code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import numpy as np def lowerCAmelCase_ ( _lowerCamelCase: Tuple , _lowerCamelCase: Dict , _lowerCamelCase: str = 1E-12 , _lowerCamelCase: Union[str, Any] = 1_00 , ): assert np.shape(a_ )[0] == np.shape(a_ )[1] # Ensure proper dimensionality. assert np.shape(a_ )[0] == np.shape(a_ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(a_ ) == np.iscomplexobj(a_ ) __SCREAMING_SNAKE_CASE : Optional[int] = np.iscomplexobj(a_ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(a_ , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : Optional[Any] = 0 __SCREAMING_SNAKE_CASE : Optional[Any] = 0 __SCREAMING_SNAKE_CASE : List[str] = 1E12 while not convergence: # Multiple matrix by the vector. __SCREAMING_SNAKE_CASE : int = np.dot(a_ , a_ ) # Normalize the resulting output vector. __SCREAMING_SNAKE_CASE : List[Any] = w / np.linalg.norm(a_ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) __SCREAMING_SNAKE_CASE : Optional[Any] = vector.conj().T if is_complex else vector.T __SCREAMING_SNAKE_CASE : List[Any] = np.dot(a_ , np.dot(a_ , a_ ) ) # Check convergence. __SCREAMING_SNAKE_CASE : Tuple = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: __SCREAMING_SNAKE_CASE : Optional[int] = True __SCREAMING_SNAKE_CASE : str = lambda_ if is_complex: __SCREAMING_SNAKE_CASE : List[Any] = np.real(lambda_ ) return lambda_, vector def lowerCAmelCase_ ( ): __SCREAMING_SNAKE_CASE : str = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) __SCREAMING_SNAKE_CASE : List[Any] = np.array([41, 4, 20] ) __SCREAMING_SNAKE_CASE : List[str] = real_input_matrix.astype(np.complexaaa ) __SCREAMING_SNAKE_CASE : Union[str, Any] = np.triu(1J * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T __SCREAMING_SNAKE_CASE : Optional[int] = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": __SCREAMING_SNAKE_CASE : str = real_input_matrix __SCREAMING_SNAKE_CASE : Union[str, Any] = real_vector elif problem_type == "complex": __SCREAMING_SNAKE_CASE : List[str] = complex_input_matrix __SCREAMING_SNAKE_CASE : str = complex_vector # Our implementation. __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = power_iteration(a_ , a_ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = np.linalg.eigh(a_ ) # Last eigenvalue is the maximum one. __SCREAMING_SNAKE_CASE : List[str] = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. __SCREAMING_SNAKE_CASE : Tuple = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(a_ ) - np.abs(a_ ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
112
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE :Optional[int] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Optional[int] = {'vocab_file': 'sentencepiece.bpe.model'} SCREAMING_SNAKE_CASE :Tuple = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', } } SCREAMING_SNAKE_CASE :List[Any] = { 'camembert-base': 512, } SCREAMING_SNAKE_CASE :List[str] = '▁' class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["input_ids", "attention_mask"] def __init__( self : Optional[Any] ,A : List[str] ,A : List[Any]="<s>" ,A : Tuple="</s>" ,A : Any="</s>" ,A : Optional[Any]="<s>" ,A : Tuple="<unk>" ,A : str="<pad>" ,A : int="<mask>" ,A : Optional[int]=["<s>NOTUSED", "</s>NOTUSED"] ,A : Optional[Dict[str, Any]] = None ,**A : Optional[Any] ,): # Mask token behave like a normal word, i.e. include the space before it __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else mask_token __A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A ,eos_token=A ,unk_token=A ,sep_token=A ,cls_token=A ,pad_token=A ,mask_token=A ,additional_special_tokens=A ,sp_model_kwargs=self.sp_model_kwargs ,**A ,) __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A ) ) __A = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> __A = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3} __A = len(self.fairseq_tokens_to_ids ) __A = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) __A = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCamelCase_ ( self : int ,A : List[int] ,A : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __A = [self.cls_token_id] __A = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase_ ( self : Dict ,A : List[int] ,A : Optional[List[int]] = None ,A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A ,token_ids_a=A ,already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1] def UpperCamelCase_ ( self : Union[str, Any] ,A : List[int] ,A : Optional[List[int]] = None ): __A = [self.sep_token_id] __A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCamelCase_ ( self : Dict ): return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def UpperCamelCase_ ( self : int ): __A = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase_ ( self : Any ,A : str ): return self.sp_model.encode(A ,out_type=A ) def UpperCamelCase_ ( self : List[str] ,A : Dict ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(A ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(A ) def UpperCamelCase_ ( self : Dict ,A : Tuple ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCamelCase_ ( self : Optional[Any] ,A : Dict ): __A = [] __A = "" __A = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A ) + token __A = True __A = [] else: current_sub_tokens.append(A ) __A = False out_string += self.sp_model.decode(A ) return out_string.strip() def __getstate__( self : Dict ): __A = self.__dict__.copy() __A = None return state def __setstate__( self : Union[str, Any] ,A : Any ): __A = d # for backward compatibility if not hasattr(self ,"sp_model_kwargs" ): __A = {} __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ ( self : Any ,A : str ,A : Optional[str] = None ): if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __A = os.path.join( A ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,A ) elif not os.path.isfile(self.vocab_file ): with open(A ,"wb" ) as fi: __A = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
15
0
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: _UpperCAmelCase : Optional[Any] = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class lowerCAmelCase ( unittest.TestCase ): def __init__( self : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any]=7 , UpperCAmelCase : Any=3 , UpperCAmelCase : Union[str, Any]=18 , UpperCAmelCase : str=30 , UpperCAmelCase : List[str]=400 , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : str=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : Union[str, Any]=None , ) -> Optional[int]: lowerCamelCase__ : Optional[int] = size if size is not None else {'height': 20, 'width': 20} lowerCamelCase__ : List[Any] = parent lowerCamelCase__ : str = batch_size lowerCamelCase__ : List[str] = num_channels lowerCamelCase__ : Optional[int] = image_size lowerCamelCase__ : Any = min_resolution lowerCamelCase__ : Dict = max_resolution lowerCamelCase__ : Optional[int] = size lowerCamelCase__ : Any = do_normalize lowerCamelCase__ : Any = do_convert_rgb lowerCamelCase__ : Optional[Any] = [512, 1024, 2048, 4096] lowerCamelCase__ : Optional[Any] = patch_size if patch_size is not None else {'height': 16, 'width': 16} def A_ ( self : Any ) -> Union[str, Any]: return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def A_ ( self : Union[str, Any] ) -> Tuple: lowerCamelCase__ : Dict = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg' lowerCamelCase__ : Union[str, Any] = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ).convert('RGB' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11, reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""", ) @require_torch @require_vision class lowerCAmelCase ( __SCREAMING_SNAKE_CASE, unittest.TestCase ): UpperCAmelCase__ = PixaStructImageProcessor if is_vision_available() else None def A_ ( self : str ) -> Optional[Any]: lowerCamelCase__ : List[str] = PixaStructImageProcessingTester(self ) @property def A_ ( self : str ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def A_ ( self : Tuple ) -> Optional[int]: lowerCamelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'do_convert_rgb' ) ) def A_ ( self : Any ) -> Optional[int]: lowerCamelCase__ : List[str] = self.image_processor_tester.prepare_dummy_image() lowerCamelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) lowerCamelCase__ : str = 2048 lowerCamelCase__ : List[Any] = image_processor(UpperCAmelCase , return_tensors='pt' , max_patches=UpperCAmelCase ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0_6_0_6 ) , atol=1e-3 , rtol=1e-3 ) ) def A_ ( self : Optional[int] ) -> str: # Initialize image_processor lowerCamelCase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , Image.Image ) # Test not batched input lowerCamelCase__ : List[Any] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowerCamelCase__ : Optional[Any] = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched lowerCamelCase__ : Optional[int] = image_processor( UpperCAmelCase , return_tensors='pt' , max_patches=UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def A_ ( self : Tuple ) -> Dict: # Initialize image_processor lowerCamelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , Image.Image ) # Test not batched input lowerCamelCase__ : int = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 lowerCamelCase__ : Dict = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(UpperCAmelCase ): lowerCamelCase__ : Dict = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=UpperCAmelCase ).flattened_patches lowerCamelCase__ : int = 'Hello' lowerCamelCase__ : Union[str, Any] = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=UpperCAmelCase , header_text=UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched lowerCamelCase__ : str = image_processor( UpperCAmelCase , return_tensors='pt' , max_patches=UpperCAmelCase , header_text=UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def A_ ( self : Tuple ) -> List[str]: # Initialize image_processor lowerCamelCase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , numpify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , np.ndarray ) lowerCamelCase__ : Optional[int] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowerCamelCase__ : Optional[Any] = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched lowerCamelCase__ : Any = image_processor( UpperCAmelCase , return_tensors='pt' , max_patches=UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def A_ ( self : Optional[int] ) -> Union[str, Any]: # Initialize image_processor lowerCamelCase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , torchify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , torch.Tensor ) # Test not batched input lowerCamelCase__ : Optional[Any] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowerCamelCase__ : str = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched lowerCamelCase__ : Any = image_processor( UpperCAmelCase , return_tensors='pt' , max_patches=UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11, reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""", ) @require_torch @require_vision class lowerCAmelCase ( __SCREAMING_SNAKE_CASE, unittest.TestCase ): UpperCAmelCase__ = PixaStructImageProcessor if is_vision_available() else None def A_ ( self : Union[str, Any] ) -> str: lowerCamelCase__ : List[Any] = PixaStructImageProcessingTester(self , num_channels=4 ) lowerCamelCase__ : List[str] = 3 @property def A_ ( self : Dict ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def A_ ( self : Tuple ) -> Tuple: lowerCamelCase__ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'do_convert_rgb' ) ) def A_ ( self : Dict ) -> Tuple: # Initialize image_processor lowerCamelCase__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , Image.Image ) # Test not batched input lowerCamelCase__ : Any = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowerCamelCase__ : List[str] = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched lowerCamelCase__ : Any = image_processor( UpperCAmelCase , return_tensors='pt' , max_patches=UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
50
def UpperCAmelCase ( a_ ) -> list: """simple docstring""" if len(a_ ) <= 1: return [tuple(a_ )] __A = [] def generate(a_ , a_ ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , a_ ) for i in range(k - 1 ): if k % 2 == 0: # k is even __A , __A = arr[k - 1], arr[i] else: # k is odd __A , __A = arr[k - 1], arr[0] generate(k - 1 , a_ ) generate(len(a_ ) , a_ ) return res if __name__ == "__main__": SCREAMING_SNAKE_CASE :int = input('Enter numbers separated by a comma:\n').strip() SCREAMING_SNAKE_CASE :Dict = [int(item) for item in user_input.split(',')] print(heaps(arr))
15
0
from math import ceil, sqrt def lowerCamelCase ( SCREAMING_SNAKE_CASE = 1_000_000 ): '''simple docstring''' __UpperCamelCase :Union[str, Any] = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: __UpperCamelCase :Any = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: __UpperCamelCase :Union[str, Any] = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(F'{solution() = }')
43
def UpperCAmelCase ( a_ ) -> list: """simple docstring""" if len(a_ ) <= 1: return lst __A = 1 while i < len(a_ ): if lst[i - 1] <= lst[i]: i += 1 else: __A , __A = lst[i], lst[i - 1] i -= 1 if i == 0: __A = 1 return lst if __name__ == "__main__": SCREAMING_SNAKE_CASE :List[Any] = input('Enter numbers separated by a comma:\n').strip() SCREAMING_SNAKE_CASE :List[Any] = [int(item) for item in user_input.split(',')] print(gnome_sort(unsorted))
15
0
"""simple docstring""" import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"): A : Any = { 'linear': PIL.Image.Resampling.BILINEAR, 'bilinear': PIL.Image.Resampling.BILINEAR, 'bicubic': PIL.Image.Resampling.BICUBIC, 'lanczos': PIL.Image.Resampling.LANCZOS, 'nearest': PIL.Image.Resampling.NEAREST, } else: A : int = { 'linear': PIL.Image.LINEAR, 'bilinear': PIL.Image.BILINEAR, 'bicubic': PIL.Image.BICUBIC, 'lanczos': PIL.Image.LANCZOS, 'nearest': PIL.Image.NEAREST, } def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = (images / 2 + 0.5).clamp(0 , 1 ) __lowerCAmelCase = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __lowerCAmelCase = numpy_to_pil(a_ ) return images def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' if images.ndim == 3: __lowerCAmelCase = images[None, ...] __lowerCAmelCase = (images * 255).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images __lowerCAmelCase = [Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: __lowerCAmelCase = [Image.fromarray(a_ ) for image in images] return pil_images
57
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = 42 snake_case_ = 42 snake_case_ = None class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = 2 @register_to_config def __init__( self : str ,A : float = 0.02 ,A : float = 1_00 ,A : float = 1.0_07 ,A : float = 80 ,A : float = 0.05 ,A : float = 50 ,): # standard deviation of the initial noise distribution __A = sigma_max # setable values __A = None __A = None __A = None # sigma(t_i) def UpperCamelCase_ ( self : str ,A : torch.FloatTensor ,A : Optional[int] = None ): return sample def UpperCamelCase_ ( self : Dict ,A : int ,A : Union[str, torch.device] = None ): __A = num_inference_steps __A = np.arange(0 ,self.num_inference_steps )[::-1].copy() __A = torch.from_numpy(A ).to(A ) __A = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] __A = torch.tensor(A ,dtype=torch.floataa ,device=A ) def UpperCamelCase_ ( self : Union[str, Any] ,A : torch.FloatTensor ,A : float ,A : Optional[torch.Generator] = None ): if self.config.s_min <= sigma <= self.config.s_max: __A = min(self.config.s_churn / self.num_inference_steps ,2**0.5 - 1 ) else: __A = 0 # sample eps ~ N(0, S_noise^2 * I) __A = self.config.s_noise * randn_tensor(sample.shape ,generator=A ).to(sample.device ) __A = sigma + gamma * sigma __A = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def UpperCamelCase_ ( self : Dict ,A : torch.FloatTensor ,A : float ,A : float ,A : torch.FloatTensor ,A : bool = True ,): __A = sample_hat + sigma_hat * model_output __A = (sample_hat - pred_original_sample) / sigma_hat __A = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=A ,derivative=A ,pred_original_sample=A ) def UpperCamelCase_ ( self : Optional[int] ,A : torch.FloatTensor ,A : float ,A : float ,A : torch.FloatTensor ,A : torch.FloatTensor ,A : torch.FloatTensor ,A : bool = True ,): __A = sample_prev + sigma_prev * model_output __A = (sample_prev - pred_original_sample) / sigma_prev __A = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=A ,derivative=A ,pred_original_sample=A ) def UpperCamelCase_ ( self : List[Any] ,A : Dict ,A : List[str] ,A : str ): raise NotImplementedError()
15
0
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE :Optional[int] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Dict = '▁' SCREAMING_SNAKE_CASE :Union[str, Any] = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', } SCREAMING_SNAKE_CASE :Optional[int] = { 'vocab_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json' ), }, 'spm_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model' ) }, } SCREAMING_SNAKE_CASE :Optional[Any] = { 'facebook/s2t-small-librispeech-asr': 10_24, } SCREAMING_SNAKE_CASE :Optional[Any] = ['pt', 'fr', 'ru', 'nl', 'ro', 'it', 'es', 'de'] SCREAMING_SNAKE_CASE :Union[str, Any] = {'mustc': MUSTC_LANGS} class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" _SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE = MAX_MODEL_INPUT_SIZES _SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask'] _SCREAMING_SNAKE_CASE = [] def __init__( self : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : str , _lowerCAmelCase : Tuple="<s>" , _lowerCAmelCase : Dict="</s>" , _lowerCAmelCase : List[str]="<pad>" , _lowerCAmelCase : Tuple="<unk>" , _lowerCAmelCase : Dict=False , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : str=None , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Optional[Dict[str, Any]] = None , **_lowerCAmelCase : str , ) -> List[Any]: """simple docstring""" snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , do_upper_case=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , tgt_lang=_lowerCAmelCase , lang_codes=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) snake_case_ = do_upper_case snake_case_ = do_lower_case snake_case_ = load_json(_lowerCAmelCase ) snake_case_ = {v: k for k, v in self.encoder.items()} snake_case_ = spm_file snake_case_ = load_spm(_lowerCAmelCase , self.sp_model_kwargs ) if lang_codes is not None: snake_case_ = lang_codes snake_case_ = LANGUAGES[lang_codes] snake_case_ = [F'''<lang:{lang}>''' for lang in self.langs] snake_case_ = {lang: self.sp_model.PieceToId(F'''<lang:{lang}>''' ) for lang in self.langs} snake_case_ = self.lang_tokens snake_case_ = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: snake_case_ = {} @property def lowerCAmelCase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return len(self.encoder ) @property def lowerCAmelCase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" return self._tgt_lang @tgt_lang.setter def lowerCAmelCase__ ( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] ) -> Optional[int]: """simple docstring""" snake_case_ = new_tgt_lang self.set_tgt_lang_special_tokens(_lowerCAmelCase ) def lowerCAmelCase__ ( self : Optional[int] , _lowerCAmelCase : str ) -> Optional[int]: """simple docstring""" snake_case_ = self.lang_code_to_id[tgt_lang] snake_case_ = [lang_code_id] def lowerCAmelCase__ ( self : str , _lowerCAmelCase : str ) -> Tuple: """simple docstring""" return self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) def lowerCAmelCase__ ( self : Optional[int] , _lowerCAmelCase : Optional[int] ) -> Tuple: """simple docstring""" return self.encoder.get(_lowerCAmelCase , self.encoder[self.unk_token] ) def lowerCAmelCase__ ( self : str , _lowerCAmelCase : int ) -> List[Any]: """simple docstring""" return self.decoder.get(_lowerCAmelCase , self.unk_token ) def lowerCAmelCase__ ( self : Union[str, Any] , _lowerCAmelCase : List[str] ) -> Any: """simple docstring""" snake_case_ = [] snake_case_ = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: snake_case_ = self.sp_model.decode(_lowerCAmelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " snake_case_ = [] else: current_sub_tokens.append(_lowerCAmelCase ) snake_case_ = self.sp_model.decode(_lowerCAmelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def lowerCAmelCase__ ( self : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple=None ) -> Optional[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def lowerCAmelCase__ ( self : Tuple , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None , _lowerCAmelCase : bool = False ) -> int: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) snake_case_ = [1] * len(self.prefix_tokens ) snake_case_ = [1] if token_ids_a is None: return prefix_ones + ([0] * len(_lowerCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(_lowerCAmelCase )) + ([0] * len(_lowerCAmelCase )) + suffix_ones def lowerCAmelCase__ ( self : Optional[int] ) -> int: """simple docstring""" snake_case_ = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ) -> Tuple: """simple docstring""" snake_case_ = self.__dict__.copy() snake_case_ = None return state def __setstate__( self : Union[str, Any] , _lowerCAmelCase : Dict ) -> Optional[int]: """simple docstring""" snake_case_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case_ = {} snake_case_ = load_spm(self.spm_file , self.sp_model_kwargs ) def lowerCAmelCase__ ( self : Any , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ) -> int: """simple docstring""" snake_case_ = Path(_lowerCAmelCase ) assert save_dir.is_dir(), F'''{save_directory} should be a directory''' snake_case_ = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) snake_case_ = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , _lowerCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _lowerCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(_lowerCAmelCase , "wb" ) as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (str(_lowerCAmelCase ), str(_lowerCAmelCase )) def _lowerCAmelCase ( lowerCAmelCase_ :str , lowerCAmelCase_ :Optional[Any] )->sentencepiece.SentencePieceProcessor: '''simple docstring''' snake_case_ = sentencepiece.SentencePieceProcessor(**a_ ) spm.Load(str(a_ ) ) return spm def _lowerCAmelCase ( lowerCAmelCase_ :Any )->Union[Dict, List]: '''simple docstring''' with open(a_ , "r" ) as f: return json.load(a_ ) def _lowerCAmelCase ( lowerCAmelCase_ :Optional[int] , lowerCAmelCase_ :Dict )->None: '''simple docstring''' with open(a_ , "w" ) as f: json.dump(a_ , a_ , indent=2 )
159
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version SCREAMING_SNAKE_CASE :Union[str, Any] = get_logger(__name__) class UpperCAmelCase : '''simple docstring''' snake_case_ = "dummy_data" snake_case_ = "datasets" snake_case_ = False def __init__( self : Optional[int] ,A : str ,A : str ,A : Union[Version, str] ,A : Optional[str] = None ,A : bool = False ,A : bool = True ,A : Optional[List[Callable]] = None ,): __A = 0 __A = dataset_name __A = cache_dir __A = use_local_dummy_data __A = config # download_callbacks take a single url as input __A = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root __A = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general __A = str(A ) # to be downloaded __A = None __A = None @property def UpperCamelCase_ ( self : Union[str, Any] ): if self._dummy_file is None: __A = self.download_dummy_data() return self._dummy_file @property def UpperCamelCase_ ( self : Optional[Any] ): if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("dummy" ,self.config.name ,self.version_name ) # structure is dummy / version_name return os.path.join("dummy" ,self.version_name ) @property def UpperCamelCase_ ( self : List[Any] ): return os.path.join(self.dummy_data_folder ,"dummy_data.zip" ) def UpperCamelCase_ ( self : Tuple ): __A = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) __A = cached_path( A ,cache_dir=self.cache_dir ,extract_compressed_file=A ,force_extract=A ) return os.path.join(A ,self.dummy_file_name ) @property def UpperCamelCase_ ( self : str ): return os.path.join(self.datasets_scripts_dir ,self.dataset_name ,self.dummy_zip_file ) @property def UpperCamelCase_ ( self : Any ): if self._bucket_url is None: __A = hf_github_url(self.dataset_name ,self.dummy_zip_file.replace(os.sep ,"/" ) ) return self._bucket_url @property def UpperCamelCase_ ( self : Tuple ): # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep ,"/" ).split("/" )[:-1] ) def UpperCamelCase_ ( self : List[str] ,A : List[Any] ,*A : Dict ): if self.load_existing_dummy_data: # dummy data is downloaded and tested __A = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned __A = self.dummy_file_name # special case when data_url is a dict if isinstance(A ,A ): return self.create_dummy_data_dict(A ,A ) elif isinstance(A ,(list, tuple) ): return self.create_dummy_data_list(A ,A ) else: return self.create_dummy_data_single(A ,A ) def UpperCamelCase_ ( self : str ,A : List[Any] ,*A : List[Any] ): return self.download_and_extract(A ) def UpperCamelCase_ ( self : List[str] ,A : List[str] ,A : Tuple ): return self.download_and_extract(A ) def UpperCamelCase_ ( self : Any ,A : Any ,*A : Optional[Any] ,**A : List[str] ): return path def UpperCamelCase_ ( self : str ): return {} def UpperCamelCase_ ( self : int ,A : int ,A : Tuple ): __A = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(A ,A ): for single_url in single_urls: download_callback(A ) else: __A = single_urls download_callback(A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(A ,A ): __A = [os.path.join(A ,urllib.parse.quote_plus(Path(A ).name ) ) for x in single_urls] else: __A = single_urls __A = os.path.join(A ,urllib.parse.quote_plus(Path(A ).name ) ) __A = value # make sure that values are unique if all(isinstance(A ,A ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique __A = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def UpperCamelCase_ ( self : Union[str, Any] ,A : str ,A : str ): __A = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one __A = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" ,A ) ) for url in data_url ) __A = all( url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): __A = [data_url[0]] * len(A ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __A = os.path.join(A ,urllib.parse.quote_plus(single_url.split("/" )[-1] ) ) dummy_data_list.append(A ) return dummy_data_list def UpperCamelCase_ ( self : str ,A : List[Any] ,A : Optional[Any] ): for download_callback in self.download_callbacks: download_callback(A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __A = os.path.join(A ,urllib.parse.quote_plus(data_url.split("/" )[-1] ) ) if os.path.exists(A ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def UpperCamelCase_ ( self : int ): pass def UpperCamelCase_ ( self : Dict ): pass def UpperCamelCase_ ( self : Optional[Any] ,A : List[Any] ): def _iter_archive_members(A : Optional[Any] ): # this preserves the order of the members inside the ZIP archive __A = Path(self.dummy_file ).parent __A = path.relative_to(A ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: __A = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(A ) __A = Path(A ) __A = _iter_archive_members(A ) if self.use_local_dummy_data else path.rglob("*" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((".", "__") ): yield file_path.relative_to(A ).as_posix(), file_path.open("rb" ) def UpperCamelCase_ ( self : List[Any] ,A : Any ): if not isinstance(A ,A ): __A = [paths] for path in paths: if os.path.isfile(A ): if os.path.basename(A ).startswith((".", "__") ): return yield path else: for dirpath, dirnames, filenames in os.walk(A ): if os.path.basename(A ).startswith((".", "__") ): continue dirnames.sort() for filename in sorted(A ): if filename.startswith((".", "__") ): continue yield os.path.join(A ,A )
15
0
import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters _UpperCAmelCase = logging.get_logger(__name__) def UpperCamelCase ( __lowercase : int ,__lowercase : List[Any] ,__lowercase : int ,__lowercase : List[Any]=None ,__lowercase : str=None ): '''simple docstring''' if "." in tensor_name: A_ : Tuple = tensor_name.split('.' ) for split in splits[:-1]: A_ : Union[str, Any] = getattr(a_ ,a_ ) if new_module is None: raise ValueError(f'''{module} has no attribute {split}.''' ) A_ : Optional[Any] = new_module A_ : List[str] = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f'''{module} does not have a parameter or a buffer named {tensor_name}.''' ) A_ : List[str] = tensor_name in module._buffers A_ : Any = getattr(a_ ,a_ ) if old_value.device == torch.device('meta' ) and device not in ["meta", torch.device('meta' )] and value is None: raise ValueError(f'''{tensor_name} is on the meta device, we need a `value` to put in on {device}.''' ) A_ : Tuple = False A_ : Dict = False if is_buffer or not is_bitsandbytes_available(): A_ : int = False A_ : Dict = False else: A_ : Union[str, Any] = hasattr(bnb.nn ,'Params4bit' ) and isinstance(module._parameters[tensor_name] ,bnb.nn.Paramsabit ) A_ : Union[str, Any] = isinstance(module._parameters[tensor_name] ,bnb.nn.IntaParams ) if is_abit or is_abit: A_ : Tuple = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: A_ : str = old_value.to(a_ ) elif isinstance(a_ ,torch.Tensor ): A_ : Any = value.to('cpu' ) if value.dtype == torch.inta: A_ : List[str] = version.parse(importlib.metadata.version('bitsandbytes' ) ) > version.parse( '0.37.2' ) if not is_abit_serializable: raise ValueError( 'Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ' 'Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.' ) else: A_ : str = torch.tensor(a_ ,device='cpu' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls ,a_ ) and fpaa_statistics is None: A_ : Tuple = new_value.T A_ : List[str] = old_value.__dict__ if is_abit: A_ : List[Any] = bnb.nn.IntaParams(a_ ,requires_grad=a_ ,**a_ ).to(a_ ) elif is_abit: A_ : Tuple = bnb.nn.Paramsabit(a_ ,requires_grad=a_ ,**a_ ).to(a_ ) A_ : Union[str, Any] = new_value if fpaa_statistics is not None: setattr(module.weight ,'SCB' ,fpaa_statistics.to(a_ ) ) else: if value is None: A_ : List[str] = old_value.to(a_ ) elif isinstance(a_ ,torch.Tensor ): A_ : Tuple = value.to(a_ ) else: A_ : int = torch.tensor(a_ ,device=a_ ) if is_buffer: A_ : Dict = new_value else: A_ : Dict = nn.Parameter(a_ ,requires_grad=old_value.requires_grad ) A_ : int = new_value def UpperCamelCase ( __lowercase : Union[str, Any] ,__lowercase : str=None ,__lowercase : int=None ,__lowercase : int=None ,__lowercase : List[str]=False ): '''simple docstring''' for name, module in model.named_children(): if current_key_name is None: A_ : Union[str, Any] = [] current_key_name.append(a_ ) if (isinstance(a_ ,nn.Linear ) or isinstance(a_ ,a_ )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '.'.join(a_ ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(a_ ,a_ ): A_ , A_ : Union[str, Any] = module.weight.shape else: A_ : List[str] = module.in_features A_ : List[str] = module.out_features if quantization_config.quantization_method() == "llm_int8": A_ : Optional[int] = bnb.nn.LinearabitLt( a_ ,a_ ,module.bias is not None ,has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight ,threshold=quantization_config.llm_inta_threshold ,) A_ : Dict = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: A_ : int = bnb.nn.Linearabit( a_ ,a_ ,module.bias is not None ,quantization_config.bnb_abit_compute_dtype ,compress_statistics=quantization_config.bnb_abit_use_double_quant ,quant_type=quantization_config.bnb_abit_quant_type ,) A_ : Optional[int] = True # Store the module class in case we need to transpose the weight later A_ : Any = type(a_ ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(a_ ) if len(list(module.children() ) ) > 0: A_ , A_ : str = _replace_with_bnb_linear( a_ ,a_ ,a_ ,a_ ,has_been_replaced=a_ ,) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def UpperCamelCase ( __lowercase : List[str] ,__lowercase : int=None ,__lowercase : Optional[Any]=None ,__lowercase : Optional[Any]=None ): '''simple docstring''' A_ : Optional[Any] = ['lm_head'] if modules_to_not_convert is None else modules_to_not_convert A_ , A_ : Tuple = _replace_with_bnb_linear( a_ ,a_ ,a_ ,a_ ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def UpperCamelCase ( *__lowercase : List[str] ,**__lowercase : Dict ): '''simple docstring''' warnings.warn( '`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead' ,a_ ,) return replace_with_bnb_linear(*a_ ,**a_ ) def UpperCamelCase ( *__lowercase : List[str] ,**__lowercase : Optional[Any] ): '''simple docstring''' warnings.warn( '`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead' ,a_ ,) return set_module_quantized_tensor_to_device(*a_ ,**a_ ) def UpperCamelCase ( __lowercase : Union[str, Any] ): '''simple docstring''' A_ : str = deepcopy(a_ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() A_ : Optional[int] = find_tied_parameters(a_ ) # For compatibility with Accelerate < 0.18 if isinstance(a_ ,a_ ): A_ : Optional[int] = sum(list(tied_params.values() ) ,[] ) + list(tied_params.keys() ) else: A_ : str = sum(a_ ,[] ) A_ : Optional[int] = len(a_ ) > 0 # Check if it is a base model A_ : Any = not hasattr(a_ ,model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head A_ : Dict = list(model.named_children() ) A_ : int = [list_modules[-1][0]] # add last module together with tied weights A_ : str = set(a_ ) - set(a_ ) A_ : Union[str, Any] = list(set(a_ ) ) + list(a_ ) # remove ".weight" from the keys A_ : List[str] = ['.weight', '.bias'] A_ : int = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: A_ : List[Any] = name.replace(a_ ,'' ) filtered_module_names.append(a_ ) return filtered_module_names
140
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available SCREAMING_SNAKE_CASE :List[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :List[str] = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys SCREAMING_SNAKE_CASE :Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
15
0
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss lowerCamelCase_ : Dict = pytest.mark.integration @require_faiss class _UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowerCamelCase_ ( self ): """simple docstring""" A_ : Dict = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(snake_case_ ) for x in np.arange(3_0 ).tolist()]} ) return dset def lowerCamelCase_ ( self ): """simple docstring""" import faiss A_ : Union[str, Any] = self._create_dummy_dataset() A_ : Optional[int] = dset.map( lambda snake_case_ , snake_case_ : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=snake_case_ , keep_in_memory=snake_case_ ) A_ : Dict = dset.add_faiss_index('vecs' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT ) A_ , A_ : List[str] = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def lowerCamelCase_ ( self ): """simple docstring""" import faiss A_ : int = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5) ) * np.arange(3_0 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT , ) A_ , A_ : str = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def lowerCamelCase_ ( self ): """simple docstring""" import faiss A_ : List[Any] = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5) ) * np.arange(3_0 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=snake_case_ ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) A_ , A_ : Dict = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def lowerCamelCase_ ( self ): """simple docstring""" A_ : Optional[Any] = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5) ) * np.arange(3_0 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(snake_case_ , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def lowerCamelCase_ ( self ): """simple docstring""" from elasticsearch import Elasticsearch A_ : Dict = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: A_ : Optional[int] = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 3_0 ) A_ : List[str] = {'hits': {'hits': [{'_score': 1, '_id': 2_9}]}} A_ : str = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=snake_case_ ) A_ , A_ : Union[str, Any] = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class _UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowerCamelCase_ ( self ): """simple docstring""" import faiss A_ : List[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 1_0 ) # single query A_ : Tuple = np.zeros(5 , dtype=np.floataa ) A_ : Union[str, Any] = 1 A_ , A_ : Any = index.search(snake_case_ ) self.assertRaises(snake_case_ , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries A_ : Tuple = np.eye(5 , dtype=np.floataa )[::-1] A_ , A_ : Union[str, Any] = index.search_batch(snake_case_ ) self.assertRaises(snake_case_ , index.search_batch , queries[0] ) A_ : Any = [scores[0] for scores in total_scores] A_ : Any = [indices[0] for indices in total_indices] self.assertGreater(np.min(snake_case_ ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , snake_case_ ) def lowerCamelCase_ ( self ): """simple docstring""" import faiss A_ : Optional[Any] = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) A_ : Optional[Any] = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(snake_case_ ): A_ : Union[str, Any] = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def lowerCamelCase_ ( self ): """simple docstring""" import faiss A_ : Dict = faiss.IndexFlat(5 ) A_ : List[str] = FaissIndex(custom_index=snake_case_ ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def lowerCamelCase_ ( self ): """simple docstring""" import faiss A_ : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=snake_case_ ) as tmp_file: index.save(tmp_file.name ) A_ : Any = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) A_ : List[Any] = np.zeros(5 , dtype=np.floataa ) A_ : Optional[Any] = 1 A_ , A_ : Union[str, Any] = index.search(snake_case_ ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" import faiss A_ : Union[str, Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) A_ : Union[str, Any] = 'index.faiss' A_ : Dict = f"""mock://{index_name}""" index.save(a_ , storage_options=mockfs.storage_options ) A_ : int = FaissIndex.load(a_ , storage_options=mockfs.storage_options ) A_ : List[str] = np.zeros(5 , dtype=np.floataa ) A_ : List[str] = 1 A_ , A_ : Dict = index.search(a_ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowerCamelCase_ ( self ): """simple docstring""" from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: A_ : Tuple = Elasticsearch() A_ : Any = {'acknowledged': True} A_ : Union[str, Any] = ElasticSearchIndex(es_client=snake_case_ ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query A_ : Tuple = 'foo' A_ : Any = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} A_ , A_ : Any = index.search(snake_case_ ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout A_ : Union[str, Any] = 'foo' A_ : List[Any] = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} A_ , A_ : str = index.search(snake_case_ , request_timeout=3_0 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries A_ : List[str] = ['foo', 'bar', 'foobar'] A_ : Optional[Any] = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} A_ , A_ : Union[str, Any] = index.search_batch(snake_case_ ) A_ : List[Any] = [scores[0] for scores in total_scores] A_ : str = [indices[0] for indices in total_indices] self.assertGreater(np.min(snake_case_ ) , 0 ) self.assertListEqual([1, 1, 1] , snake_case_ ) # batched queries with timeout A_ : Optional[Any] = ['foo', 'bar', 'foobar'] A_ : Tuple = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} A_ , A_ : str = index.search_batch(snake_case_ , request_timeout=3_0 ) A_ : Tuple = [scores[0] for scores in total_scores] A_ : int = [indices[0] for indices in total_indices] self.assertGreater(np.min(snake_case_ ) , 0 ) self.assertListEqual([1, 1, 1] , snake_case_ )
286
from typing import Dict, Optional import numpy as np import datasets SCREAMING_SNAKE_CASE :List[Any] = '\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n' SCREAMING_SNAKE_CASE :List[str] = '\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric("mean_iou")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n' SCREAMING_SNAKE_CASE :str = '\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}' def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ = None , a_ = False , ) -> Tuple: """simple docstring""" if label_map is not None: for old_id, new_id in label_map.items(): __A = new_id # turn into Numpy arrays __A = np.array(a_ ) __A = np.array(a_ ) if reduce_labels: __A = 2_5_5 __A = label - 1 __A = 2_5_5 __A = label != ignore_index __A = np.not_equal(a_ , a_ ) __A = pred_label[mask] __A = np.array(a_ )[mask] __A = pred_label[pred_label == label] __A = np.histogram(a_ , bins=a_ , range=(0, num_labels - 1) )[0] __A = np.histogram(a_ , bins=a_ , range=(0, num_labels - 1) )[0] __A = np.histogram(a_ , bins=a_ , range=(0, num_labels - 1) )[0] __A = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ = None , a_ = False , ) -> Union[str, Any]: """simple docstring""" __A = np.zeros((num_labels,) , dtype=np.floataa ) __A = np.zeros((num_labels,) , dtype=np.floataa ) __A = np.zeros((num_labels,) , dtype=np.floataa ) __A = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(a_ , a_ ): __A , __A , __A , __A = intersect_and_union( a_ , a_ , a_ , a_ , a_ , a_ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ = None , a_ = None , a_ = False , ) -> str: """simple docstring""" __A , __A , __A , __A = total_intersect_and_union( a_ , a_ , a_ , a_ , a_ , a_ ) # compute metrics __A = {} __A = total_area_intersect.sum() / total_area_label.sum() __A = total_area_intersect / total_area_union __A = total_area_intersect / total_area_label __A = np.nanmean(a_ ) __A = np.nanmean(a_ ) __A = all_acc __A = iou __A = acc if nan_to_num is not None: __A = {metric: np.nan_to_num(a_ , nan=a_ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self : List[Any] ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { "predictions": datasets.Sequence(datasets.Sequence(datasets.Value("uint16" ) ) ), "references": datasets.Sequence(datasets.Sequence(datasets.Value("uint16" ) ) ), } ) ,reference_urls=[ "https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py" ] ,) def UpperCamelCase_ ( self : int ,A : Optional[Any] ,A : Optional[Any] ,A : int ,A : bool ,A : Optional[int] = None ,A : Optional[Dict[int, int]] = None ,A : bool = False ,): __A = mean_iou( results=A ,gt_seg_maps=A ,num_labels=A ,ignore_index=A ,nan_to_num=A ,label_map=A ,reduce_labels=A ,) return iou_result
15
0
"""simple docstring""" import csv import tweepy # Twitter API credentials _SCREAMING_SNAKE_CASE : List[str] = '' _SCREAMING_SNAKE_CASE : List[str] = '' _SCREAMING_SNAKE_CASE : int = '' _SCREAMING_SNAKE_CASE : Dict = '' def lowerCamelCase__ ( _lowerCamelCase : Optional[int] ) -> None: lowerCamelCase_ = tweepy.OAuthHandler(a_ , a_ ) auth.set_access_token(a_ , a_ ) lowerCamelCase_ = tweepy.API(a_ ) # initialize a list to hold all the tweepy Tweets lowerCamelCase_ = [] # make initial request for most recent tweets (200 is the maximum allowed count) lowerCamelCase_ = api.user_timeline(screen_name=a_ , count=200 ) # save most recent tweets alltweets.extend(a_ ) # save the id of the oldest tweet less one lowerCamelCase_ = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(a_ ) > 0: print(F'''getting tweets before {oldest}''' ) # all subsequent requests use the max_id param to prevent duplicates lowerCamelCase_ = api.user_timeline( screen_name=a_ , count=200 , max_id=a_ ) # save most recent tweets alltweets.extend(a_ ) # update the id of the oldest tweet less one lowerCamelCase_ = alltweets[-1].id - 1 print(F'''...{len(a_ )} tweets downloaded so far''' ) # transform the tweepy tweets into a 2D array that will populate the csv lowerCamelCase_ = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F'''new_{screen_name}_tweets.csv''' , 'w' ) as f: lowerCamelCase_ = csv.writer(a_ ) writer.writerow(['id', 'created_at', 'text'] ) writer.writerows(a_ ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('''FirePing32''')
183
import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE :List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :List[str] = {'vocab_file': 'spiece.model'} SCREAMING_SNAKE_CASE :Dict = { 'vocab_file': { 'AI-Sweden/gpt-sw3-126m': 'https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-350m': 'https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-1.6b': 'https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-6.7b': 'https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-20b': 'https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model', } } SCREAMING_SNAKE_CASE :Optional[Any] = { 'AI-Sweden/gpt-sw3-126m': 2048, 'AI-Sweden/gpt-sw3-350m': 2048, 'AI-Sweden/gpt-sw3-1.6b': 2048, 'AI-Sweden/gpt-sw3-6.7b': 2048, 'AI-Sweden/gpt-sw3-20b': 2048, } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["input_ids", "attention_mask"] def __init__( self : Optional[int] ,A : Optional[Any] ,A : Optional[int]=False ,A : int=False ,A : Union[str, Any]=False ,A : int=None ,A : Optional[Any]=None ,A : Union[str, Any]=None ,A : Optional[Any]=None ,A : Optional[Dict[str, Any]] = None ,**A : Tuple ,): __A = {} if sp_model_kwargs is None else sp_model_kwargs __A = kwargs.get("name_or_path" ) if name_or_path is None: logger.warning( "name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b," " you are testing the model, this can safely be ignored" ) __A = "None" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing __A = "<|endoftext|>" if eos_token is None else eos_token __A = "<unk>" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: __A = unk_token if pad_token is None else pad_token __A = eos_token if bos_token is None else bos_token else: __A = "<pad>" if pad_token is None else pad_token __A = "<s>" if bos_token is None else bos_token super().__init__( do_lower_case=A ,remove_space=A ,keep_accents=A ,bos_token=A ,eos_token=A ,unk_token=A ,pad_token=A ,sp_model_kwargs=self.sp_model_kwargs ,**A ,) __A = do_lower_case __A = remove_space __A = keep_accents __A = vocab_file __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) # Used for whitespace normalization in input texts # fmt : off __A = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", "„"} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing __A = re.compile( f'''[{''.join(map(A ,list(range(0 ,9 ) ) + list(range(11 ,32 ) ) + list(range(1_27 ,1_60 ) ) + [1_60, 1_73, 82_03] ) )}]''' ) def __getstate__( self : Optional[int] ): __A = self.__dict__.copy() __A = None return state def __setstate__( self : Optional[Any] ,A : Union[str, Any] ): __A = d # for backward compatibility if not hasattr(self ,"sp_model_kwargs" ): __A = {} __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def UpperCamelCase_ ( self : List[str] ): return len(self.sp_model ) def UpperCamelCase_ ( self : int ,A : str ): __A = self.non_printing_characters_re.sub("" ,A ) # Normalize whitespaces __A = "".join([char if char not in self.whitespaces else " " for char in text] ) # NFC Unicode normalization __A = unicodedata.normalize("NFC" ,A ) return text def UpperCamelCase_ ( self : Union[str, Any] ,A : str ,**A : Optional[int] ): __A = self.preprocess_text(A ) return self.sp_model.encode(A ,out_type=A ) def UpperCamelCase_ ( self : Any ,A : str ): return self.sp_model.PieceToId(A ) def UpperCamelCase_ ( self : Dict ,A : int ): return self.sp_model.IdToPiece(A ) @staticmethod def UpperCamelCase_ ( A : str ): return out_string def UpperCamelCase_ ( self : str ,A : List[str] ): __A = [] __A = "" __A = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A ) + token __A = True __A = [] else: current_sub_tokens.append(A ) __A = False out_string += self.sp_model.decode(A ) return out_string def UpperCamelCase_ ( self : str ): __A = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase_ ( self : List[str] ,A : str ,A : Optional[str] = None ): if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __A = os.path.join( A ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,A ) elif not os.path.isfile(self.vocab_file ): with open(A ,"wb" ) as fi: __A = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,) def UpperCamelCase_ ( self : Union[str, Any] ,A : Union[str, List[str]] ,A : Union[str, bool] = False ): if isinstance(A ,A ): __A = self.preprocess_text(A ) __A = self.sp_model.encode(A ) else: __A = [self.preprocess_text(A ) for t in text] __A = self.sp_model.encode(A ) if return_tensors is True or return_tensors == "pt": __A = torch.tensor(A ) return token_ids def UpperCamelCase_ ( self : List[Any] ,A : Union[int, List[int]] ): return self.sp_model.decode(A ) def UpperCamelCase_ ( self : List[str] ,A : "Conversation" ): __A = [f'''User: {text}''' if is_user else f'''Bot: {text}''' for is_user, text in conversation.iter_texts()] __A = ( f'''{self.eos_token}{self.bos_token}''' + f'''{self.bos_token}'''.join(A ) + f'''{self.bos_token}Bot:''' ) return self.encode(text=A )
15
0
'''simple docstring''' from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging A_ : Optional[Any] = logging.get_logger(__name__) class lowercase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase = ["""pixel_values"""] def __init__( self ,a_ = True ,a_ = None ,a_ = PILImageResampling.BICUBIC ,a_ = True ,a_ = None ,a_ = True ,a_ = 1 / 255 ,a_ = True ,a_ = IMAGENET_DEFAULT_MEAN ,a_ = IMAGENET_DEFAULT_STD ,**a_ ,) -> Dict: super().__init__(**a_ ) _UpperCAmelCase : int = size if size is not None else {"""shortest_edge""": 224} _UpperCAmelCase : Tuple = get_size_dict(a_ ,default_to_square=a_ ) _UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _UpperCAmelCase : List[Any] = get_size_dict(a_ ,param_name="""crop_size""" ) _UpperCAmelCase : Union[str, Any] = do_resize _UpperCAmelCase : Optional[Any] = size _UpperCAmelCase : Tuple = resample _UpperCAmelCase : int = do_center_crop _UpperCAmelCase : Tuple = crop_size _UpperCAmelCase : int = do_rescale _UpperCAmelCase : List[Any] = rescale_factor _UpperCAmelCase : List[Any] = do_normalize _UpperCAmelCase : Optional[int] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _UpperCAmelCase : List[Any] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _snake_case ( self ,a_ ,a_ ,a_ = PILImageResampling.BICUBIC ,a_ = None ,**a_ ,) -> Dict: _UpperCAmelCase : Dict = get_size_dict(a_ ,default_to_square=a_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: _UpperCAmelCase : Dict = int((256 / 224) * size["""shortest_edge"""] ) _UpperCAmelCase : List[str] = get_resize_output_image_size(a_ ,size=a_ ,default_to_square=a_ ) _UpperCAmelCase : Union[str, Any] = {"""height""": output_size[0], """width""": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' ) return resize( a_ ,size=(size_dict["""height"""], size_dict["""width"""]) ,resample=a_ ,data_format=a_ ,**a_ ) def _snake_case ( self ,a_ ,a_ ,a_ = None ,**a_ ,) -> int: _UpperCAmelCase : Tuple = get_size_dict(a_ ) if "height" not in size or "width" not in size: raise ValueError(f'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(a_ ,size=(size["""height"""], size["""width"""]) ,data_format=a_ ,**a_ ) def _snake_case ( self ,a_ ,a_ ,a_ = None ,**a_ ,) -> Dict: return rescale(a_ ,scale=a_ ,data_format=a_ ,**a_ ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ = None ,**a_ ,) -> List[str]: return normalize(a_ ,mean=a_ ,std=a_ ,data_format=a_ ,**a_ ) def _snake_case ( self ,a_ ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = ChannelDimension.FIRST ,**a_ ,) -> Union[str, Any]: _UpperCAmelCase : List[str] = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase : Any = resample if resample is not None else self.resample _UpperCAmelCase : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase : List[str] = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase : Optional[Any] = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase : int = image_std if image_std is not None else self.image_std _UpperCAmelCase : Union[str, Any] = size if size is not None else self.size _UpperCAmelCase : Any = get_size_dict(a_ ,default_to_square=a_ ) _UpperCAmelCase : Tuple = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase : List[Any] = get_size_dict(a_ ,param_name="""crop_size""" ) _UpperCAmelCase : List[str] = make_list_of_images(a_ ) if not valid_images(a_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _UpperCAmelCase : List[str] = [to_numpy_array(a_ ) for image in images] if do_resize: _UpperCAmelCase : List[str] = [self.resize(a_ ,a_ ,a_ ) for image in images] if do_center_crop: _UpperCAmelCase : Optional[int] = [self.center_crop(a_ ,a_ ) for image in images] if do_rescale: _UpperCAmelCase : Optional[Any] = [self.rescale(a_ ,a_ ) for image in images] if do_normalize: _UpperCAmelCase : Dict = [self.normalize(a_ ,a_ ,a_ ) for image in images] _UpperCAmelCase : str = [to_channel_dimension_format(a_ ,a_ ) for image in images] _UpperCAmelCase : Optional[int] = {"""pixel_values""": images} return BatchFeature(data=a_ ,tensor_type=a_ )
215
import numpy as np def UpperCAmelCase ( a_ , a_ , a_ = 1E-12 , a_ = 1_0_0 , ) -> tuple[float, np.ndarray]: """simple docstring""" assert np.shape(a_ )[0] == np.shape(a_ )[1] # Ensure proper dimensionality. assert np.shape(a_ )[0] == np.shape(a_ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(a_ ) == np.iscomplexobj(a_ ) __A = np.iscomplexobj(a_ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(a_ , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. __A = False __A = 0 __A = 0 __A = 1E12 while not convergence: # Multiple matrix by the vector. __A = np.dot(a_ , a_ ) # Normalize the resulting output vector. __A = w / np.linalg.norm(a_ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) __A = vector.conj().T if is_complex else vector.T __A = np.dot(a_ , np.dot(a_ , a_ ) ) # Check convergence. __A = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: __A = True __A = lambda_ if is_complex: __A = np.real(lambda_ ) return lambda_, vector def UpperCAmelCase ( ) -> None: """simple docstring""" __A = np.array([[4_1, 4, 2_0], [4, 2_6, 3_0], [2_0, 3_0, 5_0]] ) __A = np.array([4_1, 4, 2_0] ) __A = real_input_matrix.astype(np.complexaaa ) __A = np.triu(1J * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T __A = np.array([4_1, 4, 2_0] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": __A = real_input_matrix __A = real_vector elif problem_type == "complex": __A = complex_input_matrix __A = complex_vector # Our implementation. __A , __A = power_iteration(a_ , a_ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). __A , __A = np.linalg.eigh(a_ ) # Last eigenvalue is the maximum one. __A = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. __A = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(a_ ) - np.abs(a_ ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
15
0
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __a ( __SCREAMING_SNAKE_CASE ): _a : int = (KDPMaDiscreteScheduler,) _a : int = 10 def UpperCAmelCase__ ( self , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = { 'num_train_timesteps': 1100, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**_SCREAMING_SNAKE_CASE ) return config def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> int: """simple docstring""" for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=_SCREAMING_SNAKE_CASE , beta_end=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config(prediction_type='v_prediction' ) _UpperCAmelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCAmelCase = sample.to(_SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase = scheduler.scale_model_input(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = output.prev_sample _UpperCAmelCase = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6_9_3_4e-0_7 ) < 1e-2 assert abs(result_mean.item() - 6.1_1_1_2e-1_0 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.6_9_3_4_2_8_6_5_0_1_7_0_9_7_2e-0_7 ) < 1e-2 assert abs(result_mean.item() - 0.0002 ) < 1e-3 def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" if torch_device == "mps": return _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCAmelCase = sample.to(_SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase = scheduler.scale_model_input(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = output.prev_sample _UpperCAmelCase = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" if torch_device == "mps": return _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(self.num_inference_steps , device=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter.to(_SCREAMING_SNAKE_CASE ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _UpperCAmelCase = scheduler.scale_model_input(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = output.prev_sample _UpperCAmelCase = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) if str(_SCREAMING_SNAKE_CASE ).startswith('cpu' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3
329
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig SCREAMING_SNAKE_CASE :str = logging.get_logger(__name__) # General docstring SCREAMING_SNAKE_CASE :str = 'RegNetConfig' # Base docstring SCREAMING_SNAKE_CASE :List[str] = 'facebook/regnet-y-040' SCREAMING_SNAKE_CASE :Union[str, Any] = [1, 1088, 7, 7] # Image classification docstring SCREAMING_SNAKE_CASE :Optional[int] = 'facebook/regnet-y-040' SCREAMING_SNAKE_CASE :Any = 'tabby, tabby cat' SCREAMING_SNAKE_CASE :Optional[int] = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Tuple ,A : int ,A : int = 3 ,A : int = 1 ,A : int = 1 ,A : Optional[str] = "relu" ,**A : Dict ,): super().__init__(**A ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb __A = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) __A = tf.keras.layers.ConvaD( filters=A ,kernel_size=A ,strides=A ,padding="VALID" ,groups=A ,use_bias=A ,name="convolution" ,) __A = tf.keras.layers.BatchNormalization(epsilon=1E-5 ,momentum=0.9 ,name="normalization" ) __A = ACTaFN[activation] if activation is not None else tf.identity def UpperCamelCase_ ( self : List[Any] ,A : Any ): __A = self.convolution(self.padding(A ) ) __A = self.normalization(A ) __A = self.activation(A ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Tuple ,A : RegNetConfig ,**A : str ): super().__init__(**A ) __A = config.num_channels __A = TFRegNetConvLayer( out_channels=config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ,name="embedder" ,) def UpperCamelCase_ ( self : Tuple ,A : Optional[Any] ): __A = shape_list(A )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) __A = tf.transpose(A ,perm=(0, 2, 3, 1) ) __A = self.embedder(A ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Optional[int] ,A : int ,A : int = 2 ,**A : Tuple ): super().__init__(**A ) __A = tf.keras.layers.ConvaD( filters=A ,kernel_size=1 ,strides=A ,use_bias=A ,name="convolution" ) __A = tf.keras.layers.BatchNormalization(epsilon=1E-5 ,momentum=0.9 ,name="normalization" ) def UpperCamelCase_ ( self : Union[str, Any] ,A : tf.Tensor ,A : bool = False ): return self.normalization(self.convolution(A ) ,training=A ) class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Dict ,A : int ,A : int ,**A : str ): super().__init__(**A ) __A = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A ,name="pooler" ) __A = [ tf.keras.layers.ConvaD(filters=A ,kernel_size=1 ,activation="relu" ,name="attention.0" ), tf.keras.layers.ConvaD(filters=A ,kernel_size=1 ,activation="sigmoid" ,name="attention.2" ), ] def UpperCamelCase_ ( self : Dict ,A : List[Any] ): # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] __A = self.pooler(A ) for layer_module in self.attention: __A = layer_module(A ) __A = hidden_state * pooled return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : List[str] ,A : RegNetConfig ,A : int ,A : int ,A : int = 1 ,**A : Optional[int] ): super().__init__(**A ) __A = in_channels != out_channels or stride != 1 __A = max(1 ,out_channels // config.groups_width ) __A = ( TFRegNetShortCut(A ,stride=A ,name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" ,name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. __A = [ TFRegNetConvLayer(A ,kernel_size=1 ,activation=config.hidden_act ,name="layer.0" ), TFRegNetConvLayer( A ,stride=A ,groups=A ,activation=config.hidden_act ,name="layer.1" ), TFRegNetConvLayer(A ,kernel_size=1 ,activation=A ,name="layer.2" ), ] __A = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : int ,A : Optional[int] ): __A = hidden_state for layer_module in self.layers: __A = layer_module(A ) __A = self.shortcut(A ) hidden_state += residual __A = self.activation(A ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : List[Any] ,A : RegNetConfig ,A : int ,A : int ,A : int = 1 ,**A : str ): super().__init__(**A ) __A = in_channels != out_channels or stride != 1 __A = max(1 ,out_channels // config.groups_width ) __A = ( TFRegNetShortCut(A ,stride=A ,name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" ,name="shortcut" ) ) __A = [ TFRegNetConvLayer(A ,kernel_size=1 ,activation=config.hidden_act ,name="layer.0" ), TFRegNetConvLayer( A ,stride=A ,groups=A ,activation=config.hidden_act ,name="layer.1" ), TFRegNetSELayer(A ,reduced_channels=int(round(in_channels / 4 ) ) ,name="layer.2" ), TFRegNetConvLayer(A ,kernel_size=1 ,activation=A ,name="layer.3" ), ] __A = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Dict ,A : Any ): __A = hidden_state for layer_module in self.layers: __A = layer_module(A ) __A = self.shortcut(A ) hidden_state += residual __A = self.activation(A ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : List[str] ,A : RegNetConfig ,A : int ,A : int ,A : int = 2 ,A : int = 2 ,**A : Optional[int] ): super().__init__(**A ) __A = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer __A = [ # downsampling is done in the first layer with stride of 2 layer(A ,A ,A ,stride=A ,name="layers.0" ), *[layer(A ,A ,A ,name=f'''layers.{i+1}''' ) for i in range(depth - 1 )], ] def UpperCamelCase_ ( self : Any ,A : List[str] ): for layer_module in self.layers: __A = layer_module(A ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Any ,A : RegNetConfig ,**A : List[str] ): super().__init__(**A ) __A = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( A ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,name="stages.0" ,) ) __A = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(A ,config.depths[1:] ) ): self.stages.append(TFRegNetStage(A ,A ,A ,depth=A ,name=f'''stages.{i+1}''' ) ) def UpperCamelCase_ ( self : List[str] ,A : tf.Tensor ,A : bool = False ,A : bool = True ): __A = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __A = hidden_states + (hidden_state,) __A = stage_module(A ) if output_hidden_states: __A = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=A ,hidden_states=A ) @keras_serializable class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' snake_case_ = RegNetConfig def __init__( self : int ,A : Optional[int] ,**A : Dict ): super().__init__(**A ) __A = config __A = TFRegNetEmbeddings(A ,name="embedder" ) __A = TFRegNetEncoder(A ,name="encoder" ) __A = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A ,name="pooler" ) @unpack_inputs def UpperCamelCase_ ( self : Tuple ,A : tf.Tensor ,A : Optional[bool] = None ,A : Optional[bool] = None ,A : bool = False ,): __A = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __A = return_dict if return_dict is not None else self.config.use_return_dict __A = self.embedder(A ,training=A ) __A = self.encoder( A ,output_hidden_states=A ,return_dict=A ,training=A ) __A = encoder_outputs[0] __A = self.pooler(A ) # Change to NCHW output format have uniformity in the modules __A = tf.transpose(A ,perm=(0, 3, 1, 2) ) __A = tf.transpose(A ,perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: __A = tuple([tf.transpose(A ,perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=A ,pooler_output=A ,hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states ,) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = RegNetConfig snake_case_ = "regnet" snake_case_ = "pixel_values" @property def UpperCamelCase_ ( self : Optional[Any] ): return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) ,dtype=tf.floataa )} SCREAMING_SNAKE_CASE :Dict = R'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' SCREAMING_SNAKE_CASE :Dict = R'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , __SCREAMING_SNAKE_CASE , ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[Any] ,A : RegNetConfig ,*A : List[Any] ,**A : str ): super().__init__(A ,*A ,**A ) __A = TFRegNetMainLayer(A ,name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(A ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=A ,config_class=_CONFIG_FOR_DOC ,modality="vision" ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def UpperCamelCase_ ( self : Tuple ,A : tf.Tensor ,A : Optional[bool] = None ,A : Optional[bool] = None ,A : int=False ,): __A = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __A = return_dict if return_dict is not None else self.config.use_return_dict __A = self.regnet( pixel_values=A ,output_hidden_states=A ,return_dict=A ,training=A ,) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state ,pooler_output=outputs.pooler_output ,hidden_states=outputs.hidden_states ,) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , __SCREAMING_SNAKE_CASE , ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Optional[int] ,A : RegNetConfig ,*A : str ,**A : Tuple ): super().__init__(A ,*A ,**A ) __A = config.num_labels __A = TFRegNetMainLayer(A ,name="regnet" ) # classification head __A = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels ,name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(A ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=A ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def UpperCamelCase_ ( self : List[str] ,A : tf.Tensor = None ,A : tf.Tensor = None ,A : bool = None ,A : bool = None ,A : Union[str, Any]=False ,): __A = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __A = return_dict if return_dict is not None else self.config.use_return_dict __A = self.regnet( A ,output_hidden_states=A ,return_dict=A ,training=A ) __A = outputs.pooler_output if return_dict else outputs[1] __A = self.classifier[0](A ) __A = self.classifier[1](A ) __A = None if labels is None else self.hf_compute_loss(labels=A ,logits=A ) if not return_dict: __A = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=A ,logits=A ,hidden_states=outputs.hidden_states )
15
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Optional[Any] = LDMTextToImagePipeline __UpperCamelCase : Optional[Any] = TEXT_TO_IMAGE_PARAMS - { 'negative_prompt', 'negative_prompt_embeds', 'cross_attention_kwargs', 'prompt_embeds', } __UpperCamelCase : List[str] = PipelineTesterMixin.required_optional_params - { 'num_images_per_prompt', 'callback', 'callback_steps', } __UpperCamelCase : List[Any] = TEXT_TO_IMAGE_BATCH_PARAMS __UpperCamelCase : str = False def _snake_case (self ): torch.manual_seed(0 ) __lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) __lowerCAmelCase = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=__lowercase , set_alpha_to_one=__lowercase , ) torch.manual_seed(0 ) __lowerCAmelCase = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') , up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') , latent_channels=4 , ) torch.manual_seed(0 ) __lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) __lowerCAmelCase = CLIPTextModel(__lowercase ) __lowerCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __lowerCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vqvae''': vae, '''bert''': text_encoder, '''tokenizer''': tokenizer, } return components def _snake_case (self , __lowercase , __lowercase=0 ): if str(__lowercase ).startswith('''mps''' ): __lowerCAmelCase = torch.manual_seed(__lowercase ) else: __lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowerCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = LDMTextToImagePipeline(**__lowercase ) pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = pipe(**__lowercase ).images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) __lowerCAmelCase = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case (self , __lowercase , __lowercase=torch.floataa , __lowercase=0 ): __lowerCAmelCase = torch.manual_seed(__lowercase ) __lowerCAmelCase = np.random.RandomState(__lowercase ).standard_normal((1, 4, 32, 32) ) __lowerCAmelCase = torch.from_numpy(__lowercase ).to(device=__lowercase , dtype=__lowercase ) __lowerCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def _snake_case (self ): __lowerCAmelCase = LDMTextToImagePipeline.from_pretrained('''CompVis/ldm-text2im-large-256''' ).to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs(__lowercase ) __lowerCAmelCase = pipe(**__lowercase ).images __lowerCAmelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 2_56, 2_56, 3) __lowerCAmelCase = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) __lowerCAmelCase = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case (self , __lowercase , __lowercase=torch.floataa , __lowercase=0 ): __lowerCAmelCase = torch.manual_seed(__lowercase ) __lowerCAmelCase = np.random.RandomState(__lowercase ).standard_normal((1, 4, 32, 32) ) __lowerCAmelCase = torch.from_numpy(__lowercase ).to(device=__lowercase , dtype=__lowercase ) __lowerCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 50, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def _snake_case (self ): __lowerCAmelCase = LDMTextToImagePipeline.from_pretrained('''CompVis/ldm-text2im-large-256''' ).to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs(__lowercase ) __lowerCAmelCase = pipe(**__lowercase ).images[0] __lowerCAmelCase = load_numpy( '''https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy''' ) __lowerCAmelCase = np.abs(expected_image - image ).max() assert max_diff < 1e-3
174
import math def UpperCAmelCase ( a_ , a_ = 0 , a_ = 0 ) -> list: """simple docstring""" __A = end or len(a_ ) for i in range(a_ , a_ ): __A = i __A = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: __A = array[temp_index - 1] temp_index -= 1 __A = temp_index_value return array def UpperCAmelCase ( a_ , a_ , a_ ) -> None: # Max Heap """simple docstring""" __A = index __A = 2 * index + 1 # Left Node __A = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: __A = left_index if right_index < heap_size and array[largest] < array[right_index]: __A = right_index if largest != index: __A , __A = array[largest], array[index] heapify(a_ , a_ , a_ ) def UpperCAmelCase ( a_ ) -> list: """simple docstring""" __A = len(a_ ) for i in range(n // 2 , -1 , -1 ): heapify(a_ , a_ , a_ ) for i in range(n - 1 , 0 , -1 ): __A , __A = array[0], array[i] heapify(a_ , 0 , a_ ) return array def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> int: """simple docstring""" if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> int: """simple docstring""" __A = low __A = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i __A , __A = array[j], array[i] i += 1 def UpperCAmelCase ( a_ ) -> list: """simple docstring""" if len(a_ ) == 0: return array __A = 2 * math.ceil(math.loga(len(a_ ) ) ) __A = 1_6 return intro_sort(a_ , 0 , len(a_ ) , a_ , a_ ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ ) -> list: """simple docstring""" while end - start > size_threshold: if max_depth == 0: return heap_sort(a_ ) max_depth -= 1 __A = median_of_a(a_ , a_ , start + ((end - start) // 2) + 1 , end - 1 ) __A = partition(a_ , a_ , a_ , a_ ) intro_sort(a_ , a_ , a_ , a_ , a_ ) __A = p return insertion_sort(a_ , a_ , a_ ) if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE :List[Any] = input('Enter numbers separated by a comma : ').strip() SCREAMING_SNAKE_CASE :str = [float(item) for item in user_input.split(',')] print(sort(unsorted))
15
0
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class _UpperCamelCase ( datasets.BuilderConfig ): '''simple docstring''' _A : Optional[int] = None class _UpperCamelCase ( datasets.ArrowBasedBuilder ): '''simple docstring''' _A : Union[str, Any] = PandasConfig def UpperCamelCase__ ( self : List[Any] ): """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def UpperCamelCase__ ( self : str , lowerCAmelCase__ : Dict ): """simple docstring""" if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" ) __SCREAMING_SNAKE_CASE : Union[str, Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase__ , (str, list, tuple) ): __SCREAMING_SNAKE_CASE : Dict = data_files if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __SCREAMING_SNAKE_CASE : List[str] = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] __SCREAMING_SNAKE_CASE : Union[str, Any] = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : List[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __SCREAMING_SNAKE_CASE : List[str] = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"""files""": files} ) ) return splits def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : pa.Table ): """simple docstring""" if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __SCREAMING_SNAKE_CASE : Optional[int] = table_cast(lowerCAmelCase__ , self.config.features.arrow_schema ) return pa_table def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" for i, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ): with open(lowerCAmelCase__ , """rb""" ) as f: __SCREAMING_SNAKE_CASE : int = pa.Table.from_pandas(pd.read_pickle(lowerCAmelCase__ ) ) yield i, self._cast_table(lowerCAmelCase__ )
112
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml SCREAMING_SNAKE_CASE :Optional[int] = NewType('DataClass', Any) SCREAMING_SNAKE_CASE :int = NewType('DataClassType', Any) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" if isinstance(a_ , a_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F'''Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).''' ) def UpperCAmelCase ( a_ ) -> Callable[[str], Any]: """simple docstring""" __A = {str(a_ ): choice for choice in choices} return lambda a_ : str_to_choice.get(a_ , a_ ) def UpperCAmelCase ( *, a_ = None , a_ = None , a_ = dataclasses.MISSING , a_ = dataclasses.MISSING , a_ = None , **a_ , ) -> dataclasses.Field: """simple docstring""" if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls __A = {} if aliases is not None: __A = aliases if help is not None: __A = help return dataclasses.field(metadata=a_ , default=a_ , default_factory=a_ , **a_ ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = 42 def __init__( self : Union[str, Any] ,A : Union[DataClassType, Iterable[DataClassType]] ,**A : List[Any] ): # To make the default appear when using --help if "formatter_class" not in kwargs: __A = ArgumentDefaultsHelpFormatter super().__init__(**A ) if dataclasses.is_dataclass(A ): __A = [dataclass_types] __A = list(A ) for dtype in self.dataclass_types: self._add_dataclass_arguments(A ) @staticmethod def UpperCamelCase_ ( A : ArgumentParser ,A : dataclasses.Field ): __A = f'''--{field.name}''' __A = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type ,A ): raise RuntimeError( "Unresolved type detected, which should have been done with the help of " "`typing.get_type_hints` method by default" ) __A = kwargs.pop("aliases" ,[] ) if isinstance(A ,A ): __A = [aliases] __A = getattr(field.type ,"__origin__" ,field.type ) if origin_type is Union or (hasattr(A ,"UnionType" ) and isinstance(A ,types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(A ) not in field.type.__args__ ): raise ValueError( "Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because" " the argument parser only supports one type per argument." f''' Problem encountered in field \'{field.name}\'.''' ) if type(A ) not in field.type.__args__: # filter `str` in Union __A = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] __A = getattr(field.type ,"__origin__" ,field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) __A = ( field.type.__args__[0] if isinstance(A ,field.type.__args__[1] ) else field.type.__args__[1] ) __A = getattr(field.type ,"__origin__" ,field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) __A = {} if origin_type is Literal or (isinstance(field.type ,A ) and issubclass(field.type ,A )): if origin_type is Literal: __A = field.type.__args__ else: __A = [x.value for x in field.type] __A = make_choice_type_function(kwargs["choices"] ) if field.default is not dataclasses.MISSING: __A = field.default else: __A = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument __A = copy(A ) # Hack because type=bool in argparse does not behave as we want. __A = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. __A = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way __A = default # This tells argparse we accept 0 or 1 value after --field_name __A = "?" # This is the value that will get picked if we do --field_name (without value) __A = True elif isclass(A ) and issubclass(A ,A ): __A = field.type.__args__[0] __A = "+" if field.default_factory is not dataclasses.MISSING: __A = field.default_factory() elif field.default is dataclasses.MISSING: __A = True else: __A = field.type if field.default is not dataclasses.MISSING: __A = field.default elif field.default_factory is not dataclasses.MISSING: __A = field.default_factory() else: __A = True parser.add_argument(A ,*A ,**A ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): __A = False parser.add_argument(f'''--no_{field.name}''' ,action="store_false" ,dest=field.name ,**A ) def UpperCamelCase_ ( self : Union[str, Any] ,A : DataClassType ): if hasattr(A ,"_argument_group_name" ): __A = self.add_argument_group(dtype._argument_group_name ) else: __A = self try: __A = get_type_hints(A ) except NameError: raise RuntimeError( f'''Type resolution failed for {dtype}. Try declaring the class in global scope or ''' "removing line of `from __future__ import annotations` which opts in Postponed " "Evaluation of Annotations (PEP 563)" ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(A ): __A = ".".join(map(A ,sys.version_info[:3] ) ) raise RuntimeError( f'''Type resolution failed for {dtype} on Python {python_version}. Try removing ''' "line of `from __future__ import annotations` which opts in union types as " "`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To " "support Python versions that lower than 3.10, you need to use " "`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of " "`X | None`." ) from ex raise for field in dataclasses.fields(A ): if not field.init: continue __A = type_hints[field.name] self._parse_dataclass_field(A ,A ) def UpperCamelCase_ ( self : Union[str, Any] ,A : List[Any]=None ,A : List[Any]=False ,A : Optional[Any]=True ,A : Union[str, Any]=None ,A : Union[str, Any]=None ,): if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): __A = [] if args_filename: args_files.append(Path(A ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix(".args" ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values __A = ArgumentParser() args_file_parser.add_argument(A ,type=A ,action="append" ) # Use only remaining args for further parsing (remove the args_file_flag) __A , __A = args_file_parser.parse_known_args(args=A ) __A = vars(A ).get(args_file_flag.lstrip("-" ) ,A ) if cmd_args_file_paths: args_files.extend([Path(A ) for p in cmd_args_file_paths] ) __A = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last __A = file_args + args if args is not None else file_args + sys.argv[1:] __A , __A = self.parse_known_args(args=A ) __A = [] for dtype in self.dataclass_types: __A = {f.name for f in dataclasses.fields(A ) if f.init} __A = {k: v for k, v in vars(A ).items() if k in keys} for k in keys: delattr(A ,A ) __A = dtype(**A ) outputs.append(A ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(A ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f'''Some specified arguments are not used by the HfArgumentParser: {remaining_args}''' ) return (*outputs,) def UpperCamelCase_ ( self : Dict ,A : Dict[str, Any] ,A : bool = False ): __A = set(args.keys() ) __A = [] for dtype in self.dataclass_types: __A = {f.name for f in dataclasses.fields(A ) if f.init} __A = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) __A = dtype(**A ) outputs.append(A ) if not allow_extra_keys and unused_keys: raise ValueError(f'''Some keys are not used by the HfArgumentParser: {sorted(A )}''' ) return tuple(A ) def UpperCamelCase_ ( self : List[str] ,A : str ,A : bool = False ): with open(Path(A ) ,encoding="utf-8" ) as open_json_file: __A = json.loads(open_json_file.read() ) __A = self.parse_dict(A ,allow_extra_keys=A ) return tuple(A ) def UpperCamelCase_ ( self : int ,A : str ,A : bool = False ): __A = self.parse_dict(yaml.safe_load(Path(A ).read_text() ) ,allow_extra_keys=A ) return tuple(A )
15
0
import inspect import unittest class lowerCAmelCase ( unittest.TestCase ): def A_ ( self : List[Any] ) -> Dict: try: import diffusers # noqa: F401 except ImportError: assert False def A_ ( self : str ) -> List[Any]: import diffusers from diffusers.dependency_versions_table import deps lowerCamelCase__ : List[Any] = inspect.getmembers(UpperCAmelCase , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": lowerCamelCase__ : str = 'k-diffusion' elif backend == "invisible_watermark": lowerCamelCase__ : Dict = 'invisible-watermark' assert backend in deps, F"""{backend} is not in the deps table!"""
50
SCREAMING_SNAKE_CASE :Any = 256 # Modulus to hash a string SCREAMING_SNAKE_CASE :Union[str, Any] = 100_0003 def UpperCAmelCase ( a_ , a_ ) -> bool: """simple docstring""" __A = len(a_ ) __A = len(a_ ) if p_len > t_len: return False __A = 0 __A = 0 __A = 1 # Calculating the hash of pattern and substring of text for i in range(a_ ): __A = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __A = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __A = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __A = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def UpperCAmelCase ( ) -> None: """simple docstring""" __A = "abc1abc12" __A = "alskfjaldsabc1abc1abc12k23adsfabcabc" __A = "alskfjaldsk23adsfabcabc" assert rabin_karp(a_ , a_ ) and not rabin_karp(a_ , a_ ) # Test 2) __A = "ABABX" __A = "ABABZABABYABABX" assert rabin_karp(a_ , a_ ) # Test 3) __A = "AAAB" __A = "ABAAAAAB" assert rabin_karp(a_ , a_ ) # Test 4) __A = "abcdabcy" __A = "abcxabcdabxabcdabcdabcy" assert rabin_karp(a_ , a_ ) # Test 5) __A = "Lü" __A = "Lüsai" assert rabin_karp(a_ , a_ ) __A = "Lue" assert not rabin_karp(a_ , a_ ) print("Success." ) if __name__ == "__main__": test_rabin_karp()
15
0
def lowerCamelCase ( SCREAMING_SNAKE_CASE = 1_000 ): '''simple docstring''' return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
43
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel SCREAMING_SNAKE_CASE :Union[str, Any] = False SCREAMING_SNAKE_CASE :Any = True SCREAMING_SNAKE_CASE :Tuple = False if __name__ == "__main__": SCREAMING_SNAKE_CASE :Tuple = argparse.ArgumentParser() parser.add_argument( '--repo_path', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') SCREAMING_SNAKE_CASE :Union[str, Any] = parser.parse_args() SCREAMING_SNAKE_CASE :Dict = { 'image_size': 'sample_size', 'num_res_blocks': 'layers_per_block', 'block_channels': 'block_out_channels', 'down_blocks': 'down_block_types', 'up_blocks': 'up_block_types', 'downscale_freq_shift': 'freq_shift', 'resnet_num_groups': 'norm_num_groups', 'resnet_act_fn': 'act_fn', 'resnet_eps': 'norm_eps', 'num_head_channels': 'attention_head_dim', } SCREAMING_SNAKE_CASE :Optional[int] = { 'time_steps': 'time_proj', 'mid': 'mid_block', 'downsample_blocks': 'down_blocks', 'upsample_blocks': 'up_blocks', } SCREAMING_SNAKE_CASE :int = '' if has_file(args.repo_path, 'config.json') else 'unet' with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader: SCREAMING_SNAKE_CASE :Dict = reader.read() SCREAMING_SNAKE_CASE :List[str] = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, 'config.json'): SCREAMING_SNAKE_CASE :Optional[int] = UNetaDModel(**config) else: SCREAMING_SNAKE_CASE :Optional[Any] = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel SCREAMING_SNAKE_CASE :List[str] = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) SCREAMING_SNAKE_CASE :List[str] = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: SCREAMING_SNAKE_CASE :Optional[Any] = config[key] del config[key] SCREAMING_SNAKE_CASE :Optional[Any] = [k.replace('UNetRes', '') for k in config['down_block_types']] SCREAMING_SNAKE_CASE :List[Any] = [k.replace('UNetRes', '') for k in config['up_block_types']] if do_only_weights: SCREAMING_SNAKE_CASE :Tuple = torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin')) SCREAMING_SNAKE_CASE :Any = {} for param_key, param_value in state_dict.items(): if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'): continue SCREAMING_SNAKE_CASE :List[str] = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('.')[0] == key: SCREAMING_SNAKE_CASE :List[Any] = param_value SCREAMING_SNAKE_CASE :str = True if not has_changed: SCREAMING_SNAKE_CASE :List[str] = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
15
0
"""simple docstring""" import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _UpperCamelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def snake_case ( self ): __lowerCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__a , "width_multiplier" ) ) class _UpperCamelCase : '''simple docstring''' def __init__( self , __a , __a=13 , __a=64 , __a=2 , __a=3 , __a="swish" , __a=3 , __a=32 , __a=0.1 , __a=0.0_2 , __a=True , __a=True , __a=10 , __a=None , __a=0.2_5 , __a=0.0 , __a=0.0 , ): __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = make_divisible(5_12 * width_multiplier , divisor=8 ) __lowerCAmelCase = hidden_act __lowerCAmelCase = conv_kernel_size __lowerCAmelCase = output_stride __lowerCAmelCase = classifier_dropout_prob __lowerCAmelCase = use_labels __lowerCAmelCase = is_training __lowerCAmelCase = num_labels __lowerCAmelCase = initializer_range __lowerCAmelCase = scope __lowerCAmelCase = width_multiplier __lowerCAmelCase = ffn_dropout __lowerCAmelCase = attn_dropout def snake_case ( self ): __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) __lowerCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels, pixel_labels def snake_case ( self ): return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def snake_case ( self , __a , __a , __a , __a ): __lowerCAmelCase = MobileViTVaModel(config=__a ) model.to(__a ) model.eval() __lowerCAmelCase = model(__a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def snake_case ( self , __a , __a , __a , __a ): __lowerCAmelCase = self.num_labels __lowerCAmelCase = MobileViTVaForImageClassification(__a ) model.to(__a ) model.eval() __lowerCAmelCase = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case ( self , __a , __a , __a , __a ): __lowerCAmelCase = self.num_labels __lowerCAmelCase = MobileViTVaForSemanticSegmentation(__a ) model.to(__a ) model.eval() __lowerCAmelCase = model(__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __lowerCAmelCase = model(__a , labels=__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def snake_case ( self ): __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _UpperCamelCase ( __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[Any] =( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase : Union[str, Any] =( { """feature-extraction""": MobileViTVaModel, """image-classification""": MobileViTVaForImageClassification, """image-segmentation""": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase : Optional[int] =False __UpperCAmelCase : List[Any] =False __UpperCAmelCase : Tuple =False __UpperCAmelCase : List[Any] =False def snake_case ( self ): __lowerCAmelCase = MobileViTVaModelTester(self ) __lowerCAmelCase = MobileViTVaConfigTester(self , config_class=__a , has_text_modality=__a ) def snake_case ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="MobileViTV2 does not use inputs_embeds" ) def snake_case ( self ): pass @unittest.skip(reason="MobileViTV2 does not support input and output embeddings" ) def snake_case ( self ): pass @unittest.skip(reason="MobileViTV2 does not output attentions" ) def snake_case ( self ): pass @require_torch_multi_gpu @unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run." ) def snake_case ( self ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def snake_case ( self ): pass def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(__a ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def snake_case ( self ): def check_hidden_states_output(__a , __a , __a ): __lowerCAmelCase = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(__a , __a ) ) __lowerCAmelCase = outputs.hidden_states __lowerCAmelCase = 5 self.assertEqual(len(__a ) , __a ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __lowerCAmelCase = 2 for i in range(len(__a ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(__a , __a , __a ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__a ) @slow def snake_case ( self ): for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = MobileViTVaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def snake_case ( self ): return ( MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ) if is_vision_available() else None ) @slow def snake_case ( self ): __lowerCAmelCase = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ).to( __a ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=__a , return_tensors="pt" ).to(__a ) # forward pass with torch.no_grad(): __lowerCAmelCase = model(**__a ) # verify the logits __lowerCAmelCase = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __a ) __lowerCAmelCase = torch.tensor([-1.6_3_3_6e0_0, -7.3_2_0_4e-0_2, -5.1_8_8_3e-0_1] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4 ) ) @slow def snake_case ( self ): __lowerCAmelCase = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) __lowerCAmelCase = model.to(__a ) __lowerCAmelCase = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=__a , return_tensors="pt" ).to(__a ) # forward pass with torch.no_grad(): __lowerCAmelCase = model(**__a ) __lowerCAmelCase = outputs.logits # verify the logits __lowerCAmelCase = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , __a ) __lowerCAmelCase = torch.tensor( [ [[7.0_8_6_3, 7.1_5_2_5, 6.8_2_0_1], [6.6_9_3_1, 6.8_7_7_0, 6.8_9_3_3], [6.2_9_7_8, 7.0_3_6_6, 6.9_6_3_6]], [[-3.7_1_3_4, -3.6_7_1_2, -3.6_6_7_5], [-3.5_8_2_5, -3.3_5_4_9, -3.4_7_7_7], [-3.3_4_3_5, -3.3_9_7_9, -3.2_8_5_7]], [[-2.9_3_2_9, -2.8_0_0_3, -2.7_3_6_9], [-3.0_5_6_4, -2.4_7_8_0, -2.0_2_0_7], [-2.6_8_8_9, -1.9_2_9_8, -1.7_6_4_0]], ] , device=__a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __a , atol=1e-4 ) ) @slow def snake_case ( self ): __lowerCAmelCase = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) __lowerCAmelCase = model.to(__a ) __lowerCAmelCase = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=__a , return_tensors="pt" ).to(__a ) # forward pass with torch.no_grad(): __lowerCAmelCase = model(**__a ) __lowerCAmelCase = outputs.logits.detach().cpu() __lowerCAmelCase = image_processor.post_process_semantic_segmentation(outputs=__a , target_sizes=[(50, 60)] ) __lowerCAmelCase = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , __a ) __lowerCAmelCase = image_processor.post_process_semantic_segmentation(outputs=__a ) __lowerCAmelCase = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , __a )
57
import argparse import math import traceback import dateutil.parser as date_parser import requests def UpperCAmelCase ( a_ ) -> str: """simple docstring""" __A = {} __A = job["started_at"] __A = job["completed_at"] __A = date_parser.parse(a_ ) __A = date_parser.parse(a_ ) __A = round((end_datetime - start_datetime).total_seconds() / 60.0 ) __A = start __A = end __A = duration_in_min return job_info def UpperCAmelCase ( a_ , a_=None ) -> str: """simple docstring""" __A = None if token is not None: __A = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} __A = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' __A = requests.get(a_ , headers=a_ ).json() __A = {} try: job_time.update({job["name"]: extract_time_from_single_job(a_ ) for job in result["jobs"]} ) __A = math.ceil((result["total_count"] - 1_0_0) / 1_0_0 ) for i in range(a_ ): __A = requests.get(url + F'''&page={i + 2}''' , headers=a_ ).json() job_time.update({job["name"]: extract_time_from_single_job(a_ ) for job in result["jobs"]} ) return job_time except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} if __name__ == "__main__": SCREAMING_SNAKE_CASE :Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') SCREAMING_SNAKE_CASE :Optional[int] = parser.parse_args() SCREAMING_SNAKE_CASE :Union[str, Any] = get_job_time(args.workflow_run_id) SCREAMING_SNAKE_CASE :Optional[int] = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f'''{k}: {v["duration"]}''')
15
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _lowerCAmelCase ( )->Any: '''simple docstring''' snake_case_ = ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=a_ ) snake_case_ = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=a_ ) env_command_parser(subparsers=a_ ) launch_command_parser(subparsers=a_ ) tpu_command_parser(subparsers=a_ ) test_command_parser(subparsers=a_ ) # Let's go snake_case_ = parser.parse_args() if not hasattr(a_ , "func" ): parser.print_help() exit(1 ) # Run args.func(a_ ) if __name__ == "__main__": main()
159
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def UpperCAmelCase ( a_ ) -> List[str]: """simple docstring""" __A = args.pruning_method __A = args.threshold __A = args.model_name_or_path.rstrip("/" ) __A = args.target_model_path print(F'''Load fine-pruned model from {model_name_or_path}''' ) __A = torch.load(os.path.join(a_ , "pytorch_model.bin" ) ) __A = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: __A = tensor print(F'''Copied layer {name}''' ) elif "classifier" in name or "qa_output" in name: __A = tensor print(F'''Copied layer {name}''' ) elif "bias" in name: __A = tensor print(F'''Copied layer {name}''' ) else: if pruning_method == "magnitude": __A = MagnitudeBinarizer.apply(inputs=a_ , threshold=a_ ) __A = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "topK": if "mask_scores" in name: continue __A = name[:-6] __A = model[F'''{prefix_}mask_scores'''] __A = TopKBinarizer.apply(a_ , a_ ) __A = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue __A = name[:-6] __A = model[F'''{prefix_}mask_scores'''] __A = ThresholdBinarizer.apply(a_ , a_ , a_ ) __A = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "l0": if "mask_scores" in name: continue __A = name[:-6] __A = model[F'''{prefix_}mask_scores'''] __A , __A = -0.1, 1.1 __A = torch.sigmoid(a_ ) __A = s * (r - l) + l __A = s_bar.clamp(min=0.0 , max=1.0 ) __A = tensor * mask print(F'''Pruned layer {name}''' ) else: raise ValueError("Unknown pruning method" ) if target_model_path is None: __A = os.path.join( os.path.dirname(a_ ) , F'''bertarized_{os.path.basename(a_ )}''' ) if not os.path.isdir(a_ ): shutil.copytree(a_ , a_ ) print(F'''\nCreated folder {target_model_path}''' ) torch.save(a_ , os.path.join(a_ , "pytorch_model.bin" ) ) print("\nPruned model saved! See you later!" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :Tuple = argparse.ArgumentParser() parser.add_argument( '--pruning_method', choices=['l0', 'magnitude', 'topK', 'sigmoied_threshold'], type=str, required=True, help=( 'Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,' ' sigmoied_threshold = Soft movement pruning)' ), ) parser.add_argument( '--threshold', type=float, required=False, help=( 'For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.' 'For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.' 'Not needed for `l0`' ), ) parser.add_argument( '--model_name_or_path', type=str, required=True, help='Folder containing the model that was previously fine-pruned', ) parser.add_argument( '--target_model_path', default=None, type=str, required=False, help='Folder containing the model that was previously fine-pruned', ) SCREAMING_SNAKE_CASE :str = parser.parse_args() main(args)
15
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase_ = '''transfo-xl''' lowerCamelCase_ = ['''mems'''] lowerCamelCase_ = { '''n_token''': '''vocab_size''', '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , lowercase=2_6_7_7_3_5 , lowercase=[2_0_0_0_0, 4_0_0_0_0, 2_0_0_0_0_0] , lowercase=1_0_2_4 , lowercase=1_0_2_4 , lowercase=1_6 , lowercase=6_4 , lowercase=4_0_9_6 , lowercase=4 , lowercase=False , lowercase=1_8 , lowercase=1_6_0_0 , lowercase=1_0_0_0 , lowercase=True , lowercase=True , lowercase=0 , lowercase=-1 , lowercase=True , lowercase=0.1 , lowercase=0.0 , lowercase=True , lowercase="normal" , lowercase=0.01 , lowercase=0.01 , lowercase=0.02 , lowercase=1E-5 , lowercase=0 , **lowercase , ): """simple docstring""" A_ : Any = vocab_size A_ : Dict = [] self.cutoffs.extend(lowercase ) if proj_share_all_but_first: A_ : Optional[int] = [False] + [True] * len(self.cutoffs ) else: A_ : Dict = [False] + [False] * len(self.cutoffs ) A_ : Optional[Any] = d_model A_ : Optional[int] = d_embed A_ : Union[str, Any] = d_head A_ : str = d_inner A_ : Dict = div_val A_ : List[str] = pre_lnorm A_ : List[str] = n_layer A_ : Tuple = n_head A_ : Dict = mem_len A_ : Tuple = same_length A_ : str = attn_type A_ : Dict = clamp_len A_ : str = sample_softmax A_ : Optional[int] = adaptive A_ : int = dropout A_ : Optional[int] = dropatt A_ : Any = untie_r A_ : Optional[int] = init A_ : List[Any] = init_range A_ : Optional[Any] = proj_init_std A_ : str = init_std A_ : Tuple = layer_norm_epsilon super().__init__(eos_token_id=lowercase , **lowercase ) @property def lowerCAmelCase_ ( self ): """simple docstring""" logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" raise NotImplementedError( F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
140
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE :List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :int = {'vocab_file': 'spiece.model'} SCREAMING_SNAKE_CASE :Union[str, Any] = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), } } SCREAMING_SNAKE_CASE :int = { 'google/bigbird-roberta-base': 4096, 'google/bigbird-roberta-large': 4096, 'google/bigbird-base-trivia-itc': 4096, } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["input_ids", "attention_mask"] snake_case_ = [] def __init__( self : Any ,A : List[str] ,A : str="<unk>" ,A : int="<s>" ,A : Union[str, Any]="</s>" ,A : List[str]="<pad>" ,A : int="[SEP]" ,A : Optional[Any]="[MASK]" ,A : Tuple="[CLS]" ,A : Optional[Dict[str, Any]] = None ,**A : Any ,): __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else bos_token __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else eos_token __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else unk_token __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else pad_token __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else cls_token __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else sep_token # Mask token behave like a normal word, i.e. include the space before it __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else mask_token __A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A ,eos_token=A ,unk_token=A ,pad_token=A ,sep_token=A ,mask_token=A ,cls_token=A ,sp_model_kwargs=self.sp_model_kwargs ,**A ,) __A = vocab_file __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) @property def UpperCamelCase_ ( self : List[str] ): return self.sp_model.get_piece_size() def UpperCamelCase_ ( self : Optional[Any] ): __A = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ): __A = self.__dict__.copy() __A = None return state def __setstate__( self : str ,A : Optional[Any] ): __A = d # for backward compatibility if not hasattr(self ,"sp_model_kwargs" ): __A = {} __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ ( self : Any ,A : str ): return self.sp_model.encode(A ,out_type=A ) def UpperCamelCase_ ( self : List[str] ,A : Tuple ): return self.sp_model.piece_to_id(A ) def UpperCamelCase_ ( self : List[Any] ,A : Tuple ): __A = self.sp_model.IdToPiece(A ) return token def UpperCamelCase_ ( self : List[Any] ,A : int ): __A = [] __A = "" __A = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A ) + token __A = True __A = [] else: current_sub_tokens.append(A ) __A = False out_string += self.sp_model.decode(A ) return out_string.strip() def UpperCamelCase_ ( self : Tuple ,A : List[int] ,A : bool = False ,A : bool = None ,A : bool = True ,**A : Union[str, Any] ,): __A = kwargs.pop("use_source_tokenizer" ,A ) __A = self.convert_ids_to_tokens(A ,skip_special_tokens=A ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 __A = [] __A = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(A ) ) __A = [] sub_texts.append(A ) else: current_sub_text.append(A ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(A ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: __A = re.sub(R" (\[(MASK|SEP)\])" ,R"\1" ," ".join(A ) ) else: __A = "".join(A ) __A = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: __A = self.clean_up_tokenization(A ) return clean_text else: return text def UpperCamelCase_ ( self : str ,A : str ,A : Optional[str] = None ): if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __A = os.path.join( A ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,A ) elif not os.path.isfile(self.vocab_file ): with open(A ,"wb" ) as fi: __A = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,) def UpperCamelCase_ ( self : Dict ,A : List[int] ,A : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __A = [self.cls_token_id] __A = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ ( self : Optional[int] ,A : List[int] ,A : Optional[List[int]] = None ,A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A ,token_ids_a=A ,already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1] + ([0] * len(A )) + [1] def UpperCamelCase_ ( self : Any ,A : List[int] ,A : Optional[List[int]] = None ): __A = [self.sep_token_id] __A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
15
0
"""simple docstring""" import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin lowerCamelCase_ : int = logging.get_logger(__name__) enable_full_determinism() class _UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ : Union[str, Any] = UNetaDModel lowercase_ : Any = """sample""" @property def lowerCamelCase_ ( self ): """simple docstring""" A_ : List[str] = 4 A_ : Optional[Any] = 3 A_ : List[str] = (3_2, 3_2) A_ : List[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(snake_case_ ) A_ : Tuple = torch.tensor([1_0] ).to(snake_case_ ) return {"sample": noise, "timestep": time_step} @property def lowerCamelCase_ ( self ): """simple docstring""" return (3, 3_2, 3_2) @property def lowerCamelCase_ ( self ): """simple docstring""" return (3, 3_2, 3_2) def lowerCamelCase_ ( self ): """simple docstring""" A_ : List[Any] = { 'block_out_channels': (3_2, 6_4), 'down_block_types': ('DownBlock2D', 'AttnDownBlock2D'), 'up_block_types': ('AttnUpBlock2D', 'UpBlock2D'), 'attention_head_dim': 3, 'out_channels': 3, 'in_channels': 3, 'layers_per_block': 2, 'sample_size': 3_2, } A_ : List[str] = self.dummy_input return init_dict, inputs_dict class _UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ : Optional[Any] = UNetaDModel lowercase_ : Tuple = """sample""" @property def lowerCamelCase_ ( self ): """simple docstring""" A_ : Optional[Any] = 4 A_ : Dict = 4 A_ : Any = (3_2, 3_2) A_ : Tuple = floats_tensor((batch_size, num_channels) + sizes ).to(snake_case_ ) A_ : int = torch.tensor([1_0] ).to(snake_case_ ) return {"sample": noise, "timestep": time_step} @property def lowerCamelCase_ ( self ): """simple docstring""" return (4, 3_2, 3_2) @property def lowerCamelCase_ ( self ): """simple docstring""" return (4, 3_2, 3_2) def lowerCamelCase_ ( self ): """simple docstring""" A_ : Any = { 'sample_size': 3_2, 'in_channels': 4, 'out_channels': 4, 'layers_per_block': 2, 'block_out_channels': (3_2, 6_4), 'attention_head_dim': 3_2, 'down_block_types': ('DownBlock2D', 'DownBlock2D'), 'up_block_types': ('UpBlock2D', 'UpBlock2D'), } A_ : List[str] = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self ): """simple docstring""" A_ , A_ : str = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(snake_case_ ) A_ : Dict = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' , 'This test is supposed to run on GPU' ) def lowerCamelCase_ ( self ): """simple docstring""" A_ , A_ : Optional[Any] = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=snake_case_ ) model.to(snake_case_ ) A_ : Optional[Any] = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' , 'This test is supposed to run on GPU' ) def lowerCamelCase_ ( self ): """simple docstring""" A_ , A_ : Any = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=snake_case_ ) model_accelerate.to(snake_case_ ) model_accelerate.eval() A_ : str = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) A_ : Any = noise.to(snake_case_ ) A_ : Any = torch.tensor([1_0] * noise.shape[0] ).to(snake_case_ ) A_ : Optional[int] = model_accelerate(snake_case_ , snake_case_ )['sample'] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() A_ , A_ : Tuple = UNetaDModel.from_pretrained( 'fusing/unet-ldm-dummy-update' , output_loading_info=snake_case_ , low_cpu_mem_usage=snake_case_ ) model_normal_load.to(snake_case_ ) model_normal_load.eval() A_ : Tuple = model_normal_load(snake_case_ , snake_case_ )['sample'] assert torch_all_close(snake_case_ , snake_case_ , rtol=1E-3 ) def lowerCamelCase_ ( self ): """simple docstring""" A_ : Optional[int] = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' ) model.eval() model.to(snake_case_ ) A_ : Optional[int] = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) A_ : Dict = noise.to(snake_case_ ) A_ : Union[str, Any] = torch.tensor([1_0] * noise.shape[0] ).to(snake_case_ ) with torch.no_grad(): A_ : Optional[int] = model(snake_case_ , snake_case_ ).sample A_ : Union[str, Any] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off A_ : Dict = torch.tensor([-13.32_58, -20.11_00, -15.98_73, -17.66_17, -23.05_96, -17.94_19, -13.36_75, -16.18_89, -12.38_00] ) # fmt: on self.assertTrue(torch_all_close(snake_case_ , snake_case_ , rtol=1E-3 ) ) class _UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ : int = UNetaDModel lowercase_ : str = """sample""" @property def lowerCamelCase_ ( self , snake_case_=(3_2, 3_2) ): """simple docstring""" A_ : int = 4 A_ : int = 3 A_ : Tuple = floats_tensor((batch_size, num_channels) + sizes ).to(snake_case_ ) A_ : List[str] = torch.tensor(batch_size * [1_0] ).to(dtype=torch.intaa , device=snake_case_ ) return {"sample": noise, "timestep": time_step} @property def lowerCamelCase_ ( self ): """simple docstring""" return (3, 3_2, 3_2) @property def lowerCamelCase_ ( self ): """simple docstring""" return (3, 3_2, 3_2) def lowerCamelCase_ ( self ): """simple docstring""" A_ : Optional[int] = { 'block_out_channels': [3_2, 6_4, 6_4, 6_4], 'in_channels': 3, 'layers_per_block': 1, 'out_channels': 3, 'time_embedding_type': 'fourier', 'norm_eps': 1E-6, 'mid_block_scale_factor': math.sqrt(2.0 ), 'norm_num_groups': None, 'down_block_types': [ 'SkipDownBlock2D', 'AttnSkipDownBlock2D', 'SkipDownBlock2D', 'SkipDownBlock2D', ], 'up_block_types': [ 'SkipUpBlock2D', 'SkipUpBlock2D', 'AttnSkipUpBlock2D', 'SkipUpBlock2D', ], } A_ : int = self.dummy_input return init_dict, inputs_dict @slow def lowerCamelCase_ ( self ): """simple docstring""" A_ , A_ : Any = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' , output_loading_info=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(snake_case_ ) A_ : Dict = self.dummy_input A_ : List[Any] = floats_tensor((4, 3) + (2_5_6, 2_5_6) ).to(snake_case_ ) A_ : Optional[Any] = noise A_ : str = model(**snake_case_ ) assert image is not None, "Make sure output is not None" @slow def lowerCamelCase_ ( self ): """simple docstring""" A_ : int = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' ) model.to(snake_case_ ) A_ : str = 4 A_ : Optional[int] = 3 A_ : Optional[int] = (2_5_6, 2_5_6) A_ : Tuple = torch.ones((batch_size, num_channels) + sizes ).to(snake_case_ ) A_ : Optional[int] = torch.tensor(batch_size * [1E-4] ).to(snake_case_ ) with torch.no_grad(): A_ : Any = model(snake_case_ , snake_case_ ).sample A_ : int = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off A_ : str = torch.tensor([-4_8_4_2.8_6_9_1, -6_4_9_9.6_6_3_1, -3_8_0_0.1_9_5_3, -7_9_7_8.2_6_8_6, -1_0_9_8_0.7_1_2_9, -2_0_0_2_8.8_5_3_5, 8_1_4_8.2_8_2_2, 2_3_4_2.2_9_0_5, 5_6_7.7_6_0_8] ) # fmt: on self.assertTrue(torch_all_close(snake_case_ , snake_case_ , rtol=1E-2 ) ) def lowerCamelCase_ ( self ): """simple docstring""" A_ : Union[str, Any] = UNetaDModel.from_pretrained('fusing/ncsnpp-ffhq-ve-dummy-update' ) model.to(snake_case_ ) A_ : Optional[int] = 4 A_ : str = 3 A_ : Dict = (3_2, 3_2) A_ : Union[str, Any] = torch.ones((batch_size, num_channels) + sizes ).to(snake_case_ ) A_ : int = torch.tensor(batch_size * [1E-4] ).to(snake_case_ ) with torch.no_grad(): A_ : Optional[Any] = model(snake_case_ , snake_case_ ).sample A_ : Union[str, Any] = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off A_ : int = torch.tensor([-0.03_25, -0.09_00, -0.08_69, -0.03_32, -0.07_25, -0.02_70, -0.01_01, 0.02_27, 0.02_56] ) # fmt: on self.assertTrue(torch_all_close(snake_case_ , snake_case_ , rtol=1E-2 ) ) def lowerCamelCase_ ( self ): """simple docstring""" pass
286
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'): SCREAMING_SNAKE_CASE :Any = { 'linear': PIL.Image.Resampling.BILINEAR, 'bilinear': PIL.Image.Resampling.BILINEAR, 'bicubic': PIL.Image.Resampling.BICUBIC, 'lanczos': PIL.Image.Resampling.LANCZOS, 'nearest': PIL.Image.Resampling.NEAREST, } else: SCREAMING_SNAKE_CASE :int = { 'linear': PIL.Image.LINEAR, 'bilinear': PIL.Image.BILINEAR, 'bicubic': PIL.Image.BICUBIC, 'lanczos': PIL.Image.LANCZOS, 'nearest': PIL.Image.NEAREST, } def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" __A = (images / 2 + 0.5).clamp(0 , 1 ) __A = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __A = numpy_to_pil(a_ ) return images def UpperCAmelCase ( a_ ) -> int: """simple docstring""" if images.ndim == 3: __A = images[None, ...] __A = (images * 2_5_5).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images __A = [Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: __A = [Image.fromarray(a_ ) for image in images] return pil_images
15
0
"""simple docstring""" import math def lowerCamelCase__ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : int ) -> float: if ( not isinstance(a_ , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('power_factor must be a valid float value between -1 and 1.' ) return apparent_power * power_factor def lowerCamelCase__ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[int] ) -> float: if ( not isinstance(a_ , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('power_factor must be a valid float value between -1 and 1.' ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
183
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE :Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :List[Any] = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = "yolos" def __init__( self : Any ,A : Optional[Any]=7_68 ,A : Dict=12 ,A : Any=12 ,A : str=30_72 ,A : Any="gelu" ,A : str=0.0 ,A : List[str]=0.0 ,A : Dict=0.02 ,A : int=1E-12 ,A : Tuple=[5_12, 8_64] ,A : List[Any]=16 ,A : str=3 ,A : str=True ,A : Any=1_00 ,A : Dict=True ,A : Dict=False ,A : Tuple=1 ,A : Union[str, Any]=5 ,A : Optional[Any]=2 ,A : Union[str, Any]=5 ,A : int=2 ,A : int=0.1 ,**A : List[str] ,): super().__init__(**A ) __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = initializer_range __A = layer_norm_eps __A = image_size __A = patch_size __A = num_channels __A = qkv_bias __A = num_detection_tokens __A = use_mid_position_embeddings __A = auxiliary_loss # Hungarian matcher __A = class_cost __A = bbox_cost __A = giou_cost # Loss coefficients __A = bbox_loss_coefficient __A = giou_loss_coefficient __A = eos_coefficient class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = version.parse("1.11" ) @property def UpperCamelCase_ ( self : str ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def UpperCamelCase_ ( self : List[Any] ): return 1E-4 @property def UpperCamelCase_ ( self : Optional[Any] ): return 12
15
0
'''simple docstring''' A_ : List[str] = '0.18.2' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
215
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) SCREAMING_SNAKE_CASE :List[str] = 'pytorch_model.bin' SCREAMING_SNAKE_CASE :str = 'pytorch_model.bin.index.json' SCREAMING_SNAKE_CASE :Optional[int] = 'adapter_config.json' SCREAMING_SNAKE_CASE :Dict = 'adapter_model.bin' SCREAMING_SNAKE_CASE :Dict = 'adapter_model.safetensors' SCREAMING_SNAKE_CASE :str = 'tf_model.h5' SCREAMING_SNAKE_CASE :List[Any] = 'tf_model.h5.index.json' SCREAMING_SNAKE_CASE :str = 'model.ckpt' SCREAMING_SNAKE_CASE :List[Any] = 'flax_model.msgpack' SCREAMING_SNAKE_CASE :Optional[int] = 'flax_model.msgpack.index.json' SCREAMING_SNAKE_CASE :Tuple = 'model.safetensors' SCREAMING_SNAKE_CASE :List[Any] = 'model.safetensors.index.json' SCREAMING_SNAKE_CASE :str = 'config.json' SCREAMING_SNAKE_CASE :int = 'preprocessor_config.json' SCREAMING_SNAKE_CASE :Optional[Any] = FEATURE_EXTRACTOR_NAME SCREAMING_SNAKE_CASE :Optional[int] = 'generation_config.json' SCREAMING_SNAKE_CASE :List[str] = 'modelcard.json' SCREAMING_SNAKE_CASE :Optional[int] = '▁' SCREAMING_SNAKE_CASE :Optional[Any] = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility SCREAMING_SNAKE_CASE :str = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. SCREAMING_SNAKE_CASE :Optional[Any] = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] SCREAMING_SNAKE_CASE :List[Any] = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" if version.parse(a_ ) < version.parse(a_ ): if "dev" in min_version: __A = ( "This example requires a source install from HuggingFace Transformers (see " "`https://huggingface.co/docs/transformers/installation#install-from-source`)," ) else: __A = F'''This example requires a minimum version of {min_version},''' error_message += F''' but the version found is {__version__}.\n''' raise ImportError( error_message + "Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other " "versions of HuggingFace Transformers." )
15
0
from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def lowerCAmelCase__ ( a__: int , a__: List[str] , a__: Optional[int]=1e-12 ) -> List[str]: '''simple docstring''' _UpperCAmelCase = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(a_ , axis=1 ) , a_min=a_ ) ).T _UpperCAmelCase = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(a_ , axis=1 ) , a_min=a_ ) ).T return jnp.matmul(a_ , norm_emb_a.T ) class __a ( nn.Module ): _a : Union[str, Any] = 42 _a : List[str] = jnp.floataa def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = FlaxCLIPVisionModule(self.config.vision_config ) _UpperCAmelCase = nn.Dense(self.config.projection_dim , use_bias=_SCREAMING_SNAKE_CASE , dtype=self.dtype ) _UpperCAmelCase = self.param('concept_embeds' , jax.nn.initializers.ones , (17, self.config.projection_dim) ) _UpperCAmelCase = self.param( 'special_care_embeds' , jax.nn.initializers.ones , (3, self.config.projection_dim) ) _UpperCAmelCase = self.param('concept_embeds_weights' , jax.nn.initializers.ones , (17,) ) _UpperCAmelCase = self.param('special_care_embeds_weights' , jax.nn.initializers.ones , (3,) ) def __call__( self , _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.vision_model(_SCREAMING_SNAKE_CASE )[1] _UpperCAmelCase = self.visual_projection(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = jax_cosine_distance(_SCREAMING_SNAKE_CASE , self.special_care_embeds ) _UpperCAmelCase = jax_cosine_distance(_SCREAMING_SNAKE_CASE , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs _UpperCAmelCase = 0.0 _UpperCAmelCase = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment _UpperCAmelCase = jnp.round(_SCREAMING_SNAKE_CASE , 3 ) _UpperCAmelCase = jnp.any(special_scores > 0 , axis=1 , keepdims=_SCREAMING_SNAKE_CASE ) # Use a lower threshold if an image has any special care concept _UpperCAmelCase = is_special_care * 0.01 _UpperCAmelCase = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment _UpperCAmelCase = jnp.round(_SCREAMING_SNAKE_CASE , 3 ) _UpperCAmelCase = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class __a ( __SCREAMING_SNAKE_CASE ): _a : Optional[int] = CLIPConfig _a : Optional[Any] = 'clip_input' _a : List[Any] = FlaxStableDiffusionSafetyCheckerModule def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = jnp.floataa , _SCREAMING_SNAKE_CASE = True , **_SCREAMING_SNAKE_CASE , ) -> Any: """simple docstring""" if input_shape is None: _UpperCAmelCase = (1, 224, 224, 3) _UpperCAmelCase = self.module_class(config=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , input_shape=_SCREAMING_SNAKE_CASE , seed=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE , _do_init=_do_init ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> str: """simple docstring""" _UpperCAmelCase = jax.random.normal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase , _UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = {'params': params_rng, 'dropout': dropout_rng} _UpperCAmelCase = self.module.init(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )['params'] return random_params def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = jnp.transpose(_SCREAMING_SNAKE_CASE , (0, 2, 3, 1) ) return self.module.apply( {'params': params or self.params} , jnp.array(_SCREAMING_SNAKE_CASE , dtype=jnp.floataa ) , rngs={} , )
329
def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" __A = [0] * len(a_ ) __A = [] __A = [1] * len(a_ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(a_ ) ): if indegree[i] == 0: queue.append(a_ ) while queue: __A = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: __A = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(a_ ) print(max(a_ ) ) # Adjacency list of Graph SCREAMING_SNAKE_CASE :List[Any] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
15
0
'''simple docstring''' import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL _UpperCAmelCase : str = version.parse(version.parse(torch.__version__).base_version) < version.parse("""1.11""") def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=False, ): output_path.parent.mkdir(parents=a_, exist_ok=a_) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( a_, a_, f=output_path.as_posix(), input_names=a_, output_names=a_, dynamic_axes=a_, do_constant_folding=a_, use_external_data_format=a_, enable_onnx_checker=a_, opset_version=a_, ) else: export( a_, a_, f=output_path.as_posix(), input_names=a_, output_names=a_, dynamic_axes=a_, do_constant_folding=a_, opset_version=a_, ) @torch.no_grad() def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = False): __lowerCAmelCase = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __lowerCAmelCase = '''cuda''' elif fpaa and not torch.cuda.is_available(): raise ValueError('''`float16` model export is only supported on GPUs with CUDA''') else: __lowerCAmelCase = '''cpu''' __lowerCAmelCase = Path(a_) # VAE DECODER __lowerCAmelCase = AutoencoderKL.from_pretrained(model_path + '''/vae''') __lowerCAmelCase = vae_decoder.config.latent_channels # forward only through the decoder part __lowerCAmelCase = vae_decoder.decode onnx_export( a_, model_args=( torch.randn(1, a_, 2_5, 2_5).to(device=a_, dtype=a_), False, ), output_path=output_path / '''vae_decoder''' / '''model.onnx''', ordered_input_names=['''latent_sample''', '''return_dict'''], output_names=['''sample'''], dynamic_axes={ '''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, }, opset=a_, ) del vae_decoder if __name__ == "__main__": _UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( """--model_path""", type=str, required=True, help="""Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).""", ) parser.add_argument("""--output_path""", type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--opset""", default=1_4, type=int, help="""The version of the ONNX operator set to use.""", ) parser.add_argument("""--fp16""", action="""store_true""", default=False, help="""Export the models in `float16` mode""") _UpperCAmelCase : int = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("""SD: Done: ONNX""")
174
import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def UpperCAmelCase ( a_ ) -> List[str]: """simple docstring""" return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items() ) def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" __A = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue __A = key.replace("heads.cmd.mim_head.cls.predictions" , "mmm_image_head" ) __A = key.replace("heads.cmd.mlm_head.cls.predictions" , "mmm_text_head" ) __A = key.replace("heads.cmd.itm_head.cls" , "itm_head" ) __A = key.replace("heads.cmd.itm_head.pooler" , "itm_head.pooler" ) __A = key.replace("heads.cmd.clip_head.logit_scale" , "flava.logit_scale" ) __A = key.replace("heads.fairseq_mlm.cls.predictions" , "mlm_head" ) __A = key.replace("heads.imagenet.mim_head.cls.predictions" , "mim_head" ) __A = key.replace("mm_text_projection" , "flava.text_to_mm_projection" ) __A = key.replace("mm_image_projection" , "flava.image_to_mm_projection" ) __A = key.replace("image_encoder.module" , "flava.image_model" ) __A = key.replace("text_encoder.module" , "flava.text_model" ) __A = key.replace("mm_encoder.module.encoder.cls_token" , "flava.multimodal_model.cls_token" ) __A = key.replace("mm_encoder.module" , "flava.multimodal_model" ) __A = key.replace("text_projection" , "flava.text_projection" ) __A = key.replace("image_projection" , "flava.image_projection" ) __A = value.float() for key, value in codebook_state_dict.items(): __A = value return upgrade @torch.no_grad() def UpperCAmelCase ( a_ , a_ , a_ , a_=None ) -> Tuple: """simple docstring""" if config_path is not None: __A = FlavaConfig.from_pretrained(a_ ) else: __A = FlavaConfig() __A = FlavaForPreTraining(a_ ).eval() __A = convert_dalle_checkpoint(a_ , a_ , save_checkpoint=a_ ) if os.path.exists(a_ ): __A = torch.load(a_ , map_location="cpu" ) else: __A = torch.hub.load_state_dict_from_url(a_ , map_location="cpu" ) __A = upgrade_state_dict(a_ , a_ ) hf_model.load_state_dict(a_ ) __A = hf_model.state_dict() __A = count_parameters(a_ ) __A = count_parameters(a_ ) + count_parameters(a_ ) assert torch.allclose(a_ , a_ , atol=1E-3 ) hf_model.save_pretrained(a_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :Any = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--codebook_path', default=None, type=str, help='Path to flava codebook checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') SCREAMING_SNAKE_CASE :Optional[int] = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
15
0
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__) UpperCamelCase__ : str = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class _UpperCamelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' _A : Union[str, Any] = '''time_series_transformer''' _A : int = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Tuple , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : str = "student_t" , lowerCAmelCase__ : str = "nll" , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowerCAmelCase__ : Optional[Union[str, bool]] = "mean" , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : str = "gelu" , lowerCAmelCase__ : int = 6_4 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : int = 1_0_0 , lowerCAmelCase__ : float = 0.02 , lowerCAmelCase__ : Union[str, Any]=True , **lowerCAmelCase__ : Optional[int] , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = prediction_length __SCREAMING_SNAKE_CASE : Optional[Any] = context_length or prediction_length __SCREAMING_SNAKE_CASE : Optional[Any] = distribution_output __SCREAMING_SNAKE_CASE : Optional[Any] = loss __SCREAMING_SNAKE_CASE : Tuple = input_size __SCREAMING_SNAKE_CASE : Any = num_time_features __SCREAMING_SNAKE_CASE : List[Any] = lags_sequence __SCREAMING_SNAKE_CASE : Dict = scaling __SCREAMING_SNAKE_CASE : List[str] = num_dynamic_real_features __SCREAMING_SNAKE_CASE : Tuple = num_static_real_features __SCREAMING_SNAKE_CASE : List[Any] = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(lowerCAmelCase__ ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) __SCREAMING_SNAKE_CASE : Union[str, Any] = cardinality else: __SCREAMING_SNAKE_CASE : List[Any] = [0] if embedding_dimension and num_static_categorical_features > 0: if len(lowerCAmelCase__ ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) __SCREAMING_SNAKE_CASE : Any = embedding_dimension else: __SCREAMING_SNAKE_CASE : Dict = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] __SCREAMING_SNAKE_CASE : List[str] = num_parallel_samples # Transformer architecture configuration __SCREAMING_SNAKE_CASE : List[str] = input_size * len(lowerCAmelCase__ ) + self._number_of_features __SCREAMING_SNAKE_CASE : Dict = d_model __SCREAMING_SNAKE_CASE : Dict = encoder_attention_heads __SCREAMING_SNAKE_CASE : Optional[int] = decoder_attention_heads __SCREAMING_SNAKE_CASE : Optional[int] = encoder_ffn_dim __SCREAMING_SNAKE_CASE : int = decoder_ffn_dim __SCREAMING_SNAKE_CASE : Optional[Any] = encoder_layers __SCREAMING_SNAKE_CASE : Tuple = decoder_layers __SCREAMING_SNAKE_CASE : Optional[Any] = dropout __SCREAMING_SNAKE_CASE : str = attention_dropout __SCREAMING_SNAKE_CASE : Union[str, Any] = activation_dropout __SCREAMING_SNAKE_CASE : str = encoder_layerdrop __SCREAMING_SNAKE_CASE : List[Any] = decoder_layerdrop __SCREAMING_SNAKE_CASE : Optional[int] = activation_function __SCREAMING_SNAKE_CASE : List[Any] = init_std __SCREAMING_SNAKE_CASE : str = use_cache super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def UpperCamelCase__ ( self : Optional[Any] ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
112
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE :Optional[int] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Optional[int] = {'vocab_file': 'sentencepiece.bpe.model'} SCREAMING_SNAKE_CASE :Tuple = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', } } SCREAMING_SNAKE_CASE :List[Any] = { 'camembert-base': 512, } SCREAMING_SNAKE_CASE :List[str] = '▁' class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["input_ids", "attention_mask"] def __init__( self : Optional[Any] ,A : List[str] ,A : List[Any]="<s>" ,A : Tuple="</s>" ,A : Any="</s>" ,A : Optional[Any]="<s>" ,A : Tuple="<unk>" ,A : str="<pad>" ,A : int="<mask>" ,A : Optional[int]=["<s>NOTUSED", "</s>NOTUSED"] ,A : Optional[Dict[str, Any]] = None ,**A : Optional[Any] ,): # Mask token behave like a normal word, i.e. include the space before it __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else mask_token __A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A ,eos_token=A ,unk_token=A ,sep_token=A ,cls_token=A ,pad_token=A ,mask_token=A ,additional_special_tokens=A ,sp_model_kwargs=self.sp_model_kwargs ,**A ,) __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A ) ) __A = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> __A = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3} __A = len(self.fairseq_tokens_to_ids ) __A = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) __A = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCamelCase_ ( self : int ,A : List[int] ,A : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __A = [self.cls_token_id] __A = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase_ ( self : Dict ,A : List[int] ,A : Optional[List[int]] = None ,A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A ,token_ids_a=A ,already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1] def UpperCamelCase_ ( self : Union[str, Any] ,A : List[int] ,A : Optional[List[int]] = None ): __A = [self.sep_token_id] __A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCamelCase_ ( self : Dict ): return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def UpperCamelCase_ ( self : int ): __A = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase_ ( self : Any ,A : str ): return self.sp_model.encode(A ,out_type=A ) def UpperCamelCase_ ( self : List[str] ,A : Dict ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(A ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(A ) def UpperCamelCase_ ( self : Dict ,A : Tuple ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCamelCase_ ( self : Optional[Any] ,A : Dict ): __A = [] __A = "" __A = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A ) + token __A = True __A = [] else: current_sub_tokens.append(A ) __A = False out_string += self.sp_model.decode(A ) return out_string.strip() def __getstate__( self : Dict ): __A = self.__dict__.copy() __A = None return state def __setstate__( self : Union[str, Any] ,A : Any ): __A = d # for backward compatibility if not hasattr(self ,"sp_model_kwargs" ): __A = {} __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ ( self : Any ,A : str ,A : Optional[str] = None ): if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __A = os.path.join( A ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,A ) elif not os.path.isfile(self.vocab_file ): with open(A ,"wb" ) as fi: __A = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
15
0
from sklearn.metrics import recall_score import datasets _UpperCAmelCase : Union[str, Any] = '\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n' _UpperCAmelCase : str = '\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the \'positive class\' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n - `\'binary\'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `\'micro\'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `\'macro\'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `\'weighted\'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `\'samples\'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `\'warn\'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {\'recall\': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {\'recall\': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {\'recall\': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'macro\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'micro\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'weighted\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'recall\': array([1., 0., 0.])}\n' _UpperCAmelCase : Any = '\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): def A_ ( self : Dict ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32' ) ), 'references': datasets.Sequence(datasets.Value('int32' ) ), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) , reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html'] , ) def A_ ( self : Any , UpperCAmelCase : List[str] , UpperCAmelCase : str , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : int=1 , UpperCAmelCase : Optional[int]="binary" , UpperCAmelCase : Any=None , UpperCAmelCase : str="warn" , ) -> Optional[int]: lowerCamelCase__ : Tuple = recall_score( UpperCAmelCase , UpperCAmelCase , labels=UpperCAmelCase , pos_label=UpperCAmelCase , average=UpperCAmelCase , sample_weight=UpperCAmelCase , zero_division=UpperCAmelCase , ) return {"recall": float(UpperCAmelCase ) if score.size == 1 else score}
50
def UpperCAmelCase ( a_ ) -> list: """simple docstring""" if len(a_ ) <= 1: return [tuple(a_ )] __A = [] def generate(a_ , a_ ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , a_ ) for i in range(k - 1 ): if k % 2 == 0: # k is even __A , __A = arr[k - 1], arr[i] else: # k is odd __A , __A = arr[k - 1], arr[0] generate(k - 1 , a_ ) generate(len(a_ ) , a_ ) return res if __name__ == "__main__": SCREAMING_SNAKE_CASE :int = input('Enter numbers separated by a comma:\n').strip() SCREAMING_SNAKE_CASE :Dict = [int(item) for item in user_input.split(',')] print(heaps(arr))
15
0
import argparse import os import re import packaging.version __lowercase = 'examples/' __lowercase = { 'examples': (re.compile(r'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(r'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(r'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'\1version="VERSION",'), 'doc': (re.compile(r'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), 'release = "VERSION"\n'), } __lowercase = { 'init': 'src/transformers/__init__.py', 'setup': 'setup.py', } __lowercase = 'README.md' def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' with open(a_ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCamelCase :Optional[int] = f.read() __UpperCamelCase , __UpperCamelCase :int = REPLACE_PATTERNS[pattern] __UpperCamelCase :Union[str, Any] = replace.replace('''VERSION''' , a_ ) __UpperCamelCase :Optional[Any] = re_pattern.sub(a_ , a_ ) with open(a_ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(a_ ) def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' for folder, directories, fnames in os.walk(a_ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(a_ , a_ ) , a_ , pattern='''examples''' ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(a_ , a_ , a_ ) if not patch: update_version_in_examples(a_ ) def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :int = '''🤗 Transformers currently provides the following architectures''' __UpperCamelCase :List[str] = '''1. Want to contribute a new model?''' with open(a_ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCamelCase :Dict = f.readlines() # Find the start of the list. __UpperCamelCase :Optional[int] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __UpperCamelCase :Union[str, Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): __UpperCamelCase :Union[str, Any] = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(a_ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(a_ ) def lowerCamelCase ( ): '''simple docstring''' with open(REPLACE_FILES['''init'''] , '''r''' ) as f: __UpperCamelCase :Any = f.read() __UpperCamelCase :Any = REPLACE_PATTERNS['''init'''][0].search(a_ ).groups()[0] return packaging.version.parse(a_ ) def lowerCamelCase ( SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __UpperCamelCase :Any = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: __UpperCamelCase :Union[str, Any] = default_version.base_version elif patch: __UpperCamelCase :Optional[Any] = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: __UpperCamelCase :Union[str, Any] = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. __UpperCamelCase :List[Any] = input(f"""Which version are you releasing? [{default_version}]""" ) if len(a_ ) == 0: __UpperCamelCase :Dict = default_version print(f"""Updating version to {version}.""" ) global_version_update(a_ , patch=a_ ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :Union[str, Any] = get_version() __UpperCamelCase :List[str] = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" __UpperCamelCase :List[Any] = current_version.base_version # Check with the user we got that right. __UpperCamelCase :Any = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(a_ ) == 0: __UpperCamelCase :Dict = dev_version print(f"""Updating version to {version}.""" ) global_version_update(a_ ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": __lowercase = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') __lowercase = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
43
def UpperCAmelCase ( a_ ) -> list: """simple docstring""" if len(a_ ) <= 1: return lst __A = 1 while i < len(a_ ): if lst[i - 1] <= lst[i]: i += 1 else: __A , __A = lst[i], lst[i - 1] i -= 1 if i == 0: __A = 1 return lst if __name__ == "__main__": SCREAMING_SNAKE_CASE :List[Any] = input('Enter numbers separated by a comma:\n').strip() SCREAMING_SNAKE_CASE :List[Any] = [int(item) for item in user_input.split(',')] print(gnome_sort(unsorted))
15
0
"""simple docstring""" def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = len(a_ ) __lowerCAmelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __lowerCAmelCase = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): __lowerCAmelCase = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: __lowerCAmelCase = subset[i - 1][j] if arr[i - 1] <= j: __lowerCAmelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
57
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = 42 snake_case_ = 42 snake_case_ = None class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = 2 @register_to_config def __init__( self : str ,A : float = 0.02 ,A : float = 1_00 ,A : float = 1.0_07 ,A : float = 80 ,A : float = 0.05 ,A : float = 50 ,): # standard deviation of the initial noise distribution __A = sigma_max # setable values __A = None __A = None __A = None # sigma(t_i) def UpperCamelCase_ ( self : str ,A : torch.FloatTensor ,A : Optional[int] = None ): return sample def UpperCamelCase_ ( self : Dict ,A : int ,A : Union[str, torch.device] = None ): __A = num_inference_steps __A = np.arange(0 ,self.num_inference_steps )[::-1].copy() __A = torch.from_numpy(A ).to(A ) __A = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] __A = torch.tensor(A ,dtype=torch.floataa ,device=A ) def UpperCamelCase_ ( self : Union[str, Any] ,A : torch.FloatTensor ,A : float ,A : Optional[torch.Generator] = None ): if self.config.s_min <= sigma <= self.config.s_max: __A = min(self.config.s_churn / self.num_inference_steps ,2**0.5 - 1 ) else: __A = 0 # sample eps ~ N(0, S_noise^2 * I) __A = self.config.s_noise * randn_tensor(sample.shape ,generator=A ).to(sample.device ) __A = sigma + gamma * sigma __A = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def UpperCamelCase_ ( self : Dict ,A : torch.FloatTensor ,A : float ,A : float ,A : torch.FloatTensor ,A : bool = True ,): __A = sample_hat + sigma_hat * model_output __A = (sample_hat - pred_original_sample) / sigma_hat __A = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=A ,derivative=A ,pred_original_sample=A ) def UpperCamelCase_ ( self : Optional[int] ,A : torch.FloatTensor ,A : float ,A : float ,A : torch.FloatTensor ,A : torch.FloatTensor ,A : torch.FloatTensor ,A : bool = True ,): __A = sample_prev + sigma_prev * model_output __A = (sample_prev - pred_original_sample) / sigma_prev __A = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=A ,derivative=A ,pred_original_sample=A ) def UpperCamelCase_ ( self : List[Any] ,A : Dict ,A : List[str] ,A : str ): raise NotImplementedError()
15
0
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def _lowerCAmelCase ( lowerCAmelCase_ :Union[str, Any] , lowerCAmelCase_ :Union[str, Any] , lowerCAmelCase_ :str )->List[Any]: '''simple docstring''' snake_case_ = AutoConfig.from_pretrained(a_ ) snake_case_ = FlaxAutoModelForSeqaSeqLM.from_config(config=a_ ) snake_case_ = checkpoints.load_tax_checkpoint(a_ ) snake_case_ = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"] if config.model_type == "t5": snake_case_ = "SelfAttention" if config.model_type == "longt5" and config.encoder_attention_type == "local": snake_case_ = "LocalSelfAttention" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": snake_case_ = "TransientGlobalSelfAttention" else: raise ValueError( "Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`" " attribute with a value from ['local', 'transient-global]." ) # Encoder for layer_index in range(config.num_layers ): snake_case_ = F'''layers_{str(a_ )}''' # Self-Attention snake_case_ = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"] snake_case_ = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"] snake_case_ = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"] snake_case_ = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": snake_case_ = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"] # Layer Normalization snake_case_ = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"] if split_mlp_wi: snake_case_ = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"] snake_case_ = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: snake_case_ = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"] snake_case_ = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization snake_case_ = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning snake_case_ = flax_model.params["encoder"]["block"][str(a_ )]["layer"] snake_case_ = tax_attention_key snake_case_ = tax_attention_out snake_case_ = tax_attention_query snake_case_ = tax_attention_value snake_case_ = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": snake_case_ = tax_global_layer_norm if split_mlp_wi: snake_case_ = tax_mlp_wi_a snake_case_ = tax_mlp_wi_a else: snake_case_ = tax_mlp_wi snake_case_ = tax_mlp_wo snake_case_ = tax_mlp_layer_norm snake_case_ = flax_model_encoder_layer_block # Only for layer 0: snake_case_ = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T snake_case_ = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": snake_case_ = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T snake_case_ = tax_encoder_global_rel_embedding # Assigning snake_case_ = tax_model["target"]["encoder"]["encoder_norm"]["scale"] snake_case_ = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): snake_case_ = F'''layers_{str(a_ )}''' # Self-Attention snake_case_ = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"] snake_case_ = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"] snake_case_ = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"] snake_case_ = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"] # Layer Normalization snake_case_ = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][ "scale" ] # Encoder-Decoder-Attention snake_case_ = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"] snake_case_ = tax_enc_dec_attention_module["key"]["kernel"] snake_case_ = tax_enc_dec_attention_module["out"]["kernel"] snake_case_ = tax_enc_dec_attention_module["query"]["kernel"] snake_case_ = tax_enc_dec_attention_module["value"]["kernel"] # Layer Normalization snake_case_ = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"] # MLP if split_mlp_wi: snake_case_ = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"] snake_case_ = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: snake_case_ = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"] snake_case_ = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization snake_case_ = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning snake_case_ = flax_model.params["decoder"]["block"][str(a_ )]["layer"] snake_case_ = tax_attention_key snake_case_ = tax_attention_out snake_case_ = tax_attention_query snake_case_ = tax_attention_value snake_case_ = tax_pre_attention_layer_norm snake_case_ = tax_enc_dec_attention_key snake_case_ = tax_enc_dec_attention_out snake_case_ = tax_enc_dec_attention_query snake_case_ = tax_enc_dec_attention_value snake_case_ = tax_cross_layer_norm if split_mlp_wi: snake_case_ = tax_mlp_wi_a snake_case_ = tax_mlp_wi_a else: snake_case_ = tax_mlp_wi snake_case_ = tax_mlp_wo snake_case_ = txa_mlp_layer_norm snake_case_ = flax_model_decoder_layer_block # Decoder Normalization snake_case_ = tax_model["target"]["decoder"]["decoder_norm"]["scale"] snake_case_ = txa_decoder_norm # Only for layer 0: snake_case_ = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T snake_case_ = tax_decoder_rel_embedding # Token Embeddings snake_case_ = tax_model["target"]["token_embedder"]["embedding"] snake_case_ = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: snake_case_ = tax_model["target"]["decoder"]["logits_dense"]["kernel"] flax_model.save_pretrained(a_ ) print("T5X Model was sucessfully converted!" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.''' ) parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''') parser.add_argument( '''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.''' ) SCREAMING_SNAKE_CASE :Tuple = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
159
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version SCREAMING_SNAKE_CASE :Union[str, Any] = get_logger(__name__) class UpperCAmelCase : '''simple docstring''' snake_case_ = "dummy_data" snake_case_ = "datasets" snake_case_ = False def __init__( self : Optional[int] ,A : str ,A : str ,A : Union[Version, str] ,A : Optional[str] = None ,A : bool = False ,A : bool = True ,A : Optional[List[Callable]] = None ,): __A = 0 __A = dataset_name __A = cache_dir __A = use_local_dummy_data __A = config # download_callbacks take a single url as input __A = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root __A = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general __A = str(A ) # to be downloaded __A = None __A = None @property def UpperCamelCase_ ( self : Union[str, Any] ): if self._dummy_file is None: __A = self.download_dummy_data() return self._dummy_file @property def UpperCamelCase_ ( self : Optional[Any] ): if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("dummy" ,self.config.name ,self.version_name ) # structure is dummy / version_name return os.path.join("dummy" ,self.version_name ) @property def UpperCamelCase_ ( self : List[Any] ): return os.path.join(self.dummy_data_folder ,"dummy_data.zip" ) def UpperCamelCase_ ( self : Tuple ): __A = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) __A = cached_path( A ,cache_dir=self.cache_dir ,extract_compressed_file=A ,force_extract=A ) return os.path.join(A ,self.dummy_file_name ) @property def UpperCamelCase_ ( self : str ): return os.path.join(self.datasets_scripts_dir ,self.dataset_name ,self.dummy_zip_file ) @property def UpperCamelCase_ ( self : Any ): if self._bucket_url is None: __A = hf_github_url(self.dataset_name ,self.dummy_zip_file.replace(os.sep ,"/" ) ) return self._bucket_url @property def UpperCamelCase_ ( self : Tuple ): # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep ,"/" ).split("/" )[:-1] ) def UpperCamelCase_ ( self : List[str] ,A : List[Any] ,*A : Dict ): if self.load_existing_dummy_data: # dummy data is downloaded and tested __A = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned __A = self.dummy_file_name # special case when data_url is a dict if isinstance(A ,A ): return self.create_dummy_data_dict(A ,A ) elif isinstance(A ,(list, tuple) ): return self.create_dummy_data_list(A ,A ) else: return self.create_dummy_data_single(A ,A ) def UpperCamelCase_ ( self : str ,A : List[Any] ,*A : List[Any] ): return self.download_and_extract(A ) def UpperCamelCase_ ( self : List[str] ,A : List[str] ,A : Tuple ): return self.download_and_extract(A ) def UpperCamelCase_ ( self : Any ,A : Any ,*A : Optional[Any] ,**A : List[str] ): return path def UpperCamelCase_ ( self : str ): return {} def UpperCamelCase_ ( self : int ,A : int ,A : Tuple ): __A = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(A ,A ): for single_url in single_urls: download_callback(A ) else: __A = single_urls download_callback(A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(A ,A ): __A = [os.path.join(A ,urllib.parse.quote_plus(Path(A ).name ) ) for x in single_urls] else: __A = single_urls __A = os.path.join(A ,urllib.parse.quote_plus(Path(A ).name ) ) __A = value # make sure that values are unique if all(isinstance(A ,A ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique __A = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def UpperCamelCase_ ( self : Union[str, Any] ,A : str ,A : str ): __A = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one __A = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" ,A ) ) for url in data_url ) __A = all( url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): __A = [data_url[0]] * len(A ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __A = os.path.join(A ,urllib.parse.quote_plus(single_url.split("/" )[-1] ) ) dummy_data_list.append(A ) return dummy_data_list def UpperCamelCase_ ( self : str ,A : List[Any] ,A : Optional[Any] ): for download_callback in self.download_callbacks: download_callback(A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __A = os.path.join(A ,urllib.parse.quote_plus(data_url.split("/" )[-1] ) ) if os.path.exists(A ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def UpperCamelCase_ ( self : int ): pass def UpperCamelCase_ ( self : Dict ): pass def UpperCamelCase_ ( self : Optional[Any] ,A : List[Any] ): def _iter_archive_members(A : Optional[Any] ): # this preserves the order of the members inside the ZIP archive __A = Path(self.dummy_file ).parent __A = path.relative_to(A ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: __A = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(A ) __A = Path(A ) __A = _iter_archive_members(A ) if self.use_local_dummy_data else path.rglob("*" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((".", "__") ): yield file_path.relative_to(A ).as_posix(), file_path.open("rb" ) def UpperCamelCase_ ( self : List[Any] ,A : Any ): if not isinstance(A ,A ): __A = [paths] for path in paths: if os.path.isfile(A ): if os.path.basename(A ).startswith((".", "__") ): return yield path else: for dirpath, dirnames, filenames in os.walk(A ): if os.path.basename(A ).startswith((".", "__") ): continue dirnames.sort() for filename in sorted(A ): if filename.startswith((".", "__") ): continue yield os.path.join(A ,A )
15
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _UpperCAmelCase = 16 _UpperCAmelCase = 32 def UpperCamelCase ( __lowercase : Optional[int] ,__lowercase : Tuple = 16 ): '''simple docstring''' A_ : Union[str, Any] = AutoTokenizer.from_pretrained('bert-base-cased' ) A_ : str = load_dataset('glue' ,'mrpc' ) def tokenize_function(__lowercase : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) A_ : Any = tokenizer(examples['sentence1'] ,examples['sentence2'] ,truncation=a_ ,max_length=a_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A_ : List[str] = datasets.map( a_ ,batched=a_ ,remove_columns=['idx', 'sentence1', 'sentence2'] ,) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A_ : Dict = tokenized_datasets.rename_column('label' ,'labels' ) def collate_fn(__lowercase : List[str] ): # On TPU it's best to pad everything to the same length or training will be very slow. A_ : Tuple = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A_ : List[str] = 16 elif accelerator.mixed_precision != "no": A_ : List[Any] = 8 else: A_ : Union[str, Any] = None return tokenizer.pad( a_ ,padding='longest' ,max_length=a_ ,pad_to_multiple_of=a_ ,return_tensors='pt' ,) # Instantiate dataloaders. A_ : Union[str, Any] = DataLoader( tokenized_datasets['train'] ,shuffle=a_ ,collate_fn=a_ ,batch_size=a_ ) A_ : Optional[Any] = DataLoader( tokenized_datasets['validation'] ,shuffle=a_ ,collate_fn=a_ ,batch_size=a_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _UpperCAmelCase = mocked_dataloaders # noqa: F811 def UpperCamelCase ( __lowercase : Optional[int] ,__lowercase : Union[str, Any] ): '''simple docstring''' if os.environ.get('TESTING_MOCKED_DATALOADERS' ,a_ ) == "1": A_ : Optional[int] = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: A_ : Tuple = Accelerator( cpu=args.cpu ,mixed_precision=args.mixed_precision ,log_with='all' ,project_dir=args.project_dir ) else: A_ : str = Accelerator(cpu=args.cpu ,mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A_ : Any = config['lr'] A_ : str = int(config['num_epochs'] ) A_ : List[Any] = int(config['seed'] ) A_ : Tuple = int(config['batch_size'] ) set_seed(a_ ) A_ , A_ : List[Any] = get_dataloaders(a_ ,a_ ) A_ : Union[str, Any] = evaluate.load('glue' ,'mrpc' ) # If the batch size is too big we use gradient accumulation A_ : Union[str, Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: A_ : Union[str, Any] = batch_size // MAX_GPU_BATCH_SIZE A_ : str = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) A_ : Optional[int] = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' ,return_dict=a_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A_ : Optional[int] = model.to(accelerator.device ) # Instantiate optimizer A_ : Any = AdamW(params=model.parameters() ,lr=a_ ) # Instantiate scheduler A_ : Tuple = get_linear_schedule_with_warmup( optimizer=a_ ,num_warmup_steps=1_00 ,num_training_steps=(len(a_ ) * num_epochs) // gradient_accumulation_steps ,) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A_ , A_ , A_ , A_ , A_ : str = accelerator.prepare( a_ ,a_ ,a_ ,a_ ,a_ ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: A_ : Union[str, Any] = os.path.split(a_ )[-1].split('.' )[0] accelerator.init_trackers(a_ ,a_ ) # Now we train the model for epoch in range(a_ ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: A_ : Dict = 0 for step, batch in enumerate(a_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A_ : Union[str, Any] = model(**a_ ) A_ : str = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() A_ : Any = loss / gradient_accumulation_steps accelerator.backward(a_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(a_ ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): A_ : Union[str, Any] = model(**a_ ) A_ : int = outputs.logits.argmax(dim=-1 ) A_ , A_ : int = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=a_ ,references=a_ ,) A_ : Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' ,a_ ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { 'accuracy': eval_metric['accuracy'], 'f1': eval_metric['f1'], 'train_loss': total_loss.item() / len(a_ ), 'epoch': epoch, } ,step=a_ ,) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def UpperCamelCase ( ): '''simple docstring''' A_ : Tuple = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' ,type=a_ ,default=a_ ,choices=['no', 'fp16', 'bf16', 'fp8'] ,help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' ,) parser.add_argument('--cpu' ,action='store_true' ,help='If passed, will train on the CPU.' ) parser.add_argument( '--with_tracking' ,action='store_true' ,help='Whether to load in all available experiment trackers from the environment and use them for logging.' ,) parser.add_argument( '--project_dir' ,type=a_ ,default='logs' ,help='Location on where to store experiment tracking logs` and relevent project information' ,) A_ : Optional[int] = parser.parse_args() A_ : Any = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(a_ ,a_ ) if __name__ == "__main__": main()
140
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available SCREAMING_SNAKE_CASE :List[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :List[str] = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys SCREAMING_SNAKE_CASE :Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
15
0
"""simple docstring""" from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _UpperCAmelCase : '''simple docstring''' def __init__( self , snake_case_ , snake_case_=2 , snake_case_=3 , snake_case_=4 , snake_case_=2 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=9_9 , snake_case_=3_6 , snake_case_=2 , snake_case_=4 , snake_case_=3_7 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=5_1_2 , snake_case_=1_6 , snake_case_=2 , snake_case_=0.02 , snake_case_=6 , snake_case_=6 , snake_case_=3 , snake_case_=4 , snake_case_=None , snake_case_=1_0_0_0 , ): """simple docstring""" A_ : List[Any] = parent A_ : int = batch_size A_ : List[str] = num_channels A_ : Any = image_size A_ : List[str] = patch_size A_ : Dict = is_training A_ : Optional[int] = use_input_mask A_ : int = use_token_type_ids A_ : Dict = use_labels A_ : Tuple = vocab_size A_ : List[str] = hidden_size A_ : Tuple = num_hidden_layers A_ : Dict = num_attention_heads A_ : str = intermediate_size A_ : Optional[Any] = hidden_act A_ : List[Any] = hidden_dropout_prob A_ : int = attention_probs_dropout_prob A_ : Any = max_position_embeddings A_ : Optional[Any] = type_vocab_size A_ : int = type_sequence_label_size A_ : Optional[Any] = initializer_range A_ : Union[str, Any] = coordinate_size A_ : Optional[int] = shape_size A_ : int = num_labels A_ : List[Any] = num_choices A_ : str = scope A_ : List[Any] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) A_ : Tuple = text_seq_length A_ : Union[str, Any] = (image_size // patch_size) ** 2 + 1 A_ : List[Any] = self.text_seq_length + self.image_seq_length def lowerCamelCase_ ( self ): """simple docstring""" A_ : str = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) A_ : List[Any] = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) A_ : Union[str, Any] = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: A_ : Any = bbox[i, j, 3] A_ : Union[str, Any] = bbox[i, j, 1] A_ : Optional[Any] = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: A_ : Any = bbox[i, j, 2] A_ : Optional[int] = bbox[i, j, 0] A_ : Tuple = tmp_coordinate A_ : Dict = tf.constant(snake_case_ ) A_ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Union[str, Any] = None if self.use_input_mask: A_ : Optional[int] = random_attention_mask([self.batch_size, self.text_seq_length] ) A_ : List[str] = None if self.use_token_type_ids: A_ : Optional[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) A_ : Optional[int] = None A_ : str = None if self.use_labels: A_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Dict = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) A_ : List[str] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def lowerCamelCase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ : Union[str, Any] = TFLayoutLMvaModel(config=snake_case_ ) # text + image A_ : int = model(snake_case_ , pixel_values=snake_case_ , training=snake_case_ ) A_ : Optional[Any] = model( snake_case_ , bbox=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , training=snake_case_ , ) A_ : Any = model(snake_case_ , bbox=snake_case_ , pixel_values=snake_case_ , training=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only A_ : List[str] = model(snake_case_ , training=snake_case_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only A_ : Optional[Any] = model({'pixel_values': pixel_values} , training=snake_case_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def lowerCamelCase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ : int = self.num_labels A_ : Optional[int] = TFLayoutLMvaForSequenceClassification(config=snake_case_ ) A_ : List[Any] = model( snake_case_ , bbox=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , training=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ : List[str] = self.num_labels A_ : int = TFLayoutLMvaForTokenClassification(config=snake_case_ ) A_ : str = model( snake_case_ , bbox=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , training=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def lowerCamelCase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ : Dict = 2 A_ : Union[str, Any] = TFLayoutLMvaForQuestionAnswering(config=snake_case_ ) A_ : str = model( snake_case_ , bbox=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , training=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self ): """simple docstring""" A_ : Any = self.prepare_config_and_inputs() ((A_) , (A_) , (A_) , (A_) , (A_) , (A_) , (A_) , (A_)) : List[Any] = config_and_inputs A_ : Dict = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class _UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ : Any = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) lowercase_ : Optional[int] = ( {"""document-question-answering""": TFLayoutLMvaForQuestionAnswering, """feature-extraction""": TFLayoutLMvaModel} if is_tf_available() else {} ) lowercase_ : int = False lowercase_ : str = False lowercase_ : Optional[Any] = False def lowerCamelCase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" return True def lowerCamelCase_ ( self , snake_case_ , snake_case_ , snake_case_=False ): """simple docstring""" A_ : Tuple = copy.deepcopy(snake_case_ ) if model_class in get_values(snake_case_ ): A_ : Any = { k: tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(snake_case_ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(snake_case_ ): A_ : Optional[int] = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(snake_case_ ): A_ : Tuple = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) A_ : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(snake_case_ ): A_ : str = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(snake_case_ ): A_ : str = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def lowerCamelCase_ ( self ): """simple docstring""" A_ : Union[str, Any] = TFLayoutLMvaModelTester(self ) A_ : Dict = ConfigTester(self , config_class=snake_case_ , hidden_size=3_7 ) def lowerCamelCase_ ( self ): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase_ ( self ): """simple docstring""" A_ , A_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Dict = model_class(snake_case_ ) if getattr(snake_case_ , 'hf_compute_loss' , snake_case_ ): # The number of elements in the loss should be the same as the number of elements in the label A_ : str = self._prepare_for_class(inputs_dict.copy() , snake_case_ , return_labels=snake_case_ ) A_ : Any = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=snake_case_ )[0] ] A_ : Tuple = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs A_ : Optional[int] = self._prepare_for_class(inputs_dict.copy() , snake_case_ , return_labels=snake_case_ ) A_ : Optional[Any] = prepared_for_class.pop('input_ids' ) A_ : str = model(snake_case_ , **snake_case_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions A_ : Dict = self._prepare_for_class(inputs_dict.copy() , snake_case_ , return_labels=snake_case_ ) A_ : str = prepared_for_class.pop('input_ids' ) if "labels" in prepared_for_class: A_ : Dict = prepared_for_class['labels'].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: A_ : Optional[int] = -1_0_0 A_ : List[Any] = tf.convert_to_tensor(snake_case_ ) A_ : Tuple = model(snake_case_ , **snake_case_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict A_ : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , snake_case_ , return_labels=snake_case_ ) A_ : List[Any] = model(snake_case_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple A_ : List[Any] = self._prepare_for_class(inputs_dict.copy() , snake_case_ , return_labels=snake_case_ ) # Get keys that were added with the _prepare_for_class function A_ : Union[str, Any] = prepared_for_class.keys() - inputs_dict.keys() A_ : Optional[Any] = inspect.signature(model.call ).parameters A_ : Optional[Any] = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple A_ : Union[str, Any] = {0: 'input_ids'} for label_key in label_keys: A_ : Tuple = signature_names.index(snake_case_ ) A_ : str = label_key A_ : List[Any] = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple A_ : List[Any] = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: A_ : Any = prepared_for_class[value] A_ : Any = tuple(snake_case_ ) # Send to model A_ : List[Any] = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def lowerCamelCase_ ( self ): """simple docstring""" ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def lowerCamelCase_ ( self ): """simple docstring""" ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) : Optional[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A_ : Optional[Any] = type self.model_tester.create_and_check_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def lowerCamelCase_ ( self ): """simple docstring""" ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def lowerCamelCase_ ( self ): """simple docstring""" ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def lowerCamelCase_ ( self ): """simple docstring""" ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) @slow def lowerCamelCase_ ( self ): """simple docstring""" for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : str = TFLayoutLMvaModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def UpperCAmelCase__ ( ): """simple docstring""" A_ : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase_ ( self ): """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=snake_case_ ) if is_vision_available() else None @slow def lowerCamelCase_ ( self ): """simple docstring""" A_ : List[str] = TFLayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ) A_ : List[str] = self.default_image_processor A_ : Optional[int] = prepare_img() A_ : Any = image_processor(images=snake_case_ , return_tensors='tf' ).pixel_values A_ : Optional[Any] = tf.constant([[1, 2]] ) A_ : Optional[int] = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass A_ : List[str] = model(input_ids=snake_case_ , bbox=snake_case_ , pixel_values=snake_case_ , training=snake_case_ ) # verify the logits A_ : List[Any] = (1, 1_9_9, 7_6_8) self.assertEqual(outputs.last_hidden_state.shape , snake_case_ ) A_ : Any = tf.constant( [[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , snake_case_ , atol=1E-4 ) )
286
from typing import Dict, Optional import numpy as np import datasets SCREAMING_SNAKE_CASE :List[Any] = '\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n' SCREAMING_SNAKE_CASE :List[str] = '\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric("mean_iou")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n' SCREAMING_SNAKE_CASE :str = '\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}' def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ = None , a_ = False , ) -> Tuple: """simple docstring""" if label_map is not None: for old_id, new_id in label_map.items(): __A = new_id # turn into Numpy arrays __A = np.array(a_ ) __A = np.array(a_ ) if reduce_labels: __A = 2_5_5 __A = label - 1 __A = 2_5_5 __A = label != ignore_index __A = np.not_equal(a_ , a_ ) __A = pred_label[mask] __A = np.array(a_ )[mask] __A = pred_label[pred_label == label] __A = np.histogram(a_ , bins=a_ , range=(0, num_labels - 1) )[0] __A = np.histogram(a_ , bins=a_ , range=(0, num_labels - 1) )[0] __A = np.histogram(a_ , bins=a_ , range=(0, num_labels - 1) )[0] __A = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ = None , a_ = False , ) -> Union[str, Any]: """simple docstring""" __A = np.zeros((num_labels,) , dtype=np.floataa ) __A = np.zeros((num_labels,) , dtype=np.floataa ) __A = np.zeros((num_labels,) , dtype=np.floataa ) __A = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(a_ , a_ ): __A , __A , __A , __A = intersect_and_union( a_ , a_ , a_ , a_ , a_ , a_ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ = None , a_ = None , a_ = False , ) -> str: """simple docstring""" __A , __A , __A , __A = total_intersect_and_union( a_ , a_ , a_ , a_ , a_ , a_ ) # compute metrics __A = {} __A = total_area_intersect.sum() / total_area_label.sum() __A = total_area_intersect / total_area_union __A = total_area_intersect / total_area_label __A = np.nanmean(a_ ) __A = np.nanmean(a_ ) __A = all_acc __A = iou __A = acc if nan_to_num is not None: __A = {metric: np.nan_to_num(a_ , nan=a_ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self : List[Any] ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { "predictions": datasets.Sequence(datasets.Sequence(datasets.Value("uint16" ) ) ), "references": datasets.Sequence(datasets.Sequence(datasets.Value("uint16" ) ) ), } ) ,reference_urls=[ "https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py" ] ,) def UpperCamelCase_ ( self : int ,A : Optional[Any] ,A : Optional[Any] ,A : int ,A : bool ,A : Optional[int] = None ,A : Optional[Dict[int, int]] = None ,A : bool = False ,): __A = mean_iou( results=A ,gt_seg_maps=A ,num_labels=A ,ignore_index=A ,nan_to_num=A ,label_map=A ,reduce_labels=A ,) return iou_result
15
0
"""simple docstring""" # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) _SCREAMING_SNAKE_CASE : List[str] = 'pytorch_model.bin' _SCREAMING_SNAKE_CASE : str = 'pytorch_model.bin.index.json' _SCREAMING_SNAKE_CASE : Optional[int] = 'adapter_config.json' _SCREAMING_SNAKE_CASE : Dict = 'adapter_model.bin' _SCREAMING_SNAKE_CASE : Dict = 'adapter_model.safetensors' _SCREAMING_SNAKE_CASE : str = 'tf_model.h5' _SCREAMING_SNAKE_CASE : List[Any] = 'tf_model.h5.index.json' _SCREAMING_SNAKE_CASE : str = 'model.ckpt' _SCREAMING_SNAKE_CASE : List[Any] = 'flax_model.msgpack' _SCREAMING_SNAKE_CASE : Optional[int] = 'flax_model.msgpack.index.json' _SCREAMING_SNAKE_CASE : Tuple = 'model.safetensors' _SCREAMING_SNAKE_CASE : List[Any] = 'model.safetensors.index.json' _SCREAMING_SNAKE_CASE : str = 'config.json' _SCREAMING_SNAKE_CASE : int = 'preprocessor_config.json' _SCREAMING_SNAKE_CASE : Optional[Any] = FEATURE_EXTRACTOR_NAME _SCREAMING_SNAKE_CASE : Optional[int] = 'generation_config.json' _SCREAMING_SNAKE_CASE : List[str] = 'modelcard.json' _SCREAMING_SNAKE_CASE : Optional[int] = '▁' _SCREAMING_SNAKE_CASE : Optional[Any] = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility _SCREAMING_SNAKE_CASE : str = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. _SCREAMING_SNAKE_CASE : Optional[Any] = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] _SCREAMING_SNAKE_CASE : List[Any] = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def lowerCamelCase__ ( _lowerCamelCase : Any ) -> Dict: if version.parse(a_ ) < version.parse(a_ ): if "dev" in min_version: lowerCamelCase_ = ( 'This example requires a source install from HuggingFace Transformers (see ' '`https://huggingface.co/docs/transformers/installation#install-from-source`),' ) else: lowerCamelCase_ = F'''This example requires a minimum version of {min_version},''' error_message += F''' but the version found is {__version__}.\n''' raise ImportError( error_message + 'Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other ' 'versions of HuggingFace Transformers.' )
183
import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE :List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :List[str] = {'vocab_file': 'spiece.model'} SCREAMING_SNAKE_CASE :Dict = { 'vocab_file': { 'AI-Sweden/gpt-sw3-126m': 'https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-350m': 'https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-1.6b': 'https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-6.7b': 'https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-20b': 'https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model', } } SCREAMING_SNAKE_CASE :Optional[Any] = { 'AI-Sweden/gpt-sw3-126m': 2048, 'AI-Sweden/gpt-sw3-350m': 2048, 'AI-Sweden/gpt-sw3-1.6b': 2048, 'AI-Sweden/gpt-sw3-6.7b': 2048, 'AI-Sweden/gpt-sw3-20b': 2048, } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["input_ids", "attention_mask"] def __init__( self : Optional[int] ,A : Optional[Any] ,A : Optional[int]=False ,A : int=False ,A : Union[str, Any]=False ,A : int=None ,A : Optional[Any]=None ,A : Union[str, Any]=None ,A : Optional[Any]=None ,A : Optional[Dict[str, Any]] = None ,**A : Tuple ,): __A = {} if sp_model_kwargs is None else sp_model_kwargs __A = kwargs.get("name_or_path" ) if name_or_path is None: logger.warning( "name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b," " you are testing the model, this can safely be ignored" ) __A = "None" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing __A = "<|endoftext|>" if eos_token is None else eos_token __A = "<unk>" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: __A = unk_token if pad_token is None else pad_token __A = eos_token if bos_token is None else bos_token else: __A = "<pad>" if pad_token is None else pad_token __A = "<s>" if bos_token is None else bos_token super().__init__( do_lower_case=A ,remove_space=A ,keep_accents=A ,bos_token=A ,eos_token=A ,unk_token=A ,pad_token=A ,sp_model_kwargs=self.sp_model_kwargs ,**A ,) __A = do_lower_case __A = remove_space __A = keep_accents __A = vocab_file __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) # Used for whitespace normalization in input texts # fmt : off __A = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", "„"} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing __A = re.compile( f'''[{''.join(map(A ,list(range(0 ,9 ) ) + list(range(11 ,32 ) ) + list(range(1_27 ,1_60 ) ) + [1_60, 1_73, 82_03] ) )}]''' ) def __getstate__( self : Optional[int] ): __A = self.__dict__.copy() __A = None return state def __setstate__( self : Optional[Any] ,A : Union[str, Any] ): __A = d # for backward compatibility if not hasattr(self ,"sp_model_kwargs" ): __A = {} __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def UpperCamelCase_ ( self : List[str] ): return len(self.sp_model ) def UpperCamelCase_ ( self : int ,A : str ): __A = self.non_printing_characters_re.sub("" ,A ) # Normalize whitespaces __A = "".join([char if char not in self.whitespaces else " " for char in text] ) # NFC Unicode normalization __A = unicodedata.normalize("NFC" ,A ) return text def UpperCamelCase_ ( self : Union[str, Any] ,A : str ,**A : Optional[int] ): __A = self.preprocess_text(A ) return self.sp_model.encode(A ,out_type=A ) def UpperCamelCase_ ( self : Any ,A : str ): return self.sp_model.PieceToId(A ) def UpperCamelCase_ ( self : Dict ,A : int ): return self.sp_model.IdToPiece(A ) @staticmethod def UpperCamelCase_ ( A : str ): return out_string def UpperCamelCase_ ( self : str ,A : List[str] ): __A = [] __A = "" __A = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A ) + token __A = True __A = [] else: current_sub_tokens.append(A ) __A = False out_string += self.sp_model.decode(A ) return out_string def UpperCamelCase_ ( self : str ): __A = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase_ ( self : List[str] ,A : str ,A : Optional[str] = None ): if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __A = os.path.join( A ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,A ) elif not os.path.isfile(self.vocab_file ): with open(A ,"wb" ) as fi: __A = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,) def UpperCamelCase_ ( self : Union[str, Any] ,A : Union[str, List[str]] ,A : Union[str, bool] = False ): if isinstance(A ,A ): __A = self.preprocess_text(A ) __A = self.sp_model.encode(A ) else: __A = [self.preprocess_text(A ) for t in text] __A = self.sp_model.encode(A ) if return_tensors is True or return_tensors == "pt": __A = torch.tensor(A ) return token_ids def UpperCamelCase_ ( self : List[Any] ,A : Union[int, List[int]] ): return self.sp_model.decode(A ) def UpperCamelCase_ ( self : List[str] ,A : "Conversation" ): __A = [f'''User: {text}''' if is_user else f'''Bot: {text}''' for is_user, text in conversation.iter_texts()] __A = ( f'''{self.eos_token}{self.bos_token}''' + f'''{self.bos_token}'''.join(A ) + f'''{self.bos_token}Bot:''' ) return self.encode(text=A )
15
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : int = {'configuration_wavlm': ['WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WavLMConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = [ 'WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'WavLMForAudioFrameClassification', 'WavLMForCTC', 'WavLMForSequenceClassification', 'WavLMForXVector', 'WavLMModel', 'WavLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys A_ : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
215
import numpy as np def UpperCAmelCase ( a_ , a_ , a_ = 1E-12 , a_ = 1_0_0 , ) -> tuple[float, np.ndarray]: """simple docstring""" assert np.shape(a_ )[0] == np.shape(a_ )[1] # Ensure proper dimensionality. assert np.shape(a_ )[0] == np.shape(a_ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(a_ ) == np.iscomplexobj(a_ ) __A = np.iscomplexobj(a_ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(a_ , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. __A = False __A = 0 __A = 0 __A = 1E12 while not convergence: # Multiple matrix by the vector. __A = np.dot(a_ , a_ ) # Normalize the resulting output vector. __A = w / np.linalg.norm(a_ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) __A = vector.conj().T if is_complex else vector.T __A = np.dot(a_ , np.dot(a_ , a_ ) ) # Check convergence. __A = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: __A = True __A = lambda_ if is_complex: __A = np.real(lambda_ ) return lambda_, vector def UpperCAmelCase ( ) -> None: """simple docstring""" __A = np.array([[4_1, 4, 2_0], [4, 2_6, 3_0], [2_0, 3_0, 5_0]] ) __A = np.array([4_1, 4, 2_0] ) __A = real_input_matrix.astype(np.complexaaa ) __A = np.triu(1J * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T __A = np.array([4_1, 4, 2_0] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": __A = real_input_matrix __A = real_vector elif problem_type == "complex": __A = complex_input_matrix __A = complex_vector # Our implementation. __A , __A = power_iteration(a_ , a_ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). __A , __A = np.linalg.eigh(a_ ) # Last eigenvalue is the maximum one. __A = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. __A = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(a_ ) - np.abs(a_ ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
15
0
from datetime import datetime as dt import os from github import Github lowerCAmelCase__ :int = [ 'good first issue', 'good second issue', 'good difficult issue', 'feature request', 'new model', 'wip', ] def lowerCAmelCase__ ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = Github(os.environ['GITHUB_TOKEN'] ) _UpperCAmelCase = g.get_repo('huggingface/transformers' ) _UpperCAmelCase = repo.get_issues(state='open' ) for issue in open_issues: _UpperCAmelCase = sorted([comment for comment in issue.get_comments()] , key=lambda a__ : i.created_at , reverse=a_ ) _UpperCAmelCase = comments[0] if len(a_ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='closed' ) elif ( (dt.utcnow() - issue.updated_at).days > 2_3 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
329
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig SCREAMING_SNAKE_CASE :str = logging.get_logger(__name__) # General docstring SCREAMING_SNAKE_CASE :str = 'RegNetConfig' # Base docstring SCREAMING_SNAKE_CASE :List[str] = 'facebook/regnet-y-040' SCREAMING_SNAKE_CASE :Union[str, Any] = [1, 1088, 7, 7] # Image classification docstring SCREAMING_SNAKE_CASE :Optional[int] = 'facebook/regnet-y-040' SCREAMING_SNAKE_CASE :Any = 'tabby, tabby cat' SCREAMING_SNAKE_CASE :Optional[int] = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Tuple ,A : int ,A : int = 3 ,A : int = 1 ,A : int = 1 ,A : Optional[str] = "relu" ,**A : Dict ,): super().__init__(**A ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb __A = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) __A = tf.keras.layers.ConvaD( filters=A ,kernel_size=A ,strides=A ,padding="VALID" ,groups=A ,use_bias=A ,name="convolution" ,) __A = tf.keras.layers.BatchNormalization(epsilon=1E-5 ,momentum=0.9 ,name="normalization" ) __A = ACTaFN[activation] if activation is not None else tf.identity def UpperCamelCase_ ( self : List[Any] ,A : Any ): __A = self.convolution(self.padding(A ) ) __A = self.normalization(A ) __A = self.activation(A ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Tuple ,A : RegNetConfig ,**A : str ): super().__init__(**A ) __A = config.num_channels __A = TFRegNetConvLayer( out_channels=config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ,name="embedder" ,) def UpperCamelCase_ ( self : Tuple ,A : Optional[Any] ): __A = shape_list(A )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) __A = tf.transpose(A ,perm=(0, 2, 3, 1) ) __A = self.embedder(A ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Optional[int] ,A : int ,A : int = 2 ,**A : Tuple ): super().__init__(**A ) __A = tf.keras.layers.ConvaD( filters=A ,kernel_size=1 ,strides=A ,use_bias=A ,name="convolution" ) __A = tf.keras.layers.BatchNormalization(epsilon=1E-5 ,momentum=0.9 ,name="normalization" ) def UpperCamelCase_ ( self : Union[str, Any] ,A : tf.Tensor ,A : bool = False ): return self.normalization(self.convolution(A ) ,training=A ) class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Dict ,A : int ,A : int ,**A : str ): super().__init__(**A ) __A = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A ,name="pooler" ) __A = [ tf.keras.layers.ConvaD(filters=A ,kernel_size=1 ,activation="relu" ,name="attention.0" ), tf.keras.layers.ConvaD(filters=A ,kernel_size=1 ,activation="sigmoid" ,name="attention.2" ), ] def UpperCamelCase_ ( self : Dict ,A : List[Any] ): # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] __A = self.pooler(A ) for layer_module in self.attention: __A = layer_module(A ) __A = hidden_state * pooled return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : List[str] ,A : RegNetConfig ,A : int ,A : int ,A : int = 1 ,**A : Optional[int] ): super().__init__(**A ) __A = in_channels != out_channels or stride != 1 __A = max(1 ,out_channels // config.groups_width ) __A = ( TFRegNetShortCut(A ,stride=A ,name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" ,name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. __A = [ TFRegNetConvLayer(A ,kernel_size=1 ,activation=config.hidden_act ,name="layer.0" ), TFRegNetConvLayer( A ,stride=A ,groups=A ,activation=config.hidden_act ,name="layer.1" ), TFRegNetConvLayer(A ,kernel_size=1 ,activation=A ,name="layer.2" ), ] __A = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : int ,A : Optional[int] ): __A = hidden_state for layer_module in self.layers: __A = layer_module(A ) __A = self.shortcut(A ) hidden_state += residual __A = self.activation(A ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : List[Any] ,A : RegNetConfig ,A : int ,A : int ,A : int = 1 ,**A : str ): super().__init__(**A ) __A = in_channels != out_channels or stride != 1 __A = max(1 ,out_channels // config.groups_width ) __A = ( TFRegNetShortCut(A ,stride=A ,name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" ,name="shortcut" ) ) __A = [ TFRegNetConvLayer(A ,kernel_size=1 ,activation=config.hidden_act ,name="layer.0" ), TFRegNetConvLayer( A ,stride=A ,groups=A ,activation=config.hidden_act ,name="layer.1" ), TFRegNetSELayer(A ,reduced_channels=int(round(in_channels / 4 ) ) ,name="layer.2" ), TFRegNetConvLayer(A ,kernel_size=1 ,activation=A ,name="layer.3" ), ] __A = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Dict ,A : Any ): __A = hidden_state for layer_module in self.layers: __A = layer_module(A ) __A = self.shortcut(A ) hidden_state += residual __A = self.activation(A ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : List[str] ,A : RegNetConfig ,A : int ,A : int ,A : int = 2 ,A : int = 2 ,**A : Optional[int] ): super().__init__(**A ) __A = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer __A = [ # downsampling is done in the first layer with stride of 2 layer(A ,A ,A ,stride=A ,name="layers.0" ), *[layer(A ,A ,A ,name=f'''layers.{i+1}''' ) for i in range(depth - 1 )], ] def UpperCamelCase_ ( self : Any ,A : List[str] ): for layer_module in self.layers: __A = layer_module(A ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Any ,A : RegNetConfig ,**A : List[str] ): super().__init__(**A ) __A = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( A ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,name="stages.0" ,) ) __A = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(A ,config.depths[1:] ) ): self.stages.append(TFRegNetStage(A ,A ,A ,depth=A ,name=f'''stages.{i+1}''' ) ) def UpperCamelCase_ ( self : List[str] ,A : tf.Tensor ,A : bool = False ,A : bool = True ): __A = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __A = hidden_states + (hidden_state,) __A = stage_module(A ) if output_hidden_states: __A = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=A ,hidden_states=A ) @keras_serializable class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' snake_case_ = RegNetConfig def __init__( self : int ,A : Optional[int] ,**A : Dict ): super().__init__(**A ) __A = config __A = TFRegNetEmbeddings(A ,name="embedder" ) __A = TFRegNetEncoder(A ,name="encoder" ) __A = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A ,name="pooler" ) @unpack_inputs def UpperCamelCase_ ( self : Tuple ,A : tf.Tensor ,A : Optional[bool] = None ,A : Optional[bool] = None ,A : bool = False ,): __A = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __A = return_dict if return_dict is not None else self.config.use_return_dict __A = self.embedder(A ,training=A ) __A = self.encoder( A ,output_hidden_states=A ,return_dict=A ,training=A ) __A = encoder_outputs[0] __A = self.pooler(A ) # Change to NCHW output format have uniformity in the modules __A = tf.transpose(A ,perm=(0, 3, 1, 2) ) __A = tf.transpose(A ,perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: __A = tuple([tf.transpose(A ,perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=A ,pooler_output=A ,hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states ,) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = RegNetConfig snake_case_ = "regnet" snake_case_ = "pixel_values" @property def UpperCamelCase_ ( self : Optional[Any] ): return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) ,dtype=tf.floataa )} SCREAMING_SNAKE_CASE :Dict = R'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' SCREAMING_SNAKE_CASE :Dict = R'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , __SCREAMING_SNAKE_CASE , ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[Any] ,A : RegNetConfig ,*A : List[Any] ,**A : str ): super().__init__(A ,*A ,**A ) __A = TFRegNetMainLayer(A ,name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(A ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=A ,config_class=_CONFIG_FOR_DOC ,modality="vision" ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def UpperCamelCase_ ( self : Tuple ,A : tf.Tensor ,A : Optional[bool] = None ,A : Optional[bool] = None ,A : int=False ,): __A = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __A = return_dict if return_dict is not None else self.config.use_return_dict __A = self.regnet( pixel_values=A ,output_hidden_states=A ,return_dict=A ,training=A ,) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state ,pooler_output=outputs.pooler_output ,hidden_states=outputs.hidden_states ,) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , __SCREAMING_SNAKE_CASE , ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Optional[int] ,A : RegNetConfig ,*A : str ,**A : Tuple ): super().__init__(A ,*A ,**A ) __A = config.num_labels __A = TFRegNetMainLayer(A ,name="regnet" ) # classification head __A = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels ,name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(A ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=A ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def UpperCamelCase_ ( self : List[str] ,A : tf.Tensor = None ,A : tf.Tensor = None ,A : bool = None ,A : bool = None ,A : Union[str, Any]=False ,): __A = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __A = return_dict if return_dict is not None else self.config.use_return_dict __A = self.regnet( A ,output_hidden_states=A ,return_dict=A ,training=A ) __A = outputs.pooler_output if return_dict else outputs[1] __A = self.classifier[0](A ) __A = self.classifier[1](A ) __A = None if labels is None else self.hf_compute_loss(labels=A ,logits=A ) if not return_dict: __A = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=A ,logits=A ,hidden_states=outputs.hidden_states )
15
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase : List[Any] = { 'configuration_lxmert': ['LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LxmertConfig'], 'tokenization_lxmert': ['LxmertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : int = ['LxmertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[int] = [ 'LxmertEncoder', 'LxmertForPreTraining', 'LxmertForQuestionAnswering', 'LxmertModel', 'LxmertPreTrainedModel', 'LxmertVisualFeatureEncoder', 'LxmertXLayer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[Any] = [ 'TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLxmertForPreTraining', 'TFLxmertMainLayer', 'TFLxmertModel', 'TFLxmertPreTrainedModel', 'TFLxmertVisualFeatureEncoder', ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys _UpperCAmelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
174
import math def UpperCAmelCase ( a_ , a_ = 0 , a_ = 0 ) -> list: """simple docstring""" __A = end or len(a_ ) for i in range(a_ , a_ ): __A = i __A = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: __A = array[temp_index - 1] temp_index -= 1 __A = temp_index_value return array def UpperCAmelCase ( a_ , a_ , a_ ) -> None: # Max Heap """simple docstring""" __A = index __A = 2 * index + 1 # Left Node __A = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: __A = left_index if right_index < heap_size and array[largest] < array[right_index]: __A = right_index if largest != index: __A , __A = array[largest], array[index] heapify(a_ , a_ , a_ ) def UpperCAmelCase ( a_ ) -> list: """simple docstring""" __A = len(a_ ) for i in range(n // 2 , -1 , -1 ): heapify(a_ , a_ , a_ ) for i in range(n - 1 , 0 , -1 ): __A , __A = array[0], array[i] heapify(a_ , 0 , a_ ) return array def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> int: """simple docstring""" if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> int: """simple docstring""" __A = low __A = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i __A , __A = array[j], array[i] i += 1 def UpperCAmelCase ( a_ ) -> list: """simple docstring""" if len(a_ ) == 0: return array __A = 2 * math.ceil(math.loga(len(a_ ) ) ) __A = 1_6 return intro_sort(a_ , 0 , len(a_ ) , a_ , a_ ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ ) -> list: """simple docstring""" while end - start > size_threshold: if max_depth == 0: return heap_sort(a_ ) max_depth -= 1 __A = median_of_a(a_ , a_ , start + ((end - start) // 2) + 1 , end - 1 ) __A = partition(a_ , a_ , a_ , a_ ) intro_sort(a_ , a_ , a_ , a_ , a_ ) __A = p return insertion_sort(a_ , a_ , a_ ) if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE :List[Any] = input('Enter numbers separated by a comma : ').strip() SCREAMING_SNAKE_CASE :str = [float(item) for item in user_input.split(',')] print(sort(unsorted))
15
0
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record UpperCamelCase__ : Optional[int] = '\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n' UpperCamelCase__ : Union[str, Any] = '\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n' UpperCamelCase__ : str = '\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for \'record\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'prediction_text\': the predicted answer text\n - for \'multirc\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question-answer pair as specified by the dataset\n - \'prediction\': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for \'record\': list of question-answers dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'answers\': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for \'record\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1\': F1 score\n - for \'multirc\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1_m\': Per-question macro-F1 score\n - \'f1_a\': Average F1 score over all answers\n - for \'axb\':\n \'matthews_correlation\': Matthew Correlation\n - for \'cb\':\n - \'accuracy\': Accuracy\n - \'f1\': F1 score\n - for all others:\n - \'accuracy\': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\')\n >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}]\n >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\')\n >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def lowerCAmelCase_ ( _lowerCamelCase: Optional[Any] , _lowerCamelCase: int ): return float((preds == labels).mean() ) def lowerCAmelCase_ ( _lowerCamelCase: int , _lowerCamelCase: int , _lowerCamelCase: Optional[int]="binary" ): __SCREAMING_SNAKE_CASE : List[Any] = simple_accuracy(a_ , a_ ) __SCREAMING_SNAKE_CASE : str = float(fa_score(y_true=a_ , y_pred=a_ , average=a_ ) ) return { "accuracy": acc, "f1": fa, } def lowerCAmelCase_ ( _lowerCamelCase: Optional[Any] , _lowerCamelCase: Optional[Any] ): __SCREAMING_SNAKE_CASE : Union[str, Any] = {} for id_pred, label in zip(a_ , a_ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = F"{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}" __SCREAMING_SNAKE_CASE : Any = id_pred["""prediction"""] if question_id in question_map: question_map[question_id].append((pred, label) ) else: __SCREAMING_SNAKE_CASE : List[Any] = [(pred, label)] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = [], [] for question, preds_labels in question_map.items(): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = zip(*a_ ) __SCREAMING_SNAKE_CASE : List[Any] = fa_score(y_true=a_ , y_pred=a_ , average="""macro""" ) fas.append(a_ ) __SCREAMING_SNAKE_CASE : List[str] = int(sum(pred == label for pred, label in preds_labels ) == len(a_ ) ) ems.append(a_ ) __SCREAMING_SNAKE_CASE : Optional[Any] = float(sum(a_ ) / len(a_ ) ) __SCREAMING_SNAKE_CASE : Any = sum(a_ ) / len(a_ ) __SCREAMING_SNAKE_CASE : Optional[int] = float(fa_score(y_true=a_ , y_pred=[id_pred["""prediction"""] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): '''simple docstring''' def UpperCamelCase__ ( self : List[str] ): """simple docstring""" if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" if not self.config_name == """record""" and not self.config_name == """multirc""" else None , ) def UpperCamelCase__ ( self : List[Any] ): """simple docstring""" if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "prediction_text": datasets.Value("""string""" ), }, "references": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "answers": datasets.Sequence(datasets.Value("""string""" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("""int64""" ), "paragraph": datasets.Value("""int64""" ), "question": datasets.Value("""int64""" ), }, "prediction": datasets.Value("""int64""" ), }, "references": datasets.Value("""int64""" ), } else: return { "predictions": datasets.Value("""int64""" ), "references": datasets.Value("""int64""" ), } def UpperCamelCase__ ( self : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Dict ): """simple docstring""" if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(lowerCAmelCase__ , lowerCAmelCase__ )} elif self.config_name == "cb": return acc_and_fa(lowerCAmelCase__ , lowerCAmelCase__ , fa_avg="""macro""" ) elif self.config_name == "record": __SCREAMING_SNAKE_CASE : Dict = [ { """qas""": [ {"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]} for ref in references ] } ] __SCREAMING_SNAKE_CASE : Any = {pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions} return evaluate_record(lowerCAmelCase__ , lowerCAmelCase__ )[0] elif self.config_name == "multirc": return evaluate_multirc(lowerCAmelCase__ , lowerCAmelCase__ ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(lowerCAmelCase__ , lowerCAmelCase__ )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
112
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml SCREAMING_SNAKE_CASE :Optional[int] = NewType('DataClass', Any) SCREAMING_SNAKE_CASE :int = NewType('DataClassType', Any) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" if isinstance(a_ , a_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F'''Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).''' ) def UpperCAmelCase ( a_ ) -> Callable[[str], Any]: """simple docstring""" __A = {str(a_ ): choice for choice in choices} return lambda a_ : str_to_choice.get(a_ , a_ ) def UpperCAmelCase ( *, a_ = None , a_ = None , a_ = dataclasses.MISSING , a_ = dataclasses.MISSING , a_ = None , **a_ , ) -> dataclasses.Field: """simple docstring""" if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls __A = {} if aliases is not None: __A = aliases if help is not None: __A = help return dataclasses.field(metadata=a_ , default=a_ , default_factory=a_ , **a_ ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = 42 def __init__( self : Union[str, Any] ,A : Union[DataClassType, Iterable[DataClassType]] ,**A : List[Any] ): # To make the default appear when using --help if "formatter_class" not in kwargs: __A = ArgumentDefaultsHelpFormatter super().__init__(**A ) if dataclasses.is_dataclass(A ): __A = [dataclass_types] __A = list(A ) for dtype in self.dataclass_types: self._add_dataclass_arguments(A ) @staticmethod def UpperCamelCase_ ( A : ArgumentParser ,A : dataclasses.Field ): __A = f'''--{field.name}''' __A = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type ,A ): raise RuntimeError( "Unresolved type detected, which should have been done with the help of " "`typing.get_type_hints` method by default" ) __A = kwargs.pop("aliases" ,[] ) if isinstance(A ,A ): __A = [aliases] __A = getattr(field.type ,"__origin__" ,field.type ) if origin_type is Union or (hasattr(A ,"UnionType" ) and isinstance(A ,types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(A ) not in field.type.__args__ ): raise ValueError( "Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because" " the argument parser only supports one type per argument." f''' Problem encountered in field \'{field.name}\'.''' ) if type(A ) not in field.type.__args__: # filter `str` in Union __A = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] __A = getattr(field.type ,"__origin__" ,field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) __A = ( field.type.__args__[0] if isinstance(A ,field.type.__args__[1] ) else field.type.__args__[1] ) __A = getattr(field.type ,"__origin__" ,field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) __A = {} if origin_type is Literal or (isinstance(field.type ,A ) and issubclass(field.type ,A )): if origin_type is Literal: __A = field.type.__args__ else: __A = [x.value for x in field.type] __A = make_choice_type_function(kwargs["choices"] ) if field.default is not dataclasses.MISSING: __A = field.default else: __A = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument __A = copy(A ) # Hack because type=bool in argparse does not behave as we want. __A = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. __A = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way __A = default # This tells argparse we accept 0 or 1 value after --field_name __A = "?" # This is the value that will get picked if we do --field_name (without value) __A = True elif isclass(A ) and issubclass(A ,A ): __A = field.type.__args__[0] __A = "+" if field.default_factory is not dataclasses.MISSING: __A = field.default_factory() elif field.default is dataclasses.MISSING: __A = True else: __A = field.type if field.default is not dataclasses.MISSING: __A = field.default elif field.default_factory is not dataclasses.MISSING: __A = field.default_factory() else: __A = True parser.add_argument(A ,*A ,**A ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): __A = False parser.add_argument(f'''--no_{field.name}''' ,action="store_false" ,dest=field.name ,**A ) def UpperCamelCase_ ( self : Union[str, Any] ,A : DataClassType ): if hasattr(A ,"_argument_group_name" ): __A = self.add_argument_group(dtype._argument_group_name ) else: __A = self try: __A = get_type_hints(A ) except NameError: raise RuntimeError( f'''Type resolution failed for {dtype}. Try declaring the class in global scope or ''' "removing line of `from __future__ import annotations` which opts in Postponed " "Evaluation of Annotations (PEP 563)" ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(A ): __A = ".".join(map(A ,sys.version_info[:3] ) ) raise RuntimeError( f'''Type resolution failed for {dtype} on Python {python_version}. Try removing ''' "line of `from __future__ import annotations` which opts in union types as " "`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To " "support Python versions that lower than 3.10, you need to use " "`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of " "`X | None`." ) from ex raise for field in dataclasses.fields(A ): if not field.init: continue __A = type_hints[field.name] self._parse_dataclass_field(A ,A ) def UpperCamelCase_ ( self : Union[str, Any] ,A : List[Any]=None ,A : List[Any]=False ,A : Optional[Any]=True ,A : Union[str, Any]=None ,A : Union[str, Any]=None ,): if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): __A = [] if args_filename: args_files.append(Path(A ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix(".args" ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values __A = ArgumentParser() args_file_parser.add_argument(A ,type=A ,action="append" ) # Use only remaining args for further parsing (remove the args_file_flag) __A , __A = args_file_parser.parse_known_args(args=A ) __A = vars(A ).get(args_file_flag.lstrip("-" ) ,A ) if cmd_args_file_paths: args_files.extend([Path(A ) for p in cmd_args_file_paths] ) __A = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last __A = file_args + args if args is not None else file_args + sys.argv[1:] __A , __A = self.parse_known_args(args=A ) __A = [] for dtype in self.dataclass_types: __A = {f.name for f in dataclasses.fields(A ) if f.init} __A = {k: v for k, v in vars(A ).items() if k in keys} for k in keys: delattr(A ,A ) __A = dtype(**A ) outputs.append(A ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(A ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f'''Some specified arguments are not used by the HfArgumentParser: {remaining_args}''' ) return (*outputs,) def UpperCamelCase_ ( self : Dict ,A : Dict[str, Any] ,A : bool = False ): __A = set(args.keys() ) __A = [] for dtype in self.dataclass_types: __A = {f.name for f in dataclasses.fields(A ) if f.init} __A = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) __A = dtype(**A ) outputs.append(A ) if not allow_extra_keys and unused_keys: raise ValueError(f'''Some keys are not used by the HfArgumentParser: {sorted(A )}''' ) return tuple(A ) def UpperCamelCase_ ( self : List[str] ,A : str ,A : bool = False ): with open(Path(A ) ,encoding="utf-8" ) as open_json_file: __A = json.loads(open_json_file.read() ) __A = self.parse_dict(A ,allow_extra_keys=A ) return tuple(A ) def UpperCamelCase_ ( self : int ,A : str ,A : bool = False ): __A = self.parse_dict(yaml.safe_load(Path(A ).read_text() ) ,allow_extra_keys=A ) return tuple(A )
15
0
from typing import List import numpy as np def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> int: lowerCamelCase__ : Any = {key: len(a_ ) for key, value in gen_kwargs.items() if isinstance(a_ , a_ )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( 'Sharding is ambiguous for this dataset: ' + 'we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n' + '\n'.join(F"""\t- key {key} has length {length}""" for key, length in lists_lengths.items() ) + '\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, ' + 'and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.' ) ) lowerCamelCase__ : List[str] = max(lists_lengths.values() , default=0 ) return max(1 , a_ ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> List[range]: lowerCamelCase__ : Any = [] for group_idx in range(a_ ): lowerCamelCase__ : Optional[int] = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break lowerCamelCase__ : str = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 lowerCamelCase__ : int = range(a_ , start + num_shards_to_add ) shards_indices_per_group.append(a_ ) return shards_indices_per_group def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> List[dict]: lowerCamelCase__ : Optional[Any] = _number_of_shards_in_gen_kwargs(a_ ) if num_shards == 1: return [dict(a_ )] else: lowerCamelCase__ : Dict = _distribute_shards(num_shards=a_ , max_num_jobs=a_ ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(a_ , a_ ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(a_ ) ) ] def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> dict: return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , a_ ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> dict: lowerCamelCase__ : Tuple = {len(a_ ) for value in gen_kwargs.values() if isinstance(a_ , a_ )} lowerCamelCase__ : Any = {} for size in list_sizes: lowerCamelCase__ : Any = list(range(a_ ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes lowerCamelCase__ : List[str] = dict(a_ ) for key, value in shuffled_kwargs.items(): if isinstance(a_ , a_ ): lowerCamelCase__ : Union[str, Any] = [value[i] for i in indices_per_size[len(a_ )]] return shuffled_kwargs
50
SCREAMING_SNAKE_CASE :Any = 256 # Modulus to hash a string SCREAMING_SNAKE_CASE :Union[str, Any] = 100_0003 def UpperCAmelCase ( a_ , a_ ) -> bool: """simple docstring""" __A = len(a_ ) __A = len(a_ ) if p_len > t_len: return False __A = 0 __A = 0 __A = 1 # Calculating the hash of pattern and substring of text for i in range(a_ ): __A = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __A = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __A = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __A = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def UpperCAmelCase ( ) -> None: """simple docstring""" __A = "abc1abc12" __A = "alskfjaldsabc1abc1abc12k23adsfabcabc" __A = "alskfjaldsk23adsfabcabc" assert rabin_karp(a_ , a_ ) and not rabin_karp(a_ , a_ ) # Test 2) __A = "ABABX" __A = "ABABZABABYABABX" assert rabin_karp(a_ , a_ ) # Test 3) __A = "AAAB" __A = "ABAAAAAB" assert rabin_karp(a_ , a_ ) # Test 4) __A = "abcdabcy" __A = "abcxabcdabxabcdabcdabcy" assert rabin_karp(a_ , a_ ) # Test 5) __A = "Lü" __A = "Lüsai" assert rabin_karp(a_ , a_ ) __A = "Lue" assert not rabin_karp(a_ , a_ ) print("Success." ) if __name__ == "__main__": test_rabin_karp()
15
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __lowercase = logging.get_logger(__name__) __lowercase = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} # See all BART models at https://huggingface.co/models?filter=bart __lowercase = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, 'tokenizer_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json', }, } __lowercase = { 'facebook/bart-base': 1024, 'facebook/bart-large': 1024, 'facebook/bart-large-mnli': 1024, 'facebook/bart-large-cnn': 1024, 'facebook/bart-large-xsum': 1024, 'yjernite/bart_eli5': 1024, } class lowerCamelCase_ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a__ : Optional[Any] = VOCAB_FILES_NAMES a__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP a__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Tuple = ["""input_ids""", """attention_mask"""] a__ : List[Any] = BartTokenizer def __init__( self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase="replace" , __lowercase="<s>" , __lowercase="</s>" , __lowercase="</s>" , __lowercase="<s>" , __lowercase="<unk>" , __lowercase="<pad>" , __lowercase="<mask>" , __lowercase=False , __lowercase=True , **__lowercase , ) -> Dict: super().__init__( __lowercase , __lowercase , tokenizer_file=__lowercase , errors=__lowercase , bos_token=__lowercase , eos_token=__lowercase , sep_token=__lowercase , cls_token=__lowercase , unk_token=__lowercase , pad_token=__lowercase , mask_token=__lowercase , add_prefix_space=__lowercase , trim_offsets=__lowercase , **__lowercase , ) __UpperCamelCase :List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('''add_prefix_space''' , __lowercase) != add_prefix_space: __UpperCamelCase :Any = getattr(__lowercase , pre_tok_state.pop('''type''')) __UpperCamelCase :int = add_prefix_space __UpperCamelCase :Optional[Any] = pre_tok_class(**__lowercase) __UpperCamelCase :Tuple = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __UpperCamelCase :Dict = '''post_processor''' __UpperCamelCase :List[Any] = getattr(self.backend_tokenizer , __lowercase , __lowercase) if tokenizer_component_instance: __UpperCamelCase :Optional[Any] = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __UpperCamelCase :Any = tuple(state['''sep''']) if "cls" in state: __UpperCamelCase :List[Any] = tuple(state['''cls''']) __UpperCamelCase :Optional[Any] = False if state.get('''add_prefix_space''' , __lowercase) != add_prefix_space: __UpperCamelCase :Any = add_prefix_space __UpperCamelCase :Optional[int] = True if state.get('''trim_offsets''' , __lowercase) != trim_offsets: __UpperCamelCase :Tuple = trim_offsets __UpperCamelCase :Optional[int] = True if changes_to_apply: __UpperCamelCase :Any = getattr(__lowercase , state.pop('''type''')) __UpperCamelCase :Tuple = component_class(**__lowercase) setattr(self.backend_tokenizer , __lowercase , __lowercase) @property def UpperCamelCase__ ( self) -> Dict: if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''') return None return str(self._mask_token) @mask_token.setter def UpperCamelCase__ ( self , __lowercase) -> Optional[Any]: __UpperCamelCase :Any = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase) if isinstance(__lowercase , __lowercase) else value __UpperCamelCase :int = value def UpperCamelCase__ ( self , *__lowercase , **__lowercase) -> str: __UpperCamelCase :Dict = kwargs.get('''is_split_into_words''' , __lowercase) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''') return super()._batch_encode_plus(*__lowercase , **__lowercase) def UpperCamelCase__ ( self , *__lowercase , **__lowercase) -> Dict: __UpperCamelCase :Optional[int] = kwargs.get('''is_split_into_words''' , __lowercase) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''') return super()._encode_plus(*__lowercase , **__lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase = None) -> str: __UpperCamelCase :int = self._tokenizer.model.save(__lowercase , name=__lowercase) return tuple(__lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase=None) -> List[str]: __UpperCamelCase :Dict = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCamelCase__ ( self , __lowercase , __lowercase = None) -> List[Any]: __UpperCamelCase :Dict = [self.sep_token_id] __UpperCamelCase :Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
43
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel SCREAMING_SNAKE_CASE :Union[str, Any] = False SCREAMING_SNAKE_CASE :Any = True SCREAMING_SNAKE_CASE :Tuple = False if __name__ == "__main__": SCREAMING_SNAKE_CASE :Tuple = argparse.ArgumentParser() parser.add_argument( '--repo_path', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') SCREAMING_SNAKE_CASE :Union[str, Any] = parser.parse_args() SCREAMING_SNAKE_CASE :Dict = { 'image_size': 'sample_size', 'num_res_blocks': 'layers_per_block', 'block_channels': 'block_out_channels', 'down_blocks': 'down_block_types', 'up_blocks': 'up_block_types', 'downscale_freq_shift': 'freq_shift', 'resnet_num_groups': 'norm_num_groups', 'resnet_act_fn': 'act_fn', 'resnet_eps': 'norm_eps', 'num_head_channels': 'attention_head_dim', } SCREAMING_SNAKE_CASE :Optional[int] = { 'time_steps': 'time_proj', 'mid': 'mid_block', 'downsample_blocks': 'down_blocks', 'upsample_blocks': 'up_blocks', } SCREAMING_SNAKE_CASE :int = '' if has_file(args.repo_path, 'config.json') else 'unet' with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader: SCREAMING_SNAKE_CASE :Dict = reader.read() SCREAMING_SNAKE_CASE :List[str] = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, 'config.json'): SCREAMING_SNAKE_CASE :Optional[int] = UNetaDModel(**config) else: SCREAMING_SNAKE_CASE :Optional[Any] = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel SCREAMING_SNAKE_CASE :List[str] = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) SCREAMING_SNAKE_CASE :List[str] = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: SCREAMING_SNAKE_CASE :Optional[Any] = config[key] del config[key] SCREAMING_SNAKE_CASE :Optional[Any] = [k.replace('UNetRes', '') for k in config['down_block_types']] SCREAMING_SNAKE_CASE :List[Any] = [k.replace('UNetRes', '') for k in config['up_block_types']] if do_only_weights: SCREAMING_SNAKE_CASE :Tuple = torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin')) SCREAMING_SNAKE_CASE :Any = {} for param_key, param_value in state_dict.items(): if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'): continue SCREAMING_SNAKE_CASE :List[str] = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('.')[0] == key: SCREAMING_SNAKE_CASE :List[Any] = param_value SCREAMING_SNAKE_CASE :str = True if not has_changed: SCREAMING_SNAKE_CASE :List[str] = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
15
0
"""simple docstring""" import re import string import numpy as np import datasets A : Optional[int] = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' A : Tuple = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n' A : str = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): '''simple docstring''' def snake_case ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , reference_urls=[] , ) def snake_case ( self , __a , __a , __a=None , __a=False , __a=False , __a=False , ): if regexes_to_ignore is not None: for s in regexes_to_ignore: __lowerCAmelCase = np.array([re.sub(__a , "" , __a ) for x in predictions] ) __lowerCAmelCase = np.array([re.sub(__a , "" , __a ) for x in references] ) else: __lowerCAmelCase = np.asarray(__a ) __lowerCAmelCase = np.asarray(__a ) if ignore_case: __lowerCAmelCase = np.char.lower(__a ) __lowerCAmelCase = np.char.lower(__a ) if ignore_punctuation: __lowerCAmelCase = string.punctuation.maketrans("" , "" , string.punctuation ) __lowerCAmelCase = np.char.translate(__a , table=__a ) __lowerCAmelCase = np.char.translate(__a , table=__a ) if ignore_numbers: __lowerCAmelCase = string.digits.maketrans("" , "" , string.digits ) __lowerCAmelCase = np.char.translate(__a , table=__a ) __lowerCAmelCase = np.char.translate(__a , table=__a ) __lowerCAmelCase = predictions == references return {"exact_match": np.mean(__a ) * 1_00}
57
import argparse import math import traceback import dateutil.parser as date_parser import requests def UpperCAmelCase ( a_ ) -> str: """simple docstring""" __A = {} __A = job["started_at"] __A = job["completed_at"] __A = date_parser.parse(a_ ) __A = date_parser.parse(a_ ) __A = round((end_datetime - start_datetime).total_seconds() / 60.0 ) __A = start __A = end __A = duration_in_min return job_info def UpperCAmelCase ( a_ , a_=None ) -> str: """simple docstring""" __A = None if token is not None: __A = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} __A = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' __A = requests.get(a_ , headers=a_ ).json() __A = {} try: job_time.update({job["name"]: extract_time_from_single_job(a_ ) for job in result["jobs"]} ) __A = math.ceil((result["total_count"] - 1_0_0) / 1_0_0 ) for i in range(a_ ): __A = requests.get(url + F'''&page={i + 2}''' , headers=a_ ).json() job_time.update({job["name"]: extract_time_from_single_job(a_ ) for job in result["jobs"]} ) return job_time except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} if __name__ == "__main__": SCREAMING_SNAKE_CASE :Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') SCREAMING_SNAKE_CASE :Optional[int] = parser.parse_args() SCREAMING_SNAKE_CASE :Union[str, Any] = get_job_time(args.workflow_run_id) SCREAMING_SNAKE_CASE :Optional[int] = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f'''{k}: {v["duration"]}''')
15
0
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE :str = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Any = { 'studio-ousia/luke-base': 'https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json', 'studio-ousia/luke-large': 'https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json', } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" _SCREAMING_SNAKE_CASE = 'luke' def __init__( self : Dict , _lowerCAmelCase : Optional[int]=5_0_2_6_7 , _lowerCAmelCase : List[Any]=5_0_0_0_0_0 , _lowerCAmelCase : Any=7_6_8 , _lowerCAmelCase : Tuple=2_5_6 , _lowerCAmelCase : List[Any]=1_2 , _lowerCAmelCase : Tuple=1_2 , _lowerCAmelCase : List[Any]=3_0_7_2 , _lowerCAmelCase : Any="gelu" , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Optional[int]=0.1 , _lowerCAmelCase : Dict=5_1_2 , _lowerCAmelCase : str=2 , _lowerCAmelCase : List[str]=0.02 , _lowerCAmelCase : List[str]=1e-12 , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : Optional[int]=0 , _lowerCAmelCase : Any=2 , **_lowerCAmelCase : Tuple , ) -> Any: """simple docstring""" super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) snake_case_ = vocab_size snake_case_ = entity_vocab_size snake_case_ = hidden_size snake_case_ = entity_emb_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = hidden_act snake_case_ = intermediate_size snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = use_entity_aware_attention snake_case_ = classifier_dropout
159
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def UpperCAmelCase ( a_ ) -> List[str]: """simple docstring""" __A = args.pruning_method __A = args.threshold __A = args.model_name_or_path.rstrip("/" ) __A = args.target_model_path print(F'''Load fine-pruned model from {model_name_or_path}''' ) __A = torch.load(os.path.join(a_ , "pytorch_model.bin" ) ) __A = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: __A = tensor print(F'''Copied layer {name}''' ) elif "classifier" in name or "qa_output" in name: __A = tensor print(F'''Copied layer {name}''' ) elif "bias" in name: __A = tensor print(F'''Copied layer {name}''' ) else: if pruning_method == "magnitude": __A = MagnitudeBinarizer.apply(inputs=a_ , threshold=a_ ) __A = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "topK": if "mask_scores" in name: continue __A = name[:-6] __A = model[F'''{prefix_}mask_scores'''] __A = TopKBinarizer.apply(a_ , a_ ) __A = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue __A = name[:-6] __A = model[F'''{prefix_}mask_scores'''] __A = ThresholdBinarizer.apply(a_ , a_ , a_ ) __A = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "l0": if "mask_scores" in name: continue __A = name[:-6] __A = model[F'''{prefix_}mask_scores'''] __A , __A = -0.1, 1.1 __A = torch.sigmoid(a_ ) __A = s * (r - l) + l __A = s_bar.clamp(min=0.0 , max=1.0 ) __A = tensor * mask print(F'''Pruned layer {name}''' ) else: raise ValueError("Unknown pruning method" ) if target_model_path is None: __A = os.path.join( os.path.dirname(a_ ) , F'''bertarized_{os.path.basename(a_ )}''' ) if not os.path.isdir(a_ ): shutil.copytree(a_ , a_ ) print(F'''\nCreated folder {target_model_path}''' ) torch.save(a_ , os.path.join(a_ , "pytorch_model.bin" ) ) print("\nPruned model saved! See you later!" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :Tuple = argparse.ArgumentParser() parser.add_argument( '--pruning_method', choices=['l0', 'magnitude', 'topK', 'sigmoied_threshold'], type=str, required=True, help=( 'Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,' ' sigmoied_threshold = Soft movement pruning)' ), ) parser.add_argument( '--threshold', type=float, required=False, help=( 'For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.' 'For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.' 'Not needed for `l0`' ), ) parser.add_argument( '--model_name_or_path', type=str, required=True, help='Folder containing the model that was previously fine-pruned', ) parser.add_argument( '--target_model_path', default=None, type=str, required=False, help='Folder containing the model that was previously fine-pruned', ) SCREAMING_SNAKE_CASE :str = parser.parse_args() main(args)
15
0
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch _UpperCAmelCase = logging.get_logger(__name__) @add_end_docstrings( __SCREAMING_SNAKE_CASE , R'''\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n ''' , ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" if self.framework == "tf": A_ : List[Any] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": A_ : Dict = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=lowercase ) else: raise ValueError('Unsupported framework' ) return masked_index def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Tuple = self.get_masked_index(lowercase ) A_ : Any = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( 'fill-mask' , self.model.base_model_prefix , F'''No mask_token ({self.tokenizer.mask_token}) found on the input''' , ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" if isinstance(lowercase , lowercase ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['input_ids'][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(lowercase ) def lowerCAmelCase_ ( self , lowercase , lowercase=None , **lowercase ): """simple docstring""" if return_tensors is None: A_ : Union[str, Any] = self.framework A_ : Tuple = self.tokenizer(lowercase , return_tensors=lowercase ) self.ensure_exactly_one_mask_token(lowercase ) return model_inputs def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : str = self.model(**lowercase ) A_ : Any = model_inputs['input_ids'] return model_outputs def lowerCAmelCase_ ( self , lowercase , lowercase=5 , lowercase=None ): """simple docstring""" if target_ids is not None and target_ids.shape[0] < top_k: A_ : Optional[Any] = target_ids.shape[0] A_ : Any = model_outputs['input_ids'][0] A_ : List[Any] = model_outputs['logits'] if self.framework == "tf": A_ : Union[str, Any] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] A_ : Union[str, Any] = outputs.numpy() A_ : int = outputs[0, masked_index, :] A_ : Optional[int] = stable_softmax(lowercase , axis=-1 ) if target_ids is not None: A_ : Optional[Any] = tf.gather_nd(tf.squeeze(lowercase , 0 ) , target_ids.reshape(-1 , 1 ) ) A_ : List[str] = tf.expand_dims(lowercase , 0 ) A_ : Any = tf.math.top_k(lowercase , k=lowercase ) A_ , A_ : int = topk.values.numpy(), topk.indices.numpy() else: A_ : Tuple = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=lowercase ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample A_ : str = outputs[0, masked_index, :] A_ : str = logits.softmax(dim=-1 ) if target_ids is not None: A_ : List[Any] = probs[..., target_ids] A_ , A_ : List[str] = probs.topk(lowercase ) A_ : int = [] A_ : Union[str, Any] = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): A_ : Any = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place A_ : int = input_ids.numpy().copy() if target_ids is not None: A_ : Tuple = target_ids[p].tolist() A_ : Any = p # Filter padding out: A_ : str = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back A_ : List[str] = self.tokenizer.decode(lowercase , skip_special_tokens=lowercase ) A_ : Tuple = {'score': v, 'token': p, 'token_str': self.tokenizer.decode([p] ), 'sequence': sequence} row.append(lowercase ) result.append(lowercase ) if single_mask: return result[0] return result def lowerCAmelCase_ ( self , lowercase , lowercase=None ): """simple docstring""" if isinstance(lowercase , lowercase ): A_ : str = [targets] try: A_ : Union[str, Any] = self.tokenizer.get_vocab() except Exception: A_ : str = {} A_ : int = [] for target in targets: A_ : Union[str, Any] = vocab.get(lowercase , lowercase ) if id_ is None: A_ : Dict = self.tokenizer( lowercase , add_special_tokens=lowercase , return_attention_mask=lowercase , return_token_type_ids=lowercase , max_length=1 , truncation=lowercase , )['input_ids'] if len(lowercase ) == 0: logger.warning( F'''The specified target token `{target}` does not exist in the model vocabulary. ''' 'We cannot replace it with anything meaningful, ignoring it' ) continue A_ : int = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F'''The specified target token `{target}` does not exist in the model vocabulary. ''' F'''Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.''' ) target_ids.append(id_ ) A_ : str = list(set(lowercase ) ) if len(lowercase ) == 0: raise ValueError('At least one target must be provided when passed.' ) A_ : Optional[int] = np.array(lowercase ) return target_ids def lowerCAmelCase_ ( self , lowercase=None , lowercase=None ): """simple docstring""" A_ : Union[str, Any] = {} if targets is not None: A_ : Optional[int] = self.get_target_ids(lowercase , lowercase ) A_ : List[str] = target_ids if top_k is not None: A_ : Union[str, Any] = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( 'fill-mask' , self.model.base_model_prefix , 'The tokenizer does not define a `mask_token`.' ) return {}, {}, postprocess_params def __call__( self , lowercase , *lowercase , **lowercase ): """simple docstring""" A_ : Optional[Any] = super().__call__(lowercase , **lowercase ) if isinstance(lowercase , lowercase ) and len(lowercase ) == 1: return outputs[0] return outputs
140
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE :List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :int = {'vocab_file': 'spiece.model'} SCREAMING_SNAKE_CASE :Union[str, Any] = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), } } SCREAMING_SNAKE_CASE :int = { 'google/bigbird-roberta-base': 4096, 'google/bigbird-roberta-large': 4096, 'google/bigbird-base-trivia-itc': 4096, } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["input_ids", "attention_mask"] snake_case_ = [] def __init__( self : Any ,A : List[str] ,A : str="<unk>" ,A : int="<s>" ,A : Union[str, Any]="</s>" ,A : List[str]="<pad>" ,A : int="[SEP]" ,A : Optional[Any]="[MASK]" ,A : Tuple="[CLS]" ,A : Optional[Dict[str, Any]] = None ,**A : Any ,): __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else bos_token __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else eos_token __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else unk_token __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else pad_token __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else cls_token __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else sep_token # Mask token behave like a normal word, i.e. include the space before it __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else mask_token __A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A ,eos_token=A ,unk_token=A ,pad_token=A ,sep_token=A ,mask_token=A ,cls_token=A ,sp_model_kwargs=self.sp_model_kwargs ,**A ,) __A = vocab_file __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) @property def UpperCamelCase_ ( self : List[str] ): return self.sp_model.get_piece_size() def UpperCamelCase_ ( self : Optional[Any] ): __A = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ): __A = self.__dict__.copy() __A = None return state def __setstate__( self : str ,A : Optional[Any] ): __A = d # for backward compatibility if not hasattr(self ,"sp_model_kwargs" ): __A = {} __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ ( self : Any ,A : str ): return self.sp_model.encode(A ,out_type=A ) def UpperCamelCase_ ( self : List[str] ,A : Tuple ): return self.sp_model.piece_to_id(A ) def UpperCamelCase_ ( self : List[Any] ,A : Tuple ): __A = self.sp_model.IdToPiece(A ) return token def UpperCamelCase_ ( self : List[Any] ,A : int ): __A = [] __A = "" __A = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A ) + token __A = True __A = [] else: current_sub_tokens.append(A ) __A = False out_string += self.sp_model.decode(A ) return out_string.strip() def UpperCamelCase_ ( self : Tuple ,A : List[int] ,A : bool = False ,A : bool = None ,A : bool = True ,**A : Union[str, Any] ,): __A = kwargs.pop("use_source_tokenizer" ,A ) __A = self.convert_ids_to_tokens(A ,skip_special_tokens=A ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 __A = [] __A = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(A ) ) __A = [] sub_texts.append(A ) else: current_sub_text.append(A ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(A ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: __A = re.sub(R" (\[(MASK|SEP)\])" ,R"\1" ," ".join(A ) ) else: __A = "".join(A ) __A = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: __A = self.clean_up_tokenization(A ) return clean_text else: return text def UpperCamelCase_ ( self : str ,A : str ,A : Optional[str] = None ): if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __A = os.path.join( A ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,A ) elif not os.path.isfile(self.vocab_file ): with open(A ,"wb" ) as fi: __A = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,) def UpperCamelCase_ ( self : Dict ,A : List[int] ,A : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __A = [self.cls_token_id] __A = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ ( self : Optional[int] ,A : List[int] ,A : Optional[List[int]] = None ,A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A ,token_ids_a=A ,already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1] + ([0] * len(A )) + [1] def UpperCamelCase_ ( self : Any ,A : List[int] ,A : Optional[List[int]] = None ): __A = [self.sep_token_id] __A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
15
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowerCamelCase_ : Optional[int] = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : int = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys lowerCamelCase_ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
286
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'): SCREAMING_SNAKE_CASE :Any = { 'linear': PIL.Image.Resampling.BILINEAR, 'bilinear': PIL.Image.Resampling.BILINEAR, 'bicubic': PIL.Image.Resampling.BICUBIC, 'lanczos': PIL.Image.Resampling.LANCZOS, 'nearest': PIL.Image.Resampling.NEAREST, } else: SCREAMING_SNAKE_CASE :int = { 'linear': PIL.Image.LINEAR, 'bilinear': PIL.Image.BILINEAR, 'bicubic': PIL.Image.BICUBIC, 'lanczos': PIL.Image.LANCZOS, 'nearest': PIL.Image.NEAREST, } def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" __A = (images / 2 + 0.5).clamp(0 , 1 ) __A = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __A = numpy_to_pil(a_ ) return images def UpperCAmelCase ( a_ ) -> int: """simple docstring""" if images.ndim == 3: __A = images[None, ...] __A = (images * 2_5_5).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images __A = [Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: __A = [Image.fromarray(a_ ) for image in images] return pil_images
15
0
"""simple docstring""" from __future__ import annotations import pandas as pd def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> list[int]: lowercase__ : Union[str, Any] = [0] * no_of_processes lowercase__ : Dict = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(__lowerCamelCase ): lowercase__ : int = burst_time[i] lowercase__ : Dict = 0 lowercase__ : Optional[int] = 0 lowercase__ : Tuple = 9_99_99_99_99 lowercase__ : List[str] = 0 lowercase__ : List[str] = False # Process until all processes are completed while complete != no_of_processes: for j in range(__lowerCamelCase ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: lowercase__ : Tuple = remaining_time[j] lowercase__ : List[Any] = j lowercase__ : Optional[int] = True if not check: increment_time += 1 continue remaining_time[short] -= 1 lowercase__ : int = remaining_time[short] if minm == 0: lowercase__ : List[Any] = 9_99_99_99_99 if remaining_time[short] == 0: complete += 1 lowercase__ : List[Any] = False # Find finish time of current process lowercase__ : str = increment_time + 1 # Calculate waiting time lowercase__ : Optional[Any] = finish_time - arrival_time[short] lowercase__ : Dict = finar - burst_time[short] if waiting_time[short] < 0: lowercase__ : List[str] = 0 # Increment time increment_time += 1 return waiting_time def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> list[int]: lowercase__ : Optional[int] = [0] * no_of_processes for i in range(__lowerCamelCase ): lowercase__ : int = burst_time[i] + waiting_time[i] return turn_around_time def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> None: lowercase__ : Union[str, Any] = 0 lowercase__ : Tuple = 0 for i in range(__lowerCamelCase ): lowercase__ : Optional[int] = total_waiting_time + waiting_time[i] lowercase__ : Tuple = total_turn_around_time + turn_around_time[i] print(f"""Average waiting time = {total_waiting_time / no_of_processes:.5f}""" ) print('''Average turn around time =''' , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print('Enter how many process you want to analyze') lowerCAmelCase_ = int(input()) lowerCAmelCase_ = [0] * no_of_processes lowerCAmelCase_ = [0] * no_of_processes lowerCAmelCase_ = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print('Enter the arrival time and burst time for process:--' + str(i + 1)) lowerCAmelCase_ ,lowerCAmelCase_ = map(int, input().split()) lowerCAmelCase_ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) lowerCAmelCase_ = burst_time lowerCAmelCase_ = no_of_processes lowerCAmelCase_ = waiting_time lowerCAmelCase_ = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) lowerCAmelCase_ = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ 'Process', 'BurstTime', 'ArrivalTime', 'WaitingTime', 'TurnAroundTime', ], ) # Printing the dataFrame pd.set_option('display.max_rows', fcfs.shape[0] + 1) print(fcfs)
16
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase = 50 ) -> int: lowercase__ : int = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F'''{solution() = }''')
16
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def __UpperCAmelCase ( __lowerCamelCase ) -> List[str]: lowercase__ : int = SwinvaConfig() lowercase__ : Optional[Any] = swinva_name.split('''_''' ) lowercase__ : Union[str, Any] = name_split[1] if "to" in name_split[3]: lowercase__ : Dict = int(name_split[3][-3:] ) else: lowercase__ : str = int(name_split[3] ) if "to" in name_split[2]: lowercase__ : str = int(name_split[2][-2:] ) else: lowercase__ : Dict = int(name_split[2][6:] ) if model_size == "tiny": lowercase__ : Optional[Any] = 96 lowercase__ : Optional[int] = (2, 2, 6, 2) lowercase__ : Union[str, Any] = (3, 6, 12, 24) elif model_size == "small": lowercase__ : List[str] = 96 lowercase__ : Any = (2, 2, 18, 2) lowercase__ : List[Any] = (3, 6, 12, 24) elif model_size == "base": lowercase__ : Optional[Any] = 1_28 lowercase__ : Dict = (2, 2, 18, 2) lowercase__ : List[Any] = (4, 8, 16, 32) else: lowercase__ : Optional[Any] = 1_92 lowercase__ : Optional[Any] = (2, 2, 18, 2) lowercase__ : Any = (6, 12, 24, 48) if "to" in swinva_name: lowercase__ : List[str] = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): lowercase__ : Tuple = 2_18_41 lowercase__ : Any = '''huggingface/label-files''' lowercase__ : str = '''imagenet-22k-id2label.json''' lowercase__ : Union[str, Any] = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ : Tuple = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : Union[str, Any] = idalabel lowercase__ : Tuple = {v: k for k, v in idalabel.items()} else: lowercase__ : str = 10_00 lowercase__ : Union[str, Any] = '''huggingface/label-files''' lowercase__ : Dict = '''imagenet-1k-id2label.json''' lowercase__ : Optional[int] = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ : Any = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : List[str] = idalabel lowercase__ : Optional[Any] = {v: k for k, v in idalabel.items()} lowercase__ : Tuple = img_size lowercase__ : Dict = num_classes lowercase__ : Union[str, Any] = embed_dim lowercase__ : Optional[int] = depths lowercase__ : Tuple = num_heads lowercase__ : List[Any] = window_size return config def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[Any]: if "patch_embed.proj" in name: lowercase__ : List[str] = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowercase__ : Optional[Any] = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: lowercase__ : List[Any] = '''encoder.''' + name if "attn.proj" in name: lowercase__ : Tuple = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: lowercase__ : Tuple = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: lowercase__ : Optional[Any] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowercase__ : Optional[int] = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowercase__ : Optional[int] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowercase__ : Union[str, Any] = name.replace('''mlp.fc2''' , '''output.dense''' ) if "q_bias" in name: lowercase__ : Union[str, Any] = name.replace('''q_bias''' , '''query.bias''' ) if "k_bias" in name: lowercase__ : str = name.replace('''k_bias''' , '''key.bias''' ) if "v_bias" in name: lowercase__ : Dict = name.replace('''v_bias''' , '''value.bias''' ) if "cpb_mlp" in name: lowercase__ : Any = name.replace('''cpb_mlp''' , '''continuous_position_bias_mlp''' ) if name == "norm.weight": lowercase__ : Union[str, Any] = '''layernorm.weight''' if name == "norm.bias": lowercase__ : int = '''layernorm.bias''' if "head" in name: lowercase__ : Optional[Any] = name.replace('''head''' , '''classifier''' ) else: lowercase__ : List[str] = '''swinv2.''' + name return name def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: for key in orig_state_dict.copy().keys(): lowercase__ : str = orig_state_dict.pop(__lowerCamelCase ) if "mask" in key: continue elif "qkv" in key: lowercase__ : str = key.split('''.''' ) lowercase__ : Tuple = int(key_split[1] ) lowercase__ : int = int(key_split[3] ) lowercase__ : Union[str, Any] = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowercase__ : Tuple = val[:dim, :] lowercase__ : Any = val[dim : dim * 2, :] lowercase__ : str = val[-dim:, :] else: lowercase__ : str = val[:dim] lowercase__ : int = val[ dim : dim * 2 ] lowercase__ : Optional[int] = val[-dim:] else: lowercase__ : int = val return orig_state_dict def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : Dict = timm.create_model(__lowerCamelCase , pretrained=__lowerCamelCase ) timm_model.eval() lowercase__ : Union[str, Any] = get_swinva_config(__lowerCamelCase ) lowercase__ : Tuple = SwinvaForImageClassification(__lowerCamelCase ) model.eval() lowercase__ : str = convert_state_dict(timm_model.state_dict() , __lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) lowercase__ : Optional[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ : Any = AutoImageProcessor.from_pretrained('''microsoft/{}'''.format(swinva_name.replace('''_''' , '''-''' ) ) ) lowercase__ : Optional[Any] = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) lowercase__ : Tuple = image_processor(images=__lowerCamelCase , return_tensors='''pt''' ) lowercase__ : str = timm_model(inputs['''pixel_values'''] ) lowercase__ : List[str] = model(**__lowerCamelCase ).logits assert torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-3 ) print(f"""Saving model {swinva_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCamelCase ) model.push_to_hub( repo_path_or_name=Path(__lowerCamelCase , __lowerCamelCase ) , organization='''nandwalritik''' , commit_message='''Add model''' , ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swinv2_name', default='swinv2_tiny_patch4_window8_256', type=str, help='Name of the Swinv2 timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCAmelCase_ = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
16
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" debug_launcher(test_script.main ) def UpperCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" debug_launcher(test_ops.main )
16
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_chinese_clip': [ 'CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ChineseCLIPConfig', 'ChineseCLIPOnnxConfig', 'ChineseCLIPTextConfig', 'ChineseCLIPVisionConfig', ], 'processing_chinese_clip': ['ChineseCLIPProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['ChineseCLIPFeatureExtractor'] lowerCAmelCase_ = ['ChineseCLIPImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ChineseCLIPModel', 'ChineseCLIPPreTrainedModel', 'ChineseCLIPTextModel', 'ChineseCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) lowerCAmelCase_ = { 'configuration_speecht5': [ 'SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP', 'SpeechT5Config', 'SpeechT5HifiGanConfig', ], 'feature_extraction_speecht5': ['SpeechT5FeatureExtractor'], 'processing_speecht5': ['SpeechT5Processor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['SpeechT5Tokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'SpeechT5ForSpeechToText', 'SpeechT5ForSpeechToSpeech', 'SpeechT5ForTextToSpeech', 'SpeechT5Model', 'SpeechT5PreTrainedModel', 'SpeechT5HifiGan', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
1
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } lowerCAmelCase_ = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Tuple: for attribute in key.split('''.''' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models lowercase__ : Tuple = '''lm_head''' lowercase__ : Tuple = getattr(__lowerCamelCase , __lowerCamelCase ) if weight_type is not None: lowercase__ : List[Any] = getattr(__lowerCamelCase , __lowerCamelCase ).shape else: lowercase__ : Any = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowercase__ : Optional[int] = value elif weight_type == "weight_g": lowercase__ : Tuple = value elif weight_type == "weight_v": lowercase__ : Any = value elif weight_type == "bias": lowercase__ : int = value else: lowercase__ : Tuple = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict: lowercase__ : Tuple = [] lowercase__ : int = fairseq_model.state_dict() lowercase__ : str = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): lowercase__ : Optional[int] = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == '''group''' , ) lowercase__ : int = True else: for key, mapped_key in MAPPING.items(): lowercase__ : Union[str, Any] = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: lowercase__ : List[str] = True if "*" in mapped_key: lowercase__ : Tuple = name.split(__lowerCamelCase )[0].split('''.''' )[-2] lowercase__ : Union[str, Any] = mapped_key.replace('''*''' , __lowerCamelCase ) if "weight_g" in name: lowercase__ : int = '''weight_g''' elif "weight_v" in name: lowercase__ : Tuple = '''weight_v''' elif "bias" in name: lowercase__ : Tuple = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase__ : List[str] = '''weight''' else: lowercase__ : Dict = None set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict: lowercase__ : Dict = full_name.split('''conv_layers.''' )[-1] lowercase__ : int = name.split('''.''' ) lowercase__ : str = int(items[0] ) lowercase__ : int = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowercase__ : Any = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowercase__ : int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowercase__ : Any = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowercase__ : List[str] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=True ) -> List[Any]: if config_path is not None: lowercase__ : Union[str, Any] = UniSpeechConfig.from_pretrained(__lowerCamelCase ) else: lowercase__ : Optional[int] = UniSpeechConfig() if is_finetuned: if dict_path: lowercase__ : Union[str, Any] = Dictionary.load_from_json(__lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowercase__ : Optional[int] = target_dict.pad_index lowercase__ : Optional[Any] = target_dict.bos_index lowercase__ : Optional[int] = target_dict.eos_index lowercase__ : Tuple = len(target_dict.symbols ) lowercase__ : Optional[int] = os.path.join(__lowerCamelCase , '''vocab.json''' ) if not os.path.isdir(__lowerCamelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__lowerCamelCase ) ) return os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) lowercase__ : Tuple = target_dict.indices # fairseq has the <pad> and <s> switched lowercase__ : Any = 42 lowercase__ : Union[str, Any] = 43 with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(__lowerCamelCase , __lowerCamelCase ) lowercase__ : Tuple = WavaVecaPhonemeCTCTokenizer( __lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__lowerCamelCase , ) lowercase__ : str = True if config.feat_extract_norm == '''layer''' else False lowercase__ : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) lowercase__ : Tuple = WavaVecaProcessor(feature_extractor=__lowerCamelCase , tokenizer=__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) lowercase__ : List[str] = UniSpeechForCTC(__lowerCamelCase ) else: lowercase__ : List[Any] = UniSpeechForPreTraining(__lowerCamelCase ) if is_finetuned: lowercase__ , lowercase__ , lowercase__ : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path} ) else: lowercase__ , lowercase__ , lowercase__ : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) lowercase__ : Union[str, Any] = model[0].eval() recursively_load_weights(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) hf_unispeech.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) lowerCAmelCase_ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
16
"""simple docstring""" from ..utils import DummyObject, requires_backends class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : List[str] = ["torch", "torchsde"] def __init__( self : Tuple ,*_snake_case : Union[str, Any] ,**_snake_case : Any ) -> Union[str, Any]: """simple docstring""" requires_backends(self ,['''torch''', '''torchsde'''] ) @classmethod def UpperCAmelCase ( cls : List[str] ,*_snake_case : int ,**_snake_case : Union[str, Any] ) -> str: """simple docstring""" requires_backends(cls ,['''torch''', '''torchsde'''] ) @classmethod def UpperCAmelCase ( cls : List[Any] ,*_snake_case : List[Any] ,**_snake_case : List[str] ) -> List[Any]: """simple docstring""" requires_backends(cls ,['''torch''', '''torchsde'''] )
16
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase_ = { 'vocab_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-german-cased': ( 'https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json' ), 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json' ), }, } lowerCAmelCase_ = { 'distilbert-base-uncased': 512, 'distilbert-base-uncased-distilled-squad': 512, 'distilbert-base-cased': 512, 'distilbert-base-cased-distilled-squad': 512, 'distilbert-base-german-cased': 512, 'distilbert-base-multilingual-cased': 512, } lowerCAmelCase_ = { 'distilbert-base-uncased': {'do_lower_case': True}, 'distilbert-base-uncased-distilled-squad': {'do_lower_case': True}, 'distilbert-base-cased': {'do_lower_case': False}, 'distilbert-base-cased-distilled-squad': {'do_lower_case': False}, 'distilbert-base-german-cased': {'do_lower_case': False}, 'distilbert-base-multilingual-cased': {'do_lower_case': False}, } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = VOCAB_FILES_NAMES lowerCAmelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : int = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase : Optional[int] = ["input_ids", "attention_mask"] lowerCAmelCase : Dict = DistilBertTokenizer def __init__( self : Union[str, Any] ,_snake_case : Optional[Any]=None ,_snake_case : Optional[int]=None ,_snake_case : Any=True ,_snake_case : Tuple="[UNK]" ,_snake_case : Union[str, Any]="[SEP]" ,_snake_case : List[Any]="[PAD]" ,_snake_case : int="[CLS]" ,_snake_case : Optional[Any]="[MASK]" ,_snake_case : Tuple=True ,_snake_case : Optional[int]=None ,**_snake_case : Tuple ,) -> Union[str, Any]: """simple docstring""" super().__init__( _snake_case ,tokenizer_file=_snake_case ,do_lower_case=_snake_case ,unk_token=_snake_case ,sep_token=_snake_case ,pad_token=_snake_case ,cls_token=_snake_case ,mask_token=_snake_case ,tokenize_chinese_chars=_snake_case ,strip_accents=_snake_case ,**_snake_case ,) lowercase__ : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' ,_snake_case ) != do_lower_case or normalizer_state.get('''strip_accents''' ,_snake_case ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' ,_snake_case ) != tokenize_chinese_chars ): lowercase__ : List[str] = getattr(_snake_case ,normalizer_state.pop('''type''' ) ) lowercase__ : Union[str, Any] = do_lower_case lowercase__ : Dict = strip_accents lowercase__ : str = tokenize_chinese_chars lowercase__ : Optional[Any] = normalizer_class(**_snake_case ) lowercase__ : Any = do_lower_case def UpperCAmelCase ( self : str ,_snake_case : Optional[Any] ,_snake_case : List[str]=None ) -> int: """simple docstring""" lowercase__ : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase ( self : Dict ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ : Any = [self.sep_token_id] lowercase__ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase ( self : Tuple ,_snake_case : str ,_snake_case : Optional[str] = None ) -> Tuple[str]: """simple docstring""" lowercase__ : Optional[int] = self._tokenizer.model.save(_snake_case ,name=_snake_case ) return tuple(_snake_case )
16
"""simple docstring""" import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node lowerCAmelCase_ = 4 lowerCAmelCase_ = 3 class __A ( A_ ): '''simple docstring''' pass def __UpperCAmelCase ( __lowerCamelCase ) -> Dict: for shard in shards: for i in range(__lowerCamelCase ): yield {"i": i, "shard": shard} def __UpperCAmelCase ( ) -> Tuple: lowercase__ : int = int(os.environ['''RANK'''] ) lowercase__ : str = int(os.environ['''WORLD_SIZE'''] ) lowercase__ : List[Any] = ArgumentParser() parser.add_argument('''--streaming''' , type=__lowerCamelCase ) parser.add_argument('''--local_rank''' , type=__lowerCamelCase ) parser.add_argument('''--num_workers''' , type=__lowerCamelCase , default=0 ) lowercase__ : int = parser.parse_args() lowercase__ : Optional[Any] = args.streaming lowercase__ : List[Any] = args.num_workers lowercase__ : Optional[Any] = {'''shards''': [f"""shard_{shard_idx}""" for shard_idx in range(__lowerCamelCase )]} lowercase__ : Dict = IterableDataset.from_generator(__lowerCamelCase , gen_kwargs=__lowerCamelCase ) if not streaming: lowercase__ : int = Dataset.from_list(list(__lowerCamelCase ) ) lowercase__ : int = split_dataset_by_node(__lowerCamelCase , rank=__lowerCamelCase , world_size=__lowerCamelCase ) lowercase__ : Optional[Any] = torch.utils.data.DataLoader(__lowerCamelCase , num_workers=__lowerCamelCase ) lowercase__ : Optional[Any] = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowercase__ : str = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) lowercase__ : str = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
16
1
"""simple docstring""" from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : int = ["input_features", "attention_mask"] def __init__( self : int ,_snake_case : Optional[int]=80 ,_snake_case : int=16_000 ,_snake_case : List[Any]=80 ,_snake_case : Any=0.0 ,_snake_case : Tuple=True ,_snake_case : int=True ,_snake_case : int=True ,**_snake_case : Tuple ,) -> Any: """simple docstring""" super().__init__(feature_size=_snake_case ,sampling_rate=_snake_case ,padding_value=_snake_case ,**_snake_case ) lowercase__ : Optional[int] = num_mel_bins lowercase__ : int = do_ceptral_normalize lowercase__ : Optional[int] = normalize_means lowercase__ : List[str] = normalize_vars lowercase__ : Tuple = True def UpperCAmelCase ( self : Dict ,_snake_case : np.ndarray ,) -> np.ndarray: """simple docstring""" lowercase__ : Dict = waveform * (2**15) # Kaldi compliance: 16-bit signed integers lowercase__ : Union[str, Any] = torch.from_numpy(_snake_case ).unsqueeze(0 ) lowercase__ : int = ta_kaldi.fbank(_snake_case ,num_mel_bins=self.num_mel_bins ,sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def UpperCAmelCase ( _snake_case : np.ndarray ,_snake_case : int ,_snake_case : Optional[bool] = True ,_snake_case : Optional[bool] = True ,_snake_case : float = 0.0 ,) -> np.ndarray: """simple docstring""" if normalize_means: lowercase__ : Optional[Any] = x[:input_length].mean(axis=0 ) lowercase__ : List[Any] = np.subtract(_snake_case ,_snake_case ) if normalize_vars: lowercase__ : str = x[:input_length].std(axis=0 ) lowercase__ : Optional[int] = np.divide(_snake_case ,_snake_case ) if input_length < x.shape[0]: lowercase__ : Tuple = padding_value # make sure array is in float32 lowercase__ : List[Any] = x.astype(np.floataa ) return x def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : List[np.ndarray] ,_snake_case : Optional[np.ndarray] = None ) -> List[np.ndarray]: """simple docstring""" lowercase__ : Union[str, Any] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(_snake_case ,_snake_case ,self.normalize_means ,self.normalize_vars ,self.padding_value ) for x, n in zip(_snake_case ,_snake_case ) ] def __call__( self : Any ,_snake_case : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,_snake_case : Union[bool, str, PaddingStrategy] = False ,_snake_case : Optional[int] = None ,_snake_case : bool = False ,_snake_case : Optional[int] = None ,_snake_case : Optional[Union[str, TensorType]] = None ,_snake_case : Optional[int] = None ,_snake_case : Optional[bool] = None ,**_snake_case : Any ,) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowercase__ : List[Any] = isinstance(_snake_case ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) lowercase__ : Dict = is_batched_numpy or ( isinstance(_snake_case ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: lowercase__ : Union[str, Any] = [np.asarray(_snake_case ,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_snake_case ,np.ndarray ): lowercase__ : List[Any] = np.asarray(_snake_case ,dtype=np.floataa ) elif isinstance(_snake_case ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ : List[str] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ : Tuple = [raw_speech] # extract fbank features lowercase__ : Tuple = [self._extract_fbank_features(_snake_case ) for waveform in raw_speech] # convert into correct format for padding lowercase__ : Union[str, Any] = BatchFeature({'''input_features''': features} ) lowercase__ : List[Any] = self.pad( _snake_case ,padding=_snake_case ,max_length=_snake_case ,truncation=_snake_case ,pad_to_multiple_of=_snake_case ,return_attention_mask=_snake_case ,**_snake_case ,) # make sure list is in array format lowercase__ : Any = padded_inputs.get('''input_features''' ) if isinstance(input_features[0] ,_snake_case ): lowercase__ : List[str] = [np.asarray(_snake_case ,dtype=np.floataa ) for feature in input_features] lowercase__ : int = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: lowercase__ : Union[str, Any] = [np.asarray(_snake_case ,dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: lowercase__ : Any = ( np.array(_snake_case ,dtype=np.intaa ) if self._get_padding_strategies(_snake_case ,max_length=_snake_case ) is not PaddingStrategy.DO_NOT_PAD else None ) lowercase__ : List[str] = self.normalize( padded_inputs['''input_features'''] ,attention_mask=_snake_case ) if return_tensors is not None: lowercase__ : Optional[int] = padded_inputs.convert_to_tensors(_snake_case ) return padded_inputs
16
"""simple docstring""" from ...configuration_utils import PretrainedConfig lowerCAmelCase_ = { 'google/tapas-base-finetuned-sqa': ( 'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json' ), 'google/tapas-base-finetuned-wtq': ( 'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json' ), 'google/tapas-base-finetuned-wikisql-supervised': ( 'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json' ), 'google/tapas-base-finetuned-tabfact': ( 'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json' ), } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = "tapas" def __init__( self : List[Any] ,_snake_case : Dict=30_522 ,_snake_case : Union[str, Any]=768 ,_snake_case : int=12 ,_snake_case : Union[str, Any]=12 ,_snake_case : Union[str, Any]=3_072 ,_snake_case : List[Any]="gelu" ,_snake_case : Optional[int]=0.1 ,_snake_case : Tuple=0.1 ,_snake_case : List[Any]=1_024 ,_snake_case : Any=[3, 256, 256, 2, 256, 256, 10] ,_snake_case : List[Any]=0.02 ,_snake_case : Union[str, Any]=1e-12 ,_snake_case : str=0 ,_snake_case : Any=10.0 ,_snake_case : int=0 ,_snake_case : Optional[Any]=1.0 ,_snake_case : List[str]=None ,_snake_case : Tuple=1.0 ,_snake_case : Tuple=False ,_snake_case : List[Any]=None ,_snake_case : int=1.0 ,_snake_case : List[Any]=1.0 ,_snake_case : Optional[int]=False ,_snake_case : Optional[int]=False ,_snake_case : Optional[int]="ratio" ,_snake_case : Any=None ,_snake_case : Union[str, Any]=None ,_snake_case : List[str]=64 ,_snake_case : Optional[Any]=32 ,_snake_case : Optional[Any]=False ,_snake_case : Optional[int]=True ,_snake_case : Dict=False ,_snake_case : Tuple=False ,_snake_case : int=True ,_snake_case : List[str]=False ,_snake_case : Dict=None ,_snake_case : Optional[int]=None ,**_snake_case : int ,) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=_snake_case ,**_snake_case ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) lowercase__ : Optional[int] = vocab_size lowercase__ : List[str] = hidden_size lowercase__ : Any = num_hidden_layers lowercase__ : Optional[Any] = num_attention_heads lowercase__ : Optional[int] = hidden_act lowercase__ : List[Any] = intermediate_size lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : Dict = attention_probs_dropout_prob lowercase__ : str = max_position_embeddings lowercase__ : Dict = type_vocab_sizes lowercase__ : Optional[Any] = initializer_range lowercase__ : Dict = layer_norm_eps # Fine-tuning task hyperparameters lowercase__ : Any = positive_label_weight lowercase__ : int = num_aggregation_labels lowercase__ : List[str] = aggregation_loss_weight lowercase__ : Optional[int] = use_answer_as_supervision lowercase__ : Optional[Any] = answer_loss_importance lowercase__ : Union[str, Any] = use_normalized_answer_loss lowercase__ : str = huber_loss_delta lowercase__ : str = temperature lowercase__ : int = aggregation_temperature lowercase__ : List[Any] = use_gumbel_for_cells lowercase__ : Tuple = use_gumbel_for_aggregation lowercase__ : Union[str, Any] = average_approximation_function lowercase__ : Union[str, Any] = cell_selection_preference lowercase__ : Any = answer_loss_cutoff lowercase__ : List[Any] = max_num_rows lowercase__ : str = max_num_columns lowercase__ : int = average_logits_per_cell lowercase__ : str = select_one_column lowercase__ : str = allow_empty_column_selection lowercase__ : Any = init_cell_selection_weights_to_zero lowercase__ : Optional[int] = reset_position_index_per_cell lowercase__ : Union[str, Any] = disable_per_token_loss # Aggregation hyperparameters lowercase__ : Optional[Any] = aggregation_labels lowercase__ : List[Any] = no_aggregation_label_index if isinstance(self.aggregation_labels ,_snake_case ): lowercase__ : Union[str, Any] = {int(_snake_case ): v for k, v in aggregation_labels.items()}
16
1
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : int = MvpTokenizer lowerCAmelCase : Optional[int] = MvpTokenizerFast lowerCAmelCase : Optional[Any] = True lowerCAmelCase : Dict = filter_roberta_detectors def UpperCAmelCase ( self : int ) -> Any: """simple docstring""" super().setUp() lowercase__ : Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] lowercase__ : Tuple = dict(zip(_snake_case ,range(len(_snake_case ) ) ) ) lowercase__ : Any = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowercase__ : Tuple = {'''unk_token''': '''<unk>'''} lowercase__ : Tuple = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_snake_case ) + '''\n''' ) with open(self.merges_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_snake_case ) ) def UpperCAmelCase ( self : Union[str, Any] ,**_snake_case : List[str] ) -> Any: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**_snake_case ) def UpperCAmelCase ( self : Any ,**_snake_case : List[str] ) -> int: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname ,**_snake_case ) def UpperCAmelCase ( self : Tuple ,_snake_case : Any ) -> Dict: """simple docstring""" return "lower newer", "lower newer" @cached_property def UpperCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" return MvpTokenizer.from_pretrained('''RUCAIBox/mvp''' ) @cached_property def UpperCAmelCase ( self : str ) -> str: """simple docstring""" return MvpTokenizerFast.from_pretrained('''RUCAIBox/mvp''' ) @require_torch def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ : Union[str, Any] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] lowercase__ : Dict = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : Optional[int] = tokenizer(_snake_case ,max_length=len(_snake_case ) ,padding=_snake_case ,return_tensors='''pt''' ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual((2, 9) ,batch.input_ids.shape ) self.assertEqual((2, 9) ,batch.attention_mask.shape ) lowercase__ : Union[str, Any] = batch.input_ids.tolist()[0] self.assertListEqual(_snake_case ,_snake_case ) # Test that special tokens are reset @require_torch def UpperCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" lowercase__ : int = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : Tuple = tokenizer(_snake_case ,padding=_snake_case ,return_tensors='''pt''' ) # check if input_ids are returned and no labels self.assertIn('''input_ids''' ,_snake_case ) self.assertIn('''attention_mask''' ,_snake_case ) self.assertNotIn('''labels''' ,_snake_case ) self.assertNotIn('''decoder_attention_mask''' ,_snake_case ) @require_torch def UpperCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" lowercase__ : Union[str, Any] = [ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : List[str] = tokenizer(text_target=_snake_case ,max_length=32 ,padding='''max_length''' ,return_tensors='''pt''' ) self.assertEqual(32 ,targets['''input_ids'''].shape[1] ) @require_torch def UpperCAmelCase ( self : Tuple ) -> str: """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : Tuple = tokenizer( ['''I am a small frog''' * 1_024, '''I am a small frog'''] ,padding=_snake_case ,truncation=_snake_case ,return_tensors='''pt''' ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(batch.input_ids.shape ,(2, 1_024) ) @require_torch def UpperCAmelCase ( self : str ) -> Any: """simple docstring""" lowercase__ : Optional[int] = ['''A long paragraph for summarization.'''] lowercase__ : Union[str, Any] = [ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ : Any = tokenizer(_snake_case ,text_target=_snake_case ,return_tensors='''pt''' ) lowercase__ : str = inputs['''input_ids'''] lowercase__ : Union[str, Any] = inputs['''labels'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" pass def UpperCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowercase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(_snake_case ,**_snake_case ) lowercase__ : Tuple = self.tokenizer_class.from_pretrained(_snake_case ,**_snake_case ) lowercase__ : Tuple = '''A, <mask> AllenNLP sentence.''' lowercase__ : List[str] = tokenizer_r.encode_plus(_snake_case ,add_special_tokens=_snake_case ,return_token_type_ids=_snake_case ) lowercase__ : Dict = tokenizer_p.encode_plus(_snake_case ,add_special_tokens=_snake_case ,return_token_type_ids=_snake_case ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) ,sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) ,sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) ,) lowercase__ : List[Any] = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) lowercase__ : Optional[Any] = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] ,[0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] ,[0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( _snake_case ,['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( _snake_case ,['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
16
"""simple docstring""" import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : '''simple docstring''' def __init__( self : Optional[int] ,_snake_case : Optional[Any] ,_snake_case : Union[str, Any]=13 ,_snake_case : Any=32 ,_snake_case : int=2 ,_snake_case : str=3 ,_snake_case : Optional[Any]=16 ,_snake_case : List[Any]=[1, 2, 1] ,_snake_case : Dict=[2, 2, 4] ,_snake_case : List[Any]=2 ,_snake_case : Any=2.0 ,_snake_case : Optional[int]=True ,_snake_case : Optional[int]=0.0 ,_snake_case : Union[str, Any]=0.0 ,_snake_case : str=0.1 ,_snake_case : List[Any]="gelu" ,_snake_case : Tuple=False ,_snake_case : Optional[int]=True ,_snake_case : str=0.02 ,_snake_case : List[str]=1e-5 ,_snake_case : int=True ,_snake_case : Dict=None ,_snake_case : str=True ,_snake_case : List[Any]=10 ,_snake_case : Any=8 ,) -> Union[str, Any]: """simple docstring""" lowercase__ : Dict = parent lowercase__ : Any = batch_size lowercase__ : Union[str, Any] = image_size lowercase__ : Dict = patch_size lowercase__ : int = num_channels lowercase__ : Any = embed_dim lowercase__ : int = depths lowercase__ : Dict = num_heads lowercase__ : List[Any] = window_size lowercase__ : int = mlp_ratio lowercase__ : Optional[int] = qkv_bias lowercase__ : str = hidden_dropout_prob lowercase__ : List[Any] = attention_probs_dropout_prob lowercase__ : Dict = drop_path_rate lowercase__ : int = hidden_act lowercase__ : Tuple = use_absolute_embeddings lowercase__ : Tuple = patch_norm lowercase__ : Tuple = layer_norm_eps lowercase__ : Optional[Any] = initializer_range lowercase__ : int = is_training lowercase__ : Optional[int] = scope lowercase__ : str = use_labels lowercase__ : Dict = type_sequence_label_size lowercase__ : Union[str, Any] = encoder_stride def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Optional[Any] = None if self.use_labels: lowercase__ : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" return SwinvaConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def UpperCAmelCase ( self : str ,_snake_case : Dict ,_snake_case : List[str] ,_snake_case : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ : Any = SwinvaModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : str = model(_snake_case ) lowercase__ : List[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase__ : Tuple = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : List[str] ,_snake_case : Optional[Any] ,_snake_case : int ) -> Any: """simple docstring""" lowercase__ : Union[str, Any] = SwinvaForMaskedImageModeling(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Tuple = model(_snake_case ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase__ : Optional[int] = 1 lowercase__ : List[Any] = SwinvaForMaskedImageModeling(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ : str = model(_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase ( self : str ,_snake_case : str ,_snake_case : str ,_snake_case : Tuple ) -> Any: """simple docstring""" lowercase__ : Tuple = self.type_sequence_label_size lowercase__ : Dict = SwinvaForImageClassification(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : str = model(_snake_case ,labels=_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self : Dict ) -> Dict: """simple docstring""" lowercase__ : Optional[int] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = config_and_inputs lowercase__ : List[str] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) lowerCAmelCase : Optional[int] = ( {"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification} if is_torch_available() else {} ) lowerCAmelCase : List[Any] = False lowerCAmelCase : Dict = False lowerCAmelCase : List[Any] = False lowerCAmelCase : Any = False def UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[Any] = SwinvaModelTester(self ) lowercase__ : List[str] = ConfigTester(self ,config_class=_snake_case ,embed_dim=37 ) def UpperCAmelCase ( self : int ) -> Any: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self : str ) -> List[Any]: """simple docstring""" lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) @unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''' ) def UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason='''Swinv2 does not use inputs_embeds''' ) def UpperCAmelCase ( self : List[str] ) -> str: """simple docstring""" pass def UpperCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[Any] = model_class(_snake_case ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) lowercase__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_snake_case ,nn.Linear ) ) def UpperCAmelCase ( self : int ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : str = model_class(_snake_case ) lowercase__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[Any] = [*signature.parameters.keys()] lowercase__ : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_snake_case ) def UpperCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Tuple = True for model_class in self.all_model_classes: lowercase__ : Optional[int] = True lowercase__ : str = False lowercase__ : Union[str, Any] = True lowercase__ : Optional[Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : str = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : Dict = outputs.attentions lowercase__ : Any = len(self.model_tester.depths ) self.assertEqual(len(_snake_case ) ,_snake_case ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ : List[Any] = True lowercase__ : Optional[Any] = config.window_size**2 lowercase__ : Any = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : List[str] = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : Optional[Any] = outputs.attentions self.assertEqual(len(_snake_case ) ,_snake_case ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) lowercase__ : Optional[Any] = len(_snake_case ) # Check attention is always last and order is fine lowercase__ : Optional[int] = True lowercase__ : Tuple = True lowercase__ : Optional[Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : Optional[Any] = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) if hasattr(self.model_tester ,'''num_hidden_states_types''' ): lowercase__ : int = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states lowercase__ : List[str] = 2 self.assertEqual(out_len + added_hidden_states ,len(_snake_case ) ) lowercase__ : Optional[int] = outputs.attentions self.assertEqual(len(_snake_case ) ,_snake_case ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) def UpperCAmelCase ( self : List[str] ,_snake_case : int ,_snake_case : List[str] ,_snake_case : Optional[int] ,_snake_case : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : List[Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : int = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : Optional[int] = outputs.hidden_states lowercase__ : List[Any] = getattr( self.model_tester ,'''expected_num_hidden_layers''' ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_snake_case ) ,_snake_case ) # Swinv2 has a different seq_length lowercase__ : Dict = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) lowercase__ : Tuple = outputs.reshaped_hidden_states self.assertEqual(len(_snake_case ) ,_snake_case ) lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[str] = reshaped_hidden_states[0].shape lowercase__ : int = ( reshaped_hidden_states[0].view(_snake_case ,_snake_case ,height * width ).permute(0 ,2 ,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def UpperCAmelCase ( self : Tuple ) -> int: """simple docstring""" lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowercase__ : List[str] = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,_snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : str = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,_snake_case ) def UpperCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = 3 lowercase__ : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase__ : Optional[int] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : Dict = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase__ : Dict = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowercase__ : str = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Dict = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,(padded_height, padded_width) ) def UpperCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_snake_case ) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Union[str, Any] = SwinvaModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Tuple = _config_zero_init(_snake_case ) for model_class in self.all_model_classes: lowercase__ : Optional[int] = model_class(config=_snake_case ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" ,) @require_vision @require_torch class __A ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" return ( AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self : Any ) -> List[str]: """simple docstring""" lowercase__ : str = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ).to( _snake_case ) lowercase__ : Union[str, Any] = self.default_image_processor lowercase__ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowercase__ : Dict = image_processor(images=_snake_case ,return_tensors='''pt''' ).to(_snake_case ) # forward pass with torch.no_grad(): lowercase__ : Optional[Any] = model(**_snake_case ) # verify the logits lowercase__ : str = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape ,_snake_case ) lowercase__ : Dict = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_snake_case ,atol=1e-4 ) )
16
1
"""simple docstring""" import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy lowerCAmelCase_ = logging.getLogger(__name__) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = False , ) -> int: lowercase__ : Dict = bnb_quantization_config.load_in_abit lowercase__ : int = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( '''You have a version of `bitsandbytes` that is not compatible with 8bit quantization,''' ''' make sure you have the latest version of `bitsandbytes` installed.''' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( '''You have a version of `bitsandbytes` that is not compatible with 4bit quantization,''' '''make sure you have the latest version of `bitsandbytes` installed.''' ) lowercase__ : List[str] = [] # custom device map if isinstance(__lowerCamelCase , __lowerCamelCase ) and len(device_map.keys() ) > 1: lowercase__ : str = [key for key, value in device_map.items() if value in ['''disk''', '''cpu''']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: lowercase__ : Any = get_keys_to_not_convert(__lowerCamelCase ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(__lowerCamelCase ) lowercase__ : Union[str, Any] = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: lowercase__ : Union[str, Any] = [] lowercase__ : Optional[Any] = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(__lowerCamelCase ) # compatibility with peft lowercase__ : Optional[Any] = load_in_abit lowercase__ : Optional[Any] = load_in_abit lowercase__ : str = get_parameter_device(__lowerCamelCase ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( '''It is not recommended to quantize a loaded model. ''' '''The model should be instantiated under the `init_empty_weights` context manager.''' ) lowercase__ : Dict = replace_with_bnb_layers(__lowerCamelCase , __lowerCamelCase , modules_to_not_convert=__lowerCamelCase ) # convert param to the right dtype lowercase__ : Dict = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: lowercase__ : Any = name.replace('''.weight''' , '''''' ).replace('''.bias''' , '''''' ) lowercase__ : Dict = getattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(__lowerCamelCase ): param.to(__lowerCamelCase ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info( f"""The model device type is {model_device.type}. However, cuda is needed for quantization.""" '''We move the model to cuda.''' ) return model elif weights_location is None: raise RuntimeError( f"""`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} """ ) else: with init_empty_weights(): lowercase__ : int = replace_with_bnb_layers( __lowerCamelCase , __lowerCamelCase , modules_to_not_convert=__lowerCamelCase ) lowercase__ : List[str] = get_quantized_model_device_map( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , max_memory=__lowerCamelCase , no_split_module_classes=__lowerCamelCase , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): lowercase__ : List[str] = True lowercase__ : int = any(x in list(device_map.values() ) for x in ['''cpu''', '''disk'''] ) load_checkpoint_in_model( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , dtype=bnb_quantization_config.torch_dtype , offload_folder=__lowerCamelCase , offload_state_dict=__lowerCamelCase , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(__lowerCamelCase , device_map=__lowerCamelCase , offload_dir=__lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None ) -> int: if device_map is None: if torch.cuda.is_available(): lowercase__ : Optional[int] = {'''''': torch.cuda.current_device()} else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info('''The device_map was not initialized.''' '''Setting device_map to `{\'\':torch.cuda.current_device()}`.''' ) if isinstance(__lowerCamelCase , __lowerCamelCase ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( '''If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ''' '''\'sequential\'.''' ) lowercase__ : List[str] = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) lowercase__ : List[str] = {} lowercase__ : Tuple = special_dtypes lowercase__ : Optional[int] = no_split_module_classes lowercase__ : int = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": lowercase__ : Optional[Any] = get_balanced_memory( __lowerCamelCase , low_zero=(device_map == '''balanced_low_0''') , max_memory=__lowerCamelCase , **__lowerCamelCase , ) lowercase__ : int = max_memory lowercase__ : List[Any] = infer_auto_device_map(__lowerCamelCase , **__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ): # check if don't have any quantized module on the cpu lowercase__ : Any = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules lowercase__ : Union[str, Any] = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( ''' Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. ''' ) else: logger.info( '''Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit''' ) del device_map_without_some_modules return device_map def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None ) -> str: if modules_to_not_convert is None: lowercase__ : Optional[int] = [] lowercase__ , lowercase__ : Optional[Any] = _replace_with_bnb_layers( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , ) -> int: lowercase__ : Optional[Any] = False for name, module in model.named_children(): if current_key_name is None: lowercase__ : Optional[int] = [] current_key_name.append(__lowerCamelCase ) if isinstance(__lowerCamelCase , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` lowercase__ : Union[str, Any] = '''.'''.join(__lowerCamelCase ) lowercase__ : Dict = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: lowercase__ : int = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: lowercase__ : Optional[int] = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=__lowerCamelCase , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: lowercase__ : Dict = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('''load_in_8bit and load_in_4bit can\'t be both False''' ) lowercase__ : List[str] = module.weight.data if module.bias is not None: lowercase__ : Dict = module.bias.data bnb_module.requires_grad_(__lowerCamelCase ) setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowercase__ : Tuple = True if len(list(module.children() ) ) > 0: lowercase__ , lowercase__ : int = _replace_with_bnb_layers( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowercase__ : Union[str, Any] = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def __UpperCAmelCase ( __lowerCamelCase ) -> List[str]: # Create a copy of the model with init_empty_weights(): lowercase__ : int = deepcopy(__lowerCamelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` lowercase__ : Optional[Any] = find_tied_parameters(__lowerCamelCase ) # For compatibility with Accelerate < 0.18 if isinstance(__lowerCamelCase , __lowerCamelCase ): lowercase__ : List[str] = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: lowercase__ : Optional[int] = sum(__lowerCamelCase , [] ) lowercase__ : List[str] = len(__lowerCamelCase ) > 0 # Check if it is a base model lowercase__ : Any = False if hasattr(__lowerCamelCase , '''base_model_prefix''' ): lowercase__ : Optional[int] = not hasattr(__lowerCamelCase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowercase__ : int = list(model.named_children() ) lowercase__ : List[Any] = [list_modules[-1][0]] # add last module together with tied weights lowercase__ : Union[str, Any] = set(__lowerCamelCase ) - set(__lowerCamelCase ) lowercase__ : List[str] = list(set(__lowerCamelCase ) ) + list(__lowerCamelCase ) # remove ".weight" from the keys lowercase__ : int = ['''.weight''', '''.bias'''] lowercase__ : Optional[Any] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowercase__ : str = name.replace(__lowerCamelCase , '''''' ) filtered_module_names.append(__lowerCamelCase ) return filtered_module_names def __UpperCAmelCase ( __lowerCamelCase ) -> Dict: for m in model.modules(): if isinstance(__lowerCamelCase , bnb.nn.Linearabit ): return True return False def __UpperCAmelCase ( __lowerCamelCase ) -> Dict: return next(parameter.parameters() ).device def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]: # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(__lowerCamelCase , __lowerCamelCase , 0 , dtype=__lowerCamelCase , value=__lowerCamelCase ) lowercase__ : Any = param_name lowercase__ : List[Any] = model if "." in tensor_name: lowercase__ : Dict = tensor_name.split('''.''' ) for split in splits[:-1]: lowercase__ : int = getattr(__lowerCamelCase , __lowerCamelCase ) if new_module is None: raise ValueError(f"""{module} has no attribute {split}.""" ) lowercase__ : int = new_module lowercase__ : str = splits[-1] # offload weights lowercase__ : Any = False offload_weight(module._parameters[tensor_name] , __lowerCamelCase , __lowerCamelCase , index=__lowerCamelCase ) if hasattr(module._parameters[tensor_name] , '''SCB''' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('''weight''' , '''SCB''' ) , __lowerCamelCase , index=__lowerCamelCase , ) else: offload_weight(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , index=__lowerCamelCase ) offload_weight(__lowerCamelCase , param_name.replace('''weight''' , '''SCB''' ) , __lowerCamelCase , index=__lowerCamelCase ) set_module_tensor_to_device(__lowerCamelCase , __lowerCamelCase , '''meta''' , dtype=__lowerCamelCase , value=torch.empty(*param.size() ) )
16
"""simple docstring""" import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCAmelCase_ = version.parse(importlib_metadata.version('nltk')) if NLTK_VERSION >= version.Version('3.6.4'): from nltk import word_tokenize lowerCAmelCase_ = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n' lowerCAmelCase_ = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n' lowerCAmelCase_ = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''string''' ,id='''sequence''' ), '''references''': datasets.Value('''string''' ,id='''sequence''' ), } ) ,codebase_urls=['''https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'''] ,reference_urls=[ '''https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score''', '''https://en.wikipedia.org/wiki/METEOR''', ] ,) def UpperCAmelCase ( self : str ,_snake_case : Dict ) -> Dict: """simple docstring""" import nltk nltk.download('''wordnet''' ) if NLTK_VERSION >= version.Version('''3.6.5''' ): nltk.download('''punkt''' ) if NLTK_VERSION >= version.Version('''3.6.6''' ): nltk.download('''omw-1.4''' ) def UpperCAmelCase ( self : Dict ,_snake_case : Dict ,_snake_case : List[str] ,_snake_case : Tuple=0.9 ,_snake_case : Optional[int]=3 ,_snake_case : Union[str, Any]=0.5 ) -> List[str]: """simple docstring""" if NLTK_VERSION >= version.Version('''3.6.5''' ): lowercase__ : int = [ meteor_score.single_meteor_score( word_tokenize(_snake_case ) ,word_tokenize(_snake_case ) ,alpha=_snake_case ,beta=_snake_case ,gamma=_snake_case ) for ref, pred in zip(_snake_case ,_snake_case ) ] else: lowercase__ : Tuple = [ meteor_score.single_meteor_score(_snake_case ,_snake_case ,alpha=_snake_case ,beta=_snake_case ,gamma=_snake_case ) for ref, pred in zip(_snake_case ,_snake_case ) ] return {"meteor": np.mean(_snake_case )}
16
1
"""simple docstring""" from math import loga def __UpperCAmelCase ( __lowerCamelCase ) -> int: if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError('''Input value must be a \'int\' type''' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
16
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = '▁' lowerCAmelCase_ = {'vocab_file': 'sentencepiece.bpe.model'} lowerCAmelCase_ = { 'vocab_file': { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model', } } lowerCAmelCase_ = { 'facebook/xglm-564M': 2_048, } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[Any] = VOCAB_FILES_NAMES lowerCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : int = ["input_ids", "attention_mask"] def __init__( self : int ,_snake_case : Dict ,_snake_case : Dict="<s>" ,_snake_case : Dict="</s>" ,_snake_case : str="</s>" ,_snake_case : Optional[Any]="<s>" ,_snake_case : Optional[Any]="<unk>" ,_snake_case : Optional[int]="<pad>" ,_snake_case : Optional[Dict[str, Any]] = None ,**_snake_case : str ,) -> None: """simple docstring""" lowercase__ : Any = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer lowercase__ : Any = 7 lowercase__ : Optional[int] = [f"""<madeupword{i}>""" for i in range(self.num_madeup_words )] lowercase__ : Dict = kwargs.get('''additional_special_tokens''' ,[] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=_snake_case ,eos_token=_snake_case ,unk_token=_snake_case ,sep_token=_snake_case ,cls_token=_snake_case ,pad_token=_snake_case ,sp_model_kwargs=self.sp_model_kwargs ,**_snake_case ,) lowercase__ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_snake_case ) ) lowercase__ : str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase__ : Optional[int] = 1 # Mimic fairseq token-to-id alignment for the first 4 token lowercase__ : Optional[int] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} lowercase__ : List[str] = len(self.sp_model ) lowercase__ : Tuple = {f"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(_snake_case ) lowercase__ : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : int ) -> Optional[int]: """simple docstring""" lowercase__ : List[Any] = self.__dict__.copy() lowercase__ : Optional[int] = None lowercase__ : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self : Dict ,_snake_case : List[str] ) -> Any: """simple docstring""" lowercase__ : int = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): lowercase__ : Dict = {} lowercase__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCAmelCase ( self : Any ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.sep_token_id] + token_ids_a lowercase__ : Optional[Any] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def UpperCAmelCase ( self : Any ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ,_snake_case : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case ,token_ids_a=_snake_case ,already_has_special_tokens=_snake_case ) if token_ids_a is None: return [1] + ([0] * len(_snake_case )) return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ : List[Any] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def UpperCAmelCase ( self : str ) -> Tuple: """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ : Union[str, Any] = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self : List[Any] ,_snake_case : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(_snake_case ,out_type=_snake_case ) def UpperCAmelCase ( self : int ,_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase__ : Tuple = self.sp_model.PieceToId(_snake_case ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase ( self : Any ,_snake_case : List[str] ) -> Any: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase ( self : Tuple ,_snake_case : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = ''''''.join(_snake_case ).replace(_snake_case ,''' ''' ).strip() return out_string def UpperCAmelCase ( self : Any ,_snake_case : str ,_snake_case : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_snake_case ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ : Any = os.path.join( _snake_case ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case ,'''wb''' ) as fi: lowercase__ : Dict = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,)
16
1
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) lowerCAmelCase_ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.encoder.norm.weight', 'encoder.layernorm.weight'), ('transformer.encoder.norm.bias', 'encoder.layernorm.bias'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ] ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: lowercase__ : Optional[Any] = state_dict.pop(__lowerCamelCase ) lowercase__ : Any = val def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[Any]: lowercase__ : Optional[Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: lowercase__ : Any = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) lowercase__ : str = value else: lowercase__ : Optional[Any] = value return new_state_dict def __UpperCAmelCase ( __lowerCamelCase ) -> Tuple: lowercase__ : Any = '''''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowercase__ : int = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) lowercase__ : List[str] = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase__ : Tuple = in_proj_weight[:2_56, :] lowercase__ : Union[str, Any] = in_proj_bias[:2_56] lowercase__ : List[str] = in_proj_weight[2_56:5_12, :] lowercase__ : Any = in_proj_bias[2_56:5_12] lowercase__ : Any = in_proj_weight[-2_56:, :] lowercase__ : Union[str, Any] = in_proj_bias[-2_56:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention lowercase__ : Tuple = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) lowercase__ : Any = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase__ : Any = in_proj_weight[:2_56, :] lowercase__ : str = in_proj_bias[:2_56] lowercase__ : Union[str, Any] = in_proj_weight[2_56:5_12, :] lowercase__ : int = in_proj_bias[2_56:5_12] lowercase__ : Optional[Any] = in_proj_weight[-2_56:, :] lowercase__ : str = in_proj_bias[-2_56:] # read in weights + bias of input projection layer of cross-attention lowercase__ : Optional[Any] = state_dict.pop( f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) lowercase__ : Optional[Any] = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict lowercase__ : int = in_proj_weight_cross_attn[:2_56, :] lowercase__ : Dict = in_proj_bias_cross_attn[:2_56] lowercase__ : Any = in_proj_weight_cross_attn[2_56:5_12, :] lowercase__ : Dict = in_proj_bias_cross_attn[2_56:5_12] lowercase__ : Dict = in_proj_weight_cross_attn[-2_56:, :] lowercase__ : Dict = in_proj_bias_cross_attn[-2_56:] def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str: lowercase__ , lowercase__ : Tuple = image.size lowercase__ : Optional[Any] = max(__lowerCamelCase , __lowerCamelCase ) lowercase__ : Optional[Any] = 8_00 if '''detection''' in checkpoint_url else 10_00 lowercase__ : Any = target_max_size / current_max_size lowercase__ : Optional[Any] = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def __UpperCAmelCase ( __lowerCamelCase ) -> Dict: lowercase__ : List[Any] = F.to_tensor(__lowerCamelCase ) lowercase__ : Dict = F.normalize(__lowerCamelCase , mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ) return image @torch.no_grad() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: logger.info('''Converting model...''' ) # load original state dict lowercase__ : Tuple = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location='''cpu''' ) # rename keys for src, dest in rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowercase__ : int = rename_backbone_keys(__lowerCamelCase ) # query, key and value matrices need special treatment read_in_q_k_v(__lowerCamelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowercase__ : Tuple = '''model.''' for key in state_dict.copy().keys(): if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): lowercase__ : Optional[Any] = state_dict.pop(__lowerCamelCase ) lowercase__ : str = val # create HuggingFace model and load state dict lowercase__ : Dict = TableTransformerConfig( backbone='''resnet18''' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: lowercase__ : int = 15 lowercase__ : int = 2 lowercase__ : Any = {0: '''table''', 1: '''table rotated'''} lowercase__ : int = idalabel lowercase__ : int = {v: k for k, v in idalabel.items()} else: lowercase__ : List[Any] = 1_25 lowercase__ : Optional[Any] = 6 lowercase__ : Dict = { 0: '''table''', 1: '''table column''', 2: '''table row''', 3: '''table column header''', 4: '''table projected row header''', 5: '''table spanning cell''', } lowercase__ : Optional[Any] = idalabel lowercase__ : Optional[Any] = {v: k for k, v in idalabel.items()} lowercase__ : Optional[int] = DetrImageProcessor( format='''coco_detection''' , max_size=8_00 if '''detection''' in checkpoint_url else 10_00 ) lowercase__ : List[str] = TableTransformerForObjectDetection(__lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) model.eval() # verify our conversion lowercase__ : Optional[int] = '''example_pdf.png''' if '''detection''' in checkpoint_url else '''example_table.png''' lowercase__ : Union[str, Any] = hf_hub_download(repo_id='''nielsr/example-pdf''' , repo_type='''dataset''' , filename=__lowerCamelCase ) lowercase__ : List[Any] = Image.open(__lowerCamelCase ).convert('''RGB''' ) lowercase__ : Any = normalize(resize(__lowerCamelCase , __lowerCamelCase ) ).unsqueeze(0 ) lowercase__ : int = model(__lowerCamelCase ) if "detection" in checkpoint_url: lowercase__ : List[Any] = (1, 15, 3) lowercase__ : Dict = torch.tensor( [[-6.7_8_9_7, -1_6.9_9_8_5, 6.7_9_3_7], [-8.0_1_8_6, -2_2.2_1_9_2, 6.9_6_7_7], [-7.3_1_1_7, -2_1.0_7_0_8, 7.4_0_5_5]] ) lowercase__ : Any = torch.tensor([[0.4_8_6_7, 0.1_7_6_7, 0.6_7_3_2], [0.6_7_1_8, 0.4_4_7_9, 0.3_8_3_0], [0.4_7_1_6, 0.1_7_6_0, 0.6_3_6_4]] ) else: lowercase__ : Optional[Any] = (1, 1_25, 7) lowercase__ : int = torch.tensor( [[-1_8.1_4_3_0, -8.3_2_1_4, 4.8_2_7_4], [-1_8.4_6_8_5, -7.1_3_6_1, -4.2_6_6_7], [-2_6.3_6_9_3, -9.3_4_2_9, -4.9_9_6_2]] ) lowercase__ : Tuple = torch.tensor([[0.4_9_8_3, 0.5_5_9_5, 0.9_4_4_0], [0.4_9_1_6, 0.6_3_1_5, 0.5_9_5_4], [0.6_1_0_8, 0.8_6_3_7, 0.1_1_3_5]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , __lowerCamelCase , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , __lowerCamelCase , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) image_processor.save_pretrained(__lowerCamelCase ) if push_to_hub: # Push model to HF hub logger.info('''Pushing model to the hub...''' ) lowercase__ : Optional[int] = ( '''microsoft/table-transformer-detection''' if '''detection''' in checkpoint_url else '''microsoft/table-transformer-structure-recognition''' ) model.push_to_hub(__lowerCamelCase ) image_processor.push_to_hub(__lowerCamelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', type=str, choices=[ 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth', ], help='URL of the Table Transformer checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) lowerCAmelCase_ = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
16
"""simple docstring""" import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = True ) -> Union[str, Any]: print(f"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 1_28: if name[-1] == "S": lowercase__ : str = timm.create_model('''levit_128s''' , pretrained=__lowerCamelCase ) else: lowercase__ : Tuple = timm.create_model('''levit_128''' , pretrained=__lowerCamelCase ) if hidden_sizes == 1_92: lowercase__ : Union[str, Any] = timm.create_model('''levit_192''' , pretrained=__lowerCamelCase ) if hidden_sizes == 2_56: lowercase__ : str = timm.create_model('''levit_256''' , pretrained=__lowerCamelCase ) if hidden_sizes == 3_84: lowercase__ : str = timm.create_model('''levit_384''' , pretrained=__lowerCamelCase ) from_model.eval() lowercase__ : Optional[int] = LevitForImageClassificationWithTeacher(__lowerCamelCase ).eval() lowercase__ : str = OrderedDict() lowercase__ : int = from_model.state_dict() lowercase__ : Dict = list(from_model.state_dict().keys() ) lowercase__ : Any = list(our_model.state_dict().keys() ) print(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) for i in range(len(__lowerCamelCase ) ): lowercase__ : str = weights[og_keys[i]] our_model.load_state_dict(__lowerCamelCase ) lowercase__ : Optional[int] = torch.randn((2, 3, 2_24, 2_24) ) lowercase__ : Optional[int] = from_model(__lowerCamelCase ) lowercase__ : List[Any] = our_model(__lowerCamelCase ).logits assert torch.allclose(__lowerCamelCase , __lowerCamelCase ), "The model logits don't match the original one." lowercase__ : Any = name print(__lowerCamelCase ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) lowercase__ : int = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f"""Pushed {checkpoint_name}""" ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = True ) -> List[Any]: lowercase__ : Any = '''imagenet-1k-id2label.json''' lowercase__ : Tuple = 10_00 lowercase__ : Dict = (1, num_labels) lowercase__ : List[str] = '''huggingface/label-files''' lowercase__ : str = num_labels lowercase__ : List[Any] = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ : Union[str, Any] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : Union[str, Any] = idalabel lowercase__ : Optional[int] = {v: k for k, v in idalabel.items()} lowercase__ : List[Any] = partial(__lowerCamelCase , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase ) lowercase__ : Tuple = { '''levit-128S''': 1_28, '''levit-128''': 1_28, '''levit-192''': 1_92, '''levit-256''': 2_56, '''levit-384''': 3_84, } lowercase__ : Any = { '''levit-128S''': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-128''': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-192''': ImageNetPreTrainedConfig( hidden_sizes=[1_92, 2_88, 3_84] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-256''': ImageNetPreTrainedConfig( hidden_sizes=[2_56, 3_84, 5_12] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-384''': ImageNetPreTrainedConfig( hidden_sizes=[3_84, 5_12, 7_68] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , __lowerCamelCase , names_to_config[model_name] , __lowerCamelCase , __lowerCamelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return config, expected_shape if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
16
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : List[str] = ["torch", "torchsde"] def __init__( self : Tuple ,*_snake_case : Union[str, Any] ,**_snake_case : Any ) -> Union[str, Any]: """simple docstring""" requires_backends(self ,['''torch''', '''torchsde'''] ) @classmethod def UpperCAmelCase ( cls : List[str] ,*_snake_case : int ,**_snake_case : Union[str, Any] ) -> str: """simple docstring""" requires_backends(cls ,['''torch''', '''torchsde'''] ) @classmethod def UpperCAmelCase ( cls : List[Any] ,*_snake_case : List[Any] ,**_snake_case : List[str] ) -> List[Any]: """simple docstring""" requires_backends(cls ,['''torch''', '''torchsde'''] )
16
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __A : '''simple docstring''' lowerCAmelCase : List[str] lowerCAmelCase : Optional[str] = None # Automatically constructed lowerCAmelCase : ClassVar[str] = "dict" lowerCAmelCase : ClassVar[Any] = None lowerCAmelCase : str = field(default="Translation" ,init=A_ ,repr=A_ ) def __call__( self : List[str] ) -> Any: """simple docstring""" return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def UpperCAmelCase ( self : List[str] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class __A : '''simple docstring''' lowerCAmelCase : Optional[List] = None lowerCAmelCase : Optional[int] = None lowerCAmelCase : Optional[str] = None # Automatically constructed lowerCAmelCase : ClassVar[str] = "dict" lowerCAmelCase : ClassVar[Any] = None lowerCAmelCase : str = field(default="TranslationVariableLanguages" ,init=A_ ,repr=A_ ) def UpperCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[int] = sorted(set(self.languages ) ) if self.languages else None lowercase__ : Dict = len(self.languages ) if self.languages else None def __call__( self : List[Any] ) -> List[Any]: """simple docstring""" return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def UpperCAmelCase ( self : Dict ,_snake_case : Tuple ) -> int: """simple docstring""" lowercase__ : List[Any] = set(self.languages ) if self.languages and set(_snake_case ) - lang_set: raise ValueError( f"""Some languages in example ({", ".join(sorted(set(_snake_case ) - lang_set ) )}) are not in valid set ({", ".join(_snake_case )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. lowercase__ : str = [] for lang, text in translation_dict.items(): if isinstance(_snake_case ,_snake_case ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. lowercase__ , lowercase__ : Optional[Any] = zip(*sorted(_snake_case ) ) return {"language": languages, "translation": translations} def UpperCAmelCase ( self : List[Any] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
16
1
"""simple docstring""" # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class __A ( A_ ,A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = StableDiffusionControlNetImgaImgPipeline lowerCAmelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} lowerCAmelCase : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase : Tuple = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"control_image"} ) lowerCAmelCase : int = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') ,up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') ,cross_attention_dim=32 ,) torch.manual_seed(0 ) lowercase__ : Any = ControlNetModel( block_out_channels=(32, 64) ,layers_per_block=2 ,in_channels=4 ,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') ,cross_attention_dim=32 ,conditioning_embedding_out_channels=(16, 32) ,) torch.manual_seed(0 ) lowercase__ : List[str] = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule='''scaled_linear''' ,clip_sample=_snake_case ,set_alpha_to_one=_snake_case ,) torch.manual_seed(0 ) lowercase__ : List[str] = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,) torch.manual_seed(0 ) lowercase__ : Optional[Any] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) lowercase__ : List[Any] = CLIPTextModel(_snake_case ) lowercase__ : Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase__ : Dict = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCAmelCase ( self : Any ,_snake_case : List[Any] ,_snake_case : Any=0 ) -> Any: """simple docstring""" if str(_snake_case ).startswith('''mps''' ): lowercase__ : Optional[Any] = torch.manual_seed(_snake_case ) else: lowercase__ : str = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowercase__ : List[Any] = 2 lowercase__ : Optional[int] = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) ,generator=_snake_case ,device=torch.device(_snake_case ) ,) lowercase__ : str = floats_tensor(control_image.shape ,rng=random.Random(_snake_case ) ).to(_snake_case ) lowercase__ : Optional[Any] = image.cpu().permute(0 ,2 ,3 ,1 )[0] lowercase__ : Optional[Any] = Image.fromarray(np.uinta(_snake_case ) ).convert('''RGB''' ).resize((64, 64) ) lowercase__ : Union[str, Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def UpperCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def UpperCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def UpperCAmelCase ( self : Any ) -> str: """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Dict = StableDiffusionControlNetImgaImgPipeline lowerCAmelCase : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} lowerCAmelCase : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase : Dict = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def UpperCAmelCase ( self : Tuple ) -> Any: """simple docstring""" torch.manual_seed(0 ) lowercase__ : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') ,up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') ,cross_attention_dim=32 ,) torch.manual_seed(0 ) def init_weights(_snake_case : Optional[int] ): if isinstance(_snake_case ,torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) lowercase__ : Any = ControlNetModel( block_out_channels=(32, 64) ,layers_per_block=2 ,in_channels=4 ,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') ,cross_attention_dim=32 ,conditioning_embedding_out_channels=(16, 32) ,) controlneta.controlnet_down_blocks.apply(_snake_case ) torch.manual_seed(0 ) lowercase__ : Any = ControlNetModel( block_out_channels=(32, 64) ,layers_per_block=2 ,in_channels=4 ,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') ,cross_attention_dim=32 ,conditioning_embedding_out_channels=(16, 32) ,) controlneta.controlnet_down_blocks.apply(_snake_case ) torch.manual_seed(0 ) lowercase__ : Dict = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule='''scaled_linear''' ,clip_sample=_snake_case ,set_alpha_to_one=_snake_case ,) torch.manual_seed(0 ) lowercase__ : List[str] = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,) torch.manual_seed(0 ) lowercase__ : List[Any] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) lowercase__ : int = CLIPTextModel(_snake_case ) lowercase__ : Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase__ : int = MultiControlNetModel([controlneta, controlneta] ) lowercase__ : Optional[Any] = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Dict ,_snake_case : Union[str, Any]=0 ) -> List[Any]: """simple docstring""" if str(_snake_case ).startswith('''mps''' ): lowercase__ : int = torch.manual_seed(_snake_case ) else: lowercase__ : Dict = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowercase__ : int = 2 lowercase__ : Optional[Any] = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) ,generator=_snake_case ,device=torch.device(_snake_case ) ,), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) ,generator=_snake_case ,device=torch.device(_snake_case ) ,), ] lowercase__ : Dict = floats_tensor(control_image[0].shape ,rng=random.Random(_snake_case ) ).to(_snake_case ) lowercase__ : Dict = image.cpu().permute(0 ,2 ,3 ,1 )[0] lowercase__ : Optional[int] = Image.fromarray(np.uinta(_snake_case ) ).convert('''RGB''' ).resize((64, 64) ) lowercase__ : Any = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def UpperCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" lowercase__ : Dict = self.get_dummy_components() lowercase__ : Dict = self.pipeline_class(**_snake_case ) pipe.to(_snake_case ) lowercase__ : Optional[Any] = 10.0 lowercase__ : Tuple = 4 lowercase__ : Dict = self.get_dummy_inputs(_snake_case ) lowercase__ : Optional[Any] = steps lowercase__ : Any = scale lowercase__ : Optional[Any] = pipe(**_snake_case )[0] lowercase__ : List[str] = self.get_dummy_inputs(_snake_case ) lowercase__ : Optional[int] = steps lowercase__ : int = scale lowercase__ : List[str] = pipe(**_snake_case ,control_guidance_start=0.1 ,control_guidance_end=0.2 )[0] lowercase__ : int = self.get_dummy_inputs(_snake_case ) lowercase__ : Optional[int] = steps lowercase__ : Dict = scale lowercase__ : Dict = pipe(**_snake_case ,control_guidance_start=[0.1, 0.3] ,control_guidance_end=[0.2, 0.7] )[0] lowercase__ : Dict = self.get_dummy_inputs(_snake_case ) lowercase__ : List[Any] = steps lowercase__ : Optional[int] = scale lowercase__ : List[Any] = pipe(**_snake_case ,control_guidance_start=0.4 ,control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 def UpperCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) def UpperCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" lowercase__ : Union[str, Any] = self.get_dummy_components() lowercase__ : Optional[Any] = self.pipeline_class(**_snake_case ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(_snake_case ) except NotImplementedError: pass @slow @require_torch_gpu class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Any ) -> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : int = ControlNetModel.from_pretrained('''lllyasviel/sd-controlnet-canny''' ) lowercase__ : Any = StableDiffusionControlNetImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' ,safety_checker=_snake_case ,controlnet=_snake_case ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : Optional[Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase__ : List[str] = '''evil space-punk bird''' lowercase__ : Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ).resize((512, 512) ) lowercase__ : Tuple = load_image( '''https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png''' ).resize((512, 512) ) lowercase__ : List[Any] = pipe( _snake_case ,_snake_case ,control_image=_snake_case ,generator=_snake_case ,output_type='''np''' ,num_inference_steps=50 ,strength=0.6 ,) lowercase__ : List[Any] = output.images[0] assert image.shape == (512, 512, 3) lowercase__ : Dict = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy''' ) assert np.abs(expected_image - image ).max() < 9e-2
16
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase_ = 16 lowerCAmelCase_ = 32 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = 16 ) -> Optional[Any]: lowercase__ : Optional[Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowercase__ : int = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) lowercase__ : str = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCamelCase , max_length=__lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ : str = datasets.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : Union[str, Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ : List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ : Optional[int] = 16 elif accelerator.mixed_precision != "no": lowercase__ : List[Any] = 8 else: lowercase__ : int = None return tokenizer.pad( __lowerCamelCase , padding='''longest''' , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. lowercase__ : List[Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) lowercase__ : str = DataLoader( tokenized_datasets['''validation'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase_ = mocked_dataloaders # noqa: F811 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __lowerCamelCase ) == "1": lowercase__ : List[Any] = 2 # Initialize accelerator lowercase__ : Optional[int] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : str = config['''lr'''] lowercase__ : str = int(config['''num_epochs'''] ) lowercase__ : Optional[int] = int(config['''seed'''] ) lowercase__ : Tuple = int(config['''batch_size'''] ) lowercase__ : List[Any] = evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__lowerCamelCase ) def inner_training_loop(__lowerCamelCase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : List[str] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ : Tuple = model.to(accelerator.device ) # Instantiate optimizer lowercase__ : List[str] = AdamW(params=model.parameters() , lr=__lowerCamelCase ) lowercase__ , lowercase__ : List[Any] = get_dataloaders(__lowerCamelCase , __lowerCamelCase ) # Instantiate scheduler lowercase__ : Optional[int] = get_linear_schedule_with_warmup( optimizer=__lowerCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__lowerCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Optional[int] = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Now we train the model for epoch in range(__lowerCamelCase ): model.train() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase__ : Dict = model(**__lowerCamelCase ) lowercase__ : List[Any] = outputs.loss accelerator.backward(__lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ : Tuple = model(**__lowerCamelCase ) lowercase__ : Any = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ : int = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__lowerCamelCase , references=__lowerCamelCase , ) lowercase__ : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __lowerCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def __UpperCAmelCase ( ) -> Dict: lowercase__ : Optional[int] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__lowerCamelCase , default=__lowerCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowercase__ : int = parser.parse_args() lowercase__ : Union[str, Any] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
16
1
"""simple docstring""" import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Any = CLIPTokenizer lowerCAmelCase : Union[str, Any] = CLIPTokenizerFast lowerCAmelCase : List[Any] = True lowerCAmelCase : Optional[int] = {} lowerCAmelCase : str = False def UpperCAmelCase ( self : List[Any] ) -> str: """simple docstring""" super().setUp() # fmt: off lowercase__ : Dict = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on lowercase__ : Union[str, Any] = dict(zip(_snake_case ,range(len(_snake_case ) ) ) ) lowercase__ : Union[str, Any] = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>'''] lowercase__ : List[str] = {'''unk_token''': '''<unk>'''} lowercase__ : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_snake_case ) + '''\n''' ) with open(self.merges_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_snake_case ) ) def UpperCAmelCase ( self : Any ,**_snake_case : Any ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname ,**_snake_case ) def UpperCAmelCase ( self : Optional[Any] ,**_snake_case : List[str] ) -> int: """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**_snake_case ) def UpperCAmelCase ( self : Optional[int] ,_snake_case : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ : Dict = '''lower newer''' lowercase__ : Optional[Any] = '''lower newer''' return input_text, output_text def UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ : Union[str, Any] = CLIPTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) lowercase__ : Dict = '''lower newer''' lowercase__ : Union[str, Any] = ['''lo''', '''w''', '''er</w>''', '''n''', '''e''', '''w''', '''er</w>'''] lowercase__ : Tuple = tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case ,_snake_case ) lowercase__ : List[str] = tokens + [tokenizer.unk_token] lowercase__ : Optional[Any] = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) ,_snake_case ) @require_ftfy def UpperCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowercase__ : List[str] = self.tokenizer_class.from_pretrained(_snake_case ,**_snake_case ) lowercase__ : Dict = self.rust_tokenizer_class.from_pretrained(_snake_case ,**_snake_case ) lowercase__ : Union[str, Any] = '''A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.''' lowercase__ : str = tokenizer_s.tokenize(_snake_case ) lowercase__ : Optional[Any] = tokenizer_r.tokenize(_snake_case ) self.assertListEqual(_snake_case ,_snake_case ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways lowercase__ : Optional[Any] = '''xa\u0303y''' + ''' ''' + '''x\xe3y''' lowercase__ : int = tokenizer_s.tokenize(_snake_case ) lowercase__ : Union[str, Any] = tokenizer_r.tokenize(_snake_case ) self.assertListEqual(_snake_case ,_snake_case ) # Test that the tokenization is identical on unicode of space type lowercase__ : Optional[int] = [ '''\u0009''', # (horizontal tab, '\t') '''\u000B''', # (vertical tab) '''\u000C''', # (form feed) '''\u0020''', # (space, ' ') '''\u200E''', # (left-to-right mark):w '''\u200F''', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: lowercase__ : Tuple = tokenizer_s.tokenize(_snake_case ) lowercase__ : Optional[int] = tokenizer_r.tokenize(_snake_case ) self.assertListEqual(_snake_case ,_snake_case ) # Test that the tokenization is identical on unicode of line break type lowercase__ : Tuple = [ '''\u000A''', # (line feed, '\n') '''\r\n''', # (carriage return and line feed, '\r\n') '''\u000D''', # (carriage return, '\r') '''\r''', # (carriage return, '\r') '''\u000D''', # (carriage return, '\r') '''\u2028''', # (line separator) '''\u2029''', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: lowercase__ : Dict = tokenizer_s.tokenize(_snake_case ) lowercase__ : Tuple = tokenizer_r.tokenize(_snake_case ) self.assertListEqual(_snake_case ,_snake_case ) def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowercase__ : Union[str, Any] = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` lowercase__ : List[Any] = f"""{text_of_1_token} {text_of_1_token}""" lowercase__ : Dict = self.rust_tokenizer_class.from_pretrained( _snake_case ,use_fast=_snake_case ,) lowercase__ : Optional[int] = tokenizer_r(_snake_case ,return_offsets_mapping=_snake_case ,add_special_tokens=_snake_case ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(_snake_case )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(_snake_case ) + 1, len(_snake_case ) + 1 + len(_snake_case )) ,) lowercase__ : Tuple = f""" {text}""" lowercase__ : Any = self.rust_tokenizer_class.from_pretrained( _snake_case ,use_fast=_snake_case ,) lowercase__ : Dict = tokenizer_r(_snake_case ,return_offsets_mapping=_snake_case ,add_special_tokens=_snake_case ) self.assertEqual(encoding.offset_mapping[0] ,(1, 1 + len(_snake_case )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(_snake_case ) + 1, 1 + len(_snake_case ) + 1 + len(_snake_case )) ,) def UpperCAmelCase ( self : Any ) -> Tuple: """simple docstring""" with self.assertRaises(_snake_case ) as context: self.rust_tokenizer_class.from_pretrained('''robot-test/old-clip-tokenizer''' ) self.assertTrue( context.exception.args[0].startswith( '''The `backend_tokenizer` provided does not match the expected format.''' ) ) @require_ftfy def UpperCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" super().test_tokenization_python_rust_equals() def UpperCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" pass
16
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __UpperCAmelCase ( __lowerCamelCase ) -> Any: lowercase__ : Optional[int] = [] embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""", f"""stage{idx}.patch_embed.proj.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""", f"""stage{idx}.patch_embed.proj.bias""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""", f"""stage{idx}.patch_embed.norm.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""", f"""stage{idx}.patch_embed.norm.bias""", ) ) return embed def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Dict: lowercase__ : str = [] attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj.bias""", ) ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", f"""stage{idx}.blocks.{cnt}.norm1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", f"""stage{idx}.blocks.{cnt}.norm1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", f"""stage{idx}.blocks.{cnt}.norm2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", f"""stage{idx}.blocks.{cnt}.norm2.bias""") ) return attention_weights def __UpperCAmelCase ( __lowerCamelCase ) -> Tuple: lowercase__ : List[str] = [] token.append((f"""cvt.encoder.stages.{idx}.cls_token""", '''stage2.cls_token''') ) return token def __UpperCAmelCase ( ) -> Optional[int]: lowercase__ : List[str] = [] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: lowercase__ : List[Any] = '''imagenet-1k-id2label.json''' lowercase__ : Optional[Any] = 10_00 lowercase__ : Optional[Any] = '''huggingface/label-files''' lowercase__ : Dict = num_labels lowercase__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) ) , '''r''' ) ) lowercase__ : int = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = idalabel lowercase__ : str = {v: k for k, v in idalabel.items()} lowercase__ : Any = CvtConfig(num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13": lowercase__ : int = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21": lowercase__ : int = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowercase__ : List[Any] = [2, 2, 20] lowercase__ : Any = [3, 12, 16] lowercase__ : Tuple = [1_92, 7_68, 10_24] lowercase__ : List[Any] = CvtForImageClassification(__lowerCamelCase ) lowercase__ : str = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) lowercase__ : List[str] = image_size lowercase__ : Union[str, Any] = torch.load(__lowerCamelCase , map_location=torch.device('''cpu''' ) ) lowercase__ : int = OrderedDict() lowercase__ : List[Any] = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowercase__ : Any = list_of_state_dict + cls_token(__lowerCamelCase ) lowercase__ : Any = list_of_state_dict + embeddings(__lowerCamelCase ) for cnt in range(config.depth[idx] ): lowercase__ : Tuple = list_of_state_dict + attention(__lowerCamelCase , __lowerCamelCase ) lowercase__ : List[Any] = list_of_state_dict + final() for gg in list_of_state_dict: print(__lowerCamelCase ) for i in range(len(__lowerCamelCase ) ): lowercase__ : Optional[Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) image_processor.save_pretrained(__lowerCamelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=R'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCAmelCase_ = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
16
1
"""simple docstring""" from math import pi, sqrt def __UpperCAmelCase ( __lowerCamelCase ) -> float: if num <= 0: raise ValueError('''math domain error''' ) if num > 1_7_1.5: raise OverflowError('''math range error''' ) elif num - int(__lowerCamelCase ) not in (0, 0.5): raise NotImplementedError('''num must be an integer or a half-integer''' ) elif num == 0.5: return sqrt(__lowerCamelCase ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def __UpperCAmelCase ( ) -> None: assert gamma(0.5 ) == sqrt(__lowerCamelCase ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() lowerCAmelCase_ = 1.0 while num: lowerCAmelCase_ = float(input('Gamma of: ')) print(F'''gamma({num}) = {gamma(num)}''') print('\nEnter 0 to exit...')
16
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str: if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError('''iterations must be defined as integers''' ) if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not number >= 1: raise ValueError( '''starting number must be and integer and be more than 0''' ) if not iterations >= 1: raise ValueError('''Iterations must be done more than 0 times to play FizzBuzz''' ) lowercase__ : Tuple = '''''' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(__lowerCamelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
16
1
"""simple docstring""" from __future__ import annotations import csv import requests from bsa import BeautifulSoup def __UpperCAmelCase ( __lowerCamelCase = "" ) -> dict[str, float]: lowercase__ : Optional[int] = url or '''https://www.imdb.com/chart/top/?ref_=nv_mv_250''' lowercase__ : Tuple = BeautifulSoup(requests.get(__lowerCamelCase ).text , '''html.parser''' ) lowercase__ : Dict = soup.find_all('''td''' , attrs='''titleColumn''' ) lowercase__ : List[str] = soup.find_all('''td''' , class_='''ratingColumn imdbRating''' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(__lowerCamelCase , __lowerCamelCase ) } def __UpperCAmelCase ( __lowerCamelCase = "IMDb_Top_250_Movies.csv" ) -> None: lowercase__ : str = get_imdb_top_aaa_movies() with open(__lowerCamelCase , '''w''' , newline='''''' ) as out_file: lowercase__ : Dict = csv.writer(__lowerCamelCase ) writer.writerow(['''Movie title''', '''IMDb rating'''] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
16
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : '''simple docstring''' def __init__( self : str ,_snake_case : List[Any] ,_snake_case : Optional[int]=3 ,_snake_case : Optional[int]=32 ,_snake_case : Union[str, Any]=3 ,_snake_case : int=10 ,_snake_case : List[str]=[10, 20, 30, 40] ,_snake_case : Any=[1, 1, 2, 1] ,_snake_case : int=True ,_snake_case : Optional[Any]=True ,_snake_case : Union[str, Any]="relu" ,_snake_case : Dict=3 ,_snake_case : Any=None ,) -> str: """simple docstring""" lowercase__ : int = parent lowercase__ : Optional[Any] = batch_size lowercase__ : Optional[Any] = image_size lowercase__ : Optional[Any] = num_channels lowercase__ : Optional[Any] = embeddings_size lowercase__ : Optional[Any] = hidden_sizes lowercase__ : str = depths lowercase__ : Tuple = is_training lowercase__ : List[Any] = use_labels lowercase__ : Union[str, Any] = hidden_act lowercase__ : Union[str, Any] = num_labels lowercase__ : Tuple = scope lowercase__ : Optional[Any] = len(_snake_case ) def UpperCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Tuple = None if self.use_labels: lowercase__ : Dict = ids_tensor([self.batch_size] ,self.num_labels ) lowercase__ : int = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" return ResNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def UpperCAmelCase ( self : List[str] ,_snake_case : Optional[int] ,_snake_case : int ,_snake_case : Tuple ) -> List[Any]: """simple docstring""" lowercase__ : Optional[int] = TFResNetModel(config=_snake_case ) lowercase__ : List[str] = model(_snake_case ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def UpperCAmelCase ( self : Optional[int] ,_snake_case : Optional[Any] ,_snake_case : int ,_snake_case : Any ) -> Tuple: """simple docstring""" lowercase__ : Tuple = self.num_labels lowercase__ : Union[str, Any] = TFResNetForImageClassification(_snake_case ) lowercase__ : List[str] = model(_snake_case ,labels=_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCAmelCase ( self : Tuple ) -> str: """simple docstring""" lowercase__ : Dict = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = config_and_inputs lowercase__ : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[int] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () lowerCAmelCase : Any = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) lowerCAmelCase : List[Any] = False lowerCAmelCase : List[Any] = False lowerCAmelCase : int = False lowerCAmelCase : Union[str, Any] = False lowerCAmelCase : List[str] = False def UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = TFResNetModelTester(self ) lowercase__ : int = ConfigTester(self ,config_class=_snake_case ,has_text_modality=_snake_case ) def UpperCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" return @unittest.skip(reason='''ResNet does not use inputs_embeds''' ) def UpperCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass @unittest.skip(reason='''ResNet does not support input and output embeddings''' ) def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" pass def UpperCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : str = model_class(_snake_case ) lowercase__ : Dict = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[int] = [*signature.parameters.keys()] lowercase__ : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_snake_case ) def UpperCAmelCase ( self : Tuple ) -> Any: """simple docstring""" lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" def check_hidden_states_output(_snake_case : Optional[int] ,_snake_case : List[str] ,_snake_case : Optional[Any] ): lowercase__ : str = model_class(_snake_case ) lowercase__ : Union[str, Any] = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__ : Tuple = self.model_tester.num_stages self.assertEqual(len(_snake_case ) ,expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase__ : List[Any] = layer_type lowercase__ : Dict = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Dict = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def UpperCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Optional[Any] = TFResNetModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def __UpperCAmelCase ( ) -> Dict: lowercase__ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class __A ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self : str ) -> Any: """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ : Tuple = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowercase__ : Any = self.default_image_processor lowercase__ : int = prepare_img() lowercase__ : Tuple = image_processor(images=_snake_case ,return_tensors='''tf''' ) # forward pass lowercase__ : Dict = model(**_snake_case ) # verify the logits lowercase__ : List[str] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape ,_snake_case ) lowercase__ : Any = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() ,_snake_case ,atol=1e-4 ) )
16
1
"""simple docstring""" from __future__ import annotations lowerCAmelCase_ = list[list[int]] # assigning initial values to the grid lowerCAmelCase_ = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution lowerCAmelCase_ = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> bool: for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def __UpperCAmelCase ( __lowerCamelCase ) -> tuple[int, int] | None: for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def __UpperCAmelCase ( __lowerCamelCase ) -> Matrix | None: if location := find_empty_location(__lowerCamelCase ): lowercase__ , lowercase__ : Dict = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): lowercase__ : Any = digit if sudoku(__lowerCamelCase ) is not None: return grid lowercase__ : Tuple = 0 return None def __UpperCAmelCase ( __lowerCamelCase ) -> None: for row in grid: for cell in row: print(__lowerCamelCase , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('\nExample grid:\n' + '=' * 20) print_solution(example_grid) print('\nExample grid solution:') lowerCAmelCase_ = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('Cannot find a solution.')
16
"""simple docstring""" import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: if "model" in orig_key: lowercase__ : Tuple = orig_key.replace('''model.''' , '''''' ) if "norm1" in orig_key: lowercase__ : List[str] = orig_key.replace('''norm1''' , '''attention.output.LayerNorm''' ) if "norm2" in orig_key: lowercase__ : List[str] = orig_key.replace('''norm2''' , '''output.LayerNorm''' ) if "norm" in orig_key: lowercase__ : List[str] = orig_key.replace('''norm''' , '''LayerNorm''' ) if "transformer" in orig_key: lowercase__ : Union[str, Any] = orig_key.split('''.''' )[0].split('''_''' )[-1] lowercase__ : List[str] = orig_key.replace(f"""transformer_{layer_num}""" , f"""encoder.layer.{layer_num}""" ) if "mha.attn" in orig_key: lowercase__ : Union[str, Any] = orig_key.replace('''mha.attn''' , '''attention.self''' ) if "mha" in orig_key: lowercase__ : str = orig_key.replace('''mha''' , '''attention''' ) if "W_q" in orig_key: lowercase__ : Any = orig_key.replace('''W_q''' , '''self.query''' ) if "W_k" in orig_key: lowercase__ : List[Any] = orig_key.replace('''W_k''' , '''self.key''' ) if "W_v" in orig_key: lowercase__ : Any = orig_key.replace('''W_v''' , '''self.value''' ) if "ff1" in orig_key: lowercase__ : Optional[int] = orig_key.replace('''ff1''' , '''intermediate.dense''' ) if "ff2" in orig_key: lowercase__ : Optional[Any] = orig_key.replace('''ff2''' , '''output.dense''' ) if "ff" in orig_key: lowercase__ : List[str] = orig_key.replace('''ff''' , '''output.dense''' ) if "mlm_class" in orig_key: lowercase__ : int = orig_key.replace('''mlm.mlm_class''' , '''cls.predictions.decoder''' ) if "mlm" in orig_key: lowercase__ : Optional[Any] = orig_key.replace('''mlm''' , '''cls.predictions.transform''' ) if "cls" not in orig_key: lowercase__ : Optional[Any] = '''yoso.''' + orig_key return orig_key def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: for key in orig_state_dict.copy().keys(): lowercase__ : Optional[Any] = orig_state_dict.pop(__lowerCamelCase ) if ("pooler" in key) or ("sen_class" in key): continue else: lowercase__ : Tuple = val lowercase__ : Union[str, Any] = orig_state_dict['''cls.predictions.decoder.bias'''] lowercase__ : List[str] = torch.arange(__lowerCamelCase ).expand((1, -1) ) + 2 return orig_state_dict def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : Tuple = torch.load(__lowerCamelCase , map_location='''cpu''' )['''model_state_dict'''] lowercase__ : List[Any] = YosoConfig.from_json_file(__lowerCamelCase ) lowercase__ : List[Any] = YosoForMaskedLM(__lowerCamelCase ) lowercase__ : Optional[Any] = convert_checkpoint_helper(config.max_position_embeddings , __lowerCamelCase ) print(model.load_state_dict(__lowerCamelCase ) ) model.eval() model.save_pretrained(__lowerCamelCase ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to YOSO pytorch checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for YOSO model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase_ = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
16
1
"""simple docstring""" from PIL import Image def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Image: lowercase__ : Union[str, Any] = (2_59 * (level + 2_55)) / (2_55 * (2_59 - level)) def contrast(__lowerCamelCase ) -> int: return int(1_28 + factor * (c - 1_28) ) return img.point(__lowerCamelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change contrast to 170 lowerCAmelCase_ = change_contrast(img, 170) cont_img.save('image_data/lena_high_contrast.png', format='png')
16
"""simple docstring""" import os def __UpperCAmelCase ( ) -> int: with open(os.path.dirname(__lowerCamelCase ) + '''/p022_names.txt''' ) as file: lowercase__ : List[Any] = str(file.readlines()[0] ) lowercase__ : Dict = names.replace('''"''' , '''''' ).split(''',''' ) names.sort() lowercase__ : int = 0 lowercase__ : Optional[Any] = 0 for i, name in enumerate(__lowerCamelCase ): for letter in name: name_score += ord(__lowerCamelCase ) - 64 total_score += (i + 1) * name_score lowercase__ : List[str] = 0 return total_score if __name__ == "__main__": print(solution())
16
1
"""simple docstring""" import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class __A ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[int] ,_snake_case : int ,_snake_case : Tuple=13 ,_snake_case : Dict=7 ,_snake_case : Any=True ,_snake_case : Optional[Any]=True ,_snake_case : List[Any]=True ,_snake_case : Optional[int]=True ,_snake_case : Any=99 ,_snake_case : Dict=32 ,_snake_case : Optional[int]=5 ,_snake_case : List[Any]=4 ,_snake_case : Union[str, Any]=37 ,_snake_case : Dict="gelu" ,_snake_case : List[Any]=0.1 ,_snake_case : Dict=0.1 ,_snake_case : Optional[Any]=512 ,_snake_case : Dict=16 ,_snake_case : List[Any]=2 ,_snake_case : List[Any]=0.02 ,_snake_case : str=4 ,) -> Tuple: """simple docstring""" lowercase__ : Optional[int] = parent lowercase__ : str = batch_size lowercase__ : Any = seq_length lowercase__ : Union[str, Any] = is_training lowercase__ : Tuple = use_attention_mask lowercase__ : Tuple = use_token_type_ids lowercase__ : Optional[Any] = use_labels lowercase__ : Tuple = vocab_size lowercase__ : Any = hidden_size lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Dict = num_attention_heads lowercase__ : Union[str, Any] = intermediate_size lowercase__ : Tuple = hidden_act lowercase__ : List[str] = hidden_dropout_prob lowercase__ : List[str] = attention_probs_dropout_prob lowercase__ : Dict = max_position_embeddings lowercase__ : Union[str, Any] = type_vocab_size lowercase__ : Tuple = type_sequence_label_size lowercase__ : Optional[int] = initializer_range lowercase__ : str = num_choices def UpperCAmelCase ( self : Any ) -> str: """simple docstring""" lowercase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase__ : Optional[int] = None if self.use_attention_mask: lowercase__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : Any = DistilBertConfig( vocab_size=self.vocab_size ,dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,hidden_dim=self.intermediate_size ,hidden_act=self.hidden_act ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,tie_weights_=_snake_case ,) return config, input_ids, attention_mask def UpperCAmelCase ( self : Tuple ) -> Any: """simple docstring""" lowercase__ : Tuple = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : List[str] = config_and_inputs lowercase__ : Tuple = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Dict = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" lowercase__ : int = FlaxDistilBertModelTester(self ) @slow def UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" for model_class_name in self.all_model_classes: lowercase__ : Union[str, Any] = model_class_name.from_pretrained('''distilbert-base-uncased''' ) lowercase__ : str = model(np.ones((1, 1) ) ) self.assertIsNotNone(_snake_case ) @require_flax class __A ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" lowercase__ : Tuple = FlaxDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) lowercase__ : str = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) lowercase__ : Optional[Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowercase__ : Optional[Any] = model(_snake_case ,attention_mask=_snake_case )[0] lowercase__ : Union[str, Any] = (1, 11, 768) self.assertEqual(output.shape ,_snake_case ) lowercase__ : Tuple = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] ,_snake_case ,atol=1e-4 ) )
16
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(A_ ) class __A ( A_ ): '''simple docstring''' def __init__( self : List[str] ,**_snake_case : Dict ) -> List[Any]: """simple docstring""" super().__init__(**_snake_case ) requires_backends(self ,'''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[int] ,_snake_case : Union[str, List[str], "Image", List["Image"]] ,**_snake_case : int ) -> Optional[Any]: """simple docstring""" return super().__call__(_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Dict ,**_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ : List[str] = {} if "candidate_labels" in kwargs: lowercase__ : Any = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: lowercase__ : Optional[Any] = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[int] ,_snake_case : Dict=None ,_snake_case : Union[str, Any]="This is a photo of {}." ) -> List[str]: """simple docstring""" lowercase__ : List[Any] = load_image(_snake_case ) lowercase__ : int = self.image_processor(images=[image] ,return_tensors=self.framework ) lowercase__ : str = candidate_labels lowercase__ : Dict = [hypothesis_template.format(_snake_case ) for x in candidate_labels] lowercase__ : Any = self.tokenizer(_snake_case ,return_tensors=self.framework ,padding=_snake_case ) lowercase__ : Optional[int] = [text_inputs] return inputs def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ : Optional[int] = model_inputs.pop('''candidate_labels''' ) lowercase__ : Union[str, Any] = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] ,_snake_case ): lowercase__ : List[str] = text_inputs[0] else: # Batching case. lowercase__ : int = text_inputs[0][0] lowercase__ : Tuple = self.model(**_snake_case ,**_snake_case ) lowercase__ : Union[str, Any] = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def UpperCAmelCase ( self : Any ,_snake_case : Tuple ) -> Any: """simple docstring""" lowercase__ : Dict = model_outputs.pop('''candidate_labels''' ) lowercase__ : Optional[Any] = model_outputs['''logits'''][0] if self.framework == "pt": lowercase__ : Optional[int] = logits.softmax(dim=-1 ).squeeze(-1 ) lowercase__ : Tuple = probs.tolist() if not isinstance(_snake_case ,_snake_case ): lowercase__ : Any = [scores] elif self.framework == "tf": lowercase__ : List[str] = stable_softmax(_snake_case ,axis=-1 ) lowercase__ : Optional[Any] = probs.numpy().tolist() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) lowercase__ : Union[str, Any] = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(_snake_case ,_snake_case ) ,key=lambda _snake_case : -x[0] ) ] return result
16
1
"""simple docstring""" import os def __UpperCAmelCase ( ) -> int: with open(os.path.dirname(__lowerCamelCase ) + '''/grid.txt''' ) as f: lowercase__ : Optional[int] = [] # noqa: E741 for _ in range(20 ): l.append([int(__lowerCamelCase ) for x in f.readline().split()] ) lowercase__ : Optional[int] = 0 # right for i in range(20 ): for j in range(17 ): lowercase__ : int = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: lowercase__ : Tuple = temp # down for i in range(17 ): for j in range(20 ): lowercase__ : str = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: lowercase__ : List[str] = temp # diagonal 1 for i in range(17 ): for j in range(17 ): lowercase__ : Any = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: lowercase__ : int = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): lowercase__ : Tuple = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: lowercase__ : List[str] = temp return maximum if __name__ == "__main__": print(solution())
16
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[Any]: print('''\nThe shortest path matrix using Floyd Warshall algorithm\n''' ) for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): if dist[i][j] != float('''inf''' ): print(int(dist[i][j] ) , end='''\t''' ) else: print('''INF''' , end='''\t''' ) print() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : str = [[float('''inf''' ) for _ in range(__lowerCamelCase )] for _ in range(__lowerCamelCase )] for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): lowercase__ : List[str] = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(__lowerCamelCase ): # looping through rows of graph array for i in range(__lowerCamelCase ): # looping through columns of graph array for j in range(__lowerCamelCase ): if ( dist[i][k] != float('''inf''' ) and dist[k][j] != float('''inf''' ) and dist[i][k] + dist[k][j] < dist[i][j] ): lowercase__ : str = dist[i][k] + dist[k][j] _print_dist(__lowerCamelCase , __lowerCamelCase ) return dist, v if __name__ == "__main__": lowerCAmelCase_ = int(input('Enter number of vertices: ')) lowerCAmelCase_ = int(input('Enter number of edges: ')) lowerCAmelCase_ = [[float('inf') for i in range(v)] for j in range(v)] for i in range(v): lowerCAmelCase_ = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('\nEdge ', i + 1) lowerCAmelCase_ = int(input('Enter source:')) lowerCAmelCase_ = int(input('Enter destination:')) lowerCAmelCase_ = float(input('Enter weight:')) lowerCAmelCase_ = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
16
1
"""simple docstring""" import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL lowerCAmelCase_ = logging.get_logger(__name__) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Tuple[int, int]: def constraint_to_multiple_of(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase=0 , __lowerCamelCase=None ): lowercase__ : Dict = round(val / multiple ) * multiple if max_val is not None and x > max_val: lowercase__ : Optional[int] = math.floor(val / multiple ) * multiple if x < min_val: lowercase__ : int = math.ceil(val / multiple ) * multiple return x lowercase__ : Dict = (output_size, output_size) if isinstance(__lowerCamelCase , __lowerCamelCase ) else output_size lowercase__ , lowercase__ : str = get_image_size(__lowerCamelCase ) lowercase__ , lowercase__ : str = output_size # determine new height and width lowercase__ : str = output_height / input_height lowercase__ : Any = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width lowercase__ : List[Any] = scale_width else: # fit height lowercase__ : int = scale_height lowercase__ : List[Any] = constraint_to_multiple_of(scale_height * input_height , multiple=__lowerCamelCase ) lowercase__ : Dict = constraint_to_multiple_of(scale_width * input_width , multiple=__lowerCamelCase ) return (new_height, new_width) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[Any] = ["pixel_values"] def __init__( self : List[str] ,_snake_case : bool = True ,_snake_case : Dict[str, int] = None ,_snake_case : PILImageResampling = PILImageResampling.BILINEAR ,_snake_case : bool = False ,_snake_case : int = 1 ,_snake_case : bool = True ,_snake_case : Union[int, float] = 1 / 255 ,_snake_case : bool = True ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,**_snake_case : Tuple ,) -> None: """simple docstring""" super().__init__(**_snake_case ) lowercase__ : List[str] = size if size is not None else {'''height''': 384, '''width''': 384} lowercase__ : Dict = get_size_dict(_snake_case ) lowercase__ : str = do_resize lowercase__ : List[Any] = size lowercase__ : Optional[Any] = keep_aspect_ratio lowercase__ : Optional[int] = ensure_multiple_of lowercase__ : Dict = resample lowercase__ : Union[str, Any] = do_rescale lowercase__ : Optional[int] = rescale_factor lowercase__ : Any = do_normalize lowercase__ : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase__ : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : bool = False ,_snake_case : int = 1 ,_snake_case : PILImageResampling = PILImageResampling.BICUBIC ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Optional[int] ,) -> np.ndarray: """simple docstring""" lowercase__ : str = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) lowercase__ : List[str] = get_resize_output_image_size( _snake_case ,output_size=(size['''height'''], size['''width''']) ,keep_aspect_ratio=_snake_case ,multiple=_snake_case ,) return resize(_snake_case ,size=_snake_case ,resample=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : List[Any] ,_snake_case : np.ndarray ,_snake_case : Union[int, float] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : int ,) -> Tuple: """simple docstring""" return rescale(_snake_case ,scale=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Optional[int] ,_snake_case : np.ndarray ,_snake_case : Union[float, List[float]] ,_snake_case : Union[float, List[float]] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : List[Any] ,) -> np.ndarray: """simple docstring""" return normalize(_snake_case ,mean=_snake_case ,std=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Any ,_snake_case : ImageInput ,_snake_case : bool = None ,_snake_case : int = None ,_snake_case : bool = None ,_snake_case : int = None ,_snake_case : PILImageResampling = None ,_snake_case : bool = None ,_snake_case : float = None ,_snake_case : bool = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[str, TensorType]] = None ,_snake_case : ChannelDimension = ChannelDimension.FIRST ,**_snake_case : int ,) -> PIL.Image.Image: """simple docstring""" lowercase__ : Tuple = do_resize if do_resize is not None else self.do_resize lowercase__ : Dict = size if size is not None else self.size lowercase__ : Dict = get_size_dict(_snake_case ) lowercase__ : Union[str, Any] = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio lowercase__ : Optional[Any] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of lowercase__ : List[Any] = resample if resample is not None else self.resample lowercase__ : List[str] = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : List[str] = do_normalize if do_normalize is not None else self.do_normalize lowercase__ : Union[str, Any] = image_mean if image_mean is not None else self.image_mean lowercase__ : Tuple = image_std if image_std is not None else self.image_std lowercase__ : int = make_list_of_images(_snake_case ) if not valid_images(_snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. lowercase__ : Tuple = [to_numpy_array(_snake_case ) for image in images] if do_resize: lowercase__ : Dict = [self.resize(image=_snake_case ,size=_snake_case ,resample=_snake_case ) for image in images] if do_rescale: lowercase__ : str = [self.rescale(image=_snake_case ,scale=_snake_case ) for image in images] if do_normalize: lowercase__ : str = [self.normalize(image=_snake_case ,mean=_snake_case ,std=_snake_case ) for image in images] lowercase__ : Union[str, Any] = [to_channel_dimension_format(_snake_case ,_snake_case ) for image in images] lowercase__ : Any = {'''pixel_values''': images} return BatchFeature(data=_snake_case ,tensor_type=_snake_case ) def UpperCAmelCase ( self : Dict ,_snake_case : str ,_snake_case : List[Tuple] = None ) -> Tuple: """simple docstring""" lowercase__ : List[str] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_snake_case ) != len(_snake_case ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(_snake_case ): lowercase__ : Optional[int] = target_sizes.numpy() lowercase__ : Tuple = [] for idx in range(len(_snake_case ) ): lowercase__ : int = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) ,size=target_sizes[idx] ,mode='''bilinear''' ,align_corners=_snake_case ) lowercase__ : Any = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_snake_case ) else: lowercase__ : Optional[Any] = logits.argmax(dim=1 ) lowercase__ : List[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
16
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' def __init__( self : Dict ,*_snake_case : Any ,**_snake_case : str ) -> None: """simple docstring""" warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' ,_snake_case ,) super().__init__(*_snake_case ,**_snake_case )
16
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase_ = { 'configuration_owlvit': [ 'OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OwlViTConfig', 'OwlViTOnnxConfig', 'OwlViTTextConfig', 'OwlViTVisionConfig', ], 'processing_owlvit': ['OwlViTProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['OwlViTFeatureExtractor'] lowerCAmelCase_ = ['OwlViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'OwlViTModel', 'OwlViTPreTrainedModel', 'OwlViTTextModel', 'OwlViTVisionModel', 'OwlViTForObjectDetection', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {'configuration_xglm': ['XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XGLMConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['XGLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['XGLMTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XGLMForCausalLM', 'XGLMModel', 'XGLMPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'FlaxXGLMForCausalLM', 'FlaxXGLMModel', 'FlaxXGLMPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXGLMForCausalLM', 'TFXGLMModel', 'TFXGLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
16
1
"""simple docstring""" from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput lowerCAmelCase_ = 8 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase=BITS ) -> Optional[Any]: lowercase__ : List[Any] = x.device lowercase__ : List[Any] = (x * 2_55).int().clamp(0 , 2_55 ) lowercase__ : List[Any] = 2 ** torch.arange(bits - 1 , -1 , -1 , device=__lowerCamelCase ) lowercase__ : Tuple = rearrange(__lowerCamelCase , '''d -> d 1 1''' ) lowercase__ : Optional[int] = rearrange(__lowerCamelCase , '''b c h w -> b c 1 h w''' ) lowercase__ : Tuple = ((x & mask) != 0).float() lowercase__ : Dict = rearrange(__lowerCamelCase , '''b c d h w -> b (c d) h w''' ) lowercase__ : Optional[Any] = bits * 2 - 1 return bits def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase=BITS ) -> List[Any]: lowercase__ : str = x.device lowercase__ : Tuple = (x > 0).int() lowercase__ : Optional[Any] = 2 ** torch.arange(bits - 1 , -1 , -1 , device=__lowerCamelCase , dtype=torch.intaa ) lowercase__ : List[Any] = rearrange(__lowerCamelCase , '''d -> d 1 1''' ) lowercase__ : Tuple = rearrange(__lowerCamelCase , '''b (c d) h w -> b c d h w''' , d=8 ) lowercase__ : Union[str, Any] = reduce(x * mask , '''b c d h w -> b c h w''' , '''sum''' ) return (dec / 2_55).clamp(0.0 , 1.0 ) def __UpperCAmelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = 0.0 , __lowerCamelCase = True , __lowerCamelCase=None , __lowerCamelCase = True , ) -> Union[DDIMSchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( '''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) lowercase__ : Union[str, Any] = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas lowercase__ : Tuple = self.alphas_cumprod[timestep] lowercase__ : Tuple = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod lowercase__ : str = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase__ : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" lowercase__ : Dict = self.bit_scale if self.config.clip_sample: lowercase__ : Union[str, Any] = torch.clamp(__lowerCamelCase , -scale , __lowerCamelCase ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) lowercase__ : Optional[Any] = self._get_variance(__lowerCamelCase , __lowerCamelCase ) lowercase__ : Optional[int] = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide lowercase__ : Any = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase__ : Dict = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase__ : Tuple = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 lowercase__ : Union[str, Any] = model_output.device if torch.is_tensor(__lowerCamelCase ) else '''cpu''' lowercase__ : Union[str, Any] = torch.randn(model_output.shape , dtype=model_output.dtype , generator=__lowerCamelCase ).to(__lowerCamelCase ) lowercase__ : Dict = self._get_variance(__lowerCamelCase , __lowerCamelCase ) ** 0.5 * eta * noise lowercase__ : List[Any] = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=__lowerCamelCase , pred_original_sample=__lowerCamelCase ) def __UpperCAmelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase="epsilon" , __lowerCamelCase=None , __lowerCamelCase = True , ) -> Union[DDPMSchedulerOutput, Tuple]: lowercase__ : List[str] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: lowercase__ , lowercase__ : Optional[Any] = torch.split(__lowerCamelCase , sample.shape[1] , dim=1 ) else: lowercase__ : Optional[int] = None # 1. compute alphas, betas lowercase__ : Tuple = self.alphas_cumprod[t] lowercase__ : Tuple = self.alphas_cumprod[t - 1] if t > 0 else self.one lowercase__ : Optional[Any] = 1 - alpha_prod_t lowercase__ : Union[str, Any] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": lowercase__ : Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": lowercase__ : Optional[int] = model_output else: raise ValueError(f"""Unsupported prediction_type {prediction_type}.""" ) # 3. Clip "predicted x_0" lowercase__ : Tuple = self.bit_scale if self.config.clip_sample: lowercase__ : Union[str, Any] = torch.clamp(__lowerCamelCase , -scale , __lowerCamelCase ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase__ : Any = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t lowercase__ : int = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase__ : List[str] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise lowercase__ : Any = 0 if t > 0: lowercase__ : List[Any] = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=__lowerCamelCase ).to(model_output.device ) lowercase__ : Dict = (self._get_variance(__lowerCamelCase , predicted_variance=__lowerCamelCase ) ** 0.5) * noise lowercase__ : str = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=__lowerCamelCase , pred_original_sample=__lowerCamelCase ) class __A ( A_ ): '''simple docstring''' def __init__( self : str ,_snake_case : UNetaDConditionModel ,_snake_case : Union[DDIMScheduler, DDPMScheduler] ,_snake_case : Optional[float] = 1.0 ,) -> Optional[Any]: """simple docstring""" super().__init__() lowercase__ : Optional[Any] = bit_scale lowercase__ : Dict = ( ddim_bit_scheduler_step if isinstance(_snake_case ,_snake_case ) else ddpm_bit_scheduler_step ) self.register_modules(unet=_snake_case ,scheduler=_snake_case ) @torch.no_grad() def __call__( self : Optional[Any] ,_snake_case : Optional[int] = 256 ,_snake_case : Optional[int] = 256 ,_snake_case : Optional[int] = 50 ,_snake_case : Optional[torch.Generator] = None ,_snake_case : Optional[int] = 1 ,_snake_case : Optional[str] = "pil" ,_snake_case : bool = True ,**_snake_case : Optional[int] ,) -> Union[Tuple, ImagePipelineOutput]: """simple docstring""" lowercase__ : Dict = torch.randn( (batch_size, self.unet.config.in_channels, height, width) ,generator=_snake_case ,) lowercase__ : Dict = decimal_to_bits(_snake_case ) * self.bit_scale lowercase__ : Optional[Any] = latents.to(self.device ) self.scheduler.set_timesteps(_snake_case ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual lowercase__ : List[Any] = self.unet(_snake_case ,_snake_case ).sample # compute the previous noisy sample x_t -> x_t-1 lowercase__ : Any = self.scheduler.step(_snake_case ,_snake_case ,_snake_case ).prev_sample lowercase__ : str = bits_to_decimal(_snake_case ) if output_type == "pil": lowercase__ : str = self.numpy_to_pil(_snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=_snake_case )
16
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class __A ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : Tuple = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Dict = TFAutoModel.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = AutoModel.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : Dict = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : str = TFAutoModelForPreTraining.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = AutoModelForPreTraining.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Any = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = TFAutoModelForCausalLM.from_pretrained(_snake_case ,from_pt=_snake_case ) lowercase__ , lowercase__ : Optional[Any] = TFAutoModelForCausalLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = AutoModelForCausalLM.from_pretrained(_snake_case ,from_tf=_snake_case ) lowercase__ , lowercase__ : Optional[Any] = AutoModelForCausalLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Any ) -> Tuple: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Any = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : str = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(_snake_case ,from_pt=_snake_case ) lowercase__ , lowercase__ : str = TFAutoModelForMaskedLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = AutoModelForMaskedLM.from_pretrained(_snake_case ,from_tf=_snake_case ) lowercase__ , lowercase__ : Any = AutoModelForMaskedLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Union[str, Any] = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained(_snake_case ,from_pt=_snake_case ) lowercase__ , lowercase__ : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ,from_tf=_snake_case ) lowercase__ , lowercase__ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : Tuple = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = TFAutoModelForSequenceClassification.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : List[Any] = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : str = TFAutoModelForQuestionAnswering.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = AutoModelForQuestionAnswering.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : Optional[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) lowercase__ : Union[str, Any] = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) def UpperCAmelCase ( self : int ) -> List[Any]: """simple docstring""" lowercase__ : List[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) lowercase__ : int = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 )
16
1
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase ) -> int: if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(__lowerCamelCase ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
16
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase = 50 ) -> int: lowercase__ : int = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F'''{solution() = }''')
16
1
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __UpperCAmelCase ( __lowerCamelCase ) -> Dict: return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def __UpperCAmelCase ( __lowerCamelCase ) -> List[Any]: lowercase__ : Dict = create_tensor(__lowerCamelCase ) lowercase__ : int = gather(__lowerCamelCase ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def __UpperCAmelCase ( __lowerCamelCase ) -> List[str]: lowercase__ : List[str] = [state.process_index] lowercase__ : Dict = gather_object(__lowerCamelCase ) assert len(__lowerCamelCase ) == state.num_processes, f"""{gathered_obj}, {len(__lowerCamelCase )} != {state.num_processes}""" assert gathered_obj == list(range(state.num_processes ) ), f"""{gathered_obj} != {list(range(state.num_processes ) )}""" def __UpperCAmelCase ( __lowerCamelCase ) -> List[Any]: lowercase__ : str = create_tensor(__lowerCamelCase ) lowercase__ : Optional[Any] = broadcast(__lowerCamelCase ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def __UpperCAmelCase ( __lowerCamelCase ) -> List[str]: # We need to pad the tensor with one more element if we are the main process # to ensure that we can pad if state.is_main_process: lowercase__ : Any = torch.arange(state.num_processes + 1 ).to(state.device ) else: lowercase__ : Tuple = torch.arange(state.num_processes ).to(state.device ) lowercase__ : List[str] = pad_across_processes(__lowerCamelCase ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: # For now runs on only two processes if state.num_processes != 2: return lowercase__ : Tuple = create_tensor(__lowerCamelCase ) lowercase__ : Dict = reduce(__lowerCamelCase , '''sum''' ) lowercase__ : Optional[int] = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(__lowerCamelCase , __lowerCamelCase ), f"""{reduced_tensor} != {truth_tensor}""" def __UpperCAmelCase ( __lowerCamelCase ) -> int: # For now runs on only two processes if state.num_processes != 2: return lowercase__ : List[str] = create_tensor(__lowerCamelCase ) lowercase__ : int = reduce(__lowerCamelCase , '''mean''' ) lowercase__ : List[str] = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(__lowerCamelCase , __lowerCamelCase ), f"""{reduced_tensor} != {truth_tensor}""" def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: # For xla_spawn (TPUs) main() def __UpperCAmelCase ( ) -> List[str]: lowercase__ : List[str] = PartialState() state.print(f"""State: {state}""" ) state.print('''testing gather''' ) test_gather(__lowerCamelCase ) state.print('''testing gather_object''' ) test_gather_object(__lowerCamelCase ) state.print('''testing broadcast''' ) test_broadcast(__lowerCamelCase ) state.print('''testing pad_across_processes''' ) test_pad_across_processes(__lowerCamelCase ) state.print('''testing reduce_sum''' ) test_reduce_sum(__lowerCamelCase ) state.print('''testing reduce_mean''' ) test_reduce_mean(__lowerCamelCase ) if __name__ == "__main__": main()
16
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" debug_launcher(test_script.main ) def UpperCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" debug_launcher(test_ops.main )
16
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json', } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[str] = "mra" def __init__( self : Dict ,_snake_case : Any=50_265 ,_snake_case : Union[str, Any]=768 ,_snake_case : List[str]=12 ,_snake_case : Tuple=12 ,_snake_case : Any=3_072 ,_snake_case : int="gelu" ,_snake_case : str=0.1 ,_snake_case : Union[str, Any]=0.1 ,_snake_case : List[str]=512 ,_snake_case : List[Any]=1 ,_snake_case : Optional[Any]=0.02 ,_snake_case : Union[str, Any]=1e-5 ,_snake_case : Tuple="absolute" ,_snake_case : int=4 ,_snake_case : Any="full" ,_snake_case : List[Any]=0 ,_snake_case : int=0 ,_snake_case : str=1 ,_snake_case : List[str]=0 ,_snake_case : Optional[int]=2 ,**_snake_case : Optional[int] ,) -> Union[str, Any]: """simple docstring""" super().__init__(pad_token_id=_snake_case ,bos_token_id=_snake_case ,eos_token_id=_snake_case ,**_snake_case ) lowercase__ : Any = vocab_size lowercase__ : Dict = max_position_embeddings lowercase__ : str = hidden_size lowercase__ : Union[str, Any] = num_hidden_layers lowercase__ : Tuple = num_attention_heads lowercase__ : Tuple = intermediate_size lowercase__ : int = hidden_act lowercase__ : int = hidden_dropout_prob lowercase__ : Tuple = attention_probs_dropout_prob lowercase__ : Dict = initializer_range lowercase__ : Tuple = type_vocab_size lowercase__ : List[str] = layer_norm_eps lowercase__ : int = position_embedding_type lowercase__ : List[Any] = block_per_row lowercase__ : Optional[int] = approx_mode lowercase__ : Tuple = initial_prior_first_n_blocks lowercase__ : List[Any] = initial_prior_diagonal_n_blocks
16
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) lowerCAmelCase_ = { 'configuration_speecht5': [ 'SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP', 'SpeechT5Config', 'SpeechT5HifiGanConfig', ], 'feature_extraction_speecht5': ['SpeechT5FeatureExtractor'], 'processing_speecht5': ['SpeechT5Processor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['SpeechT5Tokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'SpeechT5ForSpeechToText', 'SpeechT5ForSpeechToSpeech', 'SpeechT5ForTextToSpeech', 'SpeechT5Model', 'SpeechT5PreTrainedModel', 'SpeechT5HifiGan', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
16
"""simple docstring""" from ..utils import DummyObject, requires_backends class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : List[str] = ["torch", "torchsde"] def __init__( self : Tuple ,*_snake_case : Union[str, Any] ,**_snake_case : Any ) -> Union[str, Any]: """simple docstring""" requires_backends(self ,['''torch''', '''torchsde'''] ) @classmethod def UpperCAmelCase ( cls : List[str] ,*_snake_case : int ,**_snake_case : Union[str, Any] ) -> str: """simple docstring""" requires_backends(cls ,['''torch''', '''torchsde'''] ) @classmethod def UpperCAmelCase ( cls : List[Any] ,*_snake_case : List[Any] ,**_snake_case : List[str] ) -> List[Any]: """simple docstring""" requires_backends(cls ,['''torch''', '''torchsde'''] )
16
1
"""simple docstring""" import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') lowerCAmelCase_ = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) lowerCAmelCase_ = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(10_000): out_file.write(data) lowerCAmelCase_ = BeautifulSoup(res.text, 'html.parser') lowerCAmelCase_ = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(F'''https://google.com{link.get("href")}''')
16
"""simple docstring""" import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node lowerCAmelCase_ = 4 lowerCAmelCase_ = 3 class __A ( A_ ): '''simple docstring''' pass def __UpperCAmelCase ( __lowerCamelCase ) -> Dict: for shard in shards: for i in range(__lowerCamelCase ): yield {"i": i, "shard": shard} def __UpperCAmelCase ( ) -> Tuple: lowercase__ : int = int(os.environ['''RANK'''] ) lowercase__ : str = int(os.environ['''WORLD_SIZE'''] ) lowercase__ : List[Any] = ArgumentParser() parser.add_argument('''--streaming''' , type=__lowerCamelCase ) parser.add_argument('''--local_rank''' , type=__lowerCamelCase ) parser.add_argument('''--num_workers''' , type=__lowerCamelCase , default=0 ) lowercase__ : int = parser.parse_args() lowercase__ : Optional[Any] = args.streaming lowercase__ : List[Any] = args.num_workers lowercase__ : Optional[Any] = {'''shards''': [f"""shard_{shard_idx}""" for shard_idx in range(__lowerCamelCase )]} lowercase__ : Dict = IterableDataset.from_generator(__lowerCamelCase , gen_kwargs=__lowerCamelCase ) if not streaming: lowercase__ : int = Dataset.from_list(list(__lowerCamelCase ) ) lowercase__ : int = split_dataset_by_node(__lowerCamelCase , rank=__lowerCamelCase , world_size=__lowerCamelCase ) lowercase__ : Optional[Any] = torch.utils.data.DataLoader(__lowerCamelCase , num_workers=__lowerCamelCase ) lowercase__ : Optional[Any] = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowercase__ : str = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) lowercase__ : str = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
16
1
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'microsoft/wavlm-base': 'https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Any = "wavlm" def __init__( self : List[Any] ,_snake_case : List[str]=32 ,_snake_case : Tuple=768 ,_snake_case : Optional[int]=12 ,_snake_case : Any=12 ,_snake_case : Optional[int]=3_072 ,_snake_case : Union[str, Any]="gelu" ,_snake_case : Optional[Any]=0.1 ,_snake_case : List[Any]=0.1 ,_snake_case : List[Any]=0.1 ,_snake_case : str=0.0 ,_snake_case : int=0.1 ,_snake_case : List[Any]=0.1 ,_snake_case : Any=0.02 ,_snake_case : Tuple=1e-5 ,_snake_case : List[Any]="group" ,_snake_case : List[str]="gelu" ,_snake_case : Dict=(512, 512, 512, 512, 512, 512, 512) ,_snake_case : Optional[Any]=(5, 2, 2, 2, 2, 2, 2) ,_snake_case : List[Any]=(10, 3, 3, 3, 3, 2, 2) ,_snake_case : List[Any]=False ,_snake_case : Dict=128 ,_snake_case : Optional[int]=16 ,_snake_case : List[Any]=320 ,_snake_case : Optional[Any]=800 ,_snake_case : Optional[int]=False ,_snake_case : Union[str, Any]=True ,_snake_case : Optional[Any]=0.05 ,_snake_case : Dict=10 ,_snake_case : int=2 ,_snake_case : str=0.0 ,_snake_case : Optional[Any]=10 ,_snake_case : str=320 ,_snake_case : Optional[int]=2 ,_snake_case : Dict=0.1 ,_snake_case : Optional[int]=100 ,_snake_case : Optional[Any]=256 ,_snake_case : Optional[int]=256 ,_snake_case : List[Any]=0.1 ,_snake_case : Optional[Any]="mean" ,_snake_case : Optional[Any]=False ,_snake_case : Optional[Any]=False ,_snake_case : Any=256 ,_snake_case : Union[str, Any]=(512, 512, 512, 512, 1_500) ,_snake_case : Any=(5, 3, 3, 1, 1) ,_snake_case : str=(1, 2, 3, 1, 1) ,_snake_case : Any=512 ,_snake_case : Optional[Any]=80 ,_snake_case : Tuple=0 ,_snake_case : Tuple=1 ,_snake_case : Union[str, Any]=2 ,_snake_case : List[str]=False ,_snake_case : Tuple=3 ,_snake_case : Optional[Any]=2 ,_snake_case : str=3 ,_snake_case : Optional[int]=None ,**_snake_case : Dict ,) -> List[Any]: """simple docstring""" super().__init__(**_snake_case ,pad_token_id=_snake_case ,bos_token_id=_snake_case ,eos_token_id=_snake_case ) lowercase__ : int = hidden_size lowercase__ : Optional[Any] = feat_extract_norm lowercase__ : List[str] = feat_extract_activation lowercase__ : List[Any] = list(_snake_case ) lowercase__ : str = list(_snake_case ) lowercase__ : Tuple = list(_snake_case ) lowercase__ : str = conv_bias lowercase__ : Tuple = num_buckets lowercase__ : Optional[int] = max_bucket_distance lowercase__ : str = num_conv_pos_embeddings lowercase__ : str = num_conv_pos_embedding_groups lowercase__ : Dict = len(self.conv_dim ) lowercase__ : Union[str, Any] = num_hidden_layers lowercase__ : List[Any] = intermediate_size lowercase__ : Optional[int] = hidden_act lowercase__ : Tuple = num_attention_heads lowercase__ : Tuple = hidden_dropout lowercase__ : Tuple = attention_dropout lowercase__ : int = activation_dropout lowercase__ : Union[str, Any] = feat_proj_dropout lowercase__ : Any = final_dropout lowercase__ : Optional[Any] = layerdrop lowercase__ : str = layer_norm_eps lowercase__ : Union[str, Any] = initializer_range lowercase__ : int = num_ctc_classes lowercase__ : List[str] = vocab_size lowercase__ : Any = do_stable_layer_norm lowercase__ : List[str] = use_weighted_layer_sum lowercase__ : int = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__ : List[str] = apply_spec_augment lowercase__ : Dict = mask_time_prob lowercase__ : List[Any] = mask_time_length lowercase__ : Union[str, Any] = mask_time_min_masks lowercase__ : List[str] = mask_feature_prob lowercase__ : Dict = mask_feature_length # parameters for pretraining with codevector quantized representations lowercase__ : List[str] = num_codevectors_per_group lowercase__ : Dict = num_codevector_groups lowercase__ : List[Any] = contrastive_logits_temperature lowercase__ : int = num_negatives lowercase__ : Union[str, Any] = codevector_dim lowercase__ : Tuple = proj_codevector_dim lowercase__ : int = diversity_loss_weight # ctc loss lowercase__ : Any = ctc_loss_reduction lowercase__ : Optional[Any] = ctc_zero_infinity # adapter lowercase__ : Optional[Any] = add_adapter lowercase__ : Tuple = adapter_kernel_size lowercase__ : List[str] = adapter_stride lowercase__ : Union[str, Any] = num_adapter_layers lowercase__ : List[Any] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowercase__ : Optional[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowercase__ : int = list(_snake_case ) lowercase__ : List[Any] = list(_snake_case ) lowercase__ : str = list(_snake_case ) lowercase__ : Dict = xvector_output_dim @property def UpperCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" return functools.reduce(operator.mul ,self.conv_stride ,1 )
16
"""simple docstring""" from ...configuration_utils import PretrainedConfig lowerCAmelCase_ = { 'google/tapas-base-finetuned-sqa': ( 'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json' ), 'google/tapas-base-finetuned-wtq': ( 'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json' ), 'google/tapas-base-finetuned-wikisql-supervised': ( 'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json' ), 'google/tapas-base-finetuned-tabfact': ( 'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json' ), } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = "tapas" def __init__( self : List[Any] ,_snake_case : Dict=30_522 ,_snake_case : Union[str, Any]=768 ,_snake_case : int=12 ,_snake_case : Union[str, Any]=12 ,_snake_case : Union[str, Any]=3_072 ,_snake_case : List[Any]="gelu" ,_snake_case : Optional[int]=0.1 ,_snake_case : Tuple=0.1 ,_snake_case : List[Any]=1_024 ,_snake_case : Any=[3, 256, 256, 2, 256, 256, 10] ,_snake_case : List[Any]=0.02 ,_snake_case : Union[str, Any]=1e-12 ,_snake_case : str=0 ,_snake_case : Any=10.0 ,_snake_case : int=0 ,_snake_case : Optional[Any]=1.0 ,_snake_case : List[str]=None ,_snake_case : Tuple=1.0 ,_snake_case : Tuple=False ,_snake_case : List[Any]=None ,_snake_case : int=1.0 ,_snake_case : List[Any]=1.0 ,_snake_case : Optional[int]=False ,_snake_case : Optional[int]=False ,_snake_case : Optional[int]="ratio" ,_snake_case : Any=None ,_snake_case : Union[str, Any]=None ,_snake_case : List[str]=64 ,_snake_case : Optional[Any]=32 ,_snake_case : Optional[Any]=False ,_snake_case : Optional[int]=True ,_snake_case : Dict=False ,_snake_case : Tuple=False ,_snake_case : int=True ,_snake_case : List[str]=False ,_snake_case : Dict=None ,_snake_case : Optional[int]=None ,**_snake_case : int ,) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=_snake_case ,**_snake_case ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) lowercase__ : Optional[int] = vocab_size lowercase__ : List[str] = hidden_size lowercase__ : Any = num_hidden_layers lowercase__ : Optional[Any] = num_attention_heads lowercase__ : Optional[int] = hidden_act lowercase__ : List[Any] = intermediate_size lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : Dict = attention_probs_dropout_prob lowercase__ : str = max_position_embeddings lowercase__ : Dict = type_vocab_sizes lowercase__ : Optional[Any] = initializer_range lowercase__ : Dict = layer_norm_eps # Fine-tuning task hyperparameters lowercase__ : Any = positive_label_weight lowercase__ : int = num_aggregation_labels lowercase__ : List[str] = aggregation_loss_weight lowercase__ : Optional[int] = use_answer_as_supervision lowercase__ : Optional[Any] = answer_loss_importance lowercase__ : Union[str, Any] = use_normalized_answer_loss lowercase__ : str = huber_loss_delta lowercase__ : str = temperature lowercase__ : int = aggregation_temperature lowercase__ : List[Any] = use_gumbel_for_cells lowercase__ : Tuple = use_gumbel_for_aggregation lowercase__ : Union[str, Any] = average_approximation_function lowercase__ : Union[str, Any] = cell_selection_preference lowercase__ : Any = answer_loss_cutoff lowercase__ : List[Any] = max_num_rows lowercase__ : str = max_num_columns lowercase__ : int = average_logits_per_cell lowercase__ : str = select_one_column lowercase__ : str = allow_empty_column_selection lowercase__ : Any = init_cell_selection_weights_to_zero lowercase__ : Optional[int] = reset_position_index_per_cell lowercase__ : Union[str, Any] = disable_per_token_loss # Aggregation hyperparameters lowercase__ : Optional[Any] = aggregation_labels lowercase__ : List[Any] = no_aggregation_label_index if isinstance(self.aggregation_labels ,_snake_case ): lowercase__ : Union[str, Any] = {int(_snake_case ): v for k, v in aggregation_labels.items()}
16
1
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase ) -> None: lowercase__ : Optional[Any] = generate_pascal_triangle(__lowerCamelCase ) for row_idx in range(__lowerCamelCase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=''' ''' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=''' ''' ) else: print(triangle[row_idx][col_idx] , end='''''' ) print() def __UpperCAmelCase ( __lowerCamelCase ) -> list[list[int]]: if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) lowercase__ : list[list[int]] = [] for current_row_idx in range(__lowerCamelCase ): lowercase__ : int = populate_current_row(__lowerCamelCase , __lowerCamelCase ) triangle.append(__lowerCamelCase ) return triangle def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> list[int]: lowercase__ : Union[str, Any] = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 lowercase__ , lowercase__ : Tuple = 1, 1 for current_col_idx in range(1 , __lowerCamelCase ): calculate_current_element( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return current_row def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> None: lowercase__ : Optional[Any] = triangle[current_row_idx - 1][current_col_idx - 1] lowercase__ : Dict = triangle[current_row_idx - 1][current_col_idx] lowercase__ : Dict = above_to_left_elt + above_to_right_elt def __UpperCAmelCase ( __lowerCamelCase ) -> list[list[int]]: if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) lowercase__ : list[list[int]] = [[1]] for row_index in range(1 , __lowerCamelCase ): lowercase__ : Any = [0] + result[-1] + [0] lowercase__ : List[Any] = row_index + 1 # Calculate the number of distinct elements in a row lowercase__ : List[str] = sum(divmod(__lowerCamelCase , 2 ) ) lowercase__ : Dict = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] lowercase__ : List[Any] = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() lowercase__ : List[Any] = row_first_half + row_second_half result.append(__lowerCamelCase ) return result def __UpperCAmelCase ( ) -> None: from collections.abc import Callable from timeit import timeit def benchmark_a_function(__lowerCamelCase , __lowerCamelCase ) -> None: lowercase__ : str = f"""{func.__name__}({value})""" lowercase__ : Optional[int] = timeit(f"""__main__.{call}""" , setup='''import __main__''' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"""{call:38} -- {timing:.4f} seconds""" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(__lowerCamelCase , __lowerCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
16
"""simple docstring""" import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : '''simple docstring''' def __init__( self : Optional[int] ,_snake_case : Optional[Any] ,_snake_case : Union[str, Any]=13 ,_snake_case : Any=32 ,_snake_case : int=2 ,_snake_case : str=3 ,_snake_case : Optional[Any]=16 ,_snake_case : List[Any]=[1, 2, 1] ,_snake_case : Dict=[2, 2, 4] ,_snake_case : List[Any]=2 ,_snake_case : Any=2.0 ,_snake_case : Optional[int]=True ,_snake_case : Optional[int]=0.0 ,_snake_case : Union[str, Any]=0.0 ,_snake_case : str=0.1 ,_snake_case : List[Any]="gelu" ,_snake_case : Tuple=False ,_snake_case : Optional[int]=True ,_snake_case : str=0.02 ,_snake_case : List[str]=1e-5 ,_snake_case : int=True ,_snake_case : Dict=None ,_snake_case : str=True ,_snake_case : List[Any]=10 ,_snake_case : Any=8 ,) -> Union[str, Any]: """simple docstring""" lowercase__ : Dict = parent lowercase__ : Any = batch_size lowercase__ : Union[str, Any] = image_size lowercase__ : Dict = patch_size lowercase__ : int = num_channels lowercase__ : Any = embed_dim lowercase__ : int = depths lowercase__ : Dict = num_heads lowercase__ : List[Any] = window_size lowercase__ : int = mlp_ratio lowercase__ : Optional[int] = qkv_bias lowercase__ : str = hidden_dropout_prob lowercase__ : List[Any] = attention_probs_dropout_prob lowercase__ : Dict = drop_path_rate lowercase__ : int = hidden_act lowercase__ : Tuple = use_absolute_embeddings lowercase__ : Tuple = patch_norm lowercase__ : Tuple = layer_norm_eps lowercase__ : Optional[Any] = initializer_range lowercase__ : int = is_training lowercase__ : Optional[int] = scope lowercase__ : str = use_labels lowercase__ : Dict = type_sequence_label_size lowercase__ : Union[str, Any] = encoder_stride def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Optional[Any] = None if self.use_labels: lowercase__ : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" return SwinvaConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def UpperCAmelCase ( self : str ,_snake_case : Dict ,_snake_case : List[str] ,_snake_case : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ : Any = SwinvaModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : str = model(_snake_case ) lowercase__ : List[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase__ : Tuple = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : List[str] ,_snake_case : Optional[Any] ,_snake_case : int ) -> Any: """simple docstring""" lowercase__ : Union[str, Any] = SwinvaForMaskedImageModeling(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Tuple = model(_snake_case ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase__ : Optional[int] = 1 lowercase__ : List[Any] = SwinvaForMaskedImageModeling(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ : str = model(_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase ( self : str ,_snake_case : str ,_snake_case : str ,_snake_case : Tuple ) -> Any: """simple docstring""" lowercase__ : Tuple = self.type_sequence_label_size lowercase__ : Dict = SwinvaForImageClassification(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : str = model(_snake_case ,labels=_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self : Dict ) -> Dict: """simple docstring""" lowercase__ : Optional[int] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = config_and_inputs lowercase__ : List[str] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) lowerCAmelCase : Optional[int] = ( {"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification} if is_torch_available() else {} ) lowerCAmelCase : List[Any] = False lowerCAmelCase : Dict = False lowerCAmelCase : List[Any] = False lowerCAmelCase : Any = False def UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[Any] = SwinvaModelTester(self ) lowercase__ : List[str] = ConfigTester(self ,config_class=_snake_case ,embed_dim=37 ) def UpperCAmelCase ( self : int ) -> Any: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self : str ) -> List[Any]: """simple docstring""" lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) @unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''' ) def UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason='''Swinv2 does not use inputs_embeds''' ) def UpperCAmelCase ( self : List[str] ) -> str: """simple docstring""" pass def UpperCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[Any] = model_class(_snake_case ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) lowercase__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_snake_case ,nn.Linear ) ) def UpperCAmelCase ( self : int ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : str = model_class(_snake_case ) lowercase__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[Any] = [*signature.parameters.keys()] lowercase__ : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_snake_case ) def UpperCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Tuple = True for model_class in self.all_model_classes: lowercase__ : Optional[int] = True lowercase__ : str = False lowercase__ : Union[str, Any] = True lowercase__ : Optional[Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : str = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : Dict = outputs.attentions lowercase__ : Any = len(self.model_tester.depths ) self.assertEqual(len(_snake_case ) ,_snake_case ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ : List[Any] = True lowercase__ : Optional[Any] = config.window_size**2 lowercase__ : Any = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : List[str] = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : Optional[Any] = outputs.attentions self.assertEqual(len(_snake_case ) ,_snake_case ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) lowercase__ : Optional[Any] = len(_snake_case ) # Check attention is always last and order is fine lowercase__ : Optional[int] = True lowercase__ : Tuple = True lowercase__ : Optional[Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : Optional[Any] = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) if hasattr(self.model_tester ,'''num_hidden_states_types''' ): lowercase__ : int = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states lowercase__ : List[str] = 2 self.assertEqual(out_len + added_hidden_states ,len(_snake_case ) ) lowercase__ : Optional[int] = outputs.attentions self.assertEqual(len(_snake_case ) ,_snake_case ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) def UpperCAmelCase ( self : List[str] ,_snake_case : int ,_snake_case : List[str] ,_snake_case : Optional[int] ,_snake_case : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : List[Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : int = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : Optional[int] = outputs.hidden_states lowercase__ : List[Any] = getattr( self.model_tester ,'''expected_num_hidden_layers''' ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_snake_case ) ,_snake_case ) # Swinv2 has a different seq_length lowercase__ : Dict = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) lowercase__ : Tuple = outputs.reshaped_hidden_states self.assertEqual(len(_snake_case ) ,_snake_case ) lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[str] = reshaped_hidden_states[0].shape lowercase__ : int = ( reshaped_hidden_states[0].view(_snake_case ,_snake_case ,height * width ).permute(0 ,2 ,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def UpperCAmelCase ( self : Tuple ) -> int: """simple docstring""" lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowercase__ : List[str] = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,_snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : str = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,_snake_case ) def UpperCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = 3 lowercase__ : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase__ : Optional[int] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : Dict = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase__ : Dict = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowercase__ : str = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Dict = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,(padded_height, padded_width) ) def UpperCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_snake_case ) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Union[str, Any] = SwinvaModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Tuple = _config_zero_init(_snake_case ) for model_class in self.all_model_classes: lowercase__ : Optional[int] = model_class(config=_snake_case ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" ,) @require_vision @require_torch class __A ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" return ( AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self : Any ) -> List[str]: """simple docstring""" lowercase__ : str = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ).to( _snake_case ) lowercase__ : Union[str, Any] = self.default_image_processor lowercase__ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowercase__ : Dict = image_processor(images=_snake_case ,return_tensors='''pt''' ).to(_snake_case ) # forward pass with torch.no_grad(): lowercase__ : Optional[Any] = model(**_snake_case ) # verify the logits lowercase__ : str = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape ,_snake_case ) lowercase__ : Dict = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_snake_case ,atol=1e-4 ) )
16
1
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Any = "ssube/stable-diffusion-x4-upscaler-onnx" def UpperCAmelCase ( self : Any ,_snake_case : Any=0 ) -> Union[str, Any]: """simple docstring""" lowercase__ : List[Any] = floats_tensor((1, 3, 128, 128) ,rng=random.Random(_snake_case ) ) lowercase__ : Union[str, Any] = torch.manual_seed(_snake_case ) lowercase__ : List[Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint ,provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : List[Any] = self.get_dummy_inputs() lowercase__ : Union[str, Any] = pipe(**_snake_case ).images lowercase__ : Optional[int] = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) lowercase__ : List[str] = np.array( [0.697_4782, 0.6890_2093, 0.7013_5885, 0.758_3618, 0.780_4545, 0.785_4912, 0.7866_7426, 0.7874_3863, 0.7807_0223] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint ,provider='''CPUExecutionProvider''' ) lowercase__ : List[str] = PNDMScheduler.from_config(pipe.scheduler.config ,skip_prk_steps=_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : List[Any] = self.get_dummy_inputs() lowercase__ : Optional[Any] = pipe(**_snake_case ).images lowercase__ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase__ : Any = np.array( [0.689_8892, 0.5924_0556, 0.5249_9527, 0.5886_6215, 0.5225_8235, 0.5257_2715, 0.6241_4473, 0.617_4387, 0.621_4964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def UpperCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" lowercase__ : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint ,provider='''CPUExecutionProvider''' ) lowercase__ : int = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : Union[str, Any] = self.get_dummy_inputs() lowercase__ : str = pipe(**_snake_case ).images lowercase__ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase__ : Tuple = np.array( [0.765_9278, 0.7643_7664, 0.7557_9107, 0.769_1116, 0.7766_6986, 0.772_7672, 0.775_8664, 0.781_2226, 0.7694_2515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def UpperCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" lowercase__ : Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint ,provider='''CPUExecutionProvider''' ) lowercase__ : Union[str, Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : Optional[Any] = self.get_dummy_inputs() lowercase__ : Any = pipe(**_snake_case ).images lowercase__ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase__ : List[str] = np.array( [0.697_4782, 0.6890_2093, 0.7013_5885, 0.758_3618, 0.780_4545, 0.785_4912, 0.7866_7426, 0.7874_3863, 0.7807_0223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def UpperCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" lowercase__ : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint ,provider='''CPUExecutionProvider''' ) lowercase__ : int = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : List[str] = self.get_dummy_inputs() lowercase__ : int = pipe(**_snake_case ).images lowercase__ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase__ : Union[str, Any] = np.array( [0.7742_4496, 0.77_3601, 0.764_5288, 0.776_9598, 0.777_2739, 0.773_8688, 0.7818_7233, 0.7787_9584, 0.76_7043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class __A ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase ( self : int ) -> List[str]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ : List[str] = ort.SessionOptions() lowercase__ : Optional[Any] = False return options def UpperCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" lowercase__ : Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) lowercase__ : int = init_image.resize((128, 128) ) # using the PNDM scheduler by default lowercase__ : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : Any = '''A fantasy landscape, trending on artstation''' lowercase__ : Union[str, Any] = torch.manual_seed(0 ) lowercase__ : Tuple = pipe( prompt=_snake_case ,image=_snake_case ,guidance_scale=7.5 ,num_inference_steps=10 ,generator=_snake_case ,output_type='''np''' ,) lowercase__ : Tuple = output.images lowercase__ : List[Any] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) lowercase__ : Any = np.array([0.4883, 0.4947, 0.4980, 0.4975, 0.4982, 0.4980, 0.5000, 0.5006, 0.4972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def UpperCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) lowercase__ : List[str] = init_image.resize((128, 128) ) lowercase__ : Any = LMSDiscreteScheduler.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' ,subfolder='''scheduler''' ) lowercase__ : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' ,scheduler=_snake_case ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : List[Any] = '''A fantasy landscape, trending on artstation''' lowercase__ : Optional[int] = torch.manual_seed(0 ) lowercase__ : Union[str, Any] = pipe( prompt=_snake_case ,image=_snake_case ,guidance_scale=7.5 ,num_inference_steps=20 ,generator=_snake_case ,output_type='''np''' ,) lowercase__ : List[str] = output.images lowercase__ : str = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) lowercase__ : str = np.array( [0.5017_3753, 0.5022_3356, 0.50_2039, 0.5023_3036, 0.502_3725, 0.502_2601, 0.501_8758, 0.5023_4085, 0.5024_1566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
16
"""simple docstring""" import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCAmelCase_ = version.parse(importlib_metadata.version('nltk')) if NLTK_VERSION >= version.Version('3.6.4'): from nltk import word_tokenize lowerCAmelCase_ = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n' lowerCAmelCase_ = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n' lowerCAmelCase_ = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''string''' ,id='''sequence''' ), '''references''': datasets.Value('''string''' ,id='''sequence''' ), } ) ,codebase_urls=['''https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'''] ,reference_urls=[ '''https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score''', '''https://en.wikipedia.org/wiki/METEOR''', ] ,) def UpperCAmelCase ( self : str ,_snake_case : Dict ) -> Dict: """simple docstring""" import nltk nltk.download('''wordnet''' ) if NLTK_VERSION >= version.Version('''3.6.5''' ): nltk.download('''punkt''' ) if NLTK_VERSION >= version.Version('''3.6.6''' ): nltk.download('''omw-1.4''' ) def UpperCAmelCase ( self : Dict ,_snake_case : Dict ,_snake_case : List[str] ,_snake_case : Tuple=0.9 ,_snake_case : Optional[int]=3 ,_snake_case : Union[str, Any]=0.5 ) -> List[str]: """simple docstring""" if NLTK_VERSION >= version.Version('''3.6.5''' ): lowercase__ : int = [ meteor_score.single_meteor_score( word_tokenize(_snake_case ) ,word_tokenize(_snake_case ) ,alpha=_snake_case ,beta=_snake_case ,gamma=_snake_case ) for ref, pred in zip(_snake_case ,_snake_case ) ] else: lowercase__ : Tuple = [ meteor_score.single_meteor_score(_snake_case ,_snake_case ,alpha=_snake_case ,beta=_snake_case ,gamma=_snake_case ) for ref, pred in zip(_snake_case ,_snake_case ) ] return {"meteor": np.mean(_snake_case )}
16
1
"""simple docstring""" import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class __A ( A_ ): '''simple docstring''' def UpperCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" lowercase__ : List[Any] = tempfile.mkdtemp() lowercase__ : Tuple = 8 # DPR tok lowercase__ : Optional[int] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowercase__ : List[Any] = os.path.join(self.tmpdirname ,'''dpr_tokenizer''' ) os.makedirs(_snake_case ,exist_ok=_snake_case ) lowercase__ : Dict = os.path.join(_snake_case ,DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok lowercase__ : List[str] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] lowercase__ : Union[str, Any] = dict(zip(_snake_case ,range(len(_snake_case ) ) ) ) lowercase__ : Dict = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowercase__ : List[Any] = {'''unk_token''': '''<unk>'''} lowercase__ : Optional[int] = os.path.join(self.tmpdirname ,'''bart_tokenizer''' ) os.makedirs(_snake_case ,exist_ok=_snake_case ) lowercase__ : Optional[Any] = os.path.join(_snake_case ,BART_VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ : Dict = os.path.join(_snake_case ,BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_snake_case ) + '''\n''' ) with open(self.merges_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_snake_case ) ) def UpperCAmelCase ( self : Dict ) -> DPRQuestionEncoderTokenizer: """simple docstring""" return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname ,'''dpr_tokenizer''' ) ) def UpperCAmelCase ( self : Optional[Any] ) -> DPRContextEncoderTokenizer: """simple docstring""" return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname ,'''dpr_tokenizer''' ) ) def UpperCAmelCase ( self : List[Any] ) -> BartTokenizer: """simple docstring""" return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname ,'''bart_tokenizer''' ) ) def UpperCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" lowercase__ : Any = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('''embeddings''' ,string_factory='''Flat''' ,metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : int = self.get_dummy_dataset() lowercase__ : Dict = RagConfig( retrieval_vector_size=self.retrieval_vector_size ,question_encoder=DPRConfig().to_dict() ,generator=BartConfig().to_dict() ,) with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: lowercase__ : str = dataset lowercase__ : List[Any] = RagRetriever( _snake_case ,question_encoder_tokenizer=self.get_dpr_tokenizer() ,generator_tokenizer=self.get_bart_tokenizer() ,) return retriever def UpperCAmelCase ( self : int ,_snake_case : bool ) -> List[str]: """simple docstring""" lowercase__ : Optional[Any] = self.get_dummy_dataset() lowercase__ : Optional[int] = RagConfig( retrieval_vector_size=self.retrieval_vector_size ,question_encoder=DPRConfig().to_dict() ,generator=BartConfig().to_dict() ,index_name='''custom''' ,) if from_disk: lowercase__ : List[str] = os.path.join(self.tmpdirname ,'''dataset''' ) lowercase__ : Any = os.path.join(self.tmpdirname ,'''index.faiss''' ) dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname ,'''index.faiss''' ) ) dataset.drop_index('''embeddings''' ) dataset.save_to_disk(os.path.join(self.tmpdirname ,'''dataset''' ) ) del dataset lowercase__ : List[str] = RagRetriever( _snake_case ,question_encoder_tokenizer=self.get_dpr_tokenizer() ,generator_tokenizer=self.get_bart_tokenizer() ,) else: lowercase__ : str = RagRetriever( _snake_case ,question_encoder_tokenizer=self.get_dpr_tokenizer() ,generator_tokenizer=self.get_bart_tokenizer() ,index=CustomHFIndex(config.retrieval_vector_size ,_snake_case ) ,) return retriever def UpperCAmelCase ( self : Dict ) -> int: """simple docstring""" lowercase__ : List[Any] = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('''embeddings''' ,string_factory='''Flat''' ,metric_type=faiss.METRIC_INNER_PRODUCT ) lowercase__ : str = os.path.join(self.tmpdirname ,'''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' ) dataset.save_faiss_index('''embeddings''' ,index_file_name + '''.index.dpr''' ) pickle.dump(dataset['''id'''] ,open(index_file_name + '''.index_meta.dpr''' ,'''wb''' ) ) lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname ,'''psgs_w100.tsv.pkl''' ) lowercase__ : Optional[Any] = {sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset} pickle.dump(_snake_case ,open(_snake_case ,'''wb''' ) ) lowercase__ : Dict = RagConfig( retrieval_vector_size=self.retrieval_vector_size ,question_encoder=DPRConfig().to_dict() ,generator=BartConfig().to_dict() ,index_name='''legacy''' ,index_path=self.tmpdirname ,) lowercase__ : List[str] = RagRetriever( _snake_case ,question_encoder_tokenizer=self.get_dpr_tokenizer() ,generator_tokenizer=self.get_bart_tokenizer() ) return retriever def UpperCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" lowercase__ : Dict = 1 lowercase__ : Tuple = self.get_dummy_canonical_hf_index_retriever() lowercase__ : Dict = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = retriever.retrieve(_snake_case ,n_docs=_snake_case ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_snake_case ) ,2 ) self.assertEqual(sorted(doc_dicts[0] ) ,['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) ,_snake_case ) self.assertEqual(doc_dicts[0]['''id'''][0] ,'''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] ,'''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() ,[[1], [0]] ) def UpperCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" lowercase__ : int = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: lowercase__ : Optional[Any] = self.get_dummy_dataset() retriever.save_pretrained(_snake_case ) lowercase__ : Optional[int] = RagRetriever.from_pretrained(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Dict = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) lowercase__ : int = retriever.retrieve(_snake_case ,n_docs=1 ) self.assertTrue(out is not None ) def UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ : Optional[int] = 1 lowercase__ : str = self.get_dummy_custom_hf_index_retriever(from_disk=_snake_case ) lowercase__ : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) lowercase__ , lowercase__ , lowercase__ : Dict = retriever.retrieve(_snake_case ,n_docs=_snake_case ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_snake_case ) ,2 ) self.assertEqual(sorted(doc_dicts[0] ) ,['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) ,_snake_case ) self.assertEqual(doc_dicts[0]['''id'''][0] ,'''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] ,'''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() ,[[1], [0]] ) def UpperCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" lowercase__ : List[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=_snake_case ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_snake_case ) lowercase__ : Optional[int] = RagRetriever.from_pretrained(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Dict = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) lowercase__ : str = retriever.retrieve(_snake_case ,n_docs=1 ) self.assertTrue(out is not None ) def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" lowercase__ : Any = 1 lowercase__ : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=_snake_case ) lowercase__ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) lowercase__ , lowercase__ , lowercase__ : List[str] = retriever.retrieve(_snake_case ,n_docs=_snake_case ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_snake_case ) ,2 ) self.assertEqual(sorted(doc_dicts[0] ) ,['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) ,_snake_case ) self.assertEqual(doc_dicts[0]['''id'''][0] ,'''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] ,'''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() ,[[1], [0]] ) def UpperCAmelCase ( self : str ) -> Tuple: """simple docstring""" lowercase__ : Any = self.get_dummy_custom_hf_index_retriever(from_disk=_snake_case ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_snake_case ) lowercase__ : Optional[int] = RagRetriever.from_pretrained(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) lowercase__ : int = retriever.retrieve(_snake_case ,n_docs=1 ) self.assertTrue(out is not None ) def UpperCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" lowercase__ : str = 1 lowercase__ : Dict = self.get_dummy_legacy_index_retriever() lowercase__ : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) lowercase__ , lowercase__ , lowercase__ : int = retriever.retrieve(_snake_case ,n_docs=_snake_case ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_snake_case ) ,2 ) self.assertEqual(sorted(doc_dicts[0] ) ,['''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''text'''] ) ,_snake_case ) self.assertEqual(doc_dicts[0]['''text'''][0] ,'''bar''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''text'''][0] ,'''foo''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() ,[[1], [0]] ) def UpperCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" lowercase__ : Dict = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_snake_case ) lowercase__ : Optional[int] = RagRetriever.from_pretrained(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) lowercase__ : Dict = retriever.retrieve(_snake_case ,n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def UpperCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" import torch lowercase__ : int = 1 lowercase__ : Tuple = self.get_dummy_canonical_hf_index_retriever() lowercase__ : Union[str, Any] = [[5, 7], [10, 11]] lowercase__ : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) lowercase__ : Tuple = retriever(_snake_case ,_snake_case ,prefix=retriever.config.generator.prefix ,n_docs=_snake_case ) lowercase__ , lowercase__ , lowercase__ : int = ( out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertIsInstance(_snake_case ,np.ndarray ) lowercase__ : Optional[Any] = retriever( _snake_case ,_snake_case ,prefix=retriever.config.generator.prefix ,n_docs=_snake_case ,return_tensors='''pt''' ,) lowercase__ , lowercase__ , lowercase__ , lowercase__ : Tuple = ( # noqa: F841 out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], out['''doc_ids'''], ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(_snake_case ,torch.Tensor ) self.assertIsInstance(_snake_case ,torch.Tensor ) self.assertIsInstance(_snake_case ,torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def UpperCAmelCase ( self : Dict ) -> int: """simple docstring""" lowercase__ : List[str] = self.get_dpr_ctx_encoder_tokenizer() lowercase__ : Dict = 1 lowercase__ : str = self.get_dummy_custom_hf_index_retriever(from_disk=_snake_case ) retriever.set_ctx_encoder_tokenizer(_snake_case ) lowercase__ : Any = [[5, 7], [10, 11]] lowercase__ : Dict = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) lowercase__ : Union[str, Any] = retriever(_snake_case ,_snake_case ,prefix=retriever.config.generator.prefix ,n_docs=_snake_case ) self.assertEqual( len(_snake_case ) ,6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) ,_snake_case ) # check for doc token related keys in dictionary.
16
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = '▁' lowerCAmelCase_ = {'vocab_file': 'sentencepiece.bpe.model'} lowerCAmelCase_ = { 'vocab_file': { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model', } } lowerCAmelCase_ = { 'facebook/xglm-564M': 2_048, } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[Any] = VOCAB_FILES_NAMES lowerCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : int = ["input_ids", "attention_mask"] def __init__( self : int ,_snake_case : Dict ,_snake_case : Dict="<s>" ,_snake_case : Dict="</s>" ,_snake_case : str="</s>" ,_snake_case : Optional[Any]="<s>" ,_snake_case : Optional[Any]="<unk>" ,_snake_case : Optional[int]="<pad>" ,_snake_case : Optional[Dict[str, Any]] = None ,**_snake_case : str ,) -> None: """simple docstring""" lowercase__ : Any = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer lowercase__ : Any = 7 lowercase__ : Optional[int] = [f"""<madeupword{i}>""" for i in range(self.num_madeup_words )] lowercase__ : Dict = kwargs.get('''additional_special_tokens''' ,[] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=_snake_case ,eos_token=_snake_case ,unk_token=_snake_case ,sep_token=_snake_case ,cls_token=_snake_case ,pad_token=_snake_case ,sp_model_kwargs=self.sp_model_kwargs ,**_snake_case ,) lowercase__ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_snake_case ) ) lowercase__ : str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase__ : Optional[int] = 1 # Mimic fairseq token-to-id alignment for the first 4 token lowercase__ : Optional[int] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} lowercase__ : List[str] = len(self.sp_model ) lowercase__ : Tuple = {f"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(_snake_case ) lowercase__ : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : int ) -> Optional[int]: """simple docstring""" lowercase__ : List[Any] = self.__dict__.copy() lowercase__ : Optional[int] = None lowercase__ : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self : Dict ,_snake_case : List[str] ) -> Any: """simple docstring""" lowercase__ : int = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): lowercase__ : Dict = {} lowercase__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCAmelCase ( self : Any ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.sep_token_id] + token_ids_a lowercase__ : Optional[Any] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def UpperCAmelCase ( self : Any ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ,_snake_case : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case ,token_ids_a=_snake_case ,already_has_special_tokens=_snake_case ) if token_ids_a is None: return [1] + ([0] * len(_snake_case )) return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ : List[Any] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def UpperCAmelCase ( self : str ) -> Tuple: """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ : Union[str, Any] = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self : List[Any] ,_snake_case : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(_snake_case ,out_type=_snake_case ) def UpperCAmelCase ( self : int ,_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase__ : Tuple = self.sp_model.PieceToId(_snake_case ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase ( self : Any ,_snake_case : List[str] ) -> Any: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase ( self : Tuple ,_snake_case : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = ''''''.join(_snake_case ).replace(_snake_case ,''' ''' ).strip() return out_string def UpperCAmelCase ( self : Any ,_snake_case : str ,_snake_case : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_snake_case ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ : Any = os.path.join( _snake_case ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case ,'''wb''' ) as fi: lowercase__ : Dict = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,)
16
1
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase = 1_00 ) -> int: lowercase__ : List[Any] = (n * (n + 1) // 2) ** 2 lowercase__ : Optional[int] = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(F'''{solution() = }''')
16
"""simple docstring""" import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = True ) -> Union[str, Any]: print(f"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 1_28: if name[-1] == "S": lowercase__ : str = timm.create_model('''levit_128s''' , pretrained=__lowerCamelCase ) else: lowercase__ : Tuple = timm.create_model('''levit_128''' , pretrained=__lowerCamelCase ) if hidden_sizes == 1_92: lowercase__ : Union[str, Any] = timm.create_model('''levit_192''' , pretrained=__lowerCamelCase ) if hidden_sizes == 2_56: lowercase__ : str = timm.create_model('''levit_256''' , pretrained=__lowerCamelCase ) if hidden_sizes == 3_84: lowercase__ : str = timm.create_model('''levit_384''' , pretrained=__lowerCamelCase ) from_model.eval() lowercase__ : Optional[int] = LevitForImageClassificationWithTeacher(__lowerCamelCase ).eval() lowercase__ : str = OrderedDict() lowercase__ : int = from_model.state_dict() lowercase__ : Dict = list(from_model.state_dict().keys() ) lowercase__ : Any = list(our_model.state_dict().keys() ) print(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) for i in range(len(__lowerCamelCase ) ): lowercase__ : str = weights[og_keys[i]] our_model.load_state_dict(__lowerCamelCase ) lowercase__ : Optional[int] = torch.randn((2, 3, 2_24, 2_24) ) lowercase__ : Optional[int] = from_model(__lowerCamelCase ) lowercase__ : List[Any] = our_model(__lowerCamelCase ).logits assert torch.allclose(__lowerCamelCase , __lowerCamelCase ), "The model logits don't match the original one." lowercase__ : Any = name print(__lowerCamelCase ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) lowercase__ : int = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f"""Pushed {checkpoint_name}""" ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = True ) -> List[Any]: lowercase__ : Any = '''imagenet-1k-id2label.json''' lowercase__ : Tuple = 10_00 lowercase__ : Dict = (1, num_labels) lowercase__ : List[str] = '''huggingface/label-files''' lowercase__ : str = num_labels lowercase__ : List[Any] = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ : Union[str, Any] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : Union[str, Any] = idalabel lowercase__ : Optional[int] = {v: k for k, v in idalabel.items()} lowercase__ : List[Any] = partial(__lowerCamelCase , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase ) lowercase__ : Tuple = { '''levit-128S''': 1_28, '''levit-128''': 1_28, '''levit-192''': 1_92, '''levit-256''': 2_56, '''levit-384''': 3_84, } lowercase__ : Any = { '''levit-128S''': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-128''': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-192''': ImageNetPreTrainedConfig( hidden_sizes=[1_92, 2_88, 3_84] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-256''': ImageNetPreTrainedConfig( hidden_sizes=[2_56, 3_84, 5_12] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-384''': ImageNetPreTrainedConfig( hidden_sizes=[3_84, 5_12, 7_68] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , __lowerCamelCase , names_to_config[model_name] , __lowerCamelCase , __lowerCamelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return config, expected_shape if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
16
1
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = " " ) -> list: lowercase__ : Optional[int] = [] lowercase__ : Union[str, Any] = 0 for index, char in enumerate(__lowerCamelCase ): if char == separator: split_words.append(string[last_index:index] ) lowercase__ : Union[str, Any] = index + 1 elif index + 1 == len(__lowerCamelCase ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
16
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __A : '''simple docstring''' lowerCAmelCase : List[str] lowerCAmelCase : Optional[str] = None # Automatically constructed lowerCAmelCase : ClassVar[str] = "dict" lowerCAmelCase : ClassVar[Any] = None lowerCAmelCase : str = field(default="Translation" ,init=A_ ,repr=A_ ) def __call__( self : List[str] ) -> Any: """simple docstring""" return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def UpperCAmelCase ( self : List[str] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class __A : '''simple docstring''' lowerCAmelCase : Optional[List] = None lowerCAmelCase : Optional[int] = None lowerCAmelCase : Optional[str] = None # Automatically constructed lowerCAmelCase : ClassVar[str] = "dict" lowerCAmelCase : ClassVar[Any] = None lowerCAmelCase : str = field(default="TranslationVariableLanguages" ,init=A_ ,repr=A_ ) def UpperCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[int] = sorted(set(self.languages ) ) if self.languages else None lowercase__ : Dict = len(self.languages ) if self.languages else None def __call__( self : List[Any] ) -> List[Any]: """simple docstring""" return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def UpperCAmelCase ( self : Dict ,_snake_case : Tuple ) -> int: """simple docstring""" lowercase__ : List[Any] = set(self.languages ) if self.languages and set(_snake_case ) - lang_set: raise ValueError( f"""Some languages in example ({", ".join(sorted(set(_snake_case ) - lang_set ) )}) are not in valid set ({", ".join(_snake_case )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. lowercase__ : str = [] for lang, text in translation_dict.items(): if isinstance(_snake_case ,_snake_case ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. lowercase__ , lowercase__ : Optional[Any] = zip(*sorted(_snake_case ) ) return {"language": languages, "translation": translations} def UpperCAmelCase ( self : List[Any] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
16
1
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> int: return x if y == 0 else greatest_common_divisor(__lowerCamelCase , x % y ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> int: return (x * y) // greatest_common_divisor(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase = 20 ) -> int: lowercase__ : Union[str, Any] = 1 for i in range(1 , n + 1 ): lowercase__ : Any = lcm(__lowerCamelCase , __lowerCamelCase ) return g if __name__ == "__main__": print(F'''{solution() = }''')
16
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase_ = 16 lowerCAmelCase_ = 32 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = 16 ) -> Optional[Any]: lowercase__ : Optional[Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowercase__ : int = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) lowercase__ : str = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCamelCase , max_length=__lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ : str = datasets.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : Union[str, Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ : List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ : Optional[int] = 16 elif accelerator.mixed_precision != "no": lowercase__ : List[Any] = 8 else: lowercase__ : int = None return tokenizer.pad( __lowerCamelCase , padding='''longest''' , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. lowercase__ : List[Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) lowercase__ : str = DataLoader( tokenized_datasets['''validation'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase_ = mocked_dataloaders # noqa: F811 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __lowerCamelCase ) == "1": lowercase__ : List[Any] = 2 # Initialize accelerator lowercase__ : Optional[int] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : str = config['''lr'''] lowercase__ : str = int(config['''num_epochs'''] ) lowercase__ : Optional[int] = int(config['''seed'''] ) lowercase__ : Tuple = int(config['''batch_size'''] ) lowercase__ : List[Any] = evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__lowerCamelCase ) def inner_training_loop(__lowerCamelCase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : List[str] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ : Tuple = model.to(accelerator.device ) # Instantiate optimizer lowercase__ : List[str] = AdamW(params=model.parameters() , lr=__lowerCamelCase ) lowercase__ , lowercase__ : List[Any] = get_dataloaders(__lowerCamelCase , __lowerCamelCase ) # Instantiate scheduler lowercase__ : Optional[int] = get_linear_schedule_with_warmup( optimizer=__lowerCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__lowerCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Optional[int] = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Now we train the model for epoch in range(__lowerCamelCase ): model.train() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase__ : Dict = model(**__lowerCamelCase ) lowercase__ : List[Any] = outputs.loss accelerator.backward(__lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ : Tuple = model(**__lowerCamelCase ) lowercase__ : Any = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ : int = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__lowerCamelCase , references=__lowerCamelCase , ) lowercase__ : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __lowerCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def __UpperCAmelCase ( ) -> Dict: lowercase__ : Optional[int] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__lowerCamelCase , default=__lowerCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowercase__ : int = parser.parse_args() lowercase__ : Union[str, Any] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
16
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : Tuple = ["sentencepiece"] def __init__( self : str ,*_snake_case : List[Any] ,**_snake_case : Dict ) -> int: """simple docstring""" requires_backends(self ,['''sentencepiece'''] ) class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : Dict = ["sentencepiece"] def __init__( self : str ,*_snake_case : Any ,**_snake_case : str ) -> Tuple: """simple docstring""" requires_backends(self ,['''sentencepiece'''] ) class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : List[str] = ["sentencepiece"] def __init__( self : Any ,*_snake_case : Any ,**_snake_case : Optional[Any] ) -> Tuple: """simple docstring""" requires_backends(self ,['''sentencepiece'''] ) class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = ["sentencepiece"] def __init__( self : List[Any] ,*_snake_case : Union[str, Any] ,**_snake_case : Union[str, Any] ) -> Optional[int]: """simple docstring""" requires_backends(self ,['''sentencepiece'''] ) class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : List[Any] = ["sentencepiece"] def __init__( self : Optional[Any] ,*_snake_case : List[str] ,**_snake_case : str ) -> Union[str, Any]: """simple docstring""" requires_backends(self ,['''sentencepiece'''] ) class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : Tuple = ["sentencepiece"] def __init__( self : int ,*_snake_case : Optional[int] ,**_snake_case : Any ) -> Dict: """simple docstring""" requires_backends(self ,['''sentencepiece'''] ) class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : Optional[int] = ["sentencepiece"] def __init__( self : Optional[int] ,*_snake_case : Tuple ,**_snake_case : Any ) -> Optional[Any]: """simple docstring""" requires_backends(self ,['''sentencepiece'''] ) class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : Dict = ["sentencepiece"] def __init__( self : List[str] ,*_snake_case : Optional[int] ,**_snake_case : List[Any] ) -> Dict: """simple docstring""" requires_backends(self ,['''sentencepiece'''] ) class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : Tuple = ["sentencepiece"] def __init__( self : List[str] ,*_snake_case : str ,**_snake_case : int ) -> List[Any]: """simple docstring""" requires_backends(self ,['''sentencepiece'''] ) class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : Dict = ["sentencepiece"] def __init__( self : int ,*_snake_case : Tuple ,**_snake_case : List[Any] ) -> int: """simple docstring""" requires_backends(self ,['''sentencepiece'''] ) class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = ["sentencepiece"] def __init__( self : Optional[Any] ,*_snake_case : Optional[int] ,**_snake_case : int ) -> Optional[int]: """simple docstring""" requires_backends(self ,['''sentencepiece'''] ) class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : str = ["sentencepiece"] def __init__( self : Dict ,*_snake_case : Optional[Any] ,**_snake_case : Optional[Any] ) -> List[str]: """simple docstring""" requires_backends(self ,['''sentencepiece'''] ) class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : List[str] = ["sentencepiece"] def __init__( self : Optional[Any] ,*_snake_case : Dict ,**_snake_case : Dict ) -> Any: """simple docstring""" requires_backends(self ,['''sentencepiece'''] ) class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = ["sentencepiece"] def __init__( self : List[str] ,*_snake_case : List[str] ,**_snake_case : List[Any] ) -> Dict: """simple docstring""" requires_backends(self ,['''sentencepiece'''] ) class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : Tuple = ["sentencepiece"] def __init__( self : Optional[Any] ,*_snake_case : List[Any] ,**_snake_case : Any ) -> Dict: """simple docstring""" requires_backends(self ,['''sentencepiece'''] ) class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : int = ["sentencepiece"] def __init__( self : List[Any] ,*_snake_case : Tuple ,**_snake_case : Optional[Any] ) -> Any: """simple docstring""" requires_backends(self ,['''sentencepiece'''] ) class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : str = ["sentencepiece"] def __init__( self : str ,*_snake_case : List[Any] ,**_snake_case : int ) -> Union[str, Any]: """simple docstring""" requires_backends(self ,['''sentencepiece'''] ) class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : str = ["sentencepiece"] def __init__( self : Dict ,*_snake_case : Dict ,**_snake_case : Union[str, Any] ) -> List[Any]: """simple docstring""" requires_backends(self ,['''sentencepiece'''] ) class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : Tuple = ["sentencepiece"] def __init__( self : Union[str, Any] ,*_snake_case : str ,**_snake_case : List[Any] ) -> Any: """simple docstring""" requires_backends(self ,['''sentencepiece'''] ) class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : Optional[int] = ["sentencepiece"] def __init__( self : Dict ,*_snake_case : Tuple ,**_snake_case : Union[str, Any] ) -> str: """simple docstring""" requires_backends(self ,['''sentencepiece'''] ) class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : Any = ["sentencepiece"] def __init__( self : Dict ,*_snake_case : List[str] ,**_snake_case : Optional[int] ) -> Union[str, Any]: """simple docstring""" requires_backends(self ,['''sentencepiece'''] ) class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : List[str] = ["sentencepiece"] def __init__( self : Union[str, Any] ,*_snake_case : int ,**_snake_case : List[Any] ) -> Any: """simple docstring""" requires_backends(self ,['''sentencepiece'''] ) class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : int = ["sentencepiece"] def __init__( self : Union[str, Any] ,*_snake_case : Any ,**_snake_case : Union[str, Any] ) -> str: """simple docstring""" requires_backends(self ,['''sentencepiece'''] ) class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : Any = ["sentencepiece"] def __init__( self : Dict ,*_snake_case : Dict ,**_snake_case : List[Any] ) -> Tuple: """simple docstring""" requires_backends(self ,['''sentencepiece'''] ) class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : str = ["sentencepiece"] def __init__( self : Any ,*_snake_case : str ,**_snake_case : List[str] ) -> Union[str, Any]: """simple docstring""" requires_backends(self ,['''sentencepiece'''] ) class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : Dict = ["sentencepiece"] def __init__( self : Optional[Any] ,*_snake_case : Optional[int] ,**_snake_case : Optional[int] ) -> Union[str, Any]: """simple docstring""" requires_backends(self ,['''sentencepiece'''] ) class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : str = ["sentencepiece"] def __init__( self : Optional[Any] ,*_snake_case : Tuple ,**_snake_case : List[str] ) -> str: """simple docstring""" requires_backends(self ,['''sentencepiece'''] ) class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : Tuple = ["sentencepiece"] def __init__( self : Any ,*_snake_case : Optional[Any] ,**_snake_case : Optional[Any] ) -> List[Any]: """simple docstring""" requires_backends(self ,['''sentencepiece'''] ) class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : Optional[int] = ["sentencepiece"] def __init__( self : List[Any] ,*_snake_case : Optional[int] ,**_snake_case : str ) -> List[Any]: """simple docstring""" requires_backends(self ,['''sentencepiece'''] ) class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : Tuple = ["sentencepiece"] def __init__( self : str ,*_snake_case : Union[str, Any] ,**_snake_case : Optional[Any] ) -> List[str]: """simple docstring""" requires_backends(self ,['''sentencepiece'''] ) class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : Optional[Any] = ["sentencepiece"] def __init__( self : List[Any] ,*_snake_case : Tuple ,**_snake_case : Union[str, Any] ) -> str: """simple docstring""" requires_backends(self ,['''sentencepiece'''] )
16
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __UpperCAmelCase ( __lowerCamelCase ) -> Any: lowercase__ : Optional[int] = [] embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""", f"""stage{idx}.patch_embed.proj.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""", f"""stage{idx}.patch_embed.proj.bias""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""", f"""stage{idx}.patch_embed.norm.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""", f"""stage{idx}.patch_embed.norm.bias""", ) ) return embed def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Dict: lowercase__ : str = [] attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj.bias""", ) ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", f"""stage{idx}.blocks.{cnt}.norm1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", f"""stage{idx}.blocks.{cnt}.norm1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", f"""stage{idx}.blocks.{cnt}.norm2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", f"""stage{idx}.blocks.{cnt}.norm2.bias""") ) return attention_weights def __UpperCAmelCase ( __lowerCamelCase ) -> Tuple: lowercase__ : List[str] = [] token.append((f"""cvt.encoder.stages.{idx}.cls_token""", '''stage2.cls_token''') ) return token def __UpperCAmelCase ( ) -> Optional[int]: lowercase__ : List[str] = [] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: lowercase__ : List[Any] = '''imagenet-1k-id2label.json''' lowercase__ : Optional[Any] = 10_00 lowercase__ : Optional[Any] = '''huggingface/label-files''' lowercase__ : Dict = num_labels lowercase__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) ) , '''r''' ) ) lowercase__ : int = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = idalabel lowercase__ : str = {v: k for k, v in idalabel.items()} lowercase__ : Any = CvtConfig(num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13": lowercase__ : int = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21": lowercase__ : int = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowercase__ : List[Any] = [2, 2, 20] lowercase__ : Any = [3, 12, 16] lowercase__ : Tuple = [1_92, 7_68, 10_24] lowercase__ : List[Any] = CvtForImageClassification(__lowerCamelCase ) lowercase__ : str = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) lowercase__ : List[str] = image_size lowercase__ : Union[str, Any] = torch.load(__lowerCamelCase , map_location=torch.device('''cpu''' ) ) lowercase__ : int = OrderedDict() lowercase__ : List[Any] = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowercase__ : Any = list_of_state_dict + cls_token(__lowerCamelCase ) lowercase__ : Any = list_of_state_dict + embeddings(__lowerCamelCase ) for cnt in range(config.depth[idx] ): lowercase__ : Tuple = list_of_state_dict + attention(__lowerCamelCase , __lowerCamelCase ) lowercase__ : List[Any] = list_of_state_dict + final() for gg in list_of_state_dict: print(__lowerCamelCase ) for i in range(len(__lowerCamelCase ) ): lowercase__ : Optional[Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) image_processor.save_pretrained(__lowerCamelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=R'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCAmelCase_ = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
16
1
"""simple docstring""" from __future__ import annotations import math class __A : '''simple docstring''' def __init__( self : Optional[int] ,_snake_case : int ) -> None: """simple docstring""" lowercase__ : str = size # approximate the overall size of segment tree with given value lowercase__ : Optional[Any] = [0 for i in range(0 ,4 * size )] # create array to store lazy update lowercase__ : Optional[int] = [0 for i in range(0 ,4 * size )] lowercase__ : Optional[Any] = [0 for i in range(0 ,4 * size )] # flag for lazy update def UpperCAmelCase ( self : Optional[int] ,_snake_case : int ) -> int: """simple docstring""" return idx * 2 def UpperCAmelCase ( self : Optional[int] ,_snake_case : int ) -> int: """simple docstring""" return idx * 2 + 1 def UpperCAmelCase ( self : List[Any] ,_snake_case : int ,_snake_case : int ,_snake_case : int ,_snake_case : list[int] ) -> None: """simple docstring""" if left_element == right_element: lowercase__ : List[str] = a[left_element - 1] else: lowercase__ : Dict = (left_element + right_element) // 2 self.build(self.left(_snake_case ) ,_snake_case ,_snake_case ,_snake_case ) self.build(self.right(_snake_case ) ,mid + 1 ,_snake_case ,_snake_case ) lowercase__ : Tuple = max( self.segment_tree[self.left(_snake_case )] ,self.segment_tree[self.right(_snake_case )] ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : int ,_snake_case : int ,_snake_case : int ,_snake_case : int ,_snake_case : int ,_snake_case : int ) -> bool: """simple docstring""" if self.flag[idx] is True: lowercase__ : Optional[int] = self.lazy[idx] lowercase__ : Tuple = False if left_element != right_element: lowercase__ : Any = self.lazy[idx] lowercase__ : Union[str, Any] = self.lazy[idx] lowercase__ : List[Any] = True lowercase__ : Dict = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: lowercase__ : Tuple = val if left_element != right_element: lowercase__ : Any = val lowercase__ : int = val lowercase__ : List[str] = True lowercase__ : Optional[int] = True return True lowercase__ : Tuple = (left_element + right_element) // 2 self.update(self.left(_snake_case ) ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ) self.update(self.right(_snake_case ) ,mid + 1 ,_snake_case ,_snake_case ,_snake_case ,_snake_case ) lowercase__ : int = max( self.segment_tree[self.left(_snake_case )] ,self.segment_tree[self.right(_snake_case )] ) return True def UpperCAmelCase ( self : int ,_snake_case : int ,_snake_case : int ,_snake_case : int ,_snake_case : int ,_snake_case : int ) -> int | float: """simple docstring""" if self.flag[idx] is True: lowercase__ : int = self.lazy[idx] lowercase__ : Optional[Any] = False if left_element != right_element: lowercase__ : Optional[Any] = self.lazy[idx] lowercase__ : List[Any] = self.lazy[idx] lowercase__ : Any = True lowercase__ : Any = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] lowercase__ : Optional[int] = (left_element + right_element) // 2 lowercase__ : str = self.query(self.left(_snake_case ) ,_snake_case ,_snake_case ,_snake_case ,_snake_case ) lowercase__ : List[Any] = self.query(self.right(_snake_case ) ,mid + 1 ,_snake_case ,_snake_case ,_snake_case ) return max(_snake_case ,_snake_case ) def __str__( self : str ) -> str: """simple docstring""" return str([self.query(1 ,1 ,self.size ,_snake_case ,_snake_case ) for i in range(1 ,self.size + 1 )] ) if __name__ == "__main__": lowerCAmelCase_ = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] lowerCAmelCase_ = 15 lowerCAmelCase_ = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
16
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str: if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError('''iterations must be defined as integers''' ) if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not number >= 1: raise ValueError( '''starting number must be and integer and be more than 0''' ) if not iterations >= 1: raise ValueError('''Iterations must be done more than 0 times to play FizzBuzz''' ) lowercase__ : Tuple = '''''' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(__lowerCamelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
16
1
"""simple docstring""" from __future__ import annotations from collections import namedtuple def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> tuple: lowercase__ : Any = namedtuple('''result''' , '''name value''' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('''Only one argument must be 0''' ) elif power < 0: raise ValueError( '''Power cannot be negative in any electrical/electronics system''' ) elif voltage == 0: return result('''voltage''' , power / current ) elif current == 0: return result('''current''' , power / voltage ) elif power == 0: return result('''power''' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
16
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : '''simple docstring''' def __init__( self : str ,_snake_case : List[Any] ,_snake_case : Optional[int]=3 ,_snake_case : Optional[int]=32 ,_snake_case : Union[str, Any]=3 ,_snake_case : int=10 ,_snake_case : List[str]=[10, 20, 30, 40] ,_snake_case : Any=[1, 1, 2, 1] ,_snake_case : int=True ,_snake_case : Optional[Any]=True ,_snake_case : Union[str, Any]="relu" ,_snake_case : Dict=3 ,_snake_case : Any=None ,) -> str: """simple docstring""" lowercase__ : int = parent lowercase__ : Optional[Any] = batch_size lowercase__ : Optional[Any] = image_size lowercase__ : Optional[Any] = num_channels lowercase__ : Optional[Any] = embeddings_size lowercase__ : Optional[Any] = hidden_sizes lowercase__ : str = depths lowercase__ : Tuple = is_training lowercase__ : List[Any] = use_labels lowercase__ : Union[str, Any] = hidden_act lowercase__ : Union[str, Any] = num_labels lowercase__ : Tuple = scope lowercase__ : Optional[Any] = len(_snake_case ) def UpperCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Tuple = None if self.use_labels: lowercase__ : Dict = ids_tensor([self.batch_size] ,self.num_labels ) lowercase__ : int = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" return ResNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def UpperCAmelCase ( self : List[str] ,_snake_case : Optional[int] ,_snake_case : int ,_snake_case : Tuple ) -> List[Any]: """simple docstring""" lowercase__ : Optional[int] = TFResNetModel(config=_snake_case ) lowercase__ : List[str] = model(_snake_case ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def UpperCAmelCase ( self : Optional[int] ,_snake_case : Optional[Any] ,_snake_case : int ,_snake_case : Any ) -> Tuple: """simple docstring""" lowercase__ : Tuple = self.num_labels lowercase__ : Union[str, Any] = TFResNetForImageClassification(_snake_case ) lowercase__ : List[str] = model(_snake_case ,labels=_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCAmelCase ( self : Tuple ) -> str: """simple docstring""" lowercase__ : Dict = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = config_and_inputs lowercase__ : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[int] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () lowerCAmelCase : Any = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) lowerCAmelCase : List[Any] = False lowerCAmelCase : List[Any] = False lowerCAmelCase : int = False lowerCAmelCase : Union[str, Any] = False lowerCAmelCase : List[str] = False def UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = TFResNetModelTester(self ) lowercase__ : int = ConfigTester(self ,config_class=_snake_case ,has_text_modality=_snake_case ) def UpperCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" return @unittest.skip(reason='''ResNet does not use inputs_embeds''' ) def UpperCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass @unittest.skip(reason='''ResNet does not support input and output embeddings''' ) def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" pass def UpperCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : str = model_class(_snake_case ) lowercase__ : Dict = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[int] = [*signature.parameters.keys()] lowercase__ : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_snake_case ) def UpperCAmelCase ( self : Tuple ) -> Any: """simple docstring""" lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" def check_hidden_states_output(_snake_case : Optional[int] ,_snake_case : List[str] ,_snake_case : Optional[Any] ): lowercase__ : str = model_class(_snake_case ) lowercase__ : Union[str, Any] = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__ : Tuple = self.model_tester.num_stages self.assertEqual(len(_snake_case ) ,expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase__ : List[Any] = layer_type lowercase__ : Dict = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Dict = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def UpperCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Optional[Any] = TFResNetModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def __UpperCAmelCase ( ) -> Dict: lowercase__ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class __A ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self : str ) -> Any: """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ : Tuple = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowercase__ : Any = self.default_image_processor lowercase__ : int = prepare_img() lowercase__ : Tuple = image_processor(images=_snake_case ,return_tensors='''tf''' ) # forward pass lowercase__ : Dict = model(**_snake_case ) # verify the logits lowercase__ : List[str] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape ,_snake_case ) lowercase__ : Any = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() ,_snake_case ,atol=1e-4 ) )
16
1
"""simple docstring""" import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging lowerCAmelCase_ = logging.get_logger(__name__) def __UpperCAmelCase ( __lowerCamelCase=None , __lowerCamelCase=None ) -> Union[str, Any]: return field(default_factory=lambda: default , metadata=__lowerCamelCase ) @dataclass class __A : '''simple docstring''' lowerCAmelCase : List[str] = list_field( default=[] ,metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) } ,) lowerCAmelCase : List[int] = list_field( default=[8] ,metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} ) lowerCAmelCase : List[int] = list_field( default=[8, 3_2, 1_2_8, 5_1_2] ,metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"} ,) lowerCAmelCase : bool = field( default=A_ ,metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."} ,) lowerCAmelCase : bool = field( default=A_ ,metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."} ,) lowerCAmelCase : bool = field( default=A_ ,metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} ) lowerCAmelCase : bool = field(default=A_ ,metadata={"help": "Use FP16 to accelerate inference."} ) lowerCAmelCase : bool = field(default=A_ ,metadata={"help": "Benchmark training of model"} ) lowerCAmelCase : bool = field(default=A_ ,metadata={"help": "Verbose memory tracing"} ) lowerCAmelCase : bool = field( default=A_ ,metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."} ,) lowerCAmelCase : bool = field( default=A_ ,metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" } ,) lowerCAmelCase : bool = field(default=A_ ,metadata={"help": "Trace memory line by line"} ) lowerCAmelCase : bool = field(default=A_ ,metadata={"help": "Save result to a CSV file"} ) lowerCAmelCase : bool = field(default=A_ ,metadata={"help": "Save all print statements in a log file"} ) lowerCAmelCase : bool = field(default=A_ ,metadata={"help": "Whether to print environment information"} ) lowerCAmelCase : bool = field( default=A_ ,metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) } ,) lowerCAmelCase : str = field( default=F"inference_time_{round(time() )}.csv" ,metadata={"help": "CSV filename used if saving time results to csv."} ,) lowerCAmelCase : str = field( default=F"inference_memory_{round(time() )}.csv" ,metadata={"help": "CSV filename used if saving memory results to csv."} ,) lowerCAmelCase : str = field( default=F"train_time_{round(time() )}.csv" ,metadata={"help": "CSV filename used if saving time results to csv for training."} ,) lowerCAmelCase : str = field( default=F"train_memory_{round(time() )}.csv" ,metadata={"help": "CSV filename used if saving memory results to csv for training."} ,) lowerCAmelCase : str = field( default=F"env_info_{round(time() )}.csv" ,metadata={"help": "CSV filename used if saving environment information."} ,) lowerCAmelCase : str = field( default=F"log_{round(time() )}.csv" ,metadata={"help": "Log filename used if print statements are saved in log."} ,) lowerCAmelCase : int = field(default=3 ,metadata={"help": "Times an experiment will be run."} ) lowerCAmelCase : bool = field( default=A_ ,metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) } ,) def UpperCAmelCase ( self : Dict ) -> int: """simple docstring""" warnings.warn( f"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" ''' are deprecated in general and it is advised to use external Benchmarking libraries ''' ''' to benchmark Transformer models.''' ,_snake_case ,) def UpperCAmelCase ( self : Dict ) -> str: """simple docstring""" return json.dumps(dataclasses.asdict(self ) ,indent=2 ) @property def UpperCAmelCase ( self : int ) -> List[str]: """simple docstring""" if len(self.models ) <= 0: raise ValueError( '''Please make sure you provide at least one model name / model identifier, *e.g.* `--models''' ''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' ) return self.models @property def UpperCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" if not self.multi_process: return False elif self.is_tpu: logger.info('''Multiprocessing is currently not possible on TPU.''' ) return False else: return True
16
"""simple docstring""" import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: if "model" in orig_key: lowercase__ : Tuple = orig_key.replace('''model.''' , '''''' ) if "norm1" in orig_key: lowercase__ : List[str] = orig_key.replace('''norm1''' , '''attention.output.LayerNorm''' ) if "norm2" in orig_key: lowercase__ : List[str] = orig_key.replace('''norm2''' , '''output.LayerNorm''' ) if "norm" in orig_key: lowercase__ : List[str] = orig_key.replace('''norm''' , '''LayerNorm''' ) if "transformer" in orig_key: lowercase__ : Union[str, Any] = orig_key.split('''.''' )[0].split('''_''' )[-1] lowercase__ : List[str] = orig_key.replace(f"""transformer_{layer_num}""" , f"""encoder.layer.{layer_num}""" ) if "mha.attn" in orig_key: lowercase__ : Union[str, Any] = orig_key.replace('''mha.attn''' , '''attention.self''' ) if "mha" in orig_key: lowercase__ : str = orig_key.replace('''mha''' , '''attention''' ) if "W_q" in orig_key: lowercase__ : Any = orig_key.replace('''W_q''' , '''self.query''' ) if "W_k" in orig_key: lowercase__ : List[Any] = orig_key.replace('''W_k''' , '''self.key''' ) if "W_v" in orig_key: lowercase__ : Any = orig_key.replace('''W_v''' , '''self.value''' ) if "ff1" in orig_key: lowercase__ : Optional[int] = orig_key.replace('''ff1''' , '''intermediate.dense''' ) if "ff2" in orig_key: lowercase__ : Optional[Any] = orig_key.replace('''ff2''' , '''output.dense''' ) if "ff" in orig_key: lowercase__ : List[str] = orig_key.replace('''ff''' , '''output.dense''' ) if "mlm_class" in orig_key: lowercase__ : int = orig_key.replace('''mlm.mlm_class''' , '''cls.predictions.decoder''' ) if "mlm" in orig_key: lowercase__ : Optional[Any] = orig_key.replace('''mlm''' , '''cls.predictions.transform''' ) if "cls" not in orig_key: lowercase__ : Optional[Any] = '''yoso.''' + orig_key return orig_key def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: for key in orig_state_dict.copy().keys(): lowercase__ : Optional[Any] = orig_state_dict.pop(__lowerCamelCase ) if ("pooler" in key) or ("sen_class" in key): continue else: lowercase__ : Tuple = val lowercase__ : Union[str, Any] = orig_state_dict['''cls.predictions.decoder.bias'''] lowercase__ : List[str] = torch.arange(__lowerCamelCase ).expand((1, -1) ) + 2 return orig_state_dict def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : Tuple = torch.load(__lowerCamelCase , map_location='''cpu''' )['''model_state_dict'''] lowercase__ : List[Any] = YosoConfig.from_json_file(__lowerCamelCase ) lowercase__ : List[Any] = YosoForMaskedLM(__lowerCamelCase ) lowercase__ : Optional[Any] = convert_checkpoint_helper(config.max_position_embeddings , __lowerCamelCase ) print(model.load_state_dict(__lowerCamelCase ) ) model.eval() model.save_pretrained(__lowerCamelCase ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to YOSO pytorch checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for YOSO model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase_ = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
16
1
"""simple docstring""" class __A : '''simple docstring''' def __init__( self : Tuple ,_snake_case : int ,_snake_case : Union[str, Any]=None ,_snake_case : List[Any]=None ) -> Tuple: """simple docstring""" lowercase__ : List[Any] = data lowercase__ : Tuple = previous lowercase__ : Tuple = next_node def __str__( self : Optional[Any] ) -> str: """simple docstring""" return f"""{self.data}""" def UpperCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" return self.data def UpperCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" return self.next def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return self.previous class __A : '''simple docstring''' def __init__( self : Optional[Any] ,_snake_case : Any ) -> int: """simple docstring""" lowercase__ : Union[str, Any] = head def __iter__( self : Union[str, Any] ) -> Any: """simple docstring""" return self def UpperCAmelCase ( self : str ) -> Any: """simple docstring""" if not self.current: raise StopIteration else: lowercase__ : str = self.current.get_data() lowercase__ : Optional[Any] = self.current.get_next() return value class __A : '''simple docstring''' def __init__( self : List[Any] ) -> Dict: """simple docstring""" lowercase__ : Tuple = None # First node in list lowercase__ : int = None # Last node in list def __str__( self : Dict ) -> Optional[int]: """simple docstring""" lowercase__ : List[str] = self.head lowercase__ : Dict = [] while current is not None: nodes.append(current.get_data() ) lowercase__ : Dict = current.get_next() return " ".join(str(_snake_case ) for node in nodes ) def __contains__( self : Any ,_snake_case : int ) -> Any: """simple docstring""" lowercase__ : List[str] = self.head while current: if current.get_data() == value: return True lowercase__ : Tuple = current.get_next() return False def __iter__( self : Any ) -> Union[str, Any]: """simple docstring""" return LinkedListIterator(self.head ) def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" if self.head: return self.head.get_data() return None def UpperCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" if self.tail: return self.tail.get_data() return None def UpperCAmelCase ( self : List[Any] ,_snake_case : Node ) -> None: """simple docstring""" if self.head is None: lowercase__ : Dict = node lowercase__ : Dict = node else: self.insert_before_node(self.head ,_snake_case ) def UpperCAmelCase ( self : List[Any] ,_snake_case : Node ) -> None: """simple docstring""" if self.head is None: self.set_head(_snake_case ) else: self.insert_after_node(self.tail ,_snake_case ) def UpperCAmelCase ( self : int ,_snake_case : int ) -> None: """simple docstring""" lowercase__ : Any = Node(_snake_case ) if self.head is None: self.set_head(_snake_case ) else: self.set_tail(_snake_case ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Node ,_snake_case : Node ) -> None: """simple docstring""" lowercase__ : Tuple = node lowercase__ : Optional[Any] = node.previous if node.get_previous() is None: lowercase__ : Optional[int] = node_to_insert else: lowercase__ : List[str] = node_to_insert lowercase__ : Tuple = node_to_insert def UpperCAmelCase ( self : int ,_snake_case : Node ,_snake_case : Node ) -> None: """simple docstring""" lowercase__ : Dict = node lowercase__ : str = node.next if node.get_next() is None: lowercase__ : int = node_to_insert else: lowercase__ : Optional[int] = node_to_insert lowercase__ : Tuple = node_to_insert def UpperCAmelCase ( self : Optional[int] ,_snake_case : int ,_snake_case : int ) -> None: """simple docstring""" lowercase__ : Dict = 1 lowercase__ : Optional[Any] = Node(_snake_case ) lowercase__ : Any = self.head while node: if current_position == position: self.insert_before_node(_snake_case ,_snake_case ) return current_position += 1 lowercase__ : Optional[Any] = node.next self.insert_after_node(self.tail ,_snake_case ) def UpperCAmelCase ( self : int ,_snake_case : int ) -> Node: """simple docstring""" lowercase__ : Any = self.head while node: if node.get_data() == item: return node lowercase__ : Tuple = node.get_next() raise Exception('''Node not found''' ) def UpperCAmelCase ( self : Dict ,_snake_case : List[Any] ) -> str: """simple docstring""" if (node := self.get_node(_snake_case )) is not None: if node == self.head: lowercase__ : List[Any] = self.head.get_next() if node == self.tail: lowercase__ : List[Any] = self.tail.get_previous() self.remove_node_pointers(_snake_case ) @staticmethod def UpperCAmelCase ( _snake_case : Node ) -> None: """simple docstring""" if node.get_next(): lowercase__ : int = node.previous if node.get_previous(): lowercase__ : Optional[int] = node.next lowercase__ : List[Any] = None lowercase__ : Tuple = None def UpperCAmelCase ( self : str ) -> str: """simple docstring""" return self.head is None def __UpperCAmelCase ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
16
"""simple docstring""" import os def __UpperCAmelCase ( ) -> int: with open(os.path.dirname(__lowerCamelCase ) + '''/p022_names.txt''' ) as file: lowercase__ : List[Any] = str(file.readlines()[0] ) lowercase__ : Dict = names.replace('''"''' , '''''' ).split(''',''' ) names.sort() lowercase__ : int = 0 lowercase__ : Optional[Any] = 0 for i, name in enumerate(__lowerCamelCase ): for letter in name: name_score += ord(__lowerCamelCase ) - 64 total_score += (i + 1) * name_score lowercase__ : List[str] = 0 return total_score if __name__ == "__main__": print(solution())
16
1
"""simple docstring""" from __future__ import annotations def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = None ) -> list[list[str]]: lowercase__ : List[str] = word_bank or [] # create a table lowercase__ : int = len(__lowerCamelCase ) + 1 lowercase__ : list[list[list[str]]] = [] for _ in range(__lowerCamelCase ): table.append([] ) # seed value lowercase__ : Union[str, Any] = [[]] # because empty string has empty combination # iterate through the indices for i in range(__lowerCamelCase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(__lowerCamelCase )] == word: lowercase__ : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(__lowerCamelCase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(__lowerCamelCase )]: combination.reverse() return table[len(__lowerCamelCase )] if __name__ == "__main__": print(all_construct('jwajalapa', ['jwa', 'j', 'w', 'a', 'la', 'lapa'])) print(all_construct('rajamati', ['s', 'raj', 'amat', 'raja', 'ma', 'i', 't'])) print( all_construct( 'hexagonosaurus', ['h', 'ex', 'hex', 'ag', 'ago', 'ru', 'auru', 'rus', 'go', 'no', 'o', 's'], ) )
16
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(A_ ) class __A ( A_ ): '''simple docstring''' def __init__( self : List[str] ,**_snake_case : Dict ) -> List[Any]: """simple docstring""" super().__init__(**_snake_case ) requires_backends(self ,'''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[int] ,_snake_case : Union[str, List[str], "Image", List["Image"]] ,**_snake_case : int ) -> Optional[Any]: """simple docstring""" return super().__call__(_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Dict ,**_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ : List[str] = {} if "candidate_labels" in kwargs: lowercase__ : Any = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: lowercase__ : Optional[Any] = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[int] ,_snake_case : Dict=None ,_snake_case : Union[str, Any]="This is a photo of {}." ) -> List[str]: """simple docstring""" lowercase__ : List[Any] = load_image(_snake_case ) lowercase__ : int = self.image_processor(images=[image] ,return_tensors=self.framework ) lowercase__ : str = candidate_labels lowercase__ : Dict = [hypothesis_template.format(_snake_case ) for x in candidate_labels] lowercase__ : Any = self.tokenizer(_snake_case ,return_tensors=self.framework ,padding=_snake_case ) lowercase__ : Optional[int] = [text_inputs] return inputs def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ : Optional[int] = model_inputs.pop('''candidate_labels''' ) lowercase__ : Union[str, Any] = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] ,_snake_case ): lowercase__ : List[str] = text_inputs[0] else: # Batching case. lowercase__ : int = text_inputs[0][0] lowercase__ : Tuple = self.model(**_snake_case ,**_snake_case ) lowercase__ : Union[str, Any] = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def UpperCAmelCase ( self : Any ,_snake_case : Tuple ) -> Any: """simple docstring""" lowercase__ : Dict = model_outputs.pop('''candidate_labels''' ) lowercase__ : Optional[Any] = model_outputs['''logits'''][0] if self.framework == "pt": lowercase__ : Optional[int] = logits.softmax(dim=-1 ).squeeze(-1 ) lowercase__ : Tuple = probs.tolist() if not isinstance(_snake_case ,_snake_case ): lowercase__ : Any = [scores] elif self.framework == "tf": lowercase__ : List[str] = stable_softmax(_snake_case ,axis=-1 ) lowercase__ : Optional[Any] = probs.numpy().tolist() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) lowercase__ : Union[str, Any] = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(_snake_case ,_snake_case ) ,key=lambda _snake_case : -x[0] ) ] return result
16
1
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Dict ) -> Dict: """simple docstring""" lowercase__ : str = tempfile.mkdtemp() # fmt: off lowercase__ : str = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on lowercase__ : str = dict(zip(_snake_case ,range(len(_snake_case ) ) ) ) lowercase__ : List[str] = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] lowercase__ : Tuple = {'''unk_token''': '''<unk>'''} lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_snake_case ) + '''\n''' ) with open(self.merges_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_snake_case ) ) lowercase__ : str = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4814_5466, 0.457_8275, 0.4082_1073], '''image_std''': [0.2686_2954, 0.2613_0258, 0.2757_7711], } lowercase__ : Optional[Any] = os.path.join(self.tmpdirname ,_snake_case ) with open(self.image_processor_file ,'''w''' ,encoding='''utf-8''' ) as fp: json.dump(_snake_case ,_snake_case ) def UpperCAmelCase ( self : Any ,**_snake_case : Optional[int] ) -> List[str]: """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname ,**_snake_case ) def UpperCAmelCase ( self : Union[str, Any] ,**_snake_case : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**_snake_case ) def UpperCAmelCase ( self : Any ,**_snake_case : List[Any] ) -> Any: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname ,**_snake_case ) def UpperCAmelCase ( self : str ) -> List[Any]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" lowercase__ : Any = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )] lowercase__ : str = [Image.fromarray(np.moveaxis(_snake_case ,0 ,-1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" lowercase__ : List[Any] = self.get_tokenizer() lowercase__ : Optional[int] = self.get_rust_tokenizer() lowercase__ : int = self.get_image_processor() lowercase__ : int = CLIPSegProcessor(tokenizer=_snake_case ,image_processor=_snake_case ) processor_slow.save_pretrained(self.tmpdirname ) lowercase__ : Any = CLIPSegProcessor.from_pretrained(self.tmpdirname ,use_fast=_snake_case ) lowercase__ : Union[str, Any] = CLIPSegProcessor(tokenizer=_snake_case ,image_processor=_snake_case ) processor_fast.save_pretrained(self.tmpdirname ) lowercase__ : Any = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer ,_snake_case ) self.assertIsInstance(processor_fast.tokenizer ,_snake_case ) self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor ,_snake_case ) self.assertIsInstance(processor_fast.image_processor ,_snake_case ) def UpperCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ : int = CLIPSegProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ : List[Any] = self.get_tokenizer(bos_token='''(BOS)''' ,eos_token='''(EOS)''' ) lowercase__ : Any = self.get_image_processor(do_normalize=_snake_case ,padding_value=1.0 ) lowercase__ : Any = CLIPSegProcessor.from_pretrained( self.tmpdirname ,bos_token='''(BOS)''' ,eos_token='''(EOS)''' ,do_normalize=_snake_case ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_snake_case ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,_snake_case ) def UpperCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" lowercase__ : int = self.get_image_processor() lowercase__ : List[str] = self.get_tokenizer() lowercase__ : Any = CLIPSegProcessor(tokenizer=_snake_case ,image_processor=_snake_case ) lowercase__ : Union[str, Any] = self.prepare_image_inputs() lowercase__ : List[Any] = image_processor(_snake_case ,return_tensors='''np''' ) lowercase__ : Union[str, Any] = processor(images=_snake_case ,return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowercase__ : Tuple = self.get_image_processor() lowercase__ : Any = self.get_tokenizer() lowercase__ : List[str] = CLIPSegProcessor(tokenizer=_snake_case ,image_processor=_snake_case ) lowercase__ : int = '''lower newer''' lowercase__ : Optional[int] = processor(text=_snake_case ) lowercase__ : Tuple = tokenizer(_snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def UpperCAmelCase ( self : Any ) -> Any: """simple docstring""" lowercase__ : Tuple = self.get_image_processor() lowercase__ : Optional[Any] = self.get_tokenizer() lowercase__ : Tuple = CLIPSegProcessor(tokenizer=_snake_case ,image_processor=_snake_case ) lowercase__ : Any = '''lower newer''' lowercase__ : List[str] = self.prepare_image_inputs() lowercase__ : List[Any] = processor(text=_snake_case ,images=_snake_case ) self.assertListEqual(list(inputs.keys() ) ,['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_snake_case ): processor() def UpperCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" lowercase__ : Union[str, Any] = self.get_image_processor() lowercase__ : List[str] = self.get_tokenizer() lowercase__ : Union[str, Any] = CLIPSegProcessor(tokenizer=_snake_case ,image_processor=_snake_case ) lowercase__ : Dict = self.prepare_image_inputs() lowercase__ : str = self.prepare_image_inputs() lowercase__ : List[str] = processor(images=_snake_case ,visual_prompt=_snake_case ) self.assertListEqual(list(inputs.keys() ) ,['''pixel_values''', '''conditional_pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_snake_case ): processor() def UpperCAmelCase ( self : Any ) -> Any: """simple docstring""" lowercase__ : Any = self.get_image_processor() lowercase__ : str = self.get_tokenizer() lowercase__ : Optional[Any] = CLIPSegProcessor(tokenizer=_snake_case ,image_processor=_snake_case ) lowercase__ : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ : str = processor.batch_decode(_snake_case ) lowercase__ : Optional[int] = tokenizer.batch_decode(_snake_case ) self.assertListEqual(_snake_case ,_snake_case )
16
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[Any]: print('''\nThe shortest path matrix using Floyd Warshall algorithm\n''' ) for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): if dist[i][j] != float('''inf''' ): print(int(dist[i][j] ) , end='''\t''' ) else: print('''INF''' , end='''\t''' ) print() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : str = [[float('''inf''' ) for _ in range(__lowerCamelCase )] for _ in range(__lowerCamelCase )] for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): lowercase__ : List[str] = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(__lowerCamelCase ): # looping through rows of graph array for i in range(__lowerCamelCase ): # looping through columns of graph array for j in range(__lowerCamelCase ): if ( dist[i][k] != float('''inf''' ) and dist[k][j] != float('''inf''' ) and dist[i][k] + dist[k][j] < dist[i][j] ): lowercase__ : str = dist[i][k] + dist[k][j] _print_dist(__lowerCamelCase , __lowerCamelCase ) return dist, v if __name__ == "__main__": lowerCAmelCase_ = int(input('Enter number of vertices: ')) lowerCAmelCase_ = int(input('Enter number of edges: ')) lowerCAmelCase_ = [[float('inf') for i in range(v)] for j in range(v)] for i in range(v): lowerCAmelCase_ = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('\nEdge ', i + 1) lowerCAmelCase_ = int(input('Enter source:')) lowerCAmelCase_ = int(input('Enter destination:')) lowerCAmelCase_ = float(input('Enter weight:')) lowerCAmelCase_ = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
16
1
"""simple docstring""" import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[Any] = LayoutLMTokenizer lowerCAmelCase : List[Any] = LayoutLMTokenizerFast lowerCAmelCase : Dict = True lowerCAmelCase : Union[str, Any] = True def UpperCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" super().setUp() lowercase__ : Optional[Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowercase__ : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def UpperCAmelCase ( self : List[Any] ,**_snake_case : Optional[Any] ) -> str: """simple docstring""" return LayoutLMTokenizer.from_pretrained(self.tmpdirname ,**_snake_case ) def UpperCAmelCase ( self : str ,_snake_case : Any ) -> List[Any]: """simple docstring""" lowercase__ : Dict = '''UNwant\u00E9d,running''' lowercase__ : Optional[Any] = '''unwanted, running''' return input_text, output_text def UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" lowercase__ : Union[str, Any] = self.tokenizer_class(self.vocab_file ) lowercase__ : Optional[int] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_snake_case ,['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) ,[7, 4, 5, 10, 8, 9] ) def UpperCAmelCase ( self : Dict ) -> int: """simple docstring""" pass
16
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' def __init__( self : Dict ,*_snake_case : Any ,**_snake_case : str ) -> None: """simple docstring""" warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' ,_snake_case ,) super().__init__(*_snake_case ,**_snake_case )
16
1
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase ) -> float: lowercase__ : Optional[int] = 0 while len(__lowerCamelCase ) > 1: lowercase__ : Optional[int] = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): lowercase__ : List[Any] = files.index(min(__lowerCamelCase ) ) temp += files[min_index] files.pop(__lowerCamelCase ) files.append(__lowerCamelCase ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
16
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {'configuration_xglm': ['XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XGLMConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['XGLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['XGLMTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XGLMForCausalLM', 'XGLMModel', 'XGLMPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'FlaxXGLMForCausalLM', 'FlaxXGLMModel', 'FlaxXGLMPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXGLMForCausalLM', 'TFXGLMModel', 'TFXGLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
16
1
"""simple docstring""" print((lambda quine: quine % quine)('print((lambda quine: quine %% quine)(%r))'))
16
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class __A ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : Tuple = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Dict = TFAutoModel.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = AutoModel.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : Dict = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : str = TFAutoModelForPreTraining.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = AutoModelForPreTraining.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Any = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = TFAutoModelForCausalLM.from_pretrained(_snake_case ,from_pt=_snake_case ) lowercase__ , lowercase__ : Optional[Any] = TFAutoModelForCausalLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = AutoModelForCausalLM.from_pretrained(_snake_case ,from_tf=_snake_case ) lowercase__ , lowercase__ : Optional[Any] = AutoModelForCausalLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Any ) -> Tuple: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Any = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : str = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(_snake_case ,from_pt=_snake_case ) lowercase__ , lowercase__ : str = TFAutoModelForMaskedLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = AutoModelForMaskedLM.from_pretrained(_snake_case ,from_tf=_snake_case ) lowercase__ , lowercase__ : Any = AutoModelForMaskedLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Union[str, Any] = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained(_snake_case ,from_pt=_snake_case ) lowercase__ , lowercase__ : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ,from_tf=_snake_case ) lowercase__ , lowercase__ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : Tuple = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = TFAutoModelForSequenceClassification.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : List[Any] = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : str = TFAutoModelForQuestionAnswering.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = AutoModelForQuestionAnswering.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : Optional[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) lowercase__ : Union[str, Any] = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) def UpperCAmelCase ( self : int ) -> List[Any]: """simple docstring""" lowercase__ : List[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) lowercase__ : int = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 )
16
1
"""simple docstring""" import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) lowerCAmelCase_ = logging.getLogger(__name__) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Tuple: lowercase__ : Optional[Any] = np.argmax(__lowerCamelCase , axis=1 ) return np.sum(outputs == labels ) def __UpperCAmelCase ( __lowerCamelCase ) -> Dict: with open(__lowerCamelCase , encoding='''utf_8''' ) as f: lowercase__ : Optional[int] = csv.reader(__lowerCamelCase ) lowercase__ : int = [] next(__lowerCamelCase ) # skip the first line for line in tqdm(__lowerCamelCase ): output.append((''' '''.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: lowercase__ : int = [] for dataset in encoded_datasets: lowercase__ : List[Any] = len(__lowerCamelCase ) lowercase__ : Union[str, Any] = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) lowercase__ : Dict = np.zeros((n_batch, 2) , dtype=np.intaa ) lowercase__ : Tuple = np.full((n_batch, 2, input_len) , fill_value=-1_00 , dtype=np.intaa ) lowercase__ : List[Any] = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(__lowerCamelCase ): lowercase__ : Tuple = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowercase__ : Any = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowercase__ : str = with_conta lowercase__ : List[str] = with_conta lowercase__ : Optional[Any] = len(__lowerCamelCase ) - 1 lowercase__ : int = len(__lowerCamelCase ) - 1 lowercase__ : int = with_conta lowercase__ : List[str] = with_conta lowercase__ : Tuple = mc_label lowercase__ : Union[str, Any] = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(__lowerCamelCase ) for t in all_inputs ) ) return tensor_datasets def __UpperCAmelCase ( ) -> Dict: lowercase__ : List[Any] = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=__lowerCamelCase , default='''openai-gpt''' , help='''pretrained model name''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_eval''' , action='''store_true''' , help='''Whether to run eval on the dev set.''' ) parser.add_argument( '''--output_dir''' , default=__lowerCamelCase , type=__lowerCamelCase , required=__lowerCamelCase , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument('''--train_dataset''' , type=__lowerCamelCase , default='''''' ) parser.add_argument('''--eval_dataset''' , type=__lowerCamelCase , default='''''' ) parser.add_argument('''--seed''' , type=__lowerCamelCase , default=42 ) parser.add_argument('''--num_train_epochs''' , type=__lowerCamelCase , default=3 ) parser.add_argument('''--train_batch_size''' , type=__lowerCamelCase , default=8 ) parser.add_argument('''--eval_batch_size''' , type=__lowerCamelCase , default=16 ) parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=__lowerCamelCase , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , type=__lowerCamelCase , default=1 ) parser.add_argument( '''--max_steps''' , default=-1 , type=__lowerCamelCase , help=( '''If > 0: set total number of training steps to perform. Override num_train_epochs.''' ) , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=__lowerCamelCase , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--learning_rate''' , type=__lowerCamelCase , default=6.25E-5 ) parser.add_argument('''--warmup_steps''' , default=0 , type=__lowerCamelCase , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--lr_schedule''' , type=__lowerCamelCase , default='''warmup_linear''' ) parser.add_argument('''--weight_decay''' , type=__lowerCamelCase , default=0.0_1 ) parser.add_argument('''--lm_coef''' , type=__lowerCamelCase , default=0.9 ) parser.add_argument('''--n_valid''' , type=__lowerCamelCase , default=3_74 ) parser.add_argument('''--server_ip''' , type=__lowerCamelCase , default='''''' , help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' , type=__lowerCamelCase , default='''''' , help='''Can be used for distant debugging.''' ) lowercase__ : int = parser.parse_args() print(__lowerCamelCase ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__lowerCamelCase ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) lowercase__ : str = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) lowercase__ : Any = torch.cuda.device_count() logger.info('''device: {}, n_gpu {}'''.format(__lowerCamelCase , __lowerCamelCase ) ) if not args.do_train and not args.do_eval: raise ValueError('''At least one of `do_train` or `do_eval` must be True.''' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset lowercase__ : Tuple = ['''_start_''', '''_delimiter_''', '''_classify_'''] lowercase__ : Dict = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(__lowerCamelCase ) lowercase__ : List[Any] = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) lowercase__ : Optional[int] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(__lowerCamelCase ) ) model.to(__lowerCamelCase ) # Load and encode the datasets def tokenize_and_encode(__lowerCamelCase ): if isinstance(__lowerCamelCase , __lowerCamelCase ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(__lowerCamelCase ) ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): return obj return [tokenize_and_encode(__lowerCamelCase ) for o in obj] logger.info('''Encoding dataset...''' ) lowercase__ : str = load_rocstories_dataset(args.train_dataset ) lowercase__ : Dict = load_rocstories_dataset(args.eval_dataset ) lowercase__ : Tuple = (train_dataset, eval_dataset) lowercase__ : Optional[int] = tokenize_and_encode(__lowerCamelCase ) # Compute the max input length for the Transformer lowercase__ : Any = model.config.n_positions // 2 - 2 lowercase__ : Any = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) lowercase__ : str = min(__lowerCamelCase , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders lowercase__ : int = pre_process_datasets(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , *__lowerCamelCase ) lowercase__ , lowercase__ : List[Any] = tensor_datasets[0], tensor_datasets[1] lowercase__ : Any = TensorDataset(*__lowerCamelCase ) lowercase__ : Optional[Any] = RandomSampler(__lowerCamelCase ) lowercase__ : str = DataLoader(__lowerCamelCase , sampler=__lowerCamelCase , batch_size=args.train_batch_size ) lowercase__ : int = TensorDataset(*__lowerCamelCase ) lowercase__ : Tuple = SequentialSampler(__lowerCamelCase ) lowercase__ : Any = DataLoader(__lowerCamelCase , sampler=__lowerCamelCase , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: lowercase__ : int = args.max_steps lowercase__ : List[str] = args.max_steps // (len(__lowerCamelCase ) // args.gradient_accumulation_steps) + 1 else: lowercase__ : Any = len(__lowerCamelCase ) // args.gradient_accumulation_steps * args.num_train_epochs lowercase__ : str = list(model.named_parameters() ) lowercase__ : Union[str, Any] = ['''bias''', '''LayerNorm.bias''', '''LayerNorm.weight'''] lowercase__ : Union[str, Any] = [ { '''params''': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], '''weight_decay''': args.weight_decay, }, {'''params''': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0}, ] lowercase__ : Optional[int] = AdamW(__lowerCamelCase , lr=args.learning_rate , eps=args.adam_epsilon ) lowercase__ : Optional[Any] = get_linear_schedule_with_warmup( __lowerCamelCase , num_warmup_steps=args.warmup_steps , num_training_steps=__lowerCamelCase ) if args.do_train: lowercase__ , lowercase__ , lowercase__ : List[str] = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='''Epoch''' ): lowercase__ : Tuple = 0 lowercase__ : Optional[int] = 0 lowercase__ : str = tqdm(__lowerCamelCase , desc='''Training''' ) for step, batch in enumerate(__lowerCamelCase ): lowercase__ : Optional[Any] = tuple(t.to(__lowerCamelCase ) for t in batch ) lowercase__ , lowercase__ , lowercase__ , lowercase__ : Any = batch lowercase__ : str = model(__lowerCamelCase , mc_token_ids=__lowerCamelCase , lm_labels=__lowerCamelCase , mc_labels=__lowerCamelCase ) lowercase__ : List[str] = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() lowercase__ : Any = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 lowercase__ : Union[str, Any] = '''Training loss: {:.2e} lr: {:.2e}'''.format(__lowerCamelCase , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer lowercase__ : str = model.module if hasattr(__lowerCamelCase , '''module''' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` lowercase__ : Tuple = os.path.join(args.output_dir , __lowerCamelCase ) lowercase__ : Union[str, Any] = os.path.join(args.output_dir , __lowerCamelCase ) torch.save(model_to_save.state_dict() , __lowerCamelCase ) model_to_save.config.to_json_file(__lowerCamelCase ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned lowercase__ : Any = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) lowercase__ : str = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(__lowerCamelCase ) if args.do_eval: model.eval() lowercase__ , lowercase__ : Any = 0, 0 lowercase__ , lowercase__ : Optional[Any] = 0, 0 for batch in tqdm(__lowerCamelCase , desc='''Evaluating''' ): lowercase__ : Dict = tuple(t.to(__lowerCamelCase ) for t in batch ) lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = batch with torch.no_grad(): lowercase__ , lowercase__ , lowercase__ , lowercase__ : int = model( __lowerCamelCase , mc_token_ids=__lowerCamelCase , lm_labels=__lowerCamelCase , mc_labels=__lowerCamelCase ) lowercase__ : List[Any] = mc_logits.detach().cpu().numpy() lowercase__ : Optional[Any] = mc_labels.to('''cpu''' ).numpy() lowercase__ : List[str] = accuracy(__lowerCamelCase , __lowerCamelCase ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 lowercase__ : Any = eval_loss / nb_eval_steps lowercase__ : Any = eval_accuracy / nb_eval_examples lowercase__ : Any = tr_loss / nb_tr_steps if args.do_train else None lowercase__ : List[str] = {'''eval_loss''': eval_loss, '''eval_accuracy''': eval_accuracy, '''train_loss''': train_loss} lowercase__ : Dict = os.path.join(args.output_dir , '''eval_results.txt''' ) with open(__lowerCamelCase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , __lowerCamelCase , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) if __name__ == "__main__": main()
16
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase = 50 ) -> int: lowercase__ : int = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F'''{solution() = }''')
16
1
"""simple docstring""" import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch lowerCAmelCase_ = 'sshleifer/bart-tiny-random' lowerCAmelCase_ = 'patrickvonplaten/t5-tiny-random' @require_torch class __A ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" return AutoConfig.from_pretrained(_snake_case ) def UpperCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" lowercase__ , *lowercase__ : Dict = create_student_by_copying_alternating_layers(_snake_case ,tempfile.mkdtemp() ,e=1 ,d=1 ) self.assertEqual(student.config.num_hidden_layers ,1 ) def UpperCAmelCase ( self : Tuple ) -> Any: """simple docstring""" lowercase__ , *lowercase__ : Dict = create_student_by_copying_alternating_layers(_snake_case ,tempfile.mkdtemp() ,e=1 ,d=_snake_case ) def UpperCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" lowercase__ , *lowercase__ : int = create_student_by_copying_alternating_layers(_snake_case ,tempfile.mkdtemp() ,e=1 ,d=_snake_case ) self.assertEqual(student.config.encoder_layers ,1 ) self.assertEqual(student.config.decoder_layers ,self.teacher_config.encoder_layers ) def UpperCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" lowercase__ , *lowercase__ : str = create_student_by_copying_alternating_layers(_snake_case ,tempfile.mkdtemp() ,e=1 ,d=1 ) self.assertEqual(student.config.encoder_layers ,1 ) self.assertEqual(student.config.decoder_layers ,1 ) def UpperCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" with self.assertRaises(_snake_case ): create_student_by_copying_alternating_layers(_snake_case ,tempfile.mkdtemp() ,e=_snake_case ,d=_snake_case )
16
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" debug_launcher(test_script.main ) def UpperCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" debug_launcher(test_ops.main )
16
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule lowerCAmelCase_ = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) lowerCAmelCase_ = { 'configuration_speecht5': [ 'SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP', 'SpeechT5Config', 'SpeechT5HifiGanConfig', ], 'feature_extraction_speecht5': ['SpeechT5FeatureExtractor'], 'processing_speecht5': ['SpeechT5Processor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['SpeechT5Tokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'SpeechT5ForSpeechToText', 'SpeechT5ForSpeechToSpeech', 'SpeechT5ForTextToSpeech', 'SpeechT5Model', 'SpeechT5PreTrainedModel', 'SpeechT5HifiGan', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
1
"""simple docstring""" import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig lowerCAmelCase_ = logging.get_logger(__name__) # General docstring lowerCAmelCase_ = 'PoolFormerConfig' # Base docstring lowerCAmelCase_ = 'sail/poolformer_s12' lowerCAmelCase_ = [1, 512, 7, 7] # Image classification docstring lowerCAmelCase_ = 'sail/poolformer_s12' lowerCAmelCase_ = 'tabby, tabby cat' lowerCAmelCase_ = [ 'sail/poolformer_s12', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = 0.0 , __lowerCamelCase = False ) -> Optional[Any]: if drop_prob == 0.0 or not training: return input lowercase__ : int = 1 - drop_prob lowercase__ : List[str] = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets lowercase__ : Union[str, Any] = keep_prob + torch.rand(__lowerCamelCase , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize lowercase__ : int = input.div(__lowerCamelCase ) * random_tensor return output class __A ( nn.Module ): '''simple docstring''' def __init__( self : str ,_snake_case : Optional[float] = None ) -> None: """simple docstring""" super().__init__() lowercase__ : Dict = drop_prob def UpperCAmelCase ( self : int ,_snake_case : torch.Tensor ) -> torch.Tensor: """simple docstring""" return drop_path(_snake_case ,self.drop_prob ,self.training ) def UpperCAmelCase ( self : str ) -> str: """simple docstring""" return "p={}".format(self.drop_prob ) class __A ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] ,_snake_case : Tuple ,_snake_case : int ,_snake_case : List[str] ,_snake_case : int ,_snake_case : Optional[Any] ,_snake_case : Optional[int]=None ) -> Any: """simple docstring""" super().__init__() lowercase__ : List[str] = patch_size if isinstance(_snake_case ,collections.abc.Iterable ) else (patch_size, patch_size) lowercase__ : str = stride if isinstance(_snake_case ,collections.abc.Iterable ) else (stride, stride) lowercase__ : Union[str, Any] = padding if isinstance(_snake_case ,collections.abc.Iterable ) else (padding, padding) lowercase__ : int = nn.Convad(_snake_case ,_snake_case ,kernel_size=_snake_case ,stride=_snake_case ,padding=_snake_case ) lowercase__ : int = norm_layer(_snake_case ) if norm_layer else nn.Identity() def UpperCAmelCase ( self : Any ,_snake_case : int ) -> List[Any]: """simple docstring""" lowercase__ : List[Any] = self.projection(_snake_case ) lowercase__ : Tuple = self.norm(_snake_case ) return embeddings class __A ( nn.GroupNorm ): '''simple docstring''' def __init__( self : Tuple ,_snake_case : str ,**_snake_case : Tuple ) -> List[str]: """simple docstring""" super().__init__(1 ,_snake_case ,**_snake_case ) class __A ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] ,_snake_case : Optional[Any] ) -> str: """simple docstring""" super().__init__() lowercase__ : Union[str, Any] = nn.AvgPoolad(_snake_case ,stride=1 ,padding=pool_size // 2 ,count_include_pad=_snake_case ) def UpperCAmelCase ( self : Optional[int] ,_snake_case : Optional[int] ) -> Any: """simple docstring""" return self.pool(_snake_case ) - hidden_states class __A ( nn.Module ): '''simple docstring''' def __init__( self : Any ,_snake_case : Tuple ,_snake_case : Optional[Any] ,_snake_case : Tuple ,_snake_case : List[Any] ) -> List[str]: """simple docstring""" super().__init__() lowercase__ : Dict = nn.Convad(_snake_case ,_snake_case ,1 ) lowercase__ : Any = nn.Convad(_snake_case ,_snake_case ,1 ) lowercase__ : int = PoolFormerDropPath(_snake_case ) if isinstance(config.hidden_act ,_snake_case ): lowercase__ : List[Any] = ACTaFN[config.hidden_act] else: lowercase__ : Dict = config.hidden_act def UpperCAmelCase ( self : Dict ,_snake_case : Optional[int] ) -> str: """simple docstring""" lowercase__ : Optional[int] = self.conva(_snake_case ) lowercase__ : Any = self.act_fn(_snake_case ) lowercase__ : Union[str, Any] = self.drop(_snake_case ) lowercase__ : int = self.conva(_snake_case ) lowercase__ : str = self.drop(_snake_case ) return hidden_states class __A ( nn.Module ): '''simple docstring''' def __init__( self : Any ,_snake_case : List[str] ,_snake_case : str ,_snake_case : Any ,_snake_case : Dict ,_snake_case : List[str] ,_snake_case : Union[str, Any] ) -> Tuple: """simple docstring""" super().__init__() lowercase__ : List[Any] = PoolFormerPooling(_snake_case ) lowercase__ : int = PoolFormerOutput(_snake_case ,_snake_case ,_snake_case ,_snake_case ) lowercase__ : str = PoolFormerGroupNorm(_snake_case ) lowercase__ : Optional[Any] = PoolFormerGroupNorm(_snake_case ) # Useful for training neural nets lowercase__ : Optional[Any] = PoolFormerDropPath(_snake_case ) if drop_path > 0.0 else nn.Identity() lowercase__ : str = config.use_layer_scale if config.use_layer_scale: lowercase__ : Optional[int] = nn.Parameter( config.layer_scale_init_value * torch.ones((_snake_case) ) ,requires_grad=_snake_case ) lowercase__ : List[Any] = nn.Parameter( config.layer_scale_init_value * torch.ones((_snake_case) ) ,requires_grad=_snake_case ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : List[str] ) -> Any: """simple docstring""" if self.use_layer_scale: lowercase__ : List[str] = self.pooling(self.before_norm(_snake_case ) ) lowercase__ : Tuple = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection lowercase__ : Any = hidden_states + self.drop_path(_snake_case ) lowercase__ : int = () lowercase__ : List[str] = self.output(self.after_norm(_snake_case ) ) lowercase__ : Optional[int] = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection lowercase__ : Optional[int] = hidden_states + self.drop_path(_snake_case ) lowercase__ : Optional[int] = (output,) + outputs return outputs else: lowercase__ : Any = self.drop_path(self.pooling(self.before_norm(_snake_case ) ) ) # First residual connection lowercase__ : Dict = pooling_output + hidden_states lowercase__ : Tuple = () # Second residual connection inside the PoolFormerOutput block lowercase__ : Union[str, Any] = self.drop_path(self.output(self.after_norm(_snake_case ) ) ) lowercase__ : Optional[Any] = hidden_states + layer_output lowercase__ : Dict = (output,) + outputs return outputs class __A ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] ,_snake_case : List[Any] ) -> Dict: """simple docstring""" super().__init__() lowercase__ : Union[str, Any] = config # stochastic depth decay rule lowercase__ : List[Any] = [x.item() for x in torch.linspace(0 ,config.drop_path_rate ,sum(config.depths ) )] # patch embeddings lowercase__ : Any = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] ,stride=config.strides[i] ,padding=config.padding[i] ,num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] ,hidden_size=config.hidden_sizes[i] ,) ) lowercase__ : Optional[Any] = nn.ModuleList(_snake_case ) # Transformer blocks lowercase__ : str = [] lowercase__ : Any = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers lowercase__ : int = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( _snake_case ,num_channels=config.hidden_sizes[i] ,pool_size=config.pool_size ,hidden_size=config.hidden_sizes[i] ,intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) ,drop_path=dpr[cur + j] ,) ) blocks.append(nn.ModuleList(_snake_case ) ) lowercase__ : Tuple = nn.ModuleList(_snake_case ) def UpperCAmelCase ( self : str ,_snake_case : Tuple ,_snake_case : List[Any]=False ,_snake_case : Union[str, Any]=True ) -> List[str]: """simple docstring""" lowercase__ : List[str] = () if output_hidden_states else None lowercase__ : Tuple = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings ,self.block ) ): lowercase__ , lowercase__ : Dict = layers # Get patch embeddings from hidden_states lowercase__ : str = embedding_layer(_snake_case ) # Send the embeddings through the blocks for _, blk in enumerate(_snake_case ): lowercase__ : Any = blk(_snake_case ) lowercase__ : Dict = layer_outputs[0] if output_hidden_states: lowercase__ : Tuple = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_snake_case ,hidden_states=_snake_case ) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Any = PoolFormerConfig lowerCAmelCase : List[str] = "poolformer" lowerCAmelCase : int = "pixel_values" lowerCAmelCase : int = True def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : str ) -> List[str]: """simple docstring""" if isinstance(_snake_case ,(nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_snake_case ,nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def UpperCAmelCase ( self : Optional[int] ,_snake_case : Optional[int] ,_snake_case : Optional[Any]=False ) -> int: """simple docstring""" if isinstance(_snake_case ,_snake_case ): lowercase__ : Optional[int] = value lowerCAmelCase_ = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n' @add_start_docstrings( "The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top." ,A_ ,) class __A ( A_ ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : Any ) -> List[str]: """simple docstring""" super().__init__(_snake_case ) lowercase__ : List[Any] = config lowercase__ : Optional[int] = PoolFormerEncoder(_snake_case ) # Initialize weights and apply final processing self.post_init() def UpperCAmelCase ( self : str ) -> str: """simple docstring""" return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def UpperCAmelCase ( self : List[str] ,_snake_case : Optional[torch.FloatTensor] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ,) -> Union[Tuple, BaseModelOutputWithNoAttention]: """simple docstring""" lowercase__ : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) lowercase__ : Tuple = self.encoder( _snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case ,) lowercase__ : Optional[Any] = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=_snake_case ,hidden_states=encoder_outputs.hidden_states ,) class __A ( nn.Module ): '''simple docstring''' def __init__( self : int ,_snake_case : Any ) -> Union[str, Any]: """simple docstring""" super().__init__() lowercase__ : Dict = nn.Linear(config.hidden_size ,config.hidden_size ) def UpperCAmelCase ( self : str ,_snake_case : Dict ) -> Tuple: """simple docstring""" lowercase__ : List[Any] = self.dense(_snake_case ) return output @add_start_docstrings( "\n PoolFormer Model transformer with an image classification head on top\n " ,A_ ,) class __A ( A_ ): '''simple docstring''' def __init__( self : Tuple ,_snake_case : int ) -> int: """simple docstring""" super().__init__(_snake_case ) lowercase__ : Optional[Any] = config.num_labels lowercase__ : Optional[Any] = PoolFormerModel(_snake_case ) # Final norm lowercase__ : Tuple = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head lowercase__ : Any = ( nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def UpperCAmelCase ( self : List[Any] ,_snake_case : Optional[torch.FloatTensor] = None ,_snake_case : Optional[torch.LongTensor] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ,) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: """simple docstring""" lowercase__ : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : Dict = self.poolformer( _snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case ,) lowercase__ : Dict = outputs[0] lowercase__ : Optional[int] = self.classifier(self.norm(_snake_case ).mean([-2, -1] ) ) lowercase__ : Tuple = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowercase__ : int = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowercase__ : List[str] = '''single_label_classification''' else: lowercase__ : Optional[int] = '''multi_label_classification''' if self.config.problem_type == "regression": lowercase__ : List[Any] = MSELoss() if self.num_labels == 1: lowercase__ : List[Any] = loss_fct(logits.squeeze() ,labels.squeeze() ) else: lowercase__ : Tuple = loss_fct(_snake_case ,_snake_case ) elif self.config.problem_type == "single_label_classification": lowercase__ : Any = CrossEntropyLoss() lowercase__ : Union[str, Any] = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowercase__ : str = BCEWithLogitsLoss() lowercase__ : Dict = loss_fct(_snake_case ,_snake_case ) if not return_dict: lowercase__ : List[str] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_snake_case ,logits=_snake_case ,hidden_states=outputs.hidden_states )
16
"""simple docstring""" from ..utils import DummyObject, requires_backends class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : List[str] = ["torch", "torchsde"] def __init__( self : Tuple ,*_snake_case : Union[str, Any] ,**_snake_case : Any ) -> Union[str, Any]: """simple docstring""" requires_backends(self ,['''torch''', '''torchsde'''] ) @classmethod def UpperCAmelCase ( cls : List[str] ,*_snake_case : int ,**_snake_case : Union[str, Any] ) -> str: """simple docstring""" requires_backends(cls ,['''torch''', '''torchsde'''] ) @classmethod def UpperCAmelCase ( cls : List[Any] ,*_snake_case : List[Any] ,**_snake_case : List[str] ) -> List[Any]: """simple docstring""" requires_backends(cls ,['''torch''', '''torchsde'''] )
16
1
"""simple docstring""" from math import sqrt def __UpperCAmelCase ( __lowerCamelCase ) -> int: lowercase__ : Dict = 0 for i in range(1 , int(sqrt(__lowerCamelCase ) + 1 ) ): if n % i == 0 and i != sqrt(__lowerCamelCase ): total += i + n // i elif i == sqrt(__lowerCamelCase ): total += i return total - n def __UpperCAmelCase ( __lowerCamelCase = 1_00_00 ) -> int: lowercase__ : Any = sum( i for i in range(1 , __lowerCamelCase ) if sum_of_divisors(sum_of_divisors(__lowerCamelCase ) ) == i and sum_of_divisors(__lowerCamelCase ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
16
"""simple docstring""" import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node lowerCAmelCase_ = 4 lowerCAmelCase_ = 3 class __A ( A_ ): '''simple docstring''' pass def __UpperCAmelCase ( __lowerCamelCase ) -> Dict: for shard in shards: for i in range(__lowerCamelCase ): yield {"i": i, "shard": shard} def __UpperCAmelCase ( ) -> Tuple: lowercase__ : int = int(os.environ['''RANK'''] ) lowercase__ : str = int(os.environ['''WORLD_SIZE'''] ) lowercase__ : List[Any] = ArgumentParser() parser.add_argument('''--streaming''' , type=__lowerCamelCase ) parser.add_argument('''--local_rank''' , type=__lowerCamelCase ) parser.add_argument('''--num_workers''' , type=__lowerCamelCase , default=0 ) lowercase__ : int = parser.parse_args() lowercase__ : Optional[Any] = args.streaming lowercase__ : List[Any] = args.num_workers lowercase__ : Optional[Any] = {'''shards''': [f"""shard_{shard_idx}""" for shard_idx in range(__lowerCamelCase )]} lowercase__ : Dict = IterableDataset.from_generator(__lowerCamelCase , gen_kwargs=__lowerCamelCase ) if not streaming: lowercase__ : int = Dataset.from_list(list(__lowerCamelCase ) ) lowercase__ : int = split_dataset_by_node(__lowerCamelCase , rank=__lowerCamelCase , world_size=__lowerCamelCase ) lowercase__ : Optional[Any] = torch.utils.data.DataLoader(__lowerCamelCase , num_workers=__lowerCamelCase ) lowercase__ : Optional[Any] = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowercase__ : str = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) lowercase__ : str = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
16
1
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: lowerCAmelCase_ = None lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase_ = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 lowerCAmelCase_ = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Tuple = VOCAB_FILES_NAMES lowerCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : Optional[int] = ["input_ids", "attention_mask"] lowerCAmelCase : int = TaTokenizer lowerCAmelCase : List[int] = [] def __init__( self : Any ,_snake_case : Optional[int]=None ,_snake_case : Dict=None ,_snake_case : Optional[Any]="</s>" ,_snake_case : Tuple="<unk>" ,_snake_case : str="<pad>" ,_snake_case : Optional[Any]=100 ,_snake_case : str=None ,**_snake_case : str ,) -> int: """simple docstring""" if extra_ids > 0 and additional_special_tokens is None: lowercase__ : Tuple = [f"""<extra_id_{i}>""" for i in range(_snake_case )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens lowercase__ : List[Any] = len(set(filter(lambda _snake_case : bool('''extra_id_''' in str(_snake_case ) ) ,_snake_case ) ) ) if extra_tokens != extra_ids: raise ValueError( f"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( _snake_case ,tokenizer_file=_snake_case ,eos_token=_snake_case ,unk_token=_snake_case ,pad_token=_snake_case ,extra_ids=_snake_case ,additional_special_tokens=_snake_case ,**_snake_case ,) lowercase__ : List[Any] = vocab_file lowercase__ : int = False if not self.vocab_file else True lowercase__ : List[str] = extra_ids @staticmethod def UpperCAmelCase ( _snake_case : Union[str, Any] ,_snake_case : Optional[int] ,_snake_case : str ) -> List[str]: """simple docstring""" if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: lowercase__ : int = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f""" {pretrained_model_name_or_path} automatically truncating your input to""" f""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" f""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' ,_snake_case ,) return max_model_length def UpperCAmelCase ( self : Optional[int] ,_snake_case : str ,_snake_case : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_snake_case ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ : Union[str, Any] = os.path.join( _snake_case ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ): copyfile(self.vocab_file ,_snake_case ) logger.info(f"""Copy vocab file to {out_vocab_file}""" ) return (out_vocab_file,) def UpperCAmelCase ( self : Dict ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ : Any = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: lowercase__ : Dict = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def UpperCAmelCase ( self : int ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ : Tuple = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" return list( set(filter(lambda _snake_case : bool(re.search(r'''<extra_id_\d+>''' ,_snake_case ) ) is not None ,self.additional_special_tokens ) ) ) def UpperCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" return [self.convert_tokens_to_ids(_snake_case ) for token in self.get_sentinel_tokens()]
16
"""simple docstring""" from ...configuration_utils import PretrainedConfig lowerCAmelCase_ = { 'google/tapas-base-finetuned-sqa': ( 'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json' ), 'google/tapas-base-finetuned-wtq': ( 'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json' ), 'google/tapas-base-finetuned-wikisql-supervised': ( 'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json' ), 'google/tapas-base-finetuned-tabfact': ( 'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json' ), } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = "tapas" def __init__( self : List[Any] ,_snake_case : Dict=30_522 ,_snake_case : Union[str, Any]=768 ,_snake_case : int=12 ,_snake_case : Union[str, Any]=12 ,_snake_case : Union[str, Any]=3_072 ,_snake_case : List[Any]="gelu" ,_snake_case : Optional[int]=0.1 ,_snake_case : Tuple=0.1 ,_snake_case : List[Any]=1_024 ,_snake_case : Any=[3, 256, 256, 2, 256, 256, 10] ,_snake_case : List[Any]=0.02 ,_snake_case : Union[str, Any]=1e-12 ,_snake_case : str=0 ,_snake_case : Any=10.0 ,_snake_case : int=0 ,_snake_case : Optional[Any]=1.0 ,_snake_case : List[str]=None ,_snake_case : Tuple=1.0 ,_snake_case : Tuple=False ,_snake_case : List[Any]=None ,_snake_case : int=1.0 ,_snake_case : List[Any]=1.0 ,_snake_case : Optional[int]=False ,_snake_case : Optional[int]=False ,_snake_case : Optional[int]="ratio" ,_snake_case : Any=None ,_snake_case : Union[str, Any]=None ,_snake_case : List[str]=64 ,_snake_case : Optional[Any]=32 ,_snake_case : Optional[Any]=False ,_snake_case : Optional[int]=True ,_snake_case : Dict=False ,_snake_case : Tuple=False ,_snake_case : int=True ,_snake_case : List[str]=False ,_snake_case : Dict=None ,_snake_case : Optional[int]=None ,**_snake_case : int ,) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=_snake_case ,**_snake_case ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) lowercase__ : Optional[int] = vocab_size lowercase__ : List[str] = hidden_size lowercase__ : Any = num_hidden_layers lowercase__ : Optional[Any] = num_attention_heads lowercase__ : Optional[int] = hidden_act lowercase__ : List[Any] = intermediate_size lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : Dict = attention_probs_dropout_prob lowercase__ : str = max_position_embeddings lowercase__ : Dict = type_vocab_sizes lowercase__ : Optional[Any] = initializer_range lowercase__ : Dict = layer_norm_eps # Fine-tuning task hyperparameters lowercase__ : Any = positive_label_weight lowercase__ : int = num_aggregation_labels lowercase__ : List[str] = aggregation_loss_weight lowercase__ : Optional[int] = use_answer_as_supervision lowercase__ : Optional[Any] = answer_loss_importance lowercase__ : Union[str, Any] = use_normalized_answer_loss lowercase__ : str = huber_loss_delta lowercase__ : str = temperature lowercase__ : int = aggregation_temperature lowercase__ : List[Any] = use_gumbel_for_cells lowercase__ : Tuple = use_gumbel_for_aggregation lowercase__ : Union[str, Any] = average_approximation_function lowercase__ : Union[str, Any] = cell_selection_preference lowercase__ : Any = answer_loss_cutoff lowercase__ : List[Any] = max_num_rows lowercase__ : str = max_num_columns lowercase__ : int = average_logits_per_cell lowercase__ : str = select_one_column lowercase__ : str = allow_empty_column_selection lowercase__ : Any = init_cell_selection_weights_to_zero lowercase__ : Optional[int] = reset_position_index_per_cell lowercase__ : Union[str, Any] = disable_per_token_loss # Aggregation hyperparameters lowercase__ : Optional[Any] = aggregation_labels lowercase__ : List[Any] = no_aggregation_label_index if isinstance(self.aggregation_labels ,_snake_case ): lowercase__ : Union[str, Any] = {int(_snake_case ): v for k, v in aggregation_labels.items()}
16
1
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase__ : Dict = 1 lowercase__ : Tuple = 3 lowercase__ : str = (32, 32) lowercase__ : Tuple = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(_snake_case ) return image @property def UpperCAmelCase ( self : int ) -> Dict: """simple docstring""" torch.manual_seed(0 ) lowercase__ : str = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') ,up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') ,cross_attention_dim=32 ,) return model @property def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ : int = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,) return model @property def UpperCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ : int = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) return CLIPTextModel(_snake_case ) @property def UpperCAmelCase ( self : List[Any] ) -> int: """simple docstring""" def extract(*_snake_case : int ,**_snake_case : int ): class __A : '''simple docstring''' def __init__( self : int ) -> List[str]: """simple docstring""" lowercase__ : Union[str, Any] = torch.ones([0] ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : List[Any] ) -> Any: """simple docstring""" self.pixel_values.to(_snake_case ) return self return Out() return extract def UpperCAmelCase ( self : Dict ) -> str: """simple docstring""" lowercase__ : Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ : List[Any] = self.dummy_cond_unet lowercase__ : Optional[Any] = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule='''scaled_linear''' ,clip_sample=_snake_case ,set_alpha_to_one=_snake_case ,) lowercase__ : str = self.dummy_vae lowercase__ : int = self.dummy_text_encoder lowercase__ : Optional[int] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk lowercase__ : str = StableDiffusionPipeline( unet=_snake_case ,scheduler=_snake_case ,vae=_snake_case ,text_encoder=_snake_case ,tokenizer=_snake_case ,safety_checker=_snake_case ,feature_extractor=self.dummy_extractor ,) lowercase__ : Dict = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : Dict = '''A painting of a squirrel eating a burger''' lowercase__ : List[Any] = torch.Generator(device=_snake_case ).manual_seed(0 ) lowercase__ : int = sd_pipe([prompt] ,generator=_snake_case ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type='''np''' ) lowercase__ : Any = output.images lowercase__ : Union[str, Any] = torch.Generator(device=_snake_case ).manual_seed(0 ) lowercase__ : int = sd_pipe( [prompt] ,generator=_snake_case ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type='''np''' ,return_dict=_snake_case ,)[0] lowercase__ : Union[str, Any] = image[0, -3:, -3:, -1] lowercase__ : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__ : Tuple = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" lowercase__ : Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ : Union[str, Any] = self.dummy_cond_unet lowercase__ : Union[str, Any] = PNDMScheduler(skip_prk_steps=_snake_case ) lowercase__ : str = self.dummy_vae lowercase__ : int = self.dummy_text_encoder lowercase__ : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk lowercase__ : Optional[int] = StableDiffusionPipeline( unet=_snake_case ,scheduler=_snake_case ,vae=_snake_case ,text_encoder=_snake_case ,tokenizer=_snake_case ,safety_checker=_snake_case ,feature_extractor=self.dummy_extractor ,) lowercase__ : Any = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : int = '''A painting of a squirrel eating a burger''' lowercase__ : str = torch.Generator(device=_snake_case ).manual_seed(0 ) lowercase__ : Optional[Any] = sd_pipe([prompt] ,generator=_snake_case ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type='''np''' ) lowercase__ : int = output.images lowercase__ : Tuple = torch.Generator(device=_snake_case ).manual_seed(0 ) lowercase__ : int = sd_pipe( [prompt] ,generator=_snake_case ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type='''np''' ,return_dict=_snake_case ,)[0] lowercase__ : List[str] = image[0, -3:, -3:, -1] lowercase__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__ : int = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ : List[Any] = StableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-lms-pipe''' ,safety_checker=_snake_case ) assert isinstance(_snake_case ,_snake_case ) assert isinstance(pipe.scheduler ,_snake_case ) assert pipe.safety_checker is None lowercase__ : Union[str, Any] = pipe('''example prompt''' ,num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_snake_case ) lowercase__ : Tuple = StableDiffusionPipeline.from_pretrained(_snake_case ) # sanity check that the pipeline still works assert pipe.safety_checker is None lowercase__ : str = pipe('''example prompt''' ,num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != '''cuda''' ,'''This test requires a GPU''' ) def UpperCAmelCase ( self : str ) -> Dict: """simple docstring""" lowercase__ : Any = self.dummy_cond_unet lowercase__ : Optional[Any] = PNDMScheduler(skip_prk_steps=_snake_case ) lowercase__ : int = self.dummy_vae lowercase__ : List[str] = self.dummy_text_encoder lowercase__ : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # put models in fp16 lowercase__ : Dict = unet.half() lowercase__ : Any = vae.half() lowercase__ : Tuple = bert.half() # make sure here that pndm scheduler skips prk lowercase__ : Union[str, Any] = StableDiffusionPipeline( unet=_snake_case ,scheduler=_snake_case ,vae=_snake_case ,text_encoder=_snake_case ,tokenizer=_snake_case ,safety_checker=_snake_case ,feature_extractor=self.dummy_extractor ,) lowercase__ : str = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : Any = '''A painting of a squirrel eating a burger''' lowercase__ : Union[str, Any] = sd_pipe([prompt] ,num_inference_steps=2 ,output_type='''np''' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" lowercase__ : int = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' ,safety_checker=_snake_case ) lowercase__ : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowercase__ : str = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : Optional[int] = ( '''portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle''' ''' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with''' ''' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and''' ''' children from bahnhof zoo, detailed ''' ) lowercase__ : List[Any] = 4_003_660_346 lowercase__ : List[Any] = 7 # without safety guidance (sld_guidance_scale = 0) lowercase__ : Optional[Any] = torch.manual_seed(_snake_case ) lowercase__ : str = sd_pipe( [prompt] ,generator=_snake_case ,guidance_scale=_snake_case ,num_inference_steps=50 ,output_type='''np''' ,width=512 ,height=512 ,sld_guidance_scale=0 ,) lowercase__ : Dict = output.images lowercase__ : Union[str, Any] = image[0, -3:, -3:, -1] lowercase__ : int = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) lowercase__ : Optional[int] = torch.manual_seed(_snake_case ) lowercase__ : Optional[Any] = sd_pipe( [prompt] ,generator=_snake_case ,guidance_scale=_snake_case ,num_inference_steps=50 ,output_type='''np''' ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) lowercase__ : List[Any] = output.images lowercase__ : Dict = image[0, -3:, -3:, -1] lowercase__ : Optional[Any] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase ( self : Any ) -> Tuple: """simple docstring""" lowercase__ : Optional[Any] = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' ,safety_checker=_snake_case ) lowercase__ : Optional[Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowercase__ : Optional[Any] = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : List[Any] = '''padme amidala taking a bath artwork, safe for work, no nudity''' lowercase__ : Tuple = 2_734_971_755 lowercase__ : List[str] = 7 lowercase__ : Dict = torch.manual_seed(_snake_case ) lowercase__ : Union[str, Any] = sd_pipe( [prompt] ,generator=_snake_case ,guidance_scale=_snake_case ,num_inference_steps=50 ,output_type='''np''' ,width=512 ,height=512 ,sld_guidance_scale=0 ,) lowercase__ : str = output.images lowercase__ : List[Any] = image[0, -3:, -3:, -1] lowercase__ : Optional[Any] = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 lowercase__ : Tuple = torch.manual_seed(_snake_case ) lowercase__ : Union[str, Any] = sd_pipe( [prompt] ,generator=_snake_case ,guidance_scale=_snake_case ,num_inference_steps=50 ,output_type='''np''' ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) lowercase__ : int = output.images lowercase__ : Dict = image[0, -3:, -3:, -1] lowercase__ : Optional[int] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase ( self : Tuple ) -> Any: """simple docstring""" lowercase__ : str = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' ) lowercase__ : int = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : Optional[int] = ( '''the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.''' ''' leyendecker''' ) lowercase__ : List[Any] = 1_044_355_234 lowercase__ : Optional[int] = 12 lowercase__ : List[Any] = torch.manual_seed(_snake_case ) lowercase__ : Dict = sd_pipe( [prompt] ,generator=_snake_case ,guidance_scale=_snake_case ,num_inference_steps=50 ,output_type='''np''' ,width=512 ,height=512 ,sld_guidance_scale=0 ,) lowercase__ : str = output.images lowercase__ : Optional[Any] = image[0, -3:, -3:, -1] lowercase__ : List[str] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 lowercase__ : Optional[int] = torch.manual_seed(_snake_case ) lowercase__ : Any = sd_pipe( [prompt] ,generator=_snake_case ,guidance_scale=_snake_case ,num_inference_steps=50 ,output_type='''np''' ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) lowercase__ : Dict = output.images lowercase__ : Dict = image[0, -3:, -3:, -1] lowercase__ : Dict = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
16
"""simple docstring""" import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : '''simple docstring''' def __init__( self : Optional[int] ,_snake_case : Optional[Any] ,_snake_case : Union[str, Any]=13 ,_snake_case : Any=32 ,_snake_case : int=2 ,_snake_case : str=3 ,_snake_case : Optional[Any]=16 ,_snake_case : List[Any]=[1, 2, 1] ,_snake_case : Dict=[2, 2, 4] ,_snake_case : List[Any]=2 ,_snake_case : Any=2.0 ,_snake_case : Optional[int]=True ,_snake_case : Optional[int]=0.0 ,_snake_case : Union[str, Any]=0.0 ,_snake_case : str=0.1 ,_snake_case : List[Any]="gelu" ,_snake_case : Tuple=False ,_snake_case : Optional[int]=True ,_snake_case : str=0.02 ,_snake_case : List[str]=1e-5 ,_snake_case : int=True ,_snake_case : Dict=None ,_snake_case : str=True ,_snake_case : List[Any]=10 ,_snake_case : Any=8 ,) -> Union[str, Any]: """simple docstring""" lowercase__ : Dict = parent lowercase__ : Any = batch_size lowercase__ : Union[str, Any] = image_size lowercase__ : Dict = patch_size lowercase__ : int = num_channels lowercase__ : Any = embed_dim lowercase__ : int = depths lowercase__ : Dict = num_heads lowercase__ : List[Any] = window_size lowercase__ : int = mlp_ratio lowercase__ : Optional[int] = qkv_bias lowercase__ : str = hidden_dropout_prob lowercase__ : List[Any] = attention_probs_dropout_prob lowercase__ : Dict = drop_path_rate lowercase__ : int = hidden_act lowercase__ : Tuple = use_absolute_embeddings lowercase__ : Tuple = patch_norm lowercase__ : Tuple = layer_norm_eps lowercase__ : Optional[Any] = initializer_range lowercase__ : int = is_training lowercase__ : Optional[int] = scope lowercase__ : str = use_labels lowercase__ : Dict = type_sequence_label_size lowercase__ : Union[str, Any] = encoder_stride def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Optional[Any] = None if self.use_labels: lowercase__ : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" return SwinvaConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def UpperCAmelCase ( self : str ,_snake_case : Dict ,_snake_case : List[str] ,_snake_case : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ : Any = SwinvaModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : str = model(_snake_case ) lowercase__ : List[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase__ : Tuple = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : List[str] ,_snake_case : Optional[Any] ,_snake_case : int ) -> Any: """simple docstring""" lowercase__ : Union[str, Any] = SwinvaForMaskedImageModeling(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Tuple = model(_snake_case ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase__ : Optional[int] = 1 lowercase__ : List[Any] = SwinvaForMaskedImageModeling(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ : str = model(_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase ( self : str ,_snake_case : str ,_snake_case : str ,_snake_case : Tuple ) -> Any: """simple docstring""" lowercase__ : Tuple = self.type_sequence_label_size lowercase__ : Dict = SwinvaForImageClassification(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : str = model(_snake_case ,labels=_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self : Dict ) -> Dict: """simple docstring""" lowercase__ : Optional[int] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = config_and_inputs lowercase__ : List[str] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) lowerCAmelCase : Optional[int] = ( {"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification} if is_torch_available() else {} ) lowerCAmelCase : List[Any] = False lowerCAmelCase : Dict = False lowerCAmelCase : List[Any] = False lowerCAmelCase : Any = False def UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[Any] = SwinvaModelTester(self ) lowercase__ : List[str] = ConfigTester(self ,config_class=_snake_case ,embed_dim=37 ) def UpperCAmelCase ( self : int ) -> Any: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self : str ) -> List[Any]: """simple docstring""" lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) @unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''' ) def UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason='''Swinv2 does not use inputs_embeds''' ) def UpperCAmelCase ( self : List[str] ) -> str: """simple docstring""" pass def UpperCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[Any] = model_class(_snake_case ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) lowercase__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_snake_case ,nn.Linear ) ) def UpperCAmelCase ( self : int ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : str = model_class(_snake_case ) lowercase__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[Any] = [*signature.parameters.keys()] lowercase__ : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_snake_case ) def UpperCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Tuple = True for model_class in self.all_model_classes: lowercase__ : Optional[int] = True lowercase__ : str = False lowercase__ : Union[str, Any] = True lowercase__ : Optional[Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : str = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : Dict = outputs.attentions lowercase__ : Any = len(self.model_tester.depths ) self.assertEqual(len(_snake_case ) ,_snake_case ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ : List[Any] = True lowercase__ : Optional[Any] = config.window_size**2 lowercase__ : Any = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : List[str] = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : Optional[Any] = outputs.attentions self.assertEqual(len(_snake_case ) ,_snake_case ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) lowercase__ : Optional[Any] = len(_snake_case ) # Check attention is always last and order is fine lowercase__ : Optional[int] = True lowercase__ : Tuple = True lowercase__ : Optional[Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : Optional[Any] = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) if hasattr(self.model_tester ,'''num_hidden_states_types''' ): lowercase__ : int = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states lowercase__ : List[str] = 2 self.assertEqual(out_len + added_hidden_states ,len(_snake_case ) ) lowercase__ : Optional[int] = outputs.attentions self.assertEqual(len(_snake_case ) ,_snake_case ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) def UpperCAmelCase ( self : List[str] ,_snake_case : int ,_snake_case : List[str] ,_snake_case : Optional[int] ,_snake_case : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : List[Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : int = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : Optional[int] = outputs.hidden_states lowercase__ : List[Any] = getattr( self.model_tester ,'''expected_num_hidden_layers''' ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_snake_case ) ,_snake_case ) # Swinv2 has a different seq_length lowercase__ : Dict = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) lowercase__ : Tuple = outputs.reshaped_hidden_states self.assertEqual(len(_snake_case ) ,_snake_case ) lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[str] = reshaped_hidden_states[0].shape lowercase__ : int = ( reshaped_hidden_states[0].view(_snake_case ,_snake_case ,height * width ).permute(0 ,2 ,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def UpperCAmelCase ( self : Tuple ) -> int: """simple docstring""" lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowercase__ : List[str] = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,_snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : str = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,_snake_case ) def UpperCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = 3 lowercase__ : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase__ : Optional[int] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : Dict = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase__ : Dict = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowercase__ : str = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Dict = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,(padded_height, padded_width) ) def UpperCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_snake_case ) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Union[str, Any] = SwinvaModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Tuple = _config_zero_init(_snake_case ) for model_class in self.all_model_classes: lowercase__ : Optional[int] = model_class(config=_snake_case ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" ,) @require_vision @require_torch class __A ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" return ( AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self : Any ) -> List[str]: """simple docstring""" lowercase__ : str = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ).to( _snake_case ) lowercase__ : Union[str, Any] = self.default_image_processor lowercase__ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowercase__ : Dict = image_processor(images=_snake_case ,return_tensors='''pt''' ).to(_snake_case ) # forward pass with torch.no_grad(): lowercase__ : Optional[Any] = model(**_snake_case ) # verify the logits lowercase__ : str = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape ,_snake_case ) lowercase__ : Dict = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_snake_case ,atol=1e-4 ) )
16
1
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class __A ( A_ ): '''simple docstring''' @staticmethod @abstractmethod def UpperCAmelCase ( _snake_case : ArgumentParser ) -> Dict: """simple docstring""" raise NotImplementedError() @abstractmethod def UpperCAmelCase ( self : List[str] ) -> str: """simple docstring""" raise NotImplementedError()
16
"""simple docstring""" import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCAmelCase_ = version.parse(importlib_metadata.version('nltk')) if NLTK_VERSION >= version.Version('3.6.4'): from nltk import word_tokenize lowerCAmelCase_ = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n' lowerCAmelCase_ = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n' lowerCAmelCase_ = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''string''' ,id='''sequence''' ), '''references''': datasets.Value('''string''' ,id='''sequence''' ), } ) ,codebase_urls=['''https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'''] ,reference_urls=[ '''https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score''', '''https://en.wikipedia.org/wiki/METEOR''', ] ,) def UpperCAmelCase ( self : str ,_snake_case : Dict ) -> Dict: """simple docstring""" import nltk nltk.download('''wordnet''' ) if NLTK_VERSION >= version.Version('''3.6.5''' ): nltk.download('''punkt''' ) if NLTK_VERSION >= version.Version('''3.6.6''' ): nltk.download('''omw-1.4''' ) def UpperCAmelCase ( self : Dict ,_snake_case : Dict ,_snake_case : List[str] ,_snake_case : Tuple=0.9 ,_snake_case : Optional[int]=3 ,_snake_case : Union[str, Any]=0.5 ) -> List[str]: """simple docstring""" if NLTK_VERSION >= version.Version('''3.6.5''' ): lowercase__ : int = [ meteor_score.single_meteor_score( word_tokenize(_snake_case ) ,word_tokenize(_snake_case ) ,alpha=_snake_case ,beta=_snake_case ,gamma=_snake_case ) for ref, pred in zip(_snake_case ,_snake_case ) ] else: lowercase__ : Tuple = [ meteor_score.single_meteor_score(_snake_case ,_snake_case ,alpha=_snake_case ,beta=_snake_case ,gamma=_snake_case ) for ref, pred in zip(_snake_case ,_snake_case ) ] return {"meteor": np.mean(_snake_case )}
16
1
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" debug_launcher(test_script.main ) def UpperCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" debug_launcher(test_ops.main )
16
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = '▁' lowerCAmelCase_ = {'vocab_file': 'sentencepiece.bpe.model'} lowerCAmelCase_ = { 'vocab_file': { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model', } } lowerCAmelCase_ = { 'facebook/xglm-564M': 2_048, } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[Any] = VOCAB_FILES_NAMES lowerCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : int = ["input_ids", "attention_mask"] def __init__( self : int ,_snake_case : Dict ,_snake_case : Dict="<s>" ,_snake_case : Dict="</s>" ,_snake_case : str="</s>" ,_snake_case : Optional[Any]="<s>" ,_snake_case : Optional[Any]="<unk>" ,_snake_case : Optional[int]="<pad>" ,_snake_case : Optional[Dict[str, Any]] = None ,**_snake_case : str ,) -> None: """simple docstring""" lowercase__ : Any = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer lowercase__ : Any = 7 lowercase__ : Optional[int] = [f"""<madeupword{i}>""" for i in range(self.num_madeup_words )] lowercase__ : Dict = kwargs.get('''additional_special_tokens''' ,[] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=_snake_case ,eos_token=_snake_case ,unk_token=_snake_case ,sep_token=_snake_case ,cls_token=_snake_case ,pad_token=_snake_case ,sp_model_kwargs=self.sp_model_kwargs ,**_snake_case ,) lowercase__ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_snake_case ) ) lowercase__ : str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase__ : Optional[int] = 1 # Mimic fairseq token-to-id alignment for the first 4 token lowercase__ : Optional[int] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} lowercase__ : List[str] = len(self.sp_model ) lowercase__ : Tuple = {f"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(_snake_case ) lowercase__ : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : int ) -> Optional[int]: """simple docstring""" lowercase__ : List[Any] = self.__dict__.copy() lowercase__ : Optional[int] = None lowercase__ : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self : Dict ,_snake_case : List[str] ) -> Any: """simple docstring""" lowercase__ : int = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): lowercase__ : Dict = {} lowercase__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCAmelCase ( self : Any ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.sep_token_id] + token_ids_a lowercase__ : Optional[Any] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def UpperCAmelCase ( self : Any ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ,_snake_case : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case ,token_ids_a=_snake_case ,already_has_special_tokens=_snake_case ) if token_ids_a is None: return [1] + ([0] * len(_snake_case )) return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ : List[Any] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def UpperCAmelCase ( self : str ) -> Tuple: """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ : Union[str, Any] = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self : List[Any] ,_snake_case : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(_snake_case ,out_type=_snake_case ) def UpperCAmelCase ( self : int ,_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase__ : Tuple = self.sp_model.PieceToId(_snake_case ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase ( self : Any ,_snake_case : List[str] ) -> Any: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase ( self : Tuple ,_snake_case : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = ''''''.join(_snake_case ).replace(_snake_case ,''' ''' ).strip() return out_string def UpperCAmelCase ( self : Any ,_snake_case : str ,_snake_case : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_snake_case ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ : Any = os.path.join( _snake_case ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case ,'''wb''' ) as fi: lowercase__ : Dict = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,)
16
1
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase = 50 ) -> int: lowercase__ : int = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F'''{solution() = }''')
16
"""simple docstring""" import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = True ) -> Union[str, Any]: print(f"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 1_28: if name[-1] == "S": lowercase__ : str = timm.create_model('''levit_128s''' , pretrained=__lowerCamelCase ) else: lowercase__ : Tuple = timm.create_model('''levit_128''' , pretrained=__lowerCamelCase ) if hidden_sizes == 1_92: lowercase__ : Union[str, Any] = timm.create_model('''levit_192''' , pretrained=__lowerCamelCase ) if hidden_sizes == 2_56: lowercase__ : str = timm.create_model('''levit_256''' , pretrained=__lowerCamelCase ) if hidden_sizes == 3_84: lowercase__ : str = timm.create_model('''levit_384''' , pretrained=__lowerCamelCase ) from_model.eval() lowercase__ : Optional[int] = LevitForImageClassificationWithTeacher(__lowerCamelCase ).eval() lowercase__ : str = OrderedDict() lowercase__ : int = from_model.state_dict() lowercase__ : Dict = list(from_model.state_dict().keys() ) lowercase__ : Any = list(our_model.state_dict().keys() ) print(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) for i in range(len(__lowerCamelCase ) ): lowercase__ : str = weights[og_keys[i]] our_model.load_state_dict(__lowerCamelCase ) lowercase__ : Optional[int] = torch.randn((2, 3, 2_24, 2_24) ) lowercase__ : Optional[int] = from_model(__lowerCamelCase ) lowercase__ : List[Any] = our_model(__lowerCamelCase ).logits assert torch.allclose(__lowerCamelCase , __lowerCamelCase ), "The model logits don't match the original one." lowercase__ : Any = name print(__lowerCamelCase ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) lowercase__ : int = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f"""Pushed {checkpoint_name}""" ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = True ) -> List[Any]: lowercase__ : Any = '''imagenet-1k-id2label.json''' lowercase__ : Tuple = 10_00 lowercase__ : Dict = (1, num_labels) lowercase__ : List[str] = '''huggingface/label-files''' lowercase__ : str = num_labels lowercase__ : List[Any] = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ : Union[str, Any] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : Union[str, Any] = idalabel lowercase__ : Optional[int] = {v: k for k, v in idalabel.items()} lowercase__ : List[Any] = partial(__lowerCamelCase , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase ) lowercase__ : Tuple = { '''levit-128S''': 1_28, '''levit-128''': 1_28, '''levit-192''': 1_92, '''levit-256''': 2_56, '''levit-384''': 3_84, } lowercase__ : Any = { '''levit-128S''': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-128''': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-192''': ImageNetPreTrainedConfig( hidden_sizes=[1_92, 2_88, 3_84] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-256''': ImageNetPreTrainedConfig( hidden_sizes=[2_56, 3_84, 5_12] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-384''': ImageNetPreTrainedConfig( hidden_sizes=[3_84, 5_12, 7_68] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , __lowerCamelCase , names_to_config[model_name] , __lowerCamelCase , __lowerCamelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return config, expected_shape if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
16
1
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __A ( A_ ): '''simple docstring''' def __init__( self : str ,_snake_case : VQModel ,_snake_case : UNetaDModel ,_snake_case : DDIMScheduler ) -> str: """simple docstring""" super().__init__() self.register_modules(vqvae=_snake_case ,unet=_snake_case ,scheduler=_snake_case ) @torch.no_grad() def __call__( self : Optional[int] ,_snake_case : int = 1 ,_snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,_snake_case : float = 0.0 ,_snake_case : int = 50 ,_snake_case : Optional[str] = "pil" ,_snake_case : bool = True ,**_snake_case : Union[str, Any] ,) -> Union[Tuple, ImagePipelineOutput]: """simple docstring""" lowercase__ : List[str] = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) ,generator=_snake_case ,) lowercase__ : Union[str, Any] = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowercase__ : Union[str, Any] = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(_snake_case ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature lowercase__ : Any = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase__ : str = {} if accepts_eta: lowercase__ : Tuple = eta for t in self.progress_bar(self.scheduler.timesteps ): lowercase__ : Optional[Any] = self.scheduler.scale_model_input(_snake_case ,_snake_case ) # predict the noise residual lowercase__ : int = self.unet(_snake_case ,_snake_case ).sample # compute the previous noisy sample x_t -> x_t-1 lowercase__ : List[str] = self.scheduler.step(_snake_case ,_snake_case ,_snake_case ,**_snake_case ).prev_sample # decode the image latents with the VAE lowercase__ : Dict = self.vqvae.decode(_snake_case ).sample lowercase__ : Tuple = (image / 2 + 0.5).clamp(0 ,1 ) lowercase__ : Tuple = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": lowercase__ : int = self.numpy_to_pil(_snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=_snake_case )
16
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __A : '''simple docstring''' lowerCAmelCase : List[str] lowerCAmelCase : Optional[str] = None # Automatically constructed lowerCAmelCase : ClassVar[str] = "dict" lowerCAmelCase : ClassVar[Any] = None lowerCAmelCase : str = field(default="Translation" ,init=A_ ,repr=A_ ) def __call__( self : List[str] ) -> Any: """simple docstring""" return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def UpperCAmelCase ( self : List[str] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class __A : '''simple docstring''' lowerCAmelCase : Optional[List] = None lowerCAmelCase : Optional[int] = None lowerCAmelCase : Optional[str] = None # Automatically constructed lowerCAmelCase : ClassVar[str] = "dict" lowerCAmelCase : ClassVar[Any] = None lowerCAmelCase : str = field(default="TranslationVariableLanguages" ,init=A_ ,repr=A_ ) def UpperCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[int] = sorted(set(self.languages ) ) if self.languages else None lowercase__ : Dict = len(self.languages ) if self.languages else None def __call__( self : List[Any] ) -> List[Any]: """simple docstring""" return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def UpperCAmelCase ( self : Dict ,_snake_case : Tuple ) -> int: """simple docstring""" lowercase__ : List[Any] = set(self.languages ) if self.languages and set(_snake_case ) - lang_set: raise ValueError( f"""Some languages in example ({", ".join(sorted(set(_snake_case ) - lang_set ) )}) are not in valid set ({", ".join(_snake_case )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. lowercase__ : str = [] for lang, text in translation_dict.items(): if isinstance(_snake_case ,_snake_case ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. lowercase__ , lowercase__ : Optional[Any] = zip(*sorted(_snake_case ) ) return {"language": languages, "translation": translations} def UpperCAmelCase ( self : List[Any] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
16
1
"""simple docstring""" import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCAmelCase_ = version.parse(importlib_metadata.version('nltk')) if NLTK_VERSION >= version.Version('3.6.4'): from nltk import word_tokenize lowerCAmelCase_ = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n' lowerCAmelCase_ = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n' lowerCAmelCase_ = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''string''' ,id='''sequence''' ), '''references''': datasets.Value('''string''' ,id='''sequence''' ), } ) ,codebase_urls=['''https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'''] ,reference_urls=[ '''https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score''', '''https://en.wikipedia.org/wiki/METEOR''', ] ,) def UpperCAmelCase ( self : str ,_snake_case : Dict ) -> Dict: """simple docstring""" import nltk nltk.download('''wordnet''' ) if NLTK_VERSION >= version.Version('''3.6.5''' ): nltk.download('''punkt''' ) if NLTK_VERSION >= version.Version('''3.6.6''' ): nltk.download('''omw-1.4''' ) def UpperCAmelCase ( self : Dict ,_snake_case : Dict ,_snake_case : List[str] ,_snake_case : Tuple=0.9 ,_snake_case : Optional[int]=3 ,_snake_case : Union[str, Any]=0.5 ) -> List[str]: """simple docstring""" if NLTK_VERSION >= version.Version('''3.6.5''' ): lowercase__ : int = [ meteor_score.single_meteor_score( word_tokenize(_snake_case ) ,word_tokenize(_snake_case ) ,alpha=_snake_case ,beta=_snake_case ,gamma=_snake_case ) for ref, pred in zip(_snake_case ,_snake_case ) ] else: lowercase__ : Tuple = [ meteor_score.single_meteor_score(_snake_case ,_snake_case ,alpha=_snake_case ,beta=_snake_case ,gamma=_snake_case ) for ref, pred in zip(_snake_case ,_snake_case ) ] return {"meteor": np.mean(_snake_case )}
16
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase_ = 16 lowerCAmelCase_ = 32 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = 16 ) -> Optional[Any]: lowercase__ : Optional[Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowercase__ : int = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) lowercase__ : str = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCamelCase , max_length=__lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ : str = datasets.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : Union[str, Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ : List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ : Optional[int] = 16 elif accelerator.mixed_precision != "no": lowercase__ : List[Any] = 8 else: lowercase__ : int = None return tokenizer.pad( __lowerCamelCase , padding='''longest''' , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. lowercase__ : List[Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) lowercase__ : str = DataLoader( tokenized_datasets['''validation'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase_ = mocked_dataloaders # noqa: F811 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __lowerCamelCase ) == "1": lowercase__ : List[Any] = 2 # Initialize accelerator lowercase__ : Optional[int] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : str = config['''lr'''] lowercase__ : str = int(config['''num_epochs'''] ) lowercase__ : Optional[int] = int(config['''seed'''] ) lowercase__ : Tuple = int(config['''batch_size'''] ) lowercase__ : List[Any] = evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__lowerCamelCase ) def inner_training_loop(__lowerCamelCase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : List[str] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ : Tuple = model.to(accelerator.device ) # Instantiate optimizer lowercase__ : List[str] = AdamW(params=model.parameters() , lr=__lowerCamelCase ) lowercase__ , lowercase__ : List[Any] = get_dataloaders(__lowerCamelCase , __lowerCamelCase ) # Instantiate scheduler lowercase__ : Optional[int] = get_linear_schedule_with_warmup( optimizer=__lowerCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__lowerCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Optional[int] = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Now we train the model for epoch in range(__lowerCamelCase ): model.train() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase__ : Dict = model(**__lowerCamelCase ) lowercase__ : List[Any] = outputs.loss accelerator.backward(__lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ : Tuple = model(**__lowerCamelCase ) lowercase__ : Any = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ : int = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__lowerCamelCase , references=__lowerCamelCase , ) lowercase__ : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __lowerCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def __UpperCAmelCase ( ) -> Dict: lowercase__ : Optional[int] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__lowerCamelCase , default=__lowerCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowercase__ : int = parser.parse_args() lowercase__ : Union[str, Any] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
16
1
"""simple docstring""" import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def __UpperCAmelCase ( __lowerCamelCase ) -> float: return np.dot(__lowerCamelCase , __lowerCamelCase ) class __A : '''simple docstring''' def __init__( self : Optional[int] ,*, _snake_case : float = np.inf ,_snake_case : str = "linear" ,_snake_case : float = 0.0 ,) -> None: """simple docstring""" lowercase__ : str = regularization lowercase__ : List[str] = gamma if kernel == "linear": lowercase__ : Any = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('''rbf kernel requires gamma''' ) if not isinstance(self.gamma ,(float, int) ): raise ValueError('''gamma must be float or int''' ) if not self.gamma > 0: raise ValueError('''gamma must be > 0''' ) lowercase__ : Optional[int] = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: lowercase__ : int = f"""Unknown kernel: {kernel}""" raise ValueError(_snake_case ) def UpperCAmelCase ( self : str ,_snake_case : ndarray ,_snake_case : ndarray ) -> float: """simple docstring""" return np.dot(_snake_case ,_snake_case ) def UpperCAmelCase ( self : Dict ,_snake_case : ndarray ,_snake_case : ndarray ) -> float: """simple docstring""" return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : list[ndarray] ,_snake_case : ndarray ) -> None: """simple docstring""" lowercase__ : Union[str, Any] = observations lowercase__ : Tuple = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((lowercase__) , ) : Optional[int] = np.shape(_snake_case ) def to_minimize(_snake_case : ndarray ) -> float: lowercase__ : List[Any] = 0 ((lowercase__) , ) : Dict = np.shape(_snake_case ) for i in range(_snake_case ): for j in range(_snake_case ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] ,observations[j] ) ) return 1 / 2 * s - sum(_snake_case ) lowercase__ : Optional[int] = LinearConstraint(_snake_case ,0 ,0 ) lowercase__ : Any = Bounds(0 ,self.regularization ) lowercase__ : Optional[int] = minimize( _snake_case ,np.ones(_snake_case ) ,bounds=_snake_case ,constraints=[ly_contraint] ).x lowercase__ : Union[str, Any] = l_star # calculating mean offset of separation plane to points lowercase__ : Optional[Any] = 0 for i in range(_snake_case ): for j in range(_snake_case ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] ,observations[j] ) lowercase__ : Union[str, Any] = s / n def UpperCAmelCase ( self : Optional[Any] ,_snake_case : ndarray ) -> int: """simple docstring""" lowercase__ : int = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] ,_snake_case ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
16
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __UpperCAmelCase ( __lowerCamelCase ) -> Any: lowercase__ : Optional[int] = [] embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""", f"""stage{idx}.patch_embed.proj.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""", f"""stage{idx}.patch_embed.proj.bias""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""", f"""stage{idx}.patch_embed.norm.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""", f"""stage{idx}.patch_embed.norm.bias""", ) ) return embed def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Dict: lowercase__ : str = [] attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj.bias""", ) ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", f"""stage{idx}.blocks.{cnt}.norm1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", f"""stage{idx}.blocks.{cnt}.norm1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", f"""stage{idx}.blocks.{cnt}.norm2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", f"""stage{idx}.blocks.{cnt}.norm2.bias""") ) return attention_weights def __UpperCAmelCase ( __lowerCamelCase ) -> Tuple: lowercase__ : List[str] = [] token.append((f"""cvt.encoder.stages.{idx}.cls_token""", '''stage2.cls_token''') ) return token def __UpperCAmelCase ( ) -> Optional[int]: lowercase__ : List[str] = [] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: lowercase__ : List[Any] = '''imagenet-1k-id2label.json''' lowercase__ : Optional[Any] = 10_00 lowercase__ : Optional[Any] = '''huggingface/label-files''' lowercase__ : Dict = num_labels lowercase__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) ) , '''r''' ) ) lowercase__ : int = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = idalabel lowercase__ : str = {v: k for k, v in idalabel.items()} lowercase__ : Any = CvtConfig(num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13": lowercase__ : int = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21": lowercase__ : int = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowercase__ : List[Any] = [2, 2, 20] lowercase__ : Any = [3, 12, 16] lowercase__ : Tuple = [1_92, 7_68, 10_24] lowercase__ : List[Any] = CvtForImageClassification(__lowerCamelCase ) lowercase__ : str = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) lowercase__ : List[str] = image_size lowercase__ : Union[str, Any] = torch.load(__lowerCamelCase , map_location=torch.device('''cpu''' ) ) lowercase__ : int = OrderedDict() lowercase__ : List[Any] = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowercase__ : Any = list_of_state_dict + cls_token(__lowerCamelCase ) lowercase__ : Any = list_of_state_dict + embeddings(__lowerCamelCase ) for cnt in range(config.depth[idx] ): lowercase__ : Tuple = list_of_state_dict + attention(__lowerCamelCase , __lowerCamelCase ) lowercase__ : List[Any] = list_of_state_dict + final() for gg in list_of_state_dict: print(__lowerCamelCase ) for i in range(len(__lowerCamelCase ) ): lowercase__ : Optional[Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) image_processor.save_pretrained(__lowerCamelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=R'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCAmelCase_ = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
16
1
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str: if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError('''iterations must be defined as integers''' ) if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not number >= 1: raise ValueError( '''starting number must be and integer and be more than 0''' ) if not iterations >= 1: raise ValueError('''Iterations must be done more than 0 times to play FizzBuzz''' ) lowercase__ : Tuple = '''''' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(__lowerCamelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
16
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str: if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError('''iterations must be defined as integers''' ) if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not number >= 1: raise ValueError( '''starting number must be and integer and be more than 0''' ) if not iterations >= 1: raise ValueError('''Iterations must be done more than 0 times to play FizzBuzz''' ) lowercase__ : Tuple = '''''' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(__lowerCamelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
16
1
"""simple docstring""" import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip lowerCAmelCase_ = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def __UpperCAmelCase ( __lowerCamelCase ) -> Dict: if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]: return max(metric_fn(__lowerCamelCase , __lowerCamelCase ) for gt in ground_truths ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Any: lowercase__ : List[Any] = [line.strip() for line in open(__lowerCamelCase , '''r''' ).readlines()] lowercase__ : Union[str, Any] = [] if args.gold_data_mode == "qa": lowercase__ : List[Any] = pd.read_csv(__lowerCamelCase , sep='''\t''' , header=__lowerCamelCase ) for answer_list in data[1]: lowercase__ : List[str] = ast.literal_eval(__lowerCamelCase ) answers.append(__lowerCamelCase ) else: lowercase__ : int = [line.strip() for line in open(__lowerCamelCase , '''r''' ).readlines()] lowercase__ : str = [[reference] for reference in references] lowercase__ : str = 0 for prediction, ground_truths in zip(__lowerCamelCase , __lowerCamelCase ): total += 1 em += metric_max_over_ground_truths(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) fa += metric_max_over_ground_truths(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowercase__ : str = 1_0_0.0 * em / total lowercase__ : Tuple = 1_0_0.0 * fa / total logger.info(f"""F1: {fa:.2f}""" ) logger.info(f"""EM: {em:.2f}""" ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]: lowercase__ : Union[str, Any] = args.k lowercase__ : Tuple = [line.strip() for line in open(__lowerCamelCase , '''r''' ).readlines()] lowercase__ : Any = [line.strip() for line in open(__lowerCamelCase , '''r''' ).readlines()] lowercase__ : Dict = 0 for hypo, reference in zip(__lowerCamelCase , __lowerCamelCase ): lowercase__ : Tuple = set(hypo.split('''\t''' )[:k] ) lowercase__ : int = set(reference.split('''\t''' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k lowercase__ : int = 1_0_0.0 * em / total logger.info(f"""Precision@{k}: {em: .2f}""" ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]: def strip_title(__lowerCamelCase ): if title.startswith('''"''' ): lowercase__ : List[str] = title[1:] if title.endswith('''"''' ): lowercase__ : List[str] = title[:-1] return title lowercase__ : Optional[int] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __lowerCamelCase , return_tensors='''pt''' , padding=__lowerCamelCase , truncation=__lowerCamelCase , )['''input_ids'''].to(args.device ) lowercase__ : Tuple = rag_model.rag.question_encoder(__lowerCamelCase ) lowercase__ : Union[str, Any] = question_enc_outputs[0] lowercase__ : Dict = rag_model.retriever( __lowerCamelCase , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='''pt''' , ) lowercase__ : List[Any] = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) lowercase__ : Union[str, Any] = [] for docs in all_docs: lowercase__ : List[Any] = [strip_title(__lowerCamelCase ) for title in docs['''title''']] provenance_strings.append('''\t'''.join(__lowerCamelCase ) ) return provenance_strings def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str: with torch.no_grad(): lowercase__ : Union[str, Any] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __lowerCamelCase , return_tensors='''pt''' , padding=__lowerCamelCase , truncation=__lowerCamelCase ) lowercase__ : Dict = inputs_dict.input_ids.to(args.device ) lowercase__ : int = inputs_dict.attention_mask.to(args.device ) lowercase__ : Optional[Any] = rag_model.generate( # rag_model overwrites generate __lowerCamelCase , attention_mask=__lowerCamelCase , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=__lowerCamelCase , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) lowercase__ : Any = rag_model.retriever.generator_tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) if args.print_predictions: for q, a in zip(__lowerCamelCase , __lowerCamelCase ): logger.info('''Q: {} - A: {}'''.format(__lowerCamelCase , __lowerCamelCase ) ) return answers def __UpperCAmelCase ( ) -> str: lowercase__ : Any = argparse.ArgumentParser() parser.add_argument( '''--model_type''' , choices=['''rag_sequence''', '''rag_token''', '''bart'''] , type=__lowerCamelCase , help=( '''RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the''' ''' model_name_or_path''' ) , ) parser.add_argument( '''--index_name''' , default=__lowerCamelCase , choices=['''exact''', '''compressed''', '''legacy'''] , type=__lowerCamelCase , help='''RAG model retriever type''' , ) parser.add_argument( '''--index_path''' , default=__lowerCamelCase , type=__lowerCamelCase , help='''Path to the retrieval index''' , ) parser.add_argument('''--n_docs''' , default=5 , type=__lowerCamelCase , help='''Number of retrieved docs''' ) parser.add_argument( '''--model_name_or_path''' , default=__lowerCamelCase , type=__lowerCamelCase , required=__lowerCamelCase , help='''Path to pretrained checkpoints or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--eval_mode''' , choices=['''e2e''', '''retrieval'''] , default='''e2e''' , type=__lowerCamelCase , help=( '''Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates''' ''' precision@k.''' ) , ) parser.add_argument('''--k''' , default=1 , type=__lowerCamelCase , help='''k for the precision@k calculation''' ) parser.add_argument( '''--evaluation_set''' , default=__lowerCamelCase , type=__lowerCamelCase , required=__lowerCamelCase , help='''Path to a file containing evaluation samples''' , ) parser.add_argument( '''--gold_data_path''' , default=__lowerCamelCase , type=__lowerCamelCase , required=__lowerCamelCase , help='''Path to a tab-separated file with gold samples''' , ) parser.add_argument( '''--gold_data_mode''' , default='''qa''' , type=__lowerCamelCase , choices=['''qa''', '''ans'''] , help=( '''Format of the gold data file''' '''qa - a single line in the following format: question [tab] answer_list''' '''ans - a single line of the gold file contains the expected answer string''' ) , ) parser.add_argument( '''--predictions_path''' , type=__lowerCamelCase , default='''predictions.txt''' , help='''Name of the predictions file, to be stored in the checkpoints directory''' , ) parser.add_argument( '''--eval_all_checkpoints''' , action='''store_true''' , help='''Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number''' , ) parser.add_argument( '''--eval_batch_size''' , default=8 , type=__lowerCamelCase , help='''Batch size per GPU/CPU for evaluation.''' , ) parser.add_argument( '''--recalculate''' , help='''Recalculate predictions even if the prediction file exists''' , action='''store_true''' , ) parser.add_argument( '''--num_beams''' , default=4 , type=__lowerCamelCase , help='''Number of beams to be used when generating answers''' , ) parser.add_argument('''--min_length''' , default=1 , type=__lowerCamelCase , help='''Min length of the generated answers''' ) parser.add_argument('''--max_length''' , default=50 , type=__lowerCamelCase , help='''Max length of the generated answers''' ) parser.add_argument( '''--print_predictions''' , action='''store_true''' , help='''If True, prints predictions while evaluating.''' , ) parser.add_argument( '''--print_docs''' , action='''store_true''' , help='''If True, prints docs retried while generating.''' , ) lowercase__ : List[Any] = parser.parse_args() lowercase__ : Dict = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) return args def __UpperCAmelCase ( __lowerCamelCase ) -> str: lowercase__ : str = {} if args.model_type is None: lowercase__ : int = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('''rag''' ): lowercase__ : str = RagTokenForGeneration if args.model_type == '''rag_token''' else RagSequenceForGeneration lowercase__ : Union[str, Any] = args.n_docs if args.index_name is not None: lowercase__ : Any = args.index_name if args.index_path is not None: lowercase__ : List[str] = args.index_path else: lowercase__ : Union[str, Any] = BartForConditionalGeneration lowercase__ : Tuple = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('''Evaluate the following checkpoints: %s''' , __lowerCamelCase ) lowercase__ : Optional[int] = get_scores if args.eval_mode == '''e2e''' else get_precision_at_k lowercase__ : Union[str, Any] = evaluate_batch_eae if args.eval_mode == '''e2e''' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('''Calculating metrics based on an existing predictions file: {}'''.format(args.predictions_path ) ) score_fn(__lowerCamelCase , args.predictions_path , args.gold_data_path ) continue logger.info('''***** Running evaluation for {} *****'''.format(__lowerCamelCase ) ) logger.info(''' Batch size = %d''' , args.eval_batch_size ) logger.info(''' Predictions will be stored under {}'''.format(args.predictions_path ) ) if args.model_type.startswith('''rag''' ): lowercase__ : Any = RagRetriever.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) lowercase__ : Optional[int] = model_class.from_pretrained(__lowerCamelCase , retriever=__lowerCamelCase , **__lowerCamelCase ) model.retriever.init_retrieval() else: lowercase__ : str = model_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) model.to(args.device ) with open(args.evaluation_set , '''r''' ) as eval_file, open(args.predictions_path , '''w''' ) as preds_file: lowercase__ : Dict = [] for line in tqdm(__lowerCamelCase ): questions.append(line.strip() ) if len(__lowerCamelCase ) == args.eval_batch_size: lowercase__ : Optional[int] = evaluate_batch_fn(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) preds_file.write('''\n'''.join(__lowerCamelCase ) + '''\n''' ) preds_file.flush() lowercase__ : List[Any] = [] if len(__lowerCamelCase ) > 0: lowercase__ : Union[str, Any] = evaluate_batch_fn(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) preds_file.write('''\n'''.join(__lowerCamelCase ) ) preds_file.flush() score_fn(__lowerCamelCase , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": lowerCAmelCase_ = get_args() main(args)
16
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : '''simple docstring''' def __init__( self : str ,_snake_case : List[Any] ,_snake_case : Optional[int]=3 ,_snake_case : Optional[int]=32 ,_snake_case : Union[str, Any]=3 ,_snake_case : int=10 ,_snake_case : List[str]=[10, 20, 30, 40] ,_snake_case : Any=[1, 1, 2, 1] ,_snake_case : int=True ,_snake_case : Optional[Any]=True ,_snake_case : Union[str, Any]="relu" ,_snake_case : Dict=3 ,_snake_case : Any=None ,) -> str: """simple docstring""" lowercase__ : int = parent lowercase__ : Optional[Any] = batch_size lowercase__ : Optional[Any] = image_size lowercase__ : Optional[Any] = num_channels lowercase__ : Optional[Any] = embeddings_size lowercase__ : Optional[Any] = hidden_sizes lowercase__ : str = depths lowercase__ : Tuple = is_training lowercase__ : List[Any] = use_labels lowercase__ : Union[str, Any] = hidden_act lowercase__ : Union[str, Any] = num_labels lowercase__ : Tuple = scope lowercase__ : Optional[Any] = len(_snake_case ) def UpperCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Tuple = None if self.use_labels: lowercase__ : Dict = ids_tensor([self.batch_size] ,self.num_labels ) lowercase__ : int = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" return ResNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def UpperCAmelCase ( self : List[str] ,_snake_case : Optional[int] ,_snake_case : int ,_snake_case : Tuple ) -> List[Any]: """simple docstring""" lowercase__ : Optional[int] = TFResNetModel(config=_snake_case ) lowercase__ : List[str] = model(_snake_case ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def UpperCAmelCase ( self : Optional[int] ,_snake_case : Optional[Any] ,_snake_case : int ,_snake_case : Any ) -> Tuple: """simple docstring""" lowercase__ : Tuple = self.num_labels lowercase__ : Union[str, Any] = TFResNetForImageClassification(_snake_case ) lowercase__ : List[str] = model(_snake_case ,labels=_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCAmelCase ( self : Tuple ) -> str: """simple docstring""" lowercase__ : Dict = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = config_and_inputs lowercase__ : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[int] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () lowerCAmelCase : Any = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) lowerCAmelCase : List[Any] = False lowerCAmelCase : List[Any] = False lowerCAmelCase : int = False lowerCAmelCase : Union[str, Any] = False lowerCAmelCase : List[str] = False def UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = TFResNetModelTester(self ) lowercase__ : int = ConfigTester(self ,config_class=_snake_case ,has_text_modality=_snake_case ) def UpperCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" return @unittest.skip(reason='''ResNet does not use inputs_embeds''' ) def UpperCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass @unittest.skip(reason='''ResNet does not support input and output embeddings''' ) def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" pass def UpperCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : str = model_class(_snake_case ) lowercase__ : Dict = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[int] = [*signature.parameters.keys()] lowercase__ : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_snake_case ) def UpperCAmelCase ( self : Tuple ) -> Any: """simple docstring""" lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" def check_hidden_states_output(_snake_case : Optional[int] ,_snake_case : List[str] ,_snake_case : Optional[Any] ): lowercase__ : str = model_class(_snake_case ) lowercase__ : Union[str, Any] = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__ : Tuple = self.model_tester.num_stages self.assertEqual(len(_snake_case ) ,expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase__ : List[Any] = layer_type lowercase__ : Dict = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Dict = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def UpperCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Optional[Any] = TFResNetModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def __UpperCAmelCase ( ) -> Dict: lowercase__ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class __A ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self : str ) -> Any: """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ : Tuple = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowercase__ : Any = self.default_image_processor lowercase__ : int = prepare_img() lowercase__ : Tuple = image_processor(images=_snake_case ,return_tensors='''tf''' ) # forward pass lowercase__ : Dict = model(**_snake_case ) # verify the logits lowercase__ : List[str] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape ,_snake_case ) lowercase__ : Any = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() ,_snake_case ,atol=1e-4 ) )
16
1
"""simple docstring""" import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class __A : '''simple docstring''' def __init__( self : List[Any] ,_snake_case : Optional[int] ,_snake_case : int ,_snake_case : int ) -> Tuple: """simple docstring""" if dst_width < 0 or dst_height < 0: raise ValueError('''Destination width/height should be > 0''' ) lowercase__ : Dict = img lowercase__ : List[Any] = img.shape[1] lowercase__ : Optional[Any] = img.shape[0] lowercase__ : List[Any] = dst_width lowercase__ : Any = dst_height lowercase__ : Union[str, Any] = self.src_w / self.dst_w lowercase__ : str = self.src_h / self.dst_h lowercase__ : Any = ( np.ones((self.dst_h, self.dst_w, 3) ,np.uinta ) * 255 ) def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" for i in range(self.dst_h ): for j in range(self.dst_w ): lowercase__ : Optional[int] = self.img[self.get_y(_snake_case )][self.get_x(_snake_case )] def UpperCAmelCase ( self : Dict ,_snake_case : int ) -> int: """simple docstring""" return int(self.ratio_x * x ) def UpperCAmelCase ( self : Optional[int] ,_snake_case : int ) -> int: """simple docstring""" return int(self.ratio_y * y ) if __name__ == "__main__": lowerCAmelCase_ ,lowerCAmelCase_ = 800, 600 lowerCAmelCase_ = imread('image_data/lena.jpg', 1) lowerCAmelCase_ = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F'''Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}''', n.output ) waitKey(0) destroyAllWindows()
16
"""simple docstring""" import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: if "model" in orig_key: lowercase__ : Tuple = orig_key.replace('''model.''' , '''''' ) if "norm1" in orig_key: lowercase__ : List[str] = orig_key.replace('''norm1''' , '''attention.output.LayerNorm''' ) if "norm2" in orig_key: lowercase__ : List[str] = orig_key.replace('''norm2''' , '''output.LayerNorm''' ) if "norm" in orig_key: lowercase__ : List[str] = orig_key.replace('''norm''' , '''LayerNorm''' ) if "transformer" in orig_key: lowercase__ : Union[str, Any] = orig_key.split('''.''' )[0].split('''_''' )[-1] lowercase__ : List[str] = orig_key.replace(f"""transformer_{layer_num}""" , f"""encoder.layer.{layer_num}""" ) if "mha.attn" in orig_key: lowercase__ : Union[str, Any] = orig_key.replace('''mha.attn''' , '''attention.self''' ) if "mha" in orig_key: lowercase__ : str = orig_key.replace('''mha''' , '''attention''' ) if "W_q" in orig_key: lowercase__ : Any = orig_key.replace('''W_q''' , '''self.query''' ) if "W_k" in orig_key: lowercase__ : List[Any] = orig_key.replace('''W_k''' , '''self.key''' ) if "W_v" in orig_key: lowercase__ : Any = orig_key.replace('''W_v''' , '''self.value''' ) if "ff1" in orig_key: lowercase__ : Optional[int] = orig_key.replace('''ff1''' , '''intermediate.dense''' ) if "ff2" in orig_key: lowercase__ : Optional[Any] = orig_key.replace('''ff2''' , '''output.dense''' ) if "ff" in orig_key: lowercase__ : List[str] = orig_key.replace('''ff''' , '''output.dense''' ) if "mlm_class" in orig_key: lowercase__ : int = orig_key.replace('''mlm.mlm_class''' , '''cls.predictions.decoder''' ) if "mlm" in orig_key: lowercase__ : Optional[Any] = orig_key.replace('''mlm''' , '''cls.predictions.transform''' ) if "cls" not in orig_key: lowercase__ : Optional[Any] = '''yoso.''' + orig_key return orig_key def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: for key in orig_state_dict.copy().keys(): lowercase__ : Optional[Any] = orig_state_dict.pop(__lowerCamelCase ) if ("pooler" in key) or ("sen_class" in key): continue else: lowercase__ : Tuple = val lowercase__ : Union[str, Any] = orig_state_dict['''cls.predictions.decoder.bias'''] lowercase__ : List[str] = torch.arange(__lowerCamelCase ).expand((1, -1) ) + 2 return orig_state_dict def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : Tuple = torch.load(__lowerCamelCase , map_location='''cpu''' )['''model_state_dict'''] lowercase__ : List[Any] = YosoConfig.from_json_file(__lowerCamelCase ) lowercase__ : List[Any] = YosoForMaskedLM(__lowerCamelCase ) lowercase__ : Optional[Any] = convert_checkpoint_helper(config.max_position_embeddings , __lowerCamelCase ) print(model.load_state_dict(__lowerCamelCase ) ) model.eval() model.save_pretrained(__lowerCamelCase ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to YOSO pytorch checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for YOSO model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase_ = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
16
1