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple) ->Union[str, Any]: '''simple docstring''' super().__init__(UpperCAmelCase__ , UpperCAmelCase__) def __call__( self : Dict , *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : Any) ->Optional[Any]: '''simple docstring''' A__ = kwargs.pop('''audio''' , UpperCAmelCase__) A__ = kwargs.pop('''text''' , UpperCAmelCase__) A__ = kwargs.pop('''text_target''' , UpperCAmelCase__) A__ = kwargs.pop('''audio_target''' , UpperCAmelCase__) A__ = kwargs.pop('''sampling_rate''' , UpperCAmelCase__) if audio is not None and text is not None: raise ValueError( '''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''') if audio_target is not None and text_target is not None: raise ValueError( '''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''') if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( '''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''') if audio is not None: A__ = self.feature_extractor(UpperCAmelCase__ , *UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , **UpperCAmelCase__) elif text is not None: A__ = self.tokenizer(UpperCAmelCase__ , **UpperCAmelCase__) else: A__ = None if audio_target is not None: A__ = self.feature_extractor(audio_target=UpperCAmelCase__ , *UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , **UpperCAmelCase__) A__ = targets['''input_values'''] elif text_target is not None: A__ = self.tokenizer(UpperCAmelCase__ , **UpperCAmelCase__) A__ = targets['''input_ids'''] else: A__ = None if inputs is None: return targets if targets is not None: A__ = labels A__ = targets.get('''attention_mask''') if decoder_attention_mask is not None: A__ = decoder_attention_mask return inputs def SCREAMING_SNAKE_CASE ( self : Optional[Any] , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : int) ->Optional[int]: '''simple docstring''' A__ = kwargs.pop('''input_values''' , UpperCAmelCase__) A__ = kwargs.pop('''input_ids''' , UpperCAmelCase__) A__ = kwargs.pop('''labels''' , UpperCAmelCase__) if input_values is not None and input_ids is not None: raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''') if input_values is None and input_ids is None and labels is None: raise ValueError( '''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''') if input_values is not None: A__ = self.feature_extractor.pad(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__) elif input_ids is not None: A__ = self.tokenizer.pad(UpperCAmelCase__ , **UpperCAmelCase__) else: A__ = None if labels is not None: if "input_ids" in labels or (isinstance(UpperCAmelCase__ , UpperCAmelCase__) and "input_ids" in labels[0]): A__ = self.tokenizer.pad(UpperCAmelCase__ , **UpperCAmelCase__) A__ = targets['''input_ids'''] else: A__ = self.feature_extractor.feature_size A__ = self.feature_extractor.num_mel_bins A__ = self.feature_extractor.pad(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__) A__ = feature_size_hack A__ = targets['''input_values'''] else: A__ = None if inputs is None: return targets if targets is not None: A__ = labels A__ = targets.get('''attention_mask''') if decoder_attention_mask is not None: A__ = decoder_attention_mask return inputs def SCREAMING_SNAKE_CASE ( self : Any , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : Optional[Any]) ->Optional[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase__ , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Union[str, Any]) ->Dict: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase__ , **UpperCAmelCase__)
14
0
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __magic_name__ ( UpperCAmelCase__ , UpperCAmelCase__): @register_to_config def __init__( self : int , *, lowerCamelCase__ : int = 4 , lowerCamelCase__ : int = 768 , lowerCamelCase__ : int , lowerCamelCase__ : List[str] , ) -> Any: '''simple docstring''' super().__init__() UpperCamelCase__ : Optional[Any] = nn.Parameter(torch.zeros(UpperCAmelCase__ ) ) # parameters for additional clip time embeddings UpperCamelCase__ : int = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase__ : Dict = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__ ) # parameters for encoder hidden states UpperCamelCase__ : List[Any] = clip_extra_context_tokens UpperCamelCase__ : Union[str, Any] = nn.Linear( UpperCAmelCase__ , self.clip_extra_context_tokens * cross_attention_dim ) UpperCamelCase__ : Dict = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase__ : str = nn.LayerNorm(UpperCAmelCase__ ) def UpperCAmelCase__ ( self : int , *, lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : int , lowerCamelCase__ : Optional[Any] ) -> Any: '''simple docstring''' if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings UpperCamelCase__ : Any = image_embeddings.shape[0] UpperCamelCase__ : List[Any] = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) UpperCamelCase__ : Tuple = classifier_free_guidance_embeddings.expand( UpperCAmelCase__ , -1 ) UpperCamelCase__ : List[str] = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] UpperCamelCase__ : Optional[Any] = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... UpperCamelCase__ : Tuple = self.embedding_proj(UpperCAmelCase__ ) UpperCamelCase__ : Union[str, Any] = self.clip_image_embeddings_project_to_time_embeddings(UpperCAmelCase__ ) UpperCamelCase__ : int = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" UpperCamelCase__ : Optional[Any] = self.clip_extra_context_tokens_proj(UpperCAmelCase__ ) UpperCamelCase__ : Tuple = clip_extra_context_tokens.reshape(UpperCAmelCase__ , -1 , self.clip_extra_context_tokens ) UpperCamelCase__ : Optional[int] = clip_extra_context_tokens.permute(0 , 2 , 1 ) UpperCamelCase__ : List[Any] = self.encoder_hidden_states_proj(UpperCAmelCase__ ) UpperCamelCase__ : Dict = self.text_encoder_hidden_states_norm(UpperCAmelCase__ ) UpperCamelCase__ : int = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
146
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Tuple = logging.get_logger(__name__) _lowerCamelCase : str = { """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''git_vision_model''' def __init__( self : Any , UpperCAmelCase__ : Any=768 , UpperCAmelCase__ : int=3_072 , UpperCAmelCase__ : List[str]=12 , UpperCAmelCase__ : Dict=12 , UpperCAmelCase__ : Optional[int]=3 , UpperCAmelCase__ : List[Any]=224 , UpperCAmelCase__ : Union[str, Any]=16 , UpperCAmelCase__ : Union[str, Any]="quick_gelu" , UpperCAmelCase__ : Dict=1e-5 , UpperCAmelCase__ : Union[str, Any]=0.0 , UpperCAmelCase__ : Any=0.02 , **UpperCAmelCase__ : Any , ) ->Optional[int]: '''simple docstring''' super().__init__(**UpperCAmelCase__) A__ = hidden_size A__ = intermediate_size A__ = num_hidden_layers A__ = num_attention_heads A__ = num_channels A__ = patch_size A__ = image_size A__ = initializer_range A__ = attention_dropout A__ = layer_norm_eps A__ = hidden_act @classmethod def SCREAMING_SNAKE_CASE ( cls : Any , UpperCAmelCase__ : Union[str, os.PathLike] , **UpperCAmelCase__ : int) ->"PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCAmelCase__) A__ , A__ = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__) # get the vision config dict if we are loading from GITConfig if config_dict.get('''model_type''') == "git": A__ = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""") return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''git''' def __init__( self : Dict , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : int=30_522 , UpperCAmelCase__ : Optional[int]=768 , UpperCAmelCase__ : Dict=6 , UpperCAmelCase__ : int=12 , UpperCAmelCase__ : List[str]=3_072 , UpperCAmelCase__ : str="gelu" , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : List[Any]=1_024 , UpperCAmelCase__ : List[str]=0.02 , UpperCAmelCase__ : Any=1e-12 , UpperCAmelCase__ : Union[str, Any]=0 , UpperCAmelCase__ : List[Any]="absolute" , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Any=False , UpperCAmelCase__ : int=101 , UpperCAmelCase__ : Tuple=102 , UpperCAmelCase__ : Dict=None , **UpperCAmelCase__ : List[str] , ) ->Any: '''simple docstring''' super().__init__(bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , pad_token_id=UpperCAmelCase__ , **UpperCAmelCase__) if vision_config is None: A__ = {} logger.info('''vision_config is None. initializing the GitVisionConfig with default values.''') A__ = GitVisionConfig(**UpperCAmelCase__) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = initializer_range A__ = layer_norm_eps A__ = position_embedding_type A__ = use_cache A__ = tie_word_embeddings A__ = num_image_with_embedding A__ = bos_token_id A__ = eos_token_id def SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: '''simple docstring''' A__ = copy.deepcopy(self.__dict__) A__ = self.vision_config.to_dict() A__ = self.__class__.model_type return output
14
0
'''simple docstring''' from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand _UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name def lowercase_ ( lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(lowercase_ ): return ext raise Exception( f'Unable to determine file format from file extension {path}. ' f'Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}' ) def lowercase_ ( lowerCAmelCase__ : str ): """simple docstring""" __UpperCAmelCase : str = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) __UpperCAmelCase : Dict = try_infer_format_from_ext(args.input ) if args.format == """infer""" else args.format __UpperCAmelCase : List[str] = PipelineDataFormat.from_str( format=lowercase_ , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(lowercase_ , lowercase_ ) class _A ( UpperCAmelCase__ ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = nlp __UpperCAmelCase : Dict = reader @staticmethod def __A ( __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : List[str] = parser.add_parser("""run""" , help="""Run a pipeline through the CLI""" ) run_parser.add_argument("""--task""" , choices=get_supported_tasks() , help="""Task to run""" ) run_parser.add_argument("""--input""" , type=UpperCAmelCase__ , help="""Path to the file to use for inference""" ) run_parser.add_argument("""--output""" , type=UpperCAmelCase__ , help="""Path to the file that will be used post to write results.""" ) run_parser.add_argument("""--model""" , type=UpperCAmelCase__ , help="""Name or path to the model to instantiate.""" ) run_parser.add_argument("""--config""" , type=UpperCAmelCase__ , help="""Name or path to the model\'s config to instantiate.""" ) run_parser.add_argument( """--tokenizer""" , type=UpperCAmelCase__ , help="""Name of the tokenizer to use. (default: same as the model name)""" ) run_parser.add_argument( """--column""" , type=UpperCAmelCase__ , help="""Name of the column to use as input. (For multi columns input as QA use column1,columns2)""" , ) run_parser.add_argument( """--format""" , type=UpperCAmelCase__ , default="""infer""" , choices=PipelineDataFormat.SUPPORTED_FORMATS , help="""Input format to read from""" , ) run_parser.add_argument( """--device""" , type=UpperCAmelCase__ , default=-1 , help="""Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)""" , ) run_parser.add_argument("""--overwrite""" , action="""store_true""" , help="""Allow overwriting the output file.""" ) run_parser.set_defaults(func=UpperCAmelCase__ ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self._nlp, [] for entry in self._reader: __UpperCAmelCase : Any = nlp(**UpperCAmelCase__ ) if self._reader.is_multi_columns else nlp(UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): outputs.append(UpperCAmelCase__ ) else: outputs += output # Saving data if self._nlp.binary_output: __UpperCAmelCase : Tuple = self._reader.save_binary(UpperCAmelCase__ ) logger.warning(f'Current pipeline requires output to be in binary format, saving at {binary_path}' ) else: self._reader.save(UpperCAmelCase__ )
254
import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: """simple docstring""" A__ = BeautifulSoup(requests.get(lowercase_ , params=lowercase_ ).content , '''html.parser''' ) A__ = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} ) A__ = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' ) return anchors[2].get_text() if __name__ == "__main__": _lowerCamelCase : Optional[Any] = { """title""": ( """Precisely geometry controlled microsupercapacitors for ultrahigh areal """ """capacitance, volumetric capacitance, and energy density""" ), """journal""": """Chem. Mater.""", """volume""": 30, """pages""": """3979-3990""", """year""": 2018, """hl""": """en""", } print(get_citation("""https://scholar.google.com/scholar_lookup""", params=params))
14
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __snake_case = logging.get_logger(__name__) __snake_case = { """salesforce/blip2-opt-2.7b""": """https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json""", } class __lowerCamelCase ( UpperCAmelCase__ ): '''simple docstring''' A_ : Union[str, Any] = 'blip_2_vision_model' def __init__( self , __UpperCAmelCase=1408 , __UpperCAmelCase=6144 , __UpperCAmelCase=39 , __UpperCAmelCase=16 , __UpperCAmelCase=224 , __UpperCAmelCase=14 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.00001 , __UpperCAmelCase=0.0 , __UpperCAmelCase=1e-1_0 , __UpperCAmelCase=True , **__UpperCAmelCase , ) -> Tuple: super().__init__(**UpperCAmelCase__ ) _a = hidden_size _a = intermediate_size _a = num_hidden_layers _a = num_attention_heads _a = patch_size _a = image_size _a = initializer_range _a = attention_dropout _a = layer_norm_eps _a = hidden_act _a = qkv_bias @classmethod def _UpperCAmelCase ( cls , __UpperCAmelCase , **__UpperCAmelCase ) -> "PretrainedConfig": cls._set_token_in_kwargs(UpperCAmelCase__ ) _a , _a = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__ ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": _a = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__ ) class __lowerCamelCase ( UpperCAmelCase__ ): '''simple docstring''' A_ : int = 'blip_2_qformer' def __init__( self , __UpperCAmelCase=30522 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-1_2 , __UpperCAmelCase=0 , __UpperCAmelCase="absolute" , __UpperCAmelCase=2 , __UpperCAmelCase=1408 , **__UpperCAmelCase , ) -> Union[str, Any]: super().__init__(pad_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = hidden_act _a = intermediate_size _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = initializer_range _a = layer_norm_eps _a = position_embedding_type _a = cross_attention_frequency _a = encoder_hidden_size @classmethod def _UpperCAmelCase ( cls , __UpperCAmelCase , **__UpperCAmelCase ) -> "PretrainedConfig": cls._set_token_in_kwargs(UpperCAmelCase__ ) _a , _a = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__ ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": _a = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__ ) class __lowerCamelCase ( UpperCAmelCase__ ): '''simple docstring''' A_ : int = 'blip-2' A_ : int = True def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=32 , **__UpperCAmelCase ) -> List[str]: super().__init__(**UpperCAmelCase__ ) if vision_config is None: _a = {} logger.info('''vision_config is None. initializing the Blip2VisionConfig with default values.''' ) if qformer_config is None: _a = {} logger.info('''qformer_config is None. Initializing the Blip2QFormerConfig with default values.''' ) if text_config is None: _a = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) _a = BlipaVisionConfig(**UpperCAmelCase__ ) _a = BlipaQFormerConfig(**UpperCAmelCase__ ) _a = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' _a = CONFIG_MAPPING[text_model_type](**UpperCAmelCase__ ) _a = self.text_config.tie_word_embeddings _a = self.text_config.is_encoder_decoder _a = num_query_tokens _a = self.vision_config.hidden_size _a = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _a = 1.0 _a = 0.02 @classmethod def _UpperCAmelCase ( cls , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ) -> Union[str, Any]: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **UpperCAmelCase__ , ) def _UpperCAmelCase ( self ) -> Any: _a = copy.deepcopy(self.__dict__ ) _a = self.vision_config.to_dict() _a = self.qformer_config.to_dict() _a = self.text_config.to_dict() _a = self.__class__.model_type return output
320
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: """simple docstring""" A__ = StableDiffusionPipeline.from_pretrained(lowercase_ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors A__ = load_file(lowercase_ ) A__ = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: A__ = key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' ) A__ = pipeline.text_encoder else: A__ = key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' ) A__ = pipeline.unet # find the target layer A__ = layer_infos.pop(0 ) while len(lowercase_ ) > -1: try: A__ = curr_layer.__getattr__(lowercase_ ) if len(lowercase_ ) > 0: A__ = layer_infos.pop(0 ) elif len(lowercase_ ) == 0: break except Exception: if len(lowercase_ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: A__ = layer_infos.pop(0 ) A__ = [] if "lora_down" in key: pair_keys.append(key.replace('''lora_down''' , '''lora_up''' ) ) pair_keys.append(lowercase_ ) else: pair_keys.append(lowercase_ ) pair_keys.append(key.replace('''lora_up''' , '''lora_down''' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: A__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) A__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ ).unsqueeze(2 ).unsqueeze(3 ) else: A__ = state_dict[pair_keys[0]].to(torch.floataa ) A__ = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ ) # update visited list for item in pair_keys: visited.append(lowercase_ ) return pipeline if __name__ == "__main__": _lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") _lowerCamelCase : Tuple = parser.parse_args() _lowerCamelCase : List[Any] = args.base_model_path _lowerCamelCase : Optional[int] = args.checkpoint_path _lowerCamelCase : Dict = args.dump_path _lowerCamelCase : Optional[Any] = args.lora_prefix_unet _lowerCamelCase : Optional[int] = args.lora_prefix_text_encoder _lowerCamelCase : List[Any] = args.alpha _lowerCamelCase : int = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) _lowerCamelCase : Tuple = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
14
0
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( """The RoBERTa Model transformer with early exiting (DeeRoBERTa). """ , UpperCAmelCase__ , ) class a ( UpperCAmelCase__ ): __lowerCAmelCase : Tuple = RobertaConfig __lowerCAmelCase : Union[str, Any] = """roberta""" def __init__( self :Any ,__lowercase :List[str] ): super().__init__(UpperCAmelCase__ ) snake_case__ : Optional[int] = RobertaEmbeddings(UpperCAmelCase__ ) self.init_weights() @add_start_docstrings( """RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. """ , UpperCAmelCase__ , ) class a ( UpperCAmelCase__ ): __lowerCAmelCase : Union[str, Any] = RobertaConfig __lowerCAmelCase : List[Any] = """roberta""" def __init__( self :Optional[Any] ,__lowercase :Tuple ): super().__init__(UpperCAmelCase__ ) snake_case__ : Optional[Any] = config.num_labels snake_case__ : List[str] = config.num_hidden_layers snake_case__ : List[Any] = DeeRobertaModel(UpperCAmelCase__ ) snake_case__ : List[Any] = nn.Dropout(config.hidden_dropout_prob ) snake_case__ : int = nn.Linear(config.hidden_size ,self.config.num_labels ) @add_start_docstrings_to_model_forward(UpperCAmelCase__ ) def __lowerCamelCase ( self :Optional[Any] ,__lowercase :Tuple=None ,__lowercase :Union[str, Any]=None ,__lowercase :Optional[Any]=None ,__lowercase :Dict=None ,__lowercase :List[Any]=None ,__lowercase :Optional[Any]=None ,__lowercase :int=None ,__lowercase :Dict=-1 ,__lowercase :Optional[int]=False ,): snake_case__ : Any = self.num_layers try: snake_case__ : Optional[int] = self.roberta( UpperCAmelCase__ ,attention_mask=UpperCAmelCase__ ,token_type_ids=UpperCAmelCase__ ,position_ids=UpperCAmelCase__ ,head_mask=UpperCAmelCase__ ,inputs_embeds=UpperCAmelCase__ ,) snake_case__ : Any = outputs[1] snake_case__ : Dict = self.dropout(UpperCAmelCase__ ) snake_case__ : Tuple = self.classifier(UpperCAmelCase__ ) snake_case__ : int = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: snake_case__ : Tuple = e.message snake_case__ : List[str] = e.exit_layer snake_case__ : Optional[int] = outputs[0] if not self.training: snake_case__ : int = entropy(UpperCAmelCase__ ) snake_case__ : List[Any] = [] snake_case__ : str = [] if labels is not None: if self.num_labels == 1: # We are doing regression snake_case__ : str = MSELoss() snake_case__ : Any = loss_fct(logits.view(-1 ) ,labels.view(-1 ) ) else: snake_case__ : Tuple = CrossEntropyLoss() snake_case__ : Any = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) # work with highway exits snake_case__ : List[str] = [] for highway_exit in outputs[-1]: snake_case__ : List[Any] = highway_exit[0] if not self.training: highway_logits_all.append(UpperCAmelCase__ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression snake_case__ : Union[str, Any] = MSELoss() snake_case__ : int = loss_fct(highway_logits.view(-1 ) ,labels.view(-1 ) ) else: snake_case__ : Union[str, Any] = CrossEntropyLoss() snake_case__ : Tuple = loss_fct(highway_logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) highway_losses.append(UpperCAmelCase__ ) if train_highway: snake_case__ : str = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: snake_case__ : Union[str, Any] = (loss,) + outputs if not self.training: snake_case__ : Optional[Any] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: snake_case__ : List[Any] = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
230
import os import pytest from transformers.dynamic_module_utils import get_imports _lowerCamelCase : Any = """ import os """ _lowerCamelCase : Optional[int] = """ def foo(): import os return False """ _lowerCamelCase : List[Any] = """ def foo(): def bar(): if True: import os return False return bar() """ _lowerCamelCase : List[Any] = """ import os try: import bar except ImportError: raise ValueError() """ _lowerCamelCase : Union[str, Any] = """ import os def foo(): try: import bar except ImportError: raise ValueError() """ _lowerCamelCase : List[Any] = """ import os try: import bar except (ImportError, AttributeError): raise ValueError() """ _lowerCamelCase : List[Any] = """ import os try: import bar except ImportError as e: raise ValueError() """ _lowerCamelCase : str = """ import os try: import bar except: raise ValueError() """ _lowerCamelCase : Optional[Any] = """ import os try: import bar import baz except ImportError: raise ValueError() """ _lowerCamelCase : Any = """ import os try: import bar import baz except ImportError: x = 1 raise ValueError() """ _lowerCamelCase : Dict = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" A__ = os.path.join(lowercase_ , '''test_file.py''' ) with open(lowercase_ , '''w''' ) as _tmp_file: _tmp_file.write(lowercase_ ) A__ = get_imports(lowercase_ ) assert parsed_imports == ["os"]
14
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _UpperCamelCase ( UpperCAmelCase__ ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Tuple =KandinskyVaaControlnetImgaImgPipeline __UpperCAmelCase : Optional[int] =["""image_embeds""", """negative_image_embeds""", """image""", """hint"""] __UpperCAmelCase : str =["""image_embeds""", """negative_image_embeds""", """image""", """hint"""] __UpperCAmelCase : str =[ """generator""", """height""", """width""", """strength""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] __UpperCAmelCase : Optional[int] =False @property def snake_case ( self ): return 32 @property def snake_case ( self ): return 32 @property def snake_case ( self ): return self.time_input_dim @property def snake_case ( self ): return self.time_input_dim * 4 @property def snake_case ( self ): return 1_00 @property def snake_case ( self ): torch.manual_seed(0 ) __lowerCAmelCase = { "in_channels": 8, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image_hint", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } __lowerCAmelCase = UNetaDConditionModel(**UpperCAmelCase__ ) return model @property def snake_case ( self ): return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def snake_case ( self ): torch.manual_seed(0 ) __lowerCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def snake_case ( self ): __lowerCAmelCase = self.dummy_unet __lowerCAmelCase = self.dummy_movq __lowerCAmelCase = { "num_train_timesteps": 10_00, "beta_schedule": "linear", "beta_start": 0.0_0_0_8_5, "beta_end": 0.0_1_2, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } __lowerCAmelCase = DDIMScheduler(**UpperCAmelCase__ ) __lowerCAmelCase = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def snake_case ( self , __a , __a=0 ): __lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) __lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( UpperCAmelCase__ ) # create init_image __lowerCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) __lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCAmelCase = Image.fromarray(np.uinta(UpperCAmelCase__ ) ).convert("RGB" ).resize((2_56, 2_56) ) # create hint __lowerCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) if str(UpperCAmelCase__ ).startswith("mps" ): __lowerCAmelCase = torch.manual_seed(UpperCAmelCase__ ) else: __lowerCAmelCase = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) __lowerCAmelCase = { "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "hint": hint, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def snake_case ( self ): __lowerCAmelCase = "cpu" __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = self.pipeline_class(**UpperCAmelCase__ ) __lowerCAmelCase = pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowerCAmelCase = pipe(**self.get_dummy_inputs(UpperCAmelCase__ ) ) __lowerCAmelCase = output.images __lowerCAmelCase = pipe( **self.get_dummy_inputs(UpperCAmelCase__ ) , return_dict=UpperCAmelCase__ , )[0] __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = np.array( [0.5_4_9_8_5_0_3_4, 0.5_5_5_0_9_3_6_5, 0.5_2_5_6_1_5_0_4, 0.5_5_7_0_4_9_4, 0.5_5_9_3_8_1_8, 0.5_2_6_3_9_7_9, 0.5_0_2_8_5_6_4_3, 0.5_0_6_9_8_4_6, 0.5_1_1_9_6_7_3_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def snake_case ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self ): __lowerCAmelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy" ) __lowerCAmelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) __lowerCAmelCase = init_image.resize((5_12, 5_12) ) __lowerCAmelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/hint_image_cat.png" ) __lowerCAmelCase = torch.from_numpy(np.array(UpperCAmelCase__ ) ).float() / 2_5_5.0 __lowerCAmelCase = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) __lowerCAmelCase = "A robot, 4k photo" __lowerCAmelCase = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(UpperCAmelCase__ ) __lowerCAmelCase = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-controlnet-depth" , torch_dtype=torch.floataa ) __lowerCAmelCase = pipeline.to(UpperCAmelCase__ ) pipeline.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowerCAmelCase = torch.Generator(device="cpu" ).manual_seed(0 ) __lowerCAmelCase , __lowerCAmelCase = pipe_prior( UpperCAmelCase__ , image=UpperCAmelCase__ , strength=0.8_5 , generator=UpperCAmelCase__ , negative_prompt="" , ).to_tuple() __lowerCAmelCase = pipeline( image=UpperCAmelCase__ , image_embeds=UpperCAmelCase__ , negative_image_embeds=UpperCAmelCase__ , hint=UpperCAmelCase__ , generator=UpperCAmelCase__ , num_inference_steps=1_00 , height=5_12 , width=5_12 , strength=0.5 , output_type="np" , ) __lowerCAmelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(UpperCAmelCase__ , UpperCAmelCase__ )
57
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" return int(input_a == input_a == 0 ) def SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" print('''Truth Table of NOR Gate:''' ) print('''| Input 1 | Input 2 | Output |''' ) print(f"""| 0 | 0 | {nor_gate(0 , 0 )} |""" ) print(f"""| 0 | 1 | {nor_gate(0 , 1 )} |""" ) print(f"""| 1 | 0 | {nor_gate(1 , 0 )} |""" ) print(f"""| 1 | 1 | {nor_gate(1 , 1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
14
0
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def A ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None ): '''simple docstring''' if attention_mask is None: SCREAMING_SNAKE_CASE__ = tf.cast(tf.math.not_equal(lowercase_ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class lowerCamelCase : lowerCamelCase__ : str = OPTConfig lowerCamelCase__ : Optional[Any] = {} lowerCamelCase__ : Tuple = 'gelu' def __init__( self : Tuple , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Dict=1_3 , __UpperCAmelCase : List[str]=7 , __UpperCAmelCase : Dict=True , __UpperCAmelCase : Any=False , __UpperCAmelCase : Optional[int]=9_9 , __UpperCAmelCase : Dict=1_6 , __UpperCAmelCase : Dict=2 , __UpperCAmelCase : Tuple=4 , __UpperCAmelCase : Tuple=4 , __UpperCAmelCase : int="gelu" , __UpperCAmelCase : List[str]=0.1 , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : Dict=2_0 , __UpperCAmelCase : Any=2 , __UpperCAmelCase : Tuple=1 , __UpperCAmelCase : str=0 , __UpperCAmelCase : int=1_6 , __UpperCAmelCase : List[Any]=1_6 , ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = seq_length SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = eos_token_id SCREAMING_SNAKE_CASE__ = pad_token_id SCREAMING_SNAKE_CASE__ = bos_token_id SCREAMING_SNAKE_CASE__ = embed_dim SCREAMING_SNAKE_CASE__ = word_embed_proj_dim SCREAMING_SNAKE_CASE__ = False def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) SCREAMING_SNAKE_CASE__ = tf.concat([input_ids, eos_tensor] , axis=1 ) SCREAMING_SNAKE_CASE__ = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=UpperCAmelCase__ , **self.config_updates , ) SCREAMING_SNAKE_CASE__ = prepare_opt_inputs_dict(UpperCAmelCase__ , UpperCAmelCase__ ) return config, inputs_dict def SCREAMING_SNAKE_CASE ( self : List[str] , __UpperCAmelCase : List[str] , __UpperCAmelCase : int ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = TFOPTModel(config=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ = inputs_dict["""input_ids"""] SCREAMING_SNAKE_CASE__ = input_ids[:1, :] SCREAMING_SNAKE_CASE__ = inputs_dict["""attention_mask"""][:1, :] SCREAMING_SNAKE_CASE__ = 1 # first forward pass SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , use_cache=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and SCREAMING_SNAKE_CASE__ = tf.concat([input_ids, next_tokens] , axis=-1 ) SCREAMING_SNAKE_CASE__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ )[0] SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice SCREAMING_SNAKE_CASE__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) SCREAMING_SNAKE_CASE__ = output_from_no_past[:, -3:, random_slice_idx] SCREAMING_SNAKE_CASE__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(UpperCAmelCase__ , UpperCAmelCase__ , rtol=1e-3 ) @require_tf class lowerCamelCase (UpperCAmelCase__ ,UpperCAmelCase__ ,unittest.TestCase ): lowerCamelCase__ : Tuple = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () lowerCamelCase__ : Tuple = (TFOPTForCausalLM,) if is_tf_available() else () lowerCamelCase__ : Optional[int] = ( {'feature-extraction': TFOPTModel, 'text-generation': TFOPTForCausalLM} if is_tf_available() else {} ) lowerCamelCase__ : str = False lowerCamelCase__ : Union[str, Any] = False lowerCamelCase__ : Any = False lowerCamelCase__ : Dict = 1_0 def SCREAMING_SNAKE_CASE ( self : str ) -> Any: SCREAMING_SNAKE_CASE__ = TFOPTModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=UpperCAmelCase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCAmelCase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(__UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] ): if hasattr(UpperCAmelCase__ , """weight""" ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(UpperCAmelCase__ , """weight""" ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 1_0, config.vocab_size + 1_0]: # build the embeddings SCREAMING_SNAKE_CASE__ = model_class(config=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ = _get_word_embedding_weight(UpperCAmelCase__ , model.get_input_embeddings() ) SCREAMING_SNAKE_CASE__ = _get_word_embedding_weight(UpperCAmelCase__ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ = _get_word_embedding_weight(UpperCAmelCase__ , model.get_input_embeddings() ) SCREAMING_SNAKE_CASE__ = _get_word_embedding_weight(UpperCAmelCase__ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. SCREAMING_SNAKE_CASE__ = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , UpperCAmelCase__ ) # check that weights remain the same after resizing SCREAMING_SNAKE_CASE__ = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: SCREAMING_SNAKE_CASE__ = False self.assertTrue(UpperCAmelCase__ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: SCREAMING_SNAKE_CASE__ = False self.assertTrue(UpperCAmelCase__ ) def A ( snake_case__ ): '''simple docstring''' return tf.constant(lowercase_ , dtype=tf.intaa ) @require_tf class lowerCamelCase (unittest.TestCase ): lowerCamelCase__ : Tuple = 9_9 def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = tf.ones((4, 1) , dtype=tf.intaa ) * 2 SCREAMING_SNAKE_CASE__ = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) SCREAMING_SNAKE_CASE__ = input_ids.shape[0] SCREAMING_SNAKE_CASE__ = OPTConfig( vocab_size=self.vocab_size , hidden_size=2_4 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class lowerCamelCase (unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: SCREAMING_SNAKE_CASE__ = TFOPTModel.from_pretrained("""facebook/opt-350m""" ) SCREAMING_SNAKE_CASE__ = _long_tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) SCREAMING_SNAKE_CASE__ = tf.not_equal(UpperCAmelCase__ , model.config.pad_token_id ) with tf.GradientTape(): SCREAMING_SNAKE_CASE__ = model(input_ids=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ).last_hidden_state SCREAMING_SNAKE_CASE__ = (1, 1_1, 5_1_2) self.assertEqual(output.shape , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ = tf.constant( [[-0.2_873, -1.9_218, -0.3_033], [-1.2_710, -0.1_338, -0.1_902], [0.4_095, 0.1_214, -1.3_121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , UpperCAmelCase__ , atol=4e-3 ) ) SCREAMING_SNAKE_CASE__ = tf.function(UpperCAmelCase__ , jit_compile=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ = xla_generate(UpperCAmelCase__ , UpperCAmelCase__ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , UpperCAmelCase__ , atol=4e-2 ) ) @require_tf @slow class lowerCamelCase (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: super().setUp() SCREAMING_SNAKE_CASE__ = """facebook/opt-350m""" def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = TFOPTForCausalLM.from_pretrained(self.path_model ) SCREAMING_SNAKE_CASE__ = GPTaTokenizer.from_pretrained(self.path_model ) SCREAMING_SNAKE_CASE__ = [ """Today is a beautiful day and I want to""", """In the city of""", """Paris is the capital of France and""", """Computers and mobile phones have taken""", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False SCREAMING_SNAKE_CASE__ = tokenizer(UpperCAmelCase__ , return_tensors="""tf""" , padding=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) SCREAMING_SNAKE_CASE__ = tf.constant( [ [1.3_851, -13.8_923, -10.5_229, -10.7_533, -0.2_309, -10.2_384, -0.5_365, -9.0_947, -5.1_670], [-4.7_073, -10.6_276, -3.9_415, -21.5_242, -0.2_822, -0.2_822, -0.2_822, -0.2_822, -0.2_822], [0.6_247, -3.4_229, -8.9_179, -1.4_297, -14.1_650, 1.4_146, -9.0_218, -0.2_703, -0.2_703], [6.4_783, -1.9_913, -10.7_926, -2.3_336, 1.5_092, -0.9_974, -6.8_213, 1.3_477, 1.3_477], ] ) self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-4 ) ) SCREAMING_SNAKE_CASE__ = tf.function(UpperCAmelCase__ , jit_compile=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-4 ) ) @require_tf @slow class lowerCamelCase (unittest.TestCase ): @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = """facebook/opt-125m""" SCREAMING_SNAKE_CASE__ = [ """Today is a beautiful day and I want to""", """In the city of New York, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = GPTaTokenizer.from_pretrained(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ = TFOPTForCausalLM.from_pretrained(UpperCAmelCase__ ) for prompt in self.prompts: SCREAMING_SNAKE_CASE__ = tokenizer(UpperCAmelCase__ , return_tensors="""tf""" ).input_ids SCREAMING_SNAKE_CASE__ = model.generate(UpperCAmelCase__ , max_length=1_0 ) SCREAMING_SNAKE_CASE__ = tokenizer.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ ) predicted_outputs += generated_string self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = """facebook/opt-350m""" SCREAMING_SNAKE_CASE__ = GPTaTokenizer.from_pretrained(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ = TFOPTForCausalLM.from_pretrained(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ = """left""" # use different length sentences to test batching SCREAMING_SNAKE_CASE__ = [ """Hello, my dog is a little""", """Today, I""", ] SCREAMING_SNAKE_CASE__ = tokenizer(UpperCAmelCase__ , return_tensors="""tf""" , padding=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ = inputs["""input_ids"""] SCREAMING_SNAKE_CASE__ = model.generate(input_ids=UpperCAmelCase__ , attention_mask=inputs["""attention_mask"""] ) SCREAMING_SNAKE_CASE__ = tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids SCREAMING_SNAKE_CASE__ = model.generate(input_ids=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["""attention_mask"""][-1] , tf.intaa ) ) SCREAMING_SNAKE_CASE__ = tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids SCREAMING_SNAKE_CASE__ = model.generate(input_ids=UpperCAmelCase__ , max_length=model.config.max_length - num_paddings ) SCREAMING_SNAKE_CASE__ = tokenizer.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ = tokenizer.decode(output_padded[0] , skip_special_tokens=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ = [ """Hello, my dog is a little bit of a dork.\nI\'m a little bit""", """Today, I was in the middle of a conversation with a friend about the""", ] self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , [non_padded_sentence, padded_sentence] ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = """facebook/opt-350m""" SCREAMING_SNAKE_CASE__ = [ """Today is a beautiful day and I want to""", """In the city of San Francisco, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = GPTaTokenizer.from_pretrained(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ = TFOPTForCausalLM.from_pretrained(UpperCAmelCase__ ) for prompt in self.prompts: SCREAMING_SNAKE_CASE__ = tokenizer(UpperCAmelCase__ , return_tensors="""tf""" ).input_ids SCREAMING_SNAKE_CASE__ = model.generate(UpperCAmelCase__ , max_length=1_0 ) SCREAMING_SNAKE_CASE__ = tokenizer.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ ) predicted_outputs += generated_string self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
165
import os import sys import unittest _lowerCamelCase : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) _lowerCamelCase : Any = os.path.join("""tests""", """models""", """bert""", """test_modeling_bert.py""") _lowerCamelCase : str = os.path.join("""tests""", """models""", """blip""", """test_modeling_blip.py""") class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : Tuple) ->Tuple: '''simple docstring''' A__ = get_test_to_tester_mapping(UpperCAmelCase__) A__ = get_test_to_tester_mapping(UpperCAmelCase__) A__ = {'''BertModelTest''': '''BertModelTester'''} A__ = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Tuple) ->List[Any]: '''simple docstring''' A__ = get_model_to_test_mapping(UpperCAmelCase__) A__ = get_model_to_test_mapping(UpperCAmelCase__) A__ = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } A__ = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->str: '''simple docstring''' A__ = get_model_to_tester_mapping(UpperCAmelCase__) A__ = get_model_to_tester_mapping(UpperCAmelCase__) A__ = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } A__ = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
14
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _lowerCAmelCase : List[Any] = logging.get_logger(__name__) def lowerCAmelCase ( _lowerCAmelCase : List[str] ): """simple docstring""" if isinstance(lowercase_ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowercase_ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowercase_ ): return [[videos]] raise ValueError(F'''Could not make batched video from {videos}''' ) class _UpperCamelCase ( UpperCAmelCase__ ): UpperCAmelCase_ = ["""pixel_values"""] def __init__( self :Any , lowerCamelCase :bool = True , lowerCamelCase :Dict[str, int] = None , lowerCamelCase :PILImageResampling = PILImageResampling.BILINEAR , lowerCamelCase :bool = True , lowerCamelCase :Dict[str, int] = None , lowerCamelCase :bool = True , lowerCamelCase :Union[int, float] = 1 / 255 , lowerCamelCase :bool = True , lowerCamelCase :Optional[Union[float, List[float]]] = None , lowerCamelCase :Optional[Union[float, List[float]]] = None , **lowerCamelCase :Tuple , ) -> None: super().__init__(**UpperCAmelCase__ ) UpperCAmelCase__ = size if size is not None else {"shortest_edge": 224} UpperCAmelCase__ = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) UpperCAmelCase__ = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase__ = get_size_dict(UpperCAmelCase__ , param_name="crop_size" ) UpperCAmelCase__ = do_resize UpperCAmelCase__ = size UpperCAmelCase__ = do_center_crop UpperCAmelCase__ = crop_size UpperCAmelCase__ = resample UpperCAmelCase__ = do_rescale UpperCAmelCase__ = rescale_factor UpperCAmelCase__ = do_normalize UpperCAmelCase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase_ ( self :int , lowerCamelCase :np.ndarray , lowerCamelCase :Dict[str, int] , lowerCamelCase :PILImageResampling = PILImageResampling.BILINEAR , lowerCamelCase :Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase :Tuple , ) -> np.ndarray: UpperCAmelCase__ = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) if "shortest_edge" in size: UpperCAmelCase__ = get_resize_output_image_size(UpperCAmelCase__ , size["shortest_edge"] , default_to_square=UpperCAmelCase__ ) elif "height" in size and "width" in size: UpperCAmelCase__ = (size["height"], size["width"]) else: raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self :Optional[Any] , lowerCamelCase :np.ndarray , lowerCamelCase :Dict[str, int] , lowerCamelCase :Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase :Union[str, Any] , ) -> np.ndarray: UpperCAmelCase__ = get_size_dict(UpperCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(UpperCAmelCase__ , size=(size["height"], size["width"]) , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self :List[str] , lowerCamelCase :np.ndarray , lowerCamelCase :Union[int, float] , lowerCamelCase :Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase :Optional[Any] , ) -> Union[str, Any]: return rescale(UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self :str , lowerCamelCase :np.ndarray , lowerCamelCase :Union[float, List[float]] , lowerCamelCase :Union[float, List[float]] , lowerCamelCase :Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase :List[Any] , ) -> np.ndarray: return normalize(UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self :List[Any] , lowerCamelCase :ImageInput , lowerCamelCase :bool = None , lowerCamelCase :Dict[str, int] = None , lowerCamelCase :PILImageResampling = None , lowerCamelCase :bool = None , lowerCamelCase :Dict[str, int] = None , lowerCamelCase :bool = None , lowerCamelCase :float = None , lowerCamelCase :bool = None , lowerCamelCase :Optional[Union[float, List[float]]] = None , lowerCamelCase :Optional[Union[float, List[float]]] = None , lowerCamelCase :Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase__ = to_numpy_array(UpperCAmelCase__ ) if do_resize: UpperCAmelCase__ = self.resize(image=UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ ) if do_center_crop: UpperCAmelCase__ = self.center_crop(UpperCAmelCase__ , size=UpperCAmelCase__ ) if do_rescale: UpperCAmelCase__ = self.rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ ) if do_normalize: UpperCAmelCase__ = self.normalize(image=UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__ ) UpperCAmelCase__ = to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) return image def UpperCAmelCase_ ( self :Dict , lowerCamelCase :ImageInput , lowerCamelCase :bool = None , lowerCamelCase :Dict[str, int] = None , lowerCamelCase :PILImageResampling = None , lowerCamelCase :bool = None , lowerCamelCase :Dict[str, int] = None , lowerCamelCase :bool = None , lowerCamelCase :float = None , lowerCamelCase :bool = None , lowerCamelCase :Optional[Union[float, List[float]]] = None , lowerCamelCase :Optional[Union[float, List[float]]] = None , lowerCamelCase :Optional[Union[str, TensorType]] = None , lowerCamelCase :ChannelDimension = ChannelDimension.FIRST , **lowerCamelCase :Optional[Any] , ) -> PIL.Image.Image: UpperCAmelCase__ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase__ = resample if resample is not None else self.resample UpperCAmelCase__ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase__ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase__ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase__ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase__ = image_std if image_std is not None else self.image_std UpperCAmelCase__ = size if size is not None else self.size UpperCAmelCase__ = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) UpperCAmelCase__ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase__ = get_size_dict(UpperCAmelCase__ , param_name="crop_size" ) if not valid_images(UpperCAmelCase__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) UpperCAmelCase__ = make_batched(UpperCAmelCase__ ) UpperCAmelCase__ = [ [ self._preprocess_image( image=UpperCAmelCase__ , do_resize=UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ , do_center_crop=UpperCAmelCase__ , crop_size=UpperCAmelCase__ , do_rescale=UpperCAmelCase__ , rescale_factor=UpperCAmelCase__ , do_normalize=UpperCAmelCase__ , image_mean=UpperCAmelCase__ , image_std=UpperCAmelCase__ , data_format=UpperCAmelCase__ , ) for img in video ] for video in videos ] UpperCAmelCase__ = {"pixel_values": videos} return BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ )
169
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class UpperCamelCase_ : '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int = 13 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : Optional[Any]=[16, 32, 64, 128] , UpperCAmelCase__ : int = 7 , UpperCAmelCase__ : int = 4 , UpperCAmelCase__ : int = 37 , UpperCAmelCase__ : str = "gelu" , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : int = 10 , UpperCAmelCase__ : float = 0.02 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : List[int] = [2, 2, 2, 2] , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 2 , ) ->List[Any]: '''simple docstring''' A__ = parent A__ = batch_size A__ = image_size A__ = patch_size A__ = num_channels A__ = is_training A__ = use_labels A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = type_sequence_label_size A__ = initializer_range A__ = encoder_stride A__ = num_attention_outputs A__ = embed_dim A__ = embed_dim + 1 A__ = resolution A__ = depths A__ = hidden_sizes A__ = dim A__ = mlp_expansion_ratio def SCREAMING_SNAKE_CASE ( self : List[Any]) ->str: '''simple docstring''' A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) A__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : int) ->str: '''simple docstring''' return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict) ->Dict: '''simple docstring''' A__ = TFEfficientFormerModel(config=UpperCAmelCase__) A__ = model(UpperCAmelCase__ , training=UpperCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str) ->Union[str, Any]: '''simple docstring''' A__ = self.type_sequence_label_size A__ = TFEfficientFormerForImageClassification(UpperCAmelCase__) A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__ , training=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images A__ = 1 A__ = TFEfficientFormerForImageClassification(UpperCAmelCase__) A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def SCREAMING_SNAKE_CASE ( self : int) ->List[str]: '''simple docstring''' A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) UpperCAmelCase__ = ( { '''feature-extraction''': TFEfficientFormerModel, '''image-classification''': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[str]: '''simple docstring''' A__ = TFEfficientFormerModelTester(self) A__ = ConfigTester( self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=37) def SCREAMING_SNAKE_CASE ( self : int) ->Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''EfficientFormer does not use inputs_embeds''') def SCREAMING_SNAKE_CASE ( self : List[str]) ->Dict: '''simple docstring''' pass @unittest.skip(reason='''EfficientFormer does not support input and output embeddings''') def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[Any]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(UpperCAmelCase__) A__ = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str) ->Any: '''simple docstring''' def check_hidden_states_output(UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict): A__ = model_class(UpperCAmelCase__) A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__) A__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A__ = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__) if hasattr(self.model_tester , '''encoder_seq_length'''): A__ = self.model_tester.encoder_seq_length if hasattr(self.model_tester , '''chunk_length''') and self.model_tester.chunk_length > 1: A__ = seq_length * self.model_tester.chunk_length else: A__ = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: A__ = outputs.decoder_hidden_states self.asseretIsInstance(UpperCAmelCase__ , (list, tuple)) self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__) A__ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''decoder_seq_length''' , UpperCAmelCase__) self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [decoder_seq_length, self.model_tester.hidden_size] , ) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict=False) ->int: '''simple docstring''' A__ = super()._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__) @unittest.skip(reason='''EfficientFormer does not implement masked image modeling yet''') def SCREAMING_SNAKE_CASE ( self : str) ->str: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any) ->Tuple: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__) @slow def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]: '''simple docstring''' for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFEfficientFormerModel.from_pretrained(UpperCAmelCase__) self.assertIsNotNone(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any) ->str: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True A__ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''encoder_seq_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''key_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''chunk_length''' , UpperCAmelCase__) if chunk_length is not None and hasattr(self.model_tester , '''num_hashes'''): A__ = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: A__ = True A__ = False A__ = True A__ = model_class(UpperCAmelCase__) A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__) A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase__) , self.model_tester.num_attention_outputs) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ = True A__ = model_class(UpperCAmelCase__) A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__) A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase__) , self.model_tester.num_attention_outputs) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:]) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[Any]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model A__ = model_class(UpperCAmelCase__) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes A__ = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=UpperCAmelCase__) for key, val in model.input_signature.items() if key in model.dummy_inputs } A__ = model(UpperCAmelCase__) self.assertTrue(outputs_dict is not None) def SCREAMING_SNAKE_CASE ( ) -> Any: """simple docstring""" A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: '''simple docstring''' return ( EfficientFormerImageProcessor.from_pretrained('''snap-research/efficientformer-l1-300''') if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any: '''simple docstring''' A__ = TFEfficientFormerForImageClassification.from_pretrained('''snap-research/efficientformer-l1-300''') A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''') # forward pass A__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__) # verify the logits A__ = tf.TensorShape((1, 1_000)) self.assertEqual(outputs.logits.shape , UpperCAmelCase__) A__ = tf.constant([-0.0555, 0.4825, -0.0852]) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4)) @slow def SCREAMING_SNAKE_CASE ( self : Dict) ->int: '''simple docstring''' A__ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( '''snap-research/efficientformer-l1-300''') A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''') # forward pass A__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__) # verify the logits A__ = tf.TensorShape((1, 1_000)) self.assertEqual(outputs.logits.shape , UpperCAmelCase__) A__ = tf.constant([-0.1312, 0.4353, -1.0499]) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4))
14
0
"""simple docstring""" import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) logging.set_verbosity_info() def lowercase (_lowerCAmelCase , _lowerCAmelCase ): if "xprophetnet" in prophetnet_checkpoint_path: __lowerCAmelCase = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowercase_ ) __lowerCAmelCase , __lowerCAmelCase = XLMProphetNetForConditionalGeneration.from_pretrained( lowercase_ , output_loading_info=lowercase_ ) else: __lowerCAmelCase = ProphetNetForConditionalGenerationOld.from_pretrained(lowercase_ ) __lowerCAmelCase , __lowerCAmelCase = ProphetNetForConditionalGeneration.from_pretrained( lowercase_ , output_loading_info=lowercase_ ) __lowerCAmelCase = ["""key_proj""", """value_proj""", """query_proj"""] __lowerCAmelCase = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: __lowerCAmelCase = key.split(""".""" ) if attributes[0] == "lm_head": __lowerCAmelCase = prophet __lowerCAmelCase = prophet_old else: __lowerCAmelCase = prophet.prophetnet __lowerCAmelCase = prophet_old.model __lowerCAmelCase = False for attribute in attributes: if attribute in mapping: __lowerCAmelCase = mapping[attribute] if not hasattr(lowercase_ , lowercase_ ) and len(lowercase_ ) > 0: __lowerCAmelCase = attribute elif hasattr(lowercase_ , lowercase_ ): __lowerCAmelCase = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" __lowerCAmelCase = old_model.weight logger.info(f"""{attribute} is initialized.""" ) __lowerCAmelCase = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" __lowerCAmelCase = old_model.bias logger.info(f"""{attribute} is initialized""" ) __lowerCAmelCase = True break elif attribute in special_keys and hasattr(lowercase_ , """in_proj_weight""" ): __lowerCAmelCase = old_model.in_proj_weight.shape[0] // 3 __lowerCAmelCase = getattr(lowercase_ , lowercase_ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": __lowerCAmelCase = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) __lowerCAmelCase = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": __lowerCAmelCase = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) __lowerCAmelCase = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": __lowerCAmelCase = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) __lowerCAmelCase = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) __lowerCAmelCase = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." __lowerCAmelCase = nn.Parameter(old_model.embed_positions.weight[:512, :] ) __lowerCAmelCase = True break if attribute.isdigit(): __lowerCAmelCase = model[int(lowercase_ )] __lowerCAmelCase = old_model[int(lowercase_ )] else: __lowerCAmelCase = getattr(lowercase_ , lowercase_ ) if old_attribute == "": __lowerCAmelCase = old_model else: if not hasattr(lowercase_ , lowercase_ ): raise ValueError(f"""{old_model} does not have {old_attribute}""" ) __lowerCAmelCase = getattr(lowercase_ , lowercase_ ) if not is_key_init: raise ValueError(f"""{key} was not correctly initialized!""" ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) prophet.save_pretrained(lowercase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
301
from __future__ import annotations def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> tuple[float, list[float]]: """simple docstring""" A__ = list(range(len(lowercase_ ) ) ) A__ = [v / w for v, w in zip(lowercase_ , lowercase_ )] index.sort(key=lambda lowercase_ : ratio[i] , reverse=lowercase_ ) A__ = 0 A__ = [0] * len(lowercase_ ) for i in index: if weight[i] <= capacity: A__ = 1 max_value += value[i] capacity -= weight[i] else: A__ = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
14
0
import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration _A = pytest.mark.integration _A = {"""comet"""} _A = importlib.util.find_spec('''fairseq''') is not None _A = {"""code_eval"""} _A = os.name == """nt""" _A = {"""bertscore""", """frugalscore""", """perplexity"""} _A = importlib.util.find_spec('''transformers''') is not None def lowerCamelCase__ ( a__ : str ) -> Dict: @wraps(lowercase_ ) def wrapper(self : Tuple , a__ : Optional[Any] ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("""\"test requires Fairseq\"""" ) else: test_case(self , lowercase_ ) return wrapper def lowerCamelCase__ ( a__ : List[Any] ) -> Optional[Any]: @wraps(lowercase_ ) def wrapper(self : Any , a__ : int ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("""\"test requires transformers\"""" ) else: test_case(self , lowercase_ ) return wrapper def lowerCamelCase__ ( a__ : Dict ) -> Optional[Any]: @wraps(lowercase_ ) def wrapper(self : Dict , a__ : Dict ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("""\"test not supported on Windows\"""" ) else: test_case(self , lowercase_ ) return wrapper def lowerCamelCase__ ( ) -> Optional[Any]: UpperCamelCase_ = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("""./metrics/*/""" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) @local class lowercase_ ( parameterized.TestCase ): A__ : List[Any] = {} A__ : Tuple = None @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:load_metric is deprecated:FutureWarning""" ) def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = """[...]""" UpperCamelCase_ = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""" , UpperCAmelCase__ ) ).module_path ) UpperCamelCase_ = datasets.load.import_main_class(metric_module.__name__ , dataset=UpperCAmelCase__ ) # check parameters UpperCamelCase_ = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(UpperCAmelCase__ , metric_module.__name__ ): with self.use_local_metrics(): try: UpperCamelCase_ = doctest.testmod(UpperCAmelCase__ , verbose=UpperCAmelCase__ , raise_on_error=UpperCAmelCase__ ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = """[...]""" UpperCamelCase_ = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""" , UpperCAmelCase__ ) ).module_path ) # run doctest with self.use_local_metrics(): UpperCamelCase_ = doctest.testmod(UpperCAmelCase__ , verbose=UpperCAmelCase__ , raise_on_error=UpperCAmelCase__ ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](UpperCAmelCase__ ): yield else: yield @contextmanager def lowerCamelCase_ ( self ): """simple docstring""" def load_local_metric(__UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ): return load_metric(os.path.join("""metrics""" , UpperCAmelCase__ ) , *UpperCAmelCase__ , **UpperCAmelCase__ ) with patch("""datasets.load_metric""" ) as mock_load_metric: UpperCamelCase_ = load_local_metric yield @classmethod def lowerCamelCase_ ( cls , __UpperCamelCase ): """simple docstring""" def wrapper(__UpperCamelCase ): UpperCamelCase_ = contextmanager(UpperCAmelCase__ ) UpperCamelCase_ = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("""bleurt""" ) def lowerCamelCase__ ( a__ : List[Any] ) -> str: import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("""sv""" , """""" , """""" ) # handle pytest cli flags class lowercase_ ( UpperCAmelCase__ ): def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" assert len(input_dict["""input_ids"""] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("""bleurt.score._create_predictor""" ) as mock_create_predictor: UpperCamelCase_ = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("""bertscore""" ) def lowerCamelCase__ ( a__ : Dict ) -> Tuple: import torch def bert_cos_score_idf(a__ : List[Any] , a__ : Optional[Any] , *a__ : str , **a__ : Union[str, Any] ): return torch.tensor([[1.0, 1.0, 1.0]] * len(lowercase_ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("""bert_score.scorer.get_model""" ), patch( """bert_score.scorer.bert_cos_score_idf""" ) as mock_bert_cos_score_idf: UpperCamelCase_ = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("""comet""" ) def lowerCamelCase__ ( a__ : Optional[int] ) -> Union[str, Any]: def load_from_checkpoint(a__ : Dict ): class lowercase_ : def lowerCamelCase_ ( self , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" assert len(UpperCAmelCase__ ) == 2 UpperCamelCase_ = [0.19, 0.92] return scores, sum(UpperCAmelCase__ ) / len(UpperCAmelCase__ ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("""comet.download_model""" ) as mock_download_model: UpperCamelCase_ = None with patch("""comet.load_from_checkpoint""" ) as mock_load_from_checkpoint: UpperCamelCase_ = load_from_checkpoint yield def lowerCamelCase__ ( ) -> Optional[int]: UpperCamelCase_ = load_metric(os.path.join("""metrics""" , """seqeval""" ) ) UpperCamelCase_ = """ERROR""" UpperCamelCase_ = f'''Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}''' with pytest.raises(lowercase_ , match=re.escape(lowercase_ ) ): metric.compute(predictions=[] , references=[] , scheme=lowercase_ )
122
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[Any]: """simple docstring""" A__ = args.log_outputs A__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric A__ = load_metric('''wer''' ) A__ = load_metric('''cer''' ) # compute metrics A__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) A__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results A__ = f"""WER: {wer_result}\nCER: {cer_result}""" print(lowercase_ ) with open(f"""{dataset_id}_eval_results.txt""" , '''w''' ) as f: f.write(lowercase_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: A__ = f"""log_{dataset_id}_predictions.txt""" A__ = f"""log_{dataset_id}_targets.txt""" with open(lowercase_ , '''w''' ) as p, open(lowercase_ , '''w''' ) as t: # mapping function to write output def write_to_file(lowercase_ , lowercase_ ): p.write(f"""{i}""" + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(f"""{i}""" + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(lowercase_ , with_indices=lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: """simple docstring""" A__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training A__ = re.sub(lowercase_ , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! A__ = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: A__ = ''' '''.join(text.split(lowercase_ ) ) return text def SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: """simple docstring""" A__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowercase_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor A__ = AutoFeatureExtractor.from_pretrained(args.model_id ) A__ = feature_extractor.sampling_rate # resample audio A__ = dataset.cast_column('''audio''' , Audio(sampling_rate=lowercase_ ) ) # load eval pipeline if args.device is None: A__ = 0 if torch.cuda.is_available() else -1 A__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(lowercase_ ): A__ = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) A__ = prediction['''text'''] A__ = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples A__ = dataset.map(lowercase_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(lowercase_ , lowercase_ ) if __name__ == "__main__": _lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) _lowerCamelCase : str = parser.parse_args() main(args)
14
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class a : UpperCAmelCase_ : str =MBartConfig UpperCAmelCase_ : int ={} UpperCAmelCase_ : Optional[int] ="gelu" def __init__( self , _lowerCamelCase , _lowerCamelCase=1_3 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=9_9 , _lowerCamelCase=3_2 , _lowerCamelCase=2 , _lowerCamelCase=4 , _lowerCamelCase=3_7 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=2_0 , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase=0 , ): lowercase = parent lowercase = batch_size lowercase = seq_length lowercase = is_training lowercase = use_labels lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = eos_token_id lowercase = pad_token_id lowercase = bos_token_id def UpperCamelCase_ ( self ): lowercase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowercase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowercase = tf.concat([input_ids, eos_tensor] , axis=1 ) lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowercase = prepare_mbart_inputs_dict(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return config, inputs_dict def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase ): lowercase = TFMBartModel(config=UpperCAmelCase__ ).get_decoder() lowercase = inputs_dict['input_ids'] lowercase = input_ids[:1, :] lowercase = inputs_dict['attention_mask'][:1, :] lowercase = inputs_dict['head_mask'] lowercase = 1 # first forward pass lowercase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , head_mask=UpperCAmelCase__ , use_cache=UpperCAmelCase__ ) lowercase , lowercase = outputs.to_tuple() lowercase = past_key_values[1] def _SCREAMING_SNAKE_CASE ( __snake_case : str , __snake_case : Dict , __snake_case : Tuple , __snake_case : Union[str, Any]=None , __snake_case : Tuple=None , __snake_case : str=None , __snake_case : List[str]=None , __snake_case : Union[str, Any]=None , ): '''simple docstring''' if attention_mask is None: lowercase = tf.cast(tf.math.not_equal(lowercase_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowercase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowercase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowercase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowercase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class a ( UpperCAmelCase__, UpperCAmelCase__, unittest.TestCase ): UpperCAmelCase_ : Tuple =(TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () UpperCAmelCase_ : int =(TFMBartForConditionalGeneration,) if is_tf_available() else () UpperCAmelCase_ : int =( { "conversational": TFMBartForConditionalGeneration, "feature-extraction": TFMBartModel, "summarization": TFMBartForConditionalGeneration, "text2text-generation": TFMBartForConditionalGeneration, "translation": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) UpperCAmelCase_ : str =True UpperCAmelCase_ : Optional[int] =False UpperCAmelCase_ : str =False def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def UpperCamelCase_ ( self ): lowercase = TFMBartModelTester(self ) lowercase = ConfigTester(self , config_class=UpperCAmelCase__ ) def UpperCamelCase_ ( self ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self ): lowercase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCAmelCase__ ) @require_sentencepiece @require_tokenizers @require_tf class a ( unittest.TestCase ): UpperCAmelCase_ : Union[str, Any] =[ " UN Chief Says There Is No Military Solution in Syria", ] UpperCAmelCase_ : int =[ "Şeful ONU declară că nu există o soluţie militară în Siria", ] UpperCAmelCase_ : Optional[Any] ="facebook/mbart-large-en-ro" @cached_property def UpperCamelCase_ ( self ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCamelCase_ ( self ): lowercase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def UpperCamelCase_ ( self , **_lowerCamelCase ): lowercase = self.translate_src_text(**UpperCAmelCase__ ) self.assertListEqual(self.expected_text , UpperCAmelCase__ ) def UpperCamelCase_ ( self , **_lowerCamelCase ): lowercase = self.tokenizer(self.src_text , **UpperCAmelCase__ , return_tensors='tf' ) lowercase = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) lowercase = self.tokenizer.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ ) return generated_words @slow def UpperCamelCase_ ( self ): self._assert_generated_batch_equal_expected()
220
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowerCamelCase : int = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Tuple = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys _lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) A__ : List[str] = { """configuration_speecht5""": [ """SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP""", """SpeechT5Config""", """SpeechT5HifiGanConfig""", ], """feature_extraction_speecht5""": ["""SpeechT5FeatureExtractor"""], """processing_speecht5""": ["""SpeechT5Processor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] = ["""SpeechT5Tokenizer"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str = [ """SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST""", """SpeechT5ForSpeechToText""", """SpeechT5ForSpeechToSpeech""", """SpeechT5ForTextToSpeech""", """SpeechT5Model""", """SpeechT5PreTrainedModel""", """SpeechT5HifiGan""", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys A__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
144
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : List[str] = {"""configuration_vit_msn""": ["""VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMSNConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = [ """VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMSNModel""", """ViTMSNForImageClassification""", """ViTMSNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys _lowerCamelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
0