code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments
from transformers.testing_utils import TestCasePlus, require_torch, slow
from transformers.utils import is_datasets_available
if is_datasets_available():
import datasets
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@slow
@require_torch
def UpperCamelCase_ ( self : List[Any] ):
__A = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny" ,"prajjwal1/bert-tiny" )
__A = BertTokenizer.from_pretrained("bert-base-uncased" )
__A = bertabert.config.encoder.vocab_size
__A = tokenizer.sep_token_id
__A = tokenizer.cls_token_id
__A = 1_28
__A = datasets.load_dataset("cnn_dailymail" ,"3.0.0" ,split="train[:1%]" )
__A = datasets.load_dataset("cnn_dailymail" ,"3.0.0" ,split="validation[:1%]" )
__A = train_dataset.select(range(32 ) )
__A = val_dataset.select(range(16 ) )
__A = 4
def _map_to_encoder_decoder_inputs(A : Optional[int] ):
# Tokenizer will automatically set [BOS] <text> [EOS]
__A = tokenizer(batch["article"] ,padding="max_length" ,truncation=A ,max_length=5_12 )
__A = tokenizer(batch["highlights"] ,padding="max_length" ,truncation=A ,max_length=1_28 )
__A = inputs.input_ids
__A = inputs.attention_mask
__A = outputs.input_ids
__A = outputs.input_ids.copy()
__A = [
[-1_00 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"]
]
__A = outputs.attention_mask
assert all(len(A ) == 5_12 for x in inputs.input_ids )
assert all(len(A ) == 1_28 for x in outputs.input_ids )
return batch
def _compute_metrics(A : Union[str, Any] ):
__A = pred.label_ids
__A = pred.predictions
# all unnecessary tokens are removed
__A = tokenizer.batch_decode(A ,skip_special_tokens=A )
__A = tokenizer.batch_decode(A ,skip_special_tokens=A )
__A = sum([int(pred_str[i] == label_str[i] ) for i in range(len(A ) )] ) / len(A )
return {"accuracy": accuracy}
# map train dataset
__A = train_dataset.map(
_map_to_encoder_decoder_inputs ,batched=A ,batch_size=A ,remove_columns=["article", "highlights"] ,)
train_dataset.set_format(
type="torch" ,columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] ,)
# same for validation dataset
__A = val_dataset.map(
_map_to_encoder_decoder_inputs ,batched=A ,batch_size=A ,remove_columns=["article", "highlights"] ,)
val_dataset.set_format(
type="torch" ,columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] ,)
__A = self.get_auto_remove_tmp_dir()
__A = SeqaSeqTrainingArguments(
output_dir=A ,per_device_train_batch_size=A ,per_device_eval_batch_size=A ,predict_with_generate=A ,evaluation_strategy="steps" ,do_train=A ,do_eval=A ,warmup_steps=0 ,eval_steps=2 ,logging_steps=2 ,)
# instantiate trainer
__A = SeqaSeqTrainer(
model=A ,args=A ,compute_metrics=_compute_metrics ,train_dataset=A ,eval_dataset=A ,tokenizer=A ,)
# start training
trainer.train()
| 15 |
import numpy as np
def UpperCAmelCase ( a_ , a_ , a_ = 1E-12 , a_ = 1_0_0 , ) -> tuple[float, np.ndarray]:
"""simple docstring"""
assert np.shape(a_ )[0] == np.shape(a_ )[1]
# Ensure proper dimensionality.
assert np.shape(a_ )[0] == np.shape(a_ )[0]
# Ensure inputs are either both complex or both real
assert np.iscomplexobj(a_ ) == np.iscomplexobj(a_ )
__A = np.iscomplexobj(a_ )
if is_complex:
# Ensure complex input_matrix is Hermitian
assert np.array_equal(a_ , input_matrix.conj().T )
# Set convergence to False. Will define convergence when we exceed max_iterations
# or when we have small changes from one iteration to next.
__A = False
__A = 0
__A = 0
__A = 1E12
while not convergence:
# Multiple matrix by the vector.
__A = np.dot(a_ , a_ )
# Normalize the resulting output vector.
__A = w / np.linalg.norm(a_ )
# Find rayleigh quotient
# (faster than usual b/c we know vector is normalized already)
__A = vector.conj().T if is_complex else vector.T
__A = np.dot(a_ , np.dot(a_ , a_ ) )
# Check convergence.
__A = np.abs(lambda_ - lambda_previous ) / lambda_
iterations += 1
if error <= error_tol or iterations >= max_iterations:
__A = True
__A = lambda_
if is_complex:
__A = np.real(lambda_ )
return lambda_, vector
def UpperCAmelCase ( ) -> None:
"""simple docstring"""
__A = np.array([[4_1, 4, 2_0], [4, 2_6, 3_0], [2_0, 3_0, 5_0]] )
__A = np.array([4_1, 4, 2_0] )
__A = real_input_matrix.astype(np.complexaaa )
__A = np.triu(1J * complex_input_matrix , 1 )
complex_input_matrix += imag_matrix
complex_input_matrix += -1 * imag_matrix.T
__A = np.array([4_1, 4, 2_0] ).astype(np.complexaaa )
for problem_type in ["real", "complex"]:
if problem_type == "real":
__A = real_input_matrix
__A = real_vector
elif problem_type == "complex":
__A = complex_input_matrix
__A = complex_vector
# Our implementation.
__A , __A = power_iteration(a_ , a_ )
# Numpy implementation.
# Get eigenvalues and eigenvectors using built-in numpy
# eigh (eigh used for symmetric or hermetian matrices).
__A , __A = np.linalg.eigh(a_ )
# Last eigenvalue is the maximum one.
__A = eigen_values[-1]
# Last column in this matrix is eigenvector corresponding to largest eigenvalue.
__A = eigen_vectors[:, -1]
# Check our implementation and numpy gives close answers.
assert np.abs(eigen_value - eigen_value_max ) <= 1E-6
# Take absolute values element wise of each eigenvector.
# as they are only unique to a minus sign.
assert np.linalg.norm(np.abs(a_ ) - np.abs(a_ ) ) <= 1E-6
if __name__ == "__main__":
import doctest
doctest.testmod()
test_power_iteration()
| 15 | 1 |
from typing import List, Optional, Union
import torch
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
SCREAMING_SNAKE_CASE :Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name
SCREAMING_SNAKE_CASE :Dict = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n'
def UpperCAmelCase ( a_ , a_ , a_=8 ) -> Union[str, Any]:
"""simple docstring"""
__A = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
__A = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : Optional[int] ,A : UNetaDConditionModel ,A : DDPMScheduler ,A : VQModel ,):
super().__init__()
self.register_modules(
unet=A ,scheduler=A ,movq=A ,)
__A = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def UpperCamelCase_ ( self : Any ,A : Any ,A : int ,A : Tuple ,A : Union[str, Any] ,A : Tuple ,A : Optional[int] ):
if latents is None:
__A = randn_tensor(A ,generator=A ,device=A ,dtype=A )
else:
if latents.shape != shape:
raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' )
__A = latents.to(A )
__A = latents * scheduler.init_noise_sigma
return latents
def UpperCamelCase_ ( self : Optional[Any] ,A : List[Any]=0 ):
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("Please install accelerate via `pip install accelerate`" )
__A = torch.device(f'''cuda:{gpu_id}''' )
__A = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(A ,A )
def UpperCamelCase_ ( self : str ,A : Optional[Any]=0 ):
if is_accelerate_available() and is_accelerate_version(">=" ,"0.17.0.dev0" ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." )
__A = torch.device(f'''cuda:{gpu_id}''' )
if self.device.type != "cpu":
self.to("cpu" ,silence_dtype_warnings=A )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
__A = None
for cpu_offloaded_model in [self.unet, self.movq]:
__A , __A = cpu_offload_with_hook(A ,A ,prev_module_hook=A )
# We'll offload the last model manually.
__A = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def UpperCamelCase_ ( self : Union[str, Any] ):
if not hasattr(self.unet ,"_hf_hook" ):
return self.device
for module in self.unet.modules():
if (
hasattr(A ,"_hf_hook" )
and hasattr(module._hf_hook ,"execution_device" )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(A )
def __call__( self : Union[str, Any] ,A : Union[torch.FloatTensor, List[torch.FloatTensor]] ,A : Union[torch.FloatTensor, List[torch.FloatTensor]] ,A : torch.FloatTensor ,A : int = 5_12 ,A : int = 5_12 ,A : int = 1_00 ,A : float = 4.0 ,A : int = 1 ,A : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,A : Optional[torch.FloatTensor] = None ,A : Optional[str] = "pil" ,A : bool = True ,):
__A = self._execution_device
__A = guidance_scale > 1.0
if isinstance(A ,A ):
__A = torch.cat(A ,dim=0 )
if isinstance(A ,A ):
__A = torch.cat(A ,dim=0 )
if isinstance(A ,A ):
__A = torch.cat(A ,dim=0 )
__A = image_embeds.shape[0] * num_images_per_prompt
if do_classifier_free_guidance:
__A = image_embeds.repeat_interleave(A ,dim=0 )
__A = negative_image_embeds.repeat_interleave(A ,dim=0 )
__A = hint.repeat_interleave(A ,dim=0 )
__A = torch.cat([negative_image_embeds, image_embeds] ,dim=0 ).to(dtype=self.unet.dtype ,device=A )
__A = torch.cat([hint, hint] ,dim=0 ).to(dtype=self.unet.dtype ,device=A )
self.scheduler.set_timesteps(A ,device=A )
__A = self.scheduler.timesteps
__A = self.movq.config.latent_channels
__A , __A = downscale_height_and_width(A ,A ,self.movq_scale_factor )
# create initial latent
__A = self.prepare_latents(
(batch_size, num_channels_latents, height, width) ,image_embeds.dtype ,A ,A ,A ,self.scheduler ,)
for i, t in enumerate(self.progress_bar(A ) ):
# expand the latents if we are doing classifier free guidance
__A = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
__A = {"image_embeds": image_embeds, "hint": hint}
__A = self.unet(
sample=A ,timestep=A ,encoder_hidden_states=A ,added_cond_kwargs=A ,return_dict=A ,)[0]
if do_classifier_free_guidance:
__A , __A = noise_pred.split(latents.shape[1] ,dim=1 )
__A , __A = noise_pred.chunk(2 )
__A , __A = variance_pred.chunk(2 )
__A = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
__A = torch.cat([noise_pred, variance_pred_text] ,dim=1 )
if not (
hasattr(self.scheduler.config ,"variance_type" )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
__A , __A = noise_pred.split(latents.shape[1] ,dim=1 )
# compute the previous noisy sample x_t -> x_t-1
__A = self.scheduler.step(
A ,A ,A ,generator=A ,)[0]
# post-processing
__A = self.movq.decode(A ,force_not_quantize=A )["sample"]
if output_type not in ["pt", "np", "pil"]:
raise ValueError(f'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' )
if output_type in ["np", "pil"]:
__A = image * 0.5 + 0.5
__A = image.clamp(0 ,1 )
__A = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy()
if output_type == "pil":
__A = self.numpy_to_pil(A )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=A )
| 15 |
from typing import Optional, Tuple, Union
import tensorflow as tf
from ...activations_tf import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_tf_outputs import (
TFBaseModelOutputWithNoAttention,
TFBaseModelOutputWithPoolingAndNoAttention,
TFSequenceClassifierOutput,
)
from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs
from ...tf_utils import shape_list
from ...utils import logging
from .configuration_regnet import RegNetConfig
SCREAMING_SNAKE_CASE :str = logging.get_logger(__name__)
# General docstring
SCREAMING_SNAKE_CASE :str = 'RegNetConfig'
# Base docstring
SCREAMING_SNAKE_CASE :List[str] = 'facebook/regnet-y-040'
SCREAMING_SNAKE_CASE :Union[str, Any] = [1, 1088, 7, 7]
# Image classification docstring
SCREAMING_SNAKE_CASE :Optional[int] = 'facebook/regnet-y-040'
SCREAMING_SNAKE_CASE :Any = 'tabby, tabby cat'
SCREAMING_SNAKE_CASE :Optional[int] = [
'facebook/regnet-y-040',
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : Tuple ,A : int ,A : int = 3 ,A : int = 1 ,A : int = 1 ,A : Optional[str] = "relu" ,**A : Dict ,):
super().__init__(**A )
# The padding and conv has been verified in
# https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb
__A = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 )
__A = tf.keras.layers.ConvaD(
filters=A ,kernel_size=A ,strides=A ,padding="VALID" ,groups=A ,use_bias=A ,name="convolution" ,)
__A = tf.keras.layers.BatchNormalization(epsilon=1E-5 ,momentum=0.9 ,name="normalization" )
__A = ACTaFN[activation] if activation is not None else tf.identity
def UpperCamelCase_ ( self : List[Any] ,A : Any ):
__A = self.convolution(self.padding(A ) )
__A = self.normalization(A )
__A = self.activation(A )
return hidden_state
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : Tuple ,A : RegNetConfig ,**A : str ):
super().__init__(**A )
__A = config.num_channels
__A = TFRegNetConvLayer(
out_channels=config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ,name="embedder" ,)
def UpperCamelCase_ ( self : Tuple ,A : Optional[Any] ):
__A = shape_list(A )[1]
if tf.executing_eagerly() and num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration." )
# When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format.
# So change the input format from `NCHW` to `NHWC`.
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
__A = tf.transpose(A ,perm=(0, 2, 3, 1) )
__A = self.embedder(A )
return hidden_state
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : Optional[int] ,A : int ,A : int = 2 ,**A : Tuple ):
super().__init__(**A )
__A = tf.keras.layers.ConvaD(
filters=A ,kernel_size=1 ,strides=A ,use_bias=A ,name="convolution" )
__A = tf.keras.layers.BatchNormalization(epsilon=1E-5 ,momentum=0.9 ,name="normalization" )
def UpperCamelCase_ ( self : Union[str, Any] ,A : tf.Tensor ,A : bool = False ):
return self.normalization(self.convolution(A ) ,training=A )
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : Dict ,A : int ,A : int ,**A : str ):
super().__init__(**A )
__A = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A ,name="pooler" )
__A = [
tf.keras.layers.ConvaD(filters=A ,kernel_size=1 ,activation="relu" ,name="attention.0" ),
tf.keras.layers.ConvaD(filters=A ,kernel_size=1 ,activation="sigmoid" ,name="attention.2" ),
]
def UpperCamelCase_ ( self : Dict ,A : List[Any] ):
# [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels]
__A = self.pooler(A )
for layer_module in self.attention:
__A = layer_module(A )
__A = hidden_state * pooled
return hidden_state
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : List[str] ,A : RegNetConfig ,A : int ,A : int ,A : int = 1 ,**A : Optional[int] ):
super().__init__(**A )
__A = in_channels != out_channels or stride != 1
__A = max(1 ,out_channels // config.groups_width )
__A = (
TFRegNetShortCut(A ,stride=A ,name="shortcut" )
if should_apply_shortcut
else tf.keras.layers.Activation("linear" ,name="shortcut" )
)
# `self.layers` instead of `self.layer` because that is a reserved argument.
__A = [
TFRegNetConvLayer(A ,kernel_size=1 ,activation=config.hidden_act ,name="layer.0" ),
TFRegNetConvLayer(
A ,stride=A ,groups=A ,activation=config.hidden_act ,name="layer.1" ),
TFRegNetConvLayer(A ,kernel_size=1 ,activation=A ,name="layer.2" ),
]
__A = ACTaFN[config.hidden_act]
def UpperCamelCase_ ( self : int ,A : Optional[int] ):
__A = hidden_state
for layer_module in self.layers:
__A = layer_module(A )
__A = self.shortcut(A )
hidden_state += residual
__A = self.activation(A )
return hidden_state
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : List[Any] ,A : RegNetConfig ,A : int ,A : int ,A : int = 1 ,**A : str ):
super().__init__(**A )
__A = in_channels != out_channels or stride != 1
__A = max(1 ,out_channels // config.groups_width )
__A = (
TFRegNetShortCut(A ,stride=A ,name="shortcut" )
if should_apply_shortcut
else tf.keras.layers.Activation("linear" ,name="shortcut" )
)
__A = [
TFRegNetConvLayer(A ,kernel_size=1 ,activation=config.hidden_act ,name="layer.0" ),
TFRegNetConvLayer(
A ,stride=A ,groups=A ,activation=config.hidden_act ,name="layer.1" ),
TFRegNetSELayer(A ,reduced_channels=int(round(in_channels / 4 ) ) ,name="layer.2" ),
TFRegNetConvLayer(A ,kernel_size=1 ,activation=A ,name="layer.3" ),
]
__A = ACTaFN[config.hidden_act]
def UpperCamelCase_ ( self : Dict ,A : Any ):
__A = hidden_state
for layer_module in self.layers:
__A = layer_module(A )
__A = self.shortcut(A )
hidden_state += residual
__A = self.activation(A )
return hidden_state
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : List[str] ,A : RegNetConfig ,A : int ,A : int ,A : int = 2 ,A : int = 2 ,**A : Optional[int] ):
super().__init__(**A )
__A = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer
__A = [
# downsampling is done in the first layer with stride of 2
layer(A ,A ,A ,stride=A ,name="layers.0" ),
*[layer(A ,A ,A ,name=f'''layers.{i+1}''' ) for i in range(depth - 1 )],
]
def UpperCamelCase_ ( self : Any ,A : List[str] ):
for layer_module in self.layers:
__A = layer_module(A )
return hidden_state
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : Any ,A : RegNetConfig ,**A : List[str] ):
super().__init__(**A )
__A = []
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
TFRegNetStage(
A ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,name="stages.0" ,) )
__A = zip(config.hidden_sizes ,config.hidden_sizes[1:] )
for i, ((in_channels, out_channels), depth) in enumerate(zip(A ,config.depths[1:] ) ):
self.stages.append(TFRegNetStage(A ,A ,A ,depth=A ,name=f'''stages.{i+1}''' ) )
def UpperCamelCase_ ( self : List[str] ,A : tf.Tensor ,A : bool = False ,A : bool = True ):
__A = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
__A = hidden_states + (hidden_state,)
__A = stage_module(A )
if output_hidden_states:
__A = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return TFBaseModelOutputWithNoAttention(last_hidden_state=A ,hidden_states=A )
@keras_serializable
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
snake_case_ = RegNetConfig
def __init__( self : int ,A : Optional[int] ,**A : Dict ):
super().__init__(**A )
__A = config
__A = TFRegNetEmbeddings(A ,name="embedder" )
__A = TFRegNetEncoder(A ,name="encoder" )
__A = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A ,name="pooler" )
@unpack_inputs
def UpperCamelCase_ ( self : Tuple ,A : tf.Tensor ,A : Optional[bool] = None ,A : Optional[bool] = None ,A : bool = False ,):
__A = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__A = return_dict if return_dict is not None else self.config.use_return_dict
__A = self.embedder(A ,training=A )
__A = self.encoder(
A ,output_hidden_states=A ,return_dict=A ,training=A )
__A = encoder_outputs[0]
__A = self.pooler(A )
# Change to NCHW output format have uniformity in the modules
__A = tf.transpose(A ,perm=(0, 3, 1, 2) )
__A = tf.transpose(A ,perm=(0, 3, 1, 2) )
# Change the other hidden state outputs to NCHW as well
if output_hidden_states:
__A = tuple([tf.transpose(A ,perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=A ,pooler_output=A ,hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states ,)
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = RegNetConfig
snake_case_ = "regnet"
snake_case_ = "pixel_values"
@property
def UpperCamelCase_ ( self : Optional[Any] ):
return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) ,dtype=tf.floataa )}
SCREAMING_SNAKE_CASE :Dict = R'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n'
SCREAMING_SNAKE_CASE :Dict = R'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n'
@add_start_docstrings(
"The bare RegNet model outputting raw features without any specific head on top." , __SCREAMING_SNAKE_CASE , )
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : List[Any] ,A : RegNetConfig ,*A : List[Any] ,**A : str ):
super().__init__(A ,*A ,**A )
__A = TFRegNetMainLayer(A ,name="regnet" )
@unpack_inputs
@add_start_docstrings_to_model_forward(A )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC ,output_type=A ,config_class=_CONFIG_FOR_DOC ,modality="vision" ,expected_output=_EXPECTED_OUTPUT_SHAPE ,)
def UpperCamelCase_ ( self : Tuple ,A : tf.Tensor ,A : Optional[bool] = None ,A : Optional[bool] = None ,A : int=False ,):
__A = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__A = return_dict if return_dict is not None else self.config.use_return_dict
__A = self.regnet(
pixel_values=A ,output_hidden_states=A ,return_dict=A ,training=A ,)
if not return_dict:
return (outputs[0],) + outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=outputs.last_hidden_state ,pooler_output=outputs.pooler_output ,hidden_states=outputs.hidden_states ,)
@add_start_docstrings(
"\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , __SCREAMING_SNAKE_CASE , )
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : Optional[int] ,A : RegNetConfig ,*A : str ,**A : Tuple ):
super().__init__(A ,*A ,**A )
__A = config.num_labels
__A = TFRegNetMainLayer(A ,name="regnet" )
# classification head
__A = [
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(config.num_labels ,name="classifier.1" ) if config.num_labels > 0 else tf.identity,
]
@unpack_inputs
@add_start_docstrings_to_model_forward(A )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=A ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,)
def UpperCamelCase_ ( self : List[str] ,A : tf.Tensor = None ,A : tf.Tensor = None ,A : bool = None ,A : bool = None ,A : Union[str, Any]=False ,):
__A = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__A = return_dict if return_dict is not None else self.config.use_return_dict
__A = self.regnet(
A ,output_hidden_states=A ,return_dict=A ,training=A )
__A = outputs.pooler_output if return_dict else outputs[1]
__A = self.classifier[0](A )
__A = self.classifier[1](A )
__A = None if labels is None else self.hf_compute_loss(labels=A ,logits=A )
if not return_dict:
__A = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(loss=A ,logits=A ,hidden_states=outputs.hidden_states )
| 15 | 1 |
import csv
import tweepy
# Twitter API credentials
SCREAMING_SNAKE_CASE :List[str] = ''
SCREAMING_SNAKE_CASE :List[str] = ''
SCREAMING_SNAKE_CASE :int = ''
SCREAMING_SNAKE_CASE :Dict = ''
def UpperCAmelCase ( a_ ) -> None:
"""simple docstring"""
__A = tweepy.OAuthHandler(a_ , a_ )
auth.set_access_token(a_ , a_ )
__A = tweepy.API(a_ )
# initialize a list to hold all the tweepy Tweets
__A = []
# make initial request for most recent tweets (200 is the maximum allowed count)
__A = api.user_timeline(screen_name=a_ , count=2_0_0 )
# save most recent tweets
alltweets.extend(a_ )
# save the id of the oldest tweet less one
__A = alltweets[-1].id - 1
# keep grabbing tweets until there are no tweets left to grab
while len(a_ ) > 0:
print(F'''getting tweets before {oldest}''' )
# all subsequent requests use the max_id param to prevent duplicates
__A = api.user_timeline(
screen_name=a_ , count=2_0_0 , max_id=a_ )
# save most recent tweets
alltweets.extend(a_ )
# update the id of the oldest tweet less one
__A = alltweets[-1].id - 1
print(F'''...{len(a_ )} tweets downloaded so far''' )
# transform the tweepy tweets into a 2D array that will populate the csv
__A = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets]
# write the csv
with open(F'''new_{screen_name}_tweets.csv''' , "w" ) as f:
__A = csv.writer(a_ )
writer.writerow(["id", "created_at", "text"] )
writer.writerows(a_ )
if __name__ == "__main__":
# pass in the username of the account you want to download
get_all_tweets('FirePing32')
| 15 |
import math
def UpperCAmelCase ( a_ , a_ = 0 , a_ = 0 ) -> list:
"""simple docstring"""
__A = end or len(a_ )
for i in range(a_ , a_ ):
__A = i
__A = array[i]
while temp_index != start and temp_index_value < array[temp_index - 1]:
__A = array[temp_index - 1]
temp_index -= 1
__A = temp_index_value
return array
def UpperCAmelCase ( a_ , a_ , a_ ) -> None: # Max Heap
"""simple docstring"""
__A = index
__A = 2 * index + 1 # Left Node
__A = 2 * index + 2 # Right Node
if left_index < heap_size and array[largest] < array[left_index]:
__A = left_index
if right_index < heap_size and array[largest] < array[right_index]:
__A = right_index
if largest != index:
__A , __A = array[largest], array[index]
heapify(a_ , a_ , a_ )
def UpperCAmelCase ( a_ ) -> list:
"""simple docstring"""
__A = len(a_ )
for i in range(n // 2 , -1 , -1 ):
heapify(a_ , a_ , a_ )
for i in range(n - 1 , 0 , -1 ):
__A , __A = array[0], array[i]
heapify(a_ , 0 , a_ )
return array
def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> int:
"""simple docstring"""
if (array[first_index] > array[middle_index]) != (
array[first_index] > array[last_index]
):
return array[first_index]
elif (array[middle_index] > array[first_index]) != (
array[middle_index] > array[last_index]
):
return array[middle_index]
else:
return array[last_index]
def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> int:
"""simple docstring"""
__A = low
__A = high
while True:
while array[i] < pivot:
i += 1
j -= 1
while pivot < array[j]:
j -= 1
if i >= j:
return i
__A , __A = array[j], array[i]
i += 1
def UpperCAmelCase ( a_ ) -> list:
"""simple docstring"""
if len(a_ ) == 0:
return array
__A = 2 * math.ceil(math.loga(len(a_ ) ) )
__A = 1_6
return intro_sort(a_ , 0 , len(a_ ) , a_ , a_ )
def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ ) -> list:
"""simple docstring"""
while end - start > size_threshold:
if max_depth == 0:
return heap_sort(a_ )
max_depth -= 1
__A = median_of_a(a_ , a_ , start + ((end - start) // 2) + 1 , end - 1 )
__A = partition(a_ , a_ , a_ , a_ )
intro_sort(a_ , a_ , a_ , a_ , a_ )
__A = p
return insertion_sort(a_ , a_ , a_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
SCREAMING_SNAKE_CASE :List[Any] = input('Enter numbers separated by a comma : ').strip()
SCREAMING_SNAKE_CASE :str = [float(item) for item in user_input.split(',')]
print(sort(unsorted))
| 15 | 1 |
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = ["image_processor", "tokenizer"]
snake_case_ = "ViltImageProcessor"
snake_case_ = ("BertTokenizer", "BertTokenizerFast")
def __init__( self : Optional[int] ,A : Optional[int]=None ,A : Dict=None ,**A : List[str] ):
__A = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." ,A ,)
__A = kwargs.pop("feature_extractor" )
__A = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(A ,A )
__A = self.image_processor
def __call__( self : Optional[Any] ,A : Dict ,A : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None ,A : bool = True ,A : Union[bool, str, PaddingStrategy] = False ,A : Union[bool, str, TruncationStrategy] = None ,A : Optional[int] = None ,A : int = 0 ,A : Optional[int] = None ,A : Optional[bool] = None ,A : Optional[bool] = None ,A : bool = False ,A : bool = False ,A : bool = False ,A : bool = False ,A : bool = True ,A : Optional[Union[str, TensorType]] = None ,**A : Tuple ,):
__A = self.tokenizer(
text=A ,add_special_tokens=A ,padding=A ,truncation=A ,max_length=A ,stride=A ,pad_to_multiple_of=A ,return_token_type_ids=A ,return_attention_mask=A ,return_overflowing_tokens=A ,return_special_tokens_mask=A ,return_offsets_mapping=A ,return_length=A ,verbose=A ,return_tensors=A ,**A ,)
# add pixel_values + pixel_mask
__A = self.image_processor(A ,return_tensors=A )
encoding.update(A )
return encoding
def UpperCamelCase_ ( self : Tuple ,*A : Optional[Any] ,**A : Tuple ):
return self.tokenizer.batch_decode(*A ,**A )
def UpperCamelCase_ ( self : List[Any] ,*A : int ,**A : Dict ):
return self.tokenizer.decode(*A ,**A )
@property
def UpperCamelCase_ ( self : List[str] ):
__A = self.tokenizer.model_input_names
__A = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def UpperCamelCase_ ( self : str ):
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." ,A ,)
return self.image_processor_class
@property
def UpperCamelCase_ ( self : Optional[int] ):
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." ,A ,)
return self.image_processor
| 15 |
import dataclasses
import json
import sys
import types
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError
from copy import copy
from enum import Enum
from inspect import isclass
from pathlib import Path
from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints
import yaml
SCREAMING_SNAKE_CASE :Optional[int] = NewType('DataClass', Any)
SCREAMING_SNAKE_CASE :int = NewType('DataClassType', Any)
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
if isinstance(a_ , a_ ):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise ArgumentTypeError(
F'''Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).''' )
def UpperCAmelCase ( a_ ) -> Callable[[str], Any]:
"""simple docstring"""
__A = {str(a_ ): choice for choice in choices}
return lambda a_ : str_to_choice.get(a_ , a_ )
def UpperCAmelCase ( *,
a_ = None , a_ = None , a_ = dataclasses.MISSING , a_ = dataclasses.MISSING , a_ = None , **a_ , ) -> dataclasses.Field:
"""simple docstring"""
if metadata is None:
# Important, don't use as default param in function signature because dict is mutable and shared across function calls
__A = {}
if aliases is not None:
__A = aliases
if help is not None:
__A = help
return dataclasses.field(metadata=a_ , default=a_ , default_factory=a_ , **a_ )
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = 42
def __init__( self : Union[str, Any] ,A : Union[DataClassType, Iterable[DataClassType]] ,**A : List[Any] ):
# To make the default appear when using --help
if "formatter_class" not in kwargs:
__A = ArgumentDefaultsHelpFormatter
super().__init__(**A )
if dataclasses.is_dataclass(A ):
__A = [dataclass_types]
__A = list(A )
for dtype in self.dataclass_types:
self._add_dataclass_arguments(A )
@staticmethod
def UpperCamelCase_ ( A : ArgumentParser ,A : dataclasses.Field ):
__A = f'''--{field.name}'''
__A = field.metadata.copy()
# field.metadata is not used at all by Data Classes,
# it is provided as a third-party extension mechanism.
if isinstance(field.type ,A ):
raise RuntimeError(
"Unresolved type detected, which should have been done with the help of "
"`typing.get_type_hints` method by default" )
__A = kwargs.pop("aliases" ,[] )
if isinstance(A ,A ):
__A = [aliases]
__A = getattr(field.type ,"__origin__" ,field.type )
if origin_type is Union or (hasattr(A ,"UnionType" ) and isinstance(A ,types.UnionType )):
if str not in field.type.__args__ and (
len(field.type.__args__ ) != 2 or type(A ) not in field.type.__args__
):
raise ValueError(
"Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because"
" the argument parser only supports one type per argument."
f''' Problem encountered in field \'{field.name}\'.''' )
if type(A ) not in field.type.__args__:
# filter `str` in Union
__A = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1]
__A = getattr(field.type ,"__origin__" ,field.type )
elif bool not in field.type.__args__:
# filter `NoneType` in Union (except for `Union[bool, NoneType]`)
__A = (
field.type.__args__[0] if isinstance(A ,field.type.__args__[1] ) else field.type.__args__[1]
)
__A = getattr(field.type ,"__origin__" ,field.type )
# A variable to store kwargs for a boolean field, if needed
# so that we can init a `no_*` complement argument (see below)
__A = {}
if origin_type is Literal or (isinstance(field.type ,A ) and issubclass(field.type ,A )):
if origin_type is Literal:
__A = field.type.__args__
else:
__A = [x.value for x in field.type]
__A = make_choice_type_function(kwargs["choices"] )
if field.default is not dataclasses.MISSING:
__A = field.default
else:
__A = True
elif field.type is bool or field.type == Optional[bool]:
# Copy the currect kwargs to use to instantiate a `no_*` complement argument below.
# We do not initialize it here because the `no_*` alternative must be instantiated after the real argument
__A = copy(A )
# Hack because type=bool in argparse does not behave as we want.
__A = string_to_bool
if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING):
# Default value is False if we have no default when of type bool.
__A = False if field.default is dataclasses.MISSING else field.default
# This is the value that will get picked if we don't include --field_name in any way
__A = default
# This tells argparse we accept 0 or 1 value after --field_name
__A = "?"
# This is the value that will get picked if we do --field_name (without value)
__A = True
elif isclass(A ) and issubclass(A ,A ):
__A = field.type.__args__[0]
__A = "+"
if field.default_factory is not dataclasses.MISSING:
__A = field.default_factory()
elif field.default is dataclasses.MISSING:
__A = True
else:
__A = field.type
if field.default is not dataclasses.MISSING:
__A = field.default
elif field.default_factory is not dataclasses.MISSING:
__A = field.default_factory()
else:
__A = True
parser.add_argument(A ,*A ,**A )
# Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added.
# Order is important for arguments with the same destination!
# We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down
# here and we do not need those changes/additional keys.
if field.default is True and (field.type is bool or field.type == Optional[bool]):
__A = False
parser.add_argument(f'''--no_{field.name}''' ,action="store_false" ,dest=field.name ,**A )
def UpperCamelCase_ ( self : Union[str, Any] ,A : DataClassType ):
if hasattr(A ,"_argument_group_name" ):
__A = self.add_argument_group(dtype._argument_group_name )
else:
__A = self
try:
__A = get_type_hints(A )
except NameError:
raise RuntimeError(
f'''Type resolution failed for {dtype}. Try declaring the class in global scope or '''
"removing line of `from __future__ import annotations` which opts in Postponed "
"Evaluation of Annotations (PEP 563)" )
except TypeError as ex:
# Remove this block when we drop Python 3.9 support
if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(A ):
__A = ".".join(map(A ,sys.version_info[:3] ) )
raise RuntimeError(
f'''Type resolution failed for {dtype} on Python {python_version}. Try removing '''
"line of `from __future__ import annotations` which opts in union types as "
"`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To "
"support Python versions that lower than 3.10, you need to use "
"`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of "
"`X | None`." ) from ex
raise
for field in dataclasses.fields(A ):
if not field.init:
continue
__A = type_hints[field.name]
self._parse_dataclass_field(A ,A )
def UpperCamelCase_ ( self : Union[str, Any] ,A : List[Any]=None ,A : List[Any]=False ,A : Optional[Any]=True ,A : Union[str, Any]=None ,A : Union[str, Any]=None ,):
if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )):
__A = []
if args_filename:
args_files.append(Path(A ) )
elif look_for_args_file and len(sys.argv ):
args_files.append(Path(sys.argv[0] ).with_suffix(".args" ) )
# args files specified via command line flag should overwrite default args files so we add them last
if args_file_flag:
# Create special parser just to extract the args_file_flag values
__A = ArgumentParser()
args_file_parser.add_argument(A ,type=A ,action="append" )
# Use only remaining args for further parsing (remove the args_file_flag)
__A , __A = args_file_parser.parse_known_args(args=A )
__A = vars(A ).get(args_file_flag.lstrip("-" ) ,A )
if cmd_args_file_paths:
args_files.extend([Path(A ) for p in cmd_args_file_paths] )
__A = []
for args_file in args_files:
if args_file.exists():
file_args += args_file.read_text().split()
# in case of duplicate arguments the last one has precedence
# args specified via the command line should overwrite args from files, so we add them last
__A = file_args + args if args is not None else file_args + sys.argv[1:]
__A , __A = self.parse_known_args(args=A )
__A = []
for dtype in self.dataclass_types:
__A = {f.name for f in dataclasses.fields(A ) if f.init}
__A = {k: v for k, v in vars(A ).items() if k in keys}
for k in keys:
delattr(A ,A )
__A = dtype(**A )
outputs.append(A )
if len(namespace.__dict__ ) > 0:
# additional namespace.
outputs.append(A )
if return_remaining_strings:
return (*outputs, remaining_args)
else:
if remaining_args:
raise ValueError(f'''Some specified arguments are not used by the HfArgumentParser: {remaining_args}''' )
return (*outputs,)
def UpperCamelCase_ ( self : Dict ,A : Dict[str, Any] ,A : bool = False ):
__A = set(args.keys() )
__A = []
for dtype in self.dataclass_types:
__A = {f.name for f in dataclasses.fields(A ) if f.init}
__A = {k: v for k, v in args.items() if k in keys}
unused_keys.difference_update(inputs.keys() )
__A = dtype(**A )
outputs.append(A )
if not allow_extra_keys and unused_keys:
raise ValueError(f'''Some keys are not used by the HfArgumentParser: {sorted(A )}''' )
return tuple(A )
def UpperCamelCase_ ( self : List[str] ,A : str ,A : bool = False ):
with open(Path(A ) ,encoding="utf-8" ) as open_json_file:
__A = json.loads(open_json_file.read() )
__A = self.parse_dict(A ,allow_extra_keys=A )
return tuple(A )
def UpperCamelCase_ ( self : int ,A : str ,A : bool = False ):
__A = self.parse_dict(yaml.safe_load(Path(A ).read_text() ) ,allow_extra_keys=A )
return tuple(A )
| 15 | 1 |
from typing import Dict, Optional
import numpy as np
import datasets
SCREAMING_SNAKE_CASE :List[Any] = '\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n'
SCREAMING_SNAKE_CASE :List[str] = '\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric("mean_iou")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n'
SCREAMING_SNAKE_CASE :str = '\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}'
def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ = None , a_ = False , ) -> Tuple:
"""simple docstring"""
if label_map is not None:
for old_id, new_id in label_map.items():
__A = new_id
# turn into Numpy arrays
__A = np.array(a_ )
__A = np.array(a_ )
if reduce_labels:
__A = 2_5_5
__A = label - 1
__A = 2_5_5
__A = label != ignore_index
__A = np.not_equal(a_ , a_ )
__A = pred_label[mask]
__A = np.array(a_ )[mask]
__A = pred_label[pred_label == label]
__A = np.histogram(a_ , bins=a_ , range=(0, num_labels - 1) )[0]
__A = np.histogram(a_ , bins=a_ , range=(0, num_labels - 1) )[0]
__A = np.histogram(a_ , bins=a_ , range=(0, num_labels - 1) )[0]
__A = area_pred_label + area_label - area_intersect
return area_intersect, area_union, area_pred_label, area_label
def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ = None , a_ = False , ) -> Union[str, Any]:
"""simple docstring"""
__A = np.zeros((num_labels,) , dtype=np.floataa )
__A = np.zeros((num_labels,) , dtype=np.floataa )
__A = np.zeros((num_labels,) , dtype=np.floataa )
__A = np.zeros((num_labels,) , dtype=np.floataa )
for result, gt_seg_map in zip(a_ , a_ ):
__A , __A , __A , __A = intersect_and_union(
a_ , a_ , a_ , a_ , a_ , a_ )
total_area_intersect += area_intersect
total_area_union += area_union
total_area_pred_label += area_pred_label
total_area_label += area_label
return total_area_intersect, total_area_union, total_area_pred_label, total_area_label
def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ = None , a_ = None , a_ = False , ) -> str:
"""simple docstring"""
__A , __A , __A , __A = total_intersect_and_union(
a_ , a_ , a_ , a_ , a_ , a_ )
# compute metrics
__A = {}
__A = total_area_intersect.sum() / total_area_label.sum()
__A = total_area_intersect / total_area_union
__A = total_area_intersect / total_area_label
__A = np.nanmean(a_ )
__A = np.nanmean(a_ )
__A = all_acc
__A = iou
__A = acc
if nan_to_num is not None:
__A = {metric: np.nan_to_num(a_ , nan=a_ ) for metric, metric_value in metrics.items()}
return metrics
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase ( datasets.Metric ):
'''simple docstring'''
def UpperCamelCase_ ( self : List[Any] ):
return datasets.MetricInfo(
description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(
# 1st Seq - height dim, 2nd - width dim
{
"predictions": datasets.Sequence(datasets.Sequence(datasets.Value("uint16" ) ) ),
"references": datasets.Sequence(datasets.Sequence(datasets.Value("uint16" ) ) ),
} ) ,reference_urls=[
"https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py"
] ,)
def UpperCamelCase_ ( self : int ,A : Optional[Any] ,A : Optional[Any] ,A : int ,A : bool ,A : Optional[int] = None ,A : Optional[Dict[int, int]] = None ,A : bool = False ,):
__A = mean_iou(
results=A ,gt_seg_maps=A ,num_labels=A ,ignore_index=A ,nan_to_num=A ,label_map=A ,reduce_labels=A ,)
return iou_result
| 15 |
SCREAMING_SNAKE_CASE :Any = 256
# Modulus to hash a string
SCREAMING_SNAKE_CASE :Union[str, Any] = 100_0003
def UpperCAmelCase ( a_ , a_ ) -> bool:
"""simple docstring"""
__A = len(a_ )
__A = len(a_ )
if p_len > t_len:
return False
__A = 0
__A = 0
__A = 1
# Calculating the hash of pattern and substring of text
for i in range(a_ ):
__A = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus
__A = (ord(text[i] ) + text_hash * alphabet_size) % modulus
if i == p_len - 1:
continue
__A = (modulus_power * alphabet_size) % modulus
for i in range(0 , t_len - p_len + 1 ):
if text_hash == p_hash and text[i : i + p_len] == pattern:
return True
if i == t_len - p_len:
continue
# Calculate the https://en.wikipedia.org/wiki/Rolling_hash
__A = (
(text_hash - ord(text[i] ) * modulus_power) * alphabet_size
+ ord(text[i + p_len] )
) % modulus
return False
def UpperCAmelCase ( ) -> None:
"""simple docstring"""
__A = "abc1abc12"
__A = "alskfjaldsabc1abc1abc12k23adsfabcabc"
__A = "alskfjaldsk23adsfabcabc"
assert rabin_karp(a_ , a_ ) and not rabin_karp(a_ , a_ )
# Test 2)
__A = "ABABX"
__A = "ABABZABABYABABX"
assert rabin_karp(a_ , a_ )
# Test 3)
__A = "AAAB"
__A = "ABAAAAAB"
assert rabin_karp(a_ , a_ )
# Test 4)
__A = "abcdabcy"
__A = "abcxabcdabxabcdabcdabcy"
assert rabin_karp(a_ , a_ )
# Test 5)
__A = "Lü"
__A = "Lüsai"
assert rabin_karp(a_ , a_ )
__A = "Lue"
assert not rabin_karp(a_ , a_ )
print("Success." )
if __name__ == "__main__":
test_rabin_karp()
| 15 | 1 |
from math import ceil, sqrt
def UpperCAmelCase ( a_ = 1_0_0_0_0_0_0 ) -> int:
"""simple docstring"""
__A = 0
for outer_width in range(3 , (limit // 4) + 2 ):
if outer_width**2 > limit:
__A = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 )
else:
__A = 1
if (outer_width - hole_width_lower_bound) % 2:
hole_width_lower_bound += 1
answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1
return answer
if __name__ == "__main__":
print(f'''{solution() = }''')
| 15 |
import argparse
import json
import os
import torch
from transformers.file_utils import has_file
from diffusers import UNetaDConditionModel, UNetaDModel
SCREAMING_SNAKE_CASE :Union[str, Any] = False
SCREAMING_SNAKE_CASE :Any = True
SCREAMING_SNAKE_CASE :Tuple = False
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :Tuple = argparse.ArgumentParser()
parser.add_argument(
'--repo_path',
default=None,
type=str,
required=True,
help='The config json file corresponding to the architecture.',
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
SCREAMING_SNAKE_CASE :Union[str, Any] = parser.parse_args()
SCREAMING_SNAKE_CASE :Dict = {
'image_size': 'sample_size',
'num_res_blocks': 'layers_per_block',
'block_channels': 'block_out_channels',
'down_blocks': 'down_block_types',
'up_blocks': 'up_block_types',
'downscale_freq_shift': 'freq_shift',
'resnet_num_groups': 'norm_num_groups',
'resnet_act_fn': 'act_fn',
'resnet_eps': 'norm_eps',
'num_head_channels': 'attention_head_dim',
}
SCREAMING_SNAKE_CASE :Optional[int] = {
'time_steps': 'time_proj',
'mid': 'mid_block',
'downsample_blocks': 'down_blocks',
'upsample_blocks': 'up_blocks',
}
SCREAMING_SNAKE_CASE :int = '' if has_file(args.repo_path, 'config.json') else 'unet'
with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader:
SCREAMING_SNAKE_CASE :Dict = reader.read()
SCREAMING_SNAKE_CASE :List[str] = json.loads(text)
if do_only_config:
for key in config_parameters_to_change.keys():
config.pop(key, None)
if has_file(args.repo_path, 'config.json'):
SCREAMING_SNAKE_CASE :Optional[int] = UNetaDModel(**config)
else:
SCREAMING_SNAKE_CASE :Optional[Any] = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel
SCREAMING_SNAKE_CASE :List[str] = class_name(**config)
if do_only_config:
model.save_config(os.path.join(args.repo_path, subfolder))
SCREAMING_SNAKE_CASE :List[str] = dict(model.config)
if do_only_renaming:
for key, value in config_parameters_to_change.items():
if key in config:
SCREAMING_SNAKE_CASE :Optional[Any] = config[key]
del config[key]
SCREAMING_SNAKE_CASE :Optional[Any] = [k.replace('UNetRes', '') for k in config['down_block_types']]
SCREAMING_SNAKE_CASE :List[Any] = [k.replace('UNetRes', '') for k in config['up_block_types']]
if do_only_weights:
SCREAMING_SNAKE_CASE :Tuple = torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin'))
SCREAMING_SNAKE_CASE :Any = {}
for param_key, param_value in state_dict.items():
if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'):
continue
SCREAMING_SNAKE_CASE :List[str] = False
for key, new_key in key_parameters_to_change.items():
if not has_changed and param_key.split('.')[0] == key:
SCREAMING_SNAKE_CASE :List[Any] = param_value
SCREAMING_SNAKE_CASE :str = True
if not has_changed:
SCREAMING_SNAKE_CASE :List[str] = param_value
model.load_state_dict(new_state_dict)
model.save_pretrained(os.path.join(args.repo_path, subfolder))
| 15 | 1 |
import torch
from diffusers import DDIMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = (DDIMParallelScheduler,)
snake_case_ = (("eta", 0.0), ("num_inference_steps", 50))
def UpperCamelCase_ ( self : Dict ,**A : List[Any] ):
__A = {
"num_train_timesteps": 10_00,
"beta_start": 0.00_01,
"beta_end": 0.02,
"beta_schedule": "linear",
"clip_sample": True,
}
config.update(**A )
return config
def UpperCamelCase_ ( self : Union[str, Any] ,**A : Union[str, Any] ):
__A = self.scheduler_classes[0]
__A = self.get_scheduler_config(**A )
__A = scheduler_class(**A )
__A , __A = 10, 0.0
__A = self.dummy_model()
__A = self.dummy_sample_deter
scheduler.set_timesteps(A )
for t in scheduler.timesteps:
__A = model(A ,A )
__A = scheduler.step(A ,A ,A ,A ).prev_sample
return sample
def UpperCamelCase_ ( self : Dict ):
for timesteps in [1_00, 5_00, 10_00]:
self.check_over_configs(num_train_timesteps=A )
def UpperCamelCase_ ( self : Optional[int] ):
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=A )
__A = self.scheduler_classes[0]
__A = self.get_scheduler_config(steps_offset=1 )
__A = scheduler_class(**A )
scheduler.set_timesteps(5 )
assert torch.equal(scheduler.timesteps ,torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) )
def UpperCamelCase_ ( self : Dict ):
for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] ,[0.0_02, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=A ,beta_end=A )
def UpperCamelCase_ ( self : Any ):
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=A )
def UpperCamelCase_ ( self : Optional[int] ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=A )
def UpperCamelCase_ ( self : Optional[Any] ):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=A )
def UpperCamelCase_ ( self : Any ):
for timestep_spacing in ["trailing", "leading"]:
self.check_over_configs(timestep_spacing=A )
def UpperCamelCase_ ( self : Any ):
for rescale_betas_zero_snr in [True, False]:
self.check_over_configs(rescale_betas_zero_snr=A )
def UpperCamelCase_ ( self : List[str] ):
self.check_over_configs(thresholding=A )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(
thresholding=A ,prediction_type=A ,sample_max_value=A ,)
def UpperCamelCase_ ( self : Any ):
for t in [1, 10, 49]:
self.check_over_forward(time_step=A )
def UpperCamelCase_ ( self : List[Any] ):
for t, num_inference_steps in zip([1, 10, 50] ,[10, 50, 5_00] ):
self.check_over_forward(time_step=A ,num_inference_steps=A )
def UpperCamelCase_ ( self : Dict ):
for t, eta in zip([1, 10, 49] ,[0.0, 0.5, 1.0] ):
self.check_over_forward(time_step=A ,eta=A )
def UpperCamelCase_ ( self : Optional[int] ):
__A = self.scheduler_classes[0]
__A = self.get_scheduler_config()
__A = scheduler_class(**A )
assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_20 ,4_00 ) - 0.1_47_71 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_80 ,9_60 ) - 0.3_24_60 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_87 ,4_86 ) - 0.0_09_79 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_99 ,9_98 ) - 0.02 ) ) < 1E-5
def UpperCamelCase_ ( self : List[Any] ):
__A = self.scheduler_classes[0]
__A = self.get_scheduler_config()
__A = scheduler_class(**A )
__A , __A = 10, 0.0
scheduler.set_timesteps(A )
__A = self.dummy_model()
__A = self.dummy_sample_deter
__A = self.dummy_sample_deter + 0.1
__A = self.dummy_sample_deter - 0.1
__A = samplea.shape[0]
__A = torch.stack([samplea, samplea, samplea] ,dim=0 )
__A = torch.arange(A )[0:3, None].repeat(1 ,A )
__A = model(samples.flatten(0 ,1 ) ,timesteps.flatten(0 ,1 ) )
__A = scheduler.batch_step_no_noise(A ,timesteps.flatten(0 ,1 ) ,samples.flatten(0 ,1 ) ,A )
__A = torch.sum(torch.abs(A ) )
__A = torch.mean(torch.abs(A ) )
assert abs(result_sum.item() - 11_47.79_04 ) < 1E-2
assert abs(result_mean.item() - 0.49_82 ) < 1E-3
def UpperCamelCase_ ( self : List[Any] ):
__A = self.full_loop()
__A = torch.sum(torch.abs(A ) )
__A = torch.mean(torch.abs(A ) )
assert abs(result_sum.item() - 1_72.00_67 ) < 1E-2
assert abs(result_mean.item() - 0.22_39_67 ) < 1E-3
def UpperCamelCase_ ( self : Tuple ):
__A = self.full_loop(prediction_type="v_prediction" )
__A = torch.sum(torch.abs(A ) )
__A = torch.mean(torch.abs(A ) )
assert abs(result_sum.item() - 52.53_02 ) < 1E-2
assert abs(result_mean.item() - 0.06_84 ) < 1E-3
def UpperCamelCase_ ( self : Union[str, Any] ):
# We specify different beta, so that the first alpha is 0.99
__A = self.full_loop(set_alpha_to_one=A ,beta_start=0.01 )
__A = torch.sum(torch.abs(A ) )
__A = torch.mean(torch.abs(A ) )
assert abs(result_sum.item() - 1_49.82_95 ) < 1E-2
assert abs(result_mean.item() - 0.19_51 ) < 1E-3
def UpperCamelCase_ ( self : Any ):
# We specify different beta, so that the first alpha is 0.99
__A = self.full_loop(set_alpha_to_one=A ,beta_start=0.01 )
__A = torch.sum(torch.abs(A ) )
__A = torch.mean(torch.abs(A ) )
assert abs(result_sum.item() - 1_49.07_84 ) < 1E-2
assert abs(result_mean.item() - 0.19_41 ) < 1E-3
| 15 |
import argparse
import math
import traceback
import dateutil.parser as date_parser
import requests
def UpperCAmelCase ( a_ ) -> str:
"""simple docstring"""
__A = {}
__A = job["started_at"]
__A = job["completed_at"]
__A = date_parser.parse(a_ )
__A = date_parser.parse(a_ )
__A = round((end_datetime - start_datetime).total_seconds() / 60.0 )
__A = start
__A = end
__A = duration_in_min
return job_info
def UpperCAmelCase ( a_ , a_=None ) -> str:
"""simple docstring"""
__A = None
if token is not None:
__A = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''}
__A = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100'''
__A = requests.get(a_ , headers=a_ ).json()
__A = {}
try:
job_time.update({job["name"]: extract_time_from_single_job(a_ ) for job in result["jobs"]} )
__A = math.ceil((result["total_count"] - 1_0_0) / 1_0_0 )
for i in range(a_ ):
__A = requests.get(url + F'''&page={i + 2}''' , headers=a_ ).json()
job_time.update({job["name"]: extract_time_from_single_job(a_ ) for job in result["jobs"]} )
return job_time
except Exception:
print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' )
return {}
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.')
SCREAMING_SNAKE_CASE :Optional[int] = parser.parse_args()
SCREAMING_SNAKE_CASE :Union[str, Any] = get_job_time(args.workflow_run_id)
SCREAMING_SNAKE_CASE :Optional[int] = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True))
for k, v in job_time.items():
print(f'''{k}: {v["duration"]}''')
| 15 | 1 |
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from packaging import version
from .. import __version__
from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD
from .doc import (
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
copy_func,
replace_return_docstrings,
)
from .generic import (
ContextManagers,
ExplicitEnum,
ModelOutput,
PaddingStrategy,
TensorType,
add_model_info_to_auto_map,
cached_property,
can_return_loss,
expand_dims,
find_labels,
flatten_dict,
infer_framework,
is_jax_tensor,
is_numpy_array,
is_tensor,
is_tf_symbolic_tensor,
is_tf_tensor,
is_torch_device,
is_torch_dtype,
is_torch_tensor,
reshape,
squeeze,
strtobool,
tensor_size,
to_numpy,
to_py_obj,
transpose,
working_or_temp_dir,
)
from .hub import (
CLOUDFRONT_DISTRIB_PREFIX,
DISABLE_TELEMETRY,
HF_MODULES_CACHE,
HUGGINGFACE_CO_PREFIX,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
PYTORCH_PRETRAINED_BERT_CACHE,
PYTORCH_TRANSFORMERS_CACHE,
S3_BUCKET_PREFIX,
TRANSFORMERS_CACHE,
TRANSFORMERS_DYNAMIC_MODULE_NAME,
EntryNotFoundError,
PushToHubMixin,
RepositoryNotFoundError,
RevisionNotFoundError,
cached_file,
default_cache_path,
define_sagemaker_information,
download_url,
extract_commit_hash,
get_cached_models,
get_file_from_repo,
get_full_repo_name,
has_file,
http_user_agent,
is_offline_mode,
is_remote_url,
move_cache,
send_example_telemetry,
try_to_load_from_cache,
)
from .import_utils import (
ENV_VARS_TRUE_AND_AUTO_VALUES,
ENV_VARS_TRUE_VALUES,
TORCH_FX_REQUIRED_VERSION,
USE_JAX,
USE_TF,
USE_TORCH,
DummyObject,
OptionalDependencyNotAvailable,
_LazyModule,
ccl_version,
direct_transformers_import,
get_torch_version,
is_accelerate_available,
is_apex_available,
is_bitsandbytes_available,
is_bsa_available,
is_coloredlogs_available,
is_cython_available,
is_datasets_available,
is_decord_available,
is_detectrona_available,
is_faiss_available,
is_flax_available,
is_ftfy_available,
is_in_notebook,
is_ipex_available,
is_jieba_available,
is_jumanpp_available,
is_kenlm_available,
is_keras_nlp_available,
is_librosa_available,
is_natten_available,
is_ninja_available,
is_onnx_available,
is_openai_available,
is_optimum_available,
is_pandas_available,
is_peft_available,
is_phonemizer_available,
is_protobuf_available,
is_psutil_available,
is_pyanvml_available,
is_pyctcdecode_available,
is_pytesseract_available,
is_pytest_available,
is_pytorch_quantization_available,
is_rjieba_available,
is_sacremoses_available,
is_safetensors_available,
is_sagemaker_dp_enabled,
is_sagemaker_mp_enabled,
is_scipy_available,
is_sentencepiece_available,
is_seqio_available,
is_sklearn_available,
is_soundfile_availble,
is_spacy_available,
is_speech_available,
is_sudachi_available,
is_tensorflow_probability_available,
is_tensorflow_text_available,
is_tfaonnx_available,
is_tf_available,
is_timm_available,
is_tokenizers_available,
is_torch_available,
is_torch_bfaa_available,
is_torch_bfaa_cpu_available,
is_torch_bfaa_gpu_available,
is_torch_compile_available,
is_torch_cuda_available,
is_torch_fx_available,
is_torch_fx_proxy,
is_torch_mps_available,
is_torch_neuroncore_available,
is_torch_tensorrt_fx_available,
is_torch_tfaa_available,
is_torch_tpu_available,
is_torchaudio_available,
is_torchdistx_available,
is_torchdynamo_available,
is_torchvision_available,
is_training_run_on_sagemaker,
is_vision_available,
requires_backends,
torch_only_method,
)
SCREAMING_SNAKE_CASE :List[str] = 'pytorch_model.bin'
SCREAMING_SNAKE_CASE :str = 'pytorch_model.bin.index.json'
SCREAMING_SNAKE_CASE :Optional[int] = 'adapter_config.json'
SCREAMING_SNAKE_CASE :Dict = 'adapter_model.bin'
SCREAMING_SNAKE_CASE :Dict = 'adapter_model.safetensors'
SCREAMING_SNAKE_CASE :str = 'tf_model.h5'
SCREAMING_SNAKE_CASE :List[Any] = 'tf_model.h5.index.json'
SCREAMING_SNAKE_CASE :str = 'model.ckpt'
SCREAMING_SNAKE_CASE :List[Any] = 'flax_model.msgpack'
SCREAMING_SNAKE_CASE :Optional[int] = 'flax_model.msgpack.index.json'
SCREAMING_SNAKE_CASE :Tuple = 'model.safetensors'
SCREAMING_SNAKE_CASE :List[Any] = 'model.safetensors.index.json'
SCREAMING_SNAKE_CASE :str = 'config.json'
SCREAMING_SNAKE_CASE :int = 'preprocessor_config.json'
SCREAMING_SNAKE_CASE :Optional[Any] = FEATURE_EXTRACTOR_NAME
SCREAMING_SNAKE_CASE :Optional[int] = 'generation_config.json'
SCREAMING_SNAKE_CASE :List[str] = 'modelcard.json'
SCREAMING_SNAKE_CASE :Optional[int] = '▁'
SCREAMING_SNAKE_CASE :Optional[Any] = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility
SCREAMING_SNAKE_CASE :str = [
[[0, 1, 0, 1], [1, 0, 0, 1]]
] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too.
SCREAMING_SNAKE_CASE :Optional[Any] = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]]
SCREAMING_SNAKE_CASE :List[Any] = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]]
def UpperCAmelCase ( a_ ) -> Dict:
"""simple docstring"""
if version.parse(a_ ) < version.parse(a_ ):
if "dev" in min_version:
__A = (
"This example requires a source install from HuggingFace Transformers (see "
"`https://huggingface.co/docs/transformers/installation#install-from-source`),"
)
else:
__A = F'''This example requires a minimum version of {min_version},'''
error_message += F''' but the version found is {__version__}.\n'''
raise ImportError(
error_message
+ "Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other "
"versions of HuggingFace Transformers." )
| 15 |
import argparse
import os
import shutil
import torch
from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer
def UpperCAmelCase ( a_ ) -> List[str]:
"""simple docstring"""
__A = args.pruning_method
__A = args.threshold
__A = args.model_name_or_path.rstrip("/" )
__A = args.target_model_path
print(F'''Load fine-pruned model from {model_name_or_path}''' )
__A = torch.load(os.path.join(a_ , "pytorch_model.bin" ) )
__A = {}
for name, tensor in model.items():
if "embeddings" in name or "LayerNorm" in name or "pooler" in name:
__A = tensor
print(F'''Copied layer {name}''' )
elif "classifier" in name or "qa_output" in name:
__A = tensor
print(F'''Copied layer {name}''' )
elif "bias" in name:
__A = tensor
print(F'''Copied layer {name}''' )
else:
if pruning_method == "magnitude":
__A = MagnitudeBinarizer.apply(inputs=a_ , threshold=a_ )
__A = tensor * mask
print(F'''Pruned layer {name}''' )
elif pruning_method == "topK":
if "mask_scores" in name:
continue
__A = name[:-6]
__A = model[F'''{prefix_}mask_scores''']
__A = TopKBinarizer.apply(a_ , a_ )
__A = tensor * mask
print(F'''Pruned layer {name}''' )
elif pruning_method == "sigmoied_threshold":
if "mask_scores" in name:
continue
__A = name[:-6]
__A = model[F'''{prefix_}mask_scores''']
__A = ThresholdBinarizer.apply(a_ , a_ , a_ )
__A = tensor * mask
print(F'''Pruned layer {name}''' )
elif pruning_method == "l0":
if "mask_scores" in name:
continue
__A = name[:-6]
__A = model[F'''{prefix_}mask_scores''']
__A , __A = -0.1, 1.1
__A = torch.sigmoid(a_ )
__A = s * (r - l) + l
__A = s_bar.clamp(min=0.0 , max=1.0 )
__A = tensor * mask
print(F'''Pruned layer {name}''' )
else:
raise ValueError("Unknown pruning method" )
if target_model_path is None:
__A = os.path.join(
os.path.dirname(a_ ) , F'''bertarized_{os.path.basename(a_ )}''' )
if not os.path.isdir(a_ ):
shutil.copytree(a_ , a_ )
print(F'''\nCreated folder {target_model_path}''' )
torch.save(a_ , os.path.join(a_ , "pytorch_model.bin" ) )
print("\nPruned model saved! See you later!" )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :Tuple = argparse.ArgumentParser()
parser.add_argument(
'--pruning_method',
choices=['l0', 'magnitude', 'topK', 'sigmoied_threshold'],
type=str,
required=True,
help=(
'Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,'
' sigmoied_threshold = Soft movement pruning)'
),
)
parser.add_argument(
'--threshold',
type=float,
required=False,
help=(
'For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.'
'For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.'
'Not needed for `l0`'
),
)
parser.add_argument(
'--model_name_or_path',
type=str,
required=True,
help='Folder containing the model that was previously fine-pruned',
)
parser.add_argument(
'--target_model_path',
default=None,
type=str,
required=False,
help='Folder containing the model that was previously fine-pruned',
)
SCREAMING_SNAKE_CASE :str = parser.parse_args()
main(args)
| 15 | 1 |
import math
def UpperCAmelCase ( a_ , a_ ) -> float:
"""simple docstring"""
if (
not isinstance(a_ , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError("power_factor must be a valid float value between -1 and 1." )
return apparent_power * power_factor
def UpperCAmelCase ( a_ , a_ ) -> float:
"""simple docstring"""
if (
not isinstance(a_ , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError("power_factor must be a valid float value between -1 and 1." )
return apparent_power * math.sqrt(1 - power_factor**2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 15 |
import os
import re
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE :List[Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :int = {'vocab_file': 'spiece.model'}
SCREAMING_SNAKE_CASE :Union[str, Any] = {
'vocab_file': {
'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model',
'google/bigbird-roberta-large': (
'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model'
),
'google/bigbird-base-trivia-itc': (
'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model'
),
}
}
SCREAMING_SNAKE_CASE :int = {
'google/bigbird-roberta-base': 4096,
'google/bigbird-roberta-large': 4096,
'google/bigbird-base-trivia-itc': 4096,
}
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = ["input_ids", "attention_mask"]
snake_case_ = []
def __init__( self : Any ,A : List[str] ,A : str="<unk>" ,A : int="<s>" ,A : Union[str, Any]="</s>" ,A : List[str]="<pad>" ,A : int="[SEP]" ,A : Optional[Any]="[MASK]" ,A : Tuple="[CLS]" ,A : Optional[Dict[str, Any]] = None ,**A : Any ,):
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else bos_token
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else eos_token
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else unk_token
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else pad_token
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else cls_token
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else mask_token
__A = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=A ,eos_token=A ,unk_token=A ,pad_token=A ,sep_token=A ,mask_token=A ,cls_token=A ,sp_model_kwargs=self.sp_model_kwargs ,**A ,)
__A = vocab_file
__A = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(A )
@property
def UpperCamelCase_ ( self : List[str] ):
return self.sp_model.get_piece_size()
def UpperCamelCase_ ( self : Optional[Any] ):
__A = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Optional[int] ):
__A = self.__dict__.copy()
__A = None
return state
def __setstate__( self : str ,A : Optional[Any] ):
__A = d
# for backward compatibility
if not hasattr(self ,"sp_model_kwargs" ):
__A = {}
__A = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def UpperCamelCase_ ( self : Any ,A : str ):
return self.sp_model.encode(A ,out_type=A )
def UpperCamelCase_ ( self : List[str] ,A : Tuple ):
return self.sp_model.piece_to_id(A )
def UpperCamelCase_ ( self : List[Any] ,A : Tuple ):
__A = self.sp_model.IdToPiece(A )
return token
def UpperCamelCase_ ( self : List[Any] ,A : int ):
__A = []
__A = ""
__A = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(A ) + token
__A = True
__A = []
else:
current_sub_tokens.append(A )
__A = False
out_string += self.sp_model.decode(A )
return out_string.strip()
def UpperCamelCase_ ( self : Tuple ,A : List[int] ,A : bool = False ,A : bool = None ,A : bool = True ,**A : Union[str, Any] ,):
__A = kwargs.pop("use_source_tokenizer" ,A )
__A = self.convert_ids_to_tokens(A ,skip_special_tokens=A )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
__A = []
__A = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(A ) )
__A = []
sub_texts.append(A )
else:
current_sub_text.append(A )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(A ) )
# Mimic the behavior of the Rust tokenizer:
# No space before [MASK] and [SEP]
if spaces_between_special_tokens:
__A = re.sub(R" (\[(MASK|SEP)\])" ,R"\1" ," ".join(A ) )
else:
__A = "".join(A )
__A = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
__A = self.clean_up_tokenization(A )
return clean_text
else:
return text
def UpperCamelCase_ ( self : str ,A : str ,A : Optional[str] = None ):
if not os.path.isdir(A ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__A = os.path.join(
A ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file ,A )
elif not os.path.isfile(self.vocab_file ):
with open(A ,"wb" ) as fi:
__A = self.sp_model.serialized_model_proto()
fi.write(A )
return (out_vocab_file,)
def UpperCamelCase_ ( self : Dict ,A : List[int] ,A : Optional[List[int]] = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__A = [self.cls_token_id]
__A = [self.sep_token_id]
return cls + token_ids_a + sep + token_ids_a + sep
def UpperCamelCase_ ( self : Optional[int] ,A : List[int] ,A : Optional[List[int]] = None ,A : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=A ,token_ids_a=A ,already_has_special_tokens=A )
if token_ids_a is None:
return [1] + ([0] * len(A )) + [1]
return [1] + ([0] * len(A )) + [1] + ([0] * len(A )) + [1]
def UpperCamelCase_ ( self : Any ,A : List[int] ,A : Optional[List[int]] = None ):
__A = [self.sep_token_id]
__A = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
| 15 | 1 |
import argparse
import json
import pickle
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig
from transformers.utils import logging
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE :Any = logging.get_logger(__name__)
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
__A = SwinConfig.from_pretrained(
"microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] )
__A = MaskFormerConfig(backbone_config=a_ )
__A = "huggingface/label-files"
if "ade20k-full" in model_name:
# this should be ok
__A = 8_4_7
__A = "maskformer-ade20k-full-id2label.json"
elif "ade" in model_name:
# this should be ok
__A = 1_5_0
__A = "ade20k-id2label.json"
elif "coco-stuff" in model_name:
# this should be ok
__A = 1_7_1
__A = "maskformer-coco-stuff-id2label.json"
elif "coco" in model_name:
# TODO
__A = 1_3_3
__A = "coco-panoptic-id2label.json"
elif "cityscapes" in model_name:
# this should be ok
__A = 1_9
__A = "cityscapes-id2label.json"
elif "vistas" in model_name:
# this should be ok
__A = 6_5
__A = "mapillary-vistas-id2label.json"
__A = json.load(open(hf_hub_download(a_ , a_ , repo_type="dataset" ) , "r" ) )
__A = {int(a_ ): v for k, v in idalabel.items()}
return config
def UpperCAmelCase ( a_ ) -> Any:
"""simple docstring"""
__A = []
# stem
# fmt: off
rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") )
rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") )
rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") )
rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') )
if i < 3:
rename_keys.append((F'''backbone.layers.{i}.downsample.reduction.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''') )
rename_keys.append((F'''backbone.layers.{i}.downsample.norm.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''') )
rename_keys.append((F'''backbone.layers.{i}.downsample.norm.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''') )
rename_keys.append((F'''backbone.norm{i}.weight''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''') )
rename_keys.append((F'''backbone.norm{i}.bias''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''') )
# FPN
rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") )
rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") )
rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") )
for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ):
rename_keys.append((F'''sem_seg_head.adapter_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''') )
rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''') )
rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''') )
rename_keys.append((F'''sem_seg_head.layer_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''') )
rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''') )
rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''') )
rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") )
rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") )
# Transformer decoder
for idx in range(config.decoder_config.decoder_layers ):
# self-attention out projection
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''') )
# cross-attention out projection
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''') )
# MLP 1
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc1.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc1.bias''') )
# MLP 2
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc2.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc2.bias''') )
# layernorm 1 (self-attention layernorm)
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''') )
# layernorm 2 (cross-attention layernorm)
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''') )
# layernorm 3 (final layernorm)
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''') )
rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") )
rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") )
# heads on top
rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") )
rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") )
rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") )
rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") )
rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") )
for i in range(3 ):
rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', F'''mask_embedder.{i}.0.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', F'''mask_embedder.{i}.0.bias''') )
# fmt: on
return rename_keys
def UpperCAmelCase ( a_ , a_ , a_ ) -> List[str]:
"""simple docstring"""
__A = dct.pop(a_ )
__A = val
def UpperCAmelCase ( a_ , a_ ) -> Dict:
"""simple docstring"""
__A = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
__A = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
__A = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''' )
__A = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
__A = in_proj_weight[:dim, :]
__A = in_proj_bias[: dim]
__A = in_proj_weight[
dim : dim * 2, :
]
__A = in_proj_bias[
dim : dim * 2
]
__A = in_proj_weight[
-dim :, :
]
__A = in_proj_bias[-dim :]
# fmt: on
def UpperCAmelCase ( a_ , a_ ) -> str:
"""simple docstring"""
__A = config.decoder_config.hidden_size
for idx in range(config.decoder_config.decoder_layers ):
# read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias)
__A = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''' )
__A = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
__A = in_proj_weight[: hidden_size, :]
__A = in_proj_bias[:config.hidden_size]
__A = in_proj_weight[hidden_size : hidden_size * 2, :]
__A = in_proj_bias[hidden_size : hidden_size * 2]
__A = in_proj_weight[-hidden_size :, :]
__A = in_proj_bias[-hidden_size :]
# read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias)
__A = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''' )
__A = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
__A = in_proj_weight[: hidden_size, :]
__A = in_proj_bias[:config.hidden_size]
__A = in_proj_weight[hidden_size : hidden_size * 2, :]
__A = in_proj_bias[hidden_size : hidden_size * 2]
__A = in_proj_weight[-hidden_size :, :]
__A = in_proj_bias[-hidden_size :]
# fmt: on
def UpperCAmelCase ( ) -> torch.Tensor:
"""simple docstring"""
__A = "http://images.cocodataset.org/val2017/000000039769.jpg"
__A = Image.open(requests.get(a_ , stream=a_ ).raw )
return im
@torch.no_grad()
def UpperCAmelCase ( a_ , a_ , a_ , a_ = False ) -> Union[str, Any]:
"""simple docstring"""
__A = get_maskformer_config(a_ )
# load original state_dict
with open(a_ , "rb" ) as f:
__A = pickle.load(a_ )
__A = data["model"]
# for name, param in state_dict.items():
# print(name, param.shape)
# rename keys
__A = create_rename_keys(a_ )
for src, dest in rename_keys:
rename_key(a_ , a_ , a_ )
read_in_swin_q_k_v(a_ , config.backbone_config )
read_in_decoder_q_k_v(a_ , a_ )
# update to torch tensors
for key, value in state_dict.items():
__A = torch.from_numpy(a_ )
# load 🤗 model
__A = MaskFormerForInstanceSegmentation(a_ )
model.eval()
for name, param in model.named_parameters():
print(a_ , param.shape )
__A , __A = model.load_state_dict(a_ , strict=a_ )
assert missing_keys == [
"model.pixel_level_module.encoder.model.layernorm.weight",
"model.pixel_level_module.encoder.model.layernorm.bias",
]
assert len(a_ ) == 0, F'''Unexpected keys: {unexpected_keys}'''
# verify results
__A = prepare_img()
if "vistas" in model_name:
__A = 6_5
elif "cityscapes" in model_name:
__A = 6_5_5_3_5
else:
__A = 2_5_5
__A = True if "ade" in model_name else False
__A = MaskFormerImageProcessor(ignore_index=a_ , reduce_labels=a_ )
__A = image_processor(a_ , return_tensors="pt" )
__A = model(**a_ )
print("Logits:" , outputs.class_queries_logits[0, :3, :3] )
if model_name == "maskformer-swin-tiny-ade":
__A = torch.tensor(
[[3.6_353, -4.4_770, -2.6_065], [0.5_081, -4.2_394, -3.5_343], [2.1_909, -5.0_353, -1.9_323]] )
assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , a_ , atol=1E-4 )
print("Looks ok!" )
if pytorch_dump_folder_path is not None:
print(F'''Saving model and image processor to {pytorch_dump_folder_path}''' )
Path(a_ ).mkdir(exist_ok=a_ )
model.save_pretrained(a_ )
image_processor.save_pretrained(a_ )
if push_to_hub:
print("Pushing model and image processor to the hub..." )
model.push_to_hub(F'''nielsr/{model_name}''' )
image_processor.push_to_hub(F'''nielsr/{model_name}''' )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='maskformer-swin-tiny-ade',
type=str,
help=('Name of the MaskFormer model you\'d like to convert',),
)
parser.add_argument(
'--checkpoint_path',
default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl',
type=str,
help='Path to the original state dict (.pth file).',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
SCREAMING_SNAKE_CASE :Optional[Any] = parser.parse_args()
convert_maskformer_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 15 |
import PIL.Image
import PIL.ImageOps
from packaging import version
from PIL import Image
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'):
SCREAMING_SNAKE_CASE :Any = {
'linear': PIL.Image.Resampling.BILINEAR,
'bilinear': PIL.Image.Resampling.BILINEAR,
'bicubic': PIL.Image.Resampling.BICUBIC,
'lanczos': PIL.Image.Resampling.LANCZOS,
'nearest': PIL.Image.Resampling.NEAREST,
}
else:
SCREAMING_SNAKE_CASE :int = {
'linear': PIL.Image.LINEAR,
'bilinear': PIL.Image.BILINEAR,
'bicubic': PIL.Image.BICUBIC,
'lanczos': PIL.Image.LANCZOS,
'nearest': PIL.Image.NEAREST,
}
def UpperCAmelCase ( a_ ) -> Optional[Any]:
"""simple docstring"""
__A = (images / 2 + 0.5).clamp(0 , 1 )
__A = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
__A = numpy_to_pil(a_ )
return images
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
if images.ndim == 3:
__A = images[None, ...]
__A = (images * 2_5_5).round().astype("uint8" )
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
__A = [Image.fromarray(image.squeeze() , mode="L" ) for image in images]
else:
__A = [Image.fromarray(a_ ) for image in images]
return pil_images
| 15 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
SCREAMING_SNAKE_CASE :List[Any] = {
'configuration_gpt_bigcode': ['GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTBigCodeConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :Dict = [
'GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST',
'GPTBigCodeForSequenceClassification',
'GPTBigCodeForTokenClassification',
'GPTBigCodeForCausalLM',
'GPTBigCodeModel',
'GPTBigCodePreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_bigcode import (
GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTBigCodeForCausalLM,
GPTBigCodeForSequenceClassification,
GPTBigCodeForTokenClassification,
GPTBigCodeModel,
GPTBigCodePreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE :List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 15 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
SCREAMING_SNAKE_CASE :Optional[Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :List[Any] = {
'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json',
# See all YOLOS models at https://huggingface.co/models?filter=yolos
}
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = "yolos"
def __init__( self : Any ,A : Optional[Any]=7_68 ,A : Dict=12 ,A : Any=12 ,A : str=30_72 ,A : Any="gelu" ,A : str=0.0 ,A : List[str]=0.0 ,A : Dict=0.02 ,A : int=1E-12 ,A : Tuple=[5_12, 8_64] ,A : List[Any]=16 ,A : str=3 ,A : str=True ,A : Any=1_00 ,A : Dict=True ,A : Dict=False ,A : Tuple=1 ,A : Union[str, Any]=5 ,A : Optional[Any]=2 ,A : Union[str, Any]=5 ,A : int=2 ,A : int=0.1 ,**A : List[str] ,):
super().__init__(**A )
__A = hidden_size
__A = num_hidden_layers
__A = num_attention_heads
__A = intermediate_size
__A = hidden_act
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = initializer_range
__A = layer_norm_eps
__A = image_size
__A = patch_size
__A = num_channels
__A = qkv_bias
__A = num_detection_tokens
__A = use_mid_position_embeddings
__A = auxiliary_loss
# Hungarian matcher
__A = class_cost
__A = bbox_cost
__A = giou_cost
# Loss coefficients
__A = bbox_loss_coefficient
__A = giou_loss_coefficient
__A = eos_coefficient
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = version.parse("1.11" )
@property
def UpperCamelCase_ ( self : str ):
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def UpperCamelCase_ ( self : List[Any] ):
return 1E-4
@property
def UpperCamelCase_ ( self : Optional[Any] ):
return 12
| 15 | 1 |
from __future__ import annotations
import time
from math import sqrt
# 1 for manhattan, 0 for euclidean
SCREAMING_SNAKE_CASE :Dict = 0
SCREAMING_SNAKE_CASE :Optional[int] = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
SCREAMING_SNAKE_CASE :Union[str, Any] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
SCREAMING_SNAKE_CASE :Optional[int] = tuple[int, int]
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : Optional[int] ,A : int ,A : int ,A : int ,A : int ,A : int ,A : Node | None ,):
__A = pos_x
__A = pos_y
__A = (pos_y, pos_x)
__A = goal_x
__A = goal_y
__A = g_cost
__A = parent
__A = self.calculate_heuristic()
__A = self.g_cost + self.h_cost
def UpperCamelCase_ ( self : Optional[int] ):
__A = self.pos_x - self.goal_x
__A = self.pos_y - self.goal_y
if HEURISTIC == 1:
return abs(A ) + abs(A )
else:
return sqrt(dy**2 + dx**2 )
def __lt__( self : Union[str, Any] ,A : Node ):
return self.f_cost < other.f_cost
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : Optional[Any] ,A : TPosition ,A : TPosition ):
__A = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,0 ,A )
__A = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,9_99_99 ,A )
__A = [self.start]
__A = []
__A = False
def UpperCamelCase_ ( self : Dict ):
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
__A = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
return self.retrace_path(A )
self.closed_nodes.append(A )
__A = self.get_successors(A )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(A )
else:
# retrieve the best current path
__A = self.open_nodes.pop(self.open_nodes.index(A ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(A )
else:
self.open_nodes.append(A )
return [self.start.pos]
def UpperCamelCase_ ( self : List[str] ,A : Node ):
__A = []
for action in delta:
__A = parent.pos_x + action[1]
__A = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
A ,A ,self.target.pos_y ,self.target.pos_x ,parent.g_cost + 1 ,A ,) )
return successors
def UpperCamelCase_ ( self : int ,A : Node | None ):
__A = node
__A = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
__A = current_node.parent
path.reverse()
return path
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : List[str] ,A : TPosition ,A : TPosition ):
__A = AStar(A ,A )
__A = AStar(A ,A )
__A = False
def UpperCamelCase_ ( self : List[str] ):
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
self.fwd_astar.open_nodes.sort()
self.bwd_astar.open_nodes.sort()
__A = self.fwd_astar.open_nodes.pop(0 )
__A = self.bwd_astar.open_nodes.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
return self.retrace_bidirectional_path(
A ,A )
self.fwd_astar.closed_nodes.append(A )
self.bwd_astar.closed_nodes.append(A )
__A = current_bwd_node
__A = current_fwd_node
__A = {
self.fwd_astar: self.fwd_astar.get_successors(A ),
self.bwd_astar: self.bwd_astar.get_successors(A ),
}
for astar in [self.fwd_astar, self.bwd_astar]:
for child_node in successors[astar]:
if child_node in astar.closed_nodes:
continue
if child_node not in astar.open_nodes:
astar.open_nodes.append(A )
else:
# retrieve the best current path
__A = astar.open_nodes.pop(
astar.open_nodes.index(A ) )
if child_node.g_cost < better_node.g_cost:
astar.open_nodes.append(A )
else:
astar.open_nodes.append(A )
return [self.fwd_astar.start.pos]
def UpperCamelCase_ ( self : Dict ,A : Node ,A : Node ):
__A = self.fwd_astar.retrace_path(A )
__A = self.bwd_astar.retrace_path(A )
bwd_path.pop()
bwd_path.reverse()
__A = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
SCREAMING_SNAKE_CASE :List[Any] = (0, 0)
SCREAMING_SNAKE_CASE :int = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
SCREAMING_SNAKE_CASE :Dict = time.time()
SCREAMING_SNAKE_CASE :Union[str, Any] = AStar(init, goal)
SCREAMING_SNAKE_CASE :Union[str, Any] = a_star.search()
SCREAMING_SNAKE_CASE :Optional[int] = time.time() - start_time
print(f'''AStar execution time = {end_time:f} seconds''')
SCREAMING_SNAKE_CASE :Tuple = time.time()
SCREAMING_SNAKE_CASE :List[Any] = BidirectionalAStar(init, goal)
SCREAMING_SNAKE_CASE :str = time.time() - bd_start_time
print(f'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
| 15 |
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from packaging import version
from .. import __version__
from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD
from .doc import (
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
copy_func,
replace_return_docstrings,
)
from .generic import (
ContextManagers,
ExplicitEnum,
ModelOutput,
PaddingStrategy,
TensorType,
add_model_info_to_auto_map,
cached_property,
can_return_loss,
expand_dims,
find_labels,
flatten_dict,
infer_framework,
is_jax_tensor,
is_numpy_array,
is_tensor,
is_tf_symbolic_tensor,
is_tf_tensor,
is_torch_device,
is_torch_dtype,
is_torch_tensor,
reshape,
squeeze,
strtobool,
tensor_size,
to_numpy,
to_py_obj,
transpose,
working_or_temp_dir,
)
from .hub import (
CLOUDFRONT_DISTRIB_PREFIX,
DISABLE_TELEMETRY,
HF_MODULES_CACHE,
HUGGINGFACE_CO_PREFIX,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
PYTORCH_PRETRAINED_BERT_CACHE,
PYTORCH_TRANSFORMERS_CACHE,
S3_BUCKET_PREFIX,
TRANSFORMERS_CACHE,
TRANSFORMERS_DYNAMIC_MODULE_NAME,
EntryNotFoundError,
PushToHubMixin,
RepositoryNotFoundError,
RevisionNotFoundError,
cached_file,
default_cache_path,
define_sagemaker_information,
download_url,
extract_commit_hash,
get_cached_models,
get_file_from_repo,
get_full_repo_name,
has_file,
http_user_agent,
is_offline_mode,
is_remote_url,
move_cache,
send_example_telemetry,
try_to_load_from_cache,
)
from .import_utils import (
ENV_VARS_TRUE_AND_AUTO_VALUES,
ENV_VARS_TRUE_VALUES,
TORCH_FX_REQUIRED_VERSION,
USE_JAX,
USE_TF,
USE_TORCH,
DummyObject,
OptionalDependencyNotAvailable,
_LazyModule,
ccl_version,
direct_transformers_import,
get_torch_version,
is_accelerate_available,
is_apex_available,
is_bitsandbytes_available,
is_bsa_available,
is_coloredlogs_available,
is_cython_available,
is_datasets_available,
is_decord_available,
is_detectrona_available,
is_faiss_available,
is_flax_available,
is_ftfy_available,
is_in_notebook,
is_ipex_available,
is_jieba_available,
is_jumanpp_available,
is_kenlm_available,
is_keras_nlp_available,
is_librosa_available,
is_natten_available,
is_ninja_available,
is_onnx_available,
is_openai_available,
is_optimum_available,
is_pandas_available,
is_peft_available,
is_phonemizer_available,
is_protobuf_available,
is_psutil_available,
is_pyanvml_available,
is_pyctcdecode_available,
is_pytesseract_available,
is_pytest_available,
is_pytorch_quantization_available,
is_rjieba_available,
is_sacremoses_available,
is_safetensors_available,
is_sagemaker_dp_enabled,
is_sagemaker_mp_enabled,
is_scipy_available,
is_sentencepiece_available,
is_seqio_available,
is_sklearn_available,
is_soundfile_availble,
is_spacy_available,
is_speech_available,
is_sudachi_available,
is_tensorflow_probability_available,
is_tensorflow_text_available,
is_tfaonnx_available,
is_tf_available,
is_timm_available,
is_tokenizers_available,
is_torch_available,
is_torch_bfaa_available,
is_torch_bfaa_cpu_available,
is_torch_bfaa_gpu_available,
is_torch_compile_available,
is_torch_cuda_available,
is_torch_fx_available,
is_torch_fx_proxy,
is_torch_mps_available,
is_torch_neuroncore_available,
is_torch_tensorrt_fx_available,
is_torch_tfaa_available,
is_torch_tpu_available,
is_torchaudio_available,
is_torchdistx_available,
is_torchdynamo_available,
is_torchvision_available,
is_training_run_on_sagemaker,
is_vision_available,
requires_backends,
torch_only_method,
)
SCREAMING_SNAKE_CASE :List[str] = 'pytorch_model.bin'
SCREAMING_SNAKE_CASE :str = 'pytorch_model.bin.index.json'
SCREAMING_SNAKE_CASE :Optional[int] = 'adapter_config.json'
SCREAMING_SNAKE_CASE :Dict = 'adapter_model.bin'
SCREAMING_SNAKE_CASE :Dict = 'adapter_model.safetensors'
SCREAMING_SNAKE_CASE :str = 'tf_model.h5'
SCREAMING_SNAKE_CASE :List[Any] = 'tf_model.h5.index.json'
SCREAMING_SNAKE_CASE :str = 'model.ckpt'
SCREAMING_SNAKE_CASE :List[Any] = 'flax_model.msgpack'
SCREAMING_SNAKE_CASE :Optional[int] = 'flax_model.msgpack.index.json'
SCREAMING_SNAKE_CASE :Tuple = 'model.safetensors'
SCREAMING_SNAKE_CASE :List[Any] = 'model.safetensors.index.json'
SCREAMING_SNAKE_CASE :str = 'config.json'
SCREAMING_SNAKE_CASE :int = 'preprocessor_config.json'
SCREAMING_SNAKE_CASE :Optional[Any] = FEATURE_EXTRACTOR_NAME
SCREAMING_SNAKE_CASE :Optional[int] = 'generation_config.json'
SCREAMING_SNAKE_CASE :List[str] = 'modelcard.json'
SCREAMING_SNAKE_CASE :Optional[int] = '▁'
SCREAMING_SNAKE_CASE :Optional[Any] = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility
SCREAMING_SNAKE_CASE :str = [
[[0, 1, 0, 1], [1, 0, 0, 1]]
] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too.
SCREAMING_SNAKE_CASE :Optional[Any] = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]]
SCREAMING_SNAKE_CASE :List[Any] = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]]
def UpperCAmelCase ( a_ ) -> Dict:
"""simple docstring"""
if version.parse(a_ ) < version.parse(a_ ):
if "dev" in min_version:
__A = (
"This example requires a source install from HuggingFace Transformers (see "
"`https://huggingface.co/docs/transformers/installation#install-from-source`),"
)
else:
__A = F'''This example requires a minimum version of {min_version},'''
error_message += F''' but the version found is {__version__}.\n'''
raise ImportError(
error_message
+ "Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other "
"versions of HuggingFace Transformers." )
| 15 | 1 |
import argparse
from tax import checkpoints
from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM
def UpperCAmelCase ( a_ , a_ , a_ ) -> List[Any]:
"""simple docstring"""
__A = AutoConfig.from_pretrained(a_ )
__A = FlaxAutoModelForSeqaSeqLM.from_config(config=a_ )
__A = checkpoints.load_tax_checkpoint(a_ )
__A = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"]
if config.model_type == "t5":
__A = "SelfAttention"
if config.model_type == "longt5" and config.encoder_attention_type == "local":
__A = "LocalSelfAttention"
elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
__A = "TransientGlobalSelfAttention"
else:
raise ValueError(
"Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`"
" attribute with a value from ['local', 'transient-global]." )
# Encoder
for layer_index in range(config.num_layers ):
__A = F'''layers_{str(a_ )}'''
# Self-Attention
__A = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"]
__A = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"]
__A = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"]
__A = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"]
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
__A = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"]
# Layer Normalization
__A = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"]
if split_mlp_wi:
__A = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"]
__A = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"]
else:
__A = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"]
__A = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"]
# Layer Normalization
__A = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"]
# Assigning
__A = flax_model.params["encoder"]["block"][str(a_ )]["layer"]
__A = tax_attention_key
__A = tax_attention_out
__A = tax_attention_query
__A = tax_attention_value
__A = tax_attention_layer_norm
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
__A = tax_global_layer_norm
if split_mlp_wi:
__A = tax_mlp_wi_a
__A = tax_mlp_wi_a
else:
__A = tax_mlp_wi
__A = tax_mlp_wo
__A = tax_mlp_layer_norm
__A = flax_model_encoder_layer_block
# Only for layer 0:
__A = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T
__A = tax_encoder_rel_embedding
# Side/global relative position_bias + layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
__A = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T
__A = tax_encoder_global_rel_embedding
# Assigning
__A = tax_model["target"]["encoder"]["encoder_norm"]["scale"]
__A = tax_encoder_norm
# Decoder
for layer_index in range(config.num_layers ):
__A = F'''layers_{str(a_ )}'''
# Self-Attention
__A = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"]
__A = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"]
__A = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"]
__A = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"]
# Layer Normalization
__A = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][
"scale"
]
# Encoder-Decoder-Attention
__A = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"]
__A = tax_enc_dec_attention_module["key"]["kernel"]
__A = tax_enc_dec_attention_module["out"]["kernel"]
__A = tax_enc_dec_attention_module["query"]["kernel"]
__A = tax_enc_dec_attention_module["value"]["kernel"]
# Layer Normalization
__A = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"]
# MLP
if split_mlp_wi:
__A = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"]
__A = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"]
else:
__A = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"]
__A = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"]
# Layer Normalization
__A = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"]
# Assigning
__A = flax_model.params["decoder"]["block"][str(a_ )]["layer"]
__A = tax_attention_key
__A = tax_attention_out
__A = tax_attention_query
__A = tax_attention_value
__A = tax_pre_attention_layer_norm
__A = tax_enc_dec_attention_key
__A = tax_enc_dec_attention_out
__A = tax_enc_dec_attention_query
__A = tax_enc_dec_attention_value
__A = tax_cross_layer_norm
if split_mlp_wi:
__A = tax_mlp_wi_a
__A = tax_mlp_wi_a
else:
__A = tax_mlp_wi
__A = tax_mlp_wo
__A = txa_mlp_layer_norm
__A = flax_model_decoder_layer_block
# Decoder Normalization
__A = tax_model["target"]["decoder"]["decoder_norm"]["scale"]
__A = txa_decoder_norm
# Only for layer 0:
__A = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T
__A = tax_decoder_rel_embedding
# Token Embeddings
__A = tax_model["target"]["token_embedder"]["embedding"]
__A = txa_token_embeddings
# LM Head (only in v1.1 and LongT5 checkpoints)
if "logits_dense" in tax_model["target"]["decoder"]:
__A = tax_model["target"]["decoder"]["logits_dense"]["kernel"]
flax_model.save_pretrained(a_ )
print("T5X Model was sucessfully converted!" )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.'
)
parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.')
parser.add_argument(
'--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.'
)
SCREAMING_SNAKE_CASE :Tuple = parser.parse_args()
convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
| 15 |
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
__A = [0] * len(a_ )
__A = []
__A = [1] * len(a_ )
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(a_ ) ):
if indegree[i] == 0:
queue.append(a_ )
while queue:
__A = queue.pop(0 )
for x in graph[vertex]:
indegree[x] -= 1
if long_dist[vertex] + 1 > long_dist[x]:
__A = long_dist[vertex] + 1
if indegree[x] == 0:
queue.append(a_ )
print(max(a_ ) )
# Adjacency list of Graph
SCREAMING_SNAKE_CASE :List[Any] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []}
longest_distance(graph)
| 15 | 1 |
from typing import Optional, Tuple, Union
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict
from ..configuration_utils import ConfigMixin, flax_register_to_config
from ..utils import BaseOutput
from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
from .modeling_flax_utils import FlaxModelMixin
from .unet_ad_blocks_flax import (
FlaxCrossAttnDownBlockaD,
FlaxCrossAttnUpBlockaD,
FlaxDownBlockaD,
FlaxUNetMidBlockaDCrossAttn,
FlaxUpBlockaD,
)
@flax.struct.dataclass
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = 42
@flax_register_to_config
class UpperCAmelCase ( nn.Module , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = 32
snake_case_ = 4
snake_case_ = 4
snake_case_ = (
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D",
)
snake_case_ = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")
snake_case_ = False
snake_case_ = (320, 640, 1280, 1280)
snake_case_ = 2
snake_case_ = 8
snake_case_ = None
snake_case_ = 1280
snake_case_ = 0.0
snake_case_ = False
snake_case_ = jnp.floataa
snake_case_ = True
snake_case_ = 0
snake_case_ = False
def UpperCamelCase_ ( self : Tuple ,A : jax.random.KeyArray ):
# init input tensors
__A = (1, self.in_channels, self.sample_size, self.sample_size)
__A = jnp.zeros(A ,dtype=jnp.floataa )
__A = jnp.ones((1,) ,dtype=jnp.intaa )
__A = jnp.zeros((1, 1, self.cross_attention_dim) ,dtype=jnp.floataa )
__A , __A = jax.random.split(A )
__A = {"params": params_rng, "dropout": dropout_rng}
return self.init(A ,A ,A ,A )["params"]
def UpperCamelCase_ ( self : Dict ):
__A = self.block_out_channels
__A = block_out_channels[0] * 4
if self.num_attention_heads is not None:
raise ValueError(
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19." )
# If `num_attention_heads` is not defined (which is the case for most models)
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
# The reason for this behavior is to correct for incorrectly named variables that were introduced
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
# which is why we correct for the naming here.
__A = self.num_attention_heads or self.attention_head_dim
# input
__A = nn.Conv(
block_out_channels[0] ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,)
# time
__A = FlaxTimesteps(
block_out_channels[0] ,flip_sin_to_cos=self.flip_sin_to_cos ,freq_shift=self.config.freq_shift )
__A = FlaxTimestepEmbedding(A ,dtype=self.dtype )
__A = self.only_cross_attention
if isinstance(A ,A ):
__A = (only_cross_attention,) * len(self.down_block_types )
if isinstance(A ,A ):
__A = (num_attention_heads,) * len(self.down_block_types )
# down
__A = []
__A = block_out_channels[0]
for i, down_block_type in enumerate(self.down_block_types ):
__A = output_channel
__A = block_out_channels[i]
__A = i == len(A ) - 1
if down_block_type == "CrossAttnDownBlock2D":
__A = FlaxCrossAttnDownBlockaD(
in_channels=A ,out_channels=A ,dropout=self.dropout ,num_layers=self.layers_per_block ,num_attention_heads=num_attention_heads[i] ,add_downsample=not is_final_block ,use_linear_projection=self.use_linear_projection ,only_cross_attention=only_cross_attention[i] ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,)
else:
__A = FlaxDownBlockaD(
in_channels=A ,out_channels=A ,dropout=self.dropout ,num_layers=self.layers_per_block ,add_downsample=not is_final_block ,dtype=self.dtype ,)
down_blocks.append(A )
__A = down_blocks
# mid
__A = FlaxUNetMidBlockaDCrossAttn(
in_channels=block_out_channels[-1] ,dropout=self.dropout ,num_attention_heads=num_attention_heads[-1] ,use_linear_projection=self.use_linear_projection ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,)
# up
__A = []
__A = list(reversed(A ) )
__A = list(reversed(A ) )
__A = list(reversed(A ) )
__A = reversed_block_out_channels[0]
for i, up_block_type in enumerate(self.up_block_types ):
__A = output_channel
__A = reversed_block_out_channels[i]
__A = reversed_block_out_channels[min(i + 1 ,len(A ) - 1 )]
__A = i == len(A ) - 1
if up_block_type == "CrossAttnUpBlock2D":
__A = FlaxCrossAttnUpBlockaD(
in_channels=A ,out_channels=A ,prev_output_channel=A ,num_layers=self.layers_per_block + 1 ,num_attention_heads=reversed_num_attention_heads[i] ,add_upsample=not is_final_block ,dropout=self.dropout ,use_linear_projection=self.use_linear_projection ,only_cross_attention=only_cross_attention[i] ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,)
else:
__A = FlaxUpBlockaD(
in_channels=A ,out_channels=A ,prev_output_channel=A ,num_layers=self.layers_per_block + 1 ,add_upsample=not is_final_block ,dropout=self.dropout ,dtype=self.dtype ,)
up_blocks.append(A )
__A = output_channel
__A = up_blocks
# out
__A = nn.GroupNorm(num_groups=32 ,epsilon=1E-5 )
__A = nn.Conv(
self.out_channels ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,)
def __call__( self : Optional[Any] ,A : Tuple ,A : List[Any] ,A : List[str] ,A : Union[str, Any]=None ,A : Union[str, Any]=None ,A : bool = True ,A : bool = False ,):
# 1. time
if not isinstance(A ,jnp.ndarray ):
__A = jnp.array([timesteps] ,dtype=jnp.intaa )
elif isinstance(A ,jnp.ndarray ) and len(timesteps.shape ) == 0:
__A = timesteps.astype(dtype=jnp.floataa )
__A = jnp.expand_dims(A ,0 )
__A = self.time_proj(A )
__A = self.time_embedding(A )
# 2. pre-process
__A = jnp.transpose(A ,(0, 2, 3, 1) )
__A = self.conv_in(A )
# 3. down
__A = (sample,)
for down_block in self.down_blocks:
if isinstance(A ,A ):
__A , __A = down_block(A ,A ,A ,deterministic=not train )
else:
__A , __A = down_block(A ,A ,deterministic=not train )
down_block_res_samples += res_samples
if down_block_additional_residuals is not None:
__A = ()
for down_block_res_sample, down_block_additional_residual in zip(
A ,A ):
down_block_res_sample += down_block_additional_residual
new_down_block_res_samples += (down_block_res_sample,)
__A = new_down_block_res_samples
# 4. mid
__A = self.mid_block(A ,A ,A ,deterministic=not train )
if mid_block_additional_residual is not None:
sample += mid_block_additional_residual
# 5. up
for up_block in self.up_blocks:
__A = down_block_res_samples[-(self.layers_per_block + 1) :]
__A = down_block_res_samples[: -(self.layers_per_block + 1)]
if isinstance(A ,A ):
__A = up_block(
A ,temb=A ,encoder_hidden_states=A ,res_hidden_states_tuple=A ,deterministic=not train ,)
else:
__A = up_block(A ,temb=A ,res_hidden_states_tuple=A ,deterministic=not train )
# 6. post-process
__A = self.conv_norm_out(A )
__A = nn.silu(A )
__A = self.conv_out(A )
__A = jnp.transpose(A ,(0, 3, 1, 2) )
if not return_dict:
return (sample,)
return FlaxUNetaDConditionOutput(sample=A )
| 15 |
import argparse
import os
import torch
from transformers import FlavaConfig, FlavaForPreTraining
from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint
def UpperCAmelCase ( a_ ) -> List[str]:
"""simple docstring"""
return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items() )
def UpperCAmelCase ( a_ , a_ ) -> Tuple:
"""simple docstring"""
__A = {}
for key, value in state_dict.items():
if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key:
continue
__A = key.replace("heads.cmd.mim_head.cls.predictions" , "mmm_image_head" )
__A = key.replace("heads.cmd.mlm_head.cls.predictions" , "mmm_text_head" )
__A = key.replace("heads.cmd.itm_head.cls" , "itm_head" )
__A = key.replace("heads.cmd.itm_head.pooler" , "itm_head.pooler" )
__A = key.replace("heads.cmd.clip_head.logit_scale" , "flava.logit_scale" )
__A = key.replace("heads.fairseq_mlm.cls.predictions" , "mlm_head" )
__A = key.replace("heads.imagenet.mim_head.cls.predictions" , "mim_head" )
__A = key.replace("mm_text_projection" , "flava.text_to_mm_projection" )
__A = key.replace("mm_image_projection" , "flava.image_to_mm_projection" )
__A = key.replace("image_encoder.module" , "flava.image_model" )
__A = key.replace("text_encoder.module" , "flava.text_model" )
__A = key.replace("mm_encoder.module.encoder.cls_token" , "flava.multimodal_model.cls_token" )
__A = key.replace("mm_encoder.module" , "flava.multimodal_model" )
__A = key.replace("text_projection" , "flava.text_projection" )
__A = key.replace("image_projection" , "flava.image_projection" )
__A = value.float()
for key, value in codebook_state_dict.items():
__A = value
return upgrade
@torch.no_grad()
def UpperCAmelCase ( a_ , a_ , a_ , a_=None ) -> Tuple:
"""simple docstring"""
if config_path is not None:
__A = FlavaConfig.from_pretrained(a_ )
else:
__A = FlavaConfig()
__A = FlavaForPreTraining(a_ ).eval()
__A = convert_dalle_checkpoint(a_ , a_ , save_checkpoint=a_ )
if os.path.exists(a_ ):
__A = torch.load(a_ , map_location="cpu" )
else:
__A = torch.hub.load_state_dict_from_url(a_ , map_location="cpu" )
__A = upgrade_state_dict(a_ , a_ )
hf_model.load_state_dict(a_ )
__A = hf_model.state_dict()
__A = count_parameters(a_ )
__A = count_parameters(a_ ) + count_parameters(a_ )
assert torch.allclose(a_ , a_ , atol=1E-3 )
hf_model.save_pretrained(a_ )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :Any = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint')
parser.add_argument('--codebook_path', default=None, type=str, help='Path to flava codebook checkpoint')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
SCREAMING_SNAKE_CASE :Optional[int] = parser.parse_args()
convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
| 15 | 1 |
from typing import Dict, Iterable, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends
if is_vision_available():
import PIL
# soft dependency
if is_pytesseract_available():
import pytesseract
SCREAMING_SNAKE_CASE :str = logging.get_logger(__name__)
def UpperCAmelCase ( a_ , a_ , a_ ) -> List[Any]:
"""simple docstring"""
return [
int(1_0_0_0 * (box[0] / width) ),
int(1_0_0_0 * (box[1] / height) ),
int(1_0_0_0 * (box[2] / width) ),
int(1_0_0_0 * (box[3] / height) ),
]
def UpperCAmelCase ( a_ , a_ , a_ ) -> List[str]:
"""simple docstring"""
__A = to_pil_image(a_ )
__A , __A = pil_image.size
__A = pytesseract.image_to_data(a_ , lang=a_ , output_type="dict" , config=a_ )
__A , __A , __A , __A , __A = data["text"], data["left"], data["top"], data["width"], data["height"]
# filter empty words and corresponding coordinates
__A = [idx for idx, word in enumerate(a_ ) if not word.strip()]
__A = [word for idx, word in enumerate(a_ ) if idx not in irrelevant_indices]
__A = [coord for idx, coord in enumerate(a_ ) if idx not in irrelevant_indices]
__A = [coord for idx, coord in enumerate(a_ ) if idx not in irrelevant_indices]
__A = [coord for idx, coord in enumerate(a_ ) if idx not in irrelevant_indices]
__A = [coord for idx, coord in enumerate(a_ ) if idx not in irrelevant_indices]
# turn coordinates into (left, top, left+width, top+height) format
__A = []
for x, y, w, h in zip(a_ , a_ , a_ , a_ ):
__A = [x, y, x + w, y + h]
actual_boxes.append(a_ )
# finally, normalize the bounding boxes
__A = []
for box in actual_boxes:
normalized_boxes.append(normalize_box(a_ , a_ , a_ ) )
assert len(a_ ) == len(a_ ), "Not as many words as there are bounding boxes"
return words, normalized_boxes
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = ["pixel_values"]
def __init__( self : Union[str, Any] ,A : bool = True ,A : Dict[str, int] = None ,A : PILImageResampling = PILImageResampling.BILINEAR ,A : bool = True ,A : float = 1 / 2_55 ,A : bool = True ,A : Union[float, Iterable[float]] = None ,A : Union[float, Iterable[float]] = None ,A : bool = True ,A : Optional[str] = None ,A : Optional[str] = "" ,**A : Optional[Any] ,):
super().__init__(**A )
__A = size if size is not None else {"height": 2_24, "width": 2_24}
__A = get_size_dict(A )
__A = do_resize
__A = size
__A = resample
__A = do_rescale
__A = rescale_value
__A = do_normalize
__A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__A = image_std if image_std is not None else IMAGENET_STANDARD_STD
__A = apply_ocr
__A = ocr_lang
__A = tesseract_config
def UpperCamelCase_ ( self : Any ,A : np.ndarray ,A : Dict[str, int] ,A : PILImageResampling = PILImageResampling.BILINEAR ,A : Optional[Union[str, ChannelDimension]] = None ,**A : List[str] ,):
__A = get_size_dict(A )
if "height" not in size or "width" not in size:
raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' )
__A = (size["height"], size["width"])
return resize(A ,size=A ,resample=A ,data_format=A ,**A )
def UpperCamelCase_ ( self : Tuple ,A : np.ndarray ,A : Union[int, float] ,A : Optional[Union[str, ChannelDimension]] = None ,**A : List[Any] ,):
return rescale(A ,scale=A ,data_format=A ,**A )
def UpperCamelCase_ ( self : Optional[Any] ,A : np.ndarray ,A : Union[float, Iterable[float]] ,A : Union[float, Iterable[float]] ,A : Optional[Union[str, ChannelDimension]] = None ,**A : List[Any] ,):
return normalize(A ,mean=A ,std=A ,data_format=A ,**A )
def UpperCamelCase_ ( self : Any ,A : ImageInput ,A : bool = None ,A : Dict[str, int] = None ,A : List[str]=None ,A : bool = None ,A : float = None ,A : bool = None ,A : Union[float, Iterable[float]] = None ,A : Union[float, Iterable[float]] = None ,A : bool = None ,A : Optional[str] = None ,A : Optional[str] = None ,A : Optional[Union[str, TensorType]] = None ,A : ChannelDimension = ChannelDimension.FIRST ,**A : int ,):
__A = do_resize if do_resize is not None else self.do_resize
__A = size if size is not None else self.size
__A = get_size_dict(A )
__A = resample if resample is not None else self.resample
__A = do_rescale if do_rescale is not None else self.do_rescale
__A = rescale_factor if rescale_factor is not None else self.rescale_factor
__A = do_normalize if do_normalize is not None else self.do_normalize
__A = image_mean if image_mean is not None else self.image_mean
__A = image_std if image_std is not None else self.image_std
__A = apply_ocr if apply_ocr is not None else self.apply_ocr
__A = ocr_lang if ocr_lang is not None else self.ocr_lang
__A = tesseract_config if tesseract_config is not None else self.tesseract_config
__A = make_list_of_images(A )
if not valid_images(A ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("If do_normalize is True, image_mean and image_std must be specified." )
# All transformations expect numpy arrays.
__A = [to_numpy_array(A ) for image in images]
# Tesseract OCR to get words + normalized bounding boxes
if apply_ocr:
requires_backends(self ,"pytesseract" )
__A = []
__A = []
for image in images:
__A , __A = apply_tesseract(A ,A ,A )
words_batch.append(A )
boxes_batch.append(A )
if do_resize:
__A = [self.resize(image=A ,size=A ,resample=A ) for image in images]
if do_rescale:
__A = [self.rescale(image=A ,scale=A ) for image in images]
if do_normalize:
__A = [self.normalize(image=A ,mean=A ,std=A ) for image in images]
__A = [to_channel_dimension_format(A ,A ) for image in images]
__A = BatchFeature(data={"pixel_values": images} ,tensor_type=A )
if apply_ocr:
__A = words_batch
__A = boxes_batch
return data
| 15 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE :Optional[int] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :Optional[int] = {'vocab_file': 'sentencepiece.bpe.model'}
SCREAMING_SNAKE_CASE :Tuple = {
'vocab_file': {
'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model',
}
}
SCREAMING_SNAKE_CASE :List[Any] = {
'camembert-base': 512,
}
SCREAMING_SNAKE_CASE :List[str] = '▁'
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = ["input_ids", "attention_mask"]
def __init__( self : Optional[Any] ,A : List[str] ,A : List[Any]="<s>" ,A : Tuple="</s>" ,A : Any="</s>" ,A : Optional[Any]="<s>" ,A : Tuple="<unk>" ,A : str="<pad>" ,A : int="<mask>" ,A : Optional[int]=["<s>NOTUSED", "</s>NOTUSED"] ,A : Optional[Dict[str, Any]] = None ,**A : Optional[Any] ,):
# Mask token behave like a normal word, i.e. include the space before it
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else mask_token
__A = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=A ,eos_token=A ,unk_token=A ,sep_token=A ,cls_token=A ,pad_token=A ,mask_token=A ,additional_special_tokens=A ,sp_model_kwargs=self.sp_model_kwargs ,**A ,)
__A = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(A ) )
__A = vocab_file
# HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual
# sentencepiece vocabulary (this is the case for <s> and </s>
__A = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3}
__A = len(self.fairseq_tokens_to_ids )
__A = len(self.sp_model ) + len(self.fairseq_tokens_to_ids )
__A = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def UpperCamelCase_ ( self : int ,A : List[int] ,A : Optional[List[int]] = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__A = [self.cls_token_id]
__A = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def UpperCamelCase_ ( self : Dict ,A : List[int] ,A : Optional[List[int]] = None ,A : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=A ,token_ids_a=A ,already_has_special_tokens=A )
if token_ids_a is None:
return [1] + ([0] * len(A )) + [1]
return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1]
def UpperCamelCase_ ( self : Union[str, Any] ,A : List[int] ,A : Optional[List[int]] = None ):
__A = [self.sep_token_id]
__A = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def UpperCamelCase_ ( self : Dict ):
return len(self.fairseq_tokens_to_ids ) + len(self.sp_model )
def UpperCamelCase_ ( self : int ):
__A = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def UpperCamelCase_ ( self : Any ,A : str ):
return self.sp_model.encode(A ,out_type=A )
def UpperCamelCase_ ( self : List[str] ,A : Dict ):
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
elif self.sp_model.PieceToId(A ) == 0:
# Convert sentence piece unk token to fairseq unk token index
return self.unk_token_id
return self.fairseq_offset + self.sp_model.PieceToId(A )
def UpperCamelCase_ ( self : Dict ,A : Tuple ):
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def UpperCamelCase_ ( self : Optional[Any] ,A : Dict ):
__A = []
__A = ""
__A = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(A ) + token
__A = True
__A = []
else:
current_sub_tokens.append(A )
__A = False
out_string += self.sp_model.decode(A )
return out_string.strip()
def __getstate__( self : Dict ):
__A = self.__dict__.copy()
__A = None
return state
def __setstate__( self : Union[str, Any] ,A : Any ):
__A = d
# for backward compatibility
if not hasattr(self ,"sp_model_kwargs" ):
__A = {}
__A = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def UpperCamelCase_ ( self : Any ,A : str ,A : Optional[str] = None ):
if not os.path.isdir(A ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__A = os.path.join(
A ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file ,A )
elif not os.path.isfile(self.vocab_file ):
with open(A ,"wb" ) as fi:
__A = self.sp_model.serialized_model_proto()
fi.write(A )
return (out_vocab_file,)
| 15 | 1 |
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE :Optional[Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :str = {
'huggingface/time-series-transformer-tourism-monthly': (
'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json'
),
# See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer
}
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = "time_series_transformer"
snake_case_ = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
"num_hidden_layers": "encoder_layers",
}
def __init__( self : Tuple ,A : Optional[int] = None ,A : Optional[int] = None ,A : str = "student_t" ,A : str = "nll" ,A : int = 1 ,A : List[int] = [1, 2, 3, 4, 5, 6, 7] ,A : Optional[Union[str, bool]] = "mean" ,A : int = 0 ,A : int = 0 ,A : int = 0 ,A : int = 0 ,A : Optional[List[int]] = None ,A : Optional[List[int]] = None ,A : int = 32 ,A : int = 32 ,A : int = 2 ,A : int = 2 ,A : int = 2 ,A : int = 2 ,A : bool = True ,A : str = "gelu" ,A : int = 64 ,A : float = 0.1 ,A : float = 0.1 ,A : float = 0.1 ,A : float = 0.1 ,A : float = 0.1 ,A : int = 1_00 ,A : float = 0.02 ,A : Union[str, Any]=True ,**A : Optional[int] ,):
# time series specific configuration
__A = prediction_length
__A = context_length or prediction_length
__A = distribution_output
__A = loss
__A = input_size
__A = num_time_features
__A = lags_sequence
__A = scaling
__A = num_dynamic_real_features
__A = num_static_real_features
__A = num_static_categorical_features
if cardinality and num_static_categorical_features > 0:
if len(A ) != num_static_categorical_features:
raise ValueError(
"The cardinality should be a list of the same length as `num_static_categorical_features`" )
__A = cardinality
else:
__A = [0]
if embedding_dimension and num_static_categorical_features > 0:
if len(A ) != num_static_categorical_features:
raise ValueError(
"The embedding dimension should be a list of the same length as `num_static_categorical_features`" )
__A = embedding_dimension
else:
__A = [min(50 ,(cat + 1) // 2 ) for cat in self.cardinality]
__A = num_parallel_samples
# Transformer architecture configuration
__A = input_size * len(A ) + self._number_of_features
__A = d_model
__A = encoder_attention_heads
__A = decoder_attention_heads
__A = encoder_ffn_dim
__A = decoder_ffn_dim
__A = encoder_layers
__A = decoder_layers
__A = dropout
__A = attention_dropout
__A = activation_dropout
__A = encoder_layerdrop
__A = decoder_layerdrop
__A = activation_function
__A = init_std
__A = use_cache
super().__init__(is_encoder_decoder=A ,**A )
@property
def UpperCamelCase_ ( self : Optional[Any] ):
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 15 |
def UpperCAmelCase ( a_ ) -> list:
"""simple docstring"""
if len(a_ ) <= 1:
return [tuple(a_ )]
__A = []
def generate(a_ , a_ ):
if k == 1:
res.append(tuple(arr[:] ) )
return
generate(k - 1 , a_ )
for i in range(k - 1 ):
if k % 2 == 0: # k is even
__A , __A = arr[k - 1], arr[i]
else: # k is odd
__A , __A = arr[k - 1], arr[0]
generate(k - 1 , a_ )
generate(len(a_ ) , a_ )
return res
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :int = input('Enter numbers separated by a comma:\n').strip()
SCREAMING_SNAKE_CASE :Dict = [int(item) for item in user_input.split(',')]
print(heaps(arr))
| 15 | 1 |
import itertools
import os
import random
import tempfile
import unittest
import numpy as np
from transformers import TvltFeatureExtractor, is_datasets_available
from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_torch_available():
import torch
if is_datasets_available():
from datasets import load_dataset
SCREAMING_SNAKE_CASE :Optional[int] = random.Random()
def UpperCAmelCase ( a_ , a_=1.0 , a_=None , a_=None ) -> int:
"""simple docstring"""
if rng is None:
__A = global_rng
__A = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Any ,A : Optional[int] ,A : List[Any]=7 ,A : List[Any]=4_00 ,A : List[Any]=20_00 ,A : Union[str, Any]=20_48 ,A : int=1_28 ,A : Optional[Any]=1 ,A : int=5_12 ,A : Any=30 ,A : List[str]=4_41_00 ,):
__A = parent
__A = batch_size
__A = min_seq_length
__A = max_seq_length
__A = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
__A = spectrogram_length
__A = feature_size
__A = num_audio_channels
__A = hop_length
__A = chunk_length
__A = sampling_rate
def UpperCamelCase_ ( self : Any ):
return {
"spectrogram_length": self.spectrogram_length,
"feature_size": self.feature_size,
"num_audio_channels": self.num_audio_channels,
"hop_length": self.hop_length,
"chunk_length": self.chunk_length,
"sampling_rate": self.sampling_rate,
}
def UpperCamelCase_ ( self : Optional[Any] ,A : Any=False ,A : str=False ):
def _flatten(A : Optional[Any] ):
return list(itertools.chain(*A ) )
if equal_length:
__A = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )]
else:
# make sure that inputs increase in size
__A = [
floats_list((x, self.feature_size) )
for x in range(self.min_seq_length ,self.max_seq_length ,self.seq_length_diff )
]
if numpify:
__A = [np.asarray(A ) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = TvltFeatureExtractor
def UpperCamelCase_ ( self : Tuple ):
__A = TvltFeatureExtractionTester(self )
def UpperCamelCase_ ( self : List[Any] ):
__A = self.feature_extraction_class(**self.feat_extract_dict )
self.assertTrue(hasattr(A ,"spectrogram_length" ) )
self.assertTrue(hasattr(A ,"feature_size" ) )
self.assertTrue(hasattr(A ,"num_audio_channels" ) )
self.assertTrue(hasattr(A ,"hop_length" ) )
self.assertTrue(hasattr(A ,"chunk_length" ) )
self.assertTrue(hasattr(A ,"sampling_rate" ) )
def UpperCamelCase_ ( self : List[Any] ):
__A = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
__A = feat_extract_first.save_pretrained(A )[0]
check_json_file_has_correct_format(A )
__A = self.feature_extraction_class.from_pretrained(A )
__A = feat_extract_first.to_dict()
__A = feat_extract_second.to_dict()
__A = dict_first.pop("mel_filters" )
__A = dict_second.pop("mel_filters" )
self.assertTrue(np.allclose(A ,A ) )
self.assertEqual(A ,A )
def UpperCamelCase_ ( self : List[str] ):
__A = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
__A = os.path.join(A ,"feat_extract.json" )
feat_extract_first.to_json_file(A )
__A = self.feature_extraction_class.from_json_file(A )
__A = feat_extract_first.to_dict()
__A = feat_extract_second.to_dict()
__A = dict_first.pop("mel_filters" )
__A = dict_second.pop("mel_filters" )
self.assertTrue(np.allclose(A ,A ) )
self.assertEqual(A ,A )
def UpperCamelCase_ ( self : Optional[int] ):
# Initialize feature_extractor
__A = self.feature_extraction_class(**self.feat_extract_dict )
# create three inputs of length 800, 1000, and 1200
__A = [floats_list((1, x) )[0] for x in range(8_00 ,14_00 ,2_00 )]
__A = [np.asarray(A ) for speech_input in speech_inputs]
# Test not batched input
__A = feature_extractor(np_speech_inputs[0] ,return_tensors="np" ,sampling_rate=4_41_00 ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
# Test batched
__A = feature_extractor(A ,return_tensors="np" ,sampling_rate=4_41_00 ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
# Test audio masking
__A = feature_extractor(
A ,return_tensors="np" ,sampling_rate=4_41_00 ,mask_audio=A ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
# Test 2-D numpy arrays are batched.
__A = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)]
__A = np.asarray(A )
__A = feature_extractor(A ,return_tensors="np" ,sampling_rate=4_41_00 ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
def UpperCamelCase_ ( self : Optional[int] ,A : Any ):
__A = load_dataset("hf-internal-testing/librispeech_asr_dummy" ,"clean" ,split="validation" )
# automatic decoding with librispeech
__A = ds.sort("id" ).select(range(A ) )[:num_samples]["audio"]
return [x["array"] for x in speech_samples]
def UpperCamelCase_ ( self : List[str] ):
__A = self._load_datasamples(1 )
__A = TvltFeatureExtractor()
__A = feature_extractor(A ,return_tensors="pt" ).audio_values
self.assertEquals(audio_values.shape ,(1, 1, 1_92, 1_28) )
__A = torch.tensor([[-0.30_32, -0.27_08], [-0.44_34, -0.40_07]] )
self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] ,A ,atol=1E-4 ) )
| 15 |
def UpperCAmelCase ( a_ ) -> list:
"""simple docstring"""
if len(a_ ) <= 1:
return lst
__A = 1
while i < len(a_ ):
if lst[i - 1] <= lst[i]:
i += 1
else:
__A , __A = lst[i], lst[i - 1]
i -= 1
if i == 0:
__A = 1
return lst
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :List[Any] = input('Enter numbers separated by a comma:\n').strip()
SCREAMING_SNAKE_CASE :List[Any] = [int(item) for item in user_input.split(',')]
print(gnome_sort(unsorted))
| 15 | 1 |
SCREAMING_SNAKE_CASE :Any = 256
# Modulus to hash a string
SCREAMING_SNAKE_CASE :Union[str, Any] = 100_0003
def UpperCAmelCase ( a_ , a_ ) -> bool:
"""simple docstring"""
__A = len(a_ )
__A = len(a_ )
if p_len > t_len:
return False
__A = 0
__A = 0
__A = 1
# Calculating the hash of pattern and substring of text
for i in range(a_ ):
__A = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus
__A = (ord(text[i] ) + text_hash * alphabet_size) % modulus
if i == p_len - 1:
continue
__A = (modulus_power * alphabet_size) % modulus
for i in range(0 , t_len - p_len + 1 ):
if text_hash == p_hash and text[i : i + p_len] == pattern:
return True
if i == t_len - p_len:
continue
# Calculate the https://en.wikipedia.org/wiki/Rolling_hash
__A = (
(text_hash - ord(text[i] ) * modulus_power) * alphabet_size
+ ord(text[i + p_len] )
) % modulus
return False
def UpperCAmelCase ( ) -> None:
"""simple docstring"""
__A = "abc1abc12"
__A = "alskfjaldsabc1abc1abc12k23adsfabcabc"
__A = "alskfjaldsk23adsfabcabc"
assert rabin_karp(a_ , a_ ) and not rabin_karp(a_ , a_ )
# Test 2)
__A = "ABABX"
__A = "ABABZABABYABABX"
assert rabin_karp(a_ , a_ )
# Test 3)
__A = "AAAB"
__A = "ABAAAAAB"
assert rabin_karp(a_ , a_ )
# Test 4)
__A = "abcdabcy"
__A = "abcxabcdabxabcdabcdabcy"
assert rabin_karp(a_ , a_ )
# Test 5)
__A = "Lü"
__A = "Lüsai"
assert rabin_karp(a_ , a_ )
__A = "Lue"
assert not rabin_karp(a_ , a_ )
print("Success." )
if __name__ == "__main__":
test_rabin_karp()
| 15 |
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = 42
snake_case_ = 42
snake_case_ = None
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = 2
@register_to_config
def __init__( self : str ,A : float = 0.02 ,A : float = 1_00 ,A : float = 1.0_07 ,A : float = 80 ,A : float = 0.05 ,A : float = 50 ,):
# standard deviation of the initial noise distribution
__A = sigma_max
# setable values
__A = None
__A = None
__A = None # sigma(t_i)
def UpperCamelCase_ ( self : str ,A : torch.FloatTensor ,A : Optional[int] = None ):
return sample
def UpperCamelCase_ ( self : Dict ,A : int ,A : Union[str, torch.device] = None ):
__A = num_inference_steps
__A = np.arange(0 ,self.num_inference_steps )[::-1].copy()
__A = torch.from_numpy(A ).to(A )
__A = [
(
self.config.sigma_max**2
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
)
for i in self.timesteps
]
__A = torch.tensor(A ,dtype=torch.floataa ,device=A )
def UpperCamelCase_ ( self : Union[str, Any] ,A : torch.FloatTensor ,A : float ,A : Optional[torch.Generator] = None ):
if self.config.s_min <= sigma <= self.config.s_max:
__A = min(self.config.s_churn / self.num_inference_steps ,2**0.5 - 1 )
else:
__A = 0
# sample eps ~ N(0, S_noise^2 * I)
__A = self.config.s_noise * randn_tensor(sample.shape ,generator=A ).to(sample.device )
__A = sigma + gamma * sigma
__A = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)
return sample_hat, sigma_hat
def UpperCamelCase_ ( self : Dict ,A : torch.FloatTensor ,A : float ,A : float ,A : torch.FloatTensor ,A : bool = True ,):
__A = sample_hat + sigma_hat * model_output
__A = (sample_hat - pred_original_sample) / sigma_hat
__A = sample_hat + (sigma_prev - sigma_hat) * derivative
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=A ,derivative=A ,pred_original_sample=A )
def UpperCamelCase_ ( self : Optional[int] ,A : torch.FloatTensor ,A : float ,A : float ,A : torch.FloatTensor ,A : torch.FloatTensor ,A : torch.FloatTensor ,A : bool = True ,):
__A = sample_prev + sigma_prev * model_output
__A = (sample_prev - pred_original_sample) / sigma_prev
__A = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=A ,derivative=A ,pred_original_sample=A )
def UpperCamelCase_ ( self : List[Any] ,A : Dict ,A : List[str] ,A : str ):
raise NotImplementedError()
| 15 | 1 |
import unittest
from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available
from transformers.pipelines import pipeline
from transformers.pipelines.document_question_answering import apply_tesseract
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_detectrona,
require_pytesseract,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
from transformers.image_utils import load_image
else:
class UpperCAmelCase :
'''simple docstring'''
@staticmethod
def UpperCamelCase_ ( *A : Any ,**A : int ):
pass
def UpperCAmelCase ( a_ ) -> List[str]:
"""simple docstring"""
return None
# This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace,
# so we can expect it to be available.
SCREAMING_SNAKE_CASE :List[Any] = (
'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png'
)
@is_pipeline_test
@require_torch
@require_vision
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
snake_case_ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING
@require_pytesseract
@require_vision
def UpperCamelCase_ ( self : int ,A : Optional[int] ,A : List[str] ,A : Union[str, Any] ):
__A = pipeline(
"document-question-answering" ,model=A ,tokenizer=A ,image_processor=A )
__A = INVOICE_URL
__A = list(zip(*apply_tesseract(load_image(A ) ,A ,"" ) ) )
__A = "What is the placebo?"
__A = [
{
"image": load_image(A ),
"question": question,
},
{
"image": image,
"question": question,
},
{
"image": image,
"question": question,
"word_boxes": word_boxes,
},
]
return dqa_pipeline, examples
def UpperCamelCase_ ( self : Optional[int] ,A : Any ,A : List[str] ):
__A = dqa_pipeline(A ,top_k=2 )
self.assertEqual(
A ,[
[
{"score": ANY(A ), "answer": ANY(A ), "start": ANY(A ), "end": ANY(A )},
{"score": ANY(A ), "answer": ANY(A ), "start": ANY(A ), "end": ANY(A )},
]
]
* 3 ,)
@require_torch
@require_detectrona
@require_pytesseract
def UpperCamelCase_ ( self : str ):
__A = pipeline("document-question-answering" ,model="hf-internal-testing/tiny-random-layoutlmv2" )
__A = INVOICE_URL
__A = "How many cats are there?"
__A = [
{"score": 0.00_01, "answer": "oy 2312/2019", "start": 38, "end": 39},
{"score": 0.00_01, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40},
]
__A = dqa_pipeline(image=A ,question=A ,top_k=2 )
self.assertEqual(nested_simplify(A ,decimals=4 ) ,A )
__A = dqa_pipeline({"image": image, "question": question} ,top_k=2 )
self.assertEqual(nested_simplify(A ,decimals=4 ) ,A )
# This image does not detect ANY text in it, meaning layoutlmv2 should fail.
# Empty answer probably
__A = "./tests/fixtures/tests_samples/COCO/000000039769.png"
__A = dqa_pipeline(image=A ,question=A ,top_k=2 )
self.assertEqual(A ,[] )
# We can optionnally pass directly the words and bounding boxes
__A = "./tests/fixtures/tests_samples/COCO/000000039769.png"
__A = []
__A = []
__A = dqa_pipeline(image=A ,question=A ,words=A ,boxes=A ,top_k=2 )
self.assertEqual(A ,[] )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def UpperCamelCase_ ( self : int ):
__A = pipeline(
"document-question-answering" ,model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" ,revision="9977165" ,)
__A = INVOICE_URL
__A = "What is the invoice number?"
__A = dqa_pipeline(image=A ,question=A ,top_k=2 )
self.assertEqual(
nested_simplify(A ,decimals=4 ) ,[
{"score": 0.99_44, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.00_09, "answer": "us-001", "start": 16, "end": 16},
] ,)
__A = dqa_pipeline({"image": image, "question": question} ,top_k=2 )
self.assertEqual(
nested_simplify(A ,decimals=4 ) ,[
{"score": 0.99_44, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.00_09, "answer": "us-001", "start": 16, "end": 16},
] ,)
__A = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] ,top_k=2 )
self.assertEqual(
nested_simplify(A ,decimals=4 ) ,[
[
{"score": 0.99_44, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.00_09, "answer": "us-001", "start": 16, "end": 16},
],
]
* 2 ,)
@slow
@require_torch
@require_detectrona
@require_pytesseract
def UpperCamelCase_ ( self : Tuple ):
__A = pipeline(
"document-question-answering" ,model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" ,revision="9977165" ,max_seq_len=50 ,)
__A = INVOICE_URL
__A = "What is the invoice number?"
__A = dqa_pipeline(image=A ,question=A ,top_k=2 )
self.assertEqual(
nested_simplify(A ,decimals=4 ) ,[
{"score": 0.99_74, "answer": "1110212019", "start": 23, "end": 23},
{"score": 0.99_48, "answer": "us-001", "start": 16, "end": 16},
] ,)
__A = dqa_pipeline({"image": image, "question": question} ,top_k=2 )
self.assertEqual(
nested_simplify(A ,decimals=4 ) ,[
{"score": 0.99_74, "answer": "1110212019", "start": 23, "end": 23},
{"score": 0.99_48, "answer": "us-001", "start": 16, "end": 16},
] ,)
__A = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] ,top_k=2 )
self.assertEqual(
nested_simplify(A ,decimals=4 ) ,[
[
{"score": 0.99_74, "answer": "1110212019", "start": 23, "end": 23},
{"score": 0.99_48, "answer": "us-001", "start": 16, "end": 16},
]
]
* 2 ,)
@slow
@require_torch
@require_pytesseract
@require_vision
def UpperCamelCase_ ( self : Optional[int] ):
__A = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa" ,revision="3dc6de3" ,add_prefix_space=A )
__A = pipeline(
"document-question-answering" ,model="impira/layoutlm-document-qa" ,tokenizer=A ,revision="3dc6de3" ,)
__A = INVOICE_URL
__A = "What is the invoice number?"
__A = dqa_pipeline(image=A ,question=A ,top_k=2 )
self.assertEqual(
nested_simplify(A ,decimals=4 ) ,[
{"score": 0.42_51, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.08_19, "answer": "1110212019", "start": 23, "end": 23},
] ,)
__A = dqa_pipeline({"image": image, "question": question} ,top_k=2 )
self.assertEqual(
nested_simplify(A ,decimals=4 ) ,[
{"score": 0.42_51, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.08_19, "answer": "1110212019", "start": 23, "end": 23},
] ,)
__A = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] ,top_k=2 )
self.assertEqual(
nested_simplify(A ,decimals=4 ) ,[
[
{"score": 0.42_51, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.08_19, "answer": "1110212019", "start": 23, "end": 23},
]
]
* 2 ,)
__A = list(zip(*apply_tesseract(load_image(A ) ,A ,"" ) ) )
# This model should also work if `image` is set to None
__A = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} ,top_k=2 )
self.assertEqual(
nested_simplify(A ,decimals=4 ) ,[
{"score": 0.42_51, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.08_19, "answer": "1110212019", "start": 23, "end": 23},
] ,)
@slow
@require_torch
@require_pytesseract
@require_vision
def UpperCamelCase_ ( self : List[Any] ):
__A = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa" ,revision="3dc6de3" ,add_prefix_space=A )
__A = pipeline(
"document-question-answering" ,model="impira/layoutlm-document-qa" ,tokenizer=A ,revision="3dc6de3" ,max_seq_len=50 ,)
__A = INVOICE_URL
__A = "What is the invoice number?"
__A = dqa_pipeline(image=A ,question=A ,top_k=2 )
self.assertEqual(
nested_simplify(A ,decimals=4 ) ,[
{"score": 0.99_99, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.99_98, "answer": "us-001", "start": 16, "end": 16},
] ,)
__A = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] ,top_k=2 )
self.assertEqual(
nested_simplify(A ,decimals=4 ) ,[
[
{"score": 0.99_99, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.99_98, "answer": "us-001", "start": 16, "end": 16},
]
]
* 2 ,)
__A = list(zip(*apply_tesseract(load_image(A ) ,A ,"" ) ) )
# This model should also work if `image` is set to None
__A = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} ,top_k=2 )
self.assertEqual(
nested_simplify(A ,decimals=4 ) ,[
{"score": 0.99_99, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.99_98, "answer": "us-001", "start": 16, "end": 16},
] ,)
@slow
@require_torch
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = pipeline(
"document-question-answering" ,model="naver-clova-ix/donut-base-finetuned-docvqa" ,tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) ,feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" ,)
__A = INVOICE_URL
__A = "What is the invoice number?"
__A = dqa_pipeline(image=A ,question=A ,top_k=2 )
self.assertEqual(nested_simplify(A ,decimals=4 ) ,[{"answer": "us-001"}] )
@require_tf
@unittest.skip("Document question answering not implemented in TF" )
def UpperCamelCase_ ( self : Optional[int] ):
pass
| 15 |
# Lint as: python3
import os
import re
import urllib.parse
from pathlib import Path
from typing import Callable, List, Optional, Union
from zipfile import ZipFile
from ..utils.file_utils import cached_path, hf_github_url
from ..utils.logging import get_logger
from ..utils.version import Version
SCREAMING_SNAKE_CASE :Union[str, Any] = get_logger(__name__)
class UpperCAmelCase :
'''simple docstring'''
snake_case_ = "dummy_data"
snake_case_ = "datasets"
snake_case_ = False
def __init__( self : Optional[int] ,A : str ,A : str ,A : Union[Version, str] ,A : Optional[str] = None ,A : bool = False ,A : bool = True ,A : Optional[List[Callable]] = None ,):
__A = 0
__A = dataset_name
__A = cache_dir
__A = use_local_dummy_data
__A = config
# download_callbacks take a single url as input
__A = download_callbacks or []
# if False, it doesn't load existing files and it returns the paths of the dummy files relative
# to the dummy_data zip file root
__A = load_existing_dummy_data
# TODO(PVP, QL) might need to make this more general
__A = str(A )
# to be downloaded
__A = None
__A = None
@property
def UpperCamelCase_ ( self : Union[str, Any] ):
if self._dummy_file is None:
__A = self.download_dummy_data()
return self._dummy_file
@property
def UpperCamelCase_ ( self : Optional[Any] ):
if self.config is not None:
# structure is dummy / config_name / version_name
return os.path.join("dummy" ,self.config.name ,self.version_name )
# structure is dummy / version_name
return os.path.join("dummy" ,self.version_name )
@property
def UpperCamelCase_ ( self : List[Any] ):
return os.path.join(self.dummy_data_folder ,"dummy_data.zip" )
def UpperCamelCase_ ( self : Tuple ):
__A = (
self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data
)
__A = cached_path(
A ,cache_dir=self.cache_dir ,extract_compressed_file=A ,force_extract=A )
return os.path.join(A ,self.dummy_file_name )
@property
def UpperCamelCase_ ( self : str ):
return os.path.join(self.datasets_scripts_dir ,self.dataset_name ,self.dummy_zip_file )
@property
def UpperCamelCase_ ( self : Any ):
if self._bucket_url is None:
__A = hf_github_url(self.dataset_name ,self.dummy_zip_file.replace(os.sep ,"/" ) )
return self._bucket_url
@property
def UpperCamelCase_ ( self : Tuple ):
# return full path if its a dir
if os.path.isdir(self.dummy_file ):
return self.dummy_file
# else cut off path to file -> example `xsum`.
return "/".join(self.dummy_file.replace(os.sep ,"/" ).split("/" )[:-1] )
def UpperCamelCase_ ( self : List[str] ,A : List[Any] ,*A : Dict ):
if self.load_existing_dummy_data:
# dummy data is downloaded and tested
__A = self.dummy_file
else:
# dummy data cannot be downloaded and only the path to dummy file is returned
__A = self.dummy_file_name
# special case when data_url is a dict
if isinstance(A ,A ):
return self.create_dummy_data_dict(A ,A )
elif isinstance(A ,(list, tuple) ):
return self.create_dummy_data_list(A ,A )
else:
return self.create_dummy_data_single(A ,A )
def UpperCamelCase_ ( self : str ,A : List[Any] ,*A : List[Any] ):
return self.download_and_extract(A )
def UpperCamelCase_ ( self : List[str] ,A : List[str] ,A : Tuple ):
return self.download_and_extract(A )
def UpperCamelCase_ ( self : Any ,A : Any ,*A : Optional[Any] ,**A : List[str] ):
return path
def UpperCamelCase_ ( self : str ):
return {}
def UpperCamelCase_ ( self : int ,A : int ,A : Tuple ):
__A = {}
for key, single_urls in data_url.items():
for download_callback in self.download_callbacks:
if isinstance(A ,A ):
for single_url in single_urls:
download_callback(A )
else:
__A = single_urls
download_callback(A )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
if isinstance(A ,A ):
__A = [os.path.join(A ,urllib.parse.quote_plus(Path(A ).name ) ) for x in single_urls]
else:
__A = single_urls
__A = os.path.join(A ,urllib.parse.quote_plus(Path(A ).name ) )
__A = value
# make sure that values are unique
if all(isinstance(A ,A ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len(
dummy_data_dict.values() ):
# append key to value to make its name unique
__A = {key: value + key for key, value in dummy_data_dict.items()}
return dummy_data_dict
def UpperCamelCase_ ( self : Union[str, Any] ,A : str ,A : str ):
__A = []
# trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one
__A = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" ,A ) ) for url in data_url )
__A = all(
url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url )
if data_url and (is_tf_records or is_pubmed_records):
__A = [data_url[0]] * len(A )
for single_url in data_url:
for download_callback in self.download_callbacks:
download_callback(A )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
__A = os.path.join(A ,urllib.parse.quote_plus(single_url.split("/" )[-1] ) )
dummy_data_list.append(A )
return dummy_data_list
def UpperCamelCase_ ( self : str ,A : List[Any] ,A : Optional[Any] ):
for download_callback in self.download_callbacks:
download_callback(A )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
__A = os.path.join(A ,urllib.parse.quote_plus(data_url.split("/" )[-1] ) )
if os.path.exists(A ) or not self.load_existing_dummy_data:
return value
else:
# Backward compatibility, maybe deprecate at one point.
# For many datasets with single url calls to dl_manager.download_and_extract,
# the dummy_data.zip file is actually the zipped downloaded file
# while now we expected the dummy_data.zip file to be a directory containing
# the downloaded file.
return path_to_dummy_data
def UpperCamelCase_ ( self : int ):
pass
def UpperCamelCase_ ( self : Dict ):
pass
def UpperCamelCase_ ( self : Optional[Any] ,A : List[Any] ):
def _iter_archive_members(A : Optional[Any] ):
# this preserves the order of the members inside the ZIP archive
__A = Path(self.dummy_file ).parent
__A = path.relative_to(A )
with ZipFile(self.local_path_to_dummy_data ) as zip_file:
__A = zip_file.namelist()
for member in members:
if member.startswith(relative_path.as_posix() ):
yield dummy_parent_path.joinpath(A )
__A = Path(A )
__A = _iter_archive_members(A ) if self.use_local_dummy_data else path.rglob("*" )
for file_path in file_paths:
if file_path.is_file() and not file_path.name.startswith((".", "__") ):
yield file_path.relative_to(A ).as_posix(), file_path.open("rb" )
def UpperCamelCase_ ( self : List[Any] ,A : Any ):
if not isinstance(A ,A ):
__A = [paths]
for path in paths:
if os.path.isfile(A ):
if os.path.basename(A ).startswith((".", "__") ):
return
yield path
else:
for dirpath, dirnames, filenames in os.walk(A ):
if os.path.basename(A ).startswith((".", "__") ):
continue
dirnames.sort()
for filename in sorted(A ):
if filename.startswith((".", "__") ):
continue
yield os.path.join(A ,A )
| 15 | 1 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
if is_torch_available():
import torch
from transformers import XLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_torch
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCamelCase_ ( self : Dict ):
__A = XLMRobertaModel.from_pretrained("xlm-roberta-base" )
__A = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] )
# The dog is cute and lives in the garden house
__A = torch.Size((1, 12, 7_68) ) # batch_size, sequence_length, embedding_vector_dim
__A = torch.tensor(
[[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
__A = model(A )["last_hidden_state"].detach()
self.assertEqual(output.shape ,A )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] ,A ,atol=1E-3 ) )
@slow
def UpperCamelCase_ ( self : Optional[Any] ):
__A = XLMRobertaModel.from_pretrained("xlm-roberta-large" )
__A = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] )
# The dog is cute and lives in the garden house
__A = torch.Size((1, 12, 10_24) ) # batch_size, sequence_length, embedding_vector_dim
__A = torch.tensor(
[[-0.06_99, -0.03_18, 0.07_05, -0.12_41, 0.09_99, -0.05_20, 0.10_04, -0.18_38, -0.47_04, 0.14_37, 0.08_21, 0.01_26]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
__A = model(A )["last_hidden_state"].detach()
self.assertEqual(output.shape ,A )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] ,A ,atol=1E-3 ) )
| 15 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
SCREAMING_SNAKE_CASE :List[Any] = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :List[str] = ['BartphoTokenizer']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bartpho import BartphoTokenizer
else:
import sys
SCREAMING_SNAKE_CASE :Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 15 | 1 |
import importlib.util
import os
import platform
from argparse import ArgumentParser
import huggingface_hub
from .. import __version__ as version
from ..utils import (
is_accelerate_available,
is_flax_available,
is_safetensors_available,
is_tf_available,
is_torch_available,
)
from . import BaseTransformersCLICommand
def UpperCAmelCase ( a_ ) -> List[str]:
"""simple docstring"""
return EnvironmentCommand()
def UpperCAmelCase ( a_ ) -> Union[str, Any]:
"""simple docstring"""
return EnvironmentCommand(args.accelerate_config_file )
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@staticmethod
def UpperCamelCase_ ( A : ArgumentParser ):
__A = parser.add_parser("env" )
download_parser.set_defaults(func=A )
download_parser.add_argument(
"--accelerate-config_file" ,default=A ,help="The accelerate config file to use for the default values in the launching script." ,)
download_parser.set_defaults(func=A )
def __init__( self : str ,A : str ,*A : List[Any] ):
__A = accelerate_config_file
def UpperCamelCase_ ( self : Optional[int] ):
__A = "not installed"
if is_safetensors_available():
import safetensors
__A = safetensors.__version__
elif importlib.util.find_spec("safetensors" ) is not None:
import safetensors
__A = f'''{safetensors.__version__} but is ignored because of PyTorch version too old.'''
__A = "not installed"
__A = __A = "not found"
if is_accelerate_available():
import accelerate
from accelerate.commands.config import default_config_file, load_config_from_file
__A = accelerate.__version__
# Get the default from the config file.
if self._accelerate_config_file is not None or os.path.isfile(A ):
__A = load_config_from_file(self._accelerate_config_file ).to_dict()
__A = (
"\n".join([f'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] )
if isinstance(A ,A )
else f'''\t{accelerate_config}'''
)
__A = "not installed"
__A = "NA"
if is_torch_available():
import torch
__A = torch.__version__
__A = torch.cuda.is_available()
__A = "not installed"
__A = "NA"
if is_tf_available():
import tensorflow as tf
__A = tf.__version__
try:
# deprecated in v2.1
__A = tf.test.is_gpu_available()
except AttributeError:
# returns list of devices, convert to bool
__A = bool(tf.config.list_physical_devices("GPU" ) )
__A = "not installed"
__A = "not installed"
__A = "not installed"
__A = "NA"
if is_flax_available():
import flax
import jax
import jaxlib
__A = flax.__version__
__A = jax.__version__
__A = jaxlib.__version__
__A = jax.lib.xla_bridge.get_backend().platform
__A = {
"`transformers` version": version,
"Platform": platform.platform(),
"Python version": platform.python_version(),
"Huggingface_hub version": huggingface_hub.__version__,
"Safetensors version": f'''{safetensors_version}''',
"Accelerate version": f'''{accelerate_version}''',
"Accelerate config": f'''{accelerate_config_str}''',
"PyTorch version (GPU?)": f'''{pt_version} ({pt_cuda_available})''',
"Tensorflow version (GPU?)": f'''{tf_version} ({tf_cuda_available})''',
"Flax version (CPU?/GPU?/TPU?)": f'''{flax_version} ({jax_backend})''',
"Jax version": f'''{jax_version}''',
"JaxLib version": f'''{jaxlib_version}''',
"Using GPU in script?": "<fill in>",
"Using distributed or parallel set-up in script?": "<fill in>",
}
print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" )
print(self.format_dict(A ) )
return info
@staticmethod
def UpperCamelCase_ ( A : Any ):
return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
| 15 |
from typing import Dict, Optional
import numpy as np
import datasets
SCREAMING_SNAKE_CASE :List[Any] = '\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n'
SCREAMING_SNAKE_CASE :List[str] = '\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric("mean_iou")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n'
SCREAMING_SNAKE_CASE :str = '\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}'
def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ = None , a_ = False , ) -> Tuple:
"""simple docstring"""
if label_map is not None:
for old_id, new_id in label_map.items():
__A = new_id
# turn into Numpy arrays
__A = np.array(a_ )
__A = np.array(a_ )
if reduce_labels:
__A = 2_5_5
__A = label - 1
__A = 2_5_5
__A = label != ignore_index
__A = np.not_equal(a_ , a_ )
__A = pred_label[mask]
__A = np.array(a_ )[mask]
__A = pred_label[pred_label == label]
__A = np.histogram(a_ , bins=a_ , range=(0, num_labels - 1) )[0]
__A = np.histogram(a_ , bins=a_ , range=(0, num_labels - 1) )[0]
__A = np.histogram(a_ , bins=a_ , range=(0, num_labels - 1) )[0]
__A = area_pred_label + area_label - area_intersect
return area_intersect, area_union, area_pred_label, area_label
def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ = None , a_ = False , ) -> Union[str, Any]:
"""simple docstring"""
__A = np.zeros((num_labels,) , dtype=np.floataa )
__A = np.zeros((num_labels,) , dtype=np.floataa )
__A = np.zeros((num_labels,) , dtype=np.floataa )
__A = np.zeros((num_labels,) , dtype=np.floataa )
for result, gt_seg_map in zip(a_ , a_ ):
__A , __A , __A , __A = intersect_and_union(
a_ , a_ , a_ , a_ , a_ , a_ )
total_area_intersect += area_intersect
total_area_union += area_union
total_area_pred_label += area_pred_label
total_area_label += area_label
return total_area_intersect, total_area_union, total_area_pred_label, total_area_label
def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ = None , a_ = None , a_ = False , ) -> str:
"""simple docstring"""
__A , __A , __A , __A = total_intersect_and_union(
a_ , a_ , a_ , a_ , a_ , a_ )
# compute metrics
__A = {}
__A = total_area_intersect.sum() / total_area_label.sum()
__A = total_area_intersect / total_area_union
__A = total_area_intersect / total_area_label
__A = np.nanmean(a_ )
__A = np.nanmean(a_ )
__A = all_acc
__A = iou
__A = acc
if nan_to_num is not None:
__A = {metric: np.nan_to_num(a_ , nan=a_ ) for metric, metric_value in metrics.items()}
return metrics
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase ( datasets.Metric ):
'''simple docstring'''
def UpperCamelCase_ ( self : List[Any] ):
return datasets.MetricInfo(
description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(
# 1st Seq - height dim, 2nd - width dim
{
"predictions": datasets.Sequence(datasets.Sequence(datasets.Value("uint16" ) ) ),
"references": datasets.Sequence(datasets.Sequence(datasets.Value("uint16" ) ) ),
} ) ,reference_urls=[
"https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py"
] ,)
def UpperCamelCase_ ( self : int ,A : Optional[Any] ,A : Optional[Any] ,A : int ,A : bool ,A : Optional[int] = None ,A : Optional[Dict[int, int]] = None ,A : bool = False ,):
__A = mean_iou(
results=A ,gt_seg_maps=A ,num_labels=A ,ignore_index=A ,nan_to_num=A ,label_map=A ,reduce_labels=A ,)
return iou_result
| 15 | 1 |
import os
import re
import unicodedata
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import is_torch_available, logging
if is_torch_available():
import torch
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
SCREAMING_SNAKE_CASE :List[str] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :List[str] = {'vocab_file': 'spiece.model'}
SCREAMING_SNAKE_CASE :Dict = {
'vocab_file': {
'AI-Sweden/gpt-sw3-126m': 'https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model',
'AI-Sweden/gpt-sw3-350m': 'https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model',
'AI-Sweden/gpt-sw3-1.6b': 'https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model',
'AI-Sweden/gpt-sw3-6.7b': 'https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model',
'AI-Sweden/gpt-sw3-20b': 'https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model',
}
}
SCREAMING_SNAKE_CASE :Optional[Any] = {
'AI-Sweden/gpt-sw3-126m': 2048,
'AI-Sweden/gpt-sw3-350m': 2048,
'AI-Sweden/gpt-sw3-1.6b': 2048,
'AI-Sweden/gpt-sw3-6.7b': 2048,
'AI-Sweden/gpt-sw3-20b': 2048,
}
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = ["input_ids", "attention_mask"]
def __init__( self : Optional[int] ,A : Optional[Any] ,A : Optional[int]=False ,A : int=False ,A : Union[str, Any]=False ,A : int=None ,A : Optional[Any]=None ,A : Union[str, Any]=None ,A : Optional[Any]=None ,A : Optional[Dict[str, Any]] = None ,**A : Tuple ,):
__A = {} if sp_model_kwargs is None else sp_model_kwargs
__A = kwargs.get("name_or_path" )
if name_or_path is None:
logger.warning(
"name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,"
" you are testing the model, this can safely be ignored" )
__A = "None"
# Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing
__A = "<|endoftext|>" if eos_token is None else eos_token
__A = "<unk>" if unk_token is None else unk_token
if "gpt-sw3-7b" in name_or_path:
__A = unk_token if pad_token is None else pad_token
__A = eos_token if bos_token is None else bos_token
else:
__A = "<pad>" if pad_token is None else pad_token
__A = "<s>" if bos_token is None else bos_token
super().__init__(
do_lower_case=A ,remove_space=A ,keep_accents=A ,bos_token=A ,eos_token=A ,unk_token=A ,pad_token=A ,sp_model_kwargs=self.sp_model_kwargs ,**A ,)
__A = do_lower_case
__A = remove_space
__A = keep_accents
__A = vocab_file
__A = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(A )
# Used for whitespace normalization in input texts
# fmt : off
__A = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", ""}
# fmt : on
# Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing
__A = re.compile(
f'''[{''.join(map(A ,list(range(0 ,9 ) ) + list(range(11 ,32 ) ) + list(range(1_27 ,1_60 ) ) + [1_60, 1_73, 82_03] ) )}]''' )
def __getstate__( self : Optional[int] ):
__A = self.__dict__.copy()
__A = None
return state
def __setstate__( self : Optional[Any] ,A : Union[str, Any] ):
__A = d
# for backward compatibility
if not hasattr(self ,"sp_model_kwargs" ):
__A = {}
__A = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
@property
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size
def UpperCamelCase_ ( self : List[str] ):
return len(self.sp_model )
def UpperCamelCase_ ( self : int ,A : str ):
__A = self.non_printing_characters_re.sub("" ,A )
# Normalize whitespaces
__A = "".join([char if char not in self.whitespaces else " " for char in text] )
# NFC Unicode normalization
__A = unicodedata.normalize("NFC" ,A )
return text
def UpperCamelCase_ ( self : Union[str, Any] ,A : str ,**A : Optional[int] ):
__A = self.preprocess_text(A )
return self.sp_model.encode(A ,out_type=A )
def UpperCamelCase_ ( self : Any ,A : str ):
return self.sp_model.PieceToId(A )
def UpperCamelCase_ ( self : Dict ,A : int ):
return self.sp_model.IdToPiece(A )
@staticmethod
def UpperCamelCase_ ( A : str ):
return out_string
def UpperCamelCase_ ( self : str ,A : List[str] ):
__A = []
__A = ""
__A = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
# TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(A ) + token
__A = True
__A = []
else:
current_sub_tokens.append(A )
__A = False
out_string += self.sp_model.decode(A )
return out_string
def UpperCamelCase_ ( self : str ):
__A = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def UpperCamelCase_ ( self : List[str] ,A : str ,A : Optional[str] = None ):
if not os.path.isdir(A ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__A = os.path.join(
A ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file ,A )
elif not os.path.isfile(self.vocab_file ):
with open(A ,"wb" ) as fi:
__A = self.sp_model.serialized_model_proto()
fi.write(A )
return (out_vocab_file,)
def UpperCamelCase_ ( self : Union[str, Any] ,A : Union[str, List[str]] ,A : Union[str, bool] = False ):
if isinstance(A ,A ):
__A = self.preprocess_text(A )
__A = self.sp_model.encode(A )
else:
__A = [self.preprocess_text(A ) for t in text]
__A = self.sp_model.encode(A )
if return_tensors is True or return_tensors == "pt":
__A = torch.tensor(A )
return token_ids
def UpperCamelCase_ ( self : List[Any] ,A : Union[int, List[int]] ):
return self.sp_model.decode(A )
def UpperCamelCase_ ( self : List[str] ,A : "Conversation" ):
__A = [f'''User: {text}''' if is_user else f'''Bot: {text}''' for is_user, text in conversation.iter_texts()]
__A = (
f'''{self.eos_token}{self.bos_token}''' + f'''{self.bos_token}'''.join(A ) + f'''{self.bos_token}Bot:'''
)
return self.encode(text=A )
| 15 |
import os
import re
import unicodedata
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import is_torch_available, logging
if is_torch_available():
import torch
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
SCREAMING_SNAKE_CASE :List[str] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :List[str] = {'vocab_file': 'spiece.model'}
SCREAMING_SNAKE_CASE :Dict = {
'vocab_file': {
'AI-Sweden/gpt-sw3-126m': 'https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model',
'AI-Sweden/gpt-sw3-350m': 'https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model',
'AI-Sweden/gpt-sw3-1.6b': 'https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model',
'AI-Sweden/gpt-sw3-6.7b': 'https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model',
'AI-Sweden/gpt-sw3-20b': 'https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model',
}
}
SCREAMING_SNAKE_CASE :Optional[Any] = {
'AI-Sweden/gpt-sw3-126m': 2048,
'AI-Sweden/gpt-sw3-350m': 2048,
'AI-Sweden/gpt-sw3-1.6b': 2048,
'AI-Sweden/gpt-sw3-6.7b': 2048,
'AI-Sweden/gpt-sw3-20b': 2048,
}
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = ["input_ids", "attention_mask"]
def __init__( self : Optional[int] ,A : Optional[Any] ,A : Optional[int]=False ,A : int=False ,A : Union[str, Any]=False ,A : int=None ,A : Optional[Any]=None ,A : Union[str, Any]=None ,A : Optional[Any]=None ,A : Optional[Dict[str, Any]] = None ,**A : Tuple ,):
__A = {} if sp_model_kwargs is None else sp_model_kwargs
__A = kwargs.get("name_or_path" )
if name_or_path is None:
logger.warning(
"name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,"
" you are testing the model, this can safely be ignored" )
__A = "None"
# Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing
__A = "<|endoftext|>" if eos_token is None else eos_token
__A = "<unk>" if unk_token is None else unk_token
if "gpt-sw3-7b" in name_or_path:
__A = unk_token if pad_token is None else pad_token
__A = eos_token if bos_token is None else bos_token
else:
__A = "<pad>" if pad_token is None else pad_token
__A = "<s>" if bos_token is None else bos_token
super().__init__(
do_lower_case=A ,remove_space=A ,keep_accents=A ,bos_token=A ,eos_token=A ,unk_token=A ,pad_token=A ,sp_model_kwargs=self.sp_model_kwargs ,**A ,)
__A = do_lower_case
__A = remove_space
__A = keep_accents
__A = vocab_file
__A = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(A )
# Used for whitespace normalization in input texts
# fmt : off
__A = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", ""}
# fmt : on
# Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing
__A = re.compile(
f'''[{''.join(map(A ,list(range(0 ,9 ) ) + list(range(11 ,32 ) ) + list(range(1_27 ,1_60 ) ) + [1_60, 1_73, 82_03] ) )}]''' )
def __getstate__( self : Optional[int] ):
__A = self.__dict__.copy()
__A = None
return state
def __setstate__( self : Optional[Any] ,A : Union[str, Any] ):
__A = d
# for backward compatibility
if not hasattr(self ,"sp_model_kwargs" ):
__A = {}
__A = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
@property
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size
def UpperCamelCase_ ( self : List[str] ):
return len(self.sp_model )
def UpperCamelCase_ ( self : int ,A : str ):
__A = self.non_printing_characters_re.sub("" ,A )
# Normalize whitespaces
__A = "".join([char if char not in self.whitespaces else " " for char in text] )
# NFC Unicode normalization
__A = unicodedata.normalize("NFC" ,A )
return text
def UpperCamelCase_ ( self : Union[str, Any] ,A : str ,**A : Optional[int] ):
__A = self.preprocess_text(A )
return self.sp_model.encode(A ,out_type=A )
def UpperCamelCase_ ( self : Any ,A : str ):
return self.sp_model.PieceToId(A )
def UpperCamelCase_ ( self : Dict ,A : int ):
return self.sp_model.IdToPiece(A )
@staticmethod
def UpperCamelCase_ ( A : str ):
return out_string
def UpperCamelCase_ ( self : str ,A : List[str] ):
__A = []
__A = ""
__A = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
# TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(A ) + token
__A = True
__A = []
else:
current_sub_tokens.append(A )
__A = False
out_string += self.sp_model.decode(A )
return out_string
def UpperCamelCase_ ( self : str ):
__A = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def UpperCamelCase_ ( self : List[str] ,A : str ,A : Optional[str] = None ):
if not os.path.isdir(A ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__A = os.path.join(
A ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file ,A )
elif not os.path.isfile(self.vocab_file ):
with open(A ,"wb" ) as fi:
__A = self.sp_model.serialized_model_proto()
fi.write(A )
return (out_vocab_file,)
def UpperCamelCase_ ( self : Union[str, Any] ,A : Union[str, List[str]] ,A : Union[str, bool] = False ):
if isinstance(A ,A ):
__A = self.preprocess_text(A )
__A = self.sp_model.encode(A )
else:
__A = [self.preprocess_text(A ) for t in text]
__A = self.sp_model.encode(A )
if return_tensors is True or return_tensors == "pt":
__A = torch.tensor(A )
return token_ids
def UpperCamelCase_ ( self : List[Any] ,A : Union[int, List[int]] ):
return self.sp_model.decode(A )
def UpperCamelCase_ ( self : List[str] ,A : "Conversation" ):
__A = [f'''User: {text}''' if is_user else f'''Bot: {text}''' for is_user, text in conversation.iter_texts()]
__A = (
f'''{self.eos_token}{self.bos_token}''' + f'''{self.bos_token}'''.join(A ) + f'''{self.bos_token}Bot:'''
)
return self.encode(text=A )
| 15 | 1 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
PNDMScheduler,
StableDiffusionLDMaDPipeline,
UNetaDConditionModel,
)
from diffusers.utils import nightly, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
enable_full_determinism()
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
snake_case_ = StableDiffusionLDMaDPipeline
snake_case_ = TEXT_TO_IMAGE_PARAMS
snake_case_ = TEXT_TO_IMAGE_BATCH_PARAMS
snake_case_ = TEXT_TO_IMAGE_IMAGE_PARAMS
def UpperCamelCase_ ( self : Optional[int] ):
torch.manual_seed(0 )
__A = UNetaDConditionModel(
block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") ,up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") ,cross_attention_dim=32 ,)
__A = DDIMScheduler(
beta_start=0.0_00_85 ,beta_end=0.0_12 ,beta_schedule="scaled_linear" ,clip_sample=A ,set_alpha_to_one=A ,)
torch.manual_seed(0 )
__A = AutoencoderKL(
block_out_channels=[32, 64] ,in_channels=6 ,out_channels=6 ,down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] ,up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] ,latent_channels=4 ,)
torch.manual_seed(0 )
__A = CLIPTextConfig(
bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=10_00 ,)
__A = CLIPTextModel(A )
__A = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
__A = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def UpperCamelCase_ ( self : Optional[Any] ,A : Any ,A : List[Any]=0 ):
if str(A ).startswith("mps" ):
__A = torch.manual_seed(A )
else:
__A = torch.Generator(device=A ).manual_seed(A )
__A = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def UpperCamelCase_ ( self : List[str] ):
__A = "cpu" # ensure determinism for the device-dependent torch.Generator
__A = self.get_dummy_components()
__A = StableDiffusionLDMaDPipeline(**A )
__A = ldmad_pipe.to(A )
ldmad_pipe.set_progress_bar_config(disable=A )
__A = self.get_dummy_inputs(A )
__A = ldmad_pipe(**A )
__A , __A = output.rgb, output.depth
__A = rgb[0, -3:, -3:, -1]
__A = depth[0, -3:, -1]
assert rgb.shape == (1, 64, 64, 3)
assert depth.shape == (1, 64, 64)
__A = np.array(
[0.37_33_81_76, 0.7_02_47, 0.74_20_31_93, 0.51_64_36_04, 0.58_25_67_93, 0.60_93_21_36, 0.4_18_10_95, 0.48_35_58_77, 0.46_53_52_62] )
__A = np.array([1_03.4_67_27, 85.81_20_04, 87.84_92_36] )
assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1E-2
assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1E-2
def UpperCamelCase_ ( self : Dict ):
__A = self.get_dummy_components()
__A = StableDiffusionLDMaDPipeline(**A )
__A = ldmad_pipe.to(A )
ldmad_pipe.set_progress_bar_config(disable=A )
__A = self.get_dummy_inputs(A )
__A = 3 * [inputs["prompt"]]
# forward
__A = ldmad_pipe(**A )
__A , __A = output.rgb, output.depth
__A = rgb_slice_a[0, -3:, -3:, -1]
__A = depth_slice_a[0, -3:, -1]
__A = self.get_dummy_inputs(A )
__A = 3 * [inputs.pop("prompt" )]
__A = ldmad_pipe.tokenizer(
A ,padding="max_length" ,max_length=ldmad_pipe.tokenizer.model_max_length ,truncation=A ,return_tensors="pt" ,)
__A = text_inputs["input_ids"].to(A )
__A = ldmad_pipe.text_encoder(A )[0]
__A = prompt_embeds
# forward
__A = ldmad_pipe(**A )
__A , __A = output.rgb, output.depth
__A = rgb_slice_a[0, -3:, -3:, -1]
__A = depth_slice_a[0, -3:, -1]
assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1E-4
assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1E-4
def UpperCamelCase_ ( self : Optional[int] ):
__A = "cpu" # ensure determinism for the device-dependent torch.Generator
__A = self.get_dummy_components()
__A = PNDMScheduler(skip_prk_steps=A )
__A = StableDiffusionLDMaDPipeline(**A )
__A = ldmad_pipe.to(A )
ldmad_pipe.set_progress_bar_config(disable=A )
__A = self.get_dummy_inputs(A )
__A = "french fries"
__A = ldmad_pipe(**A ,negative_prompt=A )
__A , __A = output.rgb, output.depth
__A = rgb[0, -3:, -3:, -1]
__A = depth[0, -3:, -1]
assert rgb.shape == (1, 64, 64, 3)
assert depth.shape == (1, 64, 64)
__A = np.array(
[0.3_70_44, 0.71_81_15_03, 0.7_22_32_51, 0.48_60_36_75, 0.5_63_83_91, 0.6_36_49_48, 0.42_83_37_04, 0.4_90_13_15, 0.47_92_62_17] )
__A = np.array([1_07.8_47_38, 84.6_28_02, 89.96_21_35] )
assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1E-2
assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1E-2
@slow
@require_torch_gpu
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : Any ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase_ ( self : Tuple ,A : Dict ,A : str="cpu" ,A : Dict=torch.floataa ,A : Optional[Any]=0 ):
__A = torch.Generator(device=A ).manual_seed(A )
__A = np.random.RandomState(A ).standard_normal((1, 4, 64, 64) )
__A = torch.from_numpy(A ).to(device=A ,dtype=A )
__A = {
"prompt": "a photograph of an astronaut riding a horse",
"latents": latents,
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 7.5,
"output_type": "numpy",
}
return inputs
def UpperCamelCase_ ( self : List[str] ):
__A = StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d" )
__A = ldmad_pipe.to(A )
ldmad_pipe.set_progress_bar_config(disable=A )
__A = self.get_inputs(A )
__A = ldmad_pipe(**A )
__A , __A = output.rgb, output.depth
__A = rgb[0, -3:, -3:, -1].flatten()
__A = rgb[0, -3:, -1].flatten()
assert rgb.shape == (1, 5_12, 5_12, 3)
assert depth.shape == (1, 5_12, 5_12)
__A = np.array(
[0.53_80_54_65, 0.56_70_73_05, 0.5_48_65_15, 0.57_01_22_36, 0.5_81_45_11, 0.56_25_34_87, 0.54_84_30_14, 0.55_09_22_63, 0.6_45_97_06] )
__A = np.array(
[0.9_26_37_81, 0.6_67_86_72, 0.5_48_65_15, 0.92_20_21_45, 0.67_83_11_35, 0.56_25_34_87, 0.9_24_16_94, 0.7_55_14_78, 0.6_45_97_06] )
assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3E-3
assert np.abs(depth_slice - expected_slice_depth ).max() < 3E-3
@nightly
@require_torch_gpu
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : List[str] ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase_ ( self : Union[str, Any] ,A : Any ,A : Optional[int]="cpu" ,A : List[str]=torch.floataa ,A : Optional[int]=0 ):
__A = torch.Generator(device=A ).manual_seed(A )
__A = np.random.RandomState(A ).standard_normal((1, 4, 64, 64) )
__A = torch.from_numpy(A ).to(device=A ,dtype=A )
__A = {
"prompt": "a photograph of an astronaut riding a horse",
"latents": latents,
"generator": generator,
"num_inference_steps": 50,
"guidance_scale": 7.5,
"output_type": "numpy",
}
return inputs
def UpperCamelCase_ ( self : Optional[int] ):
__A = StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d" ).to(A )
ldmad_pipe.set_progress_bar_config(disable=A )
__A = self.get_inputs(A )
__A = ldmad_pipe(**A )
__A , __A = output.rgb, output.depth
__A = 0.49_55_86
__A = 0.33_79_55_15
__A = 1_12.4_85_18
__A = 98.48_97_46
assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3
assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3
assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3
assert np.abs(expected_depth_std - depth.std() ) < 1E-3
def UpperCamelCase_ ( self : Optional[Any] ):
__A = StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d-4c" ).to(A )
ldmad_pipe.set_progress_bar_config(disable=A )
__A = self.get_inputs(A )
__A = ldmad_pipe(**A )
__A , __A = output.rgb, output.depth
__A = 0.4_19_41_27
__A = 0.35_37_55_86
__A = 0.5_63_85_02
__A = 0.34_68_61_03
assert rgb.shape == (1, 5_12, 5_12, 3)
assert depth.shape == (1, 5_12, 5_12, 1)
assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3
assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3
assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3
assert np.abs(expected_depth_std - depth.std() ) < 1E-3
| 15 |
import numpy as np
def UpperCAmelCase ( a_ , a_ , a_ = 1E-12 , a_ = 1_0_0 , ) -> tuple[float, np.ndarray]:
"""simple docstring"""
assert np.shape(a_ )[0] == np.shape(a_ )[1]
# Ensure proper dimensionality.
assert np.shape(a_ )[0] == np.shape(a_ )[0]
# Ensure inputs are either both complex or both real
assert np.iscomplexobj(a_ ) == np.iscomplexobj(a_ )
__A = np.iscomplexobj(a_ )
if is_complex:
# Ensure complex input_matrix is Hermitian
assert np.array_equal(a_ , input_matrix.conj().T )
# Set convergence to False. Will define convergence when we exceed max_iterations
# or when we have small changes from one iteration to next.
__A = False
__A = 0
__A = 0
__A = 1E12
while not convergence:
# Multiple matrix by the vector.
__A = np.dot(a_ , a_ )
# Normalize the resulting output vector.
__A = w / np.linalg.norm(a_ )
# Find rayleigh quotient
# (faster than usual b/c we know vector is normalized already)
__A = vector.conj().T if is_complex else vector.T
__A = np.dot(a_ , np.dot(a_ , a_ ) )
# Check convergence.
__A = np.abs(lambda_ - lambda_previous ) / lambda_
iterations += 1
if error <= error_tol or iterations >= max_iterations:
__A = True
__A = lambda_
if is_complex:
__A = np.real(lambda_ )
return lambda_, vector
def UpperCAmelCase ( ) -> None:
"""simple docstring"""
__A = np.array([[4_1, 4, 2_0], [4, 2_6, 3_0], [2_0, 3_0, 5_0]] )
__A = np.array([4_1, 4, 2_0] )
__A = real_input_matrix.astype(np.complexaaa )
__A = np.triu(1J * complex_input_matrix , 1 )
complex_input_matrix += imag_matrix
complex_input_matrix += -1 * imag_matrix.T
__A = np.array([4_1, 4, 2_0] ).astype(np.complexaaa )
for problem_type in ["real", "complex"]:
if problem_type == "real":
__A = real_input_matrix
__A = real_vector
elif problem_type == "complex":
__A = complex_input_matrix
__A = complex_vector
# Our implementation.
__A , __A = power_iteration(a_ , a_ )
# Numpy implementation.
# Get eigenvalues and eigenvectors using built-in numpy
# eigh (eigh used for symmetric or hermetian matrices).
__A , __A = np.linalg.eigh(a_ )
# Last eigenvalue is the maximum one.
__A = eigen_values[-1]
# Last column in this matrix is eigenvector corresponding to largest eigenvalue.
__A = eigen_vectors[:, -1]
# Check our implementation and numpy gives close answers.
assert np.abs(eigen_value - eigen_value_max ) <= 1E-6
# Take absolute values element wise of each eigenvector.
# as they are only unique to a minus sign.
assert np.linalg.norm(np.abs(a_ ) - np.abs(a_ ) ) <= 1E-6
if __name__ == "__main__":
import doctest
doctest.testmod()
test_power_iteration()
| 15 | 1 |
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
__A = [0] * len(a_ )
__A = []
__A = [1] * len(a_ )
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(a_ ) ):
if indegree[i] == 0:
queue.append(a_ )
while queue:
__A = queue.pop(0 )
for x in graph[vertex]:
indegree[x] -= 1
if long_dist[vertex] + 1 > long_dist[x]:
__A = long_dist[vertex] + 1
if indegree[x] == 0:
queue.append(a_ )
print(max(a_ ) )
# Adjacency list of Graph
SCREAMING_SNAKE_CASE :List[Any] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []}
longest_distance(graph)
| 15 |
from typing import Optional, Tuple, Union
import tensorflow as tf
from ...activations_tf import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_tf_outputs import (
TFBaseModelOutputWithNoAttention,
TFBaseModelOutputWithPoolingAndNoAttention,
TFSequenceClassifierOutput,
)
from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs
from ...tf_utils import shape_list
from ...utils import logging
from .configuration_regnet import RegNetConfig
SCREAMING_SNAKE_CASE :str = logging.get_logger(__name__)
# General docstring
SCREAMING_SNAKE_CASE :str = 'RegNetConfig'
# Base docstring
SCREAMING_SNAKE_CASE :List[str] = 'facebook/regnet-y-040'
SCREAMING_SNAKE_CASE :Union[str, Any] = [1, 1088, 7, 7]
# Image classification docstring
SCREAMING_SNAKE_CASE :Optional[int] = 'facebook/regnet-y-040'
SCREAMING_SNAKE_CASE :Any = 'tabby, tabby cat'
SCREAMING_SNAKE_CASE :Optional[int] = [
'facebook/regnet-y-040',
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : Tuple ,A : int ,A : int = 3 ,A : int = 1 ,A : int = 1 ,A : Optional[str] = "relu" ,**A : Dict ,):
super().__init__(**A )
# The padding and conv has been verified in
# https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb
__A = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 )
__A = tf.keras.layers.ConvaD(
filters=A ,kernel_size=A ,strides=A ,padding="VALID" ,groups=A ,use_bias=A ,name="convolution" ,)
__A = tf.keras.layers.BatchNormalization(epsilon=1E-5 ,momentum=0.9 ,name="normalization" )
__A = ACTaFN[activation] if activation is not None else tf.identity
def UpperCamelCase_ ( self : List[Any] ,A : Any ):
__A = self.convolution(self.padding(A ) )
__A = self.normalization(A )
__A = self.activation(A )
return hidden_state
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : Tuple ,A : RegNetConfig ,**A : str ):
super().__init__(**A )
__A = config.num_channels
__A = TFRegNetConvLayer(
out_channels=config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ,name="embedder" ,)
def UpperCamelCase_ ( self : Tuple ,A : Optional[Any] ):
__A = shape_list(A )[1]
if tf.executing_eagerly() and num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration." )
# When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format.
# So change the input format from `NCHW` to `NHWC`.
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
__A = tf.transpose(A ,perm=(0, 2, 3, 1) )
__A = self.embedder(A )
return hidden_state
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : Optional[int] ,A : int ,A : int = 2 ,**A : Tuple ):
super().__init__(**A )
__A = tf.keras.layers.ConvaD(
filters=A ,kernel_size=1 ,strides=A ,use_bias=A ,name="convolution" )
__A = tf.keras.layers.BatchNormalization(epsilon=1E-5 ,momentum=0.9 ,name="normalization" )
def UpperCamelCase_ ( self : Union[str, Any] ,A : tf.Tensor ,A : bool = False ):
return self.normalization(self.convolution(A ) ,training=A )
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : Dict ,A : int ,A : int ,**A : str ):
super().__init__(**A )
__A = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A ,name="pooler" )
__A = [
tf.keras.layers.ConvaD(filters=A ,kernel_size=1 ,activation="relu" ,name="attention.0" ),
tf.keras.layers.ConvaD(filters=A ,kernel_size=1 ,activation="sigmoid" ,name="attention.2" ),
]
def UpperCamelCase_ ( self : Dict ,A : List[Any] ):
# [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels]
__A = self.pooler(A )
for layer_module in self.attention:
__A = layer_module(A )
__A = hidden_state * pooled
return hidden_state
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : List[str] ,A : RegNetConfig ,A : int ,A : int ,A : int = 1 ,**A : Optional[int] ):
super().__init__(**A )
__A = in_channels != out_channels or stride != 1
__A = max(1 ,out_channels // config.groups_width )
__A = (
TFRegNetShortCut(A ,stride=A ,name="shortcut" )
if should_apply_shortcut
else tf.keras.layers.Activation("linear" ,name="shortcut" )
)
# `self.layers` instead of `self.layer` because that is a reserved argument.
__A = [
TFRegNetConvLayer(A ,kernel_size=1 ,activation=config.hidden_act ,name="layer.0" ),
TFRegNetConvLayer(
A ,stride=A ,groups=A ,activation=config.hidden_act ,name="layer.1" ),
TFRegNetConvLayer(A ,kernel_size=1 ,activation=A ,name="layer.2" ),
]
__A = ACTaFN[config.hidden_act]
def UpperCamelCase_ ( self : int ,A : Optional[int] ):
__A = hidden_state
for layer_module in self.layers:
__A = layer_module(A )
__A = self.shortcut(A )
hidden_state += residual
__A = self.activation(A )
return hidden_state
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : List[Any] ,A : RegNetConfig ,A : int ,A : int ,A : int = 1 ,**A : str ):
super().__init__(**A )
__A = in_channels != out_channels or stride != 1
__A = max(1 ,out_channels // config.groups_width )
__A = (
TFRegNetShortCut(A ,stride=A ,name="shortcut" )
if should_apply_shortcut
else tf.keras.layers.Activation("linear" ,name="shortcut" )
)
__A = [
TFRegNetConvLayer(A ,kernel_size=1 ,activation=config.hidden_act ,name="layer.0" ),
TFRegNetConvLayer(
A ,stride=A ,groups=A ,activation=config.hidden_act ,name="layer.1" ),
TFRegNetSELayer(A ,reduced_channels=int(round(in_channels / 4 ) ) ,name="layer.2" ),
TFRegNetConvLayer(A ,kernel_size=1 ,activation=A ,name="layer.3" ),
]
__A = ACTaFN[config.hidden_act]
def UpperCamelCase_ ( self : Dict ,A : Any ):
__A = hidden_state
for layer_module in self.layers:
__A = layer_module(A )
__A = self.shortcut(A )
hidden_state += residual
__A = self.activation(A )
return hidden_state
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : List[str] ,A : RegNetConfig ,A : int ,A : int ,A : int = 2 ,A : int = 2 ,**A : Optional[int] ):
super().__init__(**A )
__A = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer
__A = [
# downsampling is done in the first layer with stride of 2
layer(A ,A ,A ,stride=A ,name="layers.0" ),
*[layer(A ,A ,A ,name=f'''layers.{i+1}''' ) for i in range(depth - 1 )],
]
def UpperCamelCase_ ( self : Any ,A : List[str] ):
for layer_module in self.layers:
__A = layer_module(A )
return hidden_state
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : Any ,A : RegNetConfig ,**A : List[str] ):
super().__init__(**A )
__A = []
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
TFRegNetStage(
A ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,name="stages.0" ,) )
__A = zip(config.hidden_sizes ,config.hidden_sizes[1:] )
for i, ((in_channels, out_channels), depth) in enumerate(zip(A ,config.depths[1:] ) ):
self.stages.append(TFRegNetStage(A ,A ,A ,depth=A ,name=f'''stages.{i+1}''' ) )
def UpperCamelCase_ ( self : List[str] ,A : tf.Tensor ,A : bool = False ,A : bool = True ):
__A = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
__A = hidden_states + (hidden_state,)
__A = stage_module(A )
if output_hidden_states:
__A = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return TFBaseModelOutputWithNoAttention(last_hidden_state=A ,hidden_states=A )
@keras_serializable
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
snake_case_ = RegNetConfig
def __init__( self : int ,A : Optional[int] ,**A : Dict ):
super().__init__(**A )
__A = config
__A = TFRegNetEmbeddings(A ,name="embedder" )
__A = TFRegNetEncoder(A ,name="encoder" )
__A = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A ,name="pooler" )
@unpack_inputs
def UpperCamelCase_ ( self : Tuple ,A : tf.Tensor ,A : Optional[bool] = None ,A : Optional[bool] = None ,A : bool = False ,):
__A = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__A = return_dict if return_dict is not None else self.config.use_return_dict
__A = self.embedder(A ,training=A )
__A = self.encoder(
A ,output_hidden_states=A ,return_dict=A ,training=A )
__A = encoder_outputs[0]
__A = self.pooler(A )
# Change to NCHW output format have uniformity in the modules
__A = tf.transpose(A ,perm=(0, 3, 1, 2) )
__A = tf.transpose(A ,perm=(0, 3, 1, 2) )
# Change the other hidden state outputs to NCHW as well
if output_hidden_states:
__A = tuple([tf.transpose(A ,perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=A ,pooler_output=A ,hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states ,)
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = RegNetConfig
snake_case_ = "regnet"
snake_case_ = "pixel_values"
@property
def UpperCamelCase_ ( self : Optional[Any] ):
return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) ,dtype=tf.floataa )}
SCREAMING_SNAKE_CASE :Dict = R'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n'
SCREAMING_SNAKE_CASE :Dict = R'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n'
@add_start_docstrings(
"The bare RegNet model outputting raw features without any specific head on top." , __SCREAMING_SNAKE_CASE , )
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : List[Any] ,A : RegNetConfig ,*A : List[Any] ,**A : str ):
super().__init__(A ,*A ,**A )
__A = TFRegNetMainLayer(A ,name="regnet" )
@unpack_inputs
@add_start_docstrings_to_model_forward(A )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC ,output_type=A ,config_class=_CONFIG_FOR_DOC ,modality="vision" ,expected_output=_EXPECTED_OUTPUT_SHAPE ,)
def UpperCamelCase_ ( self : Tuple ,A : tf.Tensor ,A : Optional[bool] = None ,A : Optional[bool] = None ,A : int=False ,):
__A = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__A = return_dict if return_dict is not None else self.config.use_return_dict
__A = self.regnet(
pixel_values=A ,output_hidden_states=A ,return_dict=A ,training=A ,)
if not return_dict:
return (outputs[0],) + outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=outputs.last_hidden_state ,pooler_output=outputs.pooler_output ,hidden_states=outputs.hidden_states ,)
@add_start_docstrings(
"\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , __SCREAMING_SNAKE_CASE , )
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : Optional[int] ,A : RegNetConfig ,*A : str ,**A : Tuple ):
super().__init__(A ,*A ,**A )
__A = config.num_labels
__A = TFRegNetMainLayer(A ,name="regnet" )
# classification head
__A = [
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(config.num_labels ,name="classifier.1" ) if config.num_labels > 0 else tf.identity,
]
@unpack_inputs
@add_start_docstrings_to_model_forward(A )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=A ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,)
def UpperCamelCase_ ( self : List[str] ,A : tf.Tensor = None ,A : tf.Tensor = None ,A : bool = None ,A : bool = None ,A : Union[str, Any]=False ,):
__A = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__A = return_dict if return_dict is not None else self.config.use_return_dict
__A = self.regnet(
A ,output_hidden_states=A ,return_dict=A ,training=A )
__A = outputs.pooler_output if return_dict else outputs[1]
__A = self.classifier[0](A )
__A = self.classifier[1](A )
__A = None if labels is None else self.hf_compute_loss(labels=A ,logits=A )
if not return_dict:
__A = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(loss=A ,logits=A ,hidden_states=outputs.hidden_states )
| 15 | 1 |
import unittest
from accelerate import debug_launcher
from accelerate.test_utils import require_cpu, test_ops, test_script
@require_cpu
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : Optional[int] ):
debug_launcher(test_script.main )
def UpperCamelCase_ ( self : Optional[Any] ):
debug_launcher(test_ops.main )
| 15 |
import math
def UpperCAmelCase ( a_ , a_ = 0 , a_ = 0 ) -> list:
"""simple docstring"""
__A = end or len(a_ )
for i in range(a_ , a_ ):
__A = i
__A = array[i]
while temp_index != start and temp_index_value < array[temp_index - 1]:
__A = array[temp_index - 1]
temp_index -= 1
__A = temp_index_value
return array
def UpperCAmelCase ( a_ , a_ , a_ ) -> None: # Max Heap
"""simple docstring"""
__A = index
__A = 2 * index + 1 # Left Node
__A = 2 * index + 2 # Right Node
if left_index < heap_size and array[largest] < array[left_index]:
__A = left_index
if right_index < heap_size and array[largest] < array[right_index]:
__A = right_index
if largest != index:
__A , __A = array[largest], array[index]
heapify(a_ , a_ , a_ )
def UpperCAmelCase ( a_ ) -> list:
"""simple docstring"""
__A = len(a_ )
for i in range(n // 2 , -1 , -1 ):
heapify(a_ , a_ , a_ )
for i in range(n - 1 , 0 , -1 ):
__A , __A = array[0], array[i]
heapify(a_ , 0 , a_ )
return array
def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> int:
"""simple docstring"""
if (array[first_index] > array[middle_index]) != (
array[first_index] > array[last_index]
):
return array[first_index]
elif (array[middle_index] > array[first_index]) != (
array[middle_index] > array[last_index]
):
return array[middle_index]
else:
return array[last_index]
def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> int:
"""simple docstring"""
__A = low
__A = high
while True:
while array[i] < pivot:
i += 1
j -= 1
while pivot < array[j]:
j -= 1
if i >= j:
return i
__A , __A = array[j], array[i]
i += 1
def UpperCAmelCase ( a_ ) -> list:
"""simple docstring"""
if len(a_ ) == 0:
return array
__A = 2 * math.ceil(math.loga(len(a_ ) ) )
__A = 1_6
return intro_sort(a_ , 0 , len(a_ ) , a_ , a_ )
def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ ) -> list:
"""simple docstring"""
while end - start > size_threshold:
if max_depth == 0:
return heap_sort(a_ )
max_depth -= 1
__A = median_of_a(a_ , a_ , start + ((end - start) // 2) + 1 , end - 1 )
__A = partition(a_ , a_ , a_ , a_ )
intro_sort(a_ , a_ , a_ , a_ , a_ )
__A = p
return insertion_sort(a_ , a_ , a_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
SCREAMING_SNAKE_CASE :List[Any] = input('Enter numbers separated by a comma : ').strip()
SCREAMING_SNAKE_CASE :str = [float(item) for item in user_input.split(',')]
print(sort(unsorted))
| 15 | 1 |
# Lint as: python3
import os
import re
import urllib.parse
from pathlib import Path
from typing import Callable, List, Optional, Union
from zipfile import ZipFile
from ..utils.file_utils import cached_path, hf_github_url
from ..utils.logging import get_logger
from ..utils.version import Version
SCREAMING_SNAKE_CASE :Union[str, Any] = get_logger(__name__)
class UpperCAmelCase :
'''simple docstring'''
snake_case_ = "dummy_data"
snake_case_ = "datasets"
snake_case_ = False
def __init__( self : Optional[int] ,A : str ,A : str ,A : Union[Version, str] ,A : Optional[str] = None ,A : bool = False ,A : bool = True ,A : Optional[List[Callable]] = None ,):
__A = 0
__A = dataset_name
__A = cache_dir
__A = use_local_dummy_data
__A = config
# download_callbacks take a single url as input
__A = download_callbacks or []
# if False, it doesn't load existing files and it returns the paths of the dummy files relative
# to the dummy_data zip file root
__A = load_existing_dummy_data
# TODO(PVP, QL) might need to make this more general
__A = str(A )
# to be downloaded
__A = None
__A = None
@property
def UpperCamelCase_ ( self : Union[str, Any] ):
if self._dummy_file is None:
__A = self.download_dummy_data()
return self._dummy_file
@property
def UpperCamelCase_ ( self : Optional[Any] ):
if self.config is not None:
# structure is dummy / config_name / version_name
return os.path.join("dummy" ,self.config.name ,self.version_name )
# structure is dummy / version_name
return os.path.join("dummy" ,self.version_name )
@property
def UpperCamelCase_ ( self : List[Any] ):
return os.path.join(self.dummy_data_folder ,"dummy_data.zip" )
def UpperCamelCase_ ( self : Tuple ):
__A = (
self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data
)
__A = cached_path(
A ,cache_dir=self.cache_dir ,extract_compressed_file=A ,force_extract=A )
return os.path.join(A ,self.dummy_file_name )
@property
def UpperCamelCase_ ( self : str ):
return os.path.join(self.datasets_scripts_dir ,self.dataset_name ,self.dummy_zip_file )
@property
def UpperCamelCase_ ( self : Any ):
if self._bucket_url is None:
__A = hf_github_url(self.dataset_name ,self.dummy_zip_file.replace(os.sep ,"/" ) )
return self._bucket_url
@property
def UpperCamelCase_ ( self : Tuple ):
# return full path if its a dir
if os.path.isdir(self.dummy_file ):
return self.dummy_file
# else cut off path to file -> example `xsum`.
return "/".join(self.dummy_file.replace(os.sep ,"/" ).split("/" )[:-1] )
def UpperCamelCase_ ( self : List[str] ,A : List[Any] ,*A : Dict ):
if self.load_existing_dummy_data:
# dummy data is downloaded and tested
__A = self.dummy_file
else:
# dummy data cannot be downloaded and only the path to dummy file is returned
__A = self.dummy_file_name
# special case when data_url is a dict
if isinstance(A ,A ):
return self.create_dummy_data_dict(A ,A )
elif isinstance(A ,(list, tuple) ):
return self.create_dummy_data_list(A ,A )
else:
return self.create_dummy_data_single(A ,A )
def UpperCamelCase_ ( self : str ,A : List[Any] ,*A : List[Any] ):
return self.download_and_extract(A )
def UpperCamelCase_ ( self : List[str] ,A : List[str] ,A : Tuple ):
return self.download_and_extract(A )
def UpperCamelCase_ ( self : Any ,A : Any ,*A : Optional[Any] ,**A : List[str] ):
return path
def UpperCamelCase_ ( self : str ):
return {}
def UpperCamelCase_ ( self : int ,A : int ,A : Tuple ):
__A = {}
for key, single_urls in data_url.items():
for download_callback in self.download_callbacks:
if isinstance(A ,A ):
for single_url in single_urls:
download_callback(A )
else:
__A = single_urls
download_callback(A )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
if isinstance(A ,A ):
__A = [os.path.join(A ,urllib.parse.quote_plus(Path(A ).name ) ) for x in single_urls]
else:
__A = single_urls
__A = os.path.join(A ,urllib.parse.quote_plus(Path(A ).name ) )
__A = value
# make sure that values are unique
if all(isinstance(A ,A ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len(
dummy_data_dict.values() ):
# append key to value to make its name unique
__A = {key: value + key for key, value in dummy_data_dict.items()}
return dummy_data_dict
def UpperCamelCase_ ( self : Union[str, Any] ,A : str ,A : str ):
__A = []
# trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one
__A = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" ,A ) ) for url in data_url )
__A = all(
url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url )
if data_url and (is_tf_records or is_pubmed_records):
__A = [data_url[0]] * len(A )
for single_url in data_url:
for download_callback in self.download_callbacks:
download_callback(A )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
__A = os.path.join(A ,urllib.parse.quote_plus(single_url.split("/" )[-1] ) )
dummy_data_list.append(A )
return dummy_data_list
def UpperCamelCase_ ( self : str ,A : List[Any] ,A : Optional[Any] ):
for download_callback in self.download_callbacks:
download_callback(A )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
__A = os.path.join(A ,urllib.parse.quote_plus(data_url.split("/" )[-1] ) )
if os.path.exists(A ) or not self.load_existing_dummy_data:
return value
else:
# Backward compatibility, maybe deprecate at one point.
# For many datasets with single url calls to dl_manager.download_and_extract,
# the dummy_data.zip file is actually the zipped downloaded file
# while now we expected the dummy_data.zip file to be a directory containing
# the downloaded file.
return path_to_dummy_data
def UpperCamelCase_ ( self : int ):
pass
def UpperCamelCase_ ( self : Dict ):
pass
def UpperCamelCase_ ( self : Optional[Any] ,A : List[Any] ):
def _iter_archive_members(A : Optional[Any] ):
# this preserves the order of the members inside the ZIP archive
__A = Path(self.dummy_file ).parent
__A = path.relative_to(A )
with ZipFile(self.local_path_to_dummy_data ) as zip_file:
__A = zip_file.namelist()
for member in members:
if member.startswith(relative_path.as_posix() ):
yield dummy_parent_path.joinpath(A )
__A = Path(A )
__A = _iter_archive_members(A ) if self.use_local_dummy_data else path.rglob("*" )
for file_path in file_paths:
if file_path.is_file() and not file_path.name.startswith((".", "__") ):
yield file_path.relative_to(A ).as_posix(), file_path.open("rb" )
def UpperCamelCase_ ( self : List[Any] ,A : Any ):
if not isinstance(A ,A ):
__A = [paths]
for path in paths:
if os.path.isfile(A ):
if os.path.basename(A ).startswith((".", "__") ):
return
yield path
else:
for dirpath, dirnames, filenames in os.walk(A ):
if os.path.basename(A ).startswith((".", "__") ):
continue
dirnames.sort()
for filename in sorted(A ):
if filename.startswith((".", "__") ):
continue
yield os.path.join(A ,A )
| 15 |
import dataclasses
import json
import sys
import types
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError
from copy import copy
from enum import Enum
from inspect import isclass
from pathlib import Path
from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints
import yaml
SCREAMING_SNAKE_CASE :Optional[int] = NewType('DataClass', Any)
SCREAMING_SNAKE_CASE :int = NewType('DataClassType', Any)
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
if isinstance(a_ , a_ ):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise ArgumentTypeError(
F'''Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).''' )
def UpperCAmelCase ( a_ ) -> Callable[[str], Any]:
"""simple docstring"""
__A = {str(a_ ): choice for choice in choices}
return lambda a_ : str_to_choice.get(a_ , a_ )
def UpperCAmelCase ( *,
a_ = None , a_ = None , a_ = dataclasses.MISSING , a_ = dataclasses.MISSING , a_ = None , **a_ , ) -> dataclasses.Field:
"""simple docstring"""
if metadata is None:
# Important, don't use as default param in function signature because dict is mutable and shared across function calls
__A = {}
if aliases is not None:
__A = aliases
if help is not None:
__A = help
return dataclasses.field(metadata=a_ , default=a_ , default_factory=a_ , **a_ )
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = 42
def __init__( self : Union[str, Any] ,A : Union[DataClassType, Iterable[DataClassType]] ,**A : List[Any] ):
# To make the default appear when using --help
if "formatter_class" not in kwargs:
__A = ArgumentDefaultsHelpFormatter
super().__init__(**A )
if dataclasses.is_dataclass(A ):
__A = [dataclass_types]
__A = list(A )
for dtype in self.dataclass_types:
self._add_dataclass_arguments(A )
@staticmethod
def UpperCamelCase_ ( A : ArgumentParser ,A : dataclasses.Field ):
__A = f'''--{field.name}'''
__A = field.metadata.copy()
# field.metadata is not used at all by Data Classes,
# it is provided as a third-party extension mechanism.
if isinstance(field.type ,A ):
raise RuntimeError(
"Unresolved type detected, which should have been done with the help of "
"`typing.get_type_hints` method by default" )
__A = kwargs.pop("aliases" ,[] )
if isinstance(A ,A ):
__A = [aliases]
__A = getattr(field.type ,"__origin__" ,field.type )
if origin_type is Union or (hasattr(A ,"UnionType" ) and isinstance(A ,types.UnionType )):
if str not in field.type.__args__ and (
len(field.type.__args__ ) != 2 or type(A ) not in field.type.__args__
):
raise ValueError(
"Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because"
" the argument parser only supports one type per argument."
f''' Problem encountered in field \'{field.name}\'.''' )
if type(A ) not in field.type.__args__:
# filter `str` in Union
__A = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1]
__A = getattr(field.type ,"__origin__" ,field.type )
elif bool not in field.type.__args__:
# filter `NoneType` in Union (except for `Union[bool, NoneType]`)
__A = (
field.type.__args__[0] if isinstance(A ,field.type.__args__[1] ) else field.type.__args__[1]
)
__A = getattr(field.type ,"__origin__" ,field.type )
# A variable to store kwargs for a boolean field, if needed
# so that we can init a `no_*` complement argument (see below)
__A = {}
if origin_type is Literal or (isinstance(field.type ,A ) and issubclass(field.type ,A )):
if origin_type is Literal:
__A = field.type.__args__
else:
__A = [x.value for x in field.type]
__A = make_choice_type_function(kwargs["choices"] )
if field.default is not dataclasses.MISSING:
__A = field.default
else:
__A = True
elif field.type is bool or field.type == Optional[bool]:
# Copy the currect kwargs to use to instantiate a `no_*` complement argument below.
# We do not initialize it here because the `no_*` alternative must be instantiated after the real argument
__A = copy(A )
# Hack because type=bool in argparse does not behave as we want.
__A = string_to_bool
if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING):
# Default value is False if we have no default when of type bool.
__A = False if field.default is dataclasses.MISSING else field.default
# This is the value that will get picked if we don't include --field_name in any way
__A = default
# This tells argparse we accept 0 or 1 value after --field_name
__A = "?"
# This is the value that will get picked if we do --field_name (without value)
__A = True
elif isclass(A ) and issubclass(A ,A ):
__A = field.type.__args__[0]
__A = "+"
if field.default_factory is not dataclasses.MISSING:
__A = field.default_factory()
elif field.default is dataclasses.MISSING:
__A = True
else:
__A = field.type
if field.default is not dataclasses.MISSING:
__A = field.default
elif field.default_factory is not dataclasses.MISSING:
__A = field.default_factory()
else:
__A = True
parser.add_argument(A ,*A ,**A )
# Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added.
# Order is important for arguments with the same destination!
# We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down
# here and we do not need those changes/additional keys.
if field.default is True and (field.type is bool or field.type == Optional[bool]):
__A = False
parser.add_argument(f'''--no_{field.name}''' ,action="store_false" ,dest=field.name ,**A )
def UpperCamelCase_ ( self : Union[str, Any] ,A : DataClassType ):
if hasattr(A ,"_argument_group_name" ):
__A = self.add_argument_group(dtype._argument_group_name )
else:
__A = self
try:
__A = get_type_hints(A )
except NameError:
raise RuntimeError(
f'''Type resolution failed for {dtype}. Try declaring the class in global scope or '''
"removing line of `from __future__ import annotations` which opts in Postponed "
"Evaluation of Annotations (PEP 563)" )
except TypeError as ex:
# Remove this block when we drop Python 3.9 support
if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(A ):
__A = ".".join(map(A ,sys.version_info[:3] ) )
raise RuntimeError(
f'''Type resolution failed for {dtype} on Python {python_version}. Try removing '''
"line of `from __future__ import annotations` which opts in union types as "
"`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To "
"support Python versions that lower than 3.10, you need to use "
"`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of "
"`X | None`." ) from ex
raise
for field in dataclasses.fields(A ):
if not field.init:
continue
__A = type_hints[field.name]
self._parse_dataclass_field(A ,A )
def UpperCamelCase_ ( self : Union[str, Any] ,A : List[Any]=None ,A : List[Any]=False ,A : Optional[Any]=True ,A : Union[str, Any]=None ,A : Union[str, Any]=None ,):
if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )):
__A = []
if args_filename:
args_files.append(Path(A ) )
elif look_for_args_file and len(sys.argv ):
args_files.append(Path(sys.argv[0] ).with_suffix(".args" ) )
# args files specified via command line flag should overwrite default args files so we add them last
if args_file_flag:
# Create special parser just to extract the args_file_flag values
__A = ArgumentParser()
args_file_parser.add_argument(A ,type=A ,action="append" )
# Use only remaining args for further parsing (remove the args_file_flag)
__A , __A = args_file_parser.parse_known_args(args=A )
__A = vars(A ).get(args_file_flag.lstrip("-" ) ,A )
if cmd_args_file_paths:
args_files.extend([Path(A ) for p in cmd_args_file_paths] )
__A = []
for args_file in args_files:
if args_file.exists():
file_args += args_file.read_text().split()
# in case of duplicate arguments the last one has precedence
# args specified via the command line should overwrite args from files, so we add them last
__A = file_args + args if args is not None else file_args + sys.argv[1:]
__A , __A = self.parse_known_args(args=A )
__A = []
for dtype in self.dataclass_types:
__A = {f.name for f in dataclasses.fields(A ) if f.init}
__A = {k: v for k, v in vars(A ).items() if k in keys}
for k in keys:
delattr(A ,A )
__A = dtype(**A )
outputs.append(A )
if len(namespace.__dict__ ) > 0:
# additional namespace.
outputs.append(A )
if return_remaining_strings:
return (*outputs, remaining_args)
else:
if remaining_args:
raise ValueError(f'''Some specified arguments are not used by the HfArgumentParser: {remaining_args}''' )
return (*outputs,)
def UpperCamelCase_ ( self : Dict ,A : Dict[str, Any] ,A : bool = False ):
__A = set(args.keys() )
__A = []
for dtype in self.dataclass_types:
__A = {f.name for f in dataclasses.fields(A ) if f.init}
__A = {k: v for k, v in args.items() if k in keys}
unused_keys.difference_update(inputs.keys() )
__A = dtype(**A )
outputs.append(A )
if not allow_extra_keys and unused_keys:
raise ValueError(f'''Some keys are not used by the HfArgumentParser: {sorted(A )}''' )
return tuple(A )
def UpperCamelCase_ ( self : List[str] ,A : str ,A : bool = False ):
with open(Path(A ) ,encoding="utf-8" ) as open_json_file:
__A = json.loads(open_json_file.read() )
__A = self.parse_dict(A ,allow_extra_keys=A )
return tuple(A )
def UpperCamelCase_ ( self : int ,A : str ,A : bool = False ):
__A = self.parse_dict(yaml.safe_load(Path(A ).read_text() ) ,allow_extra_keys=A )
return tuple(A )
| 15 | 1 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE :Tuple = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :str = {
'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json',
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = "sew-d"
def __init__( self : List[str] ,A : Dict=32 ,A : Optional[int]=7_68 ,A : Dict=12 ,A : Union[str, Any]=12 ,A : Any=30_72 ,A : List[str]=2 ,A : List[str]=5_12 ,A : str=2_56 ,A : int=True ,A : Any=True ,A : Tuple=("p2c", "c2p") ,A : str="layer_norm" ,A : List[str]="gelu_python" ,A : Union[str, Any]=0.1 ,A : Optional[Any]=0.1 ,A : Dict=0.1 ,A : Optional[int]=0.0 ,A : List[str]=0.1 ,A : int=0.02 ,A : Any=1E-7 ,A : List[Any]=1E-5 ,A : str="group" ,A : int="gelu" ,A : List[str]=(64, 1_28, 1_28, 1_28, 1_28, 2_56, 2_56, 2_56, 2_56, 5_12, 5_12, 5_12, 5_12) ,A : Dict=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) ,A : Dict=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) ,A : Union[str, Any]=False ,A : Dict=1_28 ,A : Dict=16 ,A : Optional[Any]=True ,A : List[str]=0.05 ,A : Dict=10 ,A : Tuple=2 ,A : List[Any]=0.0 ,A : List[str]=10 ,A : List[Any]=0 ,A : Dict="mean" ,A : str=False ,A : int=False ,A : Optional[int]=2_56 ,A : Optional[int]=0 ,A : List[Any]=1 ,A : Tuple=2 ,**A : Dict ,):
super().__init__(**A ,pad_token_id=A ,bos_token_id=A ,eos_token_id=A )
__A = hidden_size
__A = feat_extract_norm
__A = feat_extract_activation
__A = list(A )
__A = list(A )
__A = list(A )
__A = conv_bias
__A = num_conv_pos_embeddings
__A = num_conv_pos_embedding_groups
__A = len(self.conv_dim )
__A = num_hidden_layers
__A = intermediate_size
__A = squeeze_factor
__A = max_position_embeddings
__A = position_buckets
__A = share_att_key
__A = relative_attention
__A = norm_rel_ebd
__A = list(A )
__A = hidden_act
__A = num_attention_heads
__A = hidden_dropout
__A = attention_dropout
__A = activation_dropout
__A = feat_proj_dropout
__A = final_dropout
__A = layer_norm_eps
__A = feature_layer_norm_eps
__A = initializer_range
__A = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect."
"It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,"
f'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)'''
f'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__A = apply_spec_augment
__A = mask_time_prob
__A = mask_time_length
__A = mask_time_min_masks
__A = mask_feature_prob
__A = mask_feature_length
__A = mask_feature_min_masks
# ctc loss
__A = ctc_loss_reduction
__A = ctc_zero_infinity
# sequence classification
__A = use_weighted_layer_sum
__A = classifier_proj_size
@property
def UpperCamelCase_ ( self : List[str] ):
return functools.reduce(operator.mul ,self.conv_stride ,1 )
| 15 |
SCREAMING_SNAKE_CASE :Any = 256
# Modulus to hash a string
SCREAMING_SNAKE_CASE :Union[str, Any] = 100_0003
def UpperCAmelCase ( a_ , a_ ) -> bool:
"""simple docstring"""
__A = len(a_ )
__A = len(a_ )
if p_len > t_len:
return False
__A = 0
__A = 0
__A = 1
# Calculating the hash of pattern and substring of text
for i in range(a_ ):
__A = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus
__A = (ord(text[i] ) + text_hash * alphabet_size) % modulus
if i == p_len - 1:
continue
__A = (modulus_power * alphabet_size) % modulus
for i in range(0 , t_len - p_len + 1 ):
if text_hash == p_hash and text[i : i + p_len] == pattern:
return True
if i == t_len - p_len:
continue
# Calculate the https://en.wikipedia.org/wiki/Rolling_hash
__A = (
(text_hash - ord(text[i] ) * modulus_power) * alphabet_size
+ ord(text[i + p_len] )
) % modulus
return False
def UpperCAmelCase ( ) -> None:
"""simple docstring"""
__A = "abc1abc12"
__A = "alskfjaldsabc1abc1abc12k23adsfabcabc"
__A = "alskfjaldsk23adsfabcabc"
assert rabin_karp(a_ , a_ ) and not rabin_karp(a_ , a_ )
# Test 2)
__A = "ABABX"
__A = "ABABZABABYABABX"
assert rabin_karp(a_ , a_ )
# Test 3)
__A = "AAAB"
__A = "ABAAAAAB"
assert rabin_karp(a_ , a_ )
# Test 4)
__A = "abcdabcy"
__A = "abcxabcdabxabcdabcdabcy"
assert rabin_karp(a_ , a_ )
# Test 5)
__A = "Lü"
__A = "Lüsai"
assert rabin_karp(a_ , a_ )
__A = "Lue"
assert not rabin_karp(a_ , a_ )
print("Success." )
if __name__ == "__main__":
test_rabin_karp()
| 15 | 1 |
SCREAMING_SNAKE_CASE :int = {
0: '0',
1: '1',
2: '2',
3: '3',
4: '4',
5: '5',
6: '6',
7: '7',
8: '8',
9: '9',
10: 'a',
11: 'b',
12: 'c',
13: 'd',
14: 'e',
15: 'f',
}
def UpperCAmelCase ( a_ ) -> str:
"""simple docstring"""
assert type(a_ ) in (int, float) and decimal == int(a_ )
__A = int(a_ )
__A = ""
__A = False
if decimal < 0:
__A = True
decimal *= -1
while decimal > 0:
__A , __A = divmod(a_ , 1_6 )
__A = values[remainder] + hexadecimal
__A = "0x" + hexadecimal
if negative:
__A = "-" + hexadecimal
return hexadecimal
if __name__ == "__main__":
import doctest
doctest.testmod()
| 15 |
import argparse
import json
import os
import torch
from transformers.file_utils import has_file
from diffusers import UNetaDConditionModel, UNetaDModel
SCREAMING_SNAKE_CASE :Union[str, Any] = False
SCREAMING_SNAKE_CASE :Any = True
SCREAMING_SNAKE_CASE :Tuple = False
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :Tuple = argparse.ArgumentParser()
parser.add_argument(
'--repo_path',
default=None,
type=str,
required=True,
help='The config json file corresponding to the architecture.',
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
SCREAMING_SNAKE_CASE :Union[str, Any] = parser.parse_args()
SCREAMING_SNAKE_CASE :Dict = {
'image_size': 'sample_size',
'num_res_blocks': 'layers_per_block',
'block_channels': 'block_out_channels',
'down_blocks': 'down_block_types',
'up_blocks': 'up_block_types',
'downscale_freq_shift': 'freq_shift',
'resnet_num_groups': 'norm_num_groups',
'resnet_act_fn': 'act_fn',
'resnet_eps': 'norm_eps',
'num_head_channels': 'attention_head_dim',
}
SCREAMING_SNAKE_CASE :Optional[int] = {
'time_steps': 'time_proj',
'mid': 'mid_block',
'downsample_blocks': 'down_blocks',
'upsample_blocks': 'up_blocks',
}
SCREAMING_SNAKE_CASE :int = '' if has_file(args.repo_path, 'config.json') else 'unet'
with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader:
SCREAMING_SNAKE_CASE :Dict = reader.read()
SCREAMING_SNAKE_CASE :List[str] = json.loads(text)
if do_only_config:
for key in config_parameters_to_change.keys():
config.pop(key, None)
if has_file(args.repo_path, 'config.json'):
SCREAMING_SNAKE_CASE :Optional[int] = UNetaDModel(**config)
else:
SCREAMING_SNAKE_CASE :Optional[Any] = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel
SCREAMING_SNAKE_CASE :List[str] = class_name(**config)
if do_only_config:
model.save_config(os.path.join(args.repo_path, subfolder))
SCREAMING_SNAKE_CASE :List[str] = dict(model.config)
if do_only_renaming:
for key, value in config_parameters_to_change.items():
if key in config:
SCREAMING_SNAKE_CASE :Optional[Any] = config[key]
del config[key]
SCREAMING_SNAKE_CASE :Optional[Any] = [k.replace('UNetRes', '') for k in config['down_block_types']]
SCREAMING_SNAKE_CASE :List[Any] = [k.replace('UNetRes', '') for k in config['up_block_types']]
if do_only_weights:
SCREAMING_SNAKE_CASE :Tuple = torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin'))
SCREAMING_SNAKE_CASE :Any = {}
for param_key, param_value in state_dict.items():
if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'):
continue
SCREAMING_SNAKE_CASE :List[str] = False
for key, new_key in key_parameters_to_change.items():
if not has_changed and param_key.split('.')[0] == key:
SCREAMING_SNAKE_CASE :List[Any] = param_value
SCREAMING_SNAKE_CASE :str = True
if not has_changed:
SCREAMING_SNAKE_CASE :List[str] = param_value
model.load_state_dict(new_state_dict)
model.save_pretrained(os.path.join(args.repo_path, subfolder))
| 15 | 1 |
import argparse
import json
import os
import torch
from torch import nn
from transformers import NllbMoeConfig, NllbMoeModel
from transformers.modeling_utils import dtype_byte_size
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
def UpperCAmelCase ( a_ ) -> Tuple:
"""simple docstring"""
__A = [
"encoder.version",
"decoder.version",
"model.encoder.version",
"model.decoder.version",
"decoder.output_projection.weight",
"_float_tensor",
"encoder.embed_positions._float_tensor",
"decoder.embed_positions._float_tensor",
]
for k in ignore_keys:
state_dict.pop(a_ , a_ )
def UpperCAmelCase ( a_ ) -> Any:
"""simple docstring"""
__A , __A = emb.weight.shape
__A = nn.Linear(a_ , a_ , bias=a_ )
__A = emb.weight.data
return lin_layer
def UpperCAmelCase ( a_ , a_=None ) -> Union[str, Any]:
"""simple docstring"""
__A = {}
for old_key in state_dict.keys():
__A = old_key
if "moe_layer.experts." in key:
if expert_idx is not None:
__A = key.replace("moe_layer.experts.0" , F'''ffn.experts.expert_{expert_idx}''' )
else:
__A = key.replace("moe_layer.experts." , "ffn.experts.expert_" )
if "gate" in key:
__A = key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier" )
if "fc2" and "experts" not in key:
__A = key.replace(".fc2." , ".ffn.fc2." )
if "fc1" and "experts" not in key:
__A = key.replace(".fc1." , ".ffn.fc1." )
if ".encoder_attn." in key:
__A = key.replace(".encoder_attn." , ".cross_attention." )
if "encoder_attn_layer_norm" in key:
__A = key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm" )
if "final_layer_norm" in key:
__A = key.replace("final_layer_norm" , "ff_layer_norm" )
__A = state_dict[old_key]
return new_dict
def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ = WEIGHTS_NAME ) -> Union[str, Any]:
"""simple docstring"""
__A = []
__A = 0
os.makedirs(a_ , exist_ok=a_ )
for expert in range(a_ ):
__A = switch_checkpoint_path + F'''-rank-{expert}.pt'''
if os.path.isfile(a_ ):
__A = torch.load(a_ )["model"]
remove_ignore_keys_(a_ )
__A = rename_fairseq_keys(a_ , a_ )
__A = os.path.join(
a_ , weights_name.replace(".bin" , F'''-{len(a_ )+1:05d}-of-???.bin''' ) )
torch.save(a_ , a_ )
sharded_state_dicts.append(expert_state.keys() )
total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size(
expert_state[list(a_ )[0]].dtype )
# Add the last block
__A = os.path.join(a_ , weights_name.replace(".bin" , F'''-{len(a_ )+1:05d}-of-???.bin''' ) )
__A = torch.load(switch_checkpoint_path + "-shared.pt" )["model"]
remove_ignore_keys_(a_ )
__A = rename_fairseq_keys(a_ , a_ )
__A = shared_weights["decoder.embed_tokens.weight"]
sharded_state_dicts.append(shared_weights.keys() )
# If we only have the shared weights (dummy model/experts saved on the same file)
if len(a_ ) == 1:
__A = os.path.join(a_ , a_ )
torch.save(a_ , a_ )
return {weights_name: sharded_state_dicts[0]}, None
else:
torch.save(a_ , a_ )
# Otherwise, let's build the index
__A = {}
for idx, shard in enumerate(a_ ):
__A = weights_name.replace(".bin" , F'''-{idx+1:05d}-of-{len(a_ ):05d}.bin''' )
__A = os.path.join(a_ , weights_name.replace(".bin" , F'''-{idx+1:05d}-of-???.bin''' ) )
os.rename(a_ , os.path.join(a_ , a_ ) )
for key in shard:
__A = shard_file
# Add the metadata
__A = {"total_size": total_size}
__A = {"metadata": metadata, "weight_map": weight_map}
with open(os.path.join(a_ , a_ ) , "w" , encoding="utf-8" ) as f:
__A = json.dumps(a_ , indent=2 , sort_keys=a_ ) + "\n"
f.write(a_ )
return metadata, index
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--nllb_moe_checkpoint_path',
default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000',
type=str,
required=False,
help='Path to a directory containing a folder per layer. Follows the original Google format.',
)
parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model')
parser.add_argument(
'--pytorch_dump_folder_path',
default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b',
type=str,
required=False,
help='Path to the output pytorch model.',
)
SCREAMING_SNAKE_CASE :Union[str, Any] = parser.parse_args()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :Dict = shard_on_the_fly(
args.nllb_moe_checkpoint_path,
args.pytorch_dump_folder_path,
128,
args.dtype,
)
SCREAMING_SNAKE_CASE :Dict = NllbMoeConfig.from_pretrained(
'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128
)
config.save_pretrained(args.pytorch_dump_folder_path)
SCREAMING_SNAKE_CASE :Optional[int] = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path)
print('Done')
model.save_pretrained(args.pytorch_dump_folder_path)
| 15 |
import argparse
import math
import traceback
import dateutil.parser as date_parser
import requests
def UpperCAmelCase ( a_ ) -> str:
"""simple docstring"""
__A = {}
__A = job["started_at"]
__A = job["completed_at"]
__A = date_parser.parse(a_ )
__A = date_parser.parse(a_ )
__A = round((end_datetime - start_datetime).total_seconds() / 60.0 )
__A = start
__A = end
__A = duration_in_min
return job_info
def UpperCAmelCase ( a_ , a_=None ) -> str:
"""simple docstring"""
__A = None
if token is not None:
__A = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''}
__A = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100'''
__A = requests.get(a_ , headers=a_ ).json()
__A = {}
try:
job_time.update({job["name"]: extract_time_from_single_job(a_ ) for job in result["jobs"]} )
__A = math.ceil((result["total_count"] - 1_0_0) / 1_0_0 )
for i in range(a_ ):
__A = requests.get(url + F'''&page={i + 2}''' , headers=a_ ).json()
job_time.update({job["name"]: extract_time_from_single_job(a_ ) for job in result["jobs"]} )
return job_time
except Exception:
print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' )
return {}
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.')
SCREAMING_SNAKE_CASE :Optional[int] = parser.parse_args()
SCREAMING_SNAKE_CASE :Union[str, Any] = get_job_time(args.workflow_run_id)
SCREAMING_SNAKE_CASE :Optional[int] = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True))
for k, v in job_time.items():
print(f'''{k}: {v["duration"]}''')
| 15 | 1 |
from __future__ import annotations
import inspect
import unittest
from math import floor
import numpy as np
from transformers import CvtConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFCvtForImageClassification, TFCvtModel
from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def UpperCamelCase_ ( self : str ):
__A = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(A ,"embed_dim" ) )
self.parent.assertTrue(hasattr(A ,"num_heads" ) )
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : str ,A : Tuple ,A : Dict=13 ,A : Optional[int]=64 ,A : Optional[Any]=3 ,A : List[Any]=[16, 48, 96] ,A : Union[str, Any]=[1, 3, 6] ,A : str=[1, 2, 10] ,A : Optional[int]=[7, 3, 3] ,A : List[Any]=[4, 2, 2] ,A : int=[2, 1, 1] ,A : Tuple=[2, 2, 2] ,A : Any=[False, False, True] ,A : Any=[0.0, 0.0, 0.0] ,A : Optional[int]=0.02 ,A : Optional[Any]=1E-12 ,A : List[str]=True ,A : Union[str, Any]=True ,A : List[Any]=2 ,):
__A = parent
__A = batch_size
__A = image_size
__A = patch_sizes
__A = patch_stride
__A = patch_padding
__A = is_training
__A = use_labels
__A = num_labels
__A = num_channels
__A = embed_dim
__A = num_heads
__A = stride_kv
__A = depth
__A = cls_token
__A = attention_drop_rate
__A = initializer_range
__A = layer_norm_eps
def UpperCamelCase_ ( self : Dict ):
__A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__A = None
if self.use_labels:
# create a random int32 tensor of given shape
__A = ids_tensor([self.batch_size] ,self.num_labels )
__A = self.get_config()
return config, pixel_values, labels
def UpperCamelCase_ ( self : str ):
return CvtConfig(
image_size=self.image_size ,num_labels=self.num_labels ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,num_heads=self.num_heads ,patch_sizes=self.patch_sizes ,patch_padding=self.patch_padding ,patch_stride=self.patch_stride ,stride_kv=self.stride_kv ,depth=self.depth ,cls_token=self.cls_token ,attention_drop_rate=self.attention_drop_rate ,initializer_range=self.initializer_range ,)
def UpperCamelCase_ ( self : List[Any] ,A : Union[str, Any] ,A : Tuple ,A : Any ):
__A = TFCvtModel(config=A )
__A = model(A ,training=A )
__A = (self.image_size, self.image_size)
__A , __A = image_size[0], image_size[1]
for i in range(len(self.depth ) ):
__A = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 )
__A = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.embed_dim[-1], height, width) )
def UpperCamelCase_ ( self : Union[str, Any] ,A : int ,A : Tuple ,A : List[Any] ):
__A = self.num_labels
__A = TFCvtForImageClassification(A )
__A = model(A ,labels=A ,training=A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.prepare_config_and_inputs()
__A , __A , __A = config_and_inputs
__A = {"pixel_values": pixel_values}
return config, inputs_dict
@require_tf
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else ()
snake_case_ = (
{"feature-extraction": TFCvtModel, "image-classification": TFCvtForImageClassification}
if is_tf_available()
else {}
)
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
def UpperCamelCase_ ( self : str ):
__A = TFCvtModelTester(self )
__A = TFCvtConfigTester(self ,config_class=A ,has_text_modality=A ,hidden_size=37 )
def UpperCamelCase_ ( self : str ):
self.config_tester.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
@unittest.skip(reason="Cvt does not output attentions" )
def UpperCamelCase_ ( self : Optional[Any] ):
pass
@unittest.skip(reason="Cvt does not use inputs_embeds" )
def UpperCamelCase_ ( self : int ):
pass
@unittest.skip(reason="Cvt does not support input and output embeddings" )
def UpperCamelCase_ ( self : Optional[Any] ):
pass
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0 ,reason="TF does not support backprop for grouped convolutions on CPU." ,)
def UpperCamelCase_ ( self : Any ):
super().test_dataset_conversion()
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0 ,reason="TF does not support backprop for grouped convolutions on CPU." ,)
@slow
def UpperCamelCase_ ( self : List[str] ):
super().test_keras_fit()
@unittest.skip(reason="Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8" )
def UpperCamelCase_ ( self : List[str] ):
__A = tf.keras.mixed_precision.Policy("mixed_float16" )
tf.keras.mixed_precision.set_global_policy(A )
super().test_keras_fit()
tf.keras.mixed_precision.set_global_policy("float32" )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = model_class(A )
__A = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__A = [*signature.parameters.keys()]
__A = ["pixel_values"]
self.assertListEqual(arg_names[:1] ,A )
def UpperCamelCase_ ( self : List[str] ):
def check_hidden_states_output(A : Union[str, Any] ,A : int ,A : List[Any] ):
__A = model_class(A )
__A = model(**self._prepare_for_class(A ,A ) )
__A = outputs.hidden_states
__A = len(self.model_tester.depth )
self.assertEqual(len(A ) ,A )
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-3:] ) ,[
self.model_tester.embed_dim[0],
self.model_tester.image_size // 4,
self.model_tester.image_size // 4,
] ,)
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = True
check_hidden_states_output(A ,A ,A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__A = True
check_hidden_states_output(A ,A ,A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : Any ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
@slow
def UpperCamelCase_ ( self : Optional[Any] ):
for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__A = TFCvtModel.from_pretrained(A )
self.assertIsNotNone(A )
def UpperCAmelCase ( ) -> Optional[Any]:
"""simple docstring"""
__A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_tf
@require_vision
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self : List[str] ):
return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
@slow
def UpperCamelCase_ ( self : str ):
__A = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
__A = self.default_image_processor
__A = prepare_img()
__A = image_processor(images=A ,return_tensors="tf" )
# forward pass
__A = model(**A )
# verify the logits
__A = tf.TensorShape((1, 10_00) )
self.assertEqual(outputs.logits.shape ,A )
__A = tf.constant([0.92_85, 0.90_15, -0.31_50] )
self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() ,A ,atol=1E-4 ) )
| 15 |
import argparse
import os
import shutil
import torch
from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer
def UpperCAmelCase ( a_ ) -> List[str]:
"""simple docstring"""
__A = args.pruning_method
__A = args.threshold
__A = args.model_name_or_path.rstrip("/" )
__A = args.target_model_path
print(F'''Load fine-pruned model from {model_name_or_path}''' )
__A = torch.load(os.path.join(a_ , "pytorch_model.bin" ) )
__A = {}
for name, tensor in model.items():
if "embeddings" in name or "LayerNorm" in name or "pooler" in name:
__A = tensor
print(F'''Copied layer {name}''' )
elif "classifier" in name or "qa_output" in name:
__A = tensor
print(F'''Copied layer {name}''' )
elif "bias" in name:
__A = tensor
print(F'''Copied layer {name}''' )
else:
if pruning_method == "magnitude":
__A = MagnitudeBinarizer.apply(inputs=a_ , threshold=a_ )
__A = tensor * mask
print(F'''Pruned layer {name}''' )
elif pruning_method == "topK":
if "mask_scores" in name:
continue
__A = name[:-6]
__A = model[F'''{prefix_}mask_scores''']
__A = TopKBinarizer.apply(a_ , a_ )
__A = tensor * mask
print(F'''Pruned layer {name}''' )
elif pruning_method == "sigmoied_threshold":
if "mask_scores" in name:
continue
__A = name[:-6]
__A = model[F'''{prefix_}mask_scores''']
__A = ThresholdBinarizer.apply(a_ , a_ , a_ )
__A = tensor * mask
print(F'''Pruned layer {name}''' )
elif pruning_method == "l0":
if "mask_scores" in name:
continue
__A = name[:-6]
__A = model[F'''{prefix_}mask_scores''']
__A , __A = -0.1, 1.1
__A = torch.sigmoid(a_ )
__A = s * (r - l) + l
__A = s_bar.clamp(min=0.0 , max=1.0 )
__A = tensor * mask
print(F'''Pruned layer {name}''' )
else:
raise ValueError("Unknown pruning method" )
if target_model_path is None:
__A = os.path.join(
os.path.dirname(a_ ) , F'''bertarized_{os.path.basename(a_ )}''' )
if not os.path.isdir(a_ ):
shutil.copytree(a_ , a_ )
print(F'''\nCreated folder {target_model_path}''' )
torch.save(a_ , os.path.join(a_ , "pytorch_model.bin" ) )
print("\nPruned model saved! See you later!" )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :Tuple = argparse.ArgumentParser()
parser.add_argument(
'--pruning_method',
choices=['l0', 'magnitude', 'topK', 'sigmoied_threshold'],
type=str,
required=True,
help=(
'Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,'
' sigmoied_threshold = Soft movement pruning)'
),
)
parser.add_argument(
'--threshold',
type=float,
required=False,
help=(
'For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.'
'For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.'
'Not needed for `l0`'
),
)
parser.add_argument(
'--model_name_or_path',
type=str,
required=True,
help='Folder containing the model that was previously fine-pruned',
)
parser.add_argument(
'--target_model_path',
default=None,
type=str,
required=False,
help='Folder containing the model that was previously fine-pruned',
)
SCREAMING_SNAKE_CASE :str = parser.parse_args()
main(args)
| 15 | 1 |
import unittest
from transformers import MobileBertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
MobileBertForMaskedLM,
MobileBertForMultipleChoice,
MobileBertForNextSentencePrediction,
MobileBertForPreTraining,
MobileBertForQuestionAnswering,
MobileBertForSequenceClassification,
MobileBertForTokenClassification,
MobileBertModel,
)
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : int ,A : Tuple ,A : List[str]=13 ,A : List[str]=7 ,A : str=True ,A : int=True ,A : Union[str, Any]=True ,A : str=True ,A : Dict=99 ,A : Optional[Any]=64 ,A : Union[str, Any]=32 ,A : Dict=5 ,A : Union[str, Any]=4 ,A : str=37 ,A : int="gelu" ,A : str=0.1 ,A : List[Any]=0.1 ,A : Union[str, Any]=5_12 ,A : Tuple=16 ,A : List[Any]=2 ,A : Any=0.02 ,A : List[Any]=3 ,A : Union[str, Any]=4 ,A : List[str]=None ,):
__A = parent
__A = batch_size
__A = seq_length
__A = is_training
__A = use_input_mask
__A = use_token_type_ids
__A = use_labels
__A = vocab_size
__A = hidden_size
__A = embedding_size
__A = num_hidden_layers
__A = num_attention_heads
__A = intermediate_size
__A = hidden_act
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = max_position_embeddings
__A = type_vocab_size
__A = type_sequence_label_size
__A = initializer_range
__A = num_labels
__A = num_choices
__A = scope
def UpperCamelCase_ ( self : List[Any] ):
__A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
__A = None
if self.use_input_mask:
__A = random_attention_mask([self.batch_size, self.seq_length] )
__A = None
if self.use_token_type_ids:
__A = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size )
__A = None
__A = None
__A = None
if self.use_labels:
__A = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
__A = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels )
__A = ids_tensor([self.batch_size] ,self.num_choices )
__A = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase_ ( self : Any ):
return MobileBertConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,embedding_size=self.embedding_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=A ,initializer_range=self.initializer_range ,)
def UpperCamelCase_ ( self : Dict ,A : Tuple ,A : int ,A : List[Any] ,A : Optional[Any] ,A : Optional[int] ,A : int ,A : int ):
__A = MobileBertModel(config=A )
model.to(A )
model.eval()
__A = model(A ,attention_mask=A ,token_type_ids=A )
__A = model(A ,token_type_ids=A )
__A = model(A )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) )
def UpperCamelCase_ ( self : int ,A : Dict ,A : int ,A : List[Any] ,A : Optional[Any] ,A : Tuple ,A : str ,A : str ):
__A = MobileBertForMaskedLM(config=A )
model.to(A )
model.eval()
__A = model(A ,attention_mask=A ,token_type_ids=A ,labels=A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase_ ( self : Any ,A : Optional[Any] ,A : Optional[Any] ,A : Dict ,A : Optional[int] ,A : Any ,A : Optional[Any] ,A : Any ):
__A = MobileBertForNextSentencePrediction(config=A )
model.to(A )
model.eval()
__A = model(
A ,attention_mask=A ,token_type_ids=A ,labels=A ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) )
def UpperCamelCase_ ( self : Dict ,A : int ,A : str ,A : Optional[Any] ,A : Optional[int] ,A : Dict ,A : Tuple ,A : Optional[int] ):
__A = MobileBertForPreTraining(config=A )
model.to(A )
model.eval()
__A = model(
A ,attention_mask=A ,token_type_ids=A ,labels=A ,next_sentence_label=A ,)
self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) )
def UpperCamelCase_ ( self : int ,A : Tuple ,A : Any ,A : Dict ,A : List[Any] ,A : Union[str, Any] ,A : Optional[int] ,A : Optional[int] ):
__A = MobileBertForQuestionAnswering(config=A )
model.to(A )
model.eval()
__A = model(
A ,attention_mask=A ,token_type_ids=A ,start_positions=A ,end_positions=A ,)
self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) )
def UpperCamelCase_ ( self : Tuple ,A : List[str] ,A : List[str] ,A : Optional[Any] ,A : List[Any] ,A : List[str] ,A : Dict ,A : Tuple ):
__A = self.num_labels
__A = MobileBertForSequenceClassification(A )
model.to(A )
model.eval()
__A = model(A ,attention_mask=A ,token_type_ids=A ,labels=A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self : Optional[int] ,A : Dict ,A : Optional[int] ,A : str ,A : Dict ,A : Union[str, Any] ,A : int ,A : Union[str, Any] ):
__A = self.num_labels
__A = MobileBertForTokenClassification(config=A )
model.to(A )
model.eval()
__A = model(A ,attention_mask=A ,token_type_ids=A ,labels=A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase_ ( self : Optional[int] ,A : int ,A : str ,A : Optional[int] ,A : List[Any] ,A : Optional[Any] ,A : Optional[Any] ,A : Optional[Any] ):
__A = self.num_choices
__A = MobileBertForMultipleChoice(config=A )
model.to(A )
model.eval()
__A = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
__A = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
__A = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
__A = model(
A ,attention_mask=A ,token_type_ids=A ,labels=A ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) )
def UpperCamelCase_ ( self : Tuple ):
__A = self.prepare_config_and_inputs()
(
(
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) ,
) = config_and_inputs
__A = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = (
(
MobileBertModel,
MobileBertForMaskedLM,
MobileBertForMultipleChoice,
MobileBertForNextSentencePrediction,
MobileBertForPreTraining,
MobileBertForQuestionAnswering,
MobileBertForSequenceClassification,
MobileBertForTokenClassification,
)
if is_torch_available()
else ()
)
snake_case_ = (
{
"feature-extraction": MobileBertModel,
"fill-mask": MobileBertForMaskedLM,
"question-answering": MobileBertForQuestionAnswering,
"text-classification": MobileBertForSequenceClassification,
"token-classification": MobileBertForTokenClassification,
"zero-shot": MobileBertForSequenceClassification,
}
if is_torch_available()
else {}
)
snake_case_ = True
def UpperCamelCase_ ( self : List[str] ,A : Tuple ,A : List[Any] ,A : Union[str, Any]=False ):
__A = super()._prepare_for_class(A ,A ,return_labels=A )
if return_labels:
if model_class in get_values(A ):
__A = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=A )
__A = torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=A )
return inputs_dict
def UpperCamelCase_ ( self : int ):
__A = MobileBertModelTester(self )
__A = ConfigTester(self ,config_class=A ,hidden_size=37 )
def UpperCamelCase_ ( self : Any ):
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self : Any ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_model(*A )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_masked_lm(*A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_multiple_choice(*A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*A )
def UpperCamelCase_ ( self : Optional[int] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_pretraining(*A )
def UpperCamelCase_ ( self : Any ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_question_answering(*A )
def UpperCamelCase_ ( self : str ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_sequence_classification(*A )
def UpperCamelCase_ ( self : int ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_token_classification(*A )
def UpperCAmelCase ( a_ ) -> str:
"""simple docstring"""
return torch.tensor(
a_ , dtype=torch.long , device=a_ , )
SCREAMING_SNAKE_CASE :List[str] = 1E-3
@require_torch
@require_sentencepiece
@require_tokenizers
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCamelCase_ ( self : Tuple ):
__A = MobileBertModel.from_pretrained("google/mobilebert-uncased" ).to(A )
__A = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] )
with torch.no_grad():
__A = model(A )[0]
__A = torch.Size((1, 9, 5_12) )
self.assertEqual(output.shape ,A )
__A = torch.tensor(
[
[
[-2.4736526E07, 8.2691656E04, 1.6521838E05],
[-5.7541704E-01, 3.9056022E00, 4.4011507E00],
[2.6047359E00, 1.5677652E00, -1.7324188E-01],
]
] ,device=A ,)
# MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a
# ~1 difference, it's therefore not a good idea to measure using addition.
# Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the
# result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE
__A = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE )
__A = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE )
self.assertTrue(lower_bound and upper_bound )
| 15 |
import os
import re
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE :List[Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :int = {'vocab_file': 'spiece.model'}
SCREAMING_SNAKE_CASE :Union[str, Any] = {
'vocab_file': {
'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model',
'google/bigbird-roberta-large': (
'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model'
),
'google/bigbird-base-trivia-itc': (
'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model'
),
}
}
SCREAMING_SNAKE_CASE :int = {
'google/bigbird-roberta-base': 4096,
'google/bigbird-roberta-large': 4096,
'google/bigbird-base-trivia-itc': 4096,
}
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = ["input_ids", "attention_mask"]
snake_case_ = []
def __init__( self : Any ,A : List[str] ,A : str="<unk>" ,A : int="<s>" ,A : Union[str, Any]="</s>" ,A : List[str]="<pad>" ,A : int="[SEP]" ,A : Optional[Any]="[MASK]" ,A : Tuple="[CLS]" ,A : Optional[Dict[str, Any]] = None ,**A : Any ,):
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else bos_token
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else eos_token
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else unk_token
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else pad_token
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else cls_token
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else mask_token
__A = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=A ,eos_token=A ,unk_token=A ,pad_token=A ,sep_token=A ,mask_token=A ,cls_token=A ,sp_model_kwargs=self.sp_model_kwargs ,**A ,)
__A = vocab_file
__A = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(A )
@property
def UpperCamelCase_ ( self : List[str] ):
return self.sp_model.get_piece_size()
def UpperCamelCase_ ( self : Optional[Any] ):
__A = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Optional[int] ):
__A = self.__dict__.copy()
__A = None
return state
def __setstate__( self : str ,A : Optional[Any] ):
__A = d
# for backward compatibility
if not hasattr(self ,"sp_model_kwargs" ):
__A = {}
__A = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def UpperCamelCase_ ( self : Any ,A : str ):
return self.sp_model.encode(A ,out_type=A )
def UpperCamelCase_ ( self : List[str] ,A : Tuple ):
return self.sp_model.piece_to_id(A )
def UpperCamelCase_ ( self : List[Any] ,A : Tuple ):
__A = self.sp_model.IdToPiece(A )
return token
def UpperCamelCase_ ( self : List[Any] ,A : int ):
__A = []
__A = ""
__A = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(A ) + token
__A = True
__A = []
else:
current_sub_tokens.append(A )
__A = False
out_string += self.sp_model.decode(A )
return out_string.strip()
def UpperCamelCase_ ( self : Tuple ,A : List[int] ,A : bool = False ,A : bool = None ,A : bool = True ,**A : Union[str, Any] ,):
__A = kwargs.pop("use_source_tokenizer" ,A )
__A = self.convert_ids_to_tokens(A ,skip_special_tokens=A )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
__A = []
__A = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(A ) )
__A = []
sub_texts.append(A )
else:
current_sub_text.append(A )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(A ) )
# Mimic the behavior of the Rust tokenizer:
# No space before [MASK] and [SEP]
if spaces_between_special_tokens:
__A = re.sub(R" (\[(MASK|SEP)\])" ,R"\1" ," ".join(A ) )
else:
__A = "".join(A )
__A = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
__A = self.clean_up_tokenization(A )
return clean_text
else:
return text
def UpperCamelCase_ ( self : str ,A : str ,A : Optional[str] = None ):
if not os.path.isdir(A ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__A = os.path.join(
A ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file ,A )
elif not os.path.isfile(self.vocab_file ):
with open(A ,"wb" ) as fi:
__A = self.sp_model.serialized_model_proto()
fi.write(A )
return (out_vocab_file,)
def UpperCamelCase_ ( self : Dict ,A : List[int] ,A : Optional[List[int]] = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__A = [self.cls_token_id]
__A = [self.sep_token_id]
return cls + token_ids_a + sep + token_ids_a + sep
def UpperCamelCase_ ( self : Optional[int] ,A : List[int] ,A : Optional[List[int]] = None ,A : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=A ,token_ids_a=A ,already_has_special_tokens=A )
if token_ids_a is None:
return [1] + ([0] * len(A )) + [1]
return [1] + ([0] * len(A )) + [1] + ([0] * len(A )) + [1]
def UpperCamelCase_ ( self : Any ,A : List[int] ,A : Optional[List[int]] = None ):
__A = [self.sep_token_id]
__A = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
| 15 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE :Optional[int] = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :str = [
'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST',
'UniSpeechForCTC',
'UniSpeechForPreTraining',
'UniSpeechForSequenceClassification',
'UniSpeechModel',
'UniSpeechPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_unispeech import (
UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST,
UniSpeechForCTC,
UniSpeechForPreTraining,
UniSpeechForSequenceClassification,
UniSpeechModel,
UniSpeechPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE :Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 15 |
import PIL.Image
import PIL.ImageOps
from packaging import version
from PIL import Image
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'):
SCREAMING_SNAKE_CASE :Any = {
'linear': PIL.Image.Resampling.BILINEAR,
'bilinear': PIL.Image.Resampling.BILINEAR,
'bicubic': PIL.Image.Resampling.BICUBIC,
'lanczos': PIL.Image.Resampling.LANCZOS,
'nearest': PIL.Image.Resampling.NEAREST,
}
else:
SCREAMING_SNAKE_CASE :int = {
'linear': PIL.Image.LINEAR,
'bilinear': PIL.Image.BILINEAR,
'bicubic': PIL.Image.BICUBIC,
'lanczos': PIL.Image.LANCZOS,
'nearest': PIL.Image.NEAREST,
}
def UpperCAmelCase ( a_ ) -> Optional[Any]:
"""simple docstring"""
__A = (images / 2 + 0.5).clamp(0 , 1 )
__A = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
__A = numpy_to_pil(a_ )
return images
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
if images.ndim == 3:
__A = images[None, ...]
__A = (images * 2_5_5).round().astype("uint8" )
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
__A = [Image.fromarray(image.squeeze() , mode="L" ) for image in images]
else:
__A = [Image.fromarray(a_ ) for image in images]
return pil_images
| 15 | 1 |
import unittest
from transformers import BigBirdTokenizer, BigBirdTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
SCREAMING_SNAKE_CASE :Optional[int] = '▁'
SCREAMING_SNAKE_CASE :List[Any] = get_tests_dir('fixtures/test_sentencepiece.model')
@require_sentencepiece
@require_tokenizers
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = BigBirdTokenizer
snake_case_ = BigBirdTokenizerFast
snake_case_ = True
snake_case_ = True
def UpperCamelCase_ ( self : Dict ):
super().setUp()
__A = self.tokenizer_class(A ,keep_accents=A )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = "<s>"
__A = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) ,A )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) ,A )
def UpperCamelCase_ ( self : int ):
__A = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] ,"<unk>" )
self.assertEqual(vocab_keys[1] ,"<s>" )
self.assertEqual(vocab_keys[-1] ,"[MASK]" )
self.assertEqual(len(A ) ,10_04 )
def UpperCamelCase_ ( self : Dict ):
self.assertEqual(self.get_tokenizer().vocab_size ,10_00 )
def UpperCamelCase_ ( self : str ):
if not self.test_rust_tokenizer:
return
__A = self.get_tokenizer()
__A = self.get_rust_tokenizer()
__A = "I was born in 92000, and this is falsé."
__A = tokenizer.tokenize(A )
__A = rust_tokenizer.tokenize(A )
self.assertListEqual(A ,A )
__A = tokenizer.encode(A ,add_special_tokens=A )
__A = rust_tokenizer.encode(A ,add_special_tokens=A )
self.assertListEqual(A ,A )
__A = self.get_rust_tokenizer()
__A = tokenizer.encode(A )
__A = rust_tokenizer.encode(A )
self.assertListEqual(A ,A )
def UpperCamelCase_ ( self : Any ):
__A = BigBirdTokenizer(A ,keep_accents=A )
__A = tokenizer.tokenize("This is a test" )
self.assertListEqual(A ,["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(A ) ,[2_85, 46, 10, 1_70, 3_82] ,)
__A = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
A ,[
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
] ,)
__A = tokenizer.convert_tokens_to_ids(A )
self.assertListEqual(
A ,[8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] ,)
__A = tokenizer.convert_ids_to_tokens(A )
self.assertListEqual(
A ,[
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"<unk>",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"<unk>",
".",
] ,)
@cached_property
def UpperCamelCase_ ( self : str ):
return BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base" )
@slow
def UpperCamelCase_ ( self : List[str] ):
__A = "Hello World!"
__A = [65, 1_85_36, 22_60, 1_01, 66]
self.assertListEqual(A ,self.big_tokenizer.encode(A ) )
@slow
def UpperCamelCase_ ( self : Dict ):
__A = (
"This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will"
" add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth"
)
# fmt: off
__A = [65, 8_71, 4_19, 3_58, 9_46, 9_91, 25_21, 4_52, 3_58, 13_57, 3_87, 77_51, 35_36, 1_12, 9_85, 4_56, 1_26, 8_65, 9_38, 54_00, 57_34, 4_58, 13_68, 4_67, 7_86, 24_62, 52_46, 11_59, 6_33, 8_65, 45_19, 4_57, 5_82, 8_52, 25_57, 4_27, 9_16, 5_08, 4_05, 3_43_24, 4_97, 3_91, 4_08, 1_13_42, 12_44, 3_85, 1_00, 9_38, 9_85, 4_56, 5_74, 3_62, 1_25_97, 32_00, 31_29, 11_72, 66] # noqa: E231
# fmt: on
self.assertListEqual(A ,self.big_tokenizer.encode(A ) )
@require_torch
@slow
def UpperCamelCase_ ( self : Any ):
import torch
from transformers import BigBirdConfig, BigBirdModel
# Build sequence
__A = list(self.big_tokenizer.get_vocab().keys() )[:10]
__A = " ".join(A )
__A = self.big_tokenizer.encode_plus(A ,return_tensors="pt" ,return_token_type_ids=A )
__A = self.big_tokenizer.batch_encode_plus(
[sequence + " " + sequence] ,return_tensors="pt" ,return_token_type_ids=A )
__A = BigBirdConfig(attention_type="original_full" )
__A = BigBirdModel(A )
assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size
with torch.no_grad():
model(**A )
model(**A )
@slow
def UpperCamelCase_ ( self : List[str] ):
__A = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base" )
__A = tokenizer.decode(tokenizer("Paris is the [MASK]." ).input_ids )
self.assertTrue(decoded_text == "[CLS] Paris is the[MASK].[SEP]" )
@slow
def UpperCamelCase_ ( self : str ):
# fmt: off
__A = {"input_ids": [[65, 3_92_86, 4_58, 3_63_35, 20_01, 4_56, 1_30_73, 1_32_66, 4_55, 1_13, 77_46, 17_41, 1_11_57, 3_91, 1_30_73, 1_32_66, 4_55, 1_13, 39_67, 3_54_12, 1_13, 49_36, 1_09, 38_70, 23_77, 1_13, 3_00_84, 4_57_20, 4_58, 1_34, 1_74_96, 1_12, 5_03, 1_16_72, 1_13, 1_18, 1_12, 56_65, 1_33_47, 3_86_87, 1_12, 14_96, 3_13_89, 1_12, 32_68, 4_72_64, 1_34, 9_62, 1_12, 1_63_77, 80_35, 2_31_30, 4_30, 1_21_69, 1_55_18, 2_85_92, 4_58, 1_46, 4_16_97, 1_09, 3_91, 1_21_69, 1_55_18, 1_66_89, 4_58, 1_46, 4_13_58, 1_09, 4_52, 7_26, 40_34, 1_11, 7_63, 3_54_12, 50_82, 3_88, 19_03, 1_11, 90_51, 3_91, 28_70, 4_89_18, 19_00, 11_23, 5_50, 9_98, 1_12, 95_86, 1_59_85, 4_55, 3_91, 4_10, 2_29_55, 3_76_36, 1_14, 66], [65, 4_48, 1_74_96, 4_19, 36_63, 3_85, 7_63, 1_13, 2_75_33, 28_70, 32_83, 1_30_43, 16_39, 2_47_13, 5_23, 6_56, 2_40_13, 1_85_50, 25_21, 5_17, 2_70_14, 2_12_44, 4_20, 12_12, 14_65, 3_91, 9_27, 48_33, 3_88, 5_78, 1_17_86, 1_14, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 4_84, 21_69, 76_87, 2_19_32, 1_81_46, 7_26, 3_63, 1_70_32, 33_91, 1_14, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=A ,model_name="google/bigbird-roberta-base" ,revision="215c99f1600e06f83acce68422f2035b2b5c3510" ,)
| 15 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
SCREAMING_SNAKE_CASE :Optional[Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :List[Any] = {
'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json',
# See all YOLOS models at https://huggingface.co/models?filter=yolos
}
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = "yolos"
def __init__( self : Any ,A : Optional[Any]=7_68 ,A : Dict=12 ,A : Any=12 ,A : str=30_72 ,A : Any="gelu" ,A : str=0.0 ,A : List[str]=0.0 ,A : Dict=0.02 ,A : int=1E-12 ,A : Tuple=[5_12, 8_64] ,A : List[Any]=16 ,A : str=3 ,A : str=True ,A : Any=1_00 ,A : Dict=True ,A : Dict=False ,A : Tuple=1 ,A : Union[str, Any]=5 ,A : Optional[Any]=2 ,A : Union[str, Any]=5 ,A : int=2 ,A : int=0.1 ,**A : List[str] ,):
super().__init__(**A )
__A = hidden_size
__A = num_hidden_layers
__A = num_attention_heads
__A = intermediate_size
__A = hidden_act
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = initializer_range
__A = layer_norm_eps
__A = image_size
__A = patch_size
__A = num_channels
__A = qkv_bias
__A = num_detection_tokens
__A = use_mid_position_embeddings
__A = auxiliary_loss
# Hungarian matcher
__A = class_cost
__A = bbox_cost
__A = giou_cost
# Loss coefficients
__A = bbox_loss_coefficient
__A = giou_loss_coefficient
__A = eos_coefficient
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = version.parse("1.11" )
@property
def UpperCamelCase_ ( self : str ):
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def UpperCamelCase_ ( self : List[Any] ):
return 1E-4
@property
def UpperCamelCase_ ( self : Optional[Any] ):
return 12
| 15 | 1 |
import json
import os
from typing import Optional
import numpy as np
from ...feature_extraction_utils import BatchFeature
from ...processing_utils import ProcessorMixin
from ...utils import logging
from ...utils.hub import get_file_from_repo
from ..auto import AutoTokenizer
SCREAMING_SNAKE_CASE :int = logging.get_logger(__name__)
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = "AutoTokenizer"
snake_case_ = ["tokenizer"]
snake_case_ = {
"semantic_prompt": 1,
"coarse_prompt": 2,
"fine_prompt": 2,
}
def __init__( self : Optional[Any] ,A : Any ,A : Union[str, Any]=None ):
super().__init__(A )
__A = speaker_embeddings
@classmethod
def UpperCamelCase_ ( cls : Any ,A : str ,A : List[str]="speaker_embeddings_path.json" ,**A : Optional[int] ):
if speaker_embeddings_dict_path is not None:
__A = get_file_from_repo(
A ,A ,subfolder=kwargs.pop("subfolder" ,A ) ,cache_dir=kwargs.pop("cache_dir" ,A ) ,force_download=kwargs.pop("force_download" ,A ) ,proxies=kwargs.pop("proxies" ,A ) ,resume_download=kwargs.pop("resume_download" ,A ) ,local_files_only=kwargs.pop("local_files_only" ,A ) ,use_auth_token=kwargs.pop("use_auth_token" ,A ) ,revision=kwargs.pop("revision" ,A ) ,)
if speaker_embeddings_path is None:
logger.warning(
f'''`{os.path.join(A ,A )}` does not exists
, no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json
dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' )
__A = None
else:
with open(A ) as speaker_embeddings_json:
__A = json.load(A )
else:
__A = None
__A = AutoTokenizer.from_pretrained(A ,**A )
return cls(tokenizer=A ,speaker_embeddings=A )
def UpperCamelCase_ ( self : Optional[Any] ,A : str ,A : int="speaker_embeddings_path.json" ,A : List[Any]="speaker_embeddings" ,A : bool = False ,**A : List[str] ,):
if self.speaker_embeddings is not None:
os.makedirs(os.path.join(A ,A ,"v2" ) ,exist_ok=A )
__A = {}
__A = save_directory
for prompt_key in self.speaker_embeddings:
if prompt_key != "repo_or_path":
__A = self._load_voice_preset(A )
__A = {}
for key in self.speaker_embeddings[prompt_key]:
np.save(
os.path.join(
embeddings_dict["repo_or_path"] ,A ,f'''{prompt_key}_{key}''' ) ,voice_preset[key] ,allow_pickle=A ,)
__A = os.path.join(A ,f'''{prompt_key}_{key}.npy''' )
__A = tmp_dict
with open(os.path.join(A ,A ) ,"w" ) as fp:
json.dump(A ,A )
super().save_pretrained(A ,A ,**A )
def UpperCamelCase_ ( self : Dict ,A : str = None ,**A : Optional[int] ):
__A = self.speaker_embeddings[voice_preset]
__A = {}
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset_paths:
raise ValueError(
f'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' )
__A = get_file_from_repo(
self.speaker_embeddings.get("repo_or_path" ,"/" ) ,voice_preset_paths[key] ,subfolder=kwargs.pop("subfolder" ,A ) ,cache_dir=kwargs.pop("cache_dir" ,A ) ,force_download=kwargs.pop("force_download" ,A ) ,proxies=kwargs.pop("proxies" ,A ) ,resume_download=kwargs.pop("resume_download" ,A ) ,local_files_only=kwargs.pop("local_files_only" ,A ) ,use_auth_token=kwargs.pop("use_auth_token" ,A ) ,revision=kwargs.pop("revision" ,A ) ,)
if path is None:
raise ValueError(
f'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' ,'/' ) ,voice_preset_paths[key] )}` does not exists
, no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}
embeddings.''' )
__A = np.load(A )
return voice_preset_dict
def UpperCamelCase_ ( self : List[str] ,A : Optional[dict] = None ):
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset:
raise ValueError(f'''Voice preset unrecognized, missing {key} as a key.''' )
if not isinstance(voice_preset[key] ,np.ndarray ):
raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' )
if len(voice_preset[key].shape ) != self.preset_shape[key]:
raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' )
def __call__( self : List[Any] ,A : str=None ,A : Dict=None ,A : Dict="pt" ,A : List[Any]=2_56 ,A : Optional[int]=False ,A : Optional[Any]=True ,A : Any=False ,**A : Union[str, Any] ,):
if voice_preset is not None and not isinstance(A ,A ):
if (
isinstance(A ,A )
and self.speaker_embeddings is not None
and voice_preset in self.speaker_embeddings
):
__A = self._load_voice_preset(A )
else:
if isinstance(A ,A ) and not voice_preset.endswith(".npz" ):
__A = voice_preset + ".npz"
__A = np.load(A )
if voice_preset is not None:
self._validate_voice_preset_dict(A ,**A )
__A = BatchFeature(data=A ,tensor_type=A )
__A = self.tokenizer(
A ,return_tensors=A ,padding="max_length" ,max_length=A ,return_attention_mask=A ,return_token_type_ids=A ,add_special_tokens=A ,**A ,)
if voice_preset is not None:
__A = voice_preset
return encoded_text
| 15 |
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from packaging import version
from .. import __version__
from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD
from .doc import (
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
copy_func,
replace_return_docstrings,
)
from .generic import (
ContextManagers,
ExplicitEnum,
ModelOutput,
PaddingStrategy,
TensorType,
add_model_info_to_auto_map,
cached_property,
can_return_loss,
expand_dims,
find_labels,
flatten_dict,
infer_framework,
is_jax_tensor,
is_numpy_array,
is_tensor,
is_tf_symbolic_tensor,
is_tf_tensor,
is_torch_device,
is_torch_dtype,
is_torch_tensor,
reshape,
squeeze,
strtobool,
tensor_size,
to_numpy,
to_py_obj,
transpose,
working_or_temp_dir,
)
from .hub import (
CLOUDFRONT_DISTRIB_PREFIX,
DISABLE_TELEMETRY,
HF_MODULES_CACHE,
HUGGINGFACE_CO_PREFIX,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
PYTORCH_PRETRAINED_BERT_CACHE,
PYTORCH_TRANSFORMERS_CACHE,
S3_BUCKET_PREFIX,
TRANSFORMERS_CACHE,
TRANSFORMERS_DYNAMIC_MODULE_NAME,
EntryNotFoundError,
PushToHubMixin,
RepositoryNotFoundError,
RevisionNotFoundError,
cached_file,
default_cache_path,
define_sagemaker_information,
download_url,
extract_commit_hash,
get_cached_models,
get_file_from_repo,
get_full_repo_name,
has_file,
http_user_agent,
is_offline_mode,
is_remote_url,
move_cache,
send_example_telemetry,
try_to_load_from_cache,
)
from .import_utils import (
ENV_VARS_TRUE_AND_AUTO_VALUES,
ENV_VARS_TRUE_VALUES,
TORCH_FX_REQUIRED_VERSION,
USE_JAX,
USE_TF,
USE_TORCH,
DummyObject,
OptionalDependencyNotAvailable,
_LazyModule,
ccl_version,
direct_transformers_import,
get_torch_version,
is_accelerate_available,
is_apex_available,
is_bitsandbytes_available,
is_bsa_available,
is_coloredlogs_available,
is_cython_available,
is_datasets_available,
is_decord_available,
is_detectrona_available,
is_faiss_available,
is_flax_available,
is_ftfy_available,
is_in_notebook,
is_ipex_available,
is_jieba_available,
is_jumanpp_available,
is_kenlm_available,
is_keras_nlp_available,
is_librosa_available,
is_natten_available,
is_ninja_available,
is_onnx_available,
is_openai_available,
is_optimum_available,
is_pandas_available,
is_peft_available,
is_phonemizer_available,
is_protobuf_available,
is_psutil_available,
is_pyanvml_available,
is_pyctcdecode_available,
is_pytesseract_available,
is_pytest_available,
is_pytorch_quantization_available,
is_rjieba_available,
is_sacremoses_available,
is_safetensors_available,
is_sagemaker_dp_enabled,
is_sagemaker_mp_enabled,
is_scipy_available,
is_sentencepiece_available,
is_seqio_available,
is_sklearn_available,
is_soundfile_availble,
is_spacy_available,
is_speech_available,
is_sudachi_available,
is_tensorflow_probability_available,
is_tensorflow_text_available,
is_tfaonnx_available,
is_tf_available,
is_timm_available,
is_tokenizers_available,
is_torch_available,
is_torch_bfaa_available,
is_torch_bfaa_cpu_available,
is_torch_bfaa_gpu_available,
is_torch_compile_available,
is_torch_cuda_available,
is_torch_fx_available,
is_torch_fx_proxy,
is_torch_mps_available,
is_torch_neuroncore_available,
is_torch_tensorrt_fx_available,
is_torch_tfaa_available,
is_torch_tpu_available,
is_torchaudio_available,
is_torchdistx_available,
is_torchdynamo_available,
is_torchvision_available,
is_training_run_on_sagemaker,
is_vision_available,
requires_backends,
torch_only_method,
)
SCREAMING_SNAKE_CASE :List[str] = 'pytorch_model.bin'
SCREAMING_SNAKE_CASE :str = 'pytorch_model.bin.index.json'
SCREAMING_SNAKE_CASE :Optional[int] = 'adapter_config.json'
SCREAMING_SNAKE_CASE :Dict = 'adapter_model.bin'
SCREAMING_SNAKE_CASE :Dict = 'adapter_model.safetensors'
SCREAMING_SNAKE_CASE :str = 'tf_model.h5'
SCREAMING_SNAKE_CASE :List[Any] = 'tf_model.h5.index.json'
SCREAMING_SNAKE_CASE :str = 'model.ckpt'
SCREAMING_SNAKE_CASE :List[Any] = 'flax_model.msgpack'
SCREAMING_SNAKE_CASE :Optional[int] = 'flax_model.msgpack.index.json'
SCREAMING_SNAKE_CASE :Tuple = 'model.safetensors'
SCREAMING_SNAKE_CASE :List[Any] = 'model.safetensors.index.json'
SCREAMING_SNAKE_CASE :str = 'config.json'
SCREAMING_SNAKE_CASE :int = 'preprocessor_config.json'
SCREAMING_SNAKE_CASE :Optional[Any] = FEATURE_EXTRACTOR_NAME
SCREAMING_SNAKE_CASE :Optional[int] = 'generation_config.json'
SCREAMING_SNAKE_CASE :List[str] = 'modelcard.json'
SCREAMING_SNAKE_CASE :Optional[int] = '▁'
SCREAMING_SNAKE_CASE :Optional[Any] = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility
SCREAMING_SNAKE_CASE :str = [
[[0, 1, 0, 1], [1, 0, 0, 1]]
] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too.
SCREAMING_SNAKE_CASE :Optional[Any] = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]]
SCREAMING_SNAKE_CASE :List[Any] = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]]
def UpperCAmelCase ( a_ ) -> Dict:
"""simple docstring"""
if version.parse(a_ ) < version.parse(a_ ):
if "dev" in min_version:
__A = (
"This example requires a source install from HuggingFace Transformers (see "
"`https://huggingface.co/docs/transformers/installation#install-from-source`),"
)
else:
__A = F'''This example requires a minimum version of {min_version},'''
error_message += F''' but the version found is {__version__}.\n'''
raise ImportError(
error_message
+ "Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other "
"versions of HuggingFace Transformers." )
| 15 | 1 |
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError
import requests
def UpperCAmelCase ( a_ = "isbn/0140328726" ) -> dict:
"""simple docstring"""
__A = olid.strip().strip("/" ) # Remove leading/trailing whitespace & slashes
if new_olid.count("/" ) != 1:
__A = F'''{olid} is not a valid Open Library olid'''
raise ValueError(a_ )
return requests.get(F'''https://openlibrary.org/{new_olid}.json''' ).json()
def UpperCAmelCase ( a_ ) -> dict:
"""simple docstring"""
__A = {
"title": "Title",
"publish_date": "Publish date",
"authors": "Authors",
"number_of_pages": "Number of pages:",
"first_sentence": "First sentence",
"isbn_10": "ISBN (10)",
"isbn_13": "ISBN (13)",
}
__A = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()}
__A = [
get_openlibrary_data(author["key"] )["name"] for author in data["Authors"]
]
__A = data["First sentence"]["value"]
for key, value in data.items():
if isinstance(a_ , a_ ):
__A = ", ".join(a_ )
return data
if __name__ == "__main__":
import doctest
doctest.testmod()
while True:
SCREAMING_SNAKE_CASE :List[Any] = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip()
if isbn.lower() in ("", "q", "quit", "exit", "stop"):
break
if len(isbn) not in (10, 13) or not isbn.isdigit():
print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''')
continue
print(f'''\nSearching Open Library for ISBN: {isbn}...\n''')
try:
SCREAMING_SNAKE_CASE :Any = summarize_book(get_openlibrary_data(f'''isbn/{isbn}'''))
print('\n'.join(f'''{key}: {value}''' for key, value in book_summary.items()))
except JSONDecodeError: # Workaround for requests.exceptions.RequestException:
print(f'''Sorry, there are no results for ISBN: {isbn}.''')
| 15 |
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
__A = [0] * len(a_ )
__A = []
__A = [1] * len(a_ )
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(a_ ) ):
if indegree[i] == 0:
queue.append(a_ )
while queue:
__A = queue.pop(0 )
for x in graph[vertex]:
indegree[x] -= 1
if long_dist[vertex] + 1 > long_dist[x]:
__A = long_dist[vertex] + 1
if indegree[x] == 0:
queue.append(a_ )
print(max(a_ ) )
# Adjacency list of Graph
SCREAMING_SNAKE_CASE :List[Any] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []}
longest_distance(graph)
| 15 | 1 |
import argparse
import collections
import os
import re
import tempfile
import pandas as pd
from datasets import Dataset
from huggingface_hub import hf_hub_download, upload_folder
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/update_metadata.py
SCREAMING_SNAKE_CASE :int = 'src/transformers'
# This is to make sure the transformers module imported is the one in the repo.
SCREAMING_SNAKE_CASE :int = direct_transformers_import(TRANSFORMERS_PATH)
# Regexes that match TF/Flax/PT model names.
SCREAMING_SNAKE_CASE :Optional[Any] = re.compile(R'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)')
SCREAMING_SNAKE_CASE :str = re.compile(R'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)')
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
SCREAMING_SNAKE_CASE :Tuple = re.compile(R'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)')
# Fill this with tuples (pipeline_tag, model_mapping, auto_model)
SCREAMING_SNAKE_CASE :int = [
('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'),
('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'),
('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'),
('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'),
('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'),
('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'),
('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'),
('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'),
('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'),
(
'zero-shot-object-detection',
'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES',
'AutoModelForZeroShotObjectDetection',
),
('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'),
('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'),
('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'),
('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'),
(
'table-question-answering',
'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES',
'AutoModelForTableQuestionAnswering',
),
('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'),
('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'),
(
'next-sentence-prediction',
'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES',
'AutoModelForNextSentencePrediction',
),
(
'audio-frame-classification',
'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES',
'AutoModelForAudioFrameClassification',
),
('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'),
(
'document-question-answering',
'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES',
'AutoModelForDocumentQuestionAnswering',
),
(
'visual-question-answering',
'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES',
'AutoModelForVisualQuestionAnswering',
),
('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'),
(
'zero-shot-image-classification',
'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES',
'AutoModelForZeroShotImageClassification',
),
('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'),
('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'),
('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'),
]
def UpperCAmelCase ( a_ ) -> Dict:
"""simple docstring"""
__A = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)" , a_ )
return [m.group(0 ) for m in matches]
def UpperCAmelCase ( ) -> int:
"""simple docstring"""
__A = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
__A = {
config.replace("Config" , "" ): model_type for model_type, config in config_maping_names.items()
}
# Dictionaries flagging if each model prefix has a backend in PT/TF/Flax.
__A = collections.defaultdict(a_ )
__A = collections.defaultdict(a_ )
__A = collections.defaultdict(a_ )
# Let's lookup through all transformers object (once) and find if models are supported by a given backend.
for attr_name in dir(a_ ):
__A = None
if _re_tf_models.match(a_ ) is not None:
__A = tf_models
__A = _re_tf_models.match(a_ ).groups()[0]
elif _re_flax_models.match(a_ ) is not None:
__A = flax_models
__A = _re_flax_models.match(a_ ).groups()[0]
elif _re_pt_models.match(a_ ) is not None:
__A = pt_models
__A = _re_pt_models.match(a_ ).groups()[0]
if lookup_dict is not None:
while len(a_ ) > 0:
if attr_name in model_prefix_to_model_type:
__A = True
break
# Try again after removing the last word in the name
__A = "".join(camel_case_split(a_ )[:-1] )
__A = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) )
__A = list(a_ )
all_models.sort()
__A = {"model_type": all_models}
__A = [pt_models[t] for t in all_models]
__A = [tf_models[t] for t in all_models]
__A = [flax_models[t] for t in all_models]
# Now let's use the auto-mapping names to make sure
__A = {}
for t in all_models:
if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES:
__A = "AutoProcessor"
elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES:
__A = "AutoTokenizer"
elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES:
__A = "AutoFeatureExtractor"
else:
# Default to AutoTokenizer if a model has nothing, for backward compatibility.
__A = "AutoTokenizer"
__A = [processors[t] for t in all_models]
return pd.DataFrame(a_ )
def UpperCAmelCase ( a_ ) -> Any:
"""simple docstring"""
__A = [
transformers_module.models.auto.modeling_auto,
transformers_module.models.auto.modeling_tf_auto,
transformers_module.models.auto.modeling_flax_auto,
]
for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS:
__A = [model_mapping, F'''TF_{model_mapping}''', F'''FLAX_{model_mapping}''']
__A = [auto_class, F'''TF_{auto_class}''', F'''Flax_{auto_class}''']
# Loop through all three frameworks
for module, cls, mapping in zip(a_ , a_ , a_ ):
# The type of pipeline may not exist in this framework
if not hasattr(a_ , a_ ):
continue
# First extract all model_names
__A = []
for name in getattr(a_ , a_ ).values():
if isinstance(a_ , a_ ):
model_names.append(a_ )
else:
model_names.extend(list(a_ ) )
# Add pipeline tag and auto model class for those models
table.update({model_name: (pipeline_tag, cls) for model_name in model_names} )
return table
def UpperCAmelCase ( a_ , a_ ) -> Tuple:
"""simple docstring"""
__A = get_frameworks_table()
__A = Dataset.from_pandas(a_ )
__A = hf_hub_download(
"huggingface/transformers-metadata" , "pipeline_tags.json" , repo_type="dataset" , token=a_ )
__A = Dataset.from_json(a_ )
__A = {
tags_dataset[i]["model_class"]: (tags_dataset[i]["pipeline_tag"], tags_dataset[i]["auto_class"])
for i in range(len(a_ ) )
}
__A = update_pipeline_and_auto_class_table(a_ )
# Sort the model classes to avoid some nondeterministic updates to create false update commits.
__A = sorted(table.keys() )
__A = pd.DataFrame(
{
"model_class": model_classes,
"pipeline_tag": [table[m][0] for m in model_classes],
"auto_class": [table[m][1] for m in model_classes],
} )
__A = Dataset.from_pandas(a_ )
with tempfile.TemporaryDirectory() as tmp_dir:
frameworks_dataset.to_json(os.path.join(a_ , "frameworks.json" ) )
tags_dataset.to_json(os.path.join(a_ , "pipeline_tags.json" ) )
if commit_sha is not None:
__A = (
F'''Update with commit {commit_sha}\n\nSee: '''
F'''https://github.com/huggingface/transformers/commit/{commit_sha}'''
)
else:
__A = "Update"
upload_folder(
repo_id="huggingface/transformers-metadata" , folder_path=a_ , repo_type="dataset" , token=a_ , commit_message=a_ , )
def UpperCAmelCase ( ) -> Union[str, Any]:
"""simple docstring"""
__A = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS}
__A = transformers_module.pipelines.SUPPORTED_TASKS
__A = []
for key in pipeline_tasks:
if key not in in_table:
__A = pipeline_tasks[key]["pt"]
if isinstance(a_ , (list, tuple) ):
__A = model[0]
__A = model.__name__
if model not in in_table.values():
missing.append(a_ )
if len(a_ ) > 0:
__A = ", ".join(a_ )
raise ValueError(
"The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside "
F'''`utils/update_metadata.py`: {msg}. Please add them!''' )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :Optional[int] = argparse.ArgumentParser()
parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.')
parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.')
parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.')
SCREAMING_SNAKE_CASE :int = parser.parse_args()
if args.check_only:
check_pipeline_tags()
else:
update_metadata(args.token, args.commit_sha)
| 15 |
import argparse
import os
import torch
from transformers import FlavaConfig, FlavaForPreTraining
from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint
def UpperCAmelCase ( a_ ) -> List[str]:
"""simple docstring"""
return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items() )
def UpperCAmelCase ( a_ , a_ ) -> Tuple:
"""simple docstring"""
__A = {}
for key, value in state_dict.items():
if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key:
continue
__A = key.replace("heads.cmd.mim_head.cls.predictions" , "mmm_image_head" )
__A = key.replace("heads.cmd.mlm_head.cls.predictions" , "mmm_text_head" )
__A = key.replace("heads.cmd.itm_head.cls" , "itm_head" )
__A = key.replace("heads.cmd.itm_head.pooler" , "itm_head.pooler" )
__A = key.replace("heads.cmd.clip_head.logit_scale" , "flava.logit_scale" )
__A = key.replace("heads.fairseq_mlm.cls.predictions" , "mlm_head" )
__A = key.replace("heads.imagenet.mim_head.cls.predictions" , "mim_head" )
__A = key.replace("mm_text_projection" , "flava.text_to_mm_projection" )
__A = key.replace("mm_image_projection" , "flava.image_to_mm_projection" )
__A = key.replace("image_encoder.module" , "flava.image_model" )
__A = key.replace("text_encoder.module" , "flava.text_model" )
__A = key.replace("mm_encoder.module.encoder.cls_token" , "flava.multimodal_model.cls_token" )
__A = key.replace("mm_encoder.module" , "flava.multimodal_model" )
__A = key.replace("text_projection" , "flava.text_projection" )
__A = key.replace("image_projection" , "flava.image_projection" )
__A = value.float()
for key, value in codebook_state_dict.items():
__A = value
return upgrade
@torch.no_grad()
def UpperCAmelCase ( a_ , a_ , a_ , a_=None ) -> Tuple:
"""simple docstring"""
if config_path is not None:
__A = FlavaConfig.from_pretrained(a_ )
else:
__A = FlavaConfig()
__A = FlavaForPreTraining(a_ ).eval()
__A = convert_dalle_checkpoint(a_ , a_ , save_checkpoint=a_ )
if os.path.exists(a_ ):
__A = torch.load(a_ , map_location="cpu" )
else:
__A = torch.hub.load_state_dict_from_url(a_ , map_location="cpu" )
__A = upgrade_state_dict(a_ , a_ )
hf_model.load_state_dict(a_ )
__A = hf_model.state_dict()
__A = count_parameters(a_ )
__A = count_parameters(a_ ) + count_parameters(a_ )
assert torch.allclose(a_ , a_ , atol=1E-3 )
hf_model.save_pretrained(a_ )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :Any = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint')
parser.add_argument('--codebook_path', default=None, type=str, help='Path to flava codebook checkpoint')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
SCREAMING_SNAKE_CASE :Optional[int] = parser.parse_args()
convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
| 15 | 1 |
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = 42
snake_case_ = 42
snake_case_ = None
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = 2
@register_to_config
def __init__( self : str ,A : float = 0.02 ,A : float = 1_00 ,A : float = 1.0_07 ,A : float = 80 ,A : float = 0.05 ,A : float = 50 ,):
# standard deviation of the initial noise distribution
__A = sigma_max
# setable values
__A = None
__A = None
__A = None # sigma(t_i)
def UpperCamelCase_ ( self : str ,A : torch.FloatTensor ,A : Optional[int] = None ):
return sample
def UpperCamelCase_ ( self : Dict ,A : int ,A : Union[str, torch.device] = None ):
__A = num_inference_steps
__A = np.arange(0 ,self.num_inference_steps )[::-1].copy()
__A = torch.from_numpy(A ).to(A )
__A = [
(
self.config.sigma_max**2
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
)
for i in self.timesteps
]
__A = torch.tensor(A ,dtype=torch.floataa ,device=A )
def UpperCamelCase_ ( self : Union[str, Any] ,A : torch.FloatTensor ,A : float ,A : Optional[torch.Generator] = None ):
if self.config.s_min <= sigma <= self.config.s_max:
__A = min(self.config.s_churn / self.num_inference_steps ,2**0.5 - 1 )
else:
__A = 0
# sample eps ~ N(0, S_noise^2 * I)
__A = self.config.s_noise * randn_tensor(sample.shape ,generator=A ).to(sample.device )
__A = sigma + gamma * sigma
__A = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)
return sample_hat, sigma_hat
def UpperCamelCase_ ( self : Dict ,A : torch.FloatTensor ,A : float ,A : float ,A : torch.FloatTensor ,A : bool = True ,):
__A = sample_hat + sigma_hat * model_output
__A = (sample_hat - pred_original_sample) / sigma_hat
__A = sample_hat + (sigma_prev - sigma_hat) * derivative
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=A ,derivative=A ,pred_original_sample=A )
def UpperCamelCase_ ( self : Optional[int] ,A : torch.FloatTensor ,A : float ,A : float ,A : torch.FloatTensor ,A : torch.FloatTensor ,A : torch.FloatTensor ,A : bool = True ,):
__A = sample_prev + sigma_prev * model_output
__A = (sample_prev - pred_original_sample) / sigma_prev
__A = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=A ,derivative=A ,pred_original_sample=A )
def UpperCamelCase_ ( self : List[Any] ,A : Dict ,A : List[str] ,A : str ):
raise NotImplementedError()
| 15 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE :Optional[int] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :Optional[int] = {'vocab_file': 'sentencepiece.bpe.model'}
SCREAMING_SNAKE_CASE :Tuple = {
'vocab_file': {
'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model',
}
}
SCREAMING_SNAKE_CASE :List[Any] = {
'camembert-base': 512,
}
SCREAMING_SNAKE_CASE :List[str] = '▁'
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = ["input_ids", "attention_mask"]
def __init__( self : Optional[Any] ,A : List[str] ,A : List[Any]="<s>" ,A : Tuple="</s>" ,A : Any="</s>" ,A : Optional[Any]="<s>" ,A : Tuple="<unk>" ,A : str="<pad>" ,A : int="<mask>" ,A : Optional[int]=["<s>NOTUSED", "</s>NOTUSED"] ,A : Optional[Dict[str, Any]] = None ,**A : Optional[Any] ,):
# Mask token behave like a normal word, i.e. include the space before it
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else mask_token
__A = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=A ,eos_token=A ,unk_token=A ,sep_token=A ,cls_token=A ,pad_token=A ,mask_token=A ,additional_special_tokens=A ,sp_model_kwargs=self.sp_model_kwargs ,**A ,)
__A = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(A ) )
__A = vocab_file
# HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual
# sentencepiece vocabulary (this is the case for <s> and </s>
__A = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3}
__A = len(self.fairseq_tokens_to_ids )
__A = len(self.sp_model ) + len(self.fairseq_tokens_to_ids )
__A = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def UpperCamelCase_ ( self : int ,A : List[int] ,A : Optional[List[int]] = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__A = [self.cls_token_id]
__A = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def UpperCamelCase_ ( self : Dict ,A : List[int] ,A : Optional[List[int]] = None ,A : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=A ,token_ids_a=A ,already_has_special_tokens=A )
if token_ids_a is None:
return [1] + ([0] * len(A )) + [1]
return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1]
def UpperCamelCase_ ( self : Union[str, Any] ,A : List[int] ,A : Optional[List[int]] = None ):
__A = [self.sep_token_id]
__A = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def UpperCamelCase_ ( self : Dict ):
return len(self.fairseq_tokens_to_ids ) + len(self.sp_model )
def UpperCamelCase_ ( self : int ):
__A = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def UpperCamelCase_ ( self : Any ,A : str ):
return self.sp_model.encode(A ,out_type=A )
def UpperCamelCase_ ( self : List[str] ,A : Dict ):
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
elif self.sp_model.PieceToId(A ) == 0:
# Convert sentence piece unk token to fairseq unk token index
return self.unk_token_id
return self.fairseq_offset + self.sp_model.PieceToId(A )
def UpperCamelCase_ ( self : Dict ,A : Tuple ):
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def UpperCamelCase_ ( self : Optional[Any] ,A : Dict ):
__A = []
__A = ""
__A = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(A ) + token
__A = True
__A = []
else:
current_sub_tokens.append(A )
__A = False
out_string += self.sp_model.decode(A )
return out_string.strip()
def __getstate__( self : Dict ):
__A = self.__dict__.copy()
__A = None
return state
def __setstate__( self : Union[str, Any] ,A : Any ):
__A = d
# for backward compatibility
if not hasattr(self ,"sp_model_kwargs" ):
__A = {}
__A = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def UpperCamelCase_ ( self : Any ,A : str ,A : Optional[str] = None ):
if not os.path.isdir(A ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__A = os.path.join(
A ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file ,A )
elif not os.path.isfile(self.vocab_file ):
with open(A ,"wb" ) as fi:
__A = self.sp_model.serialized_model_proto()
fi.write(A )
return (out_vocab_file,)
| 15 | 1 |
import argparse
import os
import shutil
import torch
from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer
def UpperCAmelCase ( a_ ) -> List[str]:
"""simple docstring"""
__A = args.pruning_method
__A = args.threshold
__A = args.model_name_or_path.rstrip("/" )
__A = args.target_model_path
print(F'''Load fine-pruned model from {model_name_or_path}''' )
__A = torch.load(os.path.join(a_ , "pytorch_model.bin" ) )
__A = {}
for name, tensor in model.items():
if "embeddings" in name or "LayerNorm" in name or "pooler" in name:
__A = tensor
print(F'''Copied layer {name}''' )
elif "classifier" in name or "qa_output" in name:
__A = tensor
print(F'''Copied layer {name}''' )
elif "bias" in name:
__A = tensor
print(F'''Copied layer {name}''' )
else:
if pruning_method == "magnitude":
__A = MagnitudeBinarizer.apply(inputs=a_ , threshold=a_ )
__A = tensor * mask
print(F'''Pruned layer {name}''' )
elif pruning_method == "topK":
if "mask_scores" in name:
continue
__A = name[:-6]
__A = model[F'''{prefix_}mask_scores''']
__A = TopKBinarizer.apply(a_ , a_ )
__A = tensor * mask
print(F'''Pruned layer {name}''' )
elif pruning_method == "sigmoied_threshold":
if "mask_scores" in name:
continue
__A = name[:-6]
__A = model[F'''{prefix_}mask_scores''']
__A = ThresholdBinarizer.apply(a_ , a_ , a_ )
__A = tensor * mask
print(F'''Pruned layer {name}''' )
elif pruning_method == "l0":
if "mask_scores" in name:
continue
__A = name[:-6]
__A = model[F'''{prefix_}mask_scores''']
__A , __A = -0.1, 1.1
__A = torch.sigmoid(a_ )
__A = s * (r - l) + l
__A = s_bar.clamp(min=0.0 , max=1.0 )
__A = tensor * mask
print(F'''Pruned layer {name}''' )
else:
raise ValueError("Unknown pruning method" )
if target_model_path is None:
__A = os.path.join(
os.path.dirname(a_ ) , F'''bertarized_{os.path.basename(a_ )}''' )
if not os.path.isdir(a_ ):
shutil.copytree(a_ , a_ )
print(F'''\nCreated folder {target_model_path}''' )
torch.save(a_ , os.path.join(a_ , "pytorch_model.bin" ) )
print("\nPruned model saved! See you later!" )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :Tuple = argparse.ArgumentParser()
parser.add_argument(
'--pruning_method',
choices=['l0', 'magnitude', 'topK', 'sigmoied_threshold'],
type=str,
required=True,
help=(
'Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,'
' sigmoied_threshold = Soft movement pruning)'
),
)
parser.add_argument(
'--threshold',
type=float,
required=False,
help=(
'For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.'
'For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.'
'Not needed for `l0`'
),
)
parser.add_argument(
'--model_name_or_path',
type=str,
required=True,
help='Folder containing the model that was previously fine-pruned',
)
parser.add_argument(
'--target_model_path',
default=None,
type=str,
required=False,
help='Folder containing the model that was previously fine-pruned',
)
SCREAMING_SNAKE_CASE :str = parser.parse_args()
main(args)
| 15 |
def UpperCAmelCase ( a_ ) -> list:
"""simple docstring"""
if len(a_ ) <= 1:
return [tuple(a_ )]
__A = []
def generate(a_ , a_ ):
if k == 1:
res.append(tuple(arr[:] ) )
return
generate(k - 1 , a_ )
for i in range(k - 1 ):
if k % 2 == 0: # k is even
__A , __A = arr[k - 1], arr[i]
else: # k is odd
__A , __A = arr[k - 1], arr[0]
generate(k - 1 , a_ )
generate(len(a_ ) , a_ )
return res
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :int = input('Enter numbers separated by a comma:\n').strip()
SCREAMING_SNAKE_CASE :Dict = [int(item) for item in user_input.split(',')]
print(heaps(arr))
| 15 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE :Tuple = {
'configuration_distilbert': [
'DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'DistilBertConfig',
'DistilBertOnnxConfig',
],
'tokenization_distilbert': ['DistilBertTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :Union[str, Any] = ['DistilBertTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :Optional[Any] = [
'DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'DistilBertForMaskedLM',
'DistilBertForMultipleChoice',
'DistilBertForQuestionAnswering',
'DistilBertForSequenceClassification',
'DistilBertForTokenClassification',
'DistilBertModel',
'DistilBertPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :Optional[Any] = [
'TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFDistilBertForMaskedLM',
'TFDistilBertForMultipleChoice',
'TFDistilBertForQuestionAnswering',
'TFDistilBertForSequenceClassification',
'TFDistilBertForTokenClassification',
'TFDistilBertMainLayer',
'TFDistilBertModel',
'TFDistilBertPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :str = [
'FlaxDistilBertForMaskedLM',
'FlaxDistilBertForMultipleChoice',
'FlaxDistilBertForQuestionAnswering',
'FlaxDistilBertForSequenceClassification',
'FlaxDistilBertForTokenClassification',
'FlaxDistilBertModel',
'FlaxDistilBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_distilbert import (
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DistilBertConfig,
DistilBertOnnxConfig,
)
from .tokenization_distilbert import DistilBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_distilbert_fast import DistilBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_distilbert import (
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
DistilBertModel,
DistilBertPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertMainLayer,
TFDistilBertModel,
TFDistilBertPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_distilbert import (
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertModel,
FlaxDistilBertPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE :Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 15 |
def UpperCAmelCase ( a_ ) -> list:
"""simple docstring"""
if len(a_ ) <= 1:
return lst
__A = 1
while i < len(a_ ):
if lst[i - 1] <= lst[i]:
i += 1
else:
__A , __A = lst[i], lst[i - 1]
i -= 1
if i == 0:
__A = 1
return lst
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :List[Any] = input('Enter numbers separated by a comma:\n').strip()
SCREAMING_SNAKE_CASE :List[Any] = [int(item) for item in user_input.split(',')]
print(gnome_sort(unsorted))
| 15 | 1 |
def UpperCAmelCase ( a_ = 1_0_0_0 ) -> int:
"""simple docstring"""
return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) )
if __name__ == "__main__":
print(solution())
| 15 |
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = 42
snake_case_ = 42
snake_case_ = None
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = 2
@register_to_config
def __init__( self : str ,A : float = 0.02 ,A : float = 1_00 ,A : float = 1.0_07 ,A : float = 80 ,A : float = 0.05 ,A : float = 50 ,):
# standard deviation of the initial noise distribution
__A = sigma_max
# setable values
__A = None
__A = None
__A = None # sigma(t_i)
def UpperCamelCase_ ( self : str ,A : torch.FloatTensor ,A : Optional[int] = None ):
return sample
def UpperCamelCase_ ( self : Dict ,A : int ,A : Union[str, torch.device] = None ):
__A = num_inference_steps
__A = np.arange(0 ,self.num_inference_steps )[::-1].copy()
__A = torch.from_numpy(A ).to(A )
__A = [
(
self.config.sigma_max**2
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
)
for i in self.timesteps
]
__A = torch.tensor(A ,dtype=torch.floataa ,device=A )
def UpperCamelCase_ ( self : Union[str, Any] ,A : torch.FloatTensor ,A : float ,A : Optional[torch.Generator] = None ):
if self.config.s_min <= sigma <= self.config.s_max:
__A = min(self.config.s_churn / self.num_inference_steps ,2**0.5 - 1 )
else:
__A = 0
# sample eps ~ N(0, S_noise^2 * I)
__A = self.config.s_noise * randn_tensor(sample.shape ,generator=A ).to(sample.device )
__A = sigma + gamma * sigma
__A = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)
return sample_hat, sigma_hat
def UpperCamelCase_ ( self : Dict ,A : torch.FloatTensor ,A : float ,A : float ,A : torch.FloatTensor ,A : bool = True ,):
__A = sample_hat + sigma_hat * model_output
__A = (sample_hat - pred_original_sample) / sigma_hat
__A = sample_hat + (sigma_prev - sigma_hat) * derivative
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=A ,derivative=A ,pred_original_sample=A )
def UpperCamelCase_ ( self : Optional[int] ,A : torch.FloatTensor ,A : float ,A : float ,A : torch.FloatTensor ,A : torch.FloatTensor ,A : torch.FloatTensor ,A : bool = True ,):
__A = sample_prev + sigma_prev * model_output
__A = (sample_prev - pred_original_sample) / sigma_prev
__A = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=A ,derivative=A ,pred_original_sample=A )
def UpperCamelCase_ ( self : List[Any] ,A : Dict ,A : List[str] ,A : str ):
raise NotImplementedError()
| 15 | 1 |
def UpperCAmelCase ( a_ = 1_0_0_0_0_0_0 ) -> int:
"""simple docstring"""
__A = set(range(3 , a_ , 2 ) )
primes.add(2 )
for p in range(3 , a_ , 2 ):
if p not in primes:
continue
primes.difference_update(set(range(p * p , a_ , a_ ) ) )
__A = [float(a_ ) for n in range(limit + 1 )]
for p in primes:
for n in range(a_ , limit + 1 , a_ ):
phi[n] *= 1 - 1 / p
return int(sum(phi[2:] ) )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 15 |
# Lint as: python3
import os
import re
import urllib.parse
from pathlib import Path
from typing import Callable, List, Optional, Union
from zipfile import ZipFile
from ..utils.file_utils import cached_path, hf_github_url
from ..utils.logging import get_logger
from ..utils.version import Version
SCREAMING_SNAKE_CASE :Union[str, Any] = get_logger(__name__)
class UpperCAmelCase :
'''simple docstring'''
snake_case_ = "dummy_data"
snake_case_ = "datasets"
snake_case_ = False
def __init__( self : Optional[int] ,A : str ,A : str ,A : Union[Version, str] ,A : Optional[str] = None ,A : bool = False ,A : bool = True ,A : Optional[List[Callable]] = None ,):
__A = 0
__A = dataset_name
__A = cache_dir
__A = use_local_dummy_data
__A = config
# download_callbacks take a single url as input
__A = download_callbacks or []
# if False, it doesn't load existing files and it returns the paths of the dummy files relative
# to the dummy_data zip file root
__A = load_existing_dummy_data
# TODO(PVP, QL) might need to make this more general
__A = str(A )
# to be downloaded
__A = None
__A = None
@property
def UpperCamelCase_ ( self : Union[str, Any] ):
if self._dummy_file is None:
__A = self.download_dummy_data()
return self._dummy_file
@property
def UpperCamelCase_ ( self : Optional[Any] ):
if self.config is not None:
# structure is dummy / config_name / version_name
return os.path.join("dummy" ,self.config.name ,self.version_name )
# structure is dummy / version_name
return os.path.join("dummy" ,self.version_name )
@property
def UpperCamelCase_ ( self : List[Any] ):
return os.path.join(self.dummy_data_folder ,"dummy_data.zip" )
def UpperCamelCase_ ( self : Tuple ):
__A = (
self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data
)
__A = cached_path(
A ,cache_dir=self.cache_dir ,extract_compressed_file=A ,force_extract=A )
return os.path.join(A ,self.dummy_file_name )
@property
def UpperCamelCase_ ( self : str ):
return os.path.join(self.datasets_scripts_dir ,self.dataset_name ,self.dummy_zip_file )
@property
def UpperCamelCase_ ( self : Any ):
if self._bucket_url is None:
__A = hf_github_url(self.dataset_name ,self.dummy_zip_file.replace(os.sep ,"/" ) )
return self._bucket_url
@property
def UpperCamelCase_ ( self : Tuple ):
# return full path if its a dir
if os.path.isdir(self.dummy_file ):
return self.dummy_file
# else cut off path to file -> example `xsum`.
return "/".join(self.dummy_file.replace(os.sep ,"/" ).split("/" )[:-1] )
def UpperCamelCase_ ( self : List[str] ,A : List[Any] ,*A : Dict ):
if self.load_existing_dummy_data:
# dummy data is downloaded and tested
__A = self.dummy_file
else:
# dummy data cannot be downloaded and only the path to dummy file is returned
__A = self.dummy_file_name
# special case when data_url is a dict
if isinstance(A ,A ):
return self.create_dummy_data_dict(A ,A )
elif isinstance(A ,(list, tuple) ):
return self.create_dummy_data_list(A ,A )
else:
return self.create_dummy_data_single(A ,A )
def UpperCamelCase_ ( self : str ,A : List[Any] ,*A : List[Any] ):
return self.download_and_extract(A )
def UpperCamelCase_ ( self : List[str] ,A : List[str] ,A : Tuple ):
return self.download_and_extract(A )
def UpperCamelCase_ ( self : Any ,A : Any ,*A : Optional[Any] ,**A : List[str] ):
return path
def UpperCamelCase_ ( self : str ):
return {}
def UpperCamelCase_ ( self : int ,A : int ,A : Tuple ):
__A = {}
for key, single_urls in data_url.items():
for download_callback in self.download_callbacks:
if isinstance(A ,A ):
for single_url in single_urls:
download_callback(A )
else:
__A = single_urls
download_callback(A )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
if isinstance(A ,A ):
__A = [os.path.join(A ,urllib.parse.quote_plus(Path(A ).name ) ) for x in single_urls]
else:
__A = single_urls
__A = os.path.join(A ,urllib.parse.quote_plus(Path(A ).name ) )
__A = value
# make sure that values are unique
if all(isinstance(A ,A ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len(
dummy_data_dict.values() ):
# append key to value to make its name unique
__A = {key: value + key for key, value in dummy_data_dict.items()}
return dummy_data_dict
def UpperCamelCase_ ( self : Union[str, Any] ,A : str ,A : str ):
__A = []
# trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one
__A = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" ,A ) ) for url in data_url )
__A = all(
url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url )
if data_url and (is_tf_records or is_pubmed_records):
__A = [data_url[0]] * len(A )
for single_url in data_url:
for download_callback in self.download_callbacks:
download_callback(A )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
__A = os.path.join(A ,urllib.parse.quote_plus(single_url.split("/" )[-1] ) )
dummy_data_list.append(A )
return dummy_data_list
def UpperCamelCase_ ( self : str ,A : List[Any] ,A : Optional[Any] ):
for download_callback in self.download_callbacks:
download_callback(A )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
__A = os.path.join(A ,urllib.parse.quote_plus(data_url.split("/" )[-1] ) )
if os.path.exists(A ) or not self.load_existing_dummy_data:
return value
else:
# Backward compatibility, maybe deprecate at one point.
# For many datasets with single url calls to dl_manager.download_and_extract,
# the dummy_data.zip file is actually the zipped downloaded file
# while now we expected the dummy_data.zip file to be a directory containing
# the downloaded file.
return path_to_dummy_data
def UpperCamelCase_ ( self : int ):
pass
def UpperCamelCase_ ( self : Dict ):
pass
def UpperCamelCase_ ( self : Optional[Any] ,A : List[Any] ):
def _iter_archive_members(A : Optional[Any] ):
# this preserves the order of the members inside the ZIP archive
__A = Path(self.dummy_file ).parent
__A = path.relative_to(A )
with ZipFile(self.local_path_to_dummy_data ) as zip_file:
__A = zip_file.namelist()
for member in members:
if member.startswith(relative_path.as_posix() ):
yield dummy_parent_path.joinpath(A )
__A = Path(A )
__A = _iter_archive_members(A ) if self.use_local_dummy_data else path.rglob("*" )
for file_path in file_paths:
if file_path.is_file() and not file_path.name.startswith((".", "__") ):
yield file_path.relative_to(A ).as_posix(), file_path.open("rb" )
def UpperCamelCase_ ( self : List[Any] ,A : Any ):
if not isinstance(A ,A ):
__A = [paths]
for path in paths:
if os.path.isfile(A ):
if os.path.basename(A ).startswith((".", "__") ):
return
yield path
else:
for dirpath, dirnames, filenames in os.walk(A ):
if os.path.basename(A ).startswith((".", "__") ):
continue
dirnames.sort()
for filename in sorted(A ):
if filename.startswith((".", "__") ):
continue
yield os.path.join(A ,A )
| 15 | 1 |
def UpperCAmelCase ( a_ , a_ ) -> str:
"""simple docstring"""
if a < 0 or b < 0:
raise ValueError("the value of both inputs must be positive" )
__A = str(bin(a_ ) )[2:] # remove the leading "0b"
__A = str(bin(a_ ) )[2:] # remove the leading "0b"
__A = max(len(a_ ) , len(a_ ) )
return "0b" + "".join(
str(int(char_a != char_b ) )
for char_a, char_b in zip(a_binary.zfill(a_ ) , b_binary.zfill(a_ ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 15 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
SCREAMING_SNAKE_CASE :List[Any] = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :List[str] = ['BartphoTokenizer']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bartpho import BartphoTokenizer
else:
import sys
SCREAMING_SNAKE_CASE :Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 15 | 1 |
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
if not isinstance(a_ , a_ ):
__A = F'''Input value of [number={number}] must be an integer'''
raise TypeError(a_ )
if number < 1:
__A = F'''Input value of [number={number}] must be > 0'''
raise ValueError(a_ )
__A = 1
for i in range(1 , a_ ):
current_number *= 4 * i - 2
current_number //= i + 1
return current_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 15 |
from typing import Dict, Optional
import numpy as np
import datasets
SCREAMING_SNAKE_CASE :List[Any] = '\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n'
SCREAMING_SNAKE_CASE :List[str] = '\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric("mean_iou")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n'
SCREAMING_SNAKE_CASE :str = '\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}'
def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ = None , a_ = False , ) -> Tuple:
"""simple docstring"""
if label_map is not None:
for old_id, new_id in label_map.items():
__A = new_id
# turn into Numpy arrays
__A = np.array(a_ )
__A = np.array(a_ )
if reduce_labels:
__A = 2_5_5
__A = label - 1
__A = 2_5_5
__A = label != ignore_index
__A = np.not_equal(a_ , a_ )
__A = pred_label[mask]
__A = np.array(a_ )[mask]
__A = pred_label[pred_label == label]
__A = np.histogram(a_ , bins=a_ , range=(0, num_labels - 1) )[0]
__A = np.histogram(a_ , bins=a_ , range=(0, num_labels - 1) )[0]
__A = np.histogram(a_ , bins=a_ , range=(0, num_labels - 1) )[0]
__A = area_pred_label + area_label - area_intersect
return area_intersect, area_union, area_pred_label, area_label
def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ = None , a_ = False , ) -> Union[str, Any]:
"""simple docstring"""
__A = np.zeros((num_labels,) , dtype=np.floataa )
__A = np.zeros((num_labels,) , dtype=np.floataa )
__A = np.zeros((num_labels,) , dtype=np.floataa )
__A = np.zeros((num_labels,) , dtype=np.floataa )
for result, gt_seg_map in zip(a_ , a_ ):
__A , __A , __A , __A = intersect_and_union(
a_ , a_ , a_ , a_ , a_ , a_ )
total_area_intersect += area_intersect
total_area_union += area_union
total_area_pred_label += area_pred_label
total_area_label += area_label
return total_area_intersect, total_area_union, total_area_pred_label, total_area_label
def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ = None , a_ = None , a_ = False , ) -> str:
"""simple docstring"""
__A , __A , __A , __A = total_intersect_and_union(
a_ , a_ , a_ , a_ , a_ , a_ )
# compute metrics
__A = {}
__A = total_area_intersect.sum() / total_area_label.sum()
__A = total_area_intersect / total_area_union
__A = total_area_intersect / total_area_label
__A = np.nanmean(a_ )
__A = np.nanmean(a_ )
__A = all_acc
__A = iou
__A = acc
if nan_to_num is not None:
__A = {metric: np.nan_to_num(a_ , nan=a_ ) for metric, metric_value in metrics.items()}
return metrics
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase ( datasets.Metric ):
'''simple docstring'''
def UpperCamelCase_ ( self : List[Any] ):
return datasets.MetricInfo(
description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(
# 1st Seq - height dim, 2nd - width dim
{
"predictions": datasets.Sequence(datasets.Sequence(datasets.Value("uint16" ) ) ),
"references": datasets.Sequence(datasets.Sequence(datasets.Value("uint16" ) ) ),
} ) ,reference_urls=[
"https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py"
] ,)
def UpperCamelCase_ ( self : int ,A : Optional[Any] ,A : Optional[Any] ,A : int ,A : bool ,A : Optional[int] = None ,A : Optional[Dict[int, int]] = None ,A : bool = False ,):
__A = mean_iou(
results=A ,gt_seg_maps=A ,num_labels=A ,ignore_index=A ,nan_to_num=A ,label_map=A ,reduce_labels=A ,)
return iou_result
| 15 | 1 |
from collections.abc import Callable
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : Optional[int] ,A : Callable | None = None ):
# Stores actual heap items.
__A = []
# Stores indexes of each item for supporting updates and deletion.
__A = {}
# Stores current size of heap.
__A = 0
# Stores function used to evaluate the score of an item on which basis ordering
# will be done.
__A = key or (lambda A : x)
def UpperCamelCase_ ( self : Union[str, Any] ,A : int ):
return int((i - 1) / 2 ) if i > 0 else None
def UpperCamelCase_ ( self : int ,A : int ):
__A = int(2 * i + 1 )
return left if 0 < left < self.size else None
def UpperCamelCase_ ( self : Optional[Any] ,A : int ):
__A = int(2 * i + 2 )
return right if 0 < right < self.size else None
def UpperCamelCase_ ( self : int ,A : int ,A : int ):
__A , __A = (
self.pos_map[self.arr[j][0]],
self.pos_map[self.arr[i][0]],
)
# Then swap the items in the list.
__A , __A = self.arr[j], self.arr[i]
def UpperCamelCase_ ( self : Tuple ,A : int ,A : int ):
return self.arr[i][1] < self.arr[j][1]
def UpperCamelCase_ ( self : Optional[Any] ,A : int ):
__A = self._left(A )
__A = self._right(A )
__A = i
if left is not None and not self._cmp(A ,A ):
__A = left
if right is not None and not self._cmp(A ,A ):
__A = right
return valid_parent
def UpperCamelCase_ ( self : Tuple ,A : int ):
__A = self._parent(A )
while parent is not None and not self._cmp(A ,A ):
self._swap(A ,A )
__A , __A = parent, self._parent(A )
def UpperCamelCase_ ( self : Tuple ,A : int ):
__A = self._get_valid_parent(A )
while valid_parent != index:
self._swap(A ,A )
__A , __A = valid_parent, self._get_valid_parent(A )
def UpperCamelCase_ ( self : List[Any] ,A : int ,A : int ):
if item not in self.pos_map:
return
__A = self.pos_map[item]
__A = [item, self.key(A )]
# Make sure heap is right in both up and down direction.
# Ideally only one of them will make any change.
self._heapify_up(A )
self._heapify_down(A )
def UpperCamelCase_ ( self : str ,A : int ):
if item not in self.pos_map:
return
__A = self.pos_map[item]
del self.pos_map[item]
__A = self.arr[self.size - 1]
__A = index
self.size -= 1
# Make sure heap is right in both up and down direction. Ideally only one
# of them will make any change- so no performance loss in calling both.
if self.size > index:
self._heapify_up(A )
self._heapify_down(A )
def UpperCamelCase_ ( self : Dict ,A : int ,A : int ):
__A = len(self.arr )
if arr_len == self.size:
self.arr.append([item, self.key(A )] )
else:
__A = [item, self.key(A )]
__A = self.size
self.size += 1
self._heapify_up(self.size - 1 )
def UpperCamelCase_ ( self : List[str] ):
return self.arr[0] if self.size else None
def UpperCamelCase_ ( self : Dict ):
__A = self.get_top()
if top_item_tuple:
self.delete_item(top_item_tuple[0] )
return top_item_tuple
def UpperCAmelCase ( ) -> None:
"""simple docstring"""
if __name__ == "__main__":
import doctest
doctest.testmod()
| 15 |
import os
import re
import unicodedata
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import is_torch_available, logging
if is_torch_available():
import torch
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
SCREAMING_SNAKE_CASE :List[str] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :List[str] = {'vocab_file': 'spiece.model'}
SCREAMING_SNAKE_CASE :Dict = {
'vocab_file': {
'AI-Sweden/gpt-sw3-126m': 'https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model',
'AI-Sweden/gpt-sw3-350m': 'https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model',
'AI-Sweden/gpt-sw3-1.6b': 'https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model',
'AI-Sweden/gpt-sw3-6.7b': 'https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model',
'AI-Sweden/gpt-sw3-20b': 'https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model',
}
}
SCREAMING_SNAKE_CASE :Optional[Any] = {
'AI-Sweden/gpt-sw3-126m': 2048,
'AI-Sweden/gpt-sw3-350m': 2048,
'AI-Sweden/gpt-sw3-1.6b': 2048,
'AI-Sweden/gpt-sw3-6.7b': 2048,
'AI-Sweden/gpt-sw3-20b': 2048,
}
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = ["input_ids", "attention_mask"]
def __init__( self : Optional[int] ,A : Optional[Any] ,A : Optional[int]=False ,A : int=False ,A : Union[str, Any]=False ,A : int=None ,A : Optional[Any]=None ,A : Union[str, Any]=None ,A : Optional[Any]=None ,A : Optional[Dict[str, Any]] = None ,**A : Tuple ,):
__A = {} if sp_model_kwargs is None else sp_model_kwargs
__A = kwargs.get("name_or_path" )
if name_or_path is None:
logger.warning(
"name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,"
" you are testing the model, this can safely be ignored" )
__A = "None"
# Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing
__A = "<|endoftext|>" if eos_token is None else eos_token
__A = "<unk>" if unk_token is None else unk_token
if "gpt-sw3-7b" in name_or_path:
__A = unk_token if pad_token is None else pad_token
__A = eos_token if bos_token is None else bos_token
else:
__A = "<pad>" if pad_token is None else pad_token
__A = "<s>" if bos_token is None else bos_token
super().__init__(
do_lower_case=A ,remove_space=A ,keep_accents=A ,bos_token=A ,eos_token=A ,unk_token=A ,pad_token=A ,sp_model_kwargs=self.sp_model_kwargs ,**A ,)
__A = do_lower_case
__A = remove_space
__A = keep_accents
__A = vocab_file
__A = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(A )
# Used for whitespace normalization in input texts
# fmt : off
__A = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", ""}
# fmt : on
# Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing
__A = re.compile(
f'''[{''.join(map(A ,list(range(0 ,9 ) ) + list(range(11 ,32 ) ) + list(range(1_27 ,1_60 ) ) + [1_60, 1_73, 82_03] ) )}]''' )
def __getstate__( self : Optional[int] ):
__A = self.__dict__.copy()
__A = None
return state
def __setstate__( self : Optional[Any] ,A : Union[str, Any] ):
__A = d
# for backward compatibility
if not hasattr(self ,"sp_model_kwargs" ):
__A = {}
__A = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
@property
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size
def UpperCamelCase_ ( self : List[str] ):
return len(self.sp_model )
def UpperCamelCase_ ( self : int ,A : str ):
__A = self.non_printing_characters_re.sub("" ,A )
# Normalize whitespaces
__A = "".join([char if char not in self.whitespaces else " " for char in text] )
# NFC Unicode normalization
__A = unicodedata.normalize("NFC" ,A )
return text
def UpperCamelCase_ ( self : Union[str, Any] ,A : str ,**A : Optional[int] ):
__A = self.preprocess_text(A )
return self.sp_model.encode(A ,out_type=A )
def UpperCamelCase_ ( self : Any ,A : str ):
return self.sp_model.PieceToId(A )
def UpperCamelCase_ ( self : Dict ,A : int ):
return self.sp_model.IdToPiece(A )
@staticmethod
def UpperCamelCase_ ( A : str ):
return out_string
def UpperCamelCase_ ( self : str ,A : List[str] ):
__A = []
__A = ""
__A = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
# TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(A ) + token
__A = True
__A = []
else:
current_sub_tokens.append(A )
__A = False
out_string += self.sp_model.decode(A )
return out_string
def UpperCamelCase_ ( self : str ):
__A = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def UpperCamelCase_ ( self : List[str] ,A : str ,A : Optional[str] = None ):
if not os.path.isdir(A ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__A = os.path.join(
A ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file ,A )
elif not os.path.isfile(self.vocab_file ):
with open(A ,"wb" ) as fi:
__A = self.sp_model.serialized_model_proto()
fi.write(A )
return (out_vocab_file,)
def UpperCamelCase_ ( self : Union[str, Any] ,A : Union[str, List[str]] ,A : Union[str, bool] = False ):
if isinstance(A ,A ):
__A = self.preprocess_text(A )
__A = self.sp_model.encode(A )
else:
__A = [self.preprocess_text(A ) for t in text]
__A = self.sp_model.encode(A )
if return_tensors is True or return_tensors == "pt":
__A = torch.tensor(A )
return token_ids
def UpperCamelCase_ ( self : List[Any] ,A : Union[int, List[int]] ):
return self.sp_model.decode(A )
def UpperCamelCase_ ( self : List[str] ,A : "Conversation" ):
__A = [f'''User: {text}''' if is_user else f'''Bot: {text}''' for is_user, text in conversation.iter_texts()]
__A = (
f'''{self.eos_token}{self.bos_token}''' + f'''{self.bos_token}'''.join(A ) + f'''{self.bos_token}Bot:'''
)
return self.encode(text=A )
| 15 | 1 |
from typing import Dict
import numpy as np
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException
if is_tf_available():
import tensorflow as tf
from ..tf_utils import stable_softmax
if is_torch_available():
import torch
SCREAMING_SNAKE_CASE :int = logging.get_logger(__name__)
@add_end_docstrings(
__SCREAMING_SNAKE_CASE , R"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " , )
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def UpperCamelCase_ ( self : str ,A : GenericTensor ):
if self.framework == "tf":
__A = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()
elif self.framework == "pt":
__A = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=A )
else:
raise ValueError("Unsupported framework" )
return masked_index
def UpperCamelCase_ ( self : int ,A : GenericTensor ):
__A = self.get_masked_index(A )
__A = np.prod(masked_index.shape )
if numel < 1:
raise PipelineException(
"fill-mask" ,self.model.base_model_prefix ,f'''No mask_token ({self.tokenizer.mask_token}) found on the input''' ,)
def UpperCamelCase_ ( self : int ,A : GenericTensor ):
if isinstance(A ,A ):
for model_input in model_inputs:
self._ensure_exactly_one_mask_token(model_input["input_ids"][0] )
else:
for input_ids in model_inputs["input_ids"]:
self._ensure_exactly_one_mask_token(A )
def UpperCamelCase_ ( self : List[str] ,A : Optional[Any] ,A : Dict=None ,**A : Dict ):
if return_tensors is None:
__A = self.framework
__A = self.tokenizer(A ,return_tensors=A )
self.ensure_exactly_one_mask_token(A )
return model_inputs
def UpperCamelCase_ ( self : Union[str, Any] ,A : int ):
__A = self.model(**A )
__A = model_inputs["input_ids"]
return model_outputs
def UpperCamelCase_ ( self : Any ,A : int ,A : Any=5 ,A : Any=None ):
# Cap top_k if there are targets
if target_ids is not None and target_ids.shape[0] < top_k:
__A = target_ids.shape[0]
__A = model_outputs["input_ids"][0]
__A = model_outputs["logits"]
if self.framework == "tf":
__A = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0]
__A = outputs.numpy()
__A = outputs[0, masked_index, :]
__A = stable_softmax(A ,axis=-1 )
if target_ids is not None:
__A = tf.gather_nd(tf.squeeze(A ,0 ) ,target_ids.reshape(-1 ,1 ) )
__A = tf.expand_dims(A ,0 )
__A = tf.math.top_k(A ,k=A )
__A , __A = topk.values.numpy(), topk.indices.numpy()
else:
__A = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=A ).squeeze(-1 )
# Fill mask pipeline supports only one ${mask_token} per sample
__A = outputs[0, masked_index, :]
__A = logits.softmax(dim=-1 )
if target_ids is not None:
__A = probs[..., target_ids]
__A , __A = probs.topk(A )
__A = []
__A = values.shape[0] == 1
for i, (_values, _predictions) in enumerate(zip(values.tolist() ,predictions.tolist() ) ):
__A = []
for v, p in zip(_values ,_predictions ):
# Copy is important since we're going to modify this array in place
__A = input_ids.numpy().copy()
if target_ids is not None:
__A = target_ids[p].tolist()
__A = p
# Filter padding out:
__A = tokens[np.where(tokens != self.tokenizer.pad_token_id )]
# Originally we skip special tokens to give readable output.
# For multi masks though, the other [MASK] would be removed otherwise
# making the output look odd, so we add them back
__A = self.tokenizer.decode(A ,skip_special_tokens=A )
__A = {"score": v, "token": p, "token_str": self.tokenizer.decode([p] ), "sequence": sequence}
row.append(A )
result.append(A )
if single_mask:
return result[0]
return result
def UpperCamelCase_ ( self : Optional[int] ,A : Optional[Any] ,A : Any=None ):
if isinstance(A ,A ):
__A = [targets]
try:
__A = self.tokenizer.get_vocab()
except Exception:
__A = {}
__A = []
for target in targets:
__A = vocab.get(A ,A )
if id_ is None:
__A = self.tokenizer(
A ,add_special_tokens=A ,return_attention_mask=A ,return_token_type_ids=A ,max_length=1 ,truncation=A ,)["input_ids"]
if len(A ) == 0:
logger.warning(
f'''The specified target token `{target}` does not exist in the model vocabulary. '''
"We cannot replace it with anything meaningful, ignoring it" )
continue
__A = input_ids[0]
# XXX: If users encounter this pass
# it becomes pretty slow, so let's make sure
# The warning enables them to fix the input to
# get faster performance.
logger.warning(
f'''The specified target token `{target}` does not exist in the model vocabulary. '''
f'''Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.''' )
target_ids.append(id_ )
__A = list(set(A ) )
if len(A ) == 0:
raise ValueError("At least one target must be provided when passed." )
__A = np.array(A )
return target_ids
def UpperCamelCase_ ( self : Dict ,A : Union[str, Any]=None ,A : int=None ):
__A = {}
if targets is not None:
__A = self.get_target_ids(A ,A )
__A = target_ids
if top_k is not None:
__A = top_k
if self.tokenizer.mask_token_id is None:
raise PipelineException(
"fill-mask" ,self.model.base_model_prefix ,"The tokenizer does not define a `mask_token`." )
return {}, {}, postprocess_params
def __call__( self : Optional[Any] ,A : Optional[int] ,*A : Dict ,**A : Tuple ):
__A = super().__call__(A ,**A )
if isinstance(A ,A ) and len(A ) == 1:
return outputs[0]
return outputs
| 15 |
import numpy as np
def UpperCAmelCase ( a_ , a_ , a_ = 1E-12 , a_ = 1_0_0 , ) -> tuple[float, np.ndarray]:
"""simple docstring"""
assert np.shape(a_ )[0] == np.shape(a_ )[1]
# Ensure proper dimensionality.
assert np.shape(a_ )[0] == np.shape(a_ )[0]
# Ensure inputs are either both complex or both real
assert np.iscomplexobj(a_ ) == np.iscomplexobj(a_ )
__A = np.iscomplexobj(a_ )
if is_complex:
# Ensure complex input_matrix is Hermitian
assert np.array_equal(a_ , input_matrix.conj().T )
# Set convergence to False. Will define convergence when we exceed max_iterations
# or when we have small changes from one iteration to next.
__A = False
__A = 0
__A = 0
__A = 1E12
while not convergence:
# Multiple matrix by the vector.
__A = np.dot(a_ , a_ )
# Normalize the resulting output vector.
__A = w / np.linalg.norm(a_ )
# Find rayleigh quotient
# (faster than usual b/c we know vector is normalized already)
__A = vector.conj().T if is_complex else vector.T
__A = np.dot(a_ , np.dot(a_ , a_ ) )
# Check convergence.
__A = np.abs(lambda_ - lambda_previous ) / lambda_
iterations += 1
if error <= error_tol or iterations >= max_iterations:
__A = True
__A = lambda_
if is_complex:
__A = np.real(lambda_ )
return lambda_, vector
def UpperCAmelCase ( ) -> None:
"""simple docstring"""
__A = np.array([[4_1, 4, 2_0], [4, 2_6, 3_0], [2_0, 3_0, 5_0]] )
__A = np.array([4_1, 4, 2_0] )
__A = real_input_matrix.astype(np.complexaaa )
__A = np.triu(1J * complex_input_matrix , 1 )
complex_input_matrix += imag_matrix
complex_input_matrix += -1 * imag_matrix.T
__A = np.array([4_1, 4, 2_0] ).astype(np.complexaaa )
for problem_type in ["real", "complex"]:
if problem_type == "real":
__A = real_input_matrix
__A = real_vector
elif problem_type == "complex":
__A = complex_input_matrix
__A = complex_vector
# Our implementation.
__A , __A = power_iteration(a_ , a_ )
# Numpy implementation.
# Get eigenvalues and eigenvectors using built-in numpy
# eigh (eigh used for symmetric or hermetian matrices).
__A , __A = np.linalg.eigh(a_ )
# Last eigenvalue is the maximum one.
__A = eigen_values[-1]
# Last column in this matrix is eigenvector corresponding to largest eigenvalue.
__A = eigen_vectors[:, -1]
# Check our implementation and numpy gives close answers.
assert np.abs(eigen_value - eigen_value_max ) <= 1E-6
# Take absolute values element wise of each eigenvector.
# as they are only unique to a minus sign.
assert np.linalg.norm(np.abs(a_ ) - np.abs(a_ ) ) <= 1E-6
if __name__ == "__main__":
import doctest
doctest.testmod()
test_power_iteration()
| 15 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
SCREAMING_SNAKE_CASE :List[Any] = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :Dict = [
'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST',
'ViTMSNModel',
'ViTMSNForImageClassification',
'ViTMSNPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit_msn import (
VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTMSNForImageClassification,
ViTMSNModel,
ViTMSNPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE :List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 15 |
from typing import Optional, Tuple, Union
import tensorflow as tf
from ...activations_tf import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_tf_outputs import (
TFBaseModelOutputWithNoAttention,
TFBaseModelOutputWithPoolingAndNoAttention,
TFSequenceClassifierOutput,
)
from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs
from ...tf_utils import shape_list
from ...utils import logging
from .configuration_regnet import RegNetConfig
SCREAMING_SNAKE_CASE :str = logging.get_logger(__name__)
# General docstring
SCREAMING_SNAKE_CASE :str = 'RegNetConfig'
# Base docstring
SCREAMING_SNAKE_CASE :List[str] = 'facebook/regnet-y-040'
SCREAMING_SNAKE_CASE :Union[str, Any] = [1, 1088, 7, 7]
# Image classification docstring
SCREAMING_SNAKE_CASE :Optional[int] = 'facebook/regnet-y-040'
SCREAMING_SNAKE_CASE :Any = 'tabby, tabby cat'
SCREAMING_SNAKE_CASE :Optional[int] = [
'facebook/regnet-y-040',
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : Tuple ,A : int ,A : int = 3 ,A : int = 1 ,A : int = 1 ,A : Optional[str] = "relu" ,**A : Dict ,):
super().__init__(**A )
# The padding and conv has been verified in
# https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb
__A = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 )
__A = tf.keras.layers.ConvaD(
filters=A ,kernel_size=A ,strides=A ,padding="VALID" ,groups=A ,use_bias=A ,name="convolution" ,)
__A = tf.keras.layers.BatchNormalization(epsilon=1E-5 ,momentum=0.9 ,name="normalization" )
__A = ACTaFN[activation] if activation is not None else tf.identity
def UpperCamelCase_ ( self : List[Any] ,A : Any ):
__A = self.convolution(self.padding(A ) )
__A = self.normalization(A )
__A = self.activation(A )
return hidden_state
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : Tuple ,A : RegNetConfig ,**A : str ):
super().__init__(**A )
__A = config.num_channels
__A = TFRegNetConvLayer(
out_channels=config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ,name="embedder" ,)
def UpperCamelCase_ ( self : Tuple ,A : Optional[Any] ):
__A = shape_list(A )[1]
if tf.executing_eagerly() and num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration." )
# When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format.
# So change the input format from `NCHW` to `NHWC`.
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
__A = tf.transpose(A ,perm=(0, 2, 3, 1) )
__A = self.embedder(A )
return hidden_state
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : Optional[int] ,A : int ,A : int = 2 ,**A : Tuple ):
super().__init__(**A )
__A = tf.keras.layers.ConvaD(
filters=A ,kernel_size=1 ,strides=A ,use_bias=A ,name="convolution" )
__A = tf.keras.layers.BatchNormalization(epsilon=1E-5 ,momentum=0.9 ,name="normalization" )
def UpperCamelCase_ ( self : Union[str, Any] ,A : tf.Tensor ,A : bool = False ):
return self.normalization(self.convolution(A ) ,training=A )
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : Dict ,A : int ,A : int ,**A : str ):
super().__init__(**A )
__A = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A ,name="pooler" )
__A = [
tf.keras.layers.ConvaD(filters=A ,kernel_size=1 ,activation="relu" ,name="attention.0" ),
tf.keras.layers.ConvaD(filters=A ,kernel_size=1 ,activation="sigmoid" ,name="attention.2" ),
]
def UpperCamelCase_ ( self : Dict ,A : List[Any] ):
# [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels]
__A = self.pooler(A )
for layer_module in self.attention:
__A = layer_module(A )
__A = hidden_state * pooled
return hidden_state
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : List[str] ,A : RegNetConfig ,A : int ,A : int ,A : int = 1 ,**A : Optional[int] ):
super().__init__(**A )
__A = in_channels != out_channels or stride != 1
__A = max(1 ,out_channels // config.groups_width )
__A = (
TFRegNetShortCut(A ,stride=A ,name="shortcut" )
if should_apply_shortcut
else tf.keras.layers.Activation("linear" ,name="shortcut" )
)
# `self.layers` instead of `self.layer` because that is a reserved argument.
__A = [
TFRegNetConvLayer(A ,kernel_size=1 ,activation=config.hidden_act ,name="layer.0" ),
TFRegNetConvLayer(
A ,stride=A ,groups=A ,activation=config.hidden_act ,name="layer.1" ),
TFRegNetConvLayer(A ,kernel_size=1 ,activation=A ,name="layer.2" ),
]
__A = ACTaFN[config.hidden_act]
def UpperCamelCase_ ( self : int ,A : Optional[int] ):
__A = hidden_state
for layer_module in self.layers:
__A = layer_module(A )
__A = self.shortcut(A )
hidden_state += residual
__A = self.activation(A )
return hidden_state
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : List[Any] ,A : RegNetConfig ,A : int ,A : int ,A : int = 1 ,**A : str ):
super().__init__(**A )
__A = in_channels != out_channels or stride != 1
__A = max(1 ,out_channels // config.groups_width )
__A = (
TFRegNetShortCut(A ,stride=A ,name="shortcut" )
if should_apply_shortcut
else tf.keras.layers.Activation("linear" ,name="shortcut" )
)
__A = [
TFRegNetConvLayer(A ,kernel_size=1 ,activation=config.hidden_act ,name="layer.0" ),
TFRegNetConvLayer(
A ,stride=A ,groups=A ,activation=config.hidden_act ,name="layer.1" ),
TFRegNetSELayer(A ,reduced_channels=int(round(in_channels / 4 ) ) ,name="layer.2" ),
TFRegNetConvLayer(A ,kernel_size=1 ,activation=A ,name="layer.3" ),
]
__A = ACTaFN[config.hidden_act]
def UpperCamelCase_ ( self : Dict ,A : Any ):
__A = hidden_state
for layer_module in self.layers:
__A = layer_module(A )
__A = self.shortcut(A )
hidden_state += residual
__A = self.activation(A )
return hidden_state
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : List[str] ,A : RegNetConfig ,A : int ,A : int ,A : int = 2 ,A : int = 2 ,**A : Optional[int] ):
super().__init__(**A )
__A = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer
__A = [
# downsampling is done in the first layer with stride of 2
layer(A ,A ,A ,stride=A ,name="layers.0" ),
*[layer(A ,A ,A ,name=f'''layers.{i+1}''' ) for i in range(depth - 1 )],
]
def UpperCamelCase_ ( self : Any ,A : List[str] ):
for layer_module in self.layers:
__A = layer_module(A )
return hidden_state
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : Any ,A : RegNetConfig ,**A : List[str] ):
super().__init__(**A )
__A = []
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
TFRegNetStage(
A ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,name="stages.0" ,) )
__A = zip(config.hidden_sizes ,config.hidden_sizes[1:] )
for i, ((in_channels, out_channels), depth) in enumerate(zip(A ,config.depths[1:] ) ):
self.stages.append(TFRegNetStage(A ,A ,A ,depth=A ,name=f'''stages.{i+1}''' ) )
def UpperCamelCase_ ( self : List[str] ,A : tf.Tensor ,A : bool = False ,A : bool = True ):
__A = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
__A = hidden_states + (hidden_state,)
__A = stage_module(A )
if output_hidden_states:
__A = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return TFBaseModelOutputWithNoAttention(last_hidden_state=A ,hidden_states=A )
@keras_serializable
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
snake_case_ = RegNetConfig
def __init__( self : int ,A : Optional[int] ,**A : Dict ):
super().__init__(**A )
__A = config
__A = TFRegNetEmbeddings(A ,name="embedder" )
__A = TFRegNetEncoder(A ,name="encoder" )
__A = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A ,name="pooler" )
@unpack_inputs
def UpperCamelCase_ ( self : Tuple ,A : tf.Tensor ,A : Optional[bool] = None ,A : Optional[bool] = None ,A : bool = False ,):
__A = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__A = return_dict if return_dict is not None else self.config.use_return_dict
__A = self.embedder(A ,training=A )
__A = self.encoder(
A ,output_hidden_states=A ,return_dict=A ,training=A )
__A = encoder_outputs[0]
__A = self.pooler(A )
# Change to NCHW output format have uniformity in the modules
__A = tf.transpose(A ,perm=(0, 3, 1, 2) )
__A = tf.transpose(A ,perm=(0, 3, 1, 2) )
# Change the other hidden state outputs to NCHW as well
if output_hidden_states:
__A = tuple([tf.transpose(A ,perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=A ,pooler_output=A ,hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states ,)
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = RegNetConfig
snake_case_ = "regnet"
snake_case_ = "pixel_values"
@property
def UpperCamelCase_ ( self : Optional[Any] ):
return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) ,dtype=tf.floataa )}
SCREAMING_SNAKE_CASE :Dict = R'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n'
SCREAMING_SNAKE_CASE :Dict = R'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n'
@add_start_docstrings(
"The bare RegNet model outputting raw features without any specific head on top." , __SCREAMING_SNAKE_CASE , )
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : List[Any] ,A : RegNetConfig ,*A : List[Any] ,**A : str ):
super().__init__(A ,*A ,**A )
__A = TFRegNetMainLayer(A ,name="regnet" )
@unpack_inputs
@add_start_docstrings_to_model_forward(A )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC ,output_type=A ,config_class=_CONFIG_FOR_DOC ,modality="vision" ,expected_output=_EXPECTED_OUTPUT_SHAPE ,)
def UpperCamelCase_ ( self : Tuple ,A : tf.Tensor ,A : Optional[bool] = None ,A : Optional[bool] = None ,A : int=False ,):
__A = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__A = return_dict if return_dict is not None else self.config.use_return_dict
__A = self.regnet(
pixel_values=A ,output_hidden_states=A ,return_dict=A ,training=A ,)
if not return_dict:
return (outputs[0],) + outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=outputs.last_hidden_state ,pooler_output=outputs.pooler_output ,hidden_states=outputs.hidden_states ,)
@add_start_docstrings(
"\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , __SCREAMING_SNAKE_CASE , )
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : Optional[int] ,A : RegNetConfig ,*A : str ,**A : Tuple ):
super().__init__(A ,*A ,**A )
__A = config.num_labels
__A = TFRegNetMainLayer(A ,name="regnet" )
# classification head
__A = [
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(config.num_labels ,name="classifier.1" ) if config.num_labels > 0 else tf.identity,
]
@unpack_inputs
@add_start_docstrings_to_model_forward(A )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=A ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,)
def UpperCamelCase_ ( self : List[str] ,A : tf.Tensor = None ,A : tf.Tensor = None ,A : bool = None ,A : bool = None ,A : Union[str, Any]=False ,):
__A = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__A = return_dict if return_dict is not None else self.config.use_return_dict
__A = self.regnet(
A ,output_hidden_states=A ,return_dict=A ,training=A )
__A = outputs.pooler_output if return_dict else outputs[1]
__A = self.classifier[0](A )
__A = self.classifier[1](A )
__A = None if labels is None else self.hf_compute_loss(labels=A ,logits=A )
if not return_dict:
__A = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(loss=A ,logits=A ,hidden_states=outputs.hidden_states )
| 15 | 1 |
SCREAMING_SNAKE_CASE :Union[str, Any] = 0 # The first color of the flag.
SCREAMING_SNAKE_CASE :Optional[int] = 1 # The second color of the flag.
SCREAMING_SNAKE_CASE :str = 2 # The third color of the flag.
SCREAMING_SNAKE_CASE :List[Any] = (red, white, blue)
def UpperCAmelCase ( a_ ) -> list:
"""simple docstring"""
if not sequence:
return []
if len(a_ ) == 1:
return list(a_ )
__A = 0
__A = len(a_ ) - 1
__A = 0
while mid <= high:
if sequence[mid] == colors[0]:
__A , __A = sequence[mid], sequence[low]
low += 1
mid += 1
elif sequence[mid] == colors[1]:
mid += 1
elif sequence[mid] == colors[2]:
__A , __A = sequence[high], sequence[mid]
high -= 1
else:
__A = F'''The elements inside the sequence must contains only {colors} values'''
raise ValueError(a_ )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
SCREAMING_SNAKE_CASE :int = input('Enter numbers separated by commas:\n').strip()
SCREAMING_SNAKE_CASE :Any = [int(item.strip()) for item in user_input.split(',')]
print(f'''{dutch_national_flag_sort(unsorted)}''')
| 15 |
import math
def UpperCAmelCase ( a_ , a_ = 0 , a_ = 0 ) -> list:
"""simple docstring"""
__A = end or len(a_ )
for i in range(a_ , a_ ):
__A = i
__A = array[i]
while temp_index != start and temp_index_value < array[temp_index - 1]:
__A = array[temp_index - 1]
temp_index -= 1
__A = temp_index_value
return array
def UpperCAmelCase ( a_ , a_ , a_ ) -> None: # Max Heap
"""simple docstring"""
__A = index
__A = 2 * index + 1 # Left Node
__A = 2 * index + 2 # Right Node
if left_index < heap_size and array[largest] < array[left_index]:
__A = left_index
if right_index < heap_size and array[largest] < array[right_index]:
__A = right_index
if largest != index:
__A , __A = array[largest], array[index]
heapify(a_ , a_ , a_ )
def UpperCAmelCase ( a_ ) -> list:
"""simple docstring"""
__A = len(a_ )
for i in range(n // 2 , -1 , -1 ):
heapify(a_ , a_ , a_ )
for i in range(n - 1 , 0 , -1 ):
__A , __A = array[0], array[i]
heapify(a_ , 0 , a_ )
return array
def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> int:
"""simple docstring"""
if (array[first_index] > array[middle_index]) != (
array[first_index] > array[last_index]
):
return array[first_index]
elif (array[middle_index] > array[first_index]) != (
array[middle_index] > array[last_index]
):
return array[middle_index]
else:
return array[last_index]
def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> int:
"""simple docstring"""
__A = low
__A = high
while True:
while array[i] < pivot:
i += 1
j -= 1
while pivot < array[j]:
j -= 1
if i >= j:
return i
__A , __A = array[j], array[i]
i += 1
def UpperCAmelCase ( a_ ) -> list:
"""simple docstring"""
if len(a_ ) == 0:
return array
__A = 2 * math.ceil(math.loga(len(a_ ) ) )
__A = 1_6
return intro_sort(a_ , 0 , len(a_ ) , a_ , a_ )
def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ ) -> list:
"""simple docstring"""
while end - start > size_threshold:
if max_depth == 0:
return heap_sort(a_ )
max_depth -= 1
__A = median_of_a(a_ , a_ , start + ((end - start) // 2) + 1 , end - 1 )
__A = partition(a_ , a_ , a_ , a_ )
intro_sort(a_ , a_ , a_ , a_ , a_ )
__A = p
return insertion_sort(a_ , a_ , a_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
SCREAMING_SNAKE_CASE :List[Any] = input('Enter numbers separated by a comma : ').strip()
SCREAMING_SNAKE_CASE :str = [float(item) for item in user_input.split(',')]
print(sort(unsorted))
| 15 | 1 |
from __future__ import annotations
from fractions import Fraction
from math import gcd, sqrt
def UpperCAmelCase ( a_ ) -> bool:
"""simple docstring"""
__A = int(number**0.5 )
return number == sq * sq
def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ , a_ ) -> tuple[int, int]:
"""simple docstring"""
__A = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den
__A = x_den * y_den * z_den
__A = gcd(a_ , a_ )
top //= hcf
bottom //= hcf
return top, bottom
def UpperCAmelCase ( a_ = 3_5 ) -> int:
"""simple docstring"""
__A = set()
__A = 42
__A = Fraction(0 )
__A = 42
for x_num in range(1 , order + 1 ):
for x_den in range(x_num + 1 , order + 1 ):
for y_num in range(1 , order + 1 ):
for y_den in range(y_num + 1 , order + 1 ):
# n=1
__A = x_num * y_den + x_den * y_num
__A = x_den * y_den
__A = gcd(a_ , a_ )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
__A = add_three(
a_ , a_ , a_ , a_ , a_ , a_ )
unique_s.add(a_ )
# n=2
__A = (
x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num
)
__A = x_den * x_den * y_den * y_den
if is_sq(a_ ) and is_sq(a_ ):
__A = int(sqrt(a_ ) )
__A = int(sqrt(a_ ) )
__A = gcd(a_ , a_ )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
__A = add_three(
a_ , a_ , a_ , a_ , a_ , a_ )
unique_s.add(a_ )
# n=-1
__A = x_num * y_num
__A = x_den * y_num + x_num * y_den
__A = gcd(a_ , a_ )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
__A = add_three(
a_ , a_ , a_ , a_ , a_ , a_ )
unique_s.add(a_ )
# n=2
__A = x_num * x_num * y_num * y_num
__A = (
x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den
)
if is_sq(a_ ) and is_sq(a_ ):
__A = int(sqrt(a_ ) )
__A = int(sqrt(a_ ) )
__A = gcd(a_ , a_ )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
__A = add_three(
a_ , a_ , a_ , a_ , a_ , a_ )
unique_s.add(a_ )
for num, den in unique_s:
total += Fraction(a_ , a_ )
return total.denominator + total.numerator
if __name__ == "__main__":
print(f'''{solution() = }''')
| 15 |
import dataclasses
import json
import sys
import types
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError
from copy import copy
from enum import Enum
from inspect import isclass
from pathlib import Path
from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints
import yaml
SCREAMING_SNAKE_CASE :Optional[int] = NewType('DataClass', Any)
SCREAMING_SNAKE_CASE :int = NewType('DataClassType', Any)
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
if isinstance(a_ , a_ ):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise ArgumentTypeError(
F'''Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).''' )
def UpperCAmelCase ( a_ ) -> Callable[[str], Any]:
"""simple docstring"""
__A = {str(a_ ): choice for choice in choices}
return lambda a_ : str_to_choice.get(a_ , a_ )
def UpperCAmelCase ( *,
a_ = None , a_ = None , a_ = dataclasses.MISSING , a_ = dataclasses.MISSING , a_ = None , **a_ , ) -> dataclasses.Field:
"""simple docstring"""
if metadata is None:
# Important, don't use as default param in function signature because dict is mutable and shared across function calls
__A = {}
if aliases is not None:
__A = aliases
if help is not None:
__A = help
return dataclasses.field(metadata=a_ , default=a_ , default_factory=a_ , **a_ )
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = 42
def __init__( self : Union[str, Any] ,A : Union[DataClassType, Iterable[DataClassType]] ,**A : List[Any] ):
# To make the default appear when using --help
if "formatter_class" not in kwargs:
__A = ArgumentDefaultsHelpFormatter
super().__init__(**A )
if dataclasses.is_dataclass(A ):
__A = [dataclass_types]
__A = list(A )
for dtype in self.dataclass_types:
self._add_dataclass_arguments(A )
@staticmethod
def UpperCamelCase_ ( A : ArgumentParser ,A : dataclasses.Field ):
__A = f'''--{field.name}'''
__A = field.metadata.copy()
# field.metadata is not used at all by Data Classes,
# it is provided as a third-party extension mechanism.
if isinstance(field.type ,A ):
raise RuntimeError(
"Unresolved type detected, which should have been done with the help of "
"`typing.get_type_hints` method by default" )
__A = kwargs.pop("aliases" ,[] )
if isinstance(A ,A ):
__A = [aliases]
__A = getattr(field.type ,"__origin__" ,field.type )
if origin_type is Union or (hasattr(A ,"UnionType" ) and isinstance(A ,types.UnionType )):
if str not in field.type.__args__ and (
len(field.type.__args__ ) != 2 or type(A ) not in field.type.__args__
):
raise ValueError(
"Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because"
" the argument parser only supports one type per argument."
f''' Problem encountered in field \'{field.name}\'.''' )
if type(A ) not in field.type.__args__:
# filter `str` in Union
__A = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1]
__A = getattr(field.type ,"__origin__" ,field.type )
elif bool not in field.type.__args__:
# filter `NoneType` in Union (except for `Union[bool, NoneType]`)
__A = (
field.type.__args__[0] if isinstance(A ,field.type.__args__[1] ) else field.type.__args__[1]
)
__A = getattr(field.type ,"__origin__" ,field.type )
# A variable to store kwargs for a boolean field, if needed
# so that we can init a `no_*` complement argument (see below)
__A = {}
if origin_type is Literal or (isinstance(field.type ,A ) and issubclass(field.type ,A )):
if origin_type is Literal:
__A = field.type.__args__
else:
__A = [x.value for x in field.type]
__A = make_choice_type_function(kwargs["choices"] )
if field.default is not dataclasses.MISSING:
__A = field.default
else:
__A = True
elif field.type is bool or field.type == Optional[bool]:
# Copy the currect kwargs to use to instantiate a `no_*` complement argument below.
# We do not initialize it here because the `no_*` alternative must be instantiated after the real argument
__A = copy(A )
# Hack because type=bool in argparse does not behave as we want.
__A = string_to_bool
if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING):
# Default value is False if we have no default when of type bool.
__A = False if field.default is dataclasses.MISSING else field.default
# This is the value that will get picked if we don't include --field_name in any way
__A = default
# This tells argparse we accept 0 or 1 value after --field_name
__A = "?"
# This is the value that will get picked if we do --field_name (without value)
__A = True
elif isclass(A ) and issubclass(A ,A ):
__A = field.type.__args__[0]
__A = "+"
if field.default_factory is not dataclasses.MISSING:
__A = field.default_factory()
elif field.default is dataclasses.MISSING:
__A = True
else:
__A = field.type
if field.default is not dataclasses.MISSING:
__A = field.default
elif field.default_factory is not dataclasses.MISSING:
__A = field.default_factory()
else:
__A = True
parser.add_argument(A ,*A ,**A )
# Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added.
# Order is important for arguments with the same destination!
# We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down
# here and we do not need those changes/additional keys.
if field.default is True and (field.type is bool or field.type == Optional[bool]):
__A = False
parser.add_argument(f'''--no_{field.name}''' ,action="store_false" ,dest=field.name ,**A )
def UpperCamelCase_ ( self : Union[str, Any] ,A : DataClassType ):
if hasattr(A ,"_argument_group_name" ):
__A = self.add_argument_group(dtype._argument_group_name )
else:
__A = self
try:
__A = get_type_hints(A )
except NameError:
raise RuntimeError(
f'''Type resolution failed for {dtype}. Try declaring the class in global scope or '''
"removing line of `from __future__ import annotations` which opts in Postponed "
"Evaluation of Annotations (PEP 563)" )
except TypeError as ex:
# Remove this block when we drop Python 3.9 support
if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(A ):
__A = ".".join(map(A ,sys.version_info[:3] ) )
raise RuntimeError(
f'''Type resolution failed for {dtype} on Python {python_version}. Try removing '''
"line of `from __future__ import annotations` which opts in union types as "
"`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To "
"support Python versions that lower than 3.10, you need to use "
"`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of "
"`X | None`." ) from ex
raise
for field in dataclasses.fields(A ):
if not field.init:
continue
__A = type_hints[field.name]
self._parse_dataclass_field(A ,A )
def UpperCamelCase_ ( self : Union[str, Any] ,A : List[Any]=None ,A : List[Any]=False ,A : Optional[Any]=True ,A : Union[str, Any]=None ,A : Union[str, Any]=None ,):
if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )):
__A = []
if args_filename:
args_files.append(Path(A ) )
elif look_for_args_file and len(sys.argv ):
args_files.append(Path(sys.argv[0] ).with_suffix(".args" ) )
# args files specified via command line flag should overwrite default args files so we add them last
if args_file_flag:
# Create special parser just to extract the args_file_flag values
__A = ArgumentParser()
args_file_parser.add_argument(A ,type=A ,action="append" )
# Use only remaining args for further parsing (remove the args_file_flag)
__A , __A = args_file_parser.parse_known_args(args=A )
__A = vars(A ).get(args_file_flag.lstrip("-" ) ,A )
if cmd_args_file_paths:
args_files.extend([Path(A ) for p in cmd_args_file_paths] )
__A = []
for args_file in args_files:
if args_file.exists():
file_args += args_file.read_text().split()
# in case of duplicate arguments the last one has precedence
# args specified via the command line should overwrite args from files, so we add them last
__A = file_args + args if args is not None else file_args + sys.argv[1:]
__A , __A = self.parse_known_args(args=A )
__A = []
for dtype in self.dataclass_types:
__A = {f.name for f in dataclasses.fields(A ) if f.init}
__A = {k: v for k, v in vars(A ).items() if k in keys}
for k in keys:
delattr(A ,A )
__A = dtype(**A )
outputs.append(A )
if len(namespace.__dict__ ) > 0:
# additional namespace.
outputs.append(A )
if return_remaining_strings:
return (*outputs, remaining_args)
else:
if remaining_args:
raise ValueError(f'''Some specified arguments are not used by the HfArgumentParser: {remaining_args}''' )
return (*outputs,)
def UpperCamelCase_ ( self : Dict ,A : Dict[str, Any] ,A : bool = False ):
__A = set(args.keys() )
__A = []
for dtype in self.dataclass_types:
__A = {f.name for f in dataclasses.fields(A ) if f.init}
__A = {k: v for k, v in args.items() if k in keys}
unused_keys.difference_update(inputs.keys() )
__A = dtype(**A )
outputs.append(A )
if not allow_extra_keys and unused_keys:
raise ValueError(f'''Some keys are not used by the HfArgumentParser: {sorted(A )}''' )
return tuple(A )
def UpperCamelCase_ ( self : List[str] ,A : str ,A : bool = False ):
with open(Path(A ) ,encoding="utf-8" ) as open_json_file:
__A = json.loads(open_json_file.read() )
__A = self.parse_dict(A ,allow_extra_keys=A )
return tuple(A )
def UpperCamelCase_ ( self : int ,A : str ,A : bool = False ):
__A = self.parse_dict(yaml.safe_load(Path(A ).read_text() ) ,allow_extra_keys=A )
return tuple(A )
| 15 | 1 |
import PIL.Image
import PIL.ImageOps
from packaging import version
from PIL import Image
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'):
SCREAMING_SNAKE_CASE :Any = {
'linear': PIL.Image.Resampling.BILINEAR,
'bilinear': PIL.Image.Resampling.BILINEAR,
'bicubic': PIL.Image.Resampling.BICUBIC,
'lanczos': PIL.Image.Resampling.LANCZOS,
'nearest': PIL.Image.Resampling.NEAREST,
}
else:
SCREAMING_SNAKE_CASE :int = {
'linear': PIL.Image.LINEAR,
'bilinear': PIL.Image.BILINEAR,
'bicubic': PIL.Image.BICUBIC,
'lanczos': PIL.Image.LANCZOS,
'nearest': PIL.Image.NEAREST,
}
def UpperCAmelCase ( a_ ) -> Optional[Any]:
"""simple docstring"""
__A = (images / 2 + 0.5).clamp(0 , 1 )
__A = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
__A = numpy_to_pil(a_ )
return images
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
if images.ndim == 3:
__A = images[None, ...]
__A = (images * 2_5_5).round().astype("uint8" )
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
__A = [Image.fromarray(image.squeeze() , mode="L" ) for image in images]
else:
__A = [Image.fromarray(a_ ) for image in images]
return pil_images
| 15 |
SCREAMING_SNAKE_CASE :Any = 256
# Modulus to hash a string
SCREAMING_SNAKE_CASE :Union[str, Any] = 100_0003
def UpperCAmelCase ( a_ , a_ ) -> bool:
"""simple docstring"""
__A = len(a_ )
__A = len(a_ )
if p_len > t_len:
return False
__A = 0
__A = 0
__A = 1
# Calculating the hash of pattern and substring of text
for i in range(a_ ):
__A = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus
__A = (ord(text[i] ) + text_hash * alphabet_size) % modulus
if i == p_len - 1:
continue
__A = (modulus_power * alphabet_size) % modulus
for i in range(0 , t_len - p_len + 1 ):
if text_hash == p_hash and text[i : i + p_len] == pattern:
return True
if i == t_len - p_len:
continue
# Calculate the https://en.wikipedia.org/wiki/Rolling_hash
__A = (
(text_hash - ord(text[i] ) * modulus_power) * alphabet_size
+ ord(text[i + p_len] )
) % modulus
return False
def UpperCAmelCase ( ) -> None:
"""simple docstring"""
__A = "abc1abc12"
__A = "alskfjaldsabc1abc1abc12k23adsfabcabc"
__A = "alskfjaldsk23adsfabcabc"
assert rabin_karp(a_ , a_ ) and not rabin_karp(a_ , a_ )
# Test 2)
__A = "ABABX"
__A = "ABABZABABYABABX"
assert rabin_karp(a_ , a_ )
# Test 3)
__A = "AAAB"
__A = "ABAAAAAB"
assert rabin_karp(a_ , a_ )
# Test 4)
__A = "abcdabcy"
__A = "abcxabcdabxabcdabcdabcy"
assert rabin_karp(a_ , a_ )
# Test 5)
__A = "Lü"
__A = "Lüsai"
assert rabin_karp(a_ , a_ )
__A = "Lue"
assert not rabin_karp(a_ , a_ )
print("Success." )
if __name__ == "__main__":
test_rabin_karp()
| 15 | 1 |
from __future__ import annotations
from typing import Any
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
pass
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : Any ,A : Any ):
__A = data
__A = None
def __iter__( self : Any ):
__A = self
__A = []
while node:
if node in visited:
raise ContainsLoopError
visited.append(A )
yield node.data
__A = node.next_node
@property
def UpperCamelCase_ ( self : Optional[Any] ):
try:
list(self )
return False
except ContainsLoopError:
return True
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :Optional[Any] = Node(1)
SCREAMING_SNAKE_CASE :int = Node(2)
SCREAMING_SNAKE_CASE :List[Any] = Node(3)
SCREAMING_SNAKE_CASE :Union[str, Any] = Node(4)
print(root_node.has_loop) # False
SCREAMING_SNAKE_CASE :Any = root_node.next_node
print(root_node.has_loop) # True
SCREAMING_SNAKE_CASE :List[Any] = Node(5)
SCREAMING_SNAKE_CASE :List[Any] = Node(6)
SCREAMING_SNAKE_CASE :Tuple = Node(5)
SCREAMING_SNAKE_CASE :Optional[Any] = Node(6)
print(root_node.has_loop) # False
SCREAMING_SNAKE_CASE :Tuple = Node(1)
print(root_node.has_loop) # False
| 15 |
import argparse
import json
import os
import torch
from transformers.file_utils import has_file
from diffusers import UNetaDConditionModel, UNetaDModel
SCREAMING_SNAKE_CASE :Union[str, Any] = False
SCREAMING_SNAKE_CASE :Any = True
SCREAMING_SNAKE_CASE :Tuple = False
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :Tuple = argparse.ArgumentParser()
parser.add_argument(
'--repo_path',
default=None,
type=str,
required=True,
help='The config json file corresponding to the architecture.',
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
SCREAMING_SNAKE_CASE :Union[str, Any] = parser.parse_args()
SCREAMING_SNAKE_CASE :Dict = {
'image_size': 'sample_size',
'num_res_blocks': 'layers_per_block',
'block_channels': 'block_out_channels',
'down_blocks': 'down_block_types',
'up_blocks': 'up_block_types',
'downscale_freq_shift': 'freq_shift',
'resnet_num_groups': 'norm_num_groups',
'resnet_act_fn': 'act_fn',
'resnet_eps': 'norm_eps',
'num_head_channels': 'attention_head_dim',
}
SCREAMING_SNAKE_CASE :Optional[int] = {
'time_steps': 'time_proj',
'mid': 'mid_block',
'downsample_blocks': 'down_blocks',
'upsample_blocks': 'up_blocks',
}
SCREAMING_SNAKE_CASE :int = '' if has_file(args.repo_path, 'config.json') else 'unet'
with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader:
SCREAMING_SNAKE_CASE :Dict = reader.read()
SCREAMING_SNAKE_CASE :List[str] = json.loads(text)
if do_only_config:
for key in config_parameters_to_change.keys():
config.pop(key, None)
if has_file(args.repo_path, 'config.json'):
SCREAMING_SNAKE_CASE :Optional[int] = UNetaDModel(**config)
else:
SCREAMING_SNAKE_CASE :Optional[Any] = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel
SCREAMING_SNAKE_CASE :List[str] = class_name(**config)
if do_only_config:
model.save_config(os.path.join(args.repo_path, subfolder))
SCREAMING_SNAKE_CASE :List[str] = dict(model.config)
if do_only_renaming:
for key, value in config_parameters_to_change.items():
if key in config:
SCREAMING_SNAKE_CASE :Optional[Any] = config[key]
del config[key]
SCREAMING_SNAKE_CASE :Optional[Any] = [k.replace('UNetRes', '') for k in config['down_block_types']]
SCREAMING_SNAKE_CASE :List[Any] = [k.replace('UNetRes', '') for k in config['up_block_types']]
if do_only_weights:
SCREAMING_SNAKE_CASE :Tuple = torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin'))
SCREAMING_SNAKE_CASE :Any = {}
for param_key, param_value in state_dict.items():
if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'):
continue
SCREAMING_SNAKE_CASE :List[str] = False
for key, new_key in key_parameters_to_change.items():
if not has_changed and param_key.split('.')[0] == key:
SCREAMING_SNAKE_CASE :List[Any] = param_value
SCREAMING_SNAKE_CASE :str = True
if not has_changed:
SCREAMING_SNAKE_CASE :List[str] = param_value
model.load_state_dict(new_state_dict)
model.save_pretrained(os.path.join(args.repo_path, subfolder))
| 15 | 1 |
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import sys
import warnings
from os.path import abspath, dirname, join
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
SCREAMING_SNAKE_CASE :str = abspath(join(dirname(dirname(__file__)), 'src'))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action='ignore', category=FutureWarning)
def UpperCAmelCase ( a_ ) -> List[Any]:
"""simple docstring"""
from diffusers.utils.testing_utils import pytest_addoption_shared
pytest_addoption_shared(a_ )
def UpperCAmelCase ( a_ ) -> List[str]:
"""simple docstring"""
from diffusers.utils.testing_utils import pytest_terminal_summary_main
__A = terminalreporter.config.getoption("--make-reports" )
if make_reports:
pytest_terminal_summary_main(a_ , id=a_ )
| 15 |
import argparse
import math
import traceback
import dateutil.parser as date_parser
import requests
def UpperCAmelCase ( a_ ) -> str:
"""simple docstring"""
__A = {}
__A = job["started_at"]
__A = job["completed_at"]
__A = date_parser.parse(a_ )
__A = date_parser.parse(a_ )
__A = round((end_datetime - start_datetime).total_seconds() / 60.0 )
__A = start
__A = end
__A = duration_in_min
return job_info
def UpperCAmelCase ( a_ , a_=None ) -> str:
"""simple docstring"""
__A = None
if token is not None:
__A = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''}
__A = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100'''
__A = requests.get(a_ , headers=a_ ).json()
__A = {}
try:
job_time.update({job["name"]: extract_time_from_single_job(a_ ) for job in result["jobs"]} )
__A = math.ceil((result["total_count"] - 1_0_0) / 1_0_0 )
for i in range(a_ ):
__A = requests.get(url + F'''&page={i + 2}''' , headers=a_ ).json()
job_time.update({job["name"]: extract_time_from_single_job(a_ ) for job in result["jobs"]} )
return job_time
except Exception:
print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' )
return {}
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.')
SCREAMING_SNAKE_CASE :Optional[int] = parser.parse_args()
SCREAMING_SNAKE_CASE :Union[str, Any] = get_job_time(args.workflow_run_id)
SCREAMING_SNAKE_CASE :Optional[int] = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True))
for k, v in job_time.items():
print(f'''{k}: {v["duration"]}''')
| 15 | 1 |
import os
from tempfile import TemporaryDirectory
from unittest import TestCase
import pytest
from absl.testing import parameterized
from datasets import config
from datasets.arrow_reader import HF_GCP_BASE_URL
from datasets.builder import DatasetBuilder
from datasets.dataset_dict import IterableDatasetDict
from datasets.iterable_dataset import IterableDataset
from datasets.load import dataset_module_factory, import_main_class
from datasets.utils.file_utils import cached_path
SCREAMING_SNAKE_CASE :Any = [
{'dataset': 'wikipedia', 'config_name': '20220301.de'},
{'dataset': 'wikipedia', 'config_name': '20220301.en'},
{'dataset': 'wikipedia', 'config_name': '20220301.fr'},
{'dataset': 'wikipedia', 'config_name': '20220301.frr'},
{'dataset': 'wikipedia', 'config_name': '20220301.it'},
{'dataset': 'wikipedia', 'config_name': '20220301.simple'},
{'dataset': 'snli', 'config_name': 'plain_text'},
{'dataset': 'eli5', 'config_name': 'LFQA_reddit'},
{'dataset': 'wiki40b', 'config_name': 'en'},
{'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.nq.compressed'},
{'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.nq.no_index'},
{'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.multiset.no_index'},
{'dataset': 'natural_questions', 'config_name': 'default'},
]
def UpperCAmelCase ( a_=True ) -> Optional[Any]:
"""simple docstring"""
if with_config:
return [
{
"testcase_name": d["dataset"] + "/" + d["config_name"],
"dataset": d["dataset"],
"config_name": d["config_name"],
}
for d in DATASETS_ON_HF_GCP
]
else:
return [
{"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP}
]
@parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=__SCREAMING_SNAKE_CASE ) )
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = None
snake_case_ = None
def UpperCamelCase_ ( self : List[Any] ,A : Optional[int] ,A : List[Any] ):
with TemporaryDirectory() as tmp_dir:
__A = dataset_module_factory(A ,cache_dir=A )
__A = import_main_class(dataset_module.module_path ,dataset=A )
__A = builder_cls(
cache_dir=A ,config_name=A ,hash=dataset_module.hash ,)
__A = "/".join(
[
HF_GCP_BASE_URL,
builder_instance._relative_data_dir(with_hash=A ).replace(os.sep ,"/" ),
config.DATASET_INFO_FILENAME,
] )
__A = cached_path(A ,cache_dir=A )
self.assertTrue(os.path.exists(A ) )
@pytest.mark.integration
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
__A = tmp_path_factory.mktemp("test_hf_gcp" ) / "test_wikipedia_simple"
__A = dataset_module_factory("wikipedia" , cache_dir=a_ )
__A = import_main_class(dataset_module.module_path )
__A = builder_cls(
cache_dir=a_ , config_name="20220301.frr" , hash=dataset_module.hash , )
# use the HF cloud storage, not the original download_and_prepare that uses apache-beam
__A = None
builder_instance.download_and_prepare()
__A = builder_instance.as_dataset()
assert ds
@pytest.mark.integration
def UpperCAmelCase ( a_ ) -> Tuple:
"""simple docstring"""
__A = dataset_module_factory("wikipedia" , cache_dir=a_ )
__A = import_main_class(dataset_module.module_path , dataset=a_ )
__A = builder_cls(
cache_dir=a_ , config_name="20220301.frr" , hash=dataset_module.hash , )
__A = builder_instance.as_streaming_dataset()
assert ds
assert isinstance(a_ , a_ )
assert "train" in ds
assert isinstance(ds["train"] , a_ )
assert next(iter(ds["train"] ) )
| 15 |
import argparse
import os
import shutil
import torch
from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer
def UpperCAmelCase ( a_ ) -> List[str]:
"""simple docstring"""
__A = args.pruning_method
__A = args.threshold
__A = args.model_name_or_path.rstrip("/" )
__A = args.target_model_path
print(F'''Load fine-pruned model from {model_name_or_path}''' )
__A = torch.load(os.path.join(a_ , "pytorch_model.bin" ) )
__A = {}
for name, tensor in model.items():
if "embeddings" in name or "LayerNorm" in name or "pooler" in name:
__A = tensor
print(F'''Copied layer {name}''' )
elif "classifier" in name or "qa_output" in name:
__A = tensor
print(F'''Copied layer {name}''' )
elif "bias" in name:
__A = tensor
print(F'''Copied layer {name}''' )
else:
if pruning_method == "magnitude":
__A = MagnitudeBinarizer.apply(inputs=a_ , threshold=a_ )
__A = tensor * mask
print(F'''Pruned layer {name}''' )
elif pruning_method == "topK":
if "mask_scores" in name:
continue
__A = name[:-6]
__A = model[F'''{prefix_}mask_scores''']
__A = TopKBinarizer.apply(a_ , a_ )
__A = tensor * mask
print(F'''Pruned layer {name}''' )
elif pruning_method == "sigmoied_threshold":
if "mask_scores" in name:
continue
__A = name[:-6]
__A = model[F'''{prefix_}mask_scores''']
__A = ThresholdBinarizer.apply(a_ , a_ , a_ )
__A = tensor * mask
print(F'''Pruned layer {name}''' )
elif pruning_method == "l0":
if "mask_scores" in name:
continue
__A = name[:-6]
__A = model[F'''{prefix_}mask_scores''']
__A , __A = -0.1, 1.1
__A = torch.sigmoid(a_ )
__A = s * (r - l) + l
__A = s_bar.clamp(min=0.0 , max=1.0 )
__A = tensor * mask
print(F'''Pruned layer {name}''' )
else:
raise ValueError("Unknown pruning method" )
if target_model_path is None:
__A = os.path.join(
os.path.dirname(a_ ) , F'''bertarized_{os.path.basename(a_ )}''' )
if not os.path.isdir(a_ ):
shutil.copytree(a_ , a_ )
print(F'''\nCreated folder {target_model_path}''' )
torch.save(a_ , os.path.join(a_ , "pytorch_model.bin" ) )
print("\nPruned model saved! See you later!" )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :Tuple = argparse.ArgumentParser()
parser.add_argument(
'--pruning_method',
choices=['l0', 'magnitude', 'topK', 'sigmoied_threshold'],
type=str,
required=True,
help=(
'Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,'
' sigmoied_threshold = Soft movement pruning)'
),
)
parser.add_argument(
'--threshold',
type=float,
required=False,
help=(
'For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.'
'For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.'
'Not needed for `l0`'
),
)
parser.add_argument(
'--model_name_or_path',
type=str,
required=True,
help='Folder containing the model that was previously fine-pruned',
)
parser.add_argument(
'--target_model_path',
default=None,
type=str,
required=False,
help='Folder containing the model that was previously fine-pruned',
)
SCREAMING_SNAKE_CASE :str = parser.parse_args()
main(args)
| 15 | 1 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE :str = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :int = '▁'
SCREAMING_SNAKE_CASE :Dict = {'vocab_file': 'sentencepiece.bpe.model'}
SCREAMING_SNAKE_CASE :List[str] = {
'vocab_file': {
'facebook/mbart-large-50-one-to-many-mmt': (
'https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model'
),
}
}
SCREAMING_SNAKE_CASE :Optional[int] = {
'facebook/mbart-large-50-one-to-many-mmt': 1024,
}
# fmt: off
SCREAMING_SNAKE_CASE :Any = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN', 'af_ZA', 'az_AZ', 'bn_IN', 'fa_IR', 'he_IL', 'hr_HR', 'id_ID', 'ka_GE', 'km_KH', 'mk_MK', 'ml_IN', 'mn_MN', 'mr_IN', 'pl_PL', 'ps_AF', 'pt_XX', 'sv_SE', 'sw_KE', 'ta_IN', 'te_IN', 'th_TH', 'tl_XX', 'uk_UA', 'ur_PK', 'xh_ZA', 'gl_ES', 'sl_SI']
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = ["input_ids", "attention_mask"]
snake_case_ = []
snake_case_ = []
def __init__( self : Union[str, Any] ,A : int ,A : List[Any]=None ,A : List[Any]=None ,A : Optional[Any]="</s>" ,A : int="</s>" ,A : Any="<s>" ,A : Tuple="<unk>" ,A : Dict="<pad>" ,A : Optional[Any]="<mask>" ,A : Optional[Dict[str, Any]] = None ,**A : int ,):
# Mask token behave like a normal word, i.e. include the space before it
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else mask_token
__A = {} if sp_model_kwargs is None else sp_model_kwargs
__A = kwargs.get("additional_special_tokens" ,[] )
kwargs["additional_special_tokens"] += [
code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"]
]
super().__init__(
src_lang=A ,tgt_lang=A ,eos_token=A ,unk_token=A ,sep_token=A ,cls_token=A ,pad_token=A ,mask_token=A ,sp_model_kwargs=self.sp_model_kwargs ,**A ,)
__A = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(A ) )
__A = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# Mimic fairseq token-to-id alignment for the first 4 token
__A = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
__A = 1
__A = len(self.sp_model )
__A = {
code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(A )
}
__A = {v: k for k, v in self.lang_code_to_id.items()}
__A = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset
self.fairseq_tokens_to_ids.update(self.lang_code_to_id )
__A = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
__A = src_lang if src_lang is not None else "en_XX"
__A = self.lang_code_to_id[self._src_lang]
__A = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def UpperCamelCase_ ( self : Optional[Any] ):
return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token
@property
def UpperCamelCase_ ( self : Dict ):
return self._src_lang
@src_lang.setter
def UpperCamelCase_ ( self : Optional[int] ,A : str ):
__A = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def __getstate__( self : Optional[Any] ):
__A = self.__dict__.copy()
__A = None
return state
def __setstate__( self : int ,A : Dict ):
__A = d
# for backward compatibility
if not hasattr(self ,"sp_model_kwargs" ):
__A = {}
__A = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def UpperCamelCase_ ( self : List[Any] ):
__A = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def UpperCamelCase_ ( self : Dict ,A : str ):
return self.sp_model.encode(A ,out_type=A )
def UpperCamelCase_ ( self : str ,A : str ):
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
__A = self.sp_model.PieceToId(A )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def UpperCamelCase_ ( self : Optional[Any] ,A : int ):
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def UpperCamelCase_ ( self : str ,A : Any ):
__A = []
__A = ""
__A = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(A ) + token
__A = True
__A = []
else:
current_sub_tokens.append(A )
__A = False
out_string += self.sp_model.decode(A )
return out_string.strip()
def UpperCamelCase_ ( self : str ,A : str ,A : Optional[str] = None ):
if not os.path.isdir(A ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__A = os.path.join(
A ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file ,A )
elif not os.path.isfile(self.vocab_file ):
with open(A ,"wb" ) as fi:
__A = self.sp_model.serialized_model_proto()
fi.write(A )
return (out_vocab_file,)
def UpperCamelCase_ ( self : Optional[Any] ,A : List[int] ,A : Optional[List[int]] = None ,A : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=A ,token_ids_a=A ,already_has_special_tokens=A )
__A = [1] * len(self.prefix_tokens )
__A = [1] * len(self.suffix_tokens )
if token_ids_a is None:
return prefix_ones + ([0] * len(A )) + suffix_ones
return prefix_ones + ([0] * len(A )) + ([0] * len(A )) + suffix_ones
def UpperCamelCase_ ( self : List[Any] ,A : List[int] ,A : Optional[List[int]] = None ):
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def UpperCamelCase_ ( self : Dict ,A : Any ,A : str ,A : Optional[str] ,A : Optional[str] ,**A : Optional[int] ):
if src_lang is None or tgt_lang is None:
raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" )
__A = src_lang
__A = self(A ,add_special_tokens=A ,return_tensors=A ,**A )
__A = self.convert_tokens_to_ids(A )
__A = tgt_lang_id
return inputs
def UpperCamelCase_ ( self : int ,A : List[str] ,A : str = "en_XX" ,A : Optional[List[str]] = None ,A : str = "ro_RO" ,**A : str ,):
__A = src_lang
__A = tgt_lang
return super().prepare_seqaseq_batch(A ,A ,**A )
def UpperCamelCase_ ( self : Tuple ):
return self.set_src_lang_special_tokens(self.src_lang )
def UpperCamelCase_ ( self : Dict ):
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def UpperCamelCase_ ( self : Optional[Any] ,A : str ):
__A = self.lang_code_to_id[src_lang]
__A = [self.cur_lang_code_id]
__A = [self.eos_token_id]
def UpperCamelCase_ ( self : Dict ,A : str ):
__A = self.lang_code_to_id[tgt_lang]
__A = [self.cur_lang_code_id]
__A = [self.eos_token_id]
| 15 |
import os
import re
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE :List[Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :int = {'vocab_file': 'spiece.model'}
SCREAMING_SNAKE_CASE :Union[str, Any] = {
'vocab_file': {
'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model',
'google/bigbird-roberta-large': (
'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model'
),
'google/bigbird-base-trivia-itc': (
'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model'
),
}
}
SCREAMING_SNAKE_CASE :int = {
'google/bigbird-roberta-base': 4096,
'google/bigbird-roberta-large': 4096,
'google/bigbird-base-trivia-itc': 4096,
}
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = ["input_ids", "attention_mask"]
snake_case_ = []
def __init__( self : Any ,A : List[str] ,A : str="<unk>" ,A : int="<s>" ,A : Union[str, Any]="</s>" ,A : List[str]="<pad>" ,A : int="[SEP]" ,A : Optional[Any]="[MASK]" ,A : Tuple="[CLS]" ,A : Optional[Dict[str, Any]] = None ,**A : Any ,):
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else bos_token
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else eos_token
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else unk_token
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else pad_token
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else cls_token
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else mask_token
__A = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=A ,eos_token=A ,unk_token=A ,pad_token=A ,sep_token=A ,mask_token=A ,cls_token=A ,sp_model_kwargs=self.sp_model_kwargs ,**A ,)
__A = vocab_file
__A = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(A )
@property
def UpperCamelCase_ ( self : List[str] ):
return self.sp_model.get_piece_size()
def UpperCamelCase_ ( self : Optional[Any] ):
__A = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Optional[int] ):
__A = self.__dict__.copy()
__A = None
return state
def __setstate__( self : str ,A : Optional[Any] ):
__A = d
# for backward compatibility
if not hasattr(self ,"sp_model_kwargs" ):
__A = {}
__A = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def UpperCamelCase_ ( self : Any ,A : str ):
return self.sp_model.encode(A ,out_type=A )
def UpperCamelCase_ ( self : List[str] ,A : Tuple ):
return self.sp_model.piece_to_id(A )
def UpperCamelCase_ ( self : List[Any] ,A : Tuple ):
__A = self.sp_model.IdToPiece(A )
return token
def UpperCamelCase_ ( self : List[Any] ,A : int ):
__A = []
__A = ""
__A = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(A ) + token
__A = True
__A = []
else:
current_sub_tokens.append(A )
__A = False
out_string += self.sp_model.decode(A )
return out_string.strip()
def UpperCamelCase_ ( self : Tuple ,A : List[int] ,A : bool = False ,A : bool = None ,A : bool = True ,**A : Union[str, Any] ,):
__A = kwargs.pop("use_source_tokenizer" ,A )
__A = self.convert_ids_to_tokens(A ,skip_special_tokens=A )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
__A = []
__A = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(A ) )
__A = []
sub_texts.append(A )
else:
current_sub_text.append(A )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(A ) )
# Mimic the behavior of the Rust tokenizer:
# No space before [MASK] and [SEP]
if spaces_between_special_tokens:
__A = re.sub(R" (\[(MASK|SEP)\])" ,R"\1" ," ".join(A ) )
else:
__A = "".join(A )
__A = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
__A = self.clean_up_tokenization(A )
return clean_text
else:
return text
def UpperCamelCase_ ( self : str ,A : str ,A : Optional[str] = None ):
if not os.path.isdir(A ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__A = os.path.join(
A ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file ,A )
elif not os.path.isfile(self.vocab_file ):
with open(A ,"wb" ) as fi:
__A = self.sp_model.serialized_model_proto()
fi.write(A )
return (out_vocab_file,)
def UpperCamelCase_ ( self : Dict ,A : List[int] ,A : Optional[List[int]] = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__A = [self.cls_token_id]
__A = [self.sep_token_id]
return cls + token_ids_a + sep + token_ids_a + sep
def UpperCamelCase_ ( self : Optional[int] ,A : List[int] ,A : Optional[List[int]] = None ,A : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=A ,token_ids_a=A ,already_has_special_tokens=A )
if token_ids_a is None:
return [1] + ([0] * len(A )) + [1]
return [1] + ([0] * len(A )) + [1] + ([0] * len(A )) + [1]
def UpperCamelCase_ ( self : Any ,A : List[int] ,A : Optional[List[int]] = None ):
__A = [self.sep_token_id]
__A = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
| 15 | 1 |
def UpperCAmelCase ( a_ , a_ ) -> int:
"""simple docstring"""
return 1 if input_a == input_a else 0
def UpperCAmelCase ( ) -> None:
"""simple docstring"""
assert xnor_gate(0 , 0 ) == 1
assert xnor_gate(0 , 1 ) == 0
assert xnor_gate(1 , 0 ) == 0
assert xnor_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(xnor_gate(0, 0))
print(xnor_gate(0, 1))
print(xnor_gate(1, 0))
print(xnor_gate(1, 1))
| 15 |
import PIL.Image
import PIL.ImageOps
from packaging import version
from PIL import Image
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'):
SCREAMING_SNAKE_CASE :Any = {
'linear': PIL.Image.Resampling.BILINEAR,
'bilinear': PIL.Image.Resampling.BILINEAR,
'bicubic': PIL.Image.Resampling.BICUBIC,
'lanczos': PIL.Image.Resampling.LANCZOS,
'nearest': PIL.Image.Resampling.NEAREST,
}
else:
SCREAMING_SNAKE_CASE :int = {
'linear': PIL.Image.LINEAR,
'bilinear': PIL.Image.BILINEAR,
'bicubic': PIL.Image.BICUBIC,
'lanczos': PIL.Image.LANCZOS,
'nearest': PIL.Image.NEAREST,
}
def UpperCAmelCase ( a_ ) -> Optional[Any]:
"""simple docstring"""
__A = (images / 2 + 0.5).clamp(0 , 1 )
__A = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
__A = numpy_to_pil(a_ )
return images
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
if images.ndim == 3:
__A = images[None, ...]
__A = (images * 2_5_5).round().astype("uint8" )
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
__A = [Image.fromarray(image.squeeze() , mode="L" ) for image in images]
else:
__A = [Image.fromarray(a_ ) for image in images]
return pil_images
| 15 | 1 |
import datasets
from .evaluate import evaluate
SCREAMING_SNAKE_CASE :List[str] = '\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n'
SCREAMING_SNAKE_CASE :Optional[int] = '\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n'
SCREAMING_SNAKE_CASE :Optional[Any] = '\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the CUAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\n \'aupr\': Area Under the Precision-Recall curve\n \'prec_at_80_recall\': Precision at 80% recall\n \'prec_at_90_recall\': Precision at 90% recall\nExamples:\n >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> cuad_metric = datasets.load_metric("cuad")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase ( datasets.Metric ):
'''simple docstring'''
def UpperCamelCase_ ( self : Tuple ):
return datasets.MetricInfo(
description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(
{
"predictions": {
"id": datasets.Value("string" ),
"prediction_text": datasets.features.Sequence(datasets.Value("string" ) ),
},
"references": {
"id": datasets.Value("string" ),
"answers": datasets.features.Sequence(
{
"text": datasets.Value("string" ),
"answer_start": datasets.Value("int32" ),
} ),
},
} ) ,codebase_urls=["https://www.atticusprojectai.org/cuad"] ,reference_urls=["https://www.atticusprojectai.org/cuad"] ,)
def UpperCamelCase_ ( self : Dict ,A : Optional[int] ,A : Dict ):
__A = {prediction["id"]: prediction["prediction_text"] for prediction in predictions}
__A = [
{
"paragraphs": [
{
"qas": [
{
"answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]],
"id": ref["id"],
}
for ref in references
]
}
]
}
]
__A = evaluate(dataset=A ,predictions=A )
return score
| 15 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
SCREAMING_SNAKE_CASE :Optional[Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :List[Any] = {
'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json',
# See all YOLOS models at https://huggingface.co/models?filter=yolos
}
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = "yolos"
def __init__( self : Any ,A : Optional[Any]=7_68 ,A : Dict=12 ,A : Any=12 ,A : str=30_72 ,A : Any="gelu" ,A : str=0.0 ,A : List[str]=0.0 ,A : Dict=0.02 ,A : int=1E-12 ,A : Tuple=[5_12, 8_64] ,A : List[Any]=16 ,A : str=3 ,A : str=True ,A : Any=1_00 ,A : Dict=True ,A : Dict=False ,A : Tuple=1 ,A : Union[str, Any]=5 ,A : Optional[Any]=2 ,A : Union[str, Any]=5 ,A : int=2 ,A : int=0.1 ,**A : List[str] ,):
super().__init__(**A )
__A = hidden_size
__A = num_hidden_layers
__A = num_attention_heads
__A = intermediate_size
__A = hidden_act
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = initializer_range
__A = layer_norm_eps
__A = image_size
__A = patch_size
__A = num_channels
__A = qkv_bias
__A = num_detection_tokens
__A = use_mid_position_embeddings
__A = auxiliary_loss
# Hungarian matcher
__A = class_cost
__A = bbox_cost
__A = giou_cost
# Loss coefficients
__A = bbox_loss_coefficient
__A = giou_loss_coefficient
__A = eos_coefficient
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = version.parse("1.11" )
@property
def UpperCamelCase_ ( self : str ):
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def UpperCamelCase_ ( self : List[Any] ):
return 1E-4
@property
def UpperCamelCase_ ( self : Optional[Any] ):
return 12
| 15 | 1 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
SCREAMING_SNAKE_CASE :List[Any] = logging.get_logger(__name__)
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = ["pixel_values"]
def __init__( self : Optional[int] ,A : bool = True ,A : Dict[str, int] = None ,A : PILImageResampling = PILImageResampling.BICUBIC ,A : bool = True ,A : Union[int, float] = 1 / 2_55 ,A : bool = True ,A : Optional[Union[float, List[float]]] = None ,A : Optional[Union[float, List[float]]] = None ,A : bool = True ,**A : str ,):
super().__init__(**A )
__A = size if size is not None else {"height": 3_84, "width": 3_84}
__A = get_size_dict(A ,default_to_square=A )
__A = do_resize
__A = size
__A = resample
__A = do_rescale
__A = rescale_factor
__A = do_normalize
__A = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
__A = image_std if image_std is not None else OPENAI_CLIP_STD
__A = do_convert_rgb
def UpperCamelCase_ ( self : Any ,A : np.ndarray ,A : Dict[str, int] ,A : PILImageResampling = PILImageResampling.BICUBIC ,A : Optional[Union[str, ChannelDimension]] = None ,**A : Optional[Any] ,):
__A = get_size_dict(A ,default_to_square=A )
if "height" not in size or "width" not in size:
raise ValueError(f'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' )
__A = (size["height"], size["width"])
return resize(A ,size=A ,resample=A ,data_format=A ,**A )
def UpperCamelCase_ ( self : Any ,A : np.ndarray ,A : Union[int, float] ,A : Optional[Union[str, ChannelDimension]] = None ,**A : Any ,):
return rescale(A ,scale=A ,data_format=A ,**A )
def UpperCamelCase_ ( self : Any ,A : np.ndarray ,A : Union[float, List[float]] ,A : Union[float, List[float]] ,A : Optional[Union[str, ChannelDimension]] = None ,**A : Optional[Any] ,):
return normalize(A ,mean=A ,std=A ,data_format=A ,**A )
def UpperCamelCase_ ( self : Optional[Any] ,A : ImageInput ,A : Optional[bool] = None ,A : Optional[Dict[str, int]] = None ,A : PILImageResampling = None ,A : Optional[bool] = None ,A : Optional[float] = None ,A : Optional[bool] = None ,A : Optional[Union[float, List[float]]] = None ,A : Optional[Union[float, List[float]]] = None ,A : Optional[Union[str, TensorType]] = None ,A : bool = None ,A : ChannelDimension = ChannelDimension.FIRST ,**A : Dict ,):
__A = do_resize if do_resize is not None else self.do_resize
__A = resample if resample is not None else self.resample
__A = do_rescale if do_rescale is not None else self.do_rescale
__A = rescale_factor if rescale_factor is not None else self.rescale_factor
__A = do_normalize if do_normalize is not None else self.do_normalize
__A = image_mean if image_mean is not None else self.image_mean
__A = image_std if image_std is not None else self.image_std
__A = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
__A = size if size is not None else self.size
__A = get_size_dict(A ,default_to_square=A )
__A = make_list_of_images(A )
if not valid_images(A ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
__A = [convert_to_rgb(A ) for image in images]
# All transformations expect numpy arrays.
__A = [to_numpy_array(A ) for image in images]
if do_resize:
__A = [self.resize(image=A ,size=A ,resample=A ) for image in images]
if do_rescale:
__A = [self.rescale(image=A ,scale=A ) for image in images]
if do_normalize:
__A = [self.normalize(image=A ,mean=A ,std=A ) for image in images]
__A = [to_channel_dimension_format(A ,A ) for image in images]
__A = BatchFeature(data={"pixel_values": images} ,tensor_type=A )
return encoded_outputs
| 15 |
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from packaging import version
from .. import __version__
from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD
from .doc import (
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
copy_func,
replace_return_docstrings,
)
from .generic import (
ContextManagers,
ExplicitEnum,
ModelOutput,
PaddingStrategy,
TensorType,
add_model_info_to_auto_map,
cached_property,
can_return_loss,
expand_dims,
find_labels,
flatten_dict,
infer_framework,
is_jax_tensor,
is_numpy_array,
is_tensor,
is_tf_symbolic_tensor,
is_tf_tensor,
is_torch_device,
is_torch_dtype,
is_torch_tensor,
reshape,
squeeze,
strtobool,
tensor_size,
to_numpy,
to_py_obj,
transpose,
working_or_temp_dir,
)
from .hub import (
CLOUDFRONT_DISTRIB_PREFIX,
DISABLE_TELEMETRY,
HF_MODULES_CACHE,
HUGGINGFACE_CO_PREFIX,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
PYTORCH_PRETRAINED_BERT_CACHE,
PYTORCH_TRANSFORMERS_CACHE,
S3_BUCKET_PREFIX,
TRANSFORMERS_CACHE,
TRANSFORMERS_DYNAMIC_MODULE_NAME,
EntryNotFoundError,
PushToHubMixin,
RepositoryNotFoundError,
RevisionNotFoundError,
cached_file,
default_cache_path,
define_sagemaker_information,
download_url,
extract_commit_hash,
get_cached_models,
get_file_from_repo,
get_full_repo_name,
has_file,
http_user_agent,
is_offline_mode,
is_remote_url,
move_cache,
send_example_telemetry,
try_to_load_from_cache,
)
from .import_utils import (
ENV_VARS_TRUE_AND_AUTO_VALUES,
ENV_VARS_TRUE_VALUES,
TORCH_FX_REQUIRED_VERSION,
USE_JAX,
USE_TF,
USE_TORCH,
DummyObject,
OptionalDependencyNotAvailable,
_LazyModule,
ccl_version,
direct_transformers_import,
get_torch_version,
is_accelerate_available,
is_apex_available,
is_bitsandbytes_available,
is_bsa_available,
is_coloredlogs_available,
is_cython_available,
is_datasets_available,
is_decord_available,
is_detectrona_available,
is_faiss_available,
is_flax_available,
is_ftfy_available,
is_in_notebook,
is_ipex_available,
is_jieba_available,
is_jumanpp_available,
is_kenlm_available,
is_keras_nlp_available,
is_librosa_available,
is_natten_available,
is_ninja_available,
is_onnx_available,
is_openai_available,
is_optimum_available,
is_pandas_available,
is_peft_available,
is_phonemizer_available,
is_protobuf_available,
is_psutil_available,
is_pyanvml_available,
is_pyctcdecode_available,
is_pytesseract_available,
is_pytest_available,
is_pytorch_quantization_available,
is_rjieba_available,
is_sacremoses_available,
is_safetensors_available,
is_sagemaker_dp_enabled,
is_sagemaker_mp_enabled,
is_scipy_available,
is_sentencepiece_available,
is_seqio_available,
is_sklearn_available,
is_soundfile_availble,
is_spacy_available,
is_speech_available,
is_sudachi_available,
is_tensorflow_probability_available,
is_tensorflow_text_available,
is_tfaonnx_available,
is_tf_available,
is_timm_available,
is_tokenizers_available,
is_torch_available,
is_torch_bfaa_available,
is_torch_bfaa_cpu_available,
is_torch_bfaa_gpu_available,
is_torch_compile_available,
is_torch_cuda_available,
is_torch_fx_available,
is_torch_fx_proxy,
is_torch_mps_available,
is_torch_neuroncore_available,
is_torch_tensorrt_fx_available,
is_torch_tfaa_available,
is_torch_tpu_available,
is_torchaudio_available,
is_torchdistx_available,
is_torchdynamo_available,
is_torchvision_available,
is_training_run_on_sagemaker,
is_vision_available,
requires_backends,
torch_only_method,
)
SCREAMING_SNAKE_CASE :List[str] = 'pytorch_model.bin'
SCREAMING_SNAKE_CASE :str = 'pytorch_model.bin.index.json'
SCREAMING_SNAKE_CASE :Optional[int] = 'adapter_config.json'
SCREAMING_SNAKE_CASE :Dict = 'adapter_model.bin'
SCREAMING_SNAKE_CASE :Dict = 'adapter_model.safetensors'
SCREAMING_SNAKE_CASE :str = 'tf_model.h5'
SCREAMING_SNAKE_CASE :List[Any] = 'tf_model.h5.index.json'
SCREAMING_SNAKE_CASE :str = 'model.ckpt'
SCREAMING_SNAKE_CASE :List[Any] = 'flax_model.msgpack'
SCREAMING_SNAKE_CASE :Optional[int] = 'flax_model.msgpack.index.json'
SCREAMING_SNAKE_CASE :Tuple = 'model.safetensors'
SCREAMING_SNAKE_CASE :List[Any] = 'model.safetensors.index.json'
SCREAMING_SNAKE_CASE :str = 'config.json'
SCREAMING_SNAKE_CASE :int = 'preprocessor_config.json'
SCREAMING_SNAKE_CASE :Optional[Any] = FEATURE_EXTRACTOR_NAME
SCREAMING_SNAKE_CASE :Optional[int] = 'generation_config.json'
SCREAMING_SNAKE_CASE :List[str] = 'modelcard.json'
SCREAMING_SNAKE_CASE :Optional[int] = '▁'
SCREAMING_SNAKE_CASE :Optional[Any] = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility
SCREAMING_SNAKE_CASE :str = [
[[0, 1, 0, 1], [1, 0, 0, 1]]
] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too.
SCREAMING_SNAKE_CASE :Optional[Any] = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]]
SCREAMING_SNAKE_CASE :List[Any] = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]]
def UpperCAmelCase ( a_ ) -> Dict:
"""simple docstring"""
if version.parse(a_ ) < version.parse(a_ ):
if "dev" in min_version:
__A = (
"This example requires a source install from HuggingFace Transformers (see "
"`https://huggingface.co/docs/transformers/installation#install-from-source`),"
)
else:
__A = F'''This example requires a minimum version of {min_version},'''
error_message += F''' but the version found is {__version__}.\n'''
raise ImportError(
error_message
+ "Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other "
"versions of HuggingFace Transformers." )
| 15 | 1 |
import math
import numpy as np
import qiskit
from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute
def UpperCAmelCase ( a_ = 3 ) -> qiskit.result.counts.Counts:
"""simple docstring"""
if isinstance(a_ , a_ ):
raise TypeError("number of qubits must be a integer." )
if number_of_qubits <= 0:
raise ValueError("number of qubits must be > 0." )
if math.floor(a_ ) != number_of_qubits:
raise ValueError("number of qubits must be exact integer." )
if number_of_qubits > 1_0:
raise ValueError("number of qubits too large to simulate(>10)." )
__A = QuantumRegister(a_ , "qr" )
__A = ClassicalRegister(a_ , "cr" )
__A = QuantumCircuit(a_ , a_ )
__A = number_of_qubits
for i in range(a_ ):
quantum_circuit.h(number_of_qubits - i - 1 )
counter -= 1
for j in range(a_ ):
quantum_circuit.cp(np.pi / 2 ** (counter - j) , a_ , a_ )
for k in range(number_of_qubits // 2 ):
quantum_circuit.swap(a_ , number_of_qubits - k - 1 )
# measure all the qubits
quantum_circuit.measure(a_ , a_ )
# simulate with 10000 shots
__A = Aer.get_backend("qasm_simulator" )
__A = execute(a_ , a_ , shots=1_0_0_0_0 )
return job.result().get_counts(a_ )
if __name__ == "__main__":
print(
f'''Total count for quantum fourier transform state is: \
{quantum_fourier_transform(3)}'''
)
| 15 |
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
__A = [0] * len(a_ )
__A = []
__A = [1] * len(a_ )
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(a_ ) ):
if indegree[i] == 0:
queue.append(a_ )
while queue:
__A = queue.pop(0 )
for x in graph[vertex]:
indegree[x] -= 1
if long_dist[vertex] + 1 > long_dist[x]:
__A = long_dist[vertex] + 1
if indegree[x] == 0:
queue.append(a_ )
print(max(a_ ) )
# Adjacency list of Graph
SCREAMING_SNAKE_CASE :List[Any] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []}
longest_distance(graph)
| 15 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE :str = {
'configuration_vision_text_dual_encoder': ['VisionTextDualEncoderConfig'],
'processing_vision_text_dual_encoder': ['VisionTextDualEncoderProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :Dict = ['VisionTextDualEncoderModel']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :Any = ['FlaxVisionTextDualEncoderModel']
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :List[str] = ['TFVisionTextDualEncoderModel']
if TYPE_CHECKING:
from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig
from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel
else:
import sys
SCREAMING_SNAKE_CASE :str = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 15 |
import argparse
import os
import torch
from transformers import FlavaConfig, FlavaForPreTraining
from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint
def UpperCAmelCase ( a_ ) -> List[str]:
"""simple docstring"""
return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items() )
def UpperCAmelCase ( a_ , a_ ) -> Tuple:
"""simple docstring"""
__A = {}
for key, value in state_dict.items():
if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key:
continue
__A = key.replace("heads.cmd.mim_head.cls.predictions" , "mmm_image_head" )
__A = key.replace("heads.cmd.mlm_head.cls.predictions" , "mmm_text_head" )
__A = key.replace("heads.cmd.itm_head.cls" , "itm_head" )
__A = key.replace("heads.cmd.itm_head.pooler" , "itm_head.pooler" )
__A = key.replace("heads.cmd.clip_head.logit_scale" , "flava.logit_scale" )
__A = key.replace("heads.fairseq_mlm.cls.predictions" , "mlm_head" )
__A = key.replace("heads.imagenet.mim_head.cls.predictions" , "mim_head" )
__A = key.replace("mm_text_projection" , "flava.text_to_mm_projection" )
__A = key.replace("mm_image_projection" , "flava.image_to_mm_projection" )
__A = key.replace("image_encoder.module" , "flava.image_model" )
__A = key.replace("text_encoder.module" , "flava.text_model" )
__A = key.replace("mm_encoder.module.encoder.cls_token" , "flava.multimodal_model.cls_token" )
__A = key.replace("mm_encoder.module" , "flava.multimodal_model" )
__A = key.replace("text_projection" , "flava.text_projection" )
__A = key.replace("image_projection" , "flava.image_projection" )
__A = value.float()
for key, value in codebook_state_dict.items():
__A = value
return upgrade
@torch.no_grad()
def UpperCAmelCase ( a_ , a_ , a_ , a_=None ) -> Tuple:
"""simple docstring"""
if config_path is not None:
__A = FlavaConfig.from_pretrained(a_ )
else:
__A = FlavaConfig()
__A = FlavaForPreTraining(a_ ).eval()
__A = convert_dalle_checkpoint(a_ , a_ , save_checkpoint=a_ )
if os.path.exists(a_ ):
__A = torch.load(a_ , map_location="cpu" )
else:
__A = torch.hub.load_state_dict_from_url(a_ , map_location="cpu" )
__A = upgrade_state_dict(a_ , a_ )
hf_model.load_state_dict(a_ )
__A = hf_model.state_dict()
__A = count_parameters(a_ )
__A = count_parameters(a_ ) + count_parameters(a_ )
assert torch.allclose(a_ , a_ , atol=1E-3 )
hf_model.save_pretrained(a_ )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :Any = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint')
parser.add_argument('--codebook_path', default=None, type=str, help='Path to flava codebook checkpoint')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
SCREAMING_SNAKE_CASE :Optional[int] = parser.parse_args()
convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
| 15 | 1 |
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE :Union[str, Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :Any = {
'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json',
}
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = "mvp"
snake_case_ = ["past_key_values"]
snake_case_ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self : str ,A : Optional[Any]=5_02_67 ,A : int=10_24 ,A : List[Any]=12 ,A : Any=40_96 ,A : Dict=16 ,A : Any=12 ,A : Optional[int]=40_96 ,A : Optional[int]=16 ,A : List[Any]=0.0 ,A : List[Any]=0.0 ,A : Optional[Any]="gelu" ,A : int=10_24 ,A : int=0.1 ,A : Tuple=0.0 ,A : Optional[Any]=0.0 ,A : Optional[Any]=0.02 ,A : str=0.0 ,A : Any=False ,A : Optional[Any]=True ,A : str=1 ,A : Optional[Any]=0 ,A : Optional[Any]=2 ,A : List[Any]=True ,A : int=2 ,A : str=2 ,A : List[Any]=False ,A : str=1_00 ,A : Any=8_00 ,**A : str ,):
__A = vocab_size
__A = max_position_embeddings
__A = d_model
__A = encoder_ffn_dim
__A = encoder_layers
__A = encoder_attention_heads
__A = decoder_ffn_dim
__A = decoder_layers
__A = decoder_attention_heads
__A = dropout
__A = attention_dropout
__A = activation_dropout
__A = activation_function
__A = init_std
__A = encoder_layerdrop
__A = decoder_layerdrop
__A = classifier_dropout
__A = use_cache
__A = encoder_layers
__A = scale_embedding # scale factor will be sqrt(d_model) if True
__A = use_prompt
__A = prompt_length
__A = prompt_mid_dim
super().__init__(
pad_token_id=A ,bos_token_id=A ,eos_token_id=A ,is_encoder_decoder=A ,decoder_start_token_id=A ,forced_eos_token_id=A ,**A ,)
if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated" ,A ):
__A = self.bos_token_id
warnings.warn(
f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. '''
"The config can simply be saved and uploaded again to be fixed." )
| 15 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE :Optional[int] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :Optional[int] = {'vocab_file': 'sentencepiece.bpe.model'}
SCREAMING_SNAKE_CASE :Tuple = {
'vocab_file': {
'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model',
}
}
SCREAMING_SNAKE_CASE :List[Any] = {
'camembert-base': 512,
}
SCREAMING_SNAKE_CASE :List[str] = '▁'
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = ["input_ids", "attention_mask"]
def __init__( self : Optional[Any] ,A : List[str] ,A : List[Any]="<s>" ,A : Tuple="</s>" ,A : Any="</s>" ,A : Optional[Any]="<s>" ,A : Tuple="<unk>" ,A : str="<pad>" ,A : int="<mask>" ,A : Optional[int]=["<s>NOTUSED", "</s>NOTUSED"] ,A : Optional[Dict[str, Any]] = None ,**A : Optional[Any] ,):
# Mask token behave like a normal word, i.e. include the space before it
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else mask_token
__A = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=A ,eos_token=A ,unk_token=A ,sep_token=A ,cls_token=A ,pad_token=A ,mask_token=A ,additional_special_tokens=A ,sp_model_kwargs=self.sp_model_kwargs ,**A ,)
__A = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(A ) )
__A = vocab_file
# HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual
# sentencepiece vocabulary (this is the case for <s> and </s>
__A = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3}
__A = len(self.fairseq_tokens_to_ids )
__A = len(self.sp_model ) + len(self.fairseq_tokens_to_ids )
__A = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def UpperCamelCase_ ( self : int ,A : List[int] ,A : Optional[List[int]] = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__A = [self.cls_token_id]
__A = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def UpperCamelCase_ ( self : Dict ,A : List[int] ,A : Optional[List[int]] = None ,A : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=A ,token_ids_a=A ,already_has_special_tokens=A )
if token_ids_a is None:
return [1] + ([0] * len(A )) + [1]
return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1]
def UpperCamelCase_ ( self : Union[str, Any] ,A : List[int] ,A : Optional[List[int]] = None ):
__A = [self.sep_token_id]
__A = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def UpperCamelCase_ ( self : Dict ):
return len(self.fairseq_tokens_to_ids ) + len(self.sp_model )
def UpperCamelCase_ ( self : int ):
__A = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def UpperCamelCase_ ( self : Any ,A : str ):
return self.sp_model.encode(A ,out_type=A )
def UpperCamelCase_ ( self : List[str] ,A : Dict ):
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
elif self.sp_model.PieceToId(A ) == 0:
# Convert sentence piece unk token to fairseq unk token index
return self.unk_token_id
return self.fairseq_offset + self.sp_model.PieceToId(A )
def UpperCamelCase_ ( self : Dict ,A : Tuple ):
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def UpperCamelCase_ ( self : Optional[Any] ,A : Dict ):
__A = []
__A = ""
__A = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(A ) + token
__A = True
__A = []
else:
current_sub_tokens.append(A )
__A = False
out_string += self.sp_model.decode(A )
return out_string.strip()
def __getstate__( self : Dict ):
__A = self.__dict__.copy()
__A = None
return state
def __setstate__( self : Union[str, Any] ,A : Any ):
__A = d
# for backward compatibility
if not hasattr(self ,"sp_model_kwargs" ):
__A = {}
__A = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def UpperCamelCase_ ( self : Any ,A : str ,A : Optional[str] = None ):
if not os.path.isdir(A ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__A = os.path.join(
A ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file ,A )
elif not os.path.isfile(self.vocab_file ):
with open(A ,"wb" ) as fi:
__A = self.sp_model.serialized_model_proto()
fi.write(A )
return (out_vocab_file,)
| 15 | 1 |
import logging
import random
import ray
from transformers import RagConfig, RagRetriever, RagTokenizer
from transformers.models.rag.retrieval_rag import CustomHFIndex
SCREAMING_SNAKE_CASE :int = logging.getLogger(__name__)
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : int ):
__A = False
def UpperCamelCase_ ( self : Optional[Any] ,A : Optional[Any] ,A : str ,A : Optional[Any] ,A : Union[str, Any] ):
if not self.initialized:
__A = RagRetriever(
A ,question_encoder_tokenizer=A ,generator_tokenizer=A ,index=A ,init_retrieval=A ,)
__A = True
def UpperCamelCase_ ( self : List[Any] ):
self.retriever.index.init_index()
def UpperCamelCase_ ( self : List[Any] ,A : Optional[int] ,A : Dict ):
__A , __A = self.retriever._main_retrieve(A ,A )
return doc_ids, retrieved_doc_embeds
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : Tuple ,A : int ,A : Union[str, Any] ,A : List[Any] ,A : Tuple ,A : List[str]=None ):
if index is not None and index.is_initialized() and len(A ) > 0:
raise ValueError(
"When using Ray for distributed fine-tuning, "
"you'll need to provide the paths instead, "
"as the dataset and the index are loaded "
"separately. More info in examples/rag/use_own_knowledge_dataset.py " )
super().__init__(
A ,question_encoder_tokenizer=A ,generator_tokenizer=A ,index=A ,init_retrieval=A ,)
__A = retrieval_workers
if len(self.retrieval_workers ) > 0:
ray.get(
[
worker.create_rag_retriever.remote(A ,A ,A ,A )
for worker in self.retrieval_workers
] )
def UpperCamelCase_ ( self : str ):
logger.info("initializing retrieval" )
if len(self.retrieval_workers ) > 0:
ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] )
else:
# Non-distributed training. Load index into this same process.
self.index.init_index()
def UpperCamelCase_ ( self : Optional[Any] ,A : List[Any] ,A : List[Any] ):
if len(self.retrieval_workers ) > 0:
# Select a random retrieval actor.
__A = self.retrieval_workers[random.randint(0 ,len(self.retrieval_workers ) - 1 )]
__A , __A = ray.get(random_worker.retrieve.remote(A ,A ) )
else:
__A , __A = self._main_retrieve(A ,A )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A )
@classmethod
def UpperCamelCase_ ( cls : str ,A : List[Any] ,A : int=None ,**A : Optional[Any] ):
return super(A ,cls ).get_tokenizers(A ,A ,**A )
@classmethod
def UpperCamelCase_ ( cls : Any ,A : List[str] ,A : Optional[Any] ,A : List[str]=None ,**A : List[str] ):
__A = kwargs.pop("config" ,A ) or RagConfig.from_pretrained(A ,**A )
__A = RagTokenizer.from_pretrained(A ,config=A )
__A = rag_tokenizer.question_encoder
__A = rag_tokenizer.generator
if indexed_dataset is not None:
__A = "custom"
__A = CustomHFIndex(config.retrieval_vector_size ,A )
else:
__A = cls._build_index(A )
return cls(
A ,question_encoder_tokenizer=A ,generator_tokenizer=A ,retrieval_workers=A ,index=A ,)
| 15 |
def UpperCAmelCase ( a_ ) -> list:
"""simple docstring"""
if len(a_ ) <= 1:
return [tuple(a_ )]
__A = []
def generate(a_ , a_ ):
if k == 1:
res.append(tuple(arr[:] ) )
return
generate(k - 1 , a_ )
for i in range(k - 1 ):
if k % 2 == 0: # k is even
__A , __A = arr[k - 1], arr[i]
else: # k is odd
__A , __A = arr[k - 1], arr[0]
generate(k - 1 , a_ )
generate(len(a_ ) , a_ )
return res
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :int = input('Enter numbers separated by a comma:\n').strip()
SCREAMING_SNAKE_CASE :Dict = [int(item) for item in user_input.split(',')]
print(heaps(arr))
| 15 | 1 |
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bart import BartTokenizer
SCREAMING_SNAKE_CASE :Optional[Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :int = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'}
# See all BART models at https://huggingface.co/models?filter=bart
SCREAMING_SNAKE_CASE :Dict = {
'vocab_file': {
'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json',
'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json',
'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json',
'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json',
'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json',
'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json',
},
'merges_file': {
'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt',
'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt',
'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt',
'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt',
'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt',
'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt',
},
'tokenizer_file': {
'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json',
'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json',
'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json',
'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json',
'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json',
'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json',
},
}
SCREAMING_SNAKE_CASE :Tuple = {
'facebook/bart-base': 1024,
'facebook/bart-large': 1024,
'facebook/bart-large-mnli': 1024,
'facebook/bart-large-cnn': 1024,
'facebook/bart-large-xsum': 1024,
'yjernite/bart_eli5': 1024,
}
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = ["input_ids", "attention_mask"]
snake_case_ = BartTokenizer
def __init__( self : Any ,A : Optional[Any]=None ,A : str=None ,A : Optional[Any]=None ,A : Tuple="replace" ,A : List[Any]="<s>" ,A : Dict="</s>" ,A : str="</s>" ,A : Union[str, Any]="<s>" ,A : List[Any]="<unk>" ,A : str="<pad>" ,A : Union[str, Any]="<mask>" ,A : int=False ,A : Optional[int]=True ,**A : Any ,):
super().__init__(
A ,A ,tokenizer_file=A ,errors=A ,bos_token=A ,eos_token=A ,sep_token=A ,cls_token=A ,unk_token=A ,pad_token=A ,mask_token=A ,add_prefix_space=A ,trim_offsets=A ,**A ,)
__A = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("add_prefix_space" ,A ) != add_prefix_space:
__A = getattr(A ,pre_tok_state.pop("type" ) )
__A = add_prefix_space
__A = pre_tok_class(**A )
__A = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
__A = "post_processor"
__A = getattr(self.backend_tokenizer ,A ,A )
if tokenizer_component_instance:
__A = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
__A = tuple(state["sep"] )
if "cls" in state:
__A = tuple(state["cls"] )
__A = False
if state.get("add_prefix_space" ,A ) != add_prefix_space:
__A = add_prefix_space
__A = True
if state.get("trim_offsets" ,A ) != trim_offsets:
__A = trim_offsets
__A = True
if changes_to_apply:
__A = getattr(A ,state.pop("type" ) )
__A = component_class(**A )
setattr(self.backend_tokenizer ,A ,A )
@property
def UpperCamelCase_ ( self : Tuple ):
if self._mask_token is None:
if self.verbose:
logger.error("Using mask_token, but it is not set yet." )
return None
return str(self._mask_token )
@mask_token.setter
def UpperCamelCase_ ( self : str ,A : Dict ):
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else value
__A = value
def UpperCamelCase_ ( self : List[str] ,*A : List[Any] ,**A : List[str] ):
__A = kwargs.get("is_split_into_words" ,A )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs." )
return super()._batch_encode_plus(*A ,**A )
def UpperCamelCase_ ( self : Optional[Any] ,*A : Tuple ,**A : Any ):
__A = kwargs.get("is_split_into_words" ,A )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs." )
return super()._encode_plus(*A ,**A )
def UpperCamelCase_ ( self : Tuple ,A : str ,A : Optional[str] = None ):
__A = self._tokenizer.model.save(A ,name=A )
return tuple(A )
def UpperCamelCase_ ( self : Union[str, Any] ,A : Optional[Any] ,A : Union[str, Any]=None ):
__A = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def UpperCamelCase_ ( self : int ,A : List[int] ,A : Optional[List[int]] = None ):
__A = [self.sep_token_id]
__A = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 15 |
def UpperCAmelCase ( a_ ) -> list:
"""simple docstring"""
if len(a_ ) <= 1:
return lst
__A = 1
while i < len(a_ ):
if lst[i - 1] <= lst[i]:
i += 1
else:
__A , __A = lst[i], lst[i - 1]
i -= 1
if i == 0:
__A = 1
return lst
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :List[Any] = input('Enter numbers separated by a comma:\n').strip()
SCREAMING_SNAKE_CASE :List[Any] = [int(item) for item in user_input.split(',')]
print(gnome_sort(unsorted))
| 15 | 1 |
import math
import unittest
from transformers import BioGptConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptTokenizer,
)
from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : Optional[int] ,A : Tuple ,A : str=13 ,A : List[str]=7 ,A : Dict=True ,A : Optional[Any]=True ,A : Union[str, Any]=False ,A : Optional[int]=True ,A : int=99 ,A : Any=32 ,A : int=5 ,A : Tuple=4 ,A : Optional[Any]=37 ,A : Dict="gelu" ,A : int=0.1 ,A : Optional[Any]=0.1 ,A : int=5_12 ,A : Tuple=16 ,A : Any=2 ,A : int=0.02 ,A : Optional[int]=3 ,A : str=4 ,A : Tuple=None ,):
__A = parent
__A = batch_size
__A = seq_length
__A = is_training
__A = use_input_mask
__A = use_token_type_ids
__A = use_labels
__A = vocab_size
__A = hidden_size
__A = num_hidden_layers
__A = num_attention_heads
__A = intermediate_size
__A = hidden_act
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = max_position_embeddings
__A = type_vocab_size
__A = type_sequence_label_size
__A = initializer_range
__A = num_labels
__A = num_choices
__A = scope
def UpperCamelCase_ ( self : int ):
__A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
__A = None
if self.use_input_mask:
__A = random_attention_mask([self.batch_size, self.seq_length] )
__A = None
if self.use_token_type_ids:
__A = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size )
__A = None
__A = None
__A = None
if self.use_labels:
__A = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
__A = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels )
__A = ids_tensor([self.batch_size] ,self.num_choices )
__A = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase_ ( self : Optional[int] ):
return BioGptConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=A ,initializer_range=self.initializer_range ,)
def UpperCamelCase_ ( self : int ,A : Optional[Any] ,A : Any ,A : Any ,A : Any ,A : int ,A : List[str] ,A : List[Any] ):
__A = BioGptModel(config=A )
model.to(A )
model.eval()
__A = model(A ,attention_mask=A )
__A = model(A )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase_ ( self : Any ,A : Tuple ,A : str ,A : Optional[Any] ,A : str ,A : Dict ,A : Dict ,A : Tuple ,A : Union[str, Any] ,A : Tuple ,):
__A = BioGptForCausalLM(config=A )
model.to(A )
model.eval()
__A = model(A ,attention_mask=A ,token_type_ids=A ,labels=A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase_ ( self : Union[str, Any] ,A : int ,A : Dict ,A : Optional[Any] ,A : List[Any] ,A : Any ,*A : Optional[Any] ):
__A = BioGptModel(config=A )
model.to(A )
model.eval()
# create attention mask
__A = torch.ones(input_ids.shape ,dtype=torch.long ,device=A )
__A = self.seq_length // 2
__A = 0
# first forward pass
__A , __A = model(A ,attention_mask=A ).to_tuple()
# create hypothetical next token and extent to next_input_ids
__A = ids_tensor((self.batch_size, 1) ,config.vocab_size )
# change a random masked slice from input_ids
__A = ids_tensor((1,) ,A ).item() + 1
__A = ids_tensor((self.batch_size, 1) ,config.vocab_size ).squeeze(-1 )
__A = random_other_next_tokens
# append to next input_ids and attn_mask
__A = torch.cat([input_ids, next_tokens] ,dim=-1 )
__A = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1) ,dtype=torch.long ,device=A )] ,dim=1 ,)
# get two different outputs
__A = model(A ,attention_mask=A )["last_hidden_state"]
__A = model(A ,past_key_values=A ,attention_mask=A )["last_hidden_state"]
# select random slice
__A = ids_tensor((1,) ,output_from_past.shape[-1] ).item()
__A = output_from_no_past[:, -1, random_slice_idx].detach()
__A = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(A ,A ,atol=1E-3 ) )
def UpperCamelCase_ ( self : Dict ,A : List[str] ,A : Dict ,A : Dict ,A : Tuple ,A : Optional[int] ,*A : int ):
__A = BioGptModel(config=A ).to(A ).eval()
__A = torch.ones(input_ids.shape ,dtype=torch.long ,device=A )
# first forward pass
__A = model(A ,attention_mask=A ,use_cache=A )
__A , __A = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
__A = ids_tensor((self.batch_size, 3) ,config.vocab_size )
__A = ids_tensor((self.batch_size, 3) ,2 )
# append to next input_ids and
__A = torch.cat([input_ids, next_tokens] ,dim=-1 )
__A = torch.cat([attention_mask, next_attn_mask] ,dim=-1 )
__A = model(A ,attention_mask=A )["last_hidden_state"]
__A = model(A ,attention_mask=A ,past_key_values=A )[
"last_hidden_state"
]
# select random slice
__A = ids_tensor((1,) ,output_from_past.shape[-1] ).item()
__A = output_from_no_past[:, -3:, random_slice_idx].detach()
__A = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(A ,A ,atol=1E-3 ) )
def UpperCamelCase_ ( self : Any ,A : Union[str, Any] ,A : List[Any] ,A : str ,A : List[Any] ,A : Optional[int] ,*A : str ,A : List[Any]=False ):
__A = BioGptForCausalLM(A )
model.to(A )
if gradient_checkpointing:
model.gradient_checkpointing_enable()
__A = model(A ,labels=A )
self.parent.assertEqual(result.loss.shape ,() )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
result.loss.backward()
def UpperCamelCase_ ( self : Tuple ,A : str ,*A : List[Any] ):
__A = BioGptModel(A )
__A = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers )
for key in model.state_dict().keys():
if "c_proj" in key and "weight" in key:
self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) ,0.0_01 )
self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) ,0.01 )
def UpperCamelCase_ ( self : Dict ,A : str ,A : int ,A : str ,A : List[Any] ,A : str ,*A : Optional[Any] ):
__A = self.num_labels
__A = BioGptForTokenClassification(A )
model.to(A )
model.eval()
__A = model(A ,attention_mask=A ,token_type_ids=A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase_ ( self : str ):
__A = self.prepare_config_and_inputs()
(
(
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) ,
) = config_and_inputs
__A = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = (
(BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification)
if is_torch_available()
else ()
)
snake_case_ = (BioGptForCausalLM,) if is_torch_available() else ()
snake_case_ = (
{
"feature-extraction": BioGptModel,
"text-classification": BioGptForSequenceClassification,
"text-generation": BioGptForCausalLM,
"token-classification": BioGptForTokenClassification,
"zero-shot": BioGptForSequenceClassification,
}
if is_torch_available()
else {}
)
snake_case_ = False
def UpperCamelCase_ ( self : int ):
__A = BioGptModelTester(self )
__A = ConfigTester(self ,config_class=A ,hidden_size=37 )
def UpperCamelCase_ ( self : Union[str, Any] ):
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : List[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__A = type
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : Optional[int] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_attention_mask_past(*A )
def UpperCamelCase_ ( self : Dict ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_forward_and_backwards(*A ,gradient_checkpointing=A )
def UpperCamelCase_ ( self : Tuple ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_past_large_inputs(*A )
def UpperCamelCase_ ( self : str ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_weight_initialization(*A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_for_token_classification(*A )
@slow
def UpperCamelCase_ ( self : List[Any] ):
__A = BioGptForCausalLM.from_pretrained("microsoft/biogpt" )
model.to(A )
__A = BioGptTokenizer.from_pretrained("microsoft/biogpt" )
__A = "left"
# Define PAD Token = EOS Token = 50256
__A = tokenizer.eos_token
__A = model.config.eos_token_id
# use different length sentences to test batching
__A = [
"Hello, my dog is a little",
"Today, I",
]
__A = tokenizer(A ,return_tensors="pt" ,padding=A )
__A = inputs["input_ids"].to(A )
__A = model.generate(
input_ids=A ,attention_mask=inputs["attention_mask"].to(A ) ,)
__A = tokenizer(sentences[0] ,return_tensors="pt" ).input_ids.to(A )
__A = model.generate(input_ids=A )
__A = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item()
__A = tokenizer(sentences[1] ,return_tensors="pt" ).input_ids.to(A )
__A = model.generate(input_ids=A ,max_length=model.config.max_length - num_paddings )
__A = tokenizer.batch_decode(A ,skip_special_tokens=A )
__A = tokenizer.decode(output_non_padded[0] ,skip_special_tokens=A )
__A = tokenizer.decode(output_padded[0] ,skip_special_tokens=A )
__A = [
"Hello, my dog is a little bit bigger than a little bit.",
"Today, I have a good idea of how to use the information",
]
self.assertListEqual(A ,A )
self.assertListEqual(A ,[non_padded_sentence, padded_sentence] )
@slow
def UpperCamelCase_ ( self : str ):
for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__A = BioGptModel.from_pretrained(A )
self.assertIsNotNone(A )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
__A = 3
__A = input_dict["input_ids"]
__A = input_ids.ne(1 ).to(A )
__A = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size )
__A = BioGptForSequenceClassification(A )
model.to(A )
model.eval()
__A = model(A ,attention_mask=A ,labels=A )
self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) )
def UpperCamelCase_ ( self : List[Any] ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
__A = 3
__A = "multi_label_classification"
__A = input_dict["input_ids"]
__A = input_ids.ne(1 ).to(A )
__A = ids_tensor(
[self.model_tester.batch_size, config.num_labels] ,self.model_tester.type_sequence_label_size ).to(torch.float )
__A = BioGptForSequenceClassification(A )
model.to(A )
model.eval()
__A = model(A ,attention_mask=A ,labels=A )
self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) )
@require_torch
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCamelCase_ ( self : Tuple ):
__A = BioGptForCausalLM.from_pretrained("microsoft/biogpt" )
__A = torch.tensor([[2, 48_05, 9, 6_56, 21]] )
__A = model(A )[0]
__A = 4_23_84
__A = torch.Size((1, 5, vocab_size) )
self.assertEqual(output.shape ,A )
__A = torch.tensor(
[[[-9.52_36, -9.89_18, 10.45_57], [-11.04_69, -9.64_23, 8.10_22], [-8.86_64, -7.88_26, 5.53_25]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] ,A ,atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self : str ):
__A = BioGptTokenizer.from_pretrained("microsoft/biogpt" )
__A = BioGptForCausalLM.from_pretrained("microsoft/biogpt" )
model.to(A )
torch.manual_seed(0 )
__A = tokenizer("COVID-19 is" ,return_tensors="pt" ).to(A )
__A = model.generate(
**A ,min_length=1_00 ,max_length=10_24 ,num_beams=5 ,early_stopping=A ,)
__A = tokenizer.decode(output_ids[0] ,skip_special_tokens=A )
__A = (
"COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the"
" causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and"
" territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),"
" and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and"
" more than 800,000 deaths."
)
self.assertEqual(A ,A )
| 15 |
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = 42
snake_case_ = 42
snake_case_ = None
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = 2
@register_to_config
def __init__( self : str ,A : float = 0.02 ,A : float = 1_00 ,A : float = 1.0_07 ,A : float = 80 ,A : float = 0.05 ,A : float = 50 ,):
# standard deviation of the initial noise distribution
__A = sigma_max
# setable values
__A = None
__A = None
__A = None # sigma(t_i)
def UpperCamelCase_ ( self : str ,A : torch.FloatTensor ,A : Optional[int] = None ):
return sample
def UpperCamelCase_ ( self : Dict ,A : int ,A : Union[str, torch.device] = None ):
__A = num_inference_steps
__A = np.arange(0 ,self.num_inference_steps )[::-1].copy()
__A = torch.from_numpy(A ).to(A )
__A = [
(
self.config.sigma_max**2
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
)
for i in self.timesteps
]
__A = torch.tensor(A ,dtype=torch.floataa ,device=A )
def UpperCamelCase_ ( self : Union[str, Any] ,A : torch.FloatTensor ,A : float ,A : Optional[torch.Generator] = None ):
if self.config.s_min <= sigma <= self.config.s_max:
__A = min(self.config.s_churn / self.num_inference_steps ,2**0.5 - 1 )
else:
__A = 0
# sample eps ~ N(0, S_noise^2 * I)
__A = self.config.s_noise * randn_tensor(sample.shape ,generator=A ).to(sample.device )
__A = sigma + gamma * sigma
__A = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)
return sample_hat, sigma_hat
def UpperCamelCase_ ( self : Dict ,A : torch.FloatTensor ,A : float ,A : float ,A : torch.FloatTensor ,A : bool = True ,):
__A = sample_hat + sigma_hat * model_output
__A = (sample_hat - pred_original_sample) / sigma_hat
__A = sample_hat + (sigma_prev - sigma_hat) * derivative
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=A ,derivative=A ,pred_original_sample=A )
def UpperCamelCase_ ( self : Optional[int] ,A : torch.FloatTensor ,A : float ,A : float ,A : torch.FloatTensor ,A : torch.FloatTensor ,A : torch.FloatTensor ,A : bool = True ,):
__A = sample_prev + sigma_prev * model_output
__A = (sample_prev - pred_original_sample) / sigma_prev
__A = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=A ,derivative=A ,pred_original_sample=A )
def UpperCamelCase_ ( self : List[Any] ,A : Dict ,A : List[str] ,A : str ):
raise NotImplementedError()
| 15 | 1 |
import unittest
import torch
from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel
from diffusers.training_utils import set_seed
from diffusers.utils.testing_utils import slow
SCREAMING_SNAKE_CASE :List[Any] = False
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : Optional[Any] ,A : Optional[Any]=32 ):
set_seed(0 )
__A = UNetaDModel(sample_size=A ,in_channels=3 ,out_channels=3 )
__A = torch.optim.SGD(model.parameters() ,lr=0.00_01 )
return model, optimizer
@slow
def UpperCamelCase_ ( self : Dict ):
__A = "cpu" # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable
__A = DDPMScheduler(
num_train_timesteps=10_00 ,beta_start=0.00_01 ,beta_end=0.02 ,beta_schedule="linear" ,clip_sample=A ,)
__A = DDIMScheduler(
num_train_timesteps=10_00 ,beta_start=0.00_01 ,beta_end=0.02 ,beta_schedule="linear" ,clip_sample=A ,)
assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps
# shared batches for DDPM and DDIM
set_seed(0 )
__A = [torch.randn((4, 3, 32, 32) ).clip(-1 ,1 ).to(A ) for _ in range(4 )]
__A = [torch.randn((4, 3, 32, 32) ).to(A ) for _ in range(4 )]
__A = [torch.randint(0 ,10_00 ,(4,) ).long().to(A ) for _ in range(4 )]
# train with a DDPM scheduler
__A , __A = self.get_model_optimizer(resolution=32 )
model.train().to(A )
for i in range(4 ):
optimizer.zero_grad()
__A = ddpm_scheduler.add_noise(clean_images[i] ,noise[i] ,timesteps[i] )
__A = model(A ,timesteps[i] ).sample
__A = torch.nn.functional.mse_loss(A ,noise[i] )
loss.backward()
optimizer.step()
del model, optimizer
# recreate the model and optimizer, and retry with DDIM
__A , __A = self.get_model_optimizer(resolution=32 )
model.train().to(A )
for i in range(4 ):
optimizer.zero_grad()
__A = ddim_scheduler.add_noise(clean_images[i] ,noise[i] ,timesteps[i] )
__A = model(A ,timesteps[i] ).sample
__A = torch.nn.functional.mse_loss(A ,noise[i] )
loss.backward()
optimizer.step()
del model, optimizer
self.assertTrue(torch.allclose(A ,A ,atol=1E-5 ) )
self.assertTrue(torch.allclose(A ,A ,atol=1E-5 ) )
| 15 |
# Lint as: python3
import os
import re
import urllib.parse
from pathlib import Path
from typing import Callable, List, Optional, Union
from zipfile import ZipFile
from ..utils.file_utils import cached_path, hf_github_url
from ..utils.logging import get_logger
from ..utils.version import Version
SCREAMING_SNAKE_CASE :Union[str, Any] = get_logger(__name__)
class UpperCAmelCase :
'''simple docstring'''
snake_case_ = "dummy_data"
snake_case_ = "datasets"
snake_case_ = False
def __init__( self : Optional[int] ,A : str ,A : str ,A : Union[Version, str] ,A : Optional[str] = None ,A : bool = False ,A : bool = True ,A : Optional[List[Callable]] = None ,):
__A = 0
__A = dataset_name
__A = cache_dir
__A = use_local_dummy_data
__A = config
# download_callbacks take a single url as input
__A = download_callbacks or []
# if False, it doesn't load existing files and it returns the paths of the dummy files relative
# to the dummy_data zip file root
__A = load_existing_dummy_data
# TODO(PVP, QL) might need to make this more general
__A = str(A )
# to be downloaded
__A = None
__A = None
@property
def UpperCamelCase_ ( self : Union[str, Any] ):
if self._dummy_file is None:
__A = self.download_dummy_data()
return self._dummy_file
@property
def UpperCamelCase_ ( self : Optional[Any] ):
if self.config is not None:
# structure is dummy / config_name / version_name
return os.path.join("dummy" ,self.config.name ,self.version_name )
# structure is dummy / version_name
return os.path.join("dummy" ,self.version_name )
@property
def UpperCamelCase_ ( self : List[Any] ):
return os.path.join(self.dummy_data_folder ,"dummy_data.zip" )
def UpperCamelCase_ ( self : Tuple ):
__A = (
self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data
)
__A = cached_path(
A ,cache_dir=self.cache_dir ,extract_compressed_file=A ,force_extract=A )
return os.path.join(A ,self.dummy_file_name )
@property
def UpperCamelCase_ ( self : str ):
return os.path.join(self.datasets_scripts_dir ,self.dataset_name ,self.dummy_zip_file )
@property
def UpperCamelCase_ ( self : Any ):
if self._bucket_url is None:
__A = hf_github_url(self.dataset_name ,self.dummy_zip_file.replace(os.sep ,"/" ) )
return self._bucket_url
@property
def UpperCamelCase_ ( self : Tuple ):
# return full path if its a dir
if os.path.isdir(self.dummy_file ):
return self.dummy_file
# else cut off path to file -> example `xsum`.
return "/".join(self.dummy_file.replace(os.sep ,"/" ).split("/" )[:-1] )
def UpperCamelCase_ ( self : List[str] ,A : List[Any] ,*A : Dict ):
if self.load_existing_dummy_data:
# dummy data is downloaded and tested
__A = self.dummy_file
else:
# dummy data cannot be downloaded and only the path to dummy file is returned
__A = self.dummy_file_name
# special case when data_url is a dict
if isinstance(A ,A ):
return self.create_dummy_data_dict(A ,A )
elif isinstance(A ,(list, tuple) ):
return self.create_dummy_data_list(A ,A )
else:
return self.create_dummy_data_single(A ,A )
def UpperCamelCase_ ( self : str ,A : List[Any] ,*A : List[Any] ):
return self.download_and_extract(A )
def UpperCamelCase_ ( self : List[str] ,A : List[str] ,A : Tuple ):
return self.download_and_extract(A )
def UpperCamelCase_ ( self : Any ,A : Any ,*A : Optional[Any] ,**A : List[str] ):
return path
def UpperCamelCase_ ( self : str ):
return {}
def UpperCamelCase_ ( self : int ,A : int ,A : Tuple ):
__A = {}
for key, single_urls in data_url.items():
for download_callback in self.download_callbacks:
if isinstance(A ,A ):
for single_url in single_urls:
download_callback(A )
else:
__A = single_urls
download_callback(A )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
if isinstance(A ,A ):
__A = [os.path.join(A ,urllib.parse.quote_plus(Path(A ).name ) ) for x in single_urls]
else:
__A = single_urls
__A = os.path.join(A ,urllib.parse.quote_plus(Path(A ).name ) )
__A = value
# make sure that values are unique
if all(isinstance(A ,A ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len(
dummy_data_dict.values() ):
# append key to value to make its name unique
__A = {key: value + key for key, value in dummy_data_dict.items()}
return dummy_data_dict
def UpperCamelCase_ ( self : Union[str, Any] ,A : str ,A : str ):
__A = []
# trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one
__A = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" ,A ) ) for url in data_url )
__A = all(
url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url )
if data_url and (is_tf_records or is_pubmed_records):
__A = [data_url[0]] * len(A )
for single_url in data_url:
for download_callback in self.download_callbacks:
download_callback(A )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
__A = os.path.join(A ,urllib.parse.quote_plus(single_url.split("/" )[-1] ) )
dummy_data_list.append(A )
return dummy_data_list
def UpperCamelCase_ ( self : str ,A : List[Any] ,A : Optional[Any] ):
for download_callback in self.download_callbacks:
download_callback(A )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
__A = os.path.join(A ,urllib.parse.quote_plus(data_url.split("/" )[-1] ) )
if os.path.exists(A ) or not self.load_existing_dummy_data:
return value
else:
# Backward compatibility, maybe deprecate at one point.
# For many datasets with single url calls to dl_manager.download_and_extract,
# the dummy_data.zip file is actually the zipped downloaded file
# while now we expected the dummy_data.zip file to be a directory containing
# the downloaded file.
return path_to_dummy_data
def UpperCamelCase_ ( self : int ):
pass
def UpperCamelCase_ ( self : Dict ):
pass
def UpperCamelCase_ ( self : Optional[Any] ,A : List[Any] ):
def _iter_archive_members(A : Optional[Any] ):
# this preserves the order of the members inside the ZIP archive
__A = Path(self.dummy_file ).parent
__A = path.relative_to(A )
with ZipFile(self.local_path_to_dummy_data ) as zip_file:
__A = zip_file.namelist()
for member in members:
if member.startswith(relative_path.as_posix() ):
yield dummy_parent_path.joinpath(A )
__A = Path(A )
__A = _iter_archive_members(A ) if self.use_local_dummy_data else path.rglob("*" )
for file_path in file_paths:
if file_path.is_file() and not file_path.name.startswith((".", "__") ):
yield file_path.relative_to(A ).as_posix(), file_path.open("rb" )
def UpperCamelCase_ ( self : List[Any] ,A : Any ):
if not isinstance(A ,A ):
__A = [paths]
for path in paths:
if os.path.isfile(A ):
if os.path.basename(A ).startswith((".", "__") ):
return
yield path
else:
for dirpath, dirnames, filenames in os.walk(A ):
if os.path.basename(A ).startswith((".", "__") ):
continue
dirnames.sort()
for filename in sorted(A ):
if filename.startswith((".", "__") ):
continue
yield os.path.join(A ,A )
| 15 | 1 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
import torch
from ...utils import is_npu_available, is_xpu_available
from .config_args import ClusterConfig, default_json_config_file
from .config_utils import SubcommandHelpFormatter
SCREAMING_SNAKE_CASE :Union[str, Any] = 'Create a default config file for Accelerate with only a few flags set.'
def UpperCAmelCase ( a_="no" , a_ = default_json_config_file , a_ = False ) -> Optional[int]:
"""simple docstring"""
__A = Path(a_ )
path.parent.mkdir(parents=a_ , exist_ok=a_ )
if path.exists():
print(
F'''Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.''' )
return False
__A = mixed_precision.lower()
if mixed_precision not in ["no", "fp16", "bf16", "fp8"]:
raise ValueError(
F'''`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}''' )
__A = {
"compute_environment": "LOCAL_MACHINE",
"mixed_precision": mixed_precision,
}
if torch.cuda.is_available():
__A = torch.cuda.device_count()
__A = num_gpus
__A = False
if num_gpus > 1:
__A = "MULTI_GPU"
else:
__A = "NO"
elif is_xpu_available() and use_xpu:
__A = torch.xpu.device_count()
__A = num_xpus
__A = False
if num_xpus > 1:
__A = "MULTI_XPU"
else:
__A = "NO"
elif is_npu_available():
__A = torch.npu.device_count()
__A = num_npus
__A = False
if num_npus > 1:
__A = "MULTI_NPU"
else:
__A = "NO"
else:
__A = 0
__A = True
__A = 1
__A = "NO"
__A = ClusterConfig(**a_ )
config.to_json_file(a_ )
return path
def UpperCAmelCase ( a_ , a_ ) -> List[Any]:
"""simple docstring"""
__A = parser.add_parser("default" , parents=a_ , help=a_ , formatter_class=a_ )
parser.add_argument(
"--config_file" , default=a_ , help=(
"The path to use to store the config file. Will default to a file named default_config.yaml in the cache "
"location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have "
"such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed "
"with 'huggingface'."
) , dest="save_location" , )
parser.add_argument(
"--mixed_precision" , choices=["no", "fp16", "bf16"] , type=a_ , help="Whether or not to use mixed precision training. "
"Choose between FP16 and BF16 (bfloat16) training. "
"BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later." , default="no" , )
parser.set_defaults(func=a_ )
return parser
def UpperCAmelCase ( a_ ) -> Dict:
"""simple docstring"""
__A = write_basic_config(args.mixed_precision , args.save_location )
if config_file:
print(F'''accelerate configuration saved at {config_file}''' )
| 15 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
SCREAMING_SNAKE_CASE :List[Any] = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :List[str] = ['BartphoTokenizer']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bartpho import BartphoTokenizer
else:
import sys
SCREAMING_SNAKE_CASE :Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 15 | 1 |
import os
import unittest
from huggingface_hub.utils import are_progress_bars_disabled
import transformers.models.bart.tokenization_bart
from transformers import logging
from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context
from transformers.utils.logging import disable_progress_bar, enable_progress_bar
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : int ):
__A = logging.get_logger()
# the current default level is logging.WARNING
__A = logging.get_verbosity()
logging.set_verbosity_error()
self.assertEqual(logger.getEffectiveLevel() ,logging.get_verbosity() )
logging.set_verbosity_warning()
self.assertEqual(logger.getEffectiveLevel() ,logging.get_verbosity() )
logging.set_verbosity_info()
self.assertEqual(logger.getEffectiveLevel() ,logging.get_verbosity() )
logging.set_verbosity_debug()
self.assertEqual(logger.getEffectiveLevel() ,logging.get_verbosity() )
# restore to the original level
logging.set_verbosity(A )
def UpperCamelCase_ ( self : Dict ):
__A = logging.get_verbosity()
__A = logging.get_logger("transformers.models.bart.tokenization_bart" )
__A = "Testing 1, 2, 3"
# should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`)
if level_origin <= logging.WARNING:
with CaptureLogger(A ) as cl:
logger.warning(A )
self.assertEqual(cl.out ,msg + "\n" )
# this is setting the level for all of `transformers.*` loggers
logging.set_verbosity_error()
# should not be able to log warnings
with CaptureLogger(A ) as cl:
logger.warning(A )
self.assertEqual(cl.out ,"" )
# should be able to log warnings again
logging.set_verbosity_warning()
with CaptureLogger(A ) as cl:
logger.warning(A )
self.assertEqual(cl.out ,msg + "\n" )
# restore to the original level
logging.set_verbosity(A )
@mockenv(TRANSFORMERS_VERBOSITY="error" )
def UpperCamelCase_ ( self : Optional[Any] ):
# reset for the env var to take effect, next time some logger call is made
transformers.utils.logging._reset_library_root_logger()
# this action activates the env var
__A = logging.get_logger("transformers.models.bart.tokenization_bart" )
__A = os.getenv("TRANSFORMERS_VERBOSITY" ,A )
__A = logging.log_levels[env_level_str]
__A = logging.get_verbosity()
self.assertEqual(
A ,A ,f'''TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}''' ,)
# restore to the original level
__A = ""
transformers.utils.logging._reset_library_root_logger()
@mockenv(TRANSFORMERS_VERBOSITY="super-error" )
def UpperCamelCase_ ( self : Tuple ):
# reset for the env var to take effect, next time some logger call is made
transformers.utils.logging._reset_library_root_logger()
__A = logging.logging.getLogger()
with CaptureLogger(A ) as cl:
# this action activates the env var
logging.get_logger("transformers.models.bart.tokenization_bart" )
self.assertIn("Unknown option TRANSFORMERS_VERBOSITY=super-error" ,cl.out )
# no need to restore as nothing was changed
def UpperCamelCase_ ( self : int ):
# testing `logger.warning_advice()`
transformers.utils.logging._reset_library_root_logger()
__A = logging.get_logger("transformers.models.bart.tokenization_bart" )
__A = "Testing 1, 2, 3"
with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="1" ):
# nothing should be logged as env var disables this method
with CaptureLogger(A ) as cl:
logger.warning_advice(A )
self.assertEqual(cl.out ,"" )
with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="" ):
# should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset
with CaptureLogger(A ) as cl:
logger.warning_advice(A )
self.assertEqual(cl.out ,msg + "\n" )
def UpperCAmelCase ( ) -> List[str]:
"""simple docstring"""
disable_progress_bar()
assert are_progress_bars_disabled()
enable_progress_bar()
assert not are_progress_bars_disabled()
| 15 |
from typing import Dict, Optional
import numpy as np
import datasets
SCREAMING_SNAKE_CASE :List[Any] = '\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n'
SCREAMING_SNAKE_CASE :List[str] = '\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric("mean_iou")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n'
SCREAMING_SNAKE_CASE :str = '\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}'
def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ = None , a_ = False , ) -> Tuple:
"""simple docstring"""
if label_map is not None:
for old_id, new_id in label_map.items():
__A = new_id
# turn into Numpy arrays
__A = np.array(a_ )
__A = np.array(a_ )
if reduce_labels:
__A = 2_5_5
__A = label - 1
__A = 2_5_5
__A = label != ignore_index
__A = np.not_equal(a_ , a_ )
__A = pred_label[mask]
__A = np.array(a_ )[mask]
__A = pred_label[pred_label == label]
__A = np.histogram(a_ , bins=a_ , range=(0, num_labels - 1) )[0]
__A = np.histogram(a_ , bins=a_ , range=(0, num_labels - 1) )[0]
__A = np.histogram(a_ , bins=a_ , range=(0, num_labels - 1) )[0]
__A = area_pred_label + area_label - area_intersect
return area_intersect, area_union, area_pred_label, area_label
def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ = None , a_ = False , ) -> Union[str, Any]:
"""simple docstring"""
__A = np.zeros((num_labels,) , dtype=np.floataa )
__A = np.zeros((num_labels,) , dtype=np.floataa )
__A = np.zeros((num_labels,) , dtype=np.floataa )
__A = np.zeros((num_labels,) , dtype=np.floataa )
for result, gt_seg_map in zip(a_ , a_ ):
__A , __A , __A , __A = intersect_and_union(
a_ , a_ , a_ , a_ , a_ , a_ )
total_area_intersect += area_intersect
total_area_union += area_union
total_area_pred_label += area_pred_label
total_area_label += area_label
return total_area_intersect, total_area_union, total_area_pred_label, total_area_label
def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ = None , a_ = None , a_ = False , ) -> str:
"""simple docstring"""
__A , __A , __A , __A = total_intersect_and_union(
a_ , a_ , a_ , a_ , a_ , a_ )
# compute metrics
__A = {}
__A = total_area_intersect.sum() / total_area_label.sum()
__A = total_area_intersect / total_area_union
__A = total_area_intersect / total_area_label
__A = np.nanmean(a_ )
__A = np.nanmean(a_ )
__A = all_acc
__A = iou
__A = acc
if nan_to_num is not None:
__A = {metric: np.nan_to_num(a_ , nan=a_ ) for metric, metric_value in metrics.items()}
return metrics
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase ( datasets.Metric ):
'''simple docstring'''
def UpperCamelCase_ ( self : List[Any] ):
return datasets.MetricInfo(
description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(
# 1st Seq - height dim, 2nd - width dim
{
"predictions": datasets.Sequence(datasets.Sequence(datasets.Value("uint16" ) ) ),
"references": datasets.Sequence(datasets.Sequence(datasets.Value("uint16" ) ) ),
} ) ,reference_urls=[
"https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py"
] ,)
def UpperCamelCase_ ( self : int ,A : Optional[Any] ,A : Optional[Any] ,A : int ,A : bool ,A : Optional[int] = None ,A : Optional[Dict[int, int]] = None ,A : bool = False ,):
__A = mean_iou(
results=A ,gt_seg_maps=A ,num_labels=A ,ignore_index=A ,nan_to_num=A ,label_map=A ,reduce_labels=A ,)
return iou_result
| 15 | 1 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
SCREAMING_SNAKE_CASE :int = logging.get_logger(__name__)
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = ["pixel_values"]
def __init__( self : List[str] ,A : bool = True ,A : Dict[str, int] = None ,A : PILImageResampling = PIL.Image.BICUBIC ,A : bool = True ,A : Dict[str, int] = None ,A : Union[int, float] = 1 / 2_55 ,A : bool = True ,A : bool = True ,A : Optional[Union[float, List[float]]] = None ,A : Optional[Union[float, List[float]]] = None ,**A : Optional[int] ,):
super().__init__(**A )
__A = size if size is not None else {"height": 2_56, "width": 2_56}
__A = get_size_dict(A )
__A = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24}
__A = get_size_dict(A ,param_name="crop_size" )
__A = do_resize
__A = size
__A = resample
__A = do_center_crop
__A = crop_size
__A = do_rescale
__A = rescale_factor
__A = do_normalize
__A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__A = image_std if image_std is not None else IMAGENET_STANDARD_STD
def UpperCamelCase_ ( self : Optional[Any] ,A : np.ndarray ,A : Dict[str, int] ,A : PILImageResampling = PIL.Image.BICUBIC ,A : Optional[Union[str, ChannelDimension]] = None ,**A : Optional[Any] ,):
__A = get_size_dict(A )
if "height" not in size or "width" not in size:
raise ValueError(f'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' )
return resize(
A ,size=(size["height"], size["width"]) ,resample=A ,data_format=A ,**A )
def UpperCamelCase_ ( self : Optional[int] ,A : np.ndarray ,A : Dict[str, int] ,A : Optional[Union[str, ChannelDimension]] = None ,**A : Optional[int] ,):
__A = get_size_dict(A )
if "height" not in size or "width" not in size:
raise ValueError(f'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' )
return center_crop(A ,size=(size["height"], size["width"]) ,data_format=A ,**A )
def UpperCamelCase_ ( self : int ,A : np.ndarray ,A : Union[int, float] ,A : Optional[Union[str, ChannelDimension]] = None ,**A : Any ,):
return rescale(A ,scale=A ,data_format=A ,**A )
def UpperCamelCase_ ( self : Tuple ,A : np.ndarray ,A : Union[float, List[float]] ,A : Union[float, List[float]] ,A : Optional[Union[str, ChannelDimension]] = None ,**A : Union[str, Any] ,):
return normalize(A ,mean=A ,std=A ,data_format=A ,**A )
def UpperCamelCase_ ( self : Tuple ,A : ImageInput ,A : bool = None ,A : Dict[str, int] = None ,A : Optional[Any]=None ,A : bool = None ,A : Dict[str, int] = None ,A : bool = None ,A : float = None ,A : bool = None ,A : Optional[Union[float, List[float]]] = None ,A : Optional[Union[float, List[float]]] = None ,A : Optional[Union[str, TensorType]] = None ,A : ChannelDimension = ChannelDimension.FIRST ,**A : Optional[Any] ,):
__A = do_resize if do_resize is not None else self.do_resize
__A = resample if resample is not None else self.resample
__A = do_center_crop if do_center_crop is not None else self.do_center_crop
__A = do_rescale if do_rescale is not None else self.do_rescale
__A = rescale_factor if rescale_factor is not None else self.rescale_factor
__A = do_normalize if do_normalize is not None else self.do_normalize
__A = image_mean if image_mean is not None else self.image_mean
__A = image_std if image_std is not None else self.image_std
__A = size if size is not None else self.size
__A = get_size_dict(A )
__A = crop_size if crop_size is not None else self.crop_size
__A = get_size_dict(A ,param_name="crop_size" )
__A = make_list_of_images(A )
if not valid_images(A ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True." )
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
__A = [to_numpy_array(A ) for image in images]
if do_resize:
__A = [self.resize(image=A ,size=A ,resample=A ) for image in images]
if do_center_crop:
__A = [self.center_crop(image=A ,size=A ) for image in images]
if do_rescale:
__A = [self.rescale(image=A ,scale=A ) for image in images]
if do_normalize:
__A = [self.normalize(image=A ,mean=A ,std=A ) for image in images]
__A = [to_channel_dimension_format(A ,A ) for image in images]
__A = {"pixel_values": images}
return BatchFeature(data=A ,tensor_type=A )
| 15 |
import os
import re
import unicodedata
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import is_torch_available, logging
if is_torch_available():
import torch
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
SCREAMING_SNAKE_CASE :List[str] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :List[str] = {'vocab_file': 'spiece.model'}
SCREAMING_SNAKE_CASE :Dict = {
'vocab_file': {
'AI-Sweden/gpt-sw3-126m': 'https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model',
'AI-Sweden/gpt-sw3-350m': 'https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model',
'AI-Sweden/gpt-sw3-1.6b': 'https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model',
'AI-Sweden/gpt-sw3-6.7b': 'https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model',
'AI-Sweden/gpt-sw3-20b': 'https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model',
}
}
SCREAMING_SNAKE_CASE :Optional[Any] = {
'AI-Sweden/gpt-sw3-126m': 2048,
'AI-Sweden/gpt-sw3-350m': 2048,
'AI-Sweden/gpt-sw3-1.6b': 2048,
'AI-Sweden/gpt-sw3-6.7b': 2048,
'AI-Sweden/gpt-sw3-20b': 2048,
}
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = ["input_ids", "attention_mask"]
def __init__( self : Optional[int] ,A : Optional[Any] ,A : Optional[int]=False ,A : int=False ,A : Union[str, Any]=False ,A : int=None ,A : Optional[Any]=None ,A : Union[str, Any]=None ,A : Optional[Any]=None ,A : Optional[Dict[str, Any]] = None ,**A : Tuple ,):
__A = {} if sp_model_kwargs is None else sp_model_kwargs
__A = kwargs.get("name_or_path" )
if name_or_path is None:
logger.warning(
"name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,"
" you are testing the model, this can safely be ignored" )
__A = "None"
# Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing
__A = "<|endoftext|>" if eos_token is None else eos_token
__A = "<unk>" if unk_token is None else unk_token
if "gpt-sw3-7b" in name_or_path:
__A = unk_token if pad_token is None else pad_token
__A = eos_token if bos_token is None else bos_token
else:
__A = "<pad>" if pad_token is None else pad_token
__A = "<s>" if bos_token is None else bos_token
super().__init__(
do_lower_case=A ,remove_space=A ,keep_accents=A ,bos_token=A ,eos_token=A ,unk_token=A ,pad_token=A ,sp_model_kwargs=self.sp_model_kwargs ,**A ,)
__A = do_lower_case
__A = remove_space
__A = keep_accents
__A = vocab_file
__A = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(A )
# Used for whitespace normalization in input texts
# fmt : off
__A = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", ""}
# fmt : on
# Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing
__A = re.compile(
f'''[{''.join(map(A ,list(range(0 ,9 ) ) + list(range(11 ,32 ) ) + list(range(1_27 ,1_60 ) ) + [1_60, 1_73, 82_03] ) )}]''' )
def __getstate__( self : Optional[int] ):
__A = self.__dict__.copy()
__A = None
return state
def __setstate__( self : Optional[Any] ,A : Union[str, Any] ):
__A = d
# for backward compatibility
if not hasattr(self ,"sp_model_kwargs" ):
__A = {}
__A = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
@property
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size
def UpperCamelCase_ ( self : List[str] ):
return len(self.sp_model )
def UpperCamelCase_ ( self : int ,A : str ):
__A = self.non_printing_characters_re.sub("" ,A )
# Normalize whitespaces
__A = "".join([char if char not in self.whitespaces else " " for char in text] )
# NFC Unicode normalization
__A = unicodedata.normalize("NFC" ,A )
return text
def UpperCamelCase_ ( self : Union[str, Any] ,A : str ,**A : Optional[int] ):
__A = self.preprocess_text(A )
return self.sp_model.encode(A ,out_type=A )
def UpperCamelCase_ ( self : Any ,A : str ):
return self.sp_model.PieceToId(A )
def UpperCamelCase_ ( self : Dict ,A : int ):
return self.sp_model.IdToPiece(A )
@staticmethod
def UpperCamelCase_ ( A : str ):
return out_string
def UpperCamelCase_ ( self : str ,A : List[str] ):
__A = []
__A = ""
__A = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
# TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(A ) + token
__A = True
__A = []
else:
current_sub_tokens.append(A )
__A = False
out_string += self.sp_model.decode(A )
return out_string
def UpperCamelCase_ ( self : str ):
__A = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def UpperCamelCase_ ( self : List[str] ,A : str ,A : Optional[str] = None ):
if not os.path.isdir(A ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__A = os.path.join(
A ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file ,A )
elif not os.path.isfile(self.vocab_file ):
with open(A ,"wb" ) as fi:
__A = self.sp_model.serialized_model_proto()
fi.write(A )
return (out_vocab_file,)
def UpperCamelCase_ ( self : Union[str, Any] ,A : Union[str, List[str]] ,A : Union[str, bool] = False ):
if isinstance(A ,A ):
__A = self.preprocess_text(A )
__A = self.sp_model.encode(A )
else:
__A = [self.preprocess_text(A ) for t in text]
__A = self.sp_model.encode(A )
if return_tensors is True or return_tensors == "pt":
__A = torch.tensor(A )
return token_ids
def UpperCamelCase_ ( self : List[Any] ,A : Union[int, List[int]] ):
return self.sp_model.decode(A )
def UpperCamelCase_ ( self : List[str] ,A : "Conversation" ):
__A = [f'''User: {text}''' if is_user else f'''Bot: {text}''' for is_user, text in conversation.iter_texts()]
__A = (
f'''{self.eos_token}{self.bos_token}''' + f'''{self.bos_token}'''.join(A ) + f'''{self.bos_token}Bot:'''
)
return self.encode(text=A )
| 15 | 1 |
import inspect
import unittest
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : List[Any] ):
try:
import diffusers # noqa: F401
except ImportError:
assert False
def UpperCamelCase_ ( self : str ):
import diffusers
from diffusers.dependency_versions_table import deps
__A = inspect.getmembers(A ,inspect.isclass )
for cls_name, cls_module in all_classes:
if "dummy_" in cls_module.__module__:
for backend in cls_module._backends:
if backend == "k_diffusion":
__A = "k-diffusion"
elif backend == "invisible_watermark":
__A = "invisible-watermark"
assert backend in deps, f'''{backend} is not in the deps table!'''
| 15 |
import numpy as np
def UpperCAmelCase ( a_ , a_ , a_ = 1E-12 , a_ = 1_0_0 , ) -> tuple[float, np.ndarray]:
"""simple docstring"""
assert np.shape(a_ )[0] == np.shape(a_ )[1]
# Ensure proper dimensionality.
assert np.shape(a_ )[0] == np.shape(a_ )[0]
# Ensure inputs are either both complex or both real
assert np.iscomplexobj(a_ ) == np.iscomplexobj(a_ )
__A = np.iscomplexobj(a_ )
if is_complex:
# Ensure complex input_matrix is Hermitian
assert np.array_equal(a_ , input_matrix.conj().T )
# Set convergence to False. Will define convergence when we exceed max_iterations
# or when we have small changes from one iteration to next.
__A = False
__A = 0
__A = 0
__A = 1E12
while not convergence:
# Multiple matrix by the vector.
__A = np.dot(a_ , a_ )
# Normalize the resulting output vector.
__A = w / np.linalg.norm(a_ )
# Find rayleigh quotient
# (faster than usual b/c we know vector is normalized already)
__A = vector.conj().T if is_complex else vector.T
__A = np.dot(a_ , np.dot(a_ , a_ ) )
# Check convergence.
__A = np.abs(lambda_ - lambda_previous ) / lambda_
iterations += 1
if error <= error_tol or iterations >= max_iterations:
__A = True
__A = lambda_
if is_complex:
__A = np.real(lambda_ )
return lambda_, vector
def UpperCAmelCase ( ) -> None:
"""simple docstring"""
__A = np.array([[4_1, 4, 2_0], [4, 2_6, 3_0], [2_0, 3_0, 5_0]] )
__A = np.array([4_1, 4, 2_0] )
__A = real_input_matrix.astype(np.complexaaa )
__A = np.triu(1J * complex_input_matrix , 1 )
complex_input_matrix += imag_matrix
complex_input_matrix += -1 * imag_matrix.T
__A = np.array([4_1, 4, 2_0] ).astype(np.complexaaa )
for problem_type in ["real", "complex"]:
if problem_type == "real":
__A = real_input_matrix
__A = real_vector
elif problem_type == "complex":
__A = complex_input_matrix
__A = complex_vector
# Our implementation.
__A , __A = power_iteration(a_ , a_ )
# Numpy implementation.
# Get eigenvalues and eigenvectors using built-in numpy
# eigh (eigh used for symmetric or hermetian matrices).
__A , __A = np.linalg.eigh(a_ )
# Last eigenvalue is the maximum one.
__A = eigen_values[-1]
# Last column in this matrix is eigenvector corresponding to largest eigenvalue.
__A = eigen_vectors[:, -1]
# Check our implementation and numpy gives close answers.
assert np.abs(eigen_value - eigen_value_max ) <= 1E-6
# Take absolute values element wise of each eigenvector.
# as they are only unique to a minus sign.
assert np.linalg.norm(np.abs(a_ ) - np.abs(a_ ) ) <= 1E-6
if __name__ == "__main__":
import doctest
doctest.testmod()
test_power_iteration()
| 15 | 1 |
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing the experiment tracking capability,
# and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To help focus on the differences in the code, building `DataLoaders`
# was refactored into its own function.
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
SCREAMING_SNAKE_CASE :Optional[int] = 16
SCREAMING_SNAKE_CASE :int = 32
def UpperCAmelCase ( a_ , a_ = 1_6 ) -> str:
"""simple docstring"""
__A = AutoTokenizer.from_pretrained("bert-base-cased" )
__A = load_dataset("glue" , "mrpc" )
def tokenize_function(a_ ):
# max_length=None => use the model max length (it's actually the default)
__A = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=a_ , max_length=a_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
__A = datasets.map(
a_ , batched=a_ , remove_columns=["idx", "sentence1", "sentence2"] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
__A = tokenized_datasets.rename_column("label" , "labels" )
def collate_fn(a_ ):
# On TPU it's best to pad everything to the same length or training will be very slow.
__A = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
__A = 1_6
elif accelerator.mixed_precision != "no":
__A = 8
else:
__A = None
return tokenizer.pad(
a_ , padding="longest" , max_length=a_ , pad_to_multiple_of=a_ , return_tensors="pt" , )
# Instantiate dataloaders.
__A = DataLoader(
tokenized_datasets["train"] , shuffle=a_ , collate_fn=a_ , batch_size=a_ )
__A = DataLoader(
tokenized_datasets["validation"] , shuffle=a_ , collate_fn=a_ , batch_size=a_ )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
SCREAMING_SNAKE_CASE :int = mocked_dataloaders # noqa: F811
def UpperCAmelCase ( a_ , a_ ) -> Tuple:
"""simple docstring"""
if os.environ.get("TESTING_MOCKED_DATALOADERS" , a_ ) == "1":
__A = 2
# Initialize Accelerator
# New Code #
# We pass in "all" to `log_with` to grab all available trackers in the environment
# Note: If using a custom `Tracker` class, should be passed in here such as:
# >>> log_with = ["all", MyCustomTrackerClassInstance()]
if args.with_tracking:
__A = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir )
else:
__A = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__A = config["lr"]
__A = int(config["num_epochs"] )
__A = int(config["seed"] )
__A = int(config["batch_size"] )
set_seed(a_ )
__A , __A = get_dataloaders(a_ , a_ )
__A = evaluate.load("glue" , "mrpc" )
# If the batch size is too big we use gradient accumulation
__A = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
__A = batch_size // MAX_GPU_BATCH_SIZE
__A = MAX_GPU_BATCH_SIZE
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__A = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=a_ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
__A = model.to(accelerator.device )
# Instantiate optimizer
__A = AdamW(params=model.parameters() , lr=a_ )
# Instantiate scheduler
__A = get_linear_schedule_with_warmup(
optimizer=a_ , num_warmup_steps=1_0_0 , num_training_steps=(len(a_ ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__A , __A , __A , __A , __A = accelerator.prepare(
a_ , a_ , a_ , a_ , a_ )
# New Code #
# We need to initialize the trackers we use. Overall configurations can also be stored
if args.with_tracking:
__A = os.path.split(a_ )[-1].split("." )[0]
accelerator.init_trackers(a_ , a_ )
# Now we train the model
for epoch in range(a_ ):
model.train()
# New Code #
# For our tracking example, we will log the total loss of each epoch
if args.with_tracking:
__A = 0
for step, batch in enumerate(a_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
__A = model(**a_ )
__A = outputs.loss
# New Code #
if args.with_tracking:
total_loss += loss.detach().float()
__A = loss / gradient_accumulation_steps
accelerator.backward(a_ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(a_ ):
# We could avoid this line since we set the accelerator with `device_placement=True` (the default).
batch.to(accelerator.device )
with torch.no_grad():
__A = model(**a_ )
__A = outputs.logits.argmax(dim=-1 )
__A , __A = accelerator.gather_for_metrics((predictions, batch["labels"]) )
metric.add_batch(
predictions=a_ , references=a_ , )
__A = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F'''epoch {epoch}:''' , a_ )
# New Code #
# To actually log, we call `Accelerator.log`
# The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int`
if args.with_tracking:
accelerator.log(
{
"accuracy": eval_metric["accuracy"],
"f1": eval_metric["f1"],
"train_loss": total_loss.item() / len(a_ ),
"epoch": epoch,
} , step=a_ , )
# New Code #
# When a run is finished, you should call `accelerator.end_training()`
# to close all of the open trackers
if args.with_tracking:
accelerator.end_training()
def UpperCAmelCase ( ) -> Tuple:
"""simple docstring"""
__A = argparse.ArgumentParser(description="Simple example of training script." )
parser.add_argument(
"--mixed_precision" , type=a_ , default=a_ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU." , )
parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." )
parser.add_argument(
"--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , )
parser.add_argument(
"--project_dir" , type=a_ , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , )
__A = parser.parse_args()
__A = {"lr": 2E-5, "num_epochs": 3, "seed": 4_2, "batch_size": 1_6}
training_function(a_ , a_ )
if __name__ == "__main__":
main()
| 15 |
from typing import Optional, Tuple, Union
import tensorflow as tf
from ...activations_tf import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_tf_outputs import (
TFBaseModelOutputWithNoAttention,
TFBaseModelOutputWithPoolingAndNoAttention,
TFSequenceClassifierOutput,
)
from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs
from ...tf_utils import shape_list
from ...utils import logging
from .configuration_regnet import RegNetConfig
SCREAMING_SNAKE_CASE :str = logging.get_logger(__name__)
# General docstring
SCREAMING_SNAKE_CASE :str = 'RegNetConfig'
# Base docstring
SCREAMING_SNAKE_CASE :List[str] = 'facebook/regnet-y-040'
SCREAMING_SNAKE_CASE :Union[str, Any] = [1, 1088, 7, 7]
# Image classification docstring
SCREAMING_SNAKE_CASE :Optional[int] = 'facebook/regnet-y-040'
SCREAMING_SNAKE_CASE :Any = 'tabby, tabby cat'
SCREAMING_SNAKE_CASE :Optional[int] = [
'facebook/regnet-y-040',
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : Tuple ,A : int ,A : int = 3 ,A : int = 1 ,A : int = 1 ,A : Optional[str] = "relu" ,**A : Dict ,):
super().__init__(**A )
# The padding and conv has been verified in
# https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb
__A = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 )
__A = tf.keras.layers.ConvaD(
filters=A ,kernel_size=A ,strides=A ,padding="VALID" ,groups=A ,use_bias=A ,name="convolution" ,)
__A = tf.keras.layers.BatchNormalization(epsilon=1E-5 ,momentum=0.9 ,name="normalization" )
__A = ACTaFN[activation] if activation is not None else tf.identity
def UpperCamelCase_ ( self : List[Any] ,A : Any ):
__A = self.convolution(self.padding(A ) )
__A = self.normalization(A )
__A = self.activation(A )
return hidden_state
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : Tuple ,A : RegNetConfig ,**A : str ):
super().__init__(**A )
__A = config.num_channels
__A = TFRegNetConvLayer(
out_channels=config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ,name="embedder" ,)
def UpperCamelCase_ ( self : Tuple ,A : Optional[Any] ):
__A = shape_list(A )[1]
if tf.executing_eagerly() and num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration." )
# When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format.
# So change the input format from `NCHW` to `NHWC`.
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
__A = tf.transpose(A ,perm=(0, 2, 3, 1) )
__A = self.embedder(A )
return hidden_state
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : Optional[int] ,A : int ,A : int = 2 ,**A : Tuple ):
super().__init__(**A )
__A = tf.keras.layers.ConvaD(
filters=A ,kernel_size=1 ,strides=A ,use_bias=A ,name="convolution" )
__A = tf.keras.layers.BatchNormalization(epsilon=1E-5 ,momentum=0.9 ,name="normalization" )
def UpperCamelCase_ ( self : Union[str, Any] ,A : tf.Tensor ,A : bool = False ):
return self.normalization(self.convolution(A ) ,training=A )
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : Dict ,A : int ,A : int ,**A : str ):
super().__init__(**A )
__A = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A ,name="pooler" )
__A = [
tf.keras.layers.ConvaD(filters=A ,kernel_size=1 ,activation="relu" ,name="attention.0" ),
tf.keras.layers.ConvaD(filters=A ,kernel_size=1 ,activation="sigmoid" ,name="attention.2" ),
]
def UpperCamelCase_ ( self : Dict ,A : List[Any] ):
# [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels]
__A = self.pooler(A )
for layer_module in self.attention:
__A = layer_module(A )
__A = hidden_state * pooled
return hidden_state
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : List[str] ,A : RegNetConfig ,A : int ,A : int ,A : int = 1 ,**A : Optional[int] ):
super().__init__(**A )
__A = in_channels != out_channels or stride != 1
__A = max(1 ,out_channels // config.groups_width )
__A = (
TFRegNetShortCut(A ,stride=A ,name="shortcut" )
if should_apply_shortcut
else tf.keras.layers.Activation("linear" ,name="shortcut" )
)
# `self.layers` instead of `self.layer` because that is a reserved argument.
__A = [
TFRegNetConvLayer(A ,kernel_size=1 ,activation=config.hidden_act ,name="layer.0" ),
TFRegNetConvLayer(
A ,stride=A ,groups=A ,activation=config.hidden_act ,name="layer.1" ),
TFRegNetConvLayer(A ,kernel_size=1 ,activation=A ,name="layer.2" ),
]
__A = ACTaFN[config.hidden_act]
def UpperCamelCase_ ( self : int ,A : Optional[int] ):
__A = hidden_state
for layer_module in self.layers:
__A = layer_module(A )
__A = self.shortcut(A )
hidden_state += residual
__A = self.activation(A )
return hidden_state
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : List[Any] ,A : RegNetConfig ,A : int ,A : int ,A : int = 1 ,**A : str ):
super().__init__(**A )
__A = in_channels != out_channels or stride != 1
__A = max(1 ,out_channels // config.groups_width )
__A = (
TFRegNetShortCut(A ,stride=A ,name="shortcut" )
if should_apply_shortcut
else tf.keras.layers.Activation("linear" ,name="shortcut" )
)
__A = [
TFRegNetConvLayer(A ,kernel_size=1 ,activation=config.hidden_act ,name="layer.0" ),
TFRegNetConvLayer(
A ,stride=A ,groups=A ,activation=config.hidden_act ,name="layer.1" ),
TFRegNetSELayer(A ,reduced_channels=int(round(in_channels / 4 ) ) ,name="layer.2" ),
TFRegNetConvLayer(A ,kernel_size=1 ,activation=A ,name="layer.3" ),
]
__A = ACTaFN[config.hidden_act]
def UpperCamelCase_ ( self : Dict ,A : Any ):
__A = hidden_state
for layer_module in self.layers:
__A = layer_module(A )
__A = self.shortcut(A )
hidden_state += residual
__A = self.activation(A )
return hidden_state
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : List[str] ,A : RegNetConfig ,A : int ,A : int ,A : int = 2 ,A : int = 2 ,**A : Optional[int] ):
super().__init__(**A )
__A = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer
__A = [
# downsampling is done in the first layer with stride of 2
layer(A ,A ,A ,stride=A ,name="layers.0" ),
*[layer(A ,A ,A ,name=f'''layers.{i+1}''' ) for i in range(depth - 1 )],
]
def UpperCamelCase_ ( self : Any ,A : List[str] ):
for layer_module in self.layers:
__A = layer_module(A )
return hidden_state
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : Any ,A : RegNetConfig ,**A : List[str] ):
super().__init__(**A )
__A = []
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
TFRegNetStage(
A ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,name="stages.0" ,) )
__A = zip(config.hidden_sizes ,config.hidden_sizes[1:] )
for i, ((in_channels, out_channels), depth) in enumerate(zip(A ,config.depths[1:] ) ):
self.stages.append(TFRegNetStage(A ,A ,A ,depth=A ,name=f'''stages.{i+1}''' ) )
def UpperCamelCase_ ( self : List[str] ,A : tf.Tensor ,A : bool = False ,A : bool = True ):
__A = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
__A = hidden_states + (hidden_state,)
__A = stage_module(A )
if output_hidden_states:
__A = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return TFBaseModelOutputWithNoAttention(last_hidden_state=A ,hidden_states=A )
@keras_serializable
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
snake_case_ = RegNetConfig
def __init__( self : int ,A : Optional[int] ,**A : Dict ):
super().__init__(**A )
__A = config
__A = TFRegNetEmbeddings(A ,name="embedder" )
__A = TFRegNetEncoder(A ,name="encoder" )
__A = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A ,name="pooler" )
@unpack_inputs
def UpperCamelCase_ ( self : Tuple ,A : tf.Tensor ,A : Optional[bool] = None ,A : Optional[bool] = None ,A : bool = False ,):
__A = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__A = return_dict if return_dict is not None else self.config.use_return_dict
__A = self.embedder(A ,training=A )
__A = self.encoder(
A ,output_hidden_states=A ,return_dict=A ,training=A )
__A = encoder_outputs[0]
__A = self.pooler(A )
# Change to NCHW output format have uniformity in the modules
__A = tf.transpose(A ,perm=(0, 3, 1, 2) )
__A = tf.transpose(A ,perm=(0, 3, 1, 2) )
# Change the other hidden state outputs to NCHW as well
if output_hidden_states:
__A = tuple([tf.transpose(A ,perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=A ,pooler_output=A ,hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states ,)
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = RegNetConfig
snake_case_ = "regnet"
snake_case_ = "pixel_values"
@property
def UpperCamelCase_ ( self : Optional[Any] ):
return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) ,dtype=tf.floataa )}
SCREAMING_SNAKE_CASE :Dict = R'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n'
SCREAMING_SNAKE_CASE :Dict = R'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n'
@add_start_docstrings(
"The bare RegNet model outputting raw features without any specific head on top." , __SCREAMING_SNAKE_CASE , )
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : List[Any] ,A : RegNetConfig ,*A : List[Any] ,**A : str ):
super().__init__(A ,*A ,**A )
__A = TFRegNetMainLayer(A ,name="regnet" )
@unpack_inputs
@add_start_docstrings_to_model_forward(A )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC ,output_type=A ,config_class=_CONFIG_FOR_DOC ,modality="vision" ,expected_output=_EXPECTED_OUTPUT_SHAPE ,)
def UpperCamelCase_ ( self : Tuple ,A : tf.Tensor ,A : Optional[bool] = None ,A : Optional[bool] = None ,A : int=False ,):
__A = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__A = return_dict if return_dict is not None else self.config.use_return_dict
__A = self.regnet(
pixel_values=A ,output_hidden_states=A ,return_dict=A ,training=A ,)
if not return_dict:
return (outputs[0],) + outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=outputs.last_hidden_state ,pooler_output=outputs.pooler_output ,hidden_states=outputs.hidden_states ,)
@add_start_docstrings(
"\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , __SCREAMING_SNAKE_CASE , )
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : Optional[int] ,A : RegNetConfig ,*A : str ,**A : Tuple ):
super().__init__(A ,*A ,**A )
__A = config.num_labels
__A = TFRegNetMainLayer(A ,name="regnet" )
# classification head
__A = [
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(config.num_labels ,name="classifier.1" ) if config.num_labels > 0 else tf.identity,
]
@unpack_inputs
@add_start_docstrings_to_model_forward(A )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=A ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,)
def UpperCamelCase_ ( self : List[str] ,A : tf.Tensor = None ,A : tf.Tensor = None ,A : bool = None ,A : bool = None ,A : Union[str, Any]=False ,):
__A = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__A = return_dict if return_dict is not None else self.config.use_return_dict
__A = self.regnet(
A ,output_hidden_states=A ,return_dict=A ,training=A )
__A = outputs.pooler_output if return_dict else outputs[1]
__A = self.classifier[0](A )
__A = self.classifier[1](A )
__A = None if labels is None else self.hf_compute_loss(labels=A ,logits=A )
if not return_dict:
__A = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(loss=A ,logits=A ,hidden_states=outputs.hidden_states )
| 15 | 1 |
from __future__ import annotations
from math import pi
def UpperCAmelCase ( a_ , a_ , a_ ) -> dict[str, float]:
"""simple docstring"""
if (inductance, frequency, reactance).count(0 ) != 1:
raise ValueError("One and only one argument must be 0" )
if inductance < 0:
raise ValueError("Inductance cannot be negative" )
if frequency < 0:
raise ValueError("Frequency cannot be negative" )
if reactance < 0:
raise ValueError("Inductive reactance cannot be negative" )
if inductance == 0:
return {"inductance": reactance / (2 * pi * frequency)}
elif frequency == 0:
return {"frequency": reactance / (2 * pi * inductance)}
elif reactance == 0:
return {"reactance": 2 * pi * frequency * inductance}
else:
raise ValueError("Exactly one argument must be 0" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 15 |
import math
def UpperCAmelCase ( a_ , a_ = 0 , a_ = 0 ) -> list:
"""simple docstring"""
__A = end or len(a_ )
for i in range(a_ , a_ ):
__A = i
__A = array[i]
while temp_index != start and temp_index_value < array[temp_index - 1]:
__A = array[temp_index - 1]
temp_index -= 1
__A = temp_index_value
return array
def UpperCAmelCase ( a_ , a_ , a_ ) -> None: # Max Heap
"""simple docstring"""
__A = index
__A = 2 * index + 1 # Left Node
__A = 2 * index + 2 # Right Node
if left_index < heap_size and array[largest] < array[left_index]:
__A = left_index
if right_index < heap_size and array[largest] < array[right_index]:
__A = right_index
if largest != index:
__A , __A = array[largest], array[index]
heapify(a_ , a_ , a_ )
def UpperCAmelCase ( a_ ) -> list:
"""simple docstring"""
__A = len(a_ )
for i in range(n // 2 , -1 , -1 ):
heapify(a_ , a_ , a_ )
for i in range(n - 1 , 0 , -1 ):
__A , __A = array[0], array[i]
heapify(a_ , 0 , a_ )
return array
def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> int:
"""simple docstring"""
if (array[first_index] > array[middle_index]) != (
array[first_index] > array[last_index]
):
return array[first_index]
elif (array[middle_index] > array[first_index]) != (
array[middle_index] > array[last_index]
):
return array[middle_index]
else:
return array[last_index]
def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> int:
"""simple docstring"""
__A = low
__A = high
while True:
while array[i] < pivot:
i += 1
j -= 1
while pivot < array[j]:
j -= 1
if i >= j:
return i
__A , __A = array[j], array[i]
i += 1
def UpperCAmelCase ( a_ ) -> list:
"""simple docstring"""
if len(a_ ) == 0:
return array
__A = 2 * math.ceil(math.loga(len(a_ ) ) )
__A = 1_6
return intro_sort(a_ , 0 , len(a_ ) , a_ , a_ )
def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ ) -> list:
"""simple docstring"""
while end - start > size_threshold:
if max_depth == 0:
return heap_sort(a_ )
max_depth -= 1
__A = median_of_a(a_ , a_ , start + ((end - start) // 2) + 1 , end - 1 )
__A = partition(a_ , a_ , a_ , a_ )
intro_sort(a_ , a_ , a_ , a_ , a_ )
__A = p
return insertion_sort(a_ , a_ , a_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
SCREAMING_SNAKE_CASE :List[Any] = input('Enter numbers separated by a comma : ').strip()
SCREAMING_SNAKE_CASE :str = [float(item) for item in user_input.split(',')]
print(sort(unsorted))
| 15 | 1 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
load_numpy,
nightly,
require_torch_gpu,
slow,
torch_device,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = LDMTextToImagePipeline
snake_case_ = TEXT_TO_IMAGE_PARAMS - {
"negative_prompt",
"negative_prompt_embeds",
"cross_attention_kwargs",
"prompt_embeds",
}
snake_case_ = PipelineTesterMixin.required_optional_params - {
"num_images_per_prompt",
"callback",
"callback_steps",
}
snake_case_ = TEXT_TO_IMAGE_BATCH_PARAMS
snake_case_ = False
def UpperCamelCase_ ( self : Optional[int] ):
torch.manual_seed(0 )
__A = UNetaDConditionModel(
block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") ,up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") ,cross_attention_dim=32 ,)
__A = DDIMScheduler(
beta_start=0.0_00_85 ,beta_end=0.0_12 ,beta_schedule="scaled_linear" ,clip_sample=A ,set_alpha_to_one=A ,)
torch.manual_seed(0 )
__A = AutoencoderKL(
block_out_channels=(32, 64) ,in_channels=3 ,out_channels=3 ,down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") ,up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") ,latent_channels=4 ,)
torch.manual_seed(0 )
__A = CLIPTextConfig(
bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=10_00 ,)
__A = CLIPTextModel(A )
__A = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
__A = {
"unet": unet,
"scheduler": scheduler,
"vqvae": vae,
"bert": text_encoder,
"tokenizer": tokenizer,
}
return components
def UpperCamelCase_ ( self : Any ,A : Any ,A : List[Any]=0 ):
if str(A ).startswith("mps" ):
__A = torch.manual_seed(A )
else:
__A = torch.Generator(device=A ).manual_seed(A )
__A = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def UpperCamelCase_ ( self : Dict ):
__A = "cpu" # ensure determinism for the device-dependent torch.Generator
__A = self.get_dummy_components()
__A = LDMTextToImagePipeline(**A )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
__A = self.get_dummy_inputs(A )
__A = pipe(**A ).images
__A = image[0, -3:, -3:, -1]
assert image.shape == (1, 16, 16, 3)
__A = np.array([0.61_01, 0.61_56, 0.56_22, 0.48_95, 0.66_61, 0.38_04, 0.57_48, 0.61_36, 0.50_14] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
@slow
@require_torch_gpu
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : str ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase_ ( self : str ,A : Dict ,A : int=torch.floataa ,A : List[Any]=0 ):
__A = torch.manual_seed(A )
__A = np.random.RandomState(A ).standard_normal((1, 4, 32, 32) )
__A = torch.from_numpy(A ).to(device=A ,dtype=A )
__A = {
"prompt": "A painting of a squirrel eating a burger",
"latents": latents,
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def UpperCamelCase_ ( self : Optional[int] ):
__A = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256" ).to(A )
pipe.set_progress_bar_config(disable=A )
__A = self.get_inputs(A )
__A = pipe(**A ).images
__A = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 2_56, 2_56, 3)
__A = np.array([0.5_18_25, 0.5_28_50, 0.5_25_43, 0.5_42_58, 0.5_23_04, 0.5_25_69, 0.5_43_63, 0.5_52_76, 0.5_68_78] )
__A = np.abs(expected_slice - image_slice ).max()
assert max_diff < 1E-3
@nightly
@require_torch_gpu
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : List[Any] ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase_ ( self : str ,A : List[Any] ,A : Any=torch.floataa ,A : Dict=0 ):
__A = torch.manual_seed(A )
__A = np.random.RandomState(A ).standard_normal((1, 4, 32, 32) )
__A = torch.from_numpy(A ).to(device=A ,dtype=A )
__A = {
"prompt": "A painting of a squirrel eating a burger",
"latents": latents,
"generator": generator,
"num_inference_steps": 50,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def UpperCamelCase_ ( self : Dict ):
__A = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256" ).to(A )
pipe.set_progress_bar_config(disable=A )
__A = self.get_inputs(A )
__A = pipe(**A ).images[0]
__A = load_numpy(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy" )
__A = np.abs(expected_image - image ).max()
assert max_diff < 1E-3
| 15 |
import dataclasses
import json
import sys
import types
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError
from copy import copy
from enum import Enum
from inspect import isclass
from pathlib import Path
from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints
import yaml
SCREAMING_SNAKE_CASE :Optional[int] = NewType('DataClass', Any)
SCREAMING_SNAKE_CASE :int = NewType('DataClassType', Any)
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
if isinstance(a_ , a_ ):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise ArgumentTypeError(
F'''Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).''' )
def UpperCAmelCase ( a_ ) -> Callable[[str], Any]:
"""simple docstring"""
__A = {str(a_ ): choice for choice in choices}
return lambda a_ : str_to_choice.get(a_ , a_ )
def UpperCAmelCase ( *,
a_ = None , a_ = None , a_ = dataclasses.MISSING , a_ = dataclasses.MISSING , a_ = None , **a_ , ) -> dataclasses.Field:
"""simple docstring"""
if metadata is None:
# Important, don't use as default param in function signature because dict is mutable and shared across function calls
__A = {}
if aliases is not None:
__A = aliases
if help is not None:
__A = help
return dataclasses.field(metadata=a_ , default=a_ , default_factory=a_ , **a_ )
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = 42
def __init__( self : Union[str, Any] ,A : Union[DataClassType, Iterable[DataClassType]] ,**A : List[Any] ):
# To make the default appear when using --help
if "formatter_class" not in kwargs:
__A = ArgumentDefaultsHelpFormatter
super().__init__(**A )
if dataclasses.is_dataclass(A ):
__A = [dataclass_types]
__A = list(A )
for dtype in self.dataclass_types:
self._add_dataclass_arguments(A )
@staticmethod
def UpperCamelCase_ ( A : ArgumentParser ,A : dataclasses.Field ):
__A = f'''--{field.name}'''
__A = field.metadata.copy()
# field.metadata is not used at all by Data Classes,
# it is provided as a third-party extension mechanism.
if isinstance(field.type ,A ):
raise RuntimeError(
"Unresolved type detected, which should have been done with the help of "
"`typing.get_type_hints` method by default" )
__A = kwargs.pop("aliases" ,[] )
if isinstance(A ,A ):
__A = [aliases]
__A = getattr(field.type ,"__origin__" ,field.type )
if origin_type is Union or (hasattr(A ,"UnionType" ) and isinstance(A ,types.UnionType )):
if str not in field.type.__args__ and (
len(field.type.__args__ ) != 2 or type(A ) not in field.type.__args__
):
raise ValueError(
"Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because"
" the argument parser only supports one type per argument."
f''' Problem encountered in field \'{field.name}\'.''' )
if type(A ) not in field.type.__args__:
# filter `str` in Union
__A = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1]
__A = getattr(field.type ,"__origin__" ,field.type )
elif bool not in field.type.__args__:
# filter `NoneType` in Union (except for `Union[bool, NoneType]`)
__A = (
field.type.__args__[0] if isinstance(A ,field.type.__args__[1] ) else field.type.__args__[1]
)
__A = getattr(field.type ,"__origin__" ,field.type )
# A variable to store kwargs for a boolean field, if needed
# so that we can init a `no_*` complement argument (see below)
__A = {}
if origin_type is Literal or (isinstance(field.type ,A ) and issubclass(field.type ,A )):
if origin_type is Literal:
__A = field.type.__args__
else:
__A = [x.value for x in field.type]
__A = make_choice_type_function(kwargs["choices"] )
if field.default is not dataclasses.MISSING:
__A = field.default
else:
__A = True
elif field.type is bool or field.type == Optional[bool]:
# Copy the currect kwargs to use to instantiate a `no_*` complement argument below.
# We do not initialize it here because the `no_*` alternative must be instantiated after the real argument
__A = copy(A )
# Hack because type=bool in argparse does not behave as we want.
__A = string_to_bool
if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING):
# Default value is False if we have no default when of type bool.
__A = False if field.default is dataclasses.MISSING else field.default
# This is the value that will get picked if we don't include --field_name in any way
__A = default
# This tells argparse we accept 0 or 1 value after --field_name
__A = "?"
# This is the value that will get picked if we do --field_name (without value)
__A = True
elif isclass(A ) and issubclass(A ,A ):
__A = field.type.__args__[0]
__A = "+"
if field.default_factory is not dataclasses.MISSING:
__A = field.default_factory()
elif field.default is dataclasses.MISSING:
__A = True
else:
__A = field.type
if field.default is not dataclasses.MISSING:
__A = field.default
elif field.default_factory is not dataclasses.MISSING:
__A = field.default_factory()
else:
__A = True
parser.add_argument(A ,*A ,**A )
# Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added.
# Order is important for arguments with the same destination!
# We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down
# here and we do not need those changes/additional keys.
if field.default is True and (field.type is bool or field.type == Optional[bool]):
__A = False
parser.add_argument(f'''--no_{field.name}''' ,action="store_false" ,dest=field.name ,**A )
def UpperCamelCase_ ( self : Union[str, Any] ,A : DataClassType ):
if hasattr(A ,"_argument_group_name" ):
__A = self.add_argument_group(dtype._argument_group_name )
else:
__A = self
try:
__A = get_type_hints(A )
except NameError:
raise RuntimeError(
f'''Type resolution failed for {dtype}. Try declaring the class in global scope or '''
"removing line of `from __future__ import annotations` which opts in Postponed "
"Evaluation of Annotations (PEP 563)" )
except TypeError as ex:
# Remove this block when we drop Python 3.9 support
if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(A ):
__A = ".".join(map(A ,sys.version_info[:3] ) )
raise RuntimeError(
f'''Type resolution failed for {dtype} on Python {python_version}. Try removing '''
"line of `from __future__ import annotations` which opts in union types as "
"`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To "
"support Python versions that lower than 3.10, you need to use "
"`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of "
"`X | None`." ) from ex
raise
for field in dataclasses.fields(A ):
if not field.init:
continue
__A = type_hints[field.name]
self._parse_dataclass_field(A ,A )
def UpperCamelCase_ ( self : Union[str, Any] ,A : List[Any]=None ,A : List[Any]=False ,A : Optional[Any]=True ,A : Union[str, Any]=None ,A : Union[str, Any]=None ,):
if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )):
__A = []
if args_filename:
args_files.append(Path(A ) )
elif look_for_args_file and len(sys.argv ):
args_files.append(Path(sys.argv[0] ).with_suffix(".args" ) )
# args files specified via command line flag should overwrite default args files so we add them last
if args_file_flag:
# Create special parser just to extract the args_file_flag values
__A = ArgumentParser()
args_file_parser.add_argument(A ,type=A ,action="append" )
# Use only remaining args for further parsing (remove the args_file_flag)
__A , __A = args_file_parser.parse_known_args(args=A )
__A = vars(A ).get(args_file_flag.lstrip("-" ) ,A )
if cmd_args_file_paths:
args_files.extend([Path(A ) for p in cmd_args_file_paths] )
__A = []
for args_file in args_files:
if args_file.exists():
file_args += args_file.read_text().split()
# in case of duplicate arguments the last one has precedence
# args specified via the command line should overwrite args from files, so we add them last
__A = file_args + args if args is not None else file_args + sys.argv[1:]
__A , __A = self.parse_known_args(args=A )
__A = []
for dtype in self.dataclass_types:
__A = {f.name for f in dataclasses.fields(A ) if f.init}
__A = {k: v for k, v in vars(A ).items() if k in keys}
for k in keys:
delattr(A ,A )
__A = dtype(**A )
outputs.append(A )
if len(namespace.__dict__ ) > 0:
# additional namespace.
outputs.append(A )
if return_remaining_strings:
return (*outputs, remaining_args)
else:
if remaining_args:
raise ValueError(f'''Some specified arguments are not used by the HfArgumentParser: {remaining_args}''' )
return (*outputs,)
def UpperCamelCase_ ( self : Dict ,A : Dict[str, Any] ,A : bool = False ):
__A = set(args.keys() )
__A = []
for dtype in self.dataclass_types:
__A = {f.name for f in dataclasses.fields(A ) if f.init}
__A = {k: v for k, v in args.items() if k in keys}
unused_keys.difference_update(inputs.keys() )
__A = dtype(**A )
outputs.append(A )
if not allow_extra_keys and unused_keys:
raise ValueError(f'''Some keys are not used by the HfArgumentParser: {sorted(A )}''' )
return tuple(A )
def UpperCamelCase_ ( self : List[str] ,A : str ,A : bool = False ):
with open(Path(A ) ,encoding="utf-8" ) as open_json_file:
__A = json.loads(open_json_file.read() )
__A = self.parse_dict(A ,allow_extra_keys=A )
return tuple(A )
def UpperCamelCase_ ( self : int ,A : str ,A : bool = False ):
__A = self.parse_dict(yaml.safe_load(Path(A ).read_text() ) ,allow_extra_keys=A )
return tuple(A )
| 15 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
SCREAMING_SNAKE_CASE :List[Any] = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :List[str] = ['BartphoTokenizer']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bartpho import BartphoTokenizer
else:
import sys
SCREAMING_SNAKE_CASE :Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 15 |
SCREAMING_SNAKE_CASE :Any = 256
# Modulus to hash a string
SCREAMING_SNAKE_CASE :Union[str, Any] = 100_0003
def UpperCAmelCase ( a_ , a_ ) -> bool:
"""simple docstring"""
__A = len(a_ )
__A = len(a_ )
if p_len > t_len:
return False
__A = 0
__A = 0
__A = 1
# Calculating the hash of pattern and substring of text
for i in range(a_ ):
__A = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus
__A = (ord(text[i] ) + text_hash * alphabet_size) % modulus
if i == p_len - 1:
continue
__A = (modulus_power * alphabet_size) % modulus
for i in range(0 , t_len - p_len + 1 ):
if text_hash == p_hash and text[i : i + p_len] == pattern:
return True
if i == t_len - p_len:
continue
# Calculate the https://en.wikipedia.org/wiki/Rolling_hash
__A = (
(text_hash - ord(text[i] ) * modulus_power) * alphabet_size
+ ord(text[i + p_len] )
) % modulus
return False
def UpperCAmelCase ( ) -> None:
"""simple docstring"""
__A = "abc1abc12"
__A = "alskfjaldsabc1abc1abc12k23adsfabcabc"
__A = "alskfjaldsk23adsfabcabc"
assert rabin_karp(a_ , a_ ) and not rabin_karp(a_ , a_ )
# Test 2)
__A = "ABABX"
__A = "ABABZABABYABABX"
assert rabin_karp(a_ , a_ )
# Test 3)
__A = "AAAB"
__A = "ABAAAAAB"
assert rabin_karp(a_ , a_ )
# Test 4)
__A = "abcdabcy"
__A = "abcxabcdabxabcdabcdabcy"
assert rabin_karp(a_ , a_ )
# Test 5)
__A = "Lü"
__A = "Lüsai"
assert rabin_karp(a_ , a_ )
__A = "Lue"
assert not rabin_karp(a_ , a_ )
print("Success." )
if __name__ == "__main__":
test_rabin_karp()
| 15 | 1 |
def UpperCAmelCase ( a_ ) -> bool:
"""simple docstring"""
if not isinstance(a_ , a_ ):
__A = F'''Input value of [number={number}] must be an integer'''
raise TypeError(a_ )
if number < 0:
return False
__A = number * number
while number > 0:
if number % 1_0 != number_square % 1_0:
return False
number //= 1_0
number_square //= 1_0
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 15 |
import argparse
import json
import os
import torch
from transformers.file_utils import has_file
from diffusers import UNetaDConditionModel, UNetaDModel
SCREAMING_SNAKE_CASE :Union[str, Any] = False
SCREAMING_SNAKE_CASE :Any = True
SCREAMING_SNAKE_CASE :Tuple = False
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :Tuple = argparse.ArgumentParser()
parser.add_argument(
'--repo_path',
default=None,
type=str,
required=True,
help='The config json file corresponding to the architecture.',
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
SCREAMING_SNAKE_CASE :Union[str, Any] = parser.parse_args()
SCREAMING_SNAKE_CASE :Dict = {
'image_size': 'sample_size',
'num_res_blocks': 'layers_per_block',
'block_channels': 'block_out_channels',
'down_blocks': 'down_block_types',
'up_blocks': 'up_block_types',
'downscale_freq_shift': 'freq_shift',
'resnet_num_groups': 'norm_num_groups',
'resnet_act_fn': 'act_fn',
'resnet_eps': 'norm_eps',
'num_head_channels': 'attention_head_dim',
}
SCREAMING_SNAKE_CASE :Optional[int] = {
'time_steps': 'time_proj',
'mid': 'mid_block',
'downsample_blocks': 'down_blocks',
'upsample_blocks': 'up_blocks',
}
SCREAMING_SNAKE_CASE :int = '' if has_file(args.repo_path, 'config.json') else 'unet'
with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader:
SCREAMING_SNAKE_CASE :Dict = reader.read()
SCREAMING_SNAKE_CASE :List[str] = json.loads(text)
if do_only_config:
for key in config_parameters_to_change.keys():
config.pop(key, None)
if has_file(args.repo_path, 'config.json'):
SCREAMING_SNAKE_CASE :Optional[int] = UNetaDModel(**config)
else:
SCREAMING_SNAKE_CASE :Optional[Any] = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel
SCREAMING_SNAKE_CASE :List[str] = class_name(**config)
if do_only_config:
model.save_config(os.path.join(args.repo_path, subfolder))
SCREAMING_SNAKE_CASE :List[str] = dict(model.config)
if do_only_renaming:
for key, value in config_parameters_to_change.items():
if key in config:
SCREAMING_SNAKE_CASE :Optional[Any] = config[key]
del config[key]
SCREAMING_SNAKE_CASE :Optional[Any] = [k.replace('UNetRes', '') for k in config['down_block_types']]
SCREAMING_SNAKE_CASE :List[Any] = [k.replace('UNetRes', '') for k in config['up_block_types']]
if do_only_weights:
SCREAMING_SNAKE_CASE :Tuple = torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin'))
SCREAMING_SNAKE_CASE :Any = {}
for param_key, param_value in state_dict.items():
if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'):
continue
SCREAMING_SNAKE_CASE :List[str] = False
for key, new_key in key_parameters_to_change.items():
if not has_changed and param_key.split('.')[0] == key:
SCREAMING_SNAKE_CASE :List[Any] = param_value
SCREAMING_SNAKE_CASE :str = True
if not has_changed:
SCREAMING_SNAKE_CASE :List[str] = param_value
model.load_state_dict(new_state_dict)
model.save_pretrained(os.path.join(args.repo_path, subfolder))
| 15 | 1 |
import warnings
from ...utils import logging
from .image_processing_deformable_detr import DeformableDetrImageProcessor
SCREAMING_SNAKE_CASE :List[Any] = logging.get_logger(__name__)
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : Optional[Any] ,*A : List[Any] ,**A : int ):
warnings.warn(
"The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use DeformableDetrImageProcessor instead." ,A ,)
super().__init__(*A ,**A )
| 15 |
import argparse
import math
import traceback
import dateutil.parser as date_parser
import requests
def UpperCAmelCase ( a_ ) -> str:
"""simple docstring"""
__A = {}
__A = job["started_at"]
__A = job["completed_at"]
__A = date_parser.parse(a_ )
__A = date_parser.parse(a_ )
__A = round((end_datetime - start_datetime).total_seconds() / 60.0 )
__A = start
__A = end
__A = duration_in_min
return job_info
def UpperCAmelCase ( a_ , a_=None ) -> str:
"""simple docstring"""
__A = None
if token is not None:
__A = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''}
__A = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100'''
__A = requests.get(a_ , headers=a_ ).json()
__A = {}
try:
job_time.update({job["name"]: extract_time_from_single_job(a_ ) for job in result["jobs"]} )
__A = math.ceil((result["total_count"] - 1_0_0) / 1_0_0 )
for i in range(a_ ):
__A = requests.get(url + F'''&page={i + 2}''' , headers=a_ ).json()
job_time.update({job["name"]: extract_time_from_single_job(a_ ) for job in result["jobs"]} )
return job_time
except Exception:
print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' )
return {}
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.')
SCREAMING_SNAKE_CASE :Optional[int] = parser.parse_args()
SCREAMING_SNAKE_CASE :Union[str, Any] = get_job_time(args.workflow_run_id)
SCREAMING_SNAKE_CASE :Optional[int] = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True))
for k, v in job_time.items():
print(f'''{k}: {v["duration"]}''')
| 15 | 1 |
import darl # noqa
import gym
import tqdm
from diffusers.experimental import ValueGuidedRLPipeline
SCREAMING_SNAKE_CASE :Tuple = {
'n_samples': 64,
'horizon': 32,
'num_inference_steps': 20,
'n_guide_steps': 2, # can set to 0 for faster sampling, does not use value network
'scale_grad_by_std': True,
'scale': 0.1,
'eta': 0.0,
't_grad_cutoff': 2,
'device': 'cpu',
}
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :List[str] = 'hopper-medium-v2'
SCREAMING_SNAKE_CASE :Union[str, Any] = gym.make(env_name)
SCREAMING_SNAKE_CASE :List[Any] = ValueGuidedRLPipeline.from_pretrained(
'bglick13/hopper-medium-v2-value-function-hor32',
env=env,
)
env.seed(0)
SCREAMING_SNAKE_CASE :Optional[int] = env.reset()
SCREAMING_SNAKE_CASE :Dict = 0
SCREAMING_SNAKE_CASE :Union[str, Any] = 0
SCREAMING_SNAKE_CASE :Any = 1000
SCREAMING_SNAKE_CASE :str = [obs.copy()]
try:
for t in tqdm.tqdm(range(T)):
# call the policy
SCREAMING_SNAKE_CASE :Any = pipeline(obs, planning_horizon=32)
# execute action in environment
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :Tuple = env.step(denorm_actions)
SCREAMING_SNAKE_CASE :Optional[Any] = env.get_normalized_score(total_reward)
# update return
total_reward += reward
total_score += score
print(
f'''Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:'''
f''' {total_score}'''
)
# save observations for rendering
rollout.append(next_observation.copy())
SCREAMING_SNAKE_CASE :List[str] = next_observation
except KeyboardInterrupt:
pass
print(f'''Total reward: {total_reward}''')
| 15 |
import argparse
import os
import shutil
import torch
from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer
def UpperCAmelCase ( a_ ) -> List[str]:
"""simple docstring"""
__A = args.pruning_method
__A = args.threshold
__A = args.model_name_or_path.rstrip("/" )
__A = args.target_model_path
print(F'''Load fine-pruned model from {model_name_or_path}''' )
__A = torch.load(os.path.join(a_ , "pytorch_model.bin" ) )
__A = {}
for name, tensor in model.items():
if "embeddings" in name or "LayerNorm" in name or "pooler" in name:
__A = tensor
print(F'''Copied layer {name}''' )
elif "classifier" in name or "qa_output" in name:
__A = tensor
print(F'''Copied layer {name}''' )
elif "bias" in name:
__A = tensor
print(F'''Copied layer {name}''' )
else:
if pruning_method == "magnitude":
__A = MagnitudeBinarizer.apply(inputs=a_ , threshold=a_ )
__A = tensor * mask
print(F'''Pruned layer {name}''' )
elif pruning_method == "topK":
if "mask_scores" in name:
continue
__A = name[:-6]
__A = model[F'''{prefix_}mask_scores''']
__A = TopKBinarizer.apply(a_ , a_ )
__A = tensor * mask
print(F'''Pruned layer {name}''' )
elif pruning_method == "sigmoied_threshold":
if "mask_scores" in name:
continue
__A = name[:-6]
__A = model[F'''{prefix_}mask_scores''']
__A = ThresholdBinarizer.apply(a_ , a_ , a_ )
__A = tensor * mask
print(F'''Pruned layer {name}''' )
elif pruning_method == "l0":
if "mask_scores" in name:
continue
__A = name[:-6]
__A = model[F'''{prefix_}mask_scores''']
__A , __A = -0.1, 1.1
__A = torch.sigmoid(a_ )
__A = s * (r - l) + l
__A = s_bar.clamp(min=0.0 , max=1.0 )
__A = tensor * mask
print(F'''Pruned layer {name}''' )
else:
raise ValueError("Unknown pruning method" )
if target_model_path is None:
__A = os.path.join(
os.path.dirname(a_ ) , F'''bertarized_{os.path.basename(a_ )}''' )
if not os.path.isdir(a_ ):
shutil.copytree(a_ , a_ )
print(F'''\nCreated folder {target_model_path}''' )
torch.save(a_ , os.path.join(a_ , "pytorch_model.bin" ) )
print("\nPruned model saved! See you later!" )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :Tuple = argparse.ArgumentParser()
parser.add_argument(
'--pruning_method',
choices=['l0', 'magnitude', 'topK', 'sigmoied_threshold'],
type=str,
required=True,
help=(
'Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,'
' sigmoied_threshold = Soft movement pruning)'
),
)
parser.add_argument(
'--threshold',
type=float,
required=False,
help=(
'For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.'
'For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.'
'Not needed for `l0`'
),
)
parser.add_argument(
'--model_name_or_path',
type=str,
required=True,
help='Folder containing the model that was previously fine-pruned',
)
parser.add_argument(
'--target_model_path',
default=None,
type=str,
required=False,
help='Folder containing the model that was previously fine-pruned',
)
SCREAMING_SNAKE_CASE :str = parser.parse_args()
main(args)
| 15 | 1 |
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
__A = len(a_ )
__A = len(matrix[0] )
__A = min(a_ , a_ )
for row in range(a_ ):
# Check if diagonal element is not zero
if matrix[row][row] != 0:
# Eliminate all the elements below the diagonal
for col in range(row + 1 , a_ ):
__A = matrix[col][row] / matrix[row][row]
for i in range(a_ , a_ ):
matrix[col][i] -= multiplier * matrix[row][i]
else:
# Find a non-zero diagonal element to swap rows
__A = True
for i in range(row + 1 , a_ ):
if matrix[i][row] != 0:
__A , __A = matrix[i], matrix[row]
__A = False
break
if reduce:
rank -= 1
for i in range(a_ ):
__A = matrix[i][rank]
# Reduce the row pointer by one to stay on the same row
row -= 1
return rank
if __name__ == "__main__":
import doctest
doctest.testmod()
| 15 |
import os
import re
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE :List[Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :int = {'vocab_file': 'spiece.model'}
SCREAMING_SNAKE_CASE :Union[str, Any] = {
'vocab_file': {
'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model',
'google/bigbird-roberta-large': (
'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model'
),
'google/bigbird-base-trivia-itc': (
'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model'
),
}
}
SCREAMING_SNAKE_CASE :int = {
'google/bigbird-roberta-base': 4096,
'google/bigbird-roberta-large': 4096,
'google/bigbird-base-trivia-itc': 4096,
}
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = ["input_ids", "attention_mask"]
snake_case_ = []
def __init__( self : Any ,A : List[str] ,A : str="<unk>" ,A : int="<s>" ,A : Union[str, Any]="</s>" ,A : List[str]="<pad>" ,A : int="[SEP]" ,A : Optional[Any]="[MASK]" ,A : Tuple="[CLS]" ,A : Optional[Dict[str, Any]] = None ,**A : Any ,):
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else bos_token
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else eos_token
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else unk_token
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else pad_token
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else cls_token
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else mask_token
__A = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=A ,eos_token=A ,unk_token=A ,pad_token=A ,sep_token=A ,mask_token=A ,cls_token=A ,sp_model_kwargs=self.sp_model_kwargs ,**A ,)
__A = vocab_file
__A = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(A )
@property
def UpperCamelCase_ ( self : List[str] ):
return self.sp_model.get_piece_size()
def UpperCamelCase_ ( self : Optional[Any] ):
__A = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Optional[int] ):
__A = self.__dict__.copy()
__A = None
return state
def __setstate__( self : str ,A : Optional[Any] ):
__A = d
# for backward compatibility
if not hasattr(self ,"sp_model_kwargs" ):
__A = {}
__A = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def UpperCamelCase_ ( self : Any ,A : str ):
return self.sp_model.encode(A ,out_type=A )
def UpperCamelCase_ ( self : List[str] ,A : Tuple ):
return self.sp_model.piece_to_id(A )
def UpperCamelCase_ ( self : List[Any] ,A : Tuple ):
__A = self.sp_model.IdToPiece(A )
return token
def UpperCamelCase_ ( self : List[Any] ,A : int ):
__A = []
__A = ""
__A = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(A ) + token
__A = True
__A = []
else:
current_sub_tokens.append(A )
__A = False
out_string += self.sp_model.decode(A )
return out_string.strip()
def UpperCamelCase_ ( self : Tuple ,A : List[int] ,A : bool = False ,A : bool = None ,A : bool = True ,**A : Union[str, Any] ,):
__A = kwargs.pop("use_source_tokenizer" ,A )
__A = self.convert_ids_to_tokens(A ,skip_special_tokens=A )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
__A = []
__A = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(A ) )
__A = []
sub_texts.append(A )
else:
current_sub_text.append(A )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(A ) )
# Mimic the behavior of the Rust tokenizer:
# No space before [MASK] and [SEP]
if spaces_between_special_tokens:
__A = re.sub(R" (\[(MASK|SEP)\])" ,R"\1" ," ".join(A ) )
else:
__A = "".join(A )
__A = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
__A = self.clean_up_tokenization(A )
return clean_text
else:
return text
def UpperCamelCase_ ( self : str ,A : str ,A : Optional[str] = None ):
if not os.path.isdir(A ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__A = os.path.join(
A ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file ,A )
elif not os.path.isfile(self.vocab_file ):
with open(A ,"wb" ) as fi:
__A = self.sp_model.serialized_model_proto()
fi.write(A )
return (out_vocab_file,)
def UpperCamelCase_ ( self : Dict ,A : List[int] ,A : Optional[List[int]] = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__A = [self.cls_token_id]
__A = [self.sep_token_id]
return cls + token_ids_a + sep + token_ids_a + sep
def UpperCamelCase_ ( self : Optional[int] ,A : List[int] ,A : Optional[List[int]] = None ,A : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=A ,token_ids_a=A ,already_has_special_tokens=A )
if token_ids_a is None:
return [1] + ([0] * len(A )) + [1]
return [1] + ([0] * len(A )) + [1] + ([0] * len(A )) + [1]
def UpperCamelCase_ ( self : Any ,A : List[int] ,A : Optional[List[int]] = None ):
__A = [self.sep_token_id]
__A = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
| 15 | 1 |
import argparse
import math
import os
import torch
from neural_compressor.utils.pytorch import load
from PIL import Image
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel
def UpperCAmelCase ( ) -> int:
"""simple docstring"""
__A = argparse.ArgumentParser()
parser.add_argument(
"-m" , "--pretrained_model_name_or_path" , type=a_ , default=a_ , required=a_ , help="Path to pretrained model or model identifier from huggingface.co/models." , )
parser.add_argument(
"-c" , "--caption" , type=a_ , default="robotic cat with wings" , help="Text used to generate images." , )
parser.add_argument(
"-n" , "--images_num" , type=a_ , default=4 , help="How much images to generate." , )
parser.add_argument(
"-s" , "--seed" , type=a_ , default=4_2 , help="Seed for random process." , )
parser.add_argument(
"-ci" , "--cuda_id" , type=a_ , default=0 , help="cuda_id." , )
__A = parser.parse_args()
return args
def UpperCAmelCase ( a_ , a_ , a_ ) -> Dict:
"""simple docstring"""
if not len(a_ ) == rows * cols:
raise ValueError("The specified number of rows and columns are not correct." )
__A , __A = imgs[0].size
__A = Image.new("RGB" , size=(cols * w, rows * h) )
__A , __A = grid.size
for i, img in enumerate(a_ ):
grid.paste(a_ , box=(i % cols * w, i // cols * h) )
return grid
def UpperCAmelCase ( a_ , a_="robotic cat with wings" , a_=7.5 , a_=5_0 , a_=1 , a_=4_2 , ) -> Optional[Any]:
"""simple docstring"""
__A = torch.Generator(pipeline.device ).manual_seed(a_ )
__A = pipeline(
a_ , guidance_scale=a_ , num_inference_steps=a_ , generator=a_ , num_images_per_prompt=a_ , ).images
__A = int(math.sqrt(a_ ) )
__A = image_grid(a_ , rows=_rows , cols=num_images_per_prompt // _rows )
return grid, images
SCREAMING_SNAKE_CASE :str = parse_args()
# Load models and create wrapper for stable diffusion
SCREAMING_SNAKE_CASE :Any = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer')
SCREAMING_SNAKE_CASE :Union[str, Any] = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder')
SCREAMING_SNAKE_CASE :str = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae')
SCREAMING_SNAKE_CASE :List[Any] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='unet')
SCREAMING_SNAKE_CASE :str = StableDiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer
)
SCREAMING_SNAKE_CASE :Union[str, Any] = lambda images, clip_input: (images, False)
if os.path.exists(os.path.join(args.pretrained_model_name_or_path, 'best_model.pt')):
SCREAMING_SNAKE_CASE :Optional[Any] = load(args.pretrained_model_name_or_path, model=unet)
unet.eval()
setattr(pipeline, 'unet', unet)
else:
SCREAMING_SNAKE_CASE :Union[str, Any] = unet.to(torch.device('cuda', args.cuda_id))
SCREAMING_SNAKE_CASE :Union[str, Any] = pipeline.to(unet.device)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :str = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed)
grid.save(os.path.join(args.pretrained_model_name_or_path, '{}.png'.format('_'.join(args.caption.split()))))
SCREAMING_SNAKE_CASE :Dict = os.path.join(args.pretrained_model_name_or_path, '_'.join(args.caption.split()))
os.makedirs(dirname, exist_ok=True)
for idx, image in enumerate(images):
image.save(os.path.join(dirname, '{}.png'.format(idx + 1)))
| 15 |
import PIL.Image
import PIL.ImageOps
from packaging import version
from PIL import Image
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'):
SCREAMING_SNAKE_CASE :Any = {
'linear': PIL.Image.Resampling.BILINEAR,
'bilinear': PIL.Image.Resampling.BILINEAR,
'bicubic': PIL.Image.Resampling.BICUBIC,
'lanczos': PIL.Image.Resampling.LANCZOS,
'nearest': PIL.Image.Resampling.NEAREST,
}
else:
SCREAMING_SNAKE_CASE :int = {
'linear': PIL.Image.LINEAR,
'bilinear': PIL.Image.BILINEAR,
'bicubic': PIL.Image.BICUBIC,
'lanczos': PIL.Image.LANCZOS,
'nearest': PIL.Image.NEAREST,
}
def UpperCAmelCase ( a_ ) -> Optional[Any]:
"""simple docstring"""
__A = (images / 2 + 0.5).clamp(0 , 1 )
__A = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
__A = numpy_to_pil(a_ )
return images
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
if images.ndim == 3:
__A = images[None, ...]
__A = (images * 2_5_5).round().astype("uint8" )
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
__A = [Image.fromarray(image.squeeze() , mode="L" ) for image in images]
else:
__A = [Image.fromarray(a_ ) for image in images]
return pil_images
| 15 | 1 |
def UpperCAmelCase ( a_ , a_ ) -> str:
"""simple docstring"""
__A = [[] for _ in range(a_ )]
__A = key - 1
if key <= 0:
raise ValueError("Height of grid can't be 0 or negative" )
if key == 1 or len(a_ ) <= key:
return input_string
for position, character in enumerate(a_ ):
__A = position % (lowest * 2) # puts it in bounds
__A = min(a_ , lowest * 2 - num ) # creates zigzag pattern
temp_grid[num].append(a_ )
__A = ["".join(a_ ) for row in temp_grid]
__A = "".join(a_ )
return output_string
def UpperCAmelCase ( a_ , a_ ) -> str:
"""simple docstring"""
__A = []
__A = key - 1
if key <= 0:
raise ValueError("Height of grid can't be 0 or negative" )
if key == 1:
return input_string
__A = [[] for _ in range(a_ )] # generates template
for position in range(len(a_ ) ):
__A = position % (lowest * 2) # puts it in bounds
__A = min(a_ , lowest * 2 - num ) # creates zigzag pattern
temp_grid[num].append("*" )
__A = 0
for row in temp_grid: # fills in the characters
__A = input_string[counter : counter + len(a_ )]
grid.append(list(a_ ) )
counter += len(a_ )
__A = "" # reads as zigzag
for position in range(len(a_ ) ):
__A = position % (lowest * 2) # puts it in bounds
__A = min(a_ , lowest * 2 - num ) # creates zigzag pattern
output_string += grid[num][0]
grid[num].pop(0 )
return output_string
def UpperCAmelCase ( a_ ) -> dict[int, str]:
"""simple docstring"""
__A = {}
for key_guess in range(1 , len(a_ ) ): # tries every key
__A = decrypt(a_ , a_ )
return results
if __name__ == "__main__":
import doctest
doctest.testmod()
| 15 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
SCREAMING_SNAKE_CASE :Optional[Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :List[Any] = {
'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json',
# See all YOLOS models at https://huggingface.co/models?filter=yolos
}
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = "yolos"
def __init__( self : Any ,A : Optional[Any]=7_68 ,A : Dict=12 ,A : Any=12 ,A : str=30_72 ,A : Any="gelu" ,A : str=0.0 ,A : List[str]=0.0 ,A : Dict=0.02 ,A : int=1E-12 ,A : Tuple=[5_12, 8_64] ,A : List[Any]=16 ,A : str=3 ,A : str=True ,A : Any=1_00 ,A : Dict=True ,A : Dict=False ,A : Tuple=1 ,A : Union[str, Any]=5 ,A : Optional[Any]=2 ,A : Union[str, Any]=5 ,A : int=2 ,A : int=0.1 ,**A : List[str] ,):
super().__init__(**A )
__A = hidden_size
__A = num_hidden_layers
__A = num_attention_heads
__A = intermediate_size
__A = hidden_act
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = initializer_range
__A = layer_norm_eps
__A = image_size
__A = patch_size
__A = num_channels
__A = qkv_bias
__A = num_detection_tokens
__A = use_mid_position_embeddings
__A = auxiliary_loss
# Hungarian matcher
__A = class_cost
__A = bbox_cost
__A = giou_cost
# Loss coefficients
__A = bbox_loss_coefficient
__A = giou_loss_coefficient
__A = eos_coefficient
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = version.parse("1.11" )
@property
def UpperCamelCase_ ( self : str ):
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def UpperCamelCase_ ( self : List[Any] ):
return 1E-4
@property
def UpperCamelCase_ ( self : Optional[Any] ):
return 12
| 15 | 1 |
import importlib.metadata
import warnings
from copy import deepcopy
from packaging import version
from ..utils import logging
from .import_utils import is_accelerate_available, is_bitsandbytes_available
if is_bitsandbytes_available():
import bitsandbytes as bnb
import torch
import torch.nn as nn
from ..pytorch_utils import ConvaD
if is_accelerate_available():
from accelerate import init_empty_weights
from accelerate.utils import find_tied_parameters
SCREAMING_SNAKE_CASE :List[str] = logging.get_logger(__name__)
def UpperCAmelCase ( a_ , a_ , a_ , a_=None , a_=None ) -> str:
"""simple docstring"""
if "." in tensor_name:
__A = tensor_name.split("." )
for split in splits[:-1]:
__A = getattr(a_ , a_ )
if new_module is None:
raise ValueError(F'''{module} has no attribute {split}.''' )
__A = new_module
__A = splits[-1]
if tensor_name not in module._parameters and tensor_name not in module._buffers:
raise ValueError(F'''{module} does not have a parameter or a buffer named {tensor_name}.''' )
__A = tensor_name in module._buffers
__A = getattr(a_ , a_ )
if old_value.device == torch.device("meta" ) and device not in ["meta", torch.device("meta" )] and value is None:
raise ValueError(F'''{tensor_name} is on the meta device, we need a `value` to put in on {device}.''' )
__A = False
__A = False
if is_buffer or not is_bitsandbytes_available():
__A = False
__A = False
else:
__A = hasattr(bnb.nn , "Params4bit" ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit )
__A = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams )
if is_abit or is_abit:
__A = module._parameters[tensor_name]
if param.device.type != "cuda":
if value is None:
__A = old_value.to(a_ )
elif isinstance(a_ , torch.Tensor ):
__A = value.to("cpu" )
if value.dtype == torch.inta:
__A = version.parse(importlib.metadata.version("bitsandbytes" ) ) > version.parse(
"0.37.2" )
if not is_abit_serializable:
raise ValueError(
"Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. "
"Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`." )
else:
__A = torch.tensor(a_ , device="cpu" )
# Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization.
# Since weights are saved in the correct "orientation", we skip transposing when loading.
if issubclass(module.source_cls , a_ ) and fpaa_statistics is None:
__A = new_value.T
__A = old_value.__dict__
if is_abit:
__A = bnb.nn.IntaParams(a_ , requires_grad=a_ , **a_ ).to(a_ )
elif is_abit:
__A = bnb.nn.Paramsabit(a_ , requires_grad=a_ , **a_ ).to(a_ )
__A = new_value
if fpaa_statistics is not None:
setattr(module.weight , "SCB" , fpaa_statistics.to(a_ ) )
else:
if value is None:
__A = old_value.to(a_ )
elif isinstance(a_ , torch.Tensor ):
__A = value.to(a_ )
else:
__A = torch.tensor(a_ , device=a_ )
if is_buffer:
__A = new_value
else:
__A = nn.Parameter(a_ , requires_grad=old_value.requires_grad )
__A = new_value
def UpperCAmelCase ( a_ , a_=None , a_=None , a_=None , a_=False ) -> Optional[int]:
"""simple docstring"""
for name, module in model.named_children():
if current_key_name is None:
__A = []
current_key_name.append(a_ )
if (isinstance(a_ , nn.Linear ) or isinstance(a_ , a_ )) and name not in modules_to_not_convert:
# Check if the current key is not in the `modules_to_not_convert`
if not any(key in ".".join(a_ ) for key in modules_to_not_convert ):
with init_empty_weights():
if isinstance(a_ , a_ ):
__A , __A = module.weight.shape
else:
__A = module.in_features
__A = module.out_features
if quantization_config.quantization_method() == "llm_int8":
__A = bnb.nn.LinearabitLt(
a_ , a_ , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , )
__A = True
else:
if (
quantization_config.llm_inta_skip_modules is not None
and name in quantization_config.llm_inta_skip_modules
):
pass
else:
__A = bnb.nn.Linearabit(
a_ , a_ , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , )
__A = True
# Store the module class in case we need to transpose the weight later
__A = type(a_ )
# Force requires grad to False to avoid unexpected errors
model._modules[name].requires_grad_(a_ )
if len(list(module.children() ) ) > 0:
__A , __A = _replace_with_bnb_linear(
a_ , a_ , a_ , a_ , has_been_replaced=a_ , )
# Remove the last key for recursion
current_key_name.pop(-1 )
return model, has_been_replaced
def UpperCAmelCase ( a_ , a_=None , a_=None , a_=None ) -> int:
"""simple docstring"""
__A = ["lm_head"] if modules_to_not_convert is None else modules_to_not_convert
__A , __A = _replace_with_bnb_linear(
a_ , a_ , a_ , a_ )
if not has_been_replaced:
logger.warning(
"You are loading your model in 8bit or 4bit but no linear modules were found in your model."
" Please double check your model architecture, or submit an issue on github if you think this is"
" a bug." )
return model
def UpperCAmelCase ( *a_ , **a_ ) -> List[str]:
"""simple docstring"""
warnings.warn(
"`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead" , a_ , )
return replace_with_bnb_linear(*a_ , **a_ )
def UpperCAmelCase ( *a_ , **a_ ) -> int:
"""simple docstring"""
warnings.warn(
"`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead" , a_ , )
return set_module_quantized_tensor_to_device(*a_ , **a_ )
def UpperCAmelCase ( a_ ) -> List[Any]:
"""simple docstring"""
__A = deepcopy(a_ ) # this has 0 cost since it is done inside `init_empty_weights` context manager`
tied_model.tie_weights()
__A = find_tied_parameters(a_ )
# For compatibility with Accelerate < 0.18
if isinstance(a_ , a_ ):
__A = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() )
else:
__A = sum(a_ , [] )
__A = len(a_ ) > 0
# Check if it is a base model
__A = not hasattr(a_ , model.base_model_prefix )
# Ignore this for base models (BertModel, GPT2Model, etc.)
if (not has_tied_params) and is_base_model:
return []
# otherwise they have an attached head
__A = list(model.named_children() )
__A = [list_modules[-1][0]]
# add last module together with tied weights
__A = set(a_ ) - set(a_ )
__A = list(set(a_ ) ) + list(a_ )
# remove ".weight" from the keys
__A = [".weight", ".bias"]
__A = []
for name in list_untouched:
for name_to_remove in names_to_remove:
if name_to_remove in name:
__A = name.replace(a_ , "" )
filtered_module_names.append(a_ )
return filtered_module_names
| 15 |
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from packaging import version
from .. import __version__
from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD
from .doc import (
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
copy_func,
replace_return_docstrings,
)
from .generic import (
ContextManagers,
ExplicitEnum,
ModelOutput,
PaddingStrategy,
TensorType,
add_model_info_to_auto_map,
cached_property,
can_return_loss,
expand_dims,
find_labels,
flatten_dict,
infer_framework,
is_jax_tensor,
is_numpy_array,
is_tensor,
is_tf_symbolic_tensor,
is_tf_tensor,
is_torch_device,
is_torch_dtype,
is_torch_tensor,
reshape,
squeeze,
strtobool,
tensor_size,
to_numpy,
to_py_obj,
transpose,
working_or_temp_dir,
)
from .hub import (
CLOUDFRONT_DISTRIB_PREFIX,
DISABLE_TELEMETRY,
HF_MODULES_CACHE,
HUGGINGFACE_CO_PREFIX,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
PYTORCH_PRETRAINED_BERT_CACHE,
PYTORCH_TRANSFORMERS_CACHE,
S3_BUCKET_PREFIX,
TRANSFORMERS_CACHE,
TRANSFORMERS_DYNAMIC_MODULE_NAME,
EntryNotFoundError,
PushToHubMixin,
RepositoryNotFoundError,
RevisionNotFoundError,
cached_file,
default_cache_path,
define_sagemaker_information,
download_url,
extract_commit_hash,
get_cached_models,
get_file_from_repo,
get_full_repo_name,
has_file,
http_user_agent,
is_offline_mode,
is_remote_url,
move_cache,
send_example_telemetry,
try_to_load_from_cache,
)
from .import_utils import (
ENV_VARS_TRUE_AND_AUTO_VALUES,
ENV_VARS_TRUE_VALUES,
TORCH_FX_REQUIRED_VERSION,
USE_JAX,
USE_TF,
USE_TORCH,
DummyObject,
OptionalDependencyNotAvailable,
_LazyModule,
ccl_version,
direct_transformers_import,
get_torch_version,
is_accelerate_available,
is_apex_available,
is_bitsandbytes_available,
is_bsa_available,
is_coloredlogs_available,
is_cython_available,
is_datasets_available,
is_decord_available,
is_detectrona_available,
is_faiss_available,
is_flax_available,
is_ftfy_available,
is_in_notebook,
is_ipex_available,
is_jieba_available,
is_jumanpp_available,
is_kenlm_available,
is_keras_nlp_available,
is_librosa_available,
is_natten_available,
is_ninja_available,
is_onnx_available,
is_openai_available,
is_optimum_available,
is_pandas_available,
is_peft_available,
is_phonemizer_available,
is_protobuf_available,
is_psutil_available,
is_pyanvml_available,
is_pyctcdecode_available,
is_pytesseract_available,
is_pytest_available,
is_pytorch_quantization_available,
is_rjieba_available,
is_sacremoses_available,
is_safetensors_available,
is_sagemaker_dp_enabled,
is_sagemaker_mp_enabled,
is_scipy_available,
is_sentencepiece_available,
is_seqio_available,
is_sklearn_available,
is_soundfile_availble,
is_spacy_available,
is_speech_available,
is_sudachi_available,
is_tensorflow_probability_available,
is_tensorflow_text_available,
is_tfaonnx_available,
is_tf_available,
is_timm_available,
is_tokenizers_available,
is_torch_available,
is_torch_bfaa_available,
is_torch_bfaa_cpu_available,
is_torch_bfaa_gpu_available,
is_torch_compile_available,
is_torch_cuda_available,
is_torch_fx_available,
is_torch_fx_proxy,
is_torch_mps_available,
is_torch_neuroncore_available,
is_torch_tensorrt_fx_available,
is_torch_tfaa_available,
is_torch_tpu_available,
is_torchaudio_available,
is_torchdistx_available,
is_torchdynamo_available,
is_torchvision_available,
is_training_run_on_sagemaker,
is_vision_available,
requires_backends,
torch_only_method,
)
SCREAMING_SNAKE_CASE :List[str] = 'pytorch_model.bin'
SCREAMING_SNAKE_CASE :str = 'pytorch_model.bin.index.json'
SCREAMING_SNAKE_CASE :Optional[int] = 'adapter_config.json'
SCREAMING_SNAKE_CASE :Dict = 'adapter_model.bin'
SCREAMING_SNAKE_CASE :Dict = 'adapter_model.safetensors'
SCREAMING_SNAKE_CASE :str = 'tf_model.h5'
SCREAMING_SNAKE_CASE :List[Any] = 'tf_model.h5.index.json'
SCREAMING_SNAKE_CASE :str = 'model.ckpt'
SCREAMING_SNAKE_CASE :List[Any] = 'flax_model.msgpack'
SCREAMING_SNAKE_CASE :Optional[int] = 'flax_model.msgpack.index.json'
SCREAMING_SNAKE_CASE :Tuple = 'model.safetensors'
SCREAMING_SNAKE_CASE :List[Any] = 'model.safetensors.index.json'
SCREAMING_SNAKE_CASE :str = 'config.json'
SCREAMING_SNAKE_CASE :int = 'preprocessor_config.json'
SCREAMING_SNAKE_CASE :Optional[Any] = FEATURE_EXTRACTOR_NAME
SCREAMING_SNAKE_CASE :Optional[int] = 'generation_config.json'
SCREAMING_SNAKE_CASE :List[str] = 'modelcard.json'
SCREAMING_SNAKE_CASE :Optional[int] = '▁'
SCREAMING_SNAKE_CASE :Optional[Any] = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility
SCREAMING_SNAKE_CASE :str = [
[[0, 1, 0, 1], [1, 0, 0, 1]]
] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too.
SCREAMING_SNAKE_CASE :Optional[Any] = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]]
SCREAMING_SNAKE_CASE :List[Any] = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]]
def UpperCAmelCase ( a_ ) -> Dict:
"""simple docstring"""
if version.parse(a_ ) < version.parse(a_ ):
if "dev" in min_version:
__A = (
"This example requires a source install from HuggingFace Transformers (see "
"`https://huggingface.co/docs/transformers/installation#install-from-source`),"
)
else:
__A = F'''This example requires a minimum version of {min_version},'''
error_message += F''' but the version found is {__version__}.\n'''
raise ImportError(
error_message
+ "Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other "
"versions of HuggingFace Transformers." )
| 15 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE :List[str] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :Tuple = {
'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json',
}
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = "transfo-xl"
snake_case_ = ["mems"]
snake_case_ = {
"n_token": "vocab_size",
"hidden_size": "d_model",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self : int ,A : List[str]=26_77_35 ,A : Tuple=[2_00_00, 4_00_00, 20_00_00] ,A : int=10_24 ,A : Any=10_24 ,A : Dict=16 ,A : Union[str, Any]=64 ,A : Union[str, Any]=40_96 ,A : Union[str, Any]=4 ,A : Optional[Any]=False ,A : Any=18 ,A : Optional[int]=16_00 ,A : str=10_00 ,A : Optional[int]=True ,A : Dict=True ,A : Any=0 ,A : int=-1 ,A : str=True ,A : str=0.1 ,A : Dict=0.0 ,A : str=True ,A : Any="normal" ,A : List[str]=0.01 ,A : int=0.01 ,A : Optional[int]=0.02 ,A : int=1E-5 ,A : Optional[Any]=0 ,**A : Optional[int] ,):
__A = vocab_size
__A = []
self.cutoffs.extend(A )
if proj_share_all_but_first:
__A = [False] + [True] * len(self.cutoffs )
else:
__A = [False] + [False] * len(self.cutoffs )
__A = d_model
__A = d_embed
__A = d_head
__A = d_inner
__A = div_val
__A = pre_lnorm
__A = n_layer
__A = n_head
__A = mem_len
__A = same_length
__A = attn_type
__A = clamp_len
__A = sample_softmax
__A = adaptive
__A = dropout
__A = dropatt
__A = untie_r
__A = init
__A = init_range
__A = proj_init_std
__A = init_std
__A = layer_norm_epsilon
super().__init__(eos_token_id=A ,**A )
@property
def UpperCamelCase_ ( self : List[str] ):
# Message copied from Transformer-XL documentation
logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
return -1
@max_position_embeddings.setter
def UpperCamelCase_ ( self : Any ,A : Optional[Any] ):
# Message copied from Transformer-XL documentation
raise NotImplementedError(
f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
| 15 |
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
__A = [0] * len(a_ )
__A = []
__A = [1] * len(a_ )
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(a_ ) ):
if indegree[i] == 0:
queue.append(a_ )
while queue:
__A = queue.pop(0 )
for x in graph[vertex]:
indegree[x] -= 1
if long_dist[vertex] + 1 > long_dist[x]:
__A = long_dist[vertex] + 1
if indegree[x] == 0:
queue.append(a_ )
print(max(a_ ) )
# Adjacency list of Graph
SCREAMING_SNAKE_CASE :List[Any] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []}
longest_distance(graph)
| 15 | 1 |
from typing import Optional
import pyspark
from .. import Features, NamedSplit
from ..download import DownloadMode
from ..packaged_modules.spark.spark import Spark
from .abc import AbstractDatasetReader
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : List[Any] ,A : pyspark.sql.DataFrame ,A : Optional[NamedSplit] = None ,A : Optional[Features] = None ,A : bool = True ,A : str = None ,A : bool = False ,A : str = None ,A : bool = True ,A : str = "arrow" ,**A : List[Any] ,):
super().__init__(
split=A ,features=A ,cache_dir=A ,keep_in_memory=A ,streaming=A ,**A ,)
__A = load_from_cache_file
__A = file_format
__A = Spark(
df=A ,features=A ,cache_dir=A ,working_dir=A ,**A ,)
def UpperCamelCase_ ( self : Optional[Any] ):
if self.streaming:
return self.builder.as_streaming_dataset(split=self.split )
__A = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD
self.builder.download_and_prepare(
download_mode=A ,file_format=self._file_format ,)
return self.builder.as_dataset(split=self.split )
| 15 |
import argparse
import os
import torch
from transformers import FlavaConfig, FlavaForPreTraining
from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint
def UpperCAmelCase ( a_ ) -> List[str]:
"""simple docstring"""
return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items() )
def UpperCAmelCase ( a_ , a_ ) -> Tuple:
"""simple docstring"""
__A = {}
for key, value in state_dict.items():
if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key:
continue
__A = key.replace("heads.cmd.mim_head.cls.predictions" , "mmm_image_head" )
__A = key.replace("heads.cmd.mlm_head.cls.predictions" , "mmm_text_head" )
__A = key.replace("heads.cmd.itm_head.cls" , "itm_head" )
__A = key.replace("heads.cmd.itm_head.pooler" , "itm_head.pooler" )
__A = key.replace("heads.cmd.clip_head.logit_scale" , "flava.logit_scale" )
__A = key.replace("heads.fairseq_mlm.cls.predictions" , "mlm_head" )
__A = key.replace("heads.imagenet.mim_head.cls.predictions" , "mim_head" )
__A = key.replace("mm_text_projection" , "flava.text_to_mm_projection" )
__A = key.replace("mm_image_projection" , "flava.image_to_mm_projection" )
__A = key.replace("image_encoder.module" , "flava.image_model" )
__A = key.replace("text_encoder.module" , "flava.text_model" )
__A = key.replace("mm_encoder.module.encoder.cls_token" , "flava.multimodal_model.cls_token" )
__A = key.replace("mm_encoder.module" , "flava.multimodal_model" )
__A = key.replace("text_projection" , "flava.text_projection" )
__A = key.replace("image_projection" , "flava.image_projection" )
__A = value.float()
for key, value in codebook_state_dict.items():
__A = value
return upgrade
@torch.no_grad()
def UpperCAmelCase ( a_ , a_ , a_ , a_=None ) -> Tuple:
"""simple docstring"""
if config_path is not None:
__A = FlavaConfig.from_pretrained(a_ )
else:
__A = FlavaConfig()
__A = FlavaForPreTraining(a_ ).eval()
__A = convert_dalle_checkpoint(a_ , a_ , save_checkpoint=a_ )
if os.path.exists(a_ ):
__A = torch.load(a_ , map_location="cpu" )
else:
__A = torch.hub.load_state_dict_from_url(a_ , map_location="cpu" )
__A = upgrade_state_dict(a_ , a_ )
hf_model.load_state_dict(a_ )
__A = hf_model.state_dict()
__A = count_parameters(a_ )
__A = count_parameters(a_ ) + count_parameters(a_ )
assert torch.allclose(a_ , a_ , atol=1E-3 )
hf_model.save_pretrained(a_ )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :Any = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint')
parser.add_argument('--codebook_path', default=None, type=str, help='Path to flava codebook checkpoint')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
SCREAMING_SNAKE_CASE :Optional[int] = parser.parse_args()
convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
| 15 | 1 |
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
if n == 1 or not isinstance(a_ , a_ ):
return 0
elif n == 2:
return 1
else:
__A = [0, 1]
for i in range(2 , n + 1 ):
sequence.append(sequence[i - 1] + sequence[i - 2] )
return sequence[n]
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
__A = 0
__A = 2
while digits < n:
index += 1
__A = len(str(fibonacci(a_ ) ) )
return index
def UpperCAmelCase ( a_ = 1_0_0_0 ) -> int:
"""simple docstring"""
return fibonacci_digits_index(a_ )
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 15 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE :Optional[int] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :Optional[int] = {'vocab_file': 'sentencepiece.bpe.model'}
SCREAMING_SNAKE_CASE :Tuple = {
'vocab_file': {
'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model',
}
}
SCREAMING_SNAKE_CASE :List[Any] = {
'camembert-base': 512,
}
SCREAMING_SNAKE_CASE :List[str] = '▁'
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = ["input_ids", "attention_mask"]
def __init__( self : Optional[Any] ,A : List[str] ,A : List[Any]="<s>" ,A : Tuple="</s>" ,A : Any="</s>" ,A : Optional[Any]="<s>" ,A : Tuple="<unk>" ,A : str="<pad>" ,A : int="<mask>" ,A : Optional[int]=["<s>NOTUSED", "</s>NOTUSED"] ,A : Optional[Dict[str, Any]] = None ,**A : Optional[Any] ,):
# Mask token behave like a normal word, i.e. include the space before it
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else mask_token
__A = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=A ,eos_token=A ,unk_token=A ,sep_token=A ,cls_token=A ,pad_token=A ,mask_token=A ,additional_special_tokens=A ,sp_model_kwargs=self.sp_model_kwargs ,**A ,)
__A = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(A ) )
__A = vocab_file
# HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual
# sentencepiece vocabulary (this is the case for <s> and </s>
__A = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3}
__A = len(self.fairseq_tokens_to_ids )
__A = len(self.sp_model ) + len(self.fairseq_tokens_to_ids )
__A = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def UpperCamelCase_ ( self : int ,A : List[int] ,A : Optional[List[int]] = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__A = [self.cls_token_id]
__A = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def UpperCamelCase_ ( self : Dict ,A : List[int] ,A : Optional[List[int]] = None ,A : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=A ,token_ids_a=A ,already_has_special_tokens=A )
if token_ids_a is None:
return [1] + ([0] * len(A )) + [1]
return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1]
def UpperCamelCase_ ( self : Union[str, Any] ,A : List[int] ,A : Optional[List[int]] = None ):
__A = [self.sep_token_id]
__A = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def UpperCamelCase_ ( self : Dict ):
return len(self.fairseq_tokens_to_ids ) + len(self.sp_model )
def UpperCamelCase_ ( self : int ):
__A = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def UpperCamelCase_ ( self : Any ,A : str ):
return self.sp_model.encode(A ,out_type=A )
def UpperCamelCase_ ( self : List[str] ,A : Dict ):
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
elif self.sp_model.PieceToId(A ) == 0:
# Convert sentence piece unk token to fairseq unk token index
return self.unk_token_id
return self.fairseq_offset + self.sp_model.PieceToId(A )
def UpperCamelCase_ ( self : Dict ,A : Tuple ):
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def UpperCamelCase_ ( self : Optional[Any] ,A : Dict ):
__A = []
__A = ""
__A = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(A ) + token
__A = True
__A = []
else:
current_sub_tokens.append(A )
__A = False
out_string += self.sp_model.decode(A )
return out_string.strip()
def __getstate__( self : Dict ):
__A = self.__dict__.copy()
__A = None
return state
def __setstate__( self : Union[str, Any] ,A : Any ):
__A = d
# for backward compatibility
if not hasattr(self ,"sp_model_kwargs" ):
__A = {}
__A = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def UpperCamelCase_ ( self : Any ,A : str ,A : Optional[str] = None ):
if not os.path.isdir(A ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__A = os.path.join(
A ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file ,A )
elif not os.path.isfile(self.vocab_file ):
with open(A ,"wb" ) as fi:
__A = self.sp_model.serialized_model_proto()
fi.write(A )
return (out_vocab_file,)
| 15 | 1 |
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
SCREAMING_SNAKE_CASE :int = 16
SCREAMING_SNAKE_CASE :Any = 32
def UpperCAmelCase ( a_ , a_ = 1_6 , a_ = "bert-base-cased" ) -> Union[str, Any]:
"""simple docstring"""
__A = AutoTokenizer.from_pretrained(a_ )
__A = load_dataset("glue" , "mrpc" )
def tokenize_function(a_ ):
# max_length=None => use the model max length (it's actually the default)
__A = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=a_ , max_length=a_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
__A = datasets.map(
a_ , batched=a_ , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=a_ )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
__A = tokenized_datasets.rename_column("label" , "labels" )
def collate_fn(a_ ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(a_ , padding="max_length" , max_length=1_2_8 , return_tensors="pt" )
return tokenizer.pad(a_ , padding="longest" , return_tensors="pt" )
# Instantiate dataloaders.
__A = DataLoader(
tokenized_datasets["train"] , shuffle=a_ , collate_fn=a_ , batch_size=a_ )
__A = DataLoader(
tokenized_datasets["validation"] , shuffle=a_ , collate_fn=a_ , batch_size=a_ )
return train_dataloader, eval_dataloader
def UpperCAmelCase ( a_ , a_ ) -> List[str]:
"""simple docstring"""
__A = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__A = config["lr"]
__A = int(config["num_epochs"] )
__A = int(config["seed"] )
__A = int(config["batch_size"] )
__A = args.model_name_or_path
set_seed(a_ )
__A , __A = get_dataloaders(a_ , a_ , a_ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__A = AutoModelForSequenceClassification.from_pretrained(a_ , return_dict=a_ )
# Instantiate optimizer
__A = (
AdamW
if accelerator.state.deepspeed_plugin is None
or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
__A = optimizer_cls(params=model.parameters() , lr=a_ )
if accelerator.state.deepspeed_plugin is not None:
__A = accelerator.state.deepspeed_plugin.deepspeed_config[
"gradient_accumulation_steps"
]
else:
__A = 1
__A = (len(a_ ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
__A = get_linear_schedule_with_warmup(
optimizer=a_ , num_warmup_steps=0 , num_training_steps=a_ , )
else:
__A = DummyScheduler(a_ , total_num_steps=a_ , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__A , __A , __A , __A , __A = accelerator.prepare(
a_ , a_ , a_ , a_ , a_ )
# We need to keep track of how many total steps we have iterated over
__A = 0
# We also need to keep track of the stating epoch so files are named properly
__A = 0
# Now we train the model
__A = evaluate.load("glue" , "mrpc" )
__A = 0
__A = {}
for epoch in range(a_ , a_ ):
model.train()
for step, batch in enumerate(a_ ):
__A = model(**a_ )
__A = outputs.loss
__A = loss / gradient_accumulation_steps
accelerator.backward(a_ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
model.eval()
__A = 0
for step, batch in enumerate(a_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
__A = model(**a_ )
__A = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
__A , __A = accelerator.gather(
(predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(a_ ) - 1:
__A = predictions[: len(eval_dataloader.dataset ) - samples_seen]
__A = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=a_ , references=a_ , )
__A = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F'''epoch {epoch}:''' , a_ )
__A = eval_metric["accuracy"]
if best_performance < eval_metric["accuracy"]:
__A = eval_metric["accuracy"]
if args.performance_lower_bound is not None:
assert (
args.performance_lower_bound <= best_performance
), F'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}'''
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , "all_results.json" ) , "w" ) as f:
json.dump(a_ , a_ )
def UpperCAmelCase ( ) -> List[str]:
"""simple docstring"""
__A = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." )
parser.add_argument(
"--model_name_or_path" , type=a_ , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=a_ , )
parser.add_argument(
"--output_dir" , type=a_ , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , )
parser.add_argument(
"--performance_lower_bound" , type=a_ , default=a_ , help="Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value." , )
parser.add_argument(
"--num_epochs" , type=a_ , default=3 , help="Number of train epochs." , )
__A = parser.parse_args()
__A = {"lr": 2E-5, "num_epochs": args.num_epochs, "seed": 4_2, "batch_size": 1_6}
training_function(a_ , a_ )
if __name__ == "__main__":
main()
| 15 |
def UpperCAmelCase ( a_ ) -> list:
"""simple docstring"""
if len(a_ ) <= 1:
return [tuple(a_ )]
__A = []
def generate(a_ , a_ ):
if k == 1:
res.append(tuple(arr[:] ) )
return
generate(k - 1 , a_ )
for i in range(k - 1 ):
if k % 2 == 0: # k is even
__A , __A = arr[k - 1], arr[i]
else: # k is odd
__A , __A = arr[k - 1], arr[0]
generate(k - 1 , a_ )
generate(len(a_ ) , a_ )
return res
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :int = input('Enter numbers separated by a comma:\n').strip()
SCREAMING_SNAKE_CASE :Dict = [int(item) for item in user_input.split(',')]
print(heaps(arr))
| 15 | 1 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
SCREAMING_SNAKE_CASE :List[str] = {'configuration_mra': ['MRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MraConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :List[str] = [
'MRA_PRETRAINED_MODEL_ARCHIVE_LIST',
'MraForMaskedLM',
'MraForMultipleChoice',
'MraForQuestionAnswering',
'MraForSequenceClassification',
'MraForTokenClassification',
'MraLayer',
'MraModel',
'MraPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mra import (
MRA_PRETRAINED_MODEL_ARCHIVE_LIST,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraLayer,
MraModel,
MraPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE :List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 15 |
def UpperCAmelCase ( a_ ) -> list:
"""simple docstring"""
if len(a_ ) <= 1:
return lst
__A = 1
while i < len(a_ ):
if lst[i - 1] <= lst[i]:
i += 1
else:
__A , __A = lst[i], lst[i - 1]
i -= 1
if i == 0:
__A = 1
return lst
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :List[Any] = input('Enter numbers separated by a comma:\n').strip()
SCREAMING_SNAKE_CASE :List[Any] = [int(item) for item in user_input.split(',')]
print(gnome_sort(unsorted))
| 15 | 1 |
import re
import tempfile
from pathlib import Path
import pytest
import yaml
from datasets.utils.readme import ReadMe
# @pytest.fixture
# def example_yaml_structure():
SCREAMING_SNAKE_CASE :Optional[Any] = yaml.safe_load(
'\\nname: ""\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: "Dataset Card for X" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: "Table of Contents"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Dataset Description"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: "Dataset Summary"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Supported Tasks and Leaderboards"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n'
)
SCREAMING_SNAKE_CASE :Optional[int] = {
'name': 'root',
'text': '',
'is_empty_text': True,
'subsections': [
{
'name': 'Dataset Card for My Dataset',
'text': '',
'is_empty_text': True,
'subsections': [
{'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []},
{
'name': 'Dataset Description',
'text': 'Some text here.',
'is_empty_text': False,
'subsections': [
{
'name': 'Dataset Summary',
'text': 'Some text here.',
'is_empty_text': False,
'subsections': [],
},
{
'name': 'Supported Tasks and Leaderboards',
'text': '',
'is_empty_text': True,
'subsections': [],
},
{'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []},
],
},
],
}
],
}
SCREAMING_SNAKE_CASE :List[str] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
SCREAMING_SNAKE_CASE :Union[str, Any] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n#### Extra Ignored Subsection\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
SCREAMING_SNAKE_CASE :List[str] = {
'name': 'root',
'text': '',
'is_empty_text': True,
'subsections': [
{
'name': 'Dataset Card for My Dataset',
'text': '',
'is_empty_text': True,
'subsections': [
{'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []},
{
'name': 'Dataset Description',
'text': 'Some text here.',
'is_empty_text': False,
'subsections': [
{
'name': 'Dataset Summary',
'text': 'Some text here.',
'is_empty_text': False,
'subsections': [
{
'name': 'Extra Ignored Subsection',
'text': '',
'is_empty_text': True,
'subsections': [],
}
],
},
{
'name': 'Supported Tasks and Leaderboards',
'text': '',
'is_empty_text': True,
'subsections': [],
},
{'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []},
],
},
],
}
],
}
SCREAMING_SNAKE_CASE :Optional[int] = '\\n---\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
SCREAMING_SNAKE_CASE :int = (
'The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.'
)
SCREAMING_SNAKE_CASE :Dict = '\\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
SCREAMING_SNAKE_CASE :List[str] = (
'The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.'
)
SCREAMING_SNAKE_CASE :str = '\\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
SCREAMING_SNAKE_CASE :int = 'The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.'
SCREAMING_SNAKE_CASE :Any = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
SCREAMING_SNAKE_CASE :List[str] = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).'
SCREAMING_SNAKE_CASE :Dict = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n'
SCREAMING_SNAKE_CASE :Dict = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.'
SCREAMING_SNAKE_CASE :Any = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Languages\nLanguage Text\n'
SCREAMING_SNAKE_CASE :str = 'The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.'
SCREAMING_SNAKE_CASE :Optional[int] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\n'
SCREAMING_SNAKE_CASE :int = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.'
SCREAMING_SNAKE_CASE :str = '\\n---\nlanguage:\n- zh\n- en\n---\n\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
SCREAMING_SNAKE_CASE :int = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.'
SCREAMING_SNAKE_CASE :List[Any] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n# Dataset Card My Dataset\n'
SCREAMING_SNAKE_CASE :int = 'The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.'
SCREAMING_SNAKE_CASE :Union[str, Any] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
SCREAMING_SNAKE_CASE :str = 'The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.'
SCREAMING_SNAKE_CASE :Tuple = ''
SCREAMING_SNAKE_CASE :Tuple = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.'
SCREAMING_SNAKE_CASE :str = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
SCREAMING_SNAKE_CASE :Optional[Any] = 'The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.'
@pytest.mark.parametrize(
"readme_md, expected_dict" , [
(README_CORRECT, CORRECT_DICT),
(README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL),
] , )
def UpperCAmelCase ( a_ , a_ ) -> Tuple:
"""simple docstring"""
assert ReadMe.from_string(a_ , a_ ).to_dict() == expected_dict
@pytest.mark.parametrize(
"readme_md, expected_error" , [
(README_NO_YAML, EXPECTED_ERROR_README_NO_YAML),
(README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML),
(README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML),
(README_EMPTY, EXPECTED_ERROR_README_EMPTY),
(README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION),
(README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL),
(README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION),
(README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT),
(README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL),
(README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL),
(README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT),
] , )
def UpperCAmelCase ( a_ , a_ ) -> List[Any]:
"""simple docstring"""
with pytest.raises(a_ , match=re.escape(expected_error.format(path="root" ) ) ):
__A = ReadMe.from_string(a_ , a_ )
readme.validate()
@pytest.mark.parametrize(
"readme_md, expected_error" , [
(README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1),
] , )
def UpperCAmelCase ( a_ , a_ ) -> Union[str, Any]:
"""simple docstring"""
with pytest.raises(a_ , match=re.escape(expected_error.format(path="root" ) ) ):
ReadMe.from_string(a_ , a_ )
@pytest.mark.parametrize(
"readme_md," , [
(README_MULTIPLE_SAME_HEADING_1),
] , )
def UpperCAmelCase ( a_ ) -> Tuple:
"""simple docstring"""
ReadMe.from_string(a_ , a_ , suppress_parsing_errors=a_ )
@pytest.mark.parametrize(
"readme_md, expected_dict" , [
(README_CORRECT, CORRECT_DICT),
(README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL),
] , )
def UpperCAmelCase ( a_ , a_ ) -> Any:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
__A = Path(a_ ) / "README.md"
with open(a_ , "w+" ) as readme_file:
readme_file.write(a_ )
__A = ReadMe.from_readme(a_ , a_ ).to_dict()
assert out["name"] == path
assert out["text"] == ""
assert out["is_empty_text"]
assert out["subsections"] == expected_dict["subsections"]
@pytest.mark.parametrize(
"readme_md, expected_error" , [
(README_NO_YAML, EXPECTED_ERROR_README_NO_YAML),
(README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML),
(README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML),
(README_EMPTY, EXPECTED_ERROR_README_EMPTY),
(README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION),
(README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL),
(README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION),
(README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT),
(README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL),
(README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL),
(README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT),
] , )
def UpperCAmelCase ( a_ , a_ ) -> Optional[int]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
__A = Path(a_ ) / "README.md"
with open(a_ , "w+" ) as readme_file:
readme_file.write(a_ )
__A = expected_error.format(path=a_ )
with pytest.raises(a_ , match=re.escape(a_ ) ):
__A = ReadMe.from_readme(a_ , a_ )
readme.validate()
@pytest.mark.parametrize(
"readme_md, expected_error" , [
(README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1),
] , )
def UpperCAmelCase ( a_ , a_ ) -> List[str]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
__A = Path(a_ ) / "README.md"
with open(a_ , "w+" ) as readme_file:
readme_file.write(a_ )
__A = expected_error.format(path=a_ )
with pytest.raises(a_ , match=re.escape(a_ ) ):
ReadMe.from_readme(a_ , a_ )
@pytest.mark.parametrize(
"readme_md," , [
(README_MULTIPLE_SAME_HEADING_1),
] , )
def UpperCAmelCase ( a_ ) -> str:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
__A = Path(a_ ) / "README.md"
with open(a_ , "w+" ) as readme_file:
readme_file.write(a_ )
ReadMe.from_readme(a_ , a_ , suppress_parsing_errors=a_ )
| 15 |
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = 42
snake_case_ = 42
snake_case_ = None
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = 2
@register_to_config
def __init__( self : str ,A : float = 0.02 ,A : float = 1_00 ,A : float = 1.0_07 ,A : float = 80 ,A : float = 0.05 ,A : float = 50 ,):
# standard deviation of the initial noise distribution
__A = sigma_max
# setable values
__A = None
__A = None
__A = None # sigma(t_i)
def UpperCamelCase_ ( self : str ,A : torch.FloatTensor ,A : Optional[int] = None ):
return sample
def UpperCamelCase_ ( self : Dict ,A : int ,A : Union[str, torch.device] = None ):
__A = num_inference_steps
__A = np.arange(0 ,self.num_inference_steps )[::-1].copy()
__A = torch.from_numpy(A ).to(A )
__A = [
(
self.config.sigma_max**2
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
)
for i in self.timesteps
]
__A = torch.tensor(A ,dtype=torch.floataa ,device=A )
def UpperCamelCase_ ( self : Union[str, Any] ,A : torch.FloatTensor ,A : float ,A : Optional[torch.Generator] = None ):
if self.config.s_min <= sigma <= self.config.s_max:
__A = min(self.config.s_churn / self.num_inference_steps ,2**0.5 - 1 )
else:
__A = 0
# sample eps ~ N(0, S_noise^2 * I)
__A = self.config.s_noise * randn_tensor(sample.shape ,generator=A ).to(sample.device )
__A = sigma + gamma * sigma
__A = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)
return sample_hat, sigma_hat
def UpperCamelCase_ ( self : Dict ,A : torch.FloatTensor ,A : float ,A : float ,A : torch.FloatTensor ,A : bool = True ,):
__A = sample_hat + sigma_hat * model_output
__A = (sample_hat - pred_original_sample) / sigma_hat
__A = sample_hat + (sigma_prev - sigma_hat) * derivative
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=A ,derivative=A ,pred_original_sample=A )
def UpperCamelCase_ ( self : Optional[int] ,A : torch.FloatTensor ,A : float ,A : float ,A : torch.FloatTensor ,A : torch.FloatTensor ,A : torch.FloatTensor ,A : bool = True ,):
__A = sample_prev + sigma_prev * model_output
__A = (sample_prev - pred_original_sample) / sigma_prev
__A = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=A ,derivative=A ,pred_original_sample=A )
def UpperCamelCase_ ( self : List[Any] ,A : Dict ,A : List[str] ,A : str ):
raise NotImplementedError()
| 15 | 1 |
import sys
import turtle
def UpperCAmelCase ( a_ , a_ ) -> tuple[float, float]:
"""simple docstring"""
return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2
def UpperCAmelCase ( a_ , a_ , a_ , a_ , ) -> None:
"""simple docstring"""
my_pen.up()
my_pen.goto(vertexa[0] , vertexa[1] )
my_pen.down()
my_pen.goto(vertexa[0] , vertexa[1] )
my_pen.goto(vertexa[0] , vertexa[1] )
my_pen.goto(vertexa[0] , vertexa[1] )
if depth == 0:
return
triangle(a_ , get_mid(a_ , a_ ) , get_mid(a_ , a_ ) , depth - 1 )
triangle(a_ , get_mid(a_ , a_ ) , get_mid(a_ , a_ ) , depth - 1 )
triangle(a_ , get_mid(a_ , a_ ) , get_mid(a_ , a_ ) , depth - 1 )
if __name__ == "__main__":
if len(sys.argv) != 2:
raise ValueError(
'Correct format for using this script: '
'python fractals.py <int:depth_for_fractal>'
)
SCREAMING_SNAKE_CASE :Any = turtle.Turtle()
my_pen.ht()
my_pen.speed(5)
my_pen.pencolor('red')
SCREAMING_SNAKE_CASE :List[str] = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle
triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
| 15 |
# Lint as: python3
import os
import re
import urllib.parse
from pathlib import Path
from typing import Callable, List, Optional, Union
from zipfile import ZipFile
from ..utils.file_utils import cached_path, hf_github_url
from ..utils.logging import get_logger
from ..utils.version import Version
SCREAMING_SNAKE_CASE :Union[str, Any] = get_logger(__name__)
class UpperCAmelCase :
'''simple docstring'''
snake_case_ = "dummy_data"
snake_case_ = "datasets"
snake_case_ = False
def __init__( self : Optional[int] ,A : str ,A : str ,A : Union[Version, str] ,A : Optional[str] = None ,A : bool = False ,A : bool = True ,A : Optional[List[Callable]] = None ,):
__A = 0
__A = dataset_name
__A = cache_dir
__A = use_local_dummy_data
__A = config
# download_callbacks take a single url as input
__A = download_callbacks or []
# if False, it doesn't load existing files and it returns the paths of the dummy files relative
# to the dummy_data zip file root
__A = load_existing_dummy_data
# TODO(PVP, QL) might need to make this more general
__A = str(A )
# to be downloaded
__A = None
__A = None
@property
def UpperCamelCase_ ( self : Union[str, Any] ):
if self._dummy_file is None:
__A = self.download_dummy_data()
return self._dummy_file
@property
def UpperCamelCase_ ( self : Optional[Any] ):
if self.config is not None:
# structure is dummy / config_name / version_name
return os.path.join("dummy" ,self.config.name ,self.version_name )
# structure is dummy / version_name
return os.path.join("dummy" ,self.version_name )
@property
def UpperCamelCase_ ( self : List[Any] ):
return os.path.join(self.dummy_data_folder ,"dummy_data.zip" )
def UpperCamelCase_ ( self : Tuple ):
__A = (
self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data
)
__A = cached_path(
A ,cache_dir=self.cache_dir ,extract_compressed_file=A ,force_extract=A )
return os.path.join(A ,self.dummy_file_name )
@property
def UpperCamelCase_ ( self : str ):
return os.path.join(self.datasets_scripts_dir ,self.dataset_name ,self.dummy_zip_file )
@property
def UpperCamelCase_ ( self : Any ):
if self._bucket_url is None:
__A = hf_github_url(self.dataset_name ,self.dummy_zip_file.replace(os.sep ,"/" ) )
return self._bucket_url
@property
def UpperCamelCase_ ( self : Tuple ):
# return full path if its a dir
if os.path.isdir(self.dummy_file ):
return self.dummy_file
# else cut off path to file -> example `xsum`.
return "/".join(self.dummy_file.replace(os.sep ,"/" ).split("/" )[:-1] )
def UpperCamelCase_ ( self : List[str] ,A : List[Any] ,*A : Dict ):
if self.load_existing_dummy_data:
# dummy data is downloaded and tested
__A = self.dummy_file
else:
# dummy data cannot be downloaded and only the path to dummy file is returned
__A = self.dummy_file_name
# special case when data_url is a dict
if isinstance(A ,A ):
return self.create_dummy_data_dict(A ,A )
elif isinstance(A ,(list, tuple) ):
return self.create_dummy_data_list(A ,A )
else:
return self.create_dummy_data_single(A ,A )
def UpperCamelCase_ ( self : str ,A : List[Any] ,*A : List[Any] ):
return self.download_and_extract(A )
def UpperCamelCase_ ( self : List[str] ,A : List[str] ,A : Tuple ):
return self.download_and_extract(A )
def UpperCamelCase_ ( self : Any ,A : Any ,*A : Optional[Any] ,**A : List[str] ):
return path
def UpperCamelCase_ ( self : str ):
return {}
def UpperCamelCase_ ( self : int ,A : int ,A : Tuple ):
__A = {}
for key, single_urls in data_url.items():
for download_callback in self.download_callbacks:
if isinstance(A ,A ):
for single_url in single_urls:
download_callback(A )
else:
__A = single_urls
download_callback(A )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
if isinstance(A ,A ):
__A = [os.path.join(A ,urllib.parse.quote_plus(Path(A ).name ) ) for x in single_urls]
else:
__A = single_urls
__A = os.path.join(A ,urllib.parse.quote_plus(Path(A ).name ) )
__A = value
# make sure that values are unique
if all(isinstance(A ,A ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len(
dummy_data_dict.values() ):
# append key to value to make its name unique
__A = {key: value + key for key, value in dummy_data_dict.items()}
return dummy_data_dict
def UpperCamelCase_ ( self : Union[str, Any] ,A : str ,A : str ):
__A = []
# trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one
__A = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" ,A ) ) for url in data_url )
__A = all(
url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url )
if data_url and (is_tf_records or is_pubmed_records):
__A = [data_url[0]] * len(A )
for single_url in data_url:
for download_callback in self.download_callbacks:
download_callback(A )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
__A = os.path.join(A ,urllib.parse.quote_plus(single_url.split("/" )[-1] ) )
dummy_data_list.append(A )
return dummy_data_list
def UpperCamelCase_ ( self : str ,A : List[Any] ,A : Optional[Any] ):
for download_callback in self.download_callbacks:
download_callback(A )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
__A = os.path.join(A ,urllib.parse.quote_plus(data_url.split("/" )[-1] ) )
if os.path.exists(A ) or not self.load_existing_dummy_data:
return value
else:
# Backward compatibility, maybe deprecate at one point.
# For many datasets with single url calls to dl_manager.download_and_extract,
# the dummy_data.zip file is actually the zipped downloaded file
# while now we expected the dummy_data.zip file to be a directory containing
# the downloaded file.
return path_to_dummy_data
def UpperCamelCase_ ( self : int ):
pass
def UpperCamelCase_ ( self : Dict ):
pass
def UpperCamelCase_ ( self : Optional[Any] ,A : List[Any] ):
def _iter_archive_members(A : Optional[Any] ):
# this preserves the order of the members inside the ZIP archive
__A = Path(self.dummy_file ).parent
__A = path.relative_to(A )
with ZipFile(self.local_path_to_dummy_data ) as zip_file:
__A = zip_file.namelist()
for member in members:
if member.startswith(relative_path.as_posix() ):
yield dummy_parent_path.joinpath(A )
__A = Path(A )
__A = _iter_archive_members(A ) if self.use_local_dummy_data else path.rglob("*" )
for file_path in file_paths:
if file_path.is_file() and not file_path.name.startswith((".", "__") ):
yield file_path.relative_to(A ).as_posix(), file_path.open("rb" )
def UpperCamelCase_ ( self : List[Any] ,A : Any ):
if not isinstance(A ,A ):
__A = [paths]
for path in paths:
if os.path.isfile(A ):
if os.path.basename(A ).startswith((".", "__") ):
return
yield path
else:
for dirpath, dirnames, filenames in os.walk(A ):
if os.path.basename(A ).startswith((".", "__") ):
continue
dirnames.sort()
for filename in sorted(A ):
if filename.startswith((".", "__") ):
continue
yield os.path.join(A ,A )
| 15 | 1 |
from math import acos, sin
from typing import List, Tuple, Union
import numpy as np
import torch
from PIL import Image
from ...models import AutoencoderKL, UNetaDConditionModel
from ...schedulers import DDIMScheduler, DDPMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput
from .mel import Mel
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = ["vqvae"]
def __init__( self : List[str] ,A : AutoencoderKL ,A : UNetaDConditionModel ,A : Mel ,A : Union[DDIMScheduler, DDPMScheduler] ,):
super().__init__()
self.register_modules(unet=A ,scheduler=A ,mel=A ,vqvae=A )
def UpperCamelCase_ ( self : Tuple ):
return 50 if isinstance(self.scheduler ,A ) else 10_00
@torch.no_grad()
def __call__( self : Tuple ,A : int = 1 ,A : str = None ,A : np.ndarray = None ,A : int = 0 ,A : int = 0 ,A : int = None ,A : torch.Generator = None ,A : float = 0 ,A : float = 0 ,A : torch.Generator = None ,A : float = 0 ,A : torch.Tensor = None ,A : torch.Tensor = None ,A : int=True ,):
__A = steps or self.get_default_steps()
self.scheduler.set_timesteps(A )
__A = step_generator or generator
# For backwards compatibility
if type(self.unet.config.sample_size ) == int:
__A = (self.unet.config.sample_size, self.unet.config.sample_size)
if noise is None:
__A = randn_tensor(
(
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size[0],
self.unet.config.sample_size[1],
) ,generator=A ,device=self.device ,)
__A = noise
__A = None
if audio_file is not None or raw_audio is not None:
self.mel.load_audio(A ,A )
__A = self.mel.audio_slice_to_image(A )
__A = np.frombuffer(input_image.tobytes() ,dtype="uint8" ).reshape(
(input_image.height, input_image.width) )
__A = (input_image / 2_55) * 2 - 1
__A = torch.tensor(input_image[np.newaxis, :, :] ,dtype=torch.float ).to(self.device )
if self.vqvae is not None:
__A = self.vqvae.encode(torch.unsqueeze(A ,0 ) ).latent_dist.sample(
generator=A )[0]
__A = self.vqvae.config.scaling_factor * input_images
if start_step > 0:
__A = self.scheduler.add_noise(A ,A ,self.scheduler.timesteps[start_step - 1] )
__A = (
self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length
)
__A = int(mask_start_secs * pixels_per_second )
__A = int(mask_end_secs * pixels_per_second )
__A = self.scheduler.add_noise(A ,A ,torch.tensor(self.scheduler.timesteps[start_step:] ) )
for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ):
if isinstance(self.unet ,A ):
__A = self.unet(A ,A ,A )["sample"]
else:
__A = self.unet(A ,A )["sample"]
if isinstance(self.scheduler ,A ):
__A = self.scheduler.step(
model_output=A ,timestep=A ,sample=A ,eta=A ,generator=A ,)["prev_sample"]
else:
__A = self.scheduler.step(
model_output=A ,timestep=A ,sample=A ,generator=A ,)["prev_sample"]
if mask is not None:
if mask_start > 0:
__A = mask[:, step, :, :mask_start]
if mask_end > 0:
__A = mask[:, step, :, -mask_end:]
if self.vqvae is not None:
# 0.18215 was scaling factor used in training to ensure unit variance
__A = 1 / self.vqvae.config.scaling_factor * images
__A = self.vqvae.decode(A )["sample"]
__A = (images / 2 + 0.5).clamp(0 ,1 )
__A = images.cpu().permute(0 ,2 ,3 ,1 ).numpy()
__A = (images * 2_55).round().astype("uint8" )
__A = list(
(Image.fromarray(_[:, :, 0] ) for _ in images)
if images.shape[3] == 1
else (Image.fromarray(A ,mode="RGB" ).convert("L" ) for _ in images) )
__A = [self.mel.image_to_audio(A ) for _ in images]
if not return_dict:
return images, (self.mel.get_sample_rate(), audios)
return BaseOutput(**AudioPipelineOutput(np.array(A )[:, np.newaxis, :] ) ,**ImagePipelineOutput(A ) )
@torch.no_grad()
def UpperCamelCase_ ( self : List[Any] ,A : List[Image.Image] ,A : int = 50 ):
assert isinstance(self.scheduler ,A )
self.scheduler.set_timesteps(A )
__A = np.array(
[np.frombuffer(image.tobytes() ,dtype="uint8" ).reshape((1, image.height, image.width) ) for image in images] )
__A = (sample / 2_55) * 2 - 1
__A = torch.Tensor(A ).to(self.device )
for t in self.progress_bar(torch.flip(self.scheduler.timesteps ,(0,) ) ):
__A = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
__A = self.scheduler.alphas_cumprod[t]
__A = (
self.scheduler.alphas_cumprod[prev_timestep]
if prev_timestep >= 0
else self.scheduler.final_alpha_cumprod
)
__A = 1 - alpha_prod_t
__A = self.unet(A ,A )["sample"]
__A = (1 - alpha_prod_t_prev) ** 0.5 * model_output
__A = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5)
__A = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output
return sample
@staticmethod
def UpperCamelCase_ ( A : torch.Tensor ,A : torch.Tensor ,A : float ):
__A = acos(torch.dot(torch.flatten(A ) ,torch.flatten(A ) ) / torch.norm(A ) / torch.norm(A ) )
return sin((1 - alpha) * theta ) * xa / sin(A ) + sin(alpha * theta ) * xa / sin(A )
| 15 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
SCREAMING_SNAKE_CASE :List[Any] = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :List[str] = ['BartphoTokenizer']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bartpho import BartphoTokenizer
else:
import sys
SCREAMING_SNAKE_CASE :Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 15 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
SCREAMING_SNAKE_CASE :Union[str, Any] = {
'configuration_layoutlmv3': [
'LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP',
'LayoutLMv3Config',
'LayoutLMv3OnnxConfig',
],
'processing_layoutlmv3': ['LayoutLMv3Processor'],
'tokenization_layoutlmv3': ['LayoutLMv3Tokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :List[Any] = ['LayoutLMv3TokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :Dict = [
'LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST',
'LayoutLMv3ForQuestionAnswering',
'LayoutLMv3ForSequenceClassification',
'LayoutLMv3ForTokenClassification',
'LayoutLMv3Model',
'LayoutLMv3PreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :Tuple = [
'TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFLayoutLMv3ForQuestionAnswering',
'TFLayoutLMv3ForSequenceClassification',
'TFLayoutLMv3ForTokenClassification',
'TFLayoutLMv3Model',
'TFLayoutLMv3PreTrainedModel',
]
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :Optional[Any] = ['LayoutLMv3FeatureExtractor']
SCREAMING_SNAKE_CASE :int = ['LayoutLMv3ImageProcessor']
if TYPE_CHECKING:
from .configuration_layoutlmva import (
LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP,
LayoutLMvaConfig,
LayoutLMvaOnnxConfig,
)
from .processing_layoutlmva import LayoutLMvaProcessor
from .tokenization_layoutlmva import LayoutLMvaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_layoutlmva import (
LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
LayoutLMvaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_layoutlmva import (
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
TFLayoutLMvaModel,
TFLayoutLMvaPreTrainedModel,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
else:
import sys
SCREAMING_SNAKE_CASE :Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 15 |
from typing import Dict, Optional
import numpy as np
import datasets
SCREAMING_SNAKE_CASE :List[Any] = '\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n'
SCREAMING_SNAKE_CASE :List[str] = '\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric("mean_iou")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n'
SCREAMING_SNAKE_CASE :str = '\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}'
def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ = None , a_ = False , ) -> Tuple:
"""simple docstring"""
if label_map is not None:
for old_id, new_id in label_map.items():
__A = new_id
# turn into Numpy arrays
__A = np.array(a_ )
__A = np.array(a_ )
if reduce_labels:
__A = 2_5_5
__A = label - 1
__A = 2_5_5
__A = label != ignore_index
__A = np.not_equal(a_ , a_ )
__A = pred_label[mask]
__A = np.array(a_ )[mask]
__A = pred_label[pred_label == label]
__A = np.histogram(a_ , bins=a_ , range=(0, num_labels - 1) )[0]
__A = np.histogram(a_ , bins=a_ , range=(0, num_labels - 1) )[0]
__A = np.histogram(a_ , bins=a_ , range=(0, num_labels - 1) )[0]
__A = area_pred_label + area_label - area_intersect
return area_intersect, area_union, area_pred_label, area_label
def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ = None , a_ = False , ) -> Union[str, Any]:
"""simple docstring"""
__A = np.zeros((num_labels,) , dtype=np.floataa )
__A = np.zeros((num_labels,) , dtype=np.floataa )
__A = np.zeros((num_labels,) , dtype=np.floataa )
__A = np.zeros((num_labels,) , dtype=np.floataa )
for result, gt_seg_map in zip(a_ , a_ ):
__A , __A , __A , __A = intersect_and_union(
a_ , a_ , a_ , a_ , a_ , a_ )
total_area_intersect += area_intersect
total_area_union += area_union
total_area_pred_label += area_pred_label
total_area_label += area_label
return total_area_intersect, total_area_union, total_area_pred_label, total_area_label
def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ = None , a_ = None , a_ = False , ) -> str:
"""simple docstring"""
__A , __A , __A , __A = total_intersect_and_union(
a_ , a_ , a_ , a_ , a_ , a_ )
# compute metrics
__A = {}
__A = total_area_intersect.sum() / total_area_label.sum()
__A = total_area_intersect / total_area_union
__A = total_area_intersect / total_area_label
__A = np.nanmean(a_ )
__A = np.nanmean(a_ )
__A = all_acc
__A = iou
__A = acc
if nan_to_num is not None:
__A = {metric: np.nan_to_num(a_ , nan=a_ ) for metric, metric_value in metrics.items()}
return metrics
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase ( datasets.Metric ):
'''simple docstring'''
def UpperCamelCase_ ( self : List[Any] ):
return datasets.MetricInfo(
description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(
# 1st Seq - height dim, 2nd - width dim
{
"predictions": datasets.Sequence(datasets.Sequence(datasets.Value("uint16" ) ) ),
"references": datasets.Sequence(datasets.Sequence(datasets.Value("uint16" ) ) ),
} ) ,reference_urls=[
"https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py"
] ,)
def UpperCamelCase_ ( self : int ,A : Optional[Any] ,A : Optional[Any] ,A : int ,A : bool ,A : Optional[int] = None ,A : Optional[Dict[int, int]] = None ,A : bool = False ,):
__A = mean_iou(
results=A ,gt_seg_maps=A ,num_labels=A ,ignore_index=A ,nan_to_num=A ,label_map=A ,reduce_labels=A ,)
return iou_result
| 15 | 1 |
def UpperCAmelCase ( a_ , a_ ) -> str:
"""simple docstring"""
if number < 0 or shift_amount < 0:
raise ValueError("both inputs must be positive integers" )
__A = str(bin(a_ ) )
binary_number += "0" * shift_amount
return binary_number
def UpperCAmelCase ( a_ , a_ ) -> str:
"""simple docstring"""
if number < 0 or shift_amount < 0:
raise ValueError("both inputs must be positive integers" )
__A = str(bin(a_ ) )[2:]
if shift_amount >= len(a_ ):
return "0b0"
__A = binary_number[: len(a_ ) - shift_amount]
return "0b" + shifted_binary_number
def UpperCAmelCase ( a_ , a_ ) -> str:
"""simple docstring"""
if number >= 0: # Get binary representation of positive number
__A = "0" + str(bin(a_ ) ).strip("-" )[2:]
else: # Get binary (2's complement) representation of negative number
__A = len(bin(a_ )[3:] ) # Find 2's complement of number
__A = bin(abs(a_ ) - (1 << binary_number_length) )[3:]
__A = (
"1" + "0" * (binary_number_length - len(a_ )) + binary_number
)
if shift_amount >= len(a_ ):
return "0b" + binary_number[0] * len(a_ )
return (
"0b"
+ binary_number[0] * shift_amount
+ binary_number[: len(a_ ) - shift_amount]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 15 |
import os
import re
import unicodedata
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import is_torch_available, logging
if is_torch_available():
import torch
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
SCREAMING_SNAKE_CASE :List[str] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :List[str] = {'vocab_file': 'spiece.model'}
SCREAMING_SNAKE_CASE :Dict = {
'vocab_file': {
'AI-Sweden/gpt-sw3-126m': 'https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model',
'AI-Sweden/gpt-sw3-350m': 'https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model',
'AI-Sweden/gpt-sw3-1.6b': 'https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model',
'AI-Sweden/gpt-sw3-6.7b': 'https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model',
'AI-Sweden/gpt-sw3-20b': 'https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model',
}
}
SCREAMING_SNAKE_CASE :Optional[Any] = {
'AI-Sweden/gpt-sw3-126m': 2048,
'AI-Sweden/gpt-sw3-350m': 2048,
'AI-Sweden/gpt-sw3-1.6b': 2048,
'AI-Sweden/gpt-sw3-6.7b': 2048,
'AI-Sweden/gpt-sw3-20b': 2048,
}
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = ["input_ids", "attention_mask"]
def __init__( self : Optional[int] ,A : Optional[Any] ,A : Optional[int]=False ,A : int=False ,A : Union[str, Any]=False ,A : int=None ,A : Optional[Any]=None ,A : Union[str, Any]=None ,A : Optional[Any]=None ,A : Optional[Dict[str, Any]] = None ,**A : Tuple ,):
__A = {} if sp_model_kwargs is None else sp_model_kwargs
__A = kwargs.get("name_or_path" )
if name_or_path is None:
logger.warning(
"name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,"
" you are testing the model, this can safely be ignored" )
__A = "None"
# Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing
__A = "<|endoftext|>" if eos_token is None else eos_token
__A = "<unk>" if unk_token is None else unk_token
if "gpt-sw3-7b" in name_or_path:
__A = unk_token if pad_token is None else pad_token
__A = eos_token if bos_token is None else bos_token
else:
__A = "<pad>" if pad_token is None else pad_token
__A = "<s>" if bos_token is None else bos_token
super().__init__(
do_lower_case=A ,remove_space=A ,keep_accents=A ,bos_token=A ,eos_token=A ,unk_token=A ,pad_token=A ,sp_model_kwargs=self.sp_model_kwargs ,**A ,)
__A = do_lower_case
__A = remove_space
__A = keep_accents
__A = vocab_file
__A = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(A )
# Used for whitespace normalization in input texts
# fmt : off
__A = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", ""}
# fmt : on
# Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing
__A = re.compile(
f'''[{''.join(map(A ,list(range(0 ,9 ) ) + list(range(11 ,32 ) ) + list(range(1_27 ,1_60 ) ) + [1_60, 1_73, 82_03] ) )}]''' )
def __getstate__( self : Optional[int] ):
__A = self.__dict__.copy()
__A = None
return state
def __setstate__( self : Optional[Any] ,A : Union[str, Any] ):
__A = d
# for backward compatibility
if not hasattr(self ,"sp_model_kwargs" ):
__A = {}
__A = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
@property
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size
def UpperCamelCase_ ( self : List[str] ):
return len(self.sp_model )
def UpperCamelCase_ ( self : int ,A : str ):
__A = self.non_printing_characters_re.sub("" ,A )
# Normalize whitespaces
__A = "".join([char if char not in self.whitespaces else " " for char in text] )
# NFC Unicode normalization
__A = unicodedata.normalize("NFC" ,A )
return text
def UpperCamelCase_ ( self : Union[str, Any] ,A : str ,**A : Optional[int] ):
__A = self.preprocess_text(A )
return self.sp_model.encode(A ,out_type=A )
def UpperCamelCase_ ( self : Any ,A : str ):
return self.sp_model.PieceToId(A )
def UpperCamelCase_ ( self : Dict ,A : int ):
return self.sp_model.IdToPiece(A )
@staticmethod
def UpperCamelCase_ ( A : str ):
return out_string
def UpperCamelCase_ ( self : str ,A : List[str] ):
__A = []
__A = ""
__A = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
# TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(A ) + token
__A = True
__A = []
else:
current_sub_tokens.append(A )
__A = False
out_string += self.sp_model.decode(A )
return out_string
def UpperCamelCase_ ( self : str ):
__A = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def UpperCamelCase_ ( self : List[str] ,A : str ,A : Optional[str] = None ):
if not os.path.isdir(A ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__A = os.path.join(
A ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file ,A )
elif not os.path.isfile(self.vocab_file ):
with open(A ,"wb" ) as fi:
__A = self.sp_model.serialized_model_proto()
fi.write(A )
return (out_vocab_file,)
def UpperCamelCase_ ( self : Union[str, Any] ,A : Union[str, List[str]] ,A : Union[str, bool] = False ):
if isinstance(A ,A ):
__A = self.preprocess_text(A )
__A = self.sp_model.encode(A )
else:
__A = [self.preprocess_text(A ) for t in text]
__A = self.sp_model.encode(A )
if return_tensors is True or return_tensors == "pt":
__A = torch.tensor(A )
return token_ids
def UpperCamelCase_ ( self : List[Any] ,A : Union[int, List[int]] ):
return self.sp_model.decode(A )
def UpperCamelCase_ ( self : List[str] ,A : "Conversation" ):
__A = [f'''User: {text}''' if is_user else f'''Bot: {text}''' for is_user, text in conversation.iter_texts()]
__A = (
f'''{self.eos_token}{self.bos_token}''' + f'''{self.bos_token}'''.join(A ) + f'''{self.bos_token}Bot:'''
)
return self.encode(text=A )
| 15 | 1 |
from datetime import datetime as dt
import os
from github import Github
SCREAMING_SNAKE_CASE :int = [
'good first issue',
'good second issue',
'good difficult issue',
'feature request',
'new model',
'wip',
]
def UpperCAmelCase ( ) -> Dict:
"""simple docstring"""
__A = Github(os.environ["GITHUB_TOKEN"] )
__A = g.get_repo("huggingface/transformers" )
__A = repo.get_issues(state="open" )
for issue in open_issues:
__A = sorted([comment for comment in issue.get_comments()] , key=lambda a_ : i.created_at , reverse=a_ )
__A = comments[0] if len(a_ ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 3_0
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.")
issue.edit(state="closed" )
elif (
(dt.utcnow() - issue.updated_at).days > 2_3
and (dt.utcnow() - issue.created_at).days >= 3_0
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would add stale comment to {issue.number}")
issue.create_comment(
"This issue has been automatically marked as stale because it has not had "
"recent activity. If you think this still needs to be addressed "
"please comment on this thread.\n\nPlease note that issues that do not follow the "
"[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) "
"are likely to be ignored." )
if __name__ == "__main__":
main()
| 15 |
import numpy as np
def UpperCAmelCase ( a_ , a_ , a_ = 1E-12 , a_ = 1_0_0 , ) -> tuple[float, np.ndarray]:
"""simple docstring"""
assert np.shape(a_ )[0] == np.shape(a_ )[1]
# Ensure proper dimensionality.
assert np.shape(a_ )[0] == np.shape(a_ )[0]
# Ensure inputs are either both complex or both real
assert np.iscomplexobj(a_ ) == np.iscomplexobj(a_ )
__A = np.iscomplexobj(a_ )
if is_complex:
# Ensure complex input_matrix is Hermitian
assert np.array_equal(a_ , input_matrix.conj().T )
# Set convergence to False. Will define convergence when we exceed max_iterations
# or when we have small changes from one iteration to next.
__A = False
__A = 0
__A = 0
__A = 1E12
while not convergence:
# Multiple matrix by the vector.
__A = np.dot(a_ , a_ )
# Normalize the resulting output vector.
__A = w / np.linalg.norm(a_ )
# Find rayleigh quotient
# (faster than usual b/c we know vector is normalized already)
__A = vector.conj().T if is_complex else vector.T
__A = np.dot(a_ , np.dot(a_ , a_ ) )
# Check convergence.
__A = np.abs(lambda_ - lambda_previous ) / lambda_
iterations += 1
if error <= error_tol or iterations >= max_iterations:
__A = True
__A = lambda_
if is_complex:
__A = np.real(lambda_ )
return lambda_, vector
def UpperCAmelCase ( ) -> None:
"""simple docstring"""
__A = np.array([[4_1, 4, 2_0], [4, 2_6, 3_0], [2_0, 3_0, 5_0]] )
__A = np.array([4_1, 4, 2_0] )
__A = real_input_matrix.astype(np.complexaaa )
__A = np.triu(1J * complex_input_matrix , 1 )
complex_input_matrix += imag_matrix
complex_input_matrix += -1 * imag_matrix.T
__A = np.array([4_1, 4, 2_0] ).astype(np.complexaaa )
for problem_type in ["real", "complex"]:
if problem_type == "real":
__A = real_input_matrix
__A = real_vector
elif problem_type == "complex":
__A = complex_input_matrix
__A = complex_vector
# Our implementation.
__A , __A = power_iteration(a_ , a_ )
# Numpy implementation.
# Get eigenvalues and eigenvectors using built-in numpy
# eigh (eigh used for symmetric or hermetian matrices).
__A , __A = np.linalg.eigh(a_ )
# Last eigenvalue is the maximum one.
__A = eigen_values[-1]
# Last column in this matrix is eigenvector corresponding to largest eigenvalue.
__A = eigen_vectors[:, -1]
# Check our implementation and numpy gives close answers.
assert np.abs(eigen_value - eigen_value_max ) <= 1E-6
# Take absolute values element wise of each eigenvector.
# as they are only unique to a minus sign.
assert np.linalg.norm(np.abs(a_ ) - np.abs(a_ ) ) <= 1E-6
if __name__ == "__main__":
import doctest
doctest.testmod()
test_power_iteration()
| 15 | 1 |
from __future__ import annotations
import unittest
import numpy as np
from transformers import OPTConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel
def UpperCAmelCase ( a_ , a_ , a_=None , a_=None ) -> Any:
"""simple docstring"""
if attention_mask is None:
__A = tf.cast(tf.math.not_equal(a_ , config.pad_token_id ) , tf.inta )
return {"input_ids": input_ids, "attention_mask": attention_mask}
@require_tf
class UpperCAmelCase :
'''simple docstring'''
snake_case_ = OPTConfig
snake_case_ = {}
snake_case_ = "gelu"
def __init__( self : Tuple ,A : Tuple ,A : Optional[Any]=13 ,A : Union[str, Any]=7 ,A : Tuple=True ,A : Optional[int]=False ,A : List[str]=99 ,A : str=16 ,A : Optional[Any]=2 ,A : List[str]=4 ,A : Optional[int]=4 ,A : str="gelu" ,A : Any=0.1 ,A : int=0.1 ,A : int=20 ,A : Tuple=2 ,A : Optional[int]=1 ,A : Union[str, Any]=0 ,A : str=16 ,A : Dict=16 ,):
__A = parent
__A = batch_size
__A = seq_length
__A = is_training
__A = use_labels
__A = vocab_size
__A = hidden_size
__A = num_hidden_layers
__A = num_attention_heads
__A = intermediate_size
__A = hidden_act
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = max_position_embeddings
__A = eos_token_id
__A = pad_token_id
__A = bos_token_id
__A = embed_dim
__A = word_embed_proj_dim
__A = False
def UpperCamelCase_ ( self : List[str] ):
__A = ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size )
__A = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) ,1 )
__A = tf.concat([input_ids, eos_tensor] ,axis=1 )
__A = self.config_cls(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_id=self.eos_token_id ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,embed_dim=self.embed_dim ,word_embed_proj_dim=self.word_embed_proj_dim ,is_encoder_decoder=A ,**self.config_updates ,)
__A = prepare_opt_inputs_dict(A ,A )
return config, inputs_dict
def UpperCamelCase_ ( self : Dict ,A : int ,A : Optional[int] ):
__A = TFOPTModel(config=A )
__A = inputs_dict["input_ids"]
__A = input_ids[:1, :]
__A = inputs_dict["attention_mask"][:1, :]
__A = 1
# first forward pass
__A = model(A ,attention_mask=A ,use_cache=A )
__A , __A = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
__A = ids_tensor((self.batch_size, 3) ,config.vocab_size )
__A = tf.cast(ids_tensor((self.batch_size, 3) ,2 ) ,tf.inta )
# append to next input_ids and
__A = tf.concat([input_ids, next_tokens] ,axis=-1 )
__A = tf.concat([attention_mask, next_attn_mask] ,axis=-1 )
__A = model(A ,attention_mask=A )[0]
__A = model(A ,attention_mask=A ,past_key_values=A )[0]
self.parent.assertEqual(next_tokens.shape[1] ,output_from_past.shape[1] )
# select random slice
__A = int(ids_tensor((1,) ,output_from_past.shape[-1] ) )
__A = output_from_no_past[:, -3:, random_slice_idx]
__A = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(A ,A ,rtol=1E-3 )
@require_tf
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else ()
snake_case_ = (TFOPTForCausalLM,) if is_tf_available() else ()
snake_case_ = (
{"feature-extraction": TFOPTModel, "text-generation": TFOPTForCausalLM} if is_tf_available() else {}
)
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = 10
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = TFOPTModelTester(self )
__A = ConfigTester(self ,config_class=A )
def UpperCamelCase_ ( self : Dict ):
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self : Optional[int] ):
__A = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*A )
def UpperCamelCase_ ( self : Any ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
def _get_word_embedding_weight(A : Optional[int] ,A : Optional[Any] ):
if hasattr(A ,"weight" ):
return embedding_layer.weight
else:
# Here we build the word embeddings weights if not exists.
# And then we retry to get the attribute once built.
model.build()
if hasattr(A ,"weight" ):
return embedding_layer.weight
else:
return None
for model_class in self.all_model_classes:
for size in [config.vocab_size - 10, config.vocab_size + 10]:
# build the embeddings
__A = model_class(config=A )
__A = _get_word_embedding_weight(A ,model.get_input_embeddings() )
__A = _get_word_embedding_weight(A ,model.get_output_embeddings() )
# reshape the embeddings
model.resize_token_embeddings(A )
__A = _get_word_embedding_weight(A ,model.get_input_embeddings() )
__A = _get_word_embedding_weight(A ,model.get_output_embeddings() )
# check that the resized embeddings size matches the desired size.
__A = size if size is not None else config.vocab_size
self.assertEqual(new_input_embeddings.shape[0] ,A )
# check that weights remain the same after resizing
__A = True
for pa, pa in zip(old_input_embeddings.value() ,new_input_embeddings.value() ):
if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0:
__A = False
self.assertTrue(A )
if old_output_embeddings is not None and new_output_embeddings is not None:
self.assertEqual(new_output_embeddings.shape[0] ,A )
__A = True
for pa, pa in zip(old_output_embeddings.value() ,new_output_embeddings.value() ):
if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0:
__A = False
self.assertTrue(A )
def UpperCAmelCase ( a_ ) -> List[str]:
"""simple docstring"""
return tf.constant(a_ , dtype=tf.intaa )
@require_tf
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
snake_case_ = 99
def UpperCamelCase_ ( self : Tuple ):
__A = tf.ones((4, 1) ,dtype=tf.intaa ) * 2
__A = tf.concat([ids_tensor((4, 6) ,self.vocab_size - 3 ) + 3, eos_column_vector] ,axis=1 )
__A = input_ids.shape[0]
__A = OPTConfig(
vocab_size=self.vocab_size ,hidden_size=24 ,num_hidden_layers=2 ,num_attention_heads=2 ,ffn_dim=32 ,max_position_embeddings=48 ,eos_token_id=2 ,pad_token_id=1 ,bos_token_id=0 ,)
return config, input_ids, batch_size
@require_sentencepiece
@require_tf
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCamelCase_ ( self : List[str] ):
__A = TFOPTModel.from_pretrained("facebook/opt-350m" )
__A = _long_tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] )
__A = tf.not_equal(A ,model.config.pad_token_id )
with tf.GradientTape():
__A = model(input_ids=A ,attention_mask=A ).last_hidden_state
__A = (1, 11, 5_12)
self.assertEqual(output.shape ,A )
__A = tf.constant(
[[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] )
self.assertTrue(np.allclose(output[:, :3, :3] ,A ,atol=4E-3 ) )
__A = tf.function(A ,jit_compile=A )
__A = xla_generate(A ,A )[0]
self.assertTrue(np.allclose(output[:, :3, :3] ,A ,atol=4E-2 ) )
@require_tf
@slow
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : Optional[Any] ):
super().setUp()
__A = "facebook/opt-350m"
def UpperCamelCase_ ( self : Optional[int] ):
__A = TFOPTForCausalLM.from_pretrained(self.path_model )
__A = GPTaTokenizer.from_pretrained(self.path_model )
__A = [
"Today is a beautiful day and I want to",
"In the city of",
"Paris is the capital of France and",
"Computers and mobile phones have taken",
]
# verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False
__A = tokenizer(A ,return_tensors="tf" ,padding=A ,add_special_tokens=A )
__A = tf.math.reduce_mean(model(inputs.input_ids ,attention_mask=inputs.attention_mask )[0] ,axis=-1 )
__A = tf.constant(
[
[1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70],
[-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22],
[0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03],
[6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77],
] )
self.assertTrue(np.allclose(A ,A ,atol=1E-4 ) )
__A = tf.function(A ,jit_compile=A )
__A = tf.math.reduce_mean(xla_generate(inputs.input_ids ,attention_mask=inputs.attention_mask )[0] ,axis=-1 )
self.assertTrue(np.allclose(A ,A ,atol=1E-4 ) )
@require_tf
@slow
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@property
def UpperCamelCase_ ( self : int ):
return [
"Today is a beautiful day and I want",
"In the city of",
"Paris is the capital of France and",
"Computers and mobile phones have taken",
]
def UpperCamelCase_ ( self : Optional[int] ):
__A = "facebook/opt-125m"
__A = [
"Today is a beautiful day and I want to",
"In the city of New York, the city",
"Paris is the capital of France and the capital",
"Computers and mobile phones have taken over the",
]
__A = []
__A = GPTaTokenizer.from_pretrained(A )
__A = TFOPTForCausalLM.from_pretrained(A )
for prompt in self.prompts:
__A = tokenizer(A ,return_tensors="tf" ).input_ids
__A = model.generate(A ,max_length=10 )
__A = tokenizer.batch_decode(A ,skip_special_tokens=A )
predicted_outputs += generated_string
self.assertListEqual(A ,A )
def UpperCamelCase_ ( self : int ):
__A = "facebook/opt-350m"
__A = GPTaTokenizer.from_pretrained(A )
__A = TFOPTForCausalLM.from_pretrained(A )
__A = "left"
# use different length sentences to test batching
__A = [
"Hello, my dog is a little",
"Today, I",
]
__A = tokenizer(A ,return_tensors="tf" ,padding=A )
__A = inputs["input_ids"]
__A = model.generate(input_ids=A ,attention_mask=inputs["attention_mask"] )
__A = tokenizer(sentences[0] ,return_tensors="tf" ).input_ids
__A = model.generate(input_ids=A )
__A = inputs_non_padded.shape[-1] - tf.math.reduce_sum(
tf.cast(inputs["attention_mask"][-1] ,tf.intaa ) )
__A = tokenizer(sentences[1] ,return_tensors="tf" ).input_ids
__A = model.generate(input_ids=A ,max_length=model.config.max_length - num_paddings )
__A = tokenizer.batch_decode(A ,skip_special_tokens=A )
__A = tokenizer.decode(output_non_padded[0] ,skip_special_tokens=A )
__A = tokenizer.decode(output_padded[0] ,skip_special_tokens=A )
__A = [
"Hello, my dog is a little bit of a dork.\nI'm a little bit",
"Today, I was in the middle of a conversation with a friend about the",
]
self.assertListEqual(A ,A )
self.assertListEqual(A ,[non_padded_sentence, padded_sentence] )
def UpperCamelCase_ ( self : Dict ):
__A = "facebook/opt-350m"
__A = [
"Today is a beautiful day and I want to",
"In the city of San Francisco, the city",
"Paris is the capital of France and the capital",
"Computers and mobile phones have taken over the",
]
__A = []
__A = GPTaTokenizer.from_pretrained(A )
__A = TFOPTForCausalLM.from_pretrained(A )
for prompt in self.prompts:
__A = tokenizer(A ,return_tensors="tf" ).input_ids
__A = model.generate(A ,max_length=10 )
__A = tokenizer.batch_decode(A ,skip_special_tokens=A )
predicted_outputs += generated_string
self.assertListEqual(A ,A )
| 15 |
from typing import Optional, Tuple, Union
import tensorflow as tf
from ...activations_tf import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_tf_outputs import (
TFBaseModelOutputWithNoAttention,
TFBaseModelOutputWithPoolingAndNoAttention,
TFSequenceClassifierOutput,
)
from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs
from ...tf_utils import shape_list
from ...utils import logging
from .configuration_regnet import RegNetConfig
SCREAMING_SNAKE_CASE :str = logging.get_logger(__name__)
# General docstring
SCREAMING_SNAKE_CASE :str = 'RegNetConfig'
# Base docstring
SCREAMING_SNAKE_CASE :List[str] = 'facebook/regnet-y-040'
SCREAMING_SNAKE_CASE :Union[str, Any] = [1, 1088, 7, 7]
# Image classification docstring
SCREAMING_SNAKE_CASE :Optional[int] = 'facebook/regnet-y-040'
SCREAMING_SNAKE_CASE :Any = 'tabby, tabby cat'
SCREAMING_SNAKE_CASE :Optional[int] = [
'facebook/regnet-y-040',
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : Tuple ,A : int ,A : int = 3 ,A : int = 1 ,A : int = 1 ,A : Optional[str] = "relu" ,**A : Dict ,):
super().__init__(**A )
# The padding and conv has been verified in
# https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb
__A = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 )
__A = tf.keras.layers.ConvaD(
filters=A ,kernel_size=A ,strides=A ,padding="VALID" ,groups=A ,use_bias=A ,name="convolution" ,)
__A = tf.keras.layers.BatchNormalization(epsilon=1E-5 ,momentum=0.9 ,name="normalization" )
__A = ACTaFN[activation] if activation is not None else tf.identity
def UpperCamelCase_ ( self : List[Any] ,A : Any ):
__A = self.convolution(self.padding(A ) )
__A = self.normalization(A )
__A = self.activation(A )
return hidden_state
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : Tuple ,A : RegNetConfig ,**A : str ):
super().__init__(**A )
__A = config.num_channels
__A = TFRegNetConvLayer(
out_channels=config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ,name="embedder" ,)
def UpperCamelCase_ ( self : Tuple ,A : Optional[Any] ):
__A = shape_list(A )[1]
if tf.executing_eagerly() and num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration." )
# When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format.
# So change the input format from `NCHW` to `NHWC`.
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
__A = tf.transpose(A ,perm=(0, 2, 3, 1) )
__A = self.embedder(A )
return hidden_state
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : Optional[int] ,A : int ,A : int = 2 ,**A : Tuple ):
super().__init__(**A )
__A = tf.keras.layers.ConvaD(
filters=A ,kernel_size=1 ,strides=A ,use_bias=A ,name="convolution" )
__A = tf.keras.layers.BatchNormalization(epsilon=1E-5 ,momentum=0.9 ,name="normalization" )
def UpperCamelCase_ ( self : Union[str, Any] ,A : tf.Tensor ,A : bool = False ):
return self.normalization(self.convolution(A ) ,training=A )
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : Dict ,A : int ,A : int ,**A : str ):
super().__init__(**A )
__A = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A ,name="pooler" )
__A = [
tf.keras.layers.ConvaD(filters=A ,kernel_size=1 ,activation="relu" ,name="attention.0" ),
tf.keras.layers.ConvaD(filters=A ,kernel_size=1 ,activation="sigmoid" ,name="attention.2" ),
]
def UpperCamelCase_ ( self : Dict ,A : List[Any] ):
# [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels]
__A = self.pooler(A )
for layer_module in self.attention:
__A = layer_module(A )
__A = hidden_state * pooled
return hidden_state
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : List[str] ,A : RegNetConfig ,A : int ,A : int ,A : int = 1 ,**A : Optional[int] ):
super().__init__(**A )
__A = in_channels != out_channels or stride != 1
__A = max(1 ,out_channels // config.groups_width )
__A = (
TFRegNetShortCut(A ,stride=A ,name="shortcut" )
if should_apply_shortcut
else tf.keras.layers.Activation("linear" ,name="shortcut" )
)
# `self.layers` instead of `self.layer` because that is a reserved argument.
__A = [
TFRegNetConvLayer(A ,kernel_size=1 ,activation=config.hidden_act ,name="layer.0" ),
TFRegNetConvLayer(
A ,stride=A ,groups=A ,activation=config.hidden_act ,name="layer.1" ),
TFRegNetConvLayer(A ,kernel_size=1 ,activation=A ,name="layer.2" ),
]
__A = ACTaFN[config.hidden_act]
def UpperCamelCase_ ( self : int ,A : Optional[int] ):
__A = hidden_state
for layer_module in self.layers:
__A = layer_module(A )
__A = self.shortcut(A )
hidden_state += residual
__A = self.activation(A )
return hidden_state
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : List[Any] ,A : RegNetConfig ,A : int ,A : int ,A : int = 1 ,**A : str ):
super().__init__(**A )
__A = in_channels != out_channels or stride != 1
__A = max(1 ,out_channels // config.groups_width )
__A = (
TFRegNetShortCut(A ,stride=A ,name="shortcut" )
if should_apply_shortcut
else tf.keras.layers.Activation("linear" ,name="shortcut" )
)
__A = [
TFRegNetConvLayer(A ,kernel_size=1 ,activation=config.hidden_act ,name="layer.0" ),
TFRegNetConvLayer(
A ,stride=A ,groups=A ,activation=config.hidden_act ,name="layer.1" ),
TFRegNetSELayer(A ,reduced_channels=int(round(in_channels / 4 ) ) ,name="layer.2" ),
TFRegNetConvLayer(A ,kernel_size=1 ,activation=A ,name="layer.3" ),
]
__A = ACTaFN[config.hidden_act]
def UpperCamelCase_ ( self : Dict ,A : Any ):
__A = hidden_state
for layer_module in self.layers:
__A = layer_module(A )
__A = self.shortcut(A )
hidden_state += residual
__A = self.activation(A )
return hidden_state
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : List[str] ,A : RegNetConfig ,A : int ,A : int ,A : int = 2 ,A : int = 2 ,**A : Optional[int] ):
super().__init__(**A )
__A = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer
__A = [
# downsampling is done in the first layer with stride of 2
layer(A ,A ,A ,stride=A ,name="layers.0" ),
*[layer(A ,A ,A ,name=f'''layers.{i+1}''' ) for i in range(depth - 1 )],
]
def UpperCamelCase_ ( self : Any ,A : List[str] ):
for layer_module in self.layers:
__A = layer_module(A )
return hidden_state
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : Any ,A : RegNetConfig ,**A : List[str] ):
super().__init__(**A )
__A = []
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
TFRegNetStage(
A ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,name="stages.0" ,) )
__A = zip(config.hidden_sizes ,config.hidden_sizes[1:] )
for i, ((in_channels, out_channels), depth) in enumerate(zip(A ,config.depths[1:] ) ):
self.stages.append(TFRegNetStage(A ,A ,A ,depth=A ,name=f'''stages.{i+1}''' ) )
def UpperCamelCase_ ( self : List[str] ,A : tf.Tensor ,A : bool = False ,A : bool = True ):
__A = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
__A = hidden_states + (hidden_state,)
__A = stage_module(A )
if output_hidden_states:
__A = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return TFBaseModelOutputWithNoAttention(last_hidden_state=A ,hidden_states=A )
@keras_serializable
class UpperCAmelCase ( tf.keras.layers.Layer ):
'''simple docstring'''
snake_case_ = RegNetConfig
def __init__( self : int ,A : Optional[int] ,**A : Dict ):
super().__init__(**A )
__A = config
__A = TFRegNetEmbeddings(A ,name="embedder" )
__A = TFRegNetEncoder(A ,name="encoder" )
__A = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A ,name="pooler" )
@unpack_inputs
def UpperCamelCase_ ( self : Tuple ,A : tf.Tensor ,A : Optional[bool] = None ,A : Optional[bool] = None ,A : bool = False ,):
__A = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__A = return_dict if return_dict is not None else self.config.use_return_dict
__A = self.embedder(A ,training=A )
__A = self.encoder(
A ,output_hidden_states=A ,return_dict=A ,training=A )
__A = encoder_outputs[0]
__A = self.pooler(A )
# Change to NCHW output format have uniformity in the modules
__A = tf.transpose(A ,perm=(0, 3, 1, 2) )
__A = tf.transpose(A ,perm=(0, 3, 1, 2) )
# Change the other hidden state outputs to NCHW as well
if output_hidden_states:
__A = tuple([tf.transpose(A ,perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=A ,pooler_output=A ,hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states ,)
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = RegNetConfig
snake_case_ = "regnet"
snake_case_ = "pixel_values"
@property
def UpperCamelCase_ ( self : Optional[Any] ):
return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) ,dtype=tf.floataa )}
SCREAMING_SNAKE_CASE :Dict = R'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n'
SCREAMING_SNAKE_CASE :Dict = R'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n'
@add_start_docstrings(
"The bare RegNet model outputting raw features without any specific head on top." , __SCREAMING_SNAKE_CASE , )
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : List[Any] ,A : RegNetConfig ,*A : List[Any] ,**A : str ):
super().__init__(A ,*A ,**A )
__A = TFRegNetMainLayer(A ,name="regnet" )
@unpack_inputs
@add_start_docstrings_to_model_forward(A )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC ,output_type=A ,config_class=_CONFIG_FOR_DOC ,modality="vision" ,expected_output=_EXPECTED_OUTPUT_SHAPE ,)
def UpperCamelCase_ ( self : Tuple ,A : tf.Tensor ,A : Optional[bool] = None ,A : Optional[bool] = None ,A : int=False ,):
__A = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__A = return_dict if return_dict is not None else self.config.use_return_dict
__A = self.regnet(
pixel_values=A ,output_hidden_states=A ,return_dict=A ,training=A ,)
if not return_dict:
return (outputs[0],) + outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=outputs.last_hidden_state ,pooler_output=outputs.pooler_output ,hidden_states=outputs.hidden_states ,)
@add_start_docstrings(
"\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , __SCREAMING_SNAKE_CASE , )
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : Optional[int] ,A : RegNetConfig ,*A : str ,**A : Tuple ):
super().__init__(A ,*A ,**A )
__A = config.num_labels
__A = TFRegNetMainLayer(A ,name="regnet" )
# classification head
__A = [
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(config.num_labels ,name="classifier.1" ) if config.num_labels > 0 else tf.identity,
]
@unpack_inputs
@add_start_docstrings_to_model_forward(A )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=A ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,)
def UpperCamelCase_ ( self : List[str] ,A : tf.Tensor = None ,A : tf.Tensor = None ,A : bool = None ,A : bool = None ,A : Union[str, Any]=False ,):
__A = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__A = return_dict if return_dict is not None else self.config.use_return_dict
__A = self.regnet(
A ,output_hidden_states=A ,return_dict=A ,training=A )
__A = outputs.pooler_output if return_dict else outputs[1]
__A = self.classifier[0](A )
__A = self.classifier[1](A )
__A = None if labels is None else self.hf_compute_loss(labels=A ,logits=A )
if not return_dict:
__A = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(loss=A ,logits=A ,hidden_states=outputs.hidden_states )
| 15 | 1 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
SCREAMING_SNAKE_CASE :int = {
'configuration_xmod': [
'XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP',
'XmodConfig',
'XmodOnnxConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :Union[str, Any] = [
'XMOD_PRETRAINED_MODEL_ARCHIVE_LIST',
'XmodForCausalLM',
'XmodForMaskedLM',
'XmodForMultipleChoice',
'XmodForQuestionAnswering',
'XmodForSequenceClassification',
'XmodForTokenClassification',
'XmodModel',
'XmodPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xmod import (
XMOD_PRETRAINED_MODEL_ARCHIVE_LIST,
XmodForCausalLM,
XmodForMaskedLM,
XmodForMultipleChoice,
XmodForQuestionAnswering,
XmodForSequenceClassification,
XmodForTokenClassification,
XmodModel,
XmodPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE :List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 15 |
import math
def UpperCAmelCase ( a_ , a_ = 0 , a_ = 0 ) -> list:
"""simple docstring"""
__A = end or len(a_ )
for i in range(a_ , a_ ):
__A = i
__A = array[i]
while temp_index != start and temp_index_value < array[temp_index - 1]:
__A = array[temp_index - 1]
temp_index -= 1
__A = temp_index_value
return array
def UpperCAmelCase ( a_ , a_ , a_ ) -> None: # Max Heap
"""simple docstring"""
__A = index
__A = 2 * index + 1 # Left Node
__A = 2 * index + 2 # Right Node
if left_index < heap_size and array[largest] < array[left_index]:
__A = left_index
if right_index < heap_size and array[largest] < array[right_index]:
__A = right_index
if largest != index:
__A , __A = array[largest], array[index]
heapify(a_ , a_ , a_ )
def UpperCAmelCase ( a_ ) -> list:
"""simple docstring"""
__A = len(a_ )
for i in range(n // 2 , -1 , -1 ):
heapify(a_ , a_ , a_ )
for i in range(n - 1 , 0 , -1 ):
__A , __A = array[0], array[i]
heapify(a_ , 0 , a_ )
return array
def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> int:
"""simple docstring"""
if (array[first_index] > array[middle_index]) != (
array[first_index] > array[last_index]
):
return array[first_index]
elif (array[middle_index] > array[first_index]) != (
array[middle_index] > array[last_index]
):
return array[middle_index]
else:
return array[last_index]
def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> int:
"""simple docstring"""
__A = low
__A = high
while True:
while array[i] < pivot:
i += 1
j -= 1
while pivot < array[j]:
j -= 1
if i >= j:
return i
__A , __A = array[j], array[i]
i += 1
def UpperCAmelCase ( a_ ) -> list:
"""simple docstring"""
if len(a_ ) == 0:
return array
__A = 2 * math.ceil(math.loga(len(a_ ) ) )
__A = 1_6
return intro_sort(a_ , 0 , len(a_ ) , a_ , a_ )
def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ ) -> list:
"""simple docstring"""
while end - start > size_threshold:
if max_depth == 0:
return heap_sort(a_ )
max_depth -= 1
__A = median_of_a(a_ , a_ , start + ((end - start) // 2) + 1 , end - 1 )
__A = partition(a_ , a_ , a_ , a_ )
intro_sort(a_ , a_ , a_ , a_ , a_ )
__A = p
return insertion_sort(a_ , a_ , a_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
SCREAMING_SNAKE_CASE :List[Any] = input('Enter numbers separated by a comma : ').strip()
SCREAMING_SNAKE_CASE :str = [float(item) for item in user_input.split(',')]
print(sort(unsorted))
| 15 | 1 |
import dataclasses
import re
import string
from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple
import numpy as np
from . import residue_constants
SCREAMING_SNAKE_CASE :Optional[Any] = Mapping[str, np.ndarray]
SCREAMING_SNAKE_CASE :List[str] = Mapping[str, Any] # Is a nested dict.
SCREAMING_SNAKE_CASE :int = 0.01
@dataclasses.dataclass(frozen=__SCREAMING_SNAKE_CASE )
class UpperCAmelCase :
'''simple docstring'''
snake_case_ = 42 # [num_res, num_atom_type, 3]
# Amino-acid type for each residue represented as an integer between 0 and
# 20, where 20 is 'X'.
snake_case_ = 42 # [num_res]
# Binary float mask to indicate presence of a particular atom. 1.0 if an atom
# is present and 0.0 if not. This should be used for loss masking.
snake_case_ = 42 # [num_res, num_atom_type]
# Residue index as used in PDB. It is not necessarily continuous or 0-indexed.
snake_case_ = 42 # [num_res]
# B-factors, or temperature factors, of each residue (in sq. angstroms units),
# representing the displacement of the residue from its ground truth mean
# value.
snake_case_ = 42 # [num_res, num_atom_type]
# Chain indices for multi-chain predictions
snake_case_ = None
# Optional remark about the protein. Included as a comment in output PDB
# files
snake_case_ = None
# Templates used to generate this protein (prediction-only)
snake_case_ = None
# Chain corresponding to each parent
snake_case_ = None
def UpperCAmelCase ( a_ ) -> Protein:
"""simple docstring"""
__A = r"(\[[A-Z]+\]\n)"
__A = [tag.strip() for tag in re.split(a_ , a_ ) if len(a_ ) > 0]
__A = zip(tags[0::2] , [l.split("\n" ) for l in tags[1::2]] )
__A = ["N", "CA", "C"]
__A = None
__A = None
__A = None
for g in groups:
if "[PRIMARY]" == g[0]:
__A = g[1][0].strip()
for i in range(len(a_ ) ):
if seq[i] not in residue_constants.restypes:
__A = "X" # FIXME: strings are immutable
__A = np.array(
[residue_constants.restype_order.get(a_ , residue_constants.restype_num ) for res_symbol in seq] )
elif "[TERTIARY]" == g[0]:
__A = []
for axis in range(3 ):
tertiary.append(list(map(a_ , g[1][axis].split() ) ) )
__A = np.array(a_ )
__A = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa )
for i, atom in enumerate(a_ ):
__A = np.transpose(tertiary_np[:, i::3] )
atom_positions *= PICO_TO_ANGSTROM
elif "[MASK]" == g[0]:
__A = np.array(list(map({"-": 0, "+": 1}.get , g[1][0].strip() ) ) )
__A = np.zeros(
(
len(a_ ),
residue_constants.atom_type_num,
) ).astype(np.floataa )
for i, atom in enumerate(a_ ):
__A = 1
atom_mask *= mask[..., None]
assert aatype is not None
return Protein(
atom_positions=a_ , atom_mask=a_ , aatype=a_ , residue_index=np.arange(len(a_ ) ) , b_factors=a_ , )
def UpperCAmelCase ( a_ , a_ = 0 ) -> List[str]:
"""simple docstring"""
__A = []
__A = prot.remark
if remark is not None:
pdb_headers.append(F'''REMARK {remark}''' )
__A = prot.parents
__A = prot.parents_chain_index
if parents is not None and parents_chain_index is not None:
__A = [p for i, p in zip(a_ , a_ ) if i == chain_id]
if parents is None or len(a_ ) == 0:
__A = ["N/A"]
pdb_headers.append(F'''PARENT {' '.join(a_ )}''' )
return pdb_headers
def UpperCAmelCase ( a_ , a_ ) -> str:
"""simple docstring"""
__A = []
__A = pdb_str.split("\n" )
__A = prot.remark
if remark is not None:
out_pdb_lines.append(F'''REMARK {remark}''' )
__A = 42
if prot.parents is not None and len(prot.parents ) > 0:
__A = []
if prot.parents_chain_index is not None:
__A = {}
for p, i in zip(prot.parents , prot.parents_chain_index ):
parent_dict.setdefault(str(a_ ) , [] )
parent_dict[str(a_ )].append(a_ )
__A = max([int(a_ ) for chain_idx in parent_dict] )
for i in range(max_idx + 1 ):
__A = parent_dict.get(str(a_ ) , ["N/A"] )
parents_per_chain.append(a_ )
else:
parents_per_chain.append(list(prot.parents ) )
else:
__A = [["N/A"]]
def make_parent_line(a_ ) -> str:
return F'''PARENT {' '.join(a_ )}'''
out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) )
__A = 0
for i, l in enumerate(a_ ):
if "PARENT" not in l and "REMARK" not in l:
out_pdb_lines.append(a_ )
if "TER" in l and "END" not in lines[i + 1]:
chain_counter += 1
if not chain_counter >= len(a_ ):
__A = parents_per_chain[chain_counter]
else:
__A = ["N/A"]
out_pdb_lines.append(make_parent_line(a_ ) )
return "\n".join(a_ )
def UpperCAmelCase ( a_ ) -> str:
"""simple docstring"""
__A = residue_constants.restypes + ["X"]
def res_atoa(a_ ) -> str:
return residue_constants.restype_atoa.get(restypes[r] , "UNK" )
__A = residue_constants.atom_types
__A = []
__A = prot.atom_mask
__A = prot.aatype
__A = prot.atom_positions
__A = prot.residue_index.astype(np.intaa )
__A = prot.b_factors
__A = prot.chain_index
if np.any(aatype > residue_constants.restype_num ):
raise ValueError("Invalid aatypes." )
__A = get_pdb_headers(a_ )
if len(a_ ) > 0:
pdb_lines.extend(a_ )
__A = aatype.shape[0]
__A = 1
__A = 0
__A = string.ascii_uppercase
__A = None
# Add all atom sites.
for i in range(a_ ):
__A = res_atoa(aatype[i] )
for atom_name, pos, mask, b_factor in zip(a_ , atom_positions[i] , atom_mask[i] , b_factors[i] ):
if mask < 0.5:
continue
__A = "ATOM"
__A = atom_name if len(a_ ) == 4 else F''' {atom_name}'''
__A = ""
__A = ""
__A = 1.00
__A = atom_name[0] # Protein supports only C, N, O, S, this works.
__A = ""
__A = "A"
if chain_index is not None:
__A = chain_tags[chain_index[i]]
# PDB is a columnar format, every space matters here!
__A = (
F'''{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}'''
F'''{res_name_a:>3} {chain_tag:>1}'''
F'''{residue_index[i]:>4}{insertion_code:>1} '''
F'''{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}'''
F'''{occupancy:>6.2f}{b_factor:>6.2f} '''
F'''{element:>2}{charge:>2}'''
)
pdb_lines.append(a_ )
atom_index += 1
__A = i == n - 1
if chain_index is not None:
if i != n - 1 and chain_index[i + 1] != prev_chain_index:
__A = True
__A = chain_index[i + 1]
if should_terminate:
# Close the chain.
__A = "TER"
__A = (
F'''{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}'''
)
pdb_lines.append(a_ )
atom_index += 1
if i != n - 1:
# "prev" is a misnomer here. This happens at the beginning of
# each new chain.
pdb_lines.extend(get_pdb_headers(a_ , a_ ) )
pdb_lines.append("END" )
pdb_lines.append("" )
return "\n".join(a_ )
def UpperCAmelCase ( a_ ) -> np.ndarray:
"""simple docstring"""
return residue_constants.STANDARD_ATOM_MASK[prot.aatype]
def UpperCAmelCase ( a_ , a_ , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , ) -> Protein:
"""simple docstring"""
return Protein(
aatype=features["aatype"] , atom_positions=result["final_atom_positions"] , atom_mask=result["final_atom_mask"] , residue_index=features["residue_index"] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result["final_atom_mask"] ) , chain_index=a_ , remark=a_ , parents=a_ , parents_chain_index=a_ , )
| 15 |
import dataclasses
import json
import sys
import types
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError
from copy import copy
from enum import Enum
from inspect import isclass
from pathlib import Path
from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints
import yaml
SCREAMING_SNAKE_CASE :Optional[int] = NewType('DataClass', Any)
SCREAMING_SNAKE_CASE :int = NewType('DataClassType', Any)
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
if isinstance(a_ , a_ ):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise ArgumentTypeError(
F'''Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).''' )
def UpperCAmelCase ( a_ ) -> Callable[[str], Any]:
"""simple docstring"""
__A = {str(a_ ): choice for choice in choices}
return lambda a_ : str_to_choice.get(a_ , a_ )
def UpperCAmelCase ( *,
a_ = None , a_ = None , a_ = dataclasses.MISSING , a_ = dataclasses.MISSING , a_ = None , **a_ , ) -> dataclasses.Field:
"""simple docstring"""
if metadata is None:
# Important, don't use as default param in function signature because dict is mutable and shared across function calls
__A = {}
if aliases is not None:
__A = aliases
if help is not None:
__A = help
return dataclasses.field(metadata=a_ , default=a_ , default_factory=a_ , **a_ )
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = 42
def __init__( self : Union[str, Any] ,A : Union[DataClassType, Iterable[DataClassType]] ,**A : List[Any] ):
# To make the default appear when using --help
if "formatter_class" not in kwargs:
__A = ArgumentDefaultsHelpFormatter
super().__init__(**A )
if dataclasses.is_dataclass(A ):
__A = [dataclass_types]
__A = list(A )
for dtype in self.dataclass_types:
self._add_dataclass_arguments(A )
@staticmethod
def UpperCamelCase_ ( A : ArgumentParser ,A : dataclasses.Field ):
__A = f'''--{field.name}'''
__A = field.metadata.copy()
# field.metadata is not used at all by Data Classes,
# it is provided as a third-party extension mechanism.
if isinstance(field.type ,A ):
raise RuntimeError(
"Unresolved type detected, which should have been done with the help of "
"`typing.get_type_hints` method by default" )
__A = kwargs.pop("aliases" ,[] )
if isinstance(A ,A ):
__A = [aliases]
__A = getattr(field.type ,"__origin__" ,field.type )
if origin_type is Union or (hasattr(A ,"UnionType" ) and isinstance(A ,types.UnionType )):
if str not in field.type.__args__ and (
len(field.type.__args__ ) != 2 or type(A ) not in field.type.__args__
):
raise ValueError(
"Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because"
" the argument parser only supports one type per argument."
f''' Problem encountered in field \'{field.name}\'.''' )
if type(A ) not in field.type.__args__:
# filter `str` in Union
__A = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1]
__A = getattr(field.type ,"__origin__" ,field.type )
elif bool not in field.type.__args__:
# filter `NoneType` in Union (except for `Union[bool, NoneType]`)
__A = (
field.type.__args__[0] if isinstance(A ,field.type.__args__[1] ) else field.type.__args__[1]
)
__A = getattr(field.type ,"__origin__" ,field.type )
# A variable to store kwargs for a boolean field, if needed
# so that we can init a `no_*` complement argument (see below)
__A = {}
if origin_type is Literal or (isinstance(field.type ,A ) and issubclass(field.type ,A )):
if origin_type is Literal:
__A = field.type.__args__
else:
__A = [x.value for x in field.type]
__A = make_choice_type_function(kwargs["choices"] )
if field.default is not dataclasses.MISSING:
__A = field.default
else:
__A = True
elif field.type is bool or field.type == Optional[bool]:
# Copy the currect kwargs to use to instantiate a `no_*` complement argument below.
# We do not initialize it here because the `no_*` alternative must be instantiated after the real argument
__A = copy(A )
# Hack because type=bool in argparse does not behave as we want.
__A = string_to_bool
if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING):
# Default value is False if we have no default when of type bool.
__A = False if field.default is dataclasses.MISSING else field.default
# This is the value that will get picked if we don't include --field_name in any way
__A = default
# This tells argparse we accept 0 or 1 value after --field_name
__A = "?"
# This is the value that will get picked if we do --field_name (without value)
__A = True
elif isclass(A ) and issubclass(A ,A ):
__A = field.type.__args__[0]
__A = "+"
if field.default_factory is not dataclasses.MISSING:
__A = field.default_factory()
elif field.default is dataclasses.MISSING:
__A = True
else:
__A = field.type
if field.default is not dataclasses.MISSING:
__A = field.default
elif field.default_factory is not dataclasses.MISSING:
__A = field.default_factory()
else:
__A = True
parser.add_argument(A ,*A ,**A )
# Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added.
# Order is important for arguments with the same destination!
# We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down
# here and we do not need those changes/additional keys.
if field.default is True and (field.type is bool or field.type == Optional[bool]):
__A = False
parser.add_argument(f'''--no_{field.name}''' ,action="store_false" ,dest=field.name ,**A )
def UpperCamelCase_ ( self : Union[str, Any] ,A : DataClassType ):
if hasattr(A ,"_argument_group_name" ):
__A = self.add_argument_group(dtype._argument_group_name )
else:
__A = self
try:
__A = get_type_hints(A )
except NameError:
raise RuntimeError(
f'''Type resolution failed for {dtype}. Try declaring the class in global scope or '''
"removing line of `from __future__ import annotations` which opts in Postponed "
"Evaluation of Annotations (PEP 563)" )
except TypeError as ex:
# Remove this block when we drop Python 3.9 support
if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(A ):
__A = ".".join(map(A ,sys.version_info[:3] ) )
raise RuntimeError(
f'''Type resolution failed for {dtype} on Python {python_version}. Try removing '''
"line of `from __future__ import annotations` which opts in union types as "
"`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To "
"support Python versions that lower than 3.10, you need to use "
"`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of "
"`X | None`." ) from ex
raise
for field in dataclasses.fields(A ):
if not field.init:
continue
__A = type_hints[field.name]
self._parse_dataclass_field(A ,A )
def UpperCamelCase_ ( self : Union[str, Any] ,A : List[Any]=None ,A : List[Any]=False ,A : Optional[Any]=True ,A : Union[str, Any]=None ,A : Union[str, Any]=None ,):
if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )):
__A = []
if args_filename:
args_files.append(Path(A ) )
elif look_for_args_file and len(sys.argv ):
args_files.append(Path(sys.argv[0] ).with_suffix(".args" ) )
# args files specified via command line flag should overwrite default args files so we add them last
if args_file_flag:
# Create special parser just to extract the args_file_flag values
__A = ArgumentParser()
args_file_parser.add_argument(A ,type=A ,action="append" )
# Use only remaining args for further parsing (remove the args_file_flag)
__A , __A = args_file_parser.parse_known_args(args=A )
__A = vars(A ).get(args_file_flag.lstrip("-" ) ,A )
if cmd_args_file_paths:
args_files.extend([Path(A ) for p in cmd_args_file_paths] )
__A = []
for args_file in args_files:
if args_file.exists():
file_args += args_file.read_text().split()
# in case of duplicate arguments the last one has precedence
# args specified via the command line should overwrite args from files, so we add them last
__A = file_args + args if args is not None else file_args + sys.argv[1:]
__A , __A = self.parse_known_args(args=A )
__A = []
for dtype in self.dataclass_types:
__A = {f.name for f in dataclasses.fields(A ) if f.init}
__A = {k: v for k, v in vars(A ).items() if k in keys}
for k in keys:
delattr(A ,A )
__A = dtype(**A )
outputs.append(A )
if len(namespace.__dict__ ) > 0:
# additional namespace.
outputs.append(A )
if return_remaining_strings:
return (*outputs, remaining_args)
else:
if remaining_args:
raise ValueError(f'''Some specified arguments are not used by the HfArgumentParser: {remaining_args}''' )
return (*outputs,)
def UpperCamelCase_ ( self : Dict ,A : Dict[str, Any] ,A : bool = False ):
__A = set(args.keys() )
__A = []
for dtype in self.dataclass_types:
__A = {f.name for f in dataclasses.fields(A ) if f.init}
__A = {k: v for k, v in args.items() if k in keys}
unused_keys.difference_update(inputs.keys() )
__A = dtype(**A )
outputs.append(A )
if not allow_extra_keys and unused_keys:
raise ValueError(f'''Some keys are not used by the HfArgumentParser: {sorted(A )}''' )
return tuple(A )
def UpperCamelCase_ ( self : List[str] ,A : str ,A : bool = False ):
with open(Path(A ) ,encoding="utf-8" ) as open_json_file:
__A = json.loads(open_json_file.read() )
__A = self.parse_dict(A ,allow_extra_keys=A )
return tuple(A )
def UpperCamelCase_ ( self : int ,A : str ,A : bool = False ):
__A = self.parse_dict(yaml.safe_load(Path(A ).read_text() ) ,allow_extra_keys=A )
return tuple(A )
| 15 | 1 |
from math import factorial
def UpperCAmelCase ( a_ , a_ ) -> int:
"""simple docstring"""
if n < k or k < 0:
raise ValueError("Please enter positive integers for n and k where n >= k" )
return factorial(a_ ) // (factorial(a_ ) * factorial(n - k ))
if __name__ == "__main__":
print(
'The number of five-card hands possible from a standard',
f'''fifty-two card deck is: {combinations(52, 5)}\n''',
)
print(
'If a class of 40 students must be arranged into groups of',
f'''4 for group projects, there are {combinations(40, 4)} ways''',
'to arrange them.\n',
)
print(
'If 10 teams are competing in a Formula One race, there',
f'''are {combinations(10, 3)} ways that first, second and''',
'third place can be awarded.',
)
| 15 |
SCREAMING_SNAKE_CASE :Any = 256
# Modulus to hash a string
SCREAMING_SNAKE_CASE :Union[str, Any] = 100_0003
def UpperCAmelCase ( a_ , a_ ) -> bool:
"""simple docstring"""
__A = len(a_ )
__A = len(a_ )
if p_len > t_len:
return False
__A = 0
__A = 0
__A = 1
# Calculating the hash of pattern and substring of text
for i in range(a_ ):
__A = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus
__A = (ord(text[i] ) + text_hash * alphabet_size) % modulus
if i == p_len - 1:
continue
__A = (modulus_power * alphabet_size) % modulus
for i in range(0 , t_len - p_len + 1 ):
if text_hash == p_hash and text[i : i + p_len] == pattern:
return True
if i == t_len - p_len:
continue
# Calculate the https://en.wikipedia.org/wiki/Rolling_hash
__A = (
(text_hash - ord(text[i] ) * modulus_power) * alphabet_size
+ ord(text[i + p_len] )
) % modulus
return False
def UpperCAmelCase ( ) -> None:
"""simple docstring"""
__A = "abc1abc12"
__A = "alskfjaldsabc1abc1abc12k23adsfabcabc"
__A = "alskfjaldsk23adsfabcabc"
assert rabin_karp(a_ , a_ ) and not rabin_karp(a_ , a_ )
# Test 2)
__A = "ABABX"
__A = "ABABZABABYABABX"
assert rabin_karp(a_ , a_ )
# Test 3)
__A = "AAAB"
__A = "ABAAAAAB"
assert rabin_karp(a_ , a_ )
# Test 4)
__A = "abcdabcy"
__A = "abcxabcdabxabcdabcdabcy"
assert rabin_karp(a_ , a_ )
# Test 5)
__A = "Lü"
__A = "Lüsai"
assert rabin_karp(a_ , a_ )
__A = "Lue"
assert not rabin_karp(a_ , a_ )
print("Success." )
if __name__ == "__main__":
test_rabin_karp()
| 15 | 1 |
from ...utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_torch_available,
is_transformers_available,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .multicontrolnet import MultiControlNetModel
from .pipeline_controlnet import StableDiffusionControlNetPipeline
from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline
from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline
if is_transformers_available() and is_flax_available():
from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
| 15 |
import argparse
import json
import os
import torch
from transformers.file_utils import has_file
from diffusers import UNetaDConditionModel, UNetaDModel
SCREAMING_SNAKE_CASE :Union[str, Any] = False
SCREAMING_SNAKE_CASE :Any = True
SCREAMING_SNAKE_CASE :Tuple = False
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :Tuple = argparse.ArgumentParser()
parser.add_argument(
'--repo_path',
default=None,
type=str,
required=True,
help='The config json file corresponding to the architecture.',
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
SCREAMING_SNAKE_CASE :Union[str, Any] = parser.parse_args()
SCREAMING_SNAKE_CASE :Dict = {
'image_size': 'sample_size',
'num_res_blocks': 'layers_per_block',
'block_channels': 'block_out_channels',
'down_blocks': 'down_block_types',
'up_blocks': 'up_block_types',
'downscale_freq_shift': 'freq_shift',
'resnet_num_groups': 'norm_num_groups',
'resnet_act_fn': 'act_fn',
'resnet_eps': 'norm_eps',
'num_head_channels': 'attention_head_dim',
}
SCREAMING_SNAKE_CASE :Optional[int] = {
'time_steps': 'time_proj',
'mid': 'mid_block',
'downsample_blocks': 'down_blocks',
'upsample_blocks': 'up_blocks',
}
SCREAMING_SNAKE_CASE :int = '' if has_file(args.repo_path, 'config.json') else 'unet'
with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader:
SCREAMING_SNAKE_CASE :Dict = reader.read()
SCREAMING_SNAKE_CASE :List[str] = json.loads(text)
if do_only_config:
for key in config_parameters_to_change.keys():
config.pop(key, None)
if has_file(args.repo_path, 'config.json'):
SCREAMING_SNAKE_CASE :Optional[int] = UNetaDModel(**config)
else:
SCREAMING_SNAKE_CASE :Optional[Any] = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel
SCREAMING_SNAKE_CASE :List[str] = class_name(**config)
if do_only_config:
model.save_config(os.path.join(args.repo_path, subfolder))
SCREAMING_SNAKE_CASE :List[str] = dict(model.config)
if do_only_renaming:
for key, value in config_parameters_to_change.items():
if key in config:
SCREAMING_SNAKE_CASE :Optional[Any] = config[key]
del config[key]
SCREAMING_SNAKE_CASE :Optional[Any] = [k.replace('UNetRes', '') for k in config['down_block_types']]
SCREAMING_SNAKE_CASE :List[Any] = [k.replace('UNetRes', '') for k in config['up_block_types']]
if do_only_weights:
SCREAMING_SNAKE_CASE :Tuple = torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin'))
SCREAMING_SNAKE_CASE :Any = {}
for param_key, param_value in state_dict.items():
if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'):
continue
SCREAMING_SNAKE_CASE :List[str] = False
for key, new_key in key_parameters_to_change.items():
if not has_changed and param_key.split('.')[0] == key:
SCREAMING_SNAKE_CASE :List[Any] = param_value
SCREAMING_SNAKE_CASE :str = True
if not has_changed:
SCREAMING_SNAKE_CASE :List[str] = param_value
model.load_state_dict(new_state_dict)
model.save_pretrained(os.path.join(args.repo_path, subfolder))
| 15 | 1 |
import inspect
import unittest
from transformers import MobileViTVaConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel
from transformers.models.mobilevitva.modeling_mobilevitva import (
MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST,
make_divisible,
)
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(A ,"width_multiplier" ) )
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : List[str] ,A : List[Any] ,A : Optional[int]=13 ,A : Dict=64 ,A : Optional[Any]=2 ,A : Optional[int]=3 ,A : int="swish" ,A : Tuple=3 ,A : Tuple=32 ,A : int=0.1 ,A : Any=0.02 ,A : Any=True ,A : Optional[int]=True ,A : Tuple=10 ,A : Any=None ,A : Any=0.25 ,A : Tuple=0.0 ,A : Optional[int]=0.0 ,):
__A = parent
__A = batch_size
__A = image_size
__A = patch_size
__A = num_channels
__A = make_divisible(5_12 * width_multiplier ,divisor=8 )
__A = hidden_act
__A = conv_kernel_size
__A = output_stride
__A = classifier_dropout_prob
__A = use_labels
__A = is_training
__A = num_labels
__A = initializer_range
__A = scope
__A = width_multiplier
__A = ffn_dropout
__A = attn_dropout
def UpperCamelCase_ ( self : Tuple ):
__A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__A = None
__A = None
if self.use_labels:
__A = ids_tensor([self.batch_size] ,self.num_labels )
__A = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels )
__A = self.get_config()
return config, pixel_values, labels, pixel_labels
def UpperCamelCase_ ( self : List[Any] ):
return MobileViTVaConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_act=self.hidden_act ,conv_kernel_size=self.conv_kernel_size ,output_stride=self.output_stride ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,width_multiplier=self.width_multiplier ,ffn_dropout=self.ffn_dropout_prob ,attn_dropout=self.attn_dropout_prob ,)
def UpperCamelCase_ ( self : int ,A : Any ,A : Any ,A : Union[str, Any] ,A : Optional[int] ):
__A = MobileViTVaModel(config=A )
model.to(A )
model.eval()
__A = model(A )
self.parent.assertEqual(
result.last_hidden_state.shape ,(
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) ,)
def UpperCamelCase_ ( self : List[Any] ,A : Optional[Any] ,A : Optional[Any] ,A : int ,A : Tuple ):
__A = self.num_labels
__A = MobileViTVaForImageClassification(A )
model.to(A )
model.eval()
__A = model(A ,labels=A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self : List[Any] ,A : Dict ,A : List[str] ,A : Union[str, Any] ,A : int ):
__A = self.num_labels
__A = MobileViTVaForSemanticSegmentation(A )
model.to(A )
model.eval()
__A = model(A )
self.parent.assertEqual(
result.logits.shape ,(
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) ,)
__A = model(A ,labels=A )
self.parent.assertEqual(
result.logits.shape ,(
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) ,)
def UpperCamelCase_ ( self : Dict ):
__A = self.prepare_config_and_inputs()
__A , __A , __A , __A = config_and_inputs
__A = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = (
(MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation)
if is_torch_available()
else ()
)
snake_case_ = (
{
"feature-extraction": MobileViTVaModel,
"image-classification": MobileViTVaForImageClassification,
"image-segmentation": MobileViTVaForSemanticSegmentation,
}
if is_torch_available()
else {}
)
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = MobileViTVaModelTester(self )
__A = MobileViTVaConfigTester(self ,config_class=A ,has_text_modality=A )
def UpperCamelCase_ ( self : Optional[Any] ):
self.config_tester.run_common_tests()
@unittest.skip(reason="MobileViTV2 does not use inputs_embeds" )
def UpperCamelCase_ ( self : List[str] ):
pass
@unittest.skip(reason="MobileViTV2 does not support input and output embeddings" )
def UpperCamelCase_ ( self : List[Any] ):
pass
@unittest.skip(reason="MobileViTV2 does not output attentions" )
def UpperCamelCase_ ( self : List[Any] ):
pass
@require_torch_multi_gpu
@unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run." )
def UpperCamelCase_ ( self : int ):
pass
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." )
def UpperCamelCase_ ( self : Optional[int] ):
pass
def UpperCamelCase_ ( self : Dict ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = model_class(A )
__A = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__A = [*signature.parameters.keys()]
__A = ["pixel_values"]
self.assertListEqual(arg_names[:1] ,A )
def UpperCamelCase_ ( self : Any ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : Optional[Any] ):
def check_hidden_states_output(A : Dict ,A : Optional[int] ,A : Any ):
__A = model_class(A )
model.to(A )
model.eval()
with torch.no_grad():
__A = model(**self._prepare_for_class(A ,A ) )
__A = outputs.hidden_states
__A = 5
self.assertEqual(len(A ) ,A )
# MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
__A = 2
for i in range(len(A ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ) ,[self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] ,)
divisor *= 2
self.assertEqual(self.model_tester.output_stride ,divisor // 2 )
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = True
check_hidden_states_output(A ,A ,A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__A = True
check_hidden_states_output(A ,A ,A )
def UpperCamelCase_ ( self : Any ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
def UpperCamelCase_ ( self : Optional[int] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*A )
@slow
def UpperCamelCase_ ( self : Optional[Any] ):
for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__A = MobileViTVaModel.from_pretrained(A )
self.assertIsNotNone(A )
def UpperCAmelCase ( ) -> Union[str, Any]:
"""simple docstring"""
__A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self : Any ):
return (
MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" )
if is_vision_available()
else None
)
@slow
def UpperCamelCase_ ( self : str ):
__A = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ).to(
A )
__A = self.default_image_processor
__A = prepare_img()
__A = image_processor(images=A ,return_tensors="pt" ).to(A )
# forward pass
with torch.no_grad():
__A = model(**A )
# verify the logits
__A = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape ,A )
__A = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ).to(A )
self.assertTrue(torch.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self : int ):
__A = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" )
__A = model.to(A )
__A = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" )
__A = prepare_img()
__A = image_processor(images=A ,return_tensors="pt" ).to(A )
# forward pass
with torch.no_grad():
__A = model(**A )
__A = outputs.logits
# verify the logits
__A = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape ,A )
__A = torch.tensor(
[
[[7.08_63, 7.15_25, 6.82_01], [6.69_31, 6.87_70, 6.89_33], [6.29_78, 7.03_66, 6.96_36]],
[[-3.71_34, -3.67_12, -3.66_75], [-3.58_25, -3.35_49, -3.47_77], [-3.34_35, -3.39_79, -3.28_57]],
[[-2.93_29, -2.80_03, -2.73_69], [-3.05_64, -2.47_80, -2.02_07], [-2.68_89, -1.92_98, -1.76_40]],
] ,device=A ,)
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] ,A ,atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self : List[Any] ):
__A = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" )
__A = model.to(A )
__A = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" )
__A = prepare_img()
__A = image_processor(images=A ,return_tensors="pt" ).to(A )
# forward pass
with torch.no_grad():
__A = model(**A )
__A = outputs.logits.detach().cpu()
__A = image_processor.post_process_semantic_segmentation(outputs=A ,target_sizes=[(50, 60)] )
__A = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape ,A )
__A = image_processor.post_process_semantic_segmentation(outputs=A )
__A = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape ,A )
| 15 |
import argparse
import math
import traceback
import dateutil.parser as date_parser
import requests
def UpperCAmelCase ( a_ ) -> str:
"""simple docstring"""
__A = {}
__A = job["started_at"]
__A = job["completed_at"]
__A = date_parser.parse(a_ )
__A = date_parser.parse(a_ )
__A = round((end_datetime - start_datetime).total_seconds() / 60.0 )
__A = start
__A = end
__A = duration_in_min
return job_info
def UpperCAmelCase ( a_ , a_=None ) -> str:
"""simple docstring"""
__A = None
if token is not None:
__A = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''}
__A = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100'''
__A = requests.get(a_ , headers=a_ ).json()
__A = {}
try:
job_time.update({job["name"]: extract_time_from_single_job(a_ ) for job in result["jobs"]} )
__A = math.ceil((result["total_count"] - 1_0_0) / 1_0_0 )
for i in range(a_ ):
__A = requests.get(url + F'''&page={i + 2}''' , headers=a_ ).json()
job_time.update({job["name"]: extract_time_from_single_job(a_ ) for job in result["jobs"]} )
return job_time
except Exception:
print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' )
return {}
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.')
SCREAMING_SNAKE_CASE :Optional[int] = parser.parse_args()
SCREAMING_SNAKE_CASE :Union[str, Any] = get_job_time(args.workflow_run_id)
SCREAMING_SNAKE_CASE :Optional[int] = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True))
for k, v in job_time.items():
print(f'''{k}: {v["duration"]}''')
| 15 | 1 |
import math
def UpperCAmelCase ( a_ , a_ = 0 , a_ = 0 ) -> list:
"""simple docstring"""
__A = end or len(a_ )
for i in range(a_ , a_ ):
__A = i
__A = array[i]
while temp_index != start and temp_index_value < array[temp_index - 1]:
__A = array[temp_index - 1]
temp_index -= 1
__A = temp_index_value
return array
def UpperCAmelCase ( a_ , a_ , a_ ) -> None: # Max Heap
"""simple docstring"""
__A = index
__A = 2 * index + 1 # Left Node
__A = 2 * index + 2 # Right Node
if left_index < heap_size and array[largest] < array[left_index]:
__A = left_index
if right_index < heap_size and array[largest] < array[right_index]:
__A = right_index
if largest != index:
__A , __A = array[largest], array[index]
heapify(a_ , a_ , a_ )
def UpperCAmelCase ( a_ ) -> list:
"""simple docstring"""
__A = len(a_ )
for i in range(n // 2 , -1 , -1 ):
heapify(a_ , a_ , a_ )
for i in range(n - 1 , 0 , -1 ):
__A , __A = array[0], array[i]
heapify(a_ , 0 , a_ )
return array
def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> int:
"""simple docstring"""
if (array[first_index] > array[middle_index]) != (
array[first_index] > array[last_index]
):
return array[first_index]
elif (array[middle_index] > array[first_index]) != (
array[middle_index] > array[last_index]
):
return array[middle_index]
else:
return array[last_index]
def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> int:
"""simple docstring"""
__A = low
__A = high
while True:
while array[i] < pivot:
i += 1
j -= 1
while pivot < array[j]:
j -= 1
if i >= j:
return i
__A , __A = array[j], array[i]
i += 1
def UpperCAmelCase ( a_ ) -> list:
"""simple docstring"""
if len(a_ ) == 0:
return array
__A = 2 * math.ceil(math.loga(len(a_ ) ) )
__A = 1_6
return intro_sort(a_ , 0 , len(a_ ) , a_ , a_ )
def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ ) -> list:
"""simple docstring"""
while end - start > size_threshold:
if max_depth == 0:
return heap_sort(a_ )
max_depth -= 1
__A = median_of_a(a_ , a_ , start + ((end - start) // 2) + 1 , end - 1 )
__A = partition(a_ , a_ , a_ , a_ )
intro_sort(a_ , a_ , a_ , a_ , a_ )
__A = p
return insertion_sort(a_ , a_ , a_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
SCREAMING_SNAKE_CASE :List[Any] = input('Enter numbers separated by a comma : ').strip()
SCREAMING_SNAKE_CASE :str = [float(item) for item in user_input.split(',')]
print(sort(unsorted))
| 15 |
import argparse
import os
import shutil
import torch
from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer
def UpperCAmelCase ( a_ ) -> List[str]:
"""simple docstring"""
__A = args.pruning_method
__A = args.threshold
__A = args.model_name_or_path.rstrip("/" )
__A = args.target_model_path
print(F'''Load fine-pruned model from {model_name_or_path}''' )
__A = torch.load(os.path.join(a_ , "pytorch_model.bin" ) )
__A = {}
for name, tensor in model.items():
if "embeddings" in name or "LayerNorm" in name or "pooler" in name:
__A = tensor
print(F'''Copied layer {name}''' )
elif "classifier" in name or "qa_output" in name:
__A = tensor
print(F'''Copied layer {name}''' )
elif "bias" in name:
__A = tensor
print(F'''Copied layer {name}''' )
else:
if pruning_method == "magnitude":
__A = MagnitudeBinarizer.apply(inputs=a_ , threshold=a_ )
__A = tensor * mask
print(F'''Pruned layer {name}''' )
elif pruning_method == "topK":
if "mask_scores" in name:
continue
__A = name[:-6]
__A = model[F'''{prefix_}mask_scores''']
__A = TopKBinarizer.apply(a_ , a_ )
__A = tensor * mask
print(F'''Pruned layer {name}''' )
elif pruning_method == "sigmoied_threshold":
if "mask_scores" in name:
continue
__A = name[:-6]
__A = model[F'''{prefix_}mask_scores''']
__A = ThresholdBinarizer.apply(a_ , a_ , a_ )
__A = tensor * mask
print(F'''Pruned layer {name}''' )
elif pruning_method == "l0":
if "mask_scores" in name:
continue
__A = name[:-6]
__A = model[F'''{prefix_}mask_scores''']
__A , __A = -0.1, 1.1
__A = torch.sigmoid(a_ )
__A = s * (r - l) + l
__A = s_bar.clamp(min=0.0 , max=1.0 )
__A = tensor * mask
print(F'''Pruned layer {name}''' )
else:
raise ValueError("Unknown pruning method" )
if target_model_path is None:
__A = os.path.join(
os.path.dirname(a_ ) , F'''bertarized_{os.path.basename(a_ )}''' )
if not os.path.isdir(a_ ):
shutil.copytree(a_ , a_ )
print(F'''\nCreated folder {target_model_path}''' )
torch.save(a_ , os.path.join(a_ , "pytorch_model.bin" ) )
print("\nPruned model saved! See you later!" )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :Tuple = argparse.ArgumentParser()
parser.add_argument(
'--pruning_method',
choices=['l0', 'magnitude', 'topK', 'sigmoied_threshold'],
type=str,
required=True,
help=(
'Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,'
' sigmoied_threshold = Soft movement pruning)'
),
)
parser.add_argument(
'--threshold',
type=float,
required=False,
help=(
'For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.'
'For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.'
'Not needed for `l0`'
),
)
parser.add_argument(
'--model_name_or_path',
type=str,
required=True,
help='Folder containing the model that was previously fine-pruned',
)
parser.add_argument(
'--target_model_path',
default=None,
type=str,
required=False,
help='Folder containing the model that was previously fine-pruned',
)
SCREAMING_SNAKE_CASE :str = parser.parse_args()
main(args)
| 15 | 1 |
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline
from diffusers.utils import floats_tensor, nightly, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : int ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def UpperCamelCase_ ( self : str ):
__A = 1
__A = 3
__A = (32, 32)
__A = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(A )
return image
@property
def UpperCamelCase_ ( self : Dict ):
torch.manual_seed(0 )
__A = UNetaDConditionModel(
block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") ,up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") ,cross_attention_dim=32 ,)
return model
@property
def UpperCamelCase_ ( self : Any ):
torch.manual_seed(0 )
__A = AutoencoderKL(
block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] ,up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] ,latent_channels=4 ,)
return model
@property
def UpperCamelCase_ ( self : List[str] ):
torch.manual_seed(0 )
__A = CLIPTextConfig(
bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=10_00 ,)
return CLIPTextModel(A )
@property
def UpperCamelCase_ ( self : Tuple ):
def extract(*A : Any ,**A : Optional[int] ):
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : List[Any] ):
__A = torch.ones([0] )
def UpperCamelCase_ ( self : List[Any] ,A : Optional[int] ):
self.pixel_values.to(A )
return self
return Out()
return extract
def UpperCamelCase_ ( self : Tuple ):
__A = "cpu" # ensure determinism for the device-dependent torch.Generator
__A = self.dummy_cond_unet
__A = DDIMScheduler(
beta_start=0.0_00_85 ,beta_end=0.0_12 ,beta_schedule="scaled_linear" ,clip_sample=A ,set_alpha_to_one=A ,)
__A = self.dummy_vae
__A = self.dummy_text_encoder
__A = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
# make sure here that pndm scheduler skips prk
__A = StableDiffusionPipeline(
unet=A ,scheduler=A ,vae=A ,text_encoder=A ,tokenizer=A ,safety_checker=A ,feature_extractor=self.dummy_extractor ,)
__A = sd_pipe.to(A )
sd_pipe.set_progress_bar_config(disable=A )
__A = "A painting of a squirrel eating a burger"
__A = torch.Generator(device=A ).manual_seed(0 )
__A = sd_pipe([prompt] ,generator=A ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="np" )
__A = output.images
__A = torch.Generator(device=A ).manual_seed(0 )
__A = sd_pipe(
[prompt] ,generator=A ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="np" ,return_dict=A ,)[0]
__A = image[0, -3:, -3:, -1]
__A = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__A = np.array([0.57_56, 0.61_18, 0.50_05, 0.50_41, 0.54_71, 0.47_26, 0.49_76, 0.48_65, 0.48_64] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCamelCase_ ( self : Any ):
__A = "cpu" # ensure determinism for the device-dependent torch.Generator
__A = self.dummy_cond_unet
__A = PNDMScheduler(skip_prk_steps=A )
__A = self.dummy_vae
__A = self.dummy_text_encoder
__A = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
# make sure here that pndm scheduler skips prk
__A = StableDiffusionPipeline(
unet=A ,scheduler=A ,vae=A ,text_encoder=A ,tokenizer=A ,safety_checker=A ,feature_extractor=self.dummy_extractor ,)
__A = sd_pipe.to(A )
sd_pipe.set_progress_bar_config(disable=A )
__A = "A painting of a squirrel eating a burger"
__A = torch.Generator(device=A ).manual_seed(0 )
__A = sd_pipe([prompt] ,generator=A ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="np" )
__A = output.images
__A = torch.Generator(device=A ).manual_seed(0 )
__A = sd_pipe(
[prompt] ,generator=A ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="np" ,return_dict=A ,)[0]
__A = image[0, -3:, -3:, -1]
__A = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__A = np.array([0.51_25, 0.57_16, 0.48_28, 0.50_60, 0.56_50, 0.47_68, 0.51_85, 0.48_95, 0.49_93] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCamelCase_ ( self : Optional[int] ):
__A = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-lms-pipe" ,safety_checker=A )
assert isinstance(A ,A )
assert isinstance(pipe.scheduler ,A )
assert pipe.safety_checker is None
__A = pipe("example prompt" ,num_inference_steps=2 ).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(A )
__A = StableDiffusionPipeline.from_pretrained(A )
# sanity check that the pipeline still works
assert pipe.safety_checker is None
__A = pipe("example prompt" ,num_inference_steps=2 ).images[0]
assert image is not None
@unittest.skipIf(torch_device != "cuda" ,"This test requires a GPU" )
def UpperCamelCase_ ( self : Dict ):
__A = self.dummy_cond_unet
__A = PNDMScheduler(skip_prk_steps=A )
__A = self.dummy_vae
__A = self.dummy_text_encoder
__A = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
# put models in fp16
__A = unet.half()
__A = vae.half()
__A = bert.half()
# make sure here that pndm scheduler skips prk
__A = StableDiffusionPipeline(
unet=A ,scheduler=A ,vae=A ,text_encoder=A ,tokenizer=A ,safety_checker=A ,feature_extractor=self.dummy_extractor ,)
__A = sd_pipe.to(A )
sd_pipe.set_progress_bar_config(disable=A )
__A = "A painting of a squirrel eating a burger"
__A = sd_pipe([prompt] ,num_inference_steps=2 ,output_type="np" ).images
assert image.shape == (1, 64, 64, 3)
@nightly
@require_torch_gpu
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : List[str] ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase_ ( self : Dict ):
__A = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" ,safety_checker=A )
__A = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
__A = sd_pipe.to(A )
sd_pipe.set_progress_bar_config(disable=A )
__A = (
"portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle"
" coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with"
" anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and"
" children from bahnhof zoo, detailed "
)
__A = 40_03_66_03_46
__A = 7
# without safety guidance (sld_guidance_scale = 0)
__A = torch.manual_seed(A )
__A = sd_pipe(
[prompt] ,generator=A ,guidance_scale=A ,num_inference_steps=50 ,output_type="np" ,width=5_12 ,height=5_12 ,sld_guidance_scale=0 ,)
__A = output.images
__A = image[0, -3:, -3:, -1]
__A = [0.22_78, 0.22_31, 0.22_49, 0.23_33, 0.23_03, 0.18_85, 0.22_73, 0.21_44, 0.21_76]
assert image.shape == (1, 5_12, 5_12, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
# without safety guidance (strong configuration)
__A = torch.manual_seed(A )
__A = sd_pipe(
[prompt] ,generator=A ,guidance_scale=A ,num_inference_steps=50 ,output_type="np" ,width=5_12 ,height=5_12 ,sld_guidance_scale=20_00 ,sld_warmup_steps=7 ,sld_threshold=0.0_25 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,)
__A = output.images
__A = image[0, -3:, -3:, -1]
__A = [0.23_83, 0.22_76, 0.2_36, 0.21_92, 0.21_86, 0.20_53, 0.19_71, 0.19_01, 0.17_19]
assert image.shape == (1, 5_12, 5_12, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCamelCase_ ( self : List[str] ):
__A = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" ,safety_checker=A )
__A = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
__A = sd_pipe.to(A )
sd_pipe.set_progress_bar_config(disable=A )
__A = "padme amidala taking a bath artwork, safe for work, no nudity"
__A = 27_34_97_17_55
__A = 7
__A = torch.manual_seed(A )
__A = sd_pipe(
[prompt] ,generator=A ,guidance_scale=A ,num_inference_steps=50 ,output_type="np" ,width=5_12 ,height=5_12 ,sld_guidance_scale=0 ,)
__A = output.images
__A = image[0, -3:, -3:, -1]
__A = [0.35_02, 0.36_22, 0.33_96, 0.36_42, 0.34_78, 0.33_18, 0.35, 0.33_48, 0.32_97]
assert image.shape == (1, 5_12, 5_12, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
__A = torch.manual_seed(A )
__A = sd_pipe(
[prompt] ,generator=A ,guidance_scale=A ,num_inference_steps=50 ,output_type="np" ,width=5_12 ,height=5_12 ,sld_guidance_scale=20_00 ,sld_warmup_steps=7 ,sld_threshold=0.0_25 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,)
__A = output.images
__A = image[0, -3:, -3:, -1]
__A = [0.55_31, 0.52_06, 0.48_95, 0.51_56, 0.51_82, 0.47_51, 0.48_02, 0.48_03, 0.44_43]
assert image.shape == (1, 5_12, 5_12, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCamelCase_ ( self : Dict ):
__A = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" )
__A = sd_pipe.to(A )
sd_pipe.set_progress_bar_config(disable=A )
__A = (
"the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c."
" leyendecker"
)
__A = 10_44_35_52_34
__A = 12
__A = torch.manual_seed(A )
__A = sd_pipe(
[prompt] ,generator=A ,guidance_scale=A ,num_inference_steps=50 ,output_type="np" ,width=5_12 ,height=5_12 ,sld_guidance_scale=0 ,)
__A = output.images
__A = image[0, -3:, -3:, -1]
__A = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] )
assert image.shape == (1, 5_12, 5_12, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7
__A = torch.manual_seed(A )
__A = sd_pipe(
[prompt] ,generator=A ,guidance_scale=A ,num_inference_steps=50 ,output_type="np" ,width=5_12 ,height=5_12 ,sld_guidance_scale=20_00 ,sld_warmup_steps=7 ,sld_threshold=0.0_25 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,)
__A = output.images
__A = image[0, -3:, -3:, -1]
__A = np.array([0.58_18, 0.62_85, 0.68_35, 0.60_19, 0.6_25, 0.67_54, 0.60_96, 0.63_34, 0.65_61] )
assert image.shape == (1, 5_12, 5_12, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 15 |
import os
import re
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE :List[Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :int = {'vocab_file': 'spiece.model'}
SCREAMING_SNAKE_CASE :Union[str, Any] = {
'vocab_file': {
'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model',
'google/bigbird-roberta-large': (
'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model'
),
'google/bigbird-base-trivia-itc': (
'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model'
),
}
}
SCREAMING_SNAKE_CASE :int = {
'google/bigbird-roberta-base': 4096,
'google/bigbird-roberta-large': 4096,
'google/bigbird-base-trivia-itc': 4096,
}
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = ["input_ids", "attention_mask"]
snake_case_ = []
def __init__( self : Any ,A : List[str] ,A : str="<unk>" ,A : int="<s>" ,A : Union[str, Any]="</s>" ,A : List[str]="<pad>" ,A : int="[SEP]" ,A : Optional[Any]="[MASK]" ,A : Tuple="[CLS]" ,A : Optional[Dict[str, Any]] = None ,**A : Any ,):
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else bos_token
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else eos_token
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else unk_token
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else pad_token
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else cls_token
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else mask_token
__A = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=A ,eos_token=A ,unk_token=A ,pad_token=A ,sep_token=A ,mask_token=A ,cls_token=A ,sp_model_kwargs=self.sp_model_kwargs ,**A ,)
__A = vocab_file
__A = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(A )
@property
def UpperCamelCase_ ( self : List[str] ):
return self.sp_model.get_piece_size()
def UpperCamelCase_ ( self : Optional[Any] ):
__A = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Optional[int] ):
__A = self.__dict__.copy()
__A = None
return state
def __setstate__( self : str ,A : Optional[Any] ):
__A = d
# for backward compatibility
if not hasattr(self ,"sp_model_kwargs" ):
__A = {}
__A = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def UpperCamelCase_ ( self : Any ,A : str ):
return self.sp_model.encode(A ,out_type=A )
def UpperCamelCase_ ( self : List[str] ,A : Tuple ):
return self.sp_model.piece_to_id(A )
def UpperCamelCase_ ( self : List[Any] ,A : Tuple ):
__A = self.sp_model.IdToPiece(A )
return token
def UpperCamelCase_ ( self : List[Any] ,A : int ):
__A = []
__A = ""
__A = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(A ) + token
__A = True
__A = []
else:
current_sub_tokens.append(A )
__A = False
out_string += self.sp_model.decode(A )
return out_string.strip()
def UpperCamelCase_ ( self : Tuple ,A : List[int] ,A : bool = False ,A : bool = None ,A : bool = True ,**A : Union[str, Any] ,):
__A = kwargs.pop("use_source_tokenizer" ,A )
__A = self.convert_ids_to_tokens(A ,skip_special_tokens=A )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
__A = []
__A = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(A ) )
__A = []
sub_texts.append(A )
else:
current_sub_text.append(A )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(A ) )
# Mimic the behavior of the Rust tokenizer:
# No space before [MASK] and [SEP]
if spaces_between_special_tokens:
__A = re.sub(R" (\[(MASK|SEP)\])" ,R"\1" ," ".join(A ) )
else:
__A = "".join(A )
__A = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
__A = self.clean_up_tokenization(A )
return clean_text
else:
return text
def UpperCamelCase_ ( self : str ,A : str ,A : Optional[str] = None ):
if not os.path.isdir(A ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__A = os.path.join(
A ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file ,A )
elif not os.path.isfile(self.vocab_file ):
with open(A ,"wb" ) as fi:
__A = self.sp_model.serialized_model_proto()
fi.write(A )
return (out_vocab_file,)
def UpperCamelCase_ ( self : Dict ,A : List[int] ,A : Optional[List[int]] = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__A = [self.cls_token_id]
__A = [self.sep_token_id]
return cls + token_ids_a + sep + token_ids_a + sep
def UpperCamelCase_ ( self : Optional[int] ,A : List[int] ,A : Optional[List[int]] = None ,A : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=A ,token_ids_a=A ,already_has_special_tokens=A )
if token_ids_a is None:
return [1] + ([0] * len(A )) + [1]
return [1] + ([0] * len(A )) + [1] + ([0] * len(A )) + [1]
def UpperCamelCase_ ( self : Any ,A : List[int] ,A : Optional[List[int]] = None ):
__A = [self.sep_token_id]
__A = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
| 15 | 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
SCREAMING_SNAKE_CASE :str = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :Tuple = {
'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/config.json',
'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/config.json',
'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/config.json',
'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/config.json',
'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json',
'roberta-large-openai-detector': 'https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json',
}
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = "roberta"
def __init__( self : Optional[int] ,A : Optional[int]=5_02_65 ,A : Union[str, Any]=7_68 ,A : Tuple=12 ,A : Any=12 ,A : List[Any]=30_72 ,A : str="gelu" ,A : Dict=0.1 ,A : Union[str, Any]=0.1 ,A : Dict=5_12 ,A : Union[str, Any]=2 ,A : Tuple=0.02 ,A : Dict=1E-12 ,A : Optional[Any]=1 ,A : int=0 ,A : Union[str, Any]=2 ,A : str="absolute" ,A : Optional[int]=True ,A : Dict=None ,**A : Optional[Any] ,):
super().__init__(pad_token_id=A ,bos_token_id=A ,eos_token_id=A ,**A )
__A = vocab_size
__A = hidden_size
__A = num_hidden_layers
__A = num_attention_heads
__A = hidden_act
__A = intermediate_size
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = max_position_embeddings
__A = type_vocab_size
__A = initializer_range
__A = layer_norm_eps
__A = position_embedding_type
__A = use_cache
__A = classifier_dropout
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@property
def UpperCamelCase_ ( self : List[Any] ):
if self.task == "multiple-choice":
__A = {0: "batch", 1: "choice", 2: "sequence"}
else:
__A = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 15 |
import PIL.Image
import PIL.ImageOps
from packaging import version
from PIL import Image
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'):
SCREAMING_SNAKE_CASE :Any = {
'linear': PIL.Image.Resampling.BILINEAR,
'bilinear': PIL.Image.Resampling.BILINEAR,
'bicubic': PIL.Image.Resampling.BICUBIC,
'lanczos': PIL.Image.Resampling.LANCZOS,
'nearest': PIL.Image.Resampling.NEAREST,
}
else:
SCREAMING_SNAKE_CASE :int = {
'linear': PIL.Image.LINEAR,
'bilinear': PIL.Image.BILINEAR,
'bicubic': PIL.Image.BICUBIC,
'lanczos': PIL.Image.LANCZOS,
'nearest': PIL.Image.NEAREST,
}
def UpperCAmelCase ( a_ ) -> Optional[Any]:
"""simple docstring"""
__A = (images / 2 + 0.5).clamp(0 , 1 )
__A = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
__A = numpy_to_pil(a_ )
return images
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
if images.ndim == 3:
__A = images[None, ...]
__A = (images * 2_5_5).round().astype("uint8" )
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
__A = [Image.fromarray(image.squeeze() , mode="L" ) for image in images]
else:
__A = [Image.fromarray(a_ ) for image in images]
return pil_images
| 15 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
SCREAMING_SNAKE_CASE :List[str] = {'configuration_swin': ['SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwinConfig', 'SwinOnnxConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :Any = [
'SWIN_PRETRAINED_MODEL_ARCHIVE_LIST',
'SwinForImageClassification',
'SwinForMaskedImageModeling',
'SwinModel',
'SwinPreTrainedModel',
'SwinBackbone',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :Tuple = [
'TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFSwinForImageClassification',
'TFSwinForMaskedImageModeling',
'TFSwinModel',
'TFSwinPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swin import (
SWIN_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinBackbone,
SwinForImageClassification,
SwinForMaskedImageModeling,
SwinModel,
SwinPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_swin import (
TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST,
TFSwinForImageClassification,
TFSwinForMaskedImageModeling,
TFSwinModel,
TFSwinPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE :int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 15 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
SCREAMING_SNAKE_CASE :Optional[Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :List[Any] = {
'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json',
# See all YOLOS models at https://huggingface.co/models?filter=yolos
}
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = "yolos"
def __init__( self : Any ,A : Optional[Any]=7_68 ,A : Dict=12 ,A : Any=12 ,A : str=30_72 ,A : Any="gelu" ,A : str=0.0 ,A : List[str]=0.0 ,A : Dict=0.02 ,A : int=1E-12 ,A : Tuple=[5_12, 8_64] ,A : List[Any]=16 ,A : str=3 ,A : str=True ,A : Any=1_00 ,A : Dict=True ,A : Dict=False ,A : Tuple=1 ,A : Union[str, Any]=5 ,A : Optional[Any]=2 ,A : Union[str, Any]=5 ,A : int=2 ,A : int=0.1 ,**A : List[str] ,):
super().__init__(**A )
__A = hidden_size
__A = num_hidden_layers
__A = num_attention_heads
__A = intermediate_size
__A = hidden_act
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = initializer_range
__A = layer_norm_eps
__A = image_size
__A = patch_size
__A = num_channels
__A = qkv_bias
__A = num_detection_tokens
__A = use_mid_position_embeddings
__A = auxiliary_loss
# Hungarian matcher
__A = class_cost
__A = bbox_cost
__A = giou_cost
# Loss coefficients
__A = bbox_loss_coefficient
__A = giou_loss_coefficient
__A = eos_coefficient
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = version.parse("1.11" )
@property
def UpperCamelCase_ ( self : str ):
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def UpperCamelCase_ ( self : List[Any] ):
return 1E-4
@property
def UpperCamelCase_ ( self : Optional[Any] ):
return 12
| 15 | 1 |
from math import sqrt
import numpy as np
from sympy import symbols
# Coefficient
# Speed of light (m/s)
SCREAMING_SNAKE_CASE :Optional[Any] = 2_9979_2458
# Symbols
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :Tuple = symbols('ct x y z')
def UpperCAmelCase ( a_ ) -> float:
"""simple docstring"""
if velocity > c:
raise ValueError("Speed must not exceed light speed 299,792,458 [m/s]!" )
elif velocity < 1:
# Usually the speed should be much higher than 1 (c order of magnitude)
raise ValueError("Speed must be greater than or equal to 1!" )
return velocity / c
def UpperCAmelCase ( a_ ) -> float:
"""simple docstring"""
return 1 / sqrt(1 - beta(a_ ) ** 2 )
def UpperCAmelCase ( a_ ) -> np.ndarray:
"""simple docstring"""
return np.array(
[
[gamma(a_ ), -gamma(a_ ) * beta(a_ ), 0, 0],
[-gamma(a_ ) * beta(a_ ), gamma(a_ ), 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1],
] )
def UpperCAmelCase ( a_ , a_ = None ) -> np.ndarray:
"""simple docstring"""
if event is None:
__A = np.array([ct, x, y, z] ) # Symbolic four vector
else:
event[0] *= c # x0 is ct (speed of light * time)
return transformation_matrix(a_ ) @ event
if __name__ == "__main__":
import doctest
doctest.testmod()
# Example of symbolic vector:
SCREAMING_SNAKE_CASE :Any = transform(2997_9245)
print('Example of four vector: ')
print(f'''ct\' = {four_vector[0]}''')
print(f'''x\' = {four_vector[1]}''')
print(f'''y\' = {four_vector[2]}''')
print(f'''z\' = {four_vector[3]}''')
# Substitute symbols with numerical values
SCREAMING_SNAKE_CASE :Union[str, Any] = {ct: c, x: 1, y: 1, z: 1}
SCREAMING_SNAKE_CASE :Optional[Any] = [four_vector[i].subs(sub_dict) for i in range(4)]
print(f'''\n{numerical_vector}''')
| 15 |
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from packaging import version
from .. import __version__
from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD
from .doc import (
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
copy_func,
replace_return_docstrings,
)
from .generic import (
ContextManagers,
ExplicitEnum,
ModelOutput,
PaddingStrategy,
TensorType,
add_model_info_to_auto_map,
cached_property,
can_return_loss,
expand_dims,
find_labels,
flatten_dict,
infer_framework,
is_jax_tensor,
is_numpy_array,
is_tensor,
is_tf_symbolic_tensor,
is_tf_tensor,
is_torch_device,
is_torch_dtype,
is_torch_tensor,
reshape,
squeeze,
strtobool,
tensor_size,
to_numpy,
to_py_obj,
transpose,
working_or_temp_dir,
)
from .hub import (
CLOUDFRONT_DISTRIB_PREFIX,
DISABLE_TELEMETRY,
HF_MODULES_CACHE,
HUGGINGFACE_CO_PREFIX,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
PYTORCH_PRETRAINED_BERT_CACHE,
PYTORCH_TRANSFORMERS_CACHE,
S3_BUCKET_PREFIX,
TRANSFORMERS_CACHE,
TRANSFORMERS_DYNAMIC_MODULE_NAME,
EntryNotFoundError,
PushToHubMixin,
RepositoryNotFoundError,
RevisionNotFoundError,
cached_file,
default_cache_path,
define_sagemaker_information,
download_url,
extract_commit_hash,
get_cached_models,
get_file_from_repo,
get_full_repo_name,
has_file,
http_user_agent,
is_offline_mode,
is_remote_url,
move_cache,
send_example_telemetry,
try_to_load_from_cache,
)
from .import_utils import (
ENV_VARS_TRUE_AND_AUTO_VALUES,
ENV_VARS_TRUE_VALUES,
TORCH_FX_REQUIRED_VERSION,
USE_JAX,
USE_TF,
USE_TORCH,
DummyObject,
OptionalDependencyNotAvailable,
_LazyModule,
ccl_version,
direct_transformers_import,
get_torch_version,
is_accelerate_available,
is_apex_available,
is_bitsandbytes_available,
is_bsa_available,
is_coloredlogs_available,
is_cython_available,
is_datasets_available,
is_decord_available,
is_detectrona_available,
is_faiss_available,
is_flax_available,
is_ftfy_available,
is_in_notebook,
is_ipex_available,
is_jieba_available,
is_jumanpp_available,
is_kenlm_available,
is_keras_nlp_available,
is_librosa_available,
is_natten_available,
is_ninja_available,
is_onnx_available,
is_openai_available,
is_optimum_available,
is_pandas_available,
is_peft_available,
is_phonemizer_available,
is_protobuf_available,
is_psutil_available,
is_pyanvml_available,
is_pyctcdecode_available,
is_pytesseract_available,
is_pytest_available,
is_pytorch_quantization_available,
is_rjieba_available,
is_sacremoses_available,
is_safetensors_available,
is_sagemaker_dp_enabled,
is_sagemaker_mp_enabled,
is_scipy_available,
is_sentencepiece_available,
is_seqio_available,
is_sklearn_available,
is_soundfile_availble,
is_spacy_available,
is_speech_available,
is_sudachi_available,
is_tensorflow_probability_available,
is_tensorflow_text_available,
is_tfaonnx_available,
is_tf_available,
is_timm_available,
is_tokenizers_available,
is_torch_available,
is_torch_bfaa_available,
is_torch_bfaa_cpu_available,
is_torch_bfaa_gpu_available,
is_torch_compile_available,
is_torch_cuda_available,
is_torch_fx_available,
is_torch_fx_proxy,
is_torch_mps_available,
is_torch_neuroncore_available,
is_torch_tensorrt_fx_available,
is_torch_tfaa_available,
is_torch_tpu_available,
is_torchaudio_available,
is_torchdistx_available,
is_torchdynamo_available,
is_torchvision_available,
is_training_run_on_sagemaker,
is_vision_available,
requires_backends,
torch_only_method,
)
SCREAMING_SNAKE_CASE :List[str] = 'pytorch_model.bin'
SCREAMING_SNAKE_CASE :str = 'pytorch_model.bin.index.json'
SCREAMING_SNAKE_CASE :Optional[int] = 'adapter_config.json'
SCREAMING_SNAKE_CASE :Dict = 'adapter_model.bin'
SCREAMING_SNAKE_CASE :Dict = 'adapter_model.safetensors'
SCREAMING_SNAKE_CASE :str = 'tf_model.h5'
SCREAMING_SNAKE_CASE :List[Any] = 'tf_model.h5.index.json'
SCREAMING_SNAKE_CASE :str = 'model.ckpt'
SCREAMING_SNAKE_CASE :List[Any] = 'flax_model.msgpack'
SCREAMING_SNAKE_CASE :Optional[int] = 'flax_model.msgpack.index.json'
SCREAMING_SNAKE_CASE :Tuple = 'model.safetensors'
SCREAMING_SNAKE_CASE :List[Any] = 'model.safetensors.index.json'
SCREAMING_SNAKE_CASE :str = 'config.json'
SCREAMING_SNAKE_CASE :int = 'preprocessor_config.json'
SCREAMING_SNAKE_CASE :Optional[Any] = FEATURE_EXTRACTOR_NAME
SCREAMING_SNAKE_CASE :Optional[int] = 'generation_config.json'
SCREAMING_SNAKE_CASE :List[str] = 'modelcard.json'
SCREAMING_SNAKE_CASE :Optional[int] = '▁'
SCREAMING_SNAKE_CASE :Optional[Any] = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility
SCREAMING_SNAKE_CASE :str = [
[[0, 1, 0, 1], [1, 0, 0, 1]]
] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too.
SCREAMING_SNAKE_CASE :Optional[Any] = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]]
SCREAMING_SNAKE_CASE :List[Any] = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]]
def UpperCAmelCase ( a_ ) -> Dict:
"""simple docstring"""
if version.parse(a_ ) < version.parse(a_ ):
if "dev" in min_version:
__A = (
"This example requires a source install from HuggingFace Transformers (see "
"`https://huggingface.co/docs/transformers/installation#install-from-source`),"
)
else:
__A = F'''This example requires a minimum version of {min_version},'''
error_message += F''' but the version found is {__version__}.\n'''
raise ImportError(
error_message
+ "Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other "
"versions of HuggingFace Transformers." )
| 15 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.