code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import torch from torch import nn class __A ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ,_snake_case : Any ,_snake_case : str ,_snake_case : List[Any] ,_snake_case : str ,_snake_case : Optional[Any]=1 ,_snake_case : List[str]=False ) -> Optional[Any]: """simple docstring""" super().__init__() lowercase__ : Optional[Any] = n_token lowercase__ : List[str] = d_embed lowercase__ : int = d_proj lowercase__ : Union[str, Any] = cutoffs + [n_token] lowercase__ : Optional[Any] = [0] + self.cutoffs lowercase__ : Optional[Any] = div_val lowercase__ : Dict = self.cutoffs[0] lowercase__ : str = len(self.cutoffs ) - 1 lowercase__ : Optional[Any] = self.shortlist_size + self.n_clusters if self.n_clusters > 0: lowercase__ : List[Any] = nn.Parameter(torch.zeros(self.n_clusters ,self.d_embed ) ) lowercase__ : Any = nn.Parameter(torch.zeros(self.n_clusters ) ) lowercase__ : Dict = nn.ModuleList() lowercase__ : Optional[Any] = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(_snake_case ,_snake_case ) ) ) else: self.out_projs.append(_snake_case ) self.out_layers.append(nn.Linear(_snake_case ,_snake_case ) ) else: for i in range(len(self.cutoffs ) ): lowercase__ , lowercase__ : Tuple = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowercase__ : List[str] = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(_snake_case ,_snake_case ) ) ) self.out_layers.append(nn.Linear(_snake_case ,r_idx - l_idx ) ) lowercase__ : Union[str, Any] = keep_order def UpperCAmelCase ( self : List[Any] ,_snake_case : int ,_snake_case : Union[str, Any] ,_snake_case : int ,_snake_case : Optional[Any] ) -> Tuple: """simple docstring""" if proj is None: lowercase__ : List[Any] = nn.functional.linear(_snake_case ,_snake_case ,bias=_snake_case ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: lowercase__ : List[str] = nn.functional.linear(_snake_case ,proj.t().contiguous() ) lowercase__ : Tuple = nn.functional.linear(_snake_case ,_snake_case ,bias=_snake_case ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def UpperCAmelCase ( self : Dict ,_snake_case : List[str] ,_snake_case : Dict=None ,_snake_case : Dict=False ) -> Optional[int]: """simple docstring""" if labels is not None: # Shift so that tokens < n predict n lowercase__ : List[str] = hidden[..., :-1, :].contiguous() lowercase__ : List[str] = labels[..., 1:].contiguous() lowercase__ : str = hidden.view(-1 ,hidden.size(-1 ) ) lowercase__ : int = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('''Input and labels should have the same size in the batch dimension.''' ) else: lowercase__ : str = hidden.view(-1 ,hidden.size(-1 ) ) if self.n_clusters == 0: lowercase__ : int = self._compute_logit(_snake_case ,self.out_layers[0].weight ,self.out_layers[0].bias ,self.out_projs[0] ) if labels is not None: lowercase__ : Dict = labels != -100 lowercase__ : Union[str, Any] = torch.zeros_like(_snake_case ,dtype=hidden.dtype ,device=hidden.device ) lowercase__ : List[str] = ( -nn.functional.log_softmax(_snake_case ,dim=-1 )[mask].gather(1 ,labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: lowercase__ : str = nn.functional.log_softmax(_snake_case ,dim=-1 ) else: # construct weights and biases lowercase__ , lowercase__ : Dict = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowercase__ , lowercase__ : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowercase__ : List[str] = self.out_layers[0].weight[l_idx:r_idx] lowercase__ : int = self.out_layers[0].bias[l_idx:r_idx] else: lowercase__ : Union[str, Any] = self.out_layers[i].weight lowercase__ : List[str] = self.out_layers[i].bias if i == 0: lowercase__ : int = torch.cat([weight_i, self.cluster_weight] ,dim=0 ) lowercase__ : Tuple = torch.cat([bias_i, self.cluster_bias] ,dim=0 ) weights.append(_snake_case ) biases.append(_snake_case ) lowercase__ , lowercase__ , lowercase__ : Optional[Any] = weights[0], biases[0], self.out_projs[0] lowercase__ : Optional[int] = self._compute_logit(_snake_case ,_snake_case ,_snake_case ,_snake_case ) lowercase__ : Tuple = nn.functional.log_softmax(_snake_case ,dim=1 ) if labels is None: lowercase__ : Any = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: lowercase__ : List[Any] = torch.zeros_like(_snake_case ,dtype=hidden.dtype ,device=hidden.device ) lowercase__ : Any = 0 lowercase__ : Optional[int] = [0] + self.cutoffs for i in range(len(_snake_case ) - 1 ): lowercase__ , lowercase__ : Any = cutoff_values[i], cutoff_values[i + 1] if labels is not None: lowercase__ : Dict = (labels >= l_idx) & (labels < r_idx) lowercase__ : Optional[int] = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue lowercase__ : Optional[int] = labels.index_select(0 ,_snake_case ) - l_idx lowercase__ : Tuple = head_logprob.index_select(0 ,_snake_case ) lowercase__ : List[Any] = hidden.index_select(0 ,_snake_case ) else: lowercase__ : int = hidden if i == 0: if labels is not None: lowercase__ : str = head_logprob_i.gather(1 ,target_i[:, None] ).squeeze(1 ) else: lowercase__ : Dict = head_logprob[:, : self.cutoffs[0]] else: lowercase__ , lowercase__ , lowercase__ : Optional[Any] = weights[i], biases[i], self.out_projs[i] lowercase__ : Optional[Any] = self._compute_logit(_snake_case ,_snake_case ,_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = nn.functional.log_softmax(_snake_case ,dim=1 ) lowercase__ : Optional[int] = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: lowercase__ : Dict = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 ,target_i[:, None] ).squeeze(1 ) else: lowercase__ : List[str] = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i lowercase__ : Optional[Any] = logprob_i if labels is not None: if (hasattr(self ,'''keep_order''' ) and self.keep_order) or keep_order: out.index_copy_(0 ,_snake_case ,-logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def UpperCAmelCase ( self : Optional[Any] ,_snake_case : List[str] ) -> int: """simple docstring""" if self.n_clusters == 0: lowercase__ : List[Any] = self._compute_logit(_snake_case ,self.out_layers[0].weight ,self.out_layers[0].bias ,self.out_projs[0] ) return nn.functional.log_softmax(_snake_case ,dim=-1 ) else: # construct weights and biases lowercase__ , lowercase__ : Optional[Any] = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowercase__ , lowercase__ : List[str] = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowercase__ : List[Any] = self.out_layers[0].weight[l_idx:r_idx] lowercase__ : List[Any] = self.out_layers[0].bias[l_idx:r_idx] else: lowercase__ : Optional[int] = self.out_layers[i].weight lowercase__ : int = self.out_layers[i].bias if i == 0: lowercase__ : str = torch.cat([weight_i, self.cluster_weight] ,dim=0 ) lowercase__ : Dict = torch.cat([bias_i, self.cluster_bias] ,dim=0 ) weights.append(_snake_case ) biases.append(_snake_case ) lowercase__ , lowercase__ , lowercase__ : List[str] = weights[0], biases[0], self.out_projs[0] lowercase__ : Optional[Any] = self._compute_logit(_snake_case ,_snake_case ,_snake_case ,_snake_case ) lowercase__ : Optional[Any] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) lowercase__ : List[Any] = nn.functional.log_softmax(_snake_case ,dim=1 ) lowercase__ : Optional[Any] = [0] + self.cutoffs for i in range(len(_snake_case ) - 1 ): lowercase__ , lowercase__ : Union[str, Any] = cutoff_values[i], cutoff_values[i + 1] if i == 0: lowercase__ : Dict = head_logprob[:, : self.cutoffs[0]] else: lowercase__ , lowercase__ , lowercase__ : List[str] = weights[i], biases[i], self.out_projs[i] lowercase__ : Any = self._compute_logit(_snake_case ,_snake_case ,_snake_case ,_snake_case ) lowercase__ : Any = nn.functional.log_softmax(_snake_case ,dim=1 ) lowercase__ : Any = head_logprob[:, -i] + tail_logprob_i lowercase__ : str = logprob_i return out
16
"""simple docstring""" import os def __UpperCAmelCase ( ) -> int: with open(os.path.dirname(__lowerCamelCase ) + '''/p022_names.txt''' ) as file: lowercase__ : List[Any] = str(file.readlines()[0] ) lowercase__ : Dict = names.replace('''"''' , '''''' ).split(''',''' ) names.sort() lowercase__ : int = 0 lowercase__ : Optional[Any] = 0 for i, name in enumerate(__lowerCamelCase ): for letter in name: name_score += ord(__lowerCamelCase ) - 64 total_score += (i + 1) * name_score lowercase__ : List[str] = 0 return total_score if __name__ == "__main__": print(solution())
16
1
"""simple docstring""" from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar lowerCAmelCase_ = TypeVar('T') lowerCAmelCase_ = TypeVar('U') class __A ( Generic[T, U] ): '''simple docstring''' def __init__( self : Any ,_snake_case : T | None ,_snake_case : U | None ) -> int: """simple docstring""" lowercase__ : Union[str, Any] = key lowercase__ : Dict = val lowercase__ : DoubleLinkedListNode[T, U] | None = None lowercase__ : DoubleLinkedListNode[T, U] | None = None def __repr__( self : Any ) -> str: """simple docstring""" return ( f"""Node: key: {self.key}, val: {self.val}, """ f"""has next: {bool(self.next )}, has prev: {bool(self.prev )}""" ) class __A ( Generic[T, U] ): '''simple docstring''' def __init__( self : List[str] ) -> None: """simple docstring""" lowercase__ : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(_snake_case ,_snake_case ) lowercase__ : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(_snake_case ,_snake_case ) lowercase__ , lowercase__ : Any = self.rear, self.head def __repr__( self : Optional[Any] ) -> str: """simple docstring""" lowercase__ : Any = ['''DoubleLinkedList'''] lowercase__ : Dict = self.head while node.next is not None: rep.append(str(_snake_case ) ) lowercase__ : str = node.next rep.append(str(self.rear ) ) return ",\n ".join(_snake_case ) def UpperCAmelCase ( self : int ,_snake_case : DoubleLinkedListNode[T, U] ) -> None: """simple docstring""" lowercase__ : Dict = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None lowercase__ : str = node lowercase__ : str = previous lowercase__ : List[Any] = node lowercase__ : Tuple = self.rear def UpperCAmelCase ( self : Optional[Any] ,_snake_case : DoubleLinkedListNode[T, U] ) -> DoubleLinkedListNode[T, U] | None: """simple docstring""" if node.prev is None or node.next is None: return None lowercase__ : Dict = node.next lowercase__ : Any = node.prev lowercase__ : int = None lowercase__ : int = None return node class __A ( Generic[T, U] ): '''simple docstring''' lowerCAmelCase : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self : Any ,_snake_case : int ) -> Any: """simple docstring""" lowercase__ : DoubleLinkedList[T, U] = DoubleLinkedList() lowercase__ : Optional[Any] = capacity lowercase__ : Tuple = 0 lowercase__ : List[str] = 0 lowercase__ : Dict = 0 lowercase__ : dict[T, DoubleLinkedListNode[T, U]] = {} def __repr__( self : str ) -> str: """simple docstring""" return ( f"""CacheInfo(hits={self.hits}, misses={self.miss}, """ f"""capacity={self.capacity}, current size={self.num_keys})""" ) def __contains__( self : Optional[int] ,_snake_case : T ) -> bool: """simple docstring""" return key in self.cache def UpperCAmelCase ( self : Any ,_snake_case : T ) -> U | None: """simple docstring""" if key in self.cache: self.hits += 1 lowercase__ : DoubleLinkedListNode[T, U] = self.cache[key] lowercase__ : Dict = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(_snake_case ) return node.val self.miss += 1 return None def UpperCAmelCase ( self : int ,_snake_case : T ,_snake_case : U ) -> None: """simple docstring""" if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity lowercase__ : Dict = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(_snake_case ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 lowercase__ : Union[str, Any] = DoubleLinkedListNode(_snake_case ,_snake_case ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value lowercase__ : List[str] = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list lowercase__ : str = value self.list.add(_snake_case ) @classmethod def UpperCAmelCase ( cls : Union[str, Any] ,_snake_case : int = 128 ) -> Callable[[Callable[[T], U]], Callable[..., U]]: """simple docstring""" def cache_decorator_inner(_snake_case : Callable[[T], U] ) -> Callable[..., U]: def cache_decorator_wrapper(*_snake_case : T ) -> U: if func not in cls.decorator_function_to_instance_map: lowercase__ : Tuple = LRUCache(_snake_case ) lowercase__ : Union[str, Any] = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: lowercase__ : List[str] = func(*_snake_case ) cls.decorator_function_to_instance_map[func].put(args[0] ,_snake_case ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(_snake_case ,'''cache_info''' ,_snake_case ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
16
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(A_ ) class __A ( A_ ): '''simple docstring''' def __init__( self : List[str] ,**_snake_case : Dict ) -> List[Any]: """simple docstring""" super().__init__(**_snake_case ) requires_backends(self ,'''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[int] ,_snake_case : Union[str, List[str], "Image", List["Image"]] ,**_snake_case : int ) -> Optional[Any]: """simple docstring""" return super().__call__(_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Dict ,**_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ : List[str] = {} if "candidate_labels" in kwargs: lowercase__ : Any = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: lowercase__ : Optional[Any] = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[int] ,_snake_case : Dict=None ,_snake_case : Union[str, Any]="This is a photo of {}." ) -> List[str]: """simple docstring""" lowercase__ : List[Any] = load_image(_snake_case ) lowercase__ : int = self.image_processor(images=[image] ,return_tensors=self.framework ) lowercase__ : str = candidate_labels lowercase__ : Dict = [hypothesis_template.format(_snake_case ) for x in candidate_labels] lowercase__ : Any = self.tokenizer(_snake_case ,return_tensors=self.framework ,padding=_snake_case ) lowercase__ : Optional[int] = [text_inputs] return inputs def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ : Optional[int] = model_inputs.pop('''candidate_labels''' ) lowercase__ : Union[str, Any] = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] ,_snake_case ): lowercase__ : List[str] = text_inputs[0] else: # Batching case. lowercase__ : int = text_inputs[0][0] lowercase__ : Tuple = self.model(**_snake_case ,**_snake_case ) lowercase__ : Union[str, Any] = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def UpperCAmelCase ( self : Any ,_snake_case : Tuple ) -> Any: """simple docstring""" lowercase__ : Dict = model_outputs.pop('''candidate_labels''' ) lowercase__ : Optional[Any] = model_outputs['''logits'''][0] if self.framework == "pt": lowercase__ : Optional[int] = logits.softmax(dim=-1 ).squeeze(-1 ) lowercase__ : Tuple = probs.tolist() if not isinstance(_snake_case ,_snake_case ): lowercase__ : Any = [scores] elif self.framework == "tf": lowercase__ : List[str] = stable_softmax(_snake_case ,axis=-1 ) lowercase__ : Optional[Any] = probs.numpy().tolist() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) lowercase__ : Union[str, Any] = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(_snake_case ,_snake_case ) ,key=lambda _snake_case : -x[0] ) ] return result
16
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['PLBartTokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'PLBartForCausalLM', 'PLBartForConditionalGeneration', 'PLBartForSequenceClassification', 'PLBartModel', 'PLBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
16
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[Any]: print('''\nThe shortest path matrix using Floyd Warshall algorithm\n''' ) for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): if dist[i][j] != float('''inf''' ): print(int(dist[i][j] ) , end='''\t''' ) else: print('''INF''' , end='''\t''' ) print() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : str = [[float('''inf''' ) for _ in range(__lowerCamelCase )] for _ in range(__lowerCamelCase )] for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): lowercase__ : List[str] = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(__lowerCamelCase ): # looping through rows of graph array for i in range(__lowerCamelCase ): # looping through columns of graph array for j in range(__lowerCamelCase ): if ( dist[i][k] != float('''inf''' ) and dist[k][j] != float('''inf''' ) and dist[i][k] + dist[k][j] < dist[i][j] ): lowercase__ : str = dist[i][k] + dist[k][j] _print_dist(__lowerCamelCase , __lowerCamelCase ) return dist, v if __name__ == "__main__": lowerCAmelCase_ = int(input('Enter number of vertices: ')) lowerCAmelCase_ = int(input('Enter number of edges: ')) lowerCAmelCase_ = [[float('inf') for i in range(v)] for j in range(v)] for i in range(v): lowerCAmelCase_ = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('\nEdge ', i + 1) lowerCAmelCase_ = int(input('Enter source:')) lowerCAmelCase_ = int(input('Enter destination:')) lowerCAmelCase_ = float(input('Enter weight:')) lowerCAmelCase_ = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
16
1
"""simple docstring""" from datetime import datetime import requests def __UpperCAmelCase ( __lowerCamelCase ) -> bytes: lowercase__ : List[str] = '''https://downloadgram.net/wp-json/wppress/video-downloader/video?url=''' lowercase__ : Optional[int] = requests.get(base_url + url ).json()[0]['''urls'''][0]['''src'''] return requests.get(__lowerCamelCase ).content if __name__ == "__main__": lowerCAmelCase_ = input('Enter Video/IGTV url: ').strip() lowerCAmelCase_ = F'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, 'wb') as fp: fp.write(download_video(url)) print(F'''Done. Video saved to disk as {file_name}.''')
16
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' def __init__( self : Dict ,*_snake_case : Any ,**_snake_case : str ) -> None: """simple docstring""" warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' ,_snake_case ,) super().__init__(*_snake_case ,**_snake_case )
16
1
"""simple docstring""" import re import string import numpy as np import datasets lowerCAmelCase_ = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' lowerCAmelCase_ = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n' lowerCAmelCase_ = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : int ) -> Dict: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''string''' ,id='''sequence''' ), '''references''': datasets.Value('''string''' ,id='''sequence''' ), } ) ,reference_urls=[] ,) def UpperCAmelCase ( self : Any ,_snake_case : int ,_snake_case : Union[str, Any] ,_snake_case : Tuple=None ,_snake_case : Optional[Any]=False ,_snake_case : Tuple=False ,_snake_case : Optional[int]=False ,) -> List[str]: """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: lowercase__ : Dict = np.array([re.sub(_snake_case ,'''''' ,_snake_case ) for x in predictions] ) lowercase__ : Optional[Any] = np.array([re.sub(_snake_case ,'''''' ,_snake_case ) for x in references] ) else: lowercase__ : Optional[Any] = np.asarray(_snake_case ) lowercase__ : Any = np.asarray(_snake_case ) if ignore_case: lowercase__ : List[str] = np.char.lower(_snake_case ) lowercase__ : Tuple = np.char.lower(_snake_case ) if ignore_punctuation: lowercase__ : Union[str, Any] = string.punctuation.maketrans('''''' ,'''''' ,string.punctuation ) lowercase__ : int = np.char.translate(_snake_case ,table=_snake_case ) lowercase__ : Optional[int] = np.char.translate(_snake_case ,table=_snake_case ) if ignore_numbers: lowercase__ : Optional[Any] = string.digits.maketrans('''''' ,'''''' ,string.digits ) lowercase__ : Tuple = np.char.translate(_snake_case ,table=_snake_case ) lowercase__ : List[str] = np.char.translate(_snake_case ,table=_snake_case ) lowercase__ : Any = predictions == references return {"exact_match": np.mean(_snake_case ) * 100}
16
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {'configuration_xglm': ['XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XGLMConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['XGLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['XGLMTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XGLMForCausalLM', 'XGLMModel', 'XGLMPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'FlaxXGLMForCausalLM', 'FlaxXGLMModel', 'FlaxXGLMPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXGLMForCausalLM', 'TFXGLMModel', 'TFXGLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
16
1
"""simple docstring""" import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Tuple: lowercase__ : Optional[int] = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg''' lowercase__ : List[str] = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ).convert('''RGB''' ) lowercase__ : Any = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3) , (0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1) ), ] ) lowercase__ : Dict = transform(__lowerCamelCase ).unsqueeze(0 ).to(__lowerCamelCase ) return image def __UpperCAmelCase ( __lowerCamelCase ) -> List[Any]: if "visual_encoder" in key: lowercase__ : Any = re.sub('''visual_encoder*''' , '''vision_model.encoder''' , __lowerCamelCase ) if "blocks" in key: lowercase__ : List[str] = re.sub(r'''blocks''' , '''layers''' , __lowerCamelCase ) if "attn" in key: lowercase__ : List[str] = re.sub(r'''attn''' , '''self_attn''' , __lowerCamelCase ) if "norm1" in key: lowercase__ : Dict = re.sub(r'''norm1''' , '''layer_norm1''' , __lowerCamelCase ) if "norm2" in key: lowercase__ : Optional[Any] = re.sub(r'''norm2''' , '''layer_norm2''' , __lowerCamelCase ) if "encoder.norm" in key: lowercase__ : Union[str, Any] = re.sub(r'''encoder.norm''' , '''post_layernorm''' , __lowerCamelCase ) if "encoder.patch_embed.proj" in key: lowercase__ : int = re.sub(r'''encoder.patch_embed.proj''' , '''embeddings.patch_embedding''' , __lowerCamelCase ) if "encoder.pos_embed" in key: lowercase__ : int = re.sub(r'''encoder.pos_embed''' , '''embeddings.position_embedding''' , __lowerCamelCase ) if "encoder.cls_token" in key: lowercase__ : Dict = re.sub(r'''encoder.cls_token''' , '''embeddings.class_embedding''' , __lowerCamelCase ) if "self_attn" in key: lowercase__ : Optional[int] = re.sub(r'''self_attn.proj''' , '''self_attn.projection''' , __lowerCamelCase ) return key @torch.no_grad() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase=None ) -> Optional[int]: if config_path is not None: lowercase__ : Union[str, Any] = BlipConfig.from_pretrained(__lowerCamelCase ) else: lowercase__ : str = BlipConfig(projection_dim=5_12 , text_config={} , vision_config={} ) lowercase__ : Dict = BlipForConditionalGeneration(__lowerCamelCase ).eval() lowercase__ : Any = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth''' lowercase__ : Optional[int] = blip_decoder(pretrained=__lowerCamelCase , image_size=3_84 , vit='''base''' ) lowercase__ : Optional[int] = pt_model.eval() lowercase__ : Union[str, Any] = pt_model.state_dict() for key in modified_state_dict.copy(): lowercase__ : Any = modified_state_dict.pop(__lowerCamelCase ) lowercase__ : Union[str, Any] = rename_key(__lowerCamelCase ) lowercase__ : Union[str, Any] = value hf_model.load_state_dict(__lowerCamelCase ) lowercase__ : int = 3_84 lowercase__ : Optional[int] = load_demo_image(image_size=__lowerCamelCase , device='''cpu''' ) lowercase__ : str = BertTokenizer.from_pretrained('''bert-base-uncased''' ) lowercase__ : Dict = tokenizer(['''a picture of'''] ).input_ids lowercase__ : Tuple = hf_model.generate(__lowerCamelCase , __lowerCamelCase ) assert out[0].tolist() == [3_05_22, 10_37, 38_61, 19_97, 10_37, 24_50, 35_64, 20_06, 19_96, 35_09, 20_07, 20_14, 38_99, 1_02] lowercase__ : Tuple = hf_model.generate(__lowerCamelCase ) assert out[0].tolist() == [3_05_22, 10_37, 24_50, 35_64, 20_06, 19_96, 35_09, 20_07, 20_14, 38_99, 1_02] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(__lowerCamelCase ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' lowercase__ : int = ( '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth''' ) lowercase__ : Optional[Any] = blip_vqa(pretrained=__lowerCamelCase , image_size=__lowerCamelCase , vit='''base''' ) vqa_model.eval() lowercase__ : Optional[Any] = vqa_model.state_dict() for key in modified_state_dict.copy(): lowercase__ : str = modified_state_dict.pop(__lowerCamelCase ) lowercase__ : Optional[Any] = rename_key(__lowerCamelCase ) lowercase__ : List[Any] = value lowercase__ : Tuple = BlipForQuestionAnswering(__lowerCamelCase ) hf_vqa_model.load_state_dict(__lowerCamelCase ) lowercase__ : Union[str, Any] = ['''How many dogs are in this image?'''] lowercase__ : Tuple = tokenizer(__lowerCamelCase , return_tensors='''pt''' ).input_ids lowercase__ : Optional[int] = hf_vqa_model.generate(__lowerCamelCase , __lowerCamelCase ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '''_vqa''' ) lowercase__ : Any = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth''' lowercase__ : str = blip_itm(pretrained=__lowerCamelCase , image_size=__lowerCamelCase , vit='''base''' ) itm_model.eval() lowercase__ : str = itm_model.state_dict() for key in modified_state_dict.copy(): lowercase__ : str = modified_state_dict.pop(__lowerCamelCase ) lowercase__ : List[Any] = rename_key(__lowerCamelCase ) lowercase__ : Union[str, Any] = value lowercase__ : Union[str, Any] = BlipForImageTextRetrieval(__lowerCamelCase ) lowercase__ : Any = ['''A picture of a woman with a dog sitting in a beach'''] lowercase__ : Optional[Any] = tokenizer( __lowerCamelCase , return_tensors='''pt''' , padding='''max_length''' , truncation=__lowerCamelCase , max_length=35 , ).input_ids hf_itm_model.load_state_dict(__lowerCamelCase ) hf_itm_model.eval() lowercase__ : Optional[Any] = hf_itm_model(__lowerCamelCase , __lowerCamelCase , use_itm_head=__lowerCamelCase ) lowercase__ : Any = hf_itm_model(__lowerCamelCase , __lowerCamelCase , use_itm_head=__lowerCamelCase ) assert out[0].item() == 0.2_1_1_0_6_8_7_4_9_4_2_7_7_9_5_4 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_5_6_9_8_8_4_5_3_8_6_5_0_5_1_2_7 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '''_itm''' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') lowerCAmelCase_ = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
16
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class __A ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : Tuple = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Dict = TFAutoModel.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = AutoModel.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : Dict = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : str = TFAutoModelForPreTraining.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = AutoModelForPreTraining.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Any = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = TFAutoModelForCausalLM.from_pretrained(_snake_case ,from_pt=_snake_case ) lowercase__ , lowercase__ : Optional[Any] = TFAutoModelForCausalLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = AutoModelForCausalLM.from_pretrained(_snake_case ,from_tf=_snake_case ) lowercase__ , lowercase__ : Optional[Any] = AutoModelForCausalLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Any ) -> Tuple: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Any = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : str = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(_snake_case ,from_pt=_snake_case ) lowercase__ , lowercase__ : str = TFAutoModelForMaskedLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = AutoModelForMaskedLM.from_pretrained(_snake_case ,from_tf=_snake_case ) lowercase__ , lowercase__ : Any = AutoModelForMaskedLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Union[str, Any] = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained(_snake_case ,from_pt=_snake_case ) lowercase__ , lowercase__ : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ,from_tf=_snake_case ) lowercase__ , lowercase__ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : Tuple = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = TFAutoModelForSequenceClassification.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : List[Any] = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : str = TFAutoModelForQuestionAnswering.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = AutoModelForQuestionAnswering.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : Optional[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) lowercase__ : Union[str, Any] = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) def UpperCAmelCase ( self : int ) -> List[Any]: """simple docstring""" lowercase__ : List[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) lowercase__ : int = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 )
16
1
"""simple docstring""" from __future__ import annotations from typing import Any class __A : '''simple docstring''' def __init__( self : Optional[Any] ,_snake_case : int ,_snake_case : int ,_snake_case : float = 0 ) -> None: """simple docstring""" lowercase__ , lowercase__ : int = row, column lowercase__ : Any = [[default_value for c in range(_snake_case )] for r in range(_snake_case )] def __str__( self : Dict ) -> str: """simple docstring""" lowercase__ : List[str] = f"""Matrix consist of {self.row} rows and {self.column} columns\n""" # Make string identifier lowercase__ : Optional[int] = 0 for row_vector in self.array: for obj in row_vector: lowercase__ : str = max(_snake_case ,len(str(_snake_case ) ) ) lowercase__ : Tuple = f"""%{max_element_length}s""" # Make string and return def single_line(_snake_case : list[float] ) -> str: nonlocal string_format_identifier lowercase__ : Dict = '''[''' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(_snake_case ) for row_vector in self.array ) return s def __repr__( self : Optional[Any] ) -> str: """simple docstring""" return str(self ) def UpperCAmelCase ( self : Tuple ,_snake_case : tuple[int, int] ) -> bool: """simple docstring""" if not (isinstance(_snake_case ,(list, tuple) ) and len(_snake_case ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : Optional[int] ,_snake_case : tuple[int, int] ) -> Any: """simple docstring""" assert self.validate_indicies(_snake_case ) return self.array[loc[0]][loc[1]] def __setitem__( self : Union[str, Any] ,_snake_case : tuple[int, int] ,_snake_case : float ) -> None: """simple docstring""" assert self.validate_indicies(_snake_case ) lowercase__ : Any = value def __add__( self : int ,_snake_case : Matrix ) -> Matrix: """simple docstring""" assert isinstance(_snake_case ,_snake_case ) assert self.row == another.row and self.column == another.column # Add lowercase__ : List[Any] = Matrix(self.row ,self.column ) for r in range(self.row ): for c in range(self.column ): lowercase__ : Any = self[r, c] + another[r, c] return result def __neg__( self : Dict ) -> Matrix: """simple docstring""" lowercase__ : Dict = Matrix(self.row ,self.column ) for r in range(self.row ): for c in range(self.column ): lowercase__ : List[str] = -self[r, c] return result def __sub__( self : int ,_snake_case : Matrix ) -> Matrix: """simple docstring""" return self + (-another) def __mul__( self : int ,_snake_case : int | float | Matrix ) -> Matrix: """simple docstring""" if isinstance(_snake_case ,(int, float) ): # Scalar multiplication lowercase__ : str = Matrix(self.row ,self.column ) for r in range(self.row ): for c in range(self.column ): lowercase__ : Tuple = self[r, c] * another return result elif isinstance(_snake_case ,_snake_case ): # Matrix multiplication assert self.column == another.row lowercase__ : Any = Matrix(self.row ,another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: lowercase__ : Union[str, Any] = f"""Unsupported type given for another ({type(_snake_case )})""" raise TypeError(_snake_case ) def UpperCAmelCase ( self : Dict ) -> Matrix: """simple docstring""" lowercase__ : int = Matrix(self.column ,self.row ) for r in range(self.row ): for c in range(self.column ): lowercase__ : Dict = self[r, c] return result def UpperCAmelCase ( self : int ,_snake_case : Matrix ,_snake_case : Matrix ) -> Any: """simple docstring""" assert isinstance(_snake_case ,_snake_case ) and isinstance(_snake_case ,_snake_case ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate lowercase__ : Dict = v.transpose() lowercase__ : Union[str, Any] = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def __UpperCAmelCase ( ) -> None: # a^(-1) lowercase__ : Tuple = Matrix(3 , 3 , 0 ) for i in range(3 ): lowercase__ : List[Any] = 1 print(f"""a^(-1) is {ainv}""" ) # u, v lowercase__ : Tuple = Matrix(3 , 1 , 0 ) lowercase__ , lowercase__ , lowercase__ : Dict = 1, 2, -3 lowercase__ : List[Any] = Matrix(3 , 1 , 0 ) lowercase__ , lowercase__ , lowercase__ : str = 4, -2, 5 print(f"""u is {u}""" ) print(f"""v is {v}""" ) print(f"""uv^T is {u * v.transpose()}""" ) # Sherman Morrison print(f"""(a + uv^T)^(-1) is {ainv.sherman_morrison(__lowerCamelCase , __lowerCamelCase )}""" ) def __UpperCAmelCase ( ) -> None: import doctest doctest.testmod() testa()
16
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase = 50 ) -> int: lowercase__ : int = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F'''{solution() = }''')
16
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'microsoft/focalnet-tiny': 'https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json', } class __A ( A_ ,A_ ): '''simple docstring''' lowerCAmelCase : Any = "focalnet" def __init__( self : Any ,_snake_case : Optional[int]=224 ,_snake_case : Tuple=4 ,_snake_case : Optional[Any]=3 ,_snake_case : Optional[Any]=96 ,_snake_case : List[Any]=False ,_snake_case : Optional[int]=[192, 384, 768, 768] ,_snake_case : Optional[Any]=[2, 2, 6, 2] ,_snake_case : Optional[int]=[2, 2, 2, 2] ,_snake_case : List[str]=[3, 3, 3, 3] ,_snake_case : List[str]="gelu" ,_snake_case : Dict=4.0 ,_snake_case : str=0.0 ,_snake_case : Any=0.1 ,_snake_case : Dict=False ,_snake_case : List[Any]=1e-4 ,_snake_case : Dict=False ,_snake_case : Optional[int]=False ,_snake_case : Optional[Any]=False ,_snake_case : Dict=0.02 ,_snake_case : Optional[int]=1e-5 ,_snake_case : Optional[int]=32 ,_snake_case : Any=None ,_snake_case : List[Any]=None ,**_snake_case : List[Any] ,) -> Tuple: """simple docstring""" super().__init__(**_snake_case ) lowercase__ : Optional[Any] = image_size lowercase__ : str = patch_size lowercase__ : Optional[Any] = num_channels lowercase__ : Dict = embed_dim lowercase__ : List[str] = use_conv_embed lowercase__ : Optional[Any] = hidden_sizes lowercase__ : Dict = depths lowercase__ : List[Any] = focal_levels lowercase__ : Tuple = focal_windows lowercase__ : str = hidden_act lowercase__ : Tuple = mlp_ratio lowercase__ : Tuple = hidden_dropout_prob lowercase__ : str = drop_path_rate lowercase__ : str = use_layerscale lowercase__ : List[Any] = layerscale_value lowercase__ : Optional[Any] = use_post_layernorm lowercase__ : str = use_post_layernorm_in_modulation lowercase__ : Dict = normalize_modulator lowercase__ : Dict = initializer_range lowercase__ : Union[str, Any] = layer_norm_eps lowercase__ : Any = encoder_stride lowercase__ : int = ['''stem'''] + [f"""stage{idx}""" for idx in range(1 ,len(self.depths ) + 1 )] lowercase__ , lowercase__ : Tuple = get_aligned_output_features_output_indices( out_features=_snake_case ,out_indices=_snake_case ,stage_names=self.stage_names )
16
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" debug_launcher(test_script.main ) def UpperCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" debug_launcher(test_ops.main )
16
1
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'vocab_file': 'vocab.json', 'tokenizer_config_file': 'tokenizer_config.json', 'merges_file': 'merges.txt', } lowerCAmelCase_ = { 'vocab_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json' ), }, 'tokenizer_config_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json' ), }, 'merges_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt' ), }, } lowerCAmelCase_ = '</w>' lowerCAmelCase_ = '@@ ' def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[Any]: lowercase__ : Any = set() lowercase__ : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase__ : Any = char return pairs # Speech2Text2 has no max input length lowerCAmelCase_ = {'facebook/s2t-wav2vec2-large-en-de': 1_024} class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Optional[Any] = VOCAB_FILES_NAMES lowerCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : Optional[int] = ["input_ids", "attention_mask"] def __init__( self : int ,_snake_case : Union[str, Any] ,_snake_case : str="<s>" ,_snake_case : List[Any]="<pad>" ,_snake_case : int="</s>" ,_snake_case : str="<unk>" ,_snake_case : str=False ,_snake_case : List[Any]=None ,**_snake_case : Tuple ,) -> int: """simple docstring""" super().__init__( unk_token=_snake_case ,bos_token=_snake_case ,eos_token=_snake_case ,pad_token=_snake_case ,do_lower_case=_snake_case ,**_snake_case ,) lowercase__ : Optional[int] = do_lower_case with open(_snake_case ,encoding='''utf-8''' ) as vocab_handle: lowercase__ : List[str] = json.load(_snake_case ) lowercase__ : Tuple = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""" ) lowercase__ : Union[str, Any] = None lowercase__ : int = None else: with open(_snake_case ,encoding='''utf-8''' ) as merges_handle: lowercase__ : Tuple = merges_handle.read().split('''\n''' )[:-1] lowercase__ : Optional[int] = [tuple(merge.split()[:2] ) for merge in merges] lowercase__ : Tuple = dict(zip(_snake_case ,range(len(_snake_case ) ) ) ) lowercase__ : Any = {} @property def UpperCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" return len(self.decoder ) def UpperCAmelCase ( self : Dict ) -> Dict: """simple docstring""" return dict(self.encoder ,**self.added_tokens_encoder ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowercase__ : Union[str, Any] = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] lowercase__ : List[str] = get_pairs(_snake_case ) if not pairs: return token while True: lowercase__ : List[str] = min(_snake_case ,key=lambda _snake_case : self.bpe_ranks.get(_snake_case ,float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowercase__ , lowercase__ : Tuple = bigram lowercase__ : int = [] lowercase__ : int = 0 while i < len(_snake_case ): try: lowercase__ : Any = word.index(_snake_case ,_snake_case ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase__ : Tuple = j if word[i] == first and i < len(_snake_case ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase__ : List[Any] = tuple(_snake_case ) lowercase__ : Dict = new_word if len(_snake_case ) == 1: break else: lowercase__ : List[Any] = get_pairs(_snake_case ) lowercase__ : Optional[Any] = ''' '''.join(_snake_case ) if word == "\n " + BPE_TOKEN_MERGES: lowercase__ : Union[str, Any] = '''\n''' + BPE_TOKEN_MERGES if word.endswith(_snake_case ): lowercase__ : Optional[int] = word.replace(_snake_case ,'''''' ) lowercase__ : Union[str, Any] = word.replace(''' ''' ,_snake_case ) lowercase__ : Optional[Any] = word return word def UpperCAmelCase ( self : Optional[int] ,_snake_case : Dict ) -> Optional[int]: """simple docstring""" if self.bpe_ranks is None: raise ValueError( '''This tokenizer was instantiated without a `merges.txt` file, so''' ''' that it can only be used for decoding, not for encoding.''' '''Make sure to provide `merges.txt` file at instantiation to enable ''' '''encoding.''' ) if self.do_lower_case: lowercase__ : Tuple = text.lower() lowercase__ : Optional[Any] = text.split() lowercase__ : Dict = [] for token in text: if token: split_tokens.extend(list(self.bpe(_snake_case ).split(''' ''' ) ) ) return split_tokens def UpperCAmelCase ( self : Optional[Any] ,_snake_case : str ) -> int: """simple docstring""" return self.encoder.get(_snake_case ,self.encoder.get(self.unk_token ) ) def UpperCAmelCase ( self : Dict ,_snake_case : int ) -> str: """simple docstring""" lowercase__ : List[Any] = self.decoder.get(_snake_case ,self.unk_token ) return result def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : List[str] ) -> str: """simple docstring""" lowercase__ : Optional[int] = ''' '''.join(_snake_case ) # make sure @@ tokens are concatenated lowercase__ : Tuple = ''''''.join(string.split(_snake_case ) ) return string def UpperCAmelCase ( self : str ,_snake_case : str ,_snake_case : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_snake_case ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ : str = os.path.join( _snake_case ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ : int = os.path.join( _snake_case ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(_snake_case ,'''w''' ,encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=_snake_case ,ensure_ascii=_snake_case ) + '''\n''' ) lowercase__ : List[str] = 0 if self.bpe_ranks is None: return (vocab_file,) with open(_snake_case ,'''w''' ,encoding='''utf-8''' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda _snake_case : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) lowercase__ : Tuple = token_index writer.write(''' '''.join(_snake_case ) + '''\n''' ) index += 1 return (vocab_file, merges_file)
16
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) lowerCAmelCase_ = { 'configuration_speecht5': [ 'SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP', 'SpeechT5Config', 'SpeechT5HifiGanConfig', ], 'feature_extraction_speecht5': ['SpeechT5FeatureExtractor'], 'processing_speecht5': ['SpeechT5Processor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['SpeechT5Tokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'SpeechT5ForSpeechToText', 'SpeechT5ForSpeechToSpeech', 'SpeechT5ForTextToSpeech', 'SpeechT5Model', 'SpeechT5PreTrainedModel', 'SpeechT5HifiGan', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
1
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. lowerCAmelCase_ = {'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class __A ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[Any] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCAmelCase : List[Any] = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: lowerCAmelCase : Tuple = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: lowerCAmelCase : Optional[Any] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def UpperCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" lowercase__ : Union[str, Any] = pipeline( task='''text-classification''' ,model='''hf-internal-testing/tiny-random-distilbert''' ,framework='''pt''' ) lowercase__ : Union[str, Any] = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(_snake_case ) ,[{'''label''': '''LABEL_0''', '''score''': 0.504}] ) lowercase__ : List[Any] = text_classifier('''This is great !''' ,top_k=2 ) self.assertEqual( nested_simplify(_snake_case ) ,[{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}] ) lowercase__ : Tuple = text_classifier(['''This is great !''', '''This is bad'''] ,top_k=2 ) self.assertEqual( nested_simplify(_snake_case ) ,[ [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}], [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}], ] ,) lowercase__ : Tuple = text_classifier('''This is great !''' ,top_k=1 ) self.assertEqual(nested_simplify(_snake_case ) ,[{'''label''': '''LABEL_0''', '''score''': 0.504}] ) # Legacy behavior lowercase__ : Dict = text_classifier('''This is great !''' ,return_all_scores=_snake_case ) self.assertEqual(nested_simplify(_snake_case ) ,[{'''label''': '''LABEL_0''', '''score''': 0.504}] ) lowercase__ : Optional[int] = text_classifier('''This is great !''' ,return_all_scores=_snake_case ) self.assertEqual( nested_simplify(_snake_case ) ,[[{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}]] ) lowercase__ : Dict = text_classifier(['''This is great !''', '''Something else'''] ,return_all_scores=_snake_case ) self.assertEqual( nested_simplify(_snake_case ) ,[ [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}], [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}], ] ,) lowercase__ : Dict = text_classifier(['''This is great !''', '''Something else'''] ,return_all_scores=_snake_case ) self.assertEqual( nested_simplify(_snake_case ) ,[ {'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_0''', '''score''': 0.504}, ] ,) @require_torch def UpperCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" import torch lowercase__ : List[str] = pipeline( task='''text-classification''' ,model='''hf-internal-testing/tiny-random-distilbert''' ,framework='''pt''' ,device=torch.device('''cpu''' ) ,) lowercase__ : Optional[Any] = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(_snake_case ) ,[{'''label''': '''LABEL_0''', '''score''': 0.504}] ) @require_tf def UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ : Optional[Any] = pipeline( task='''text-classification''' ,model='''hf-internal-testing/tiny-random-distilbert''' ,framework='''tf''' ) lowercase__ : Tuple = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(_snake_case ) ,[{'''label''': '''LABEL_0''', '''score''': 0.504}] ) @slow @require_torch def UpperCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" lowercase__ : Union[str, Any] = pipeline('''text-classification''' ) lowercase__ : List[Any] = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(_snake_case ) ,[{'''label''': '''POSITIVE''', '''score''': 1.0}] ) lowercase__ : Optional[int] = text_classifier('''This is bad !''' ) self.assertEqual(nested_simplify(_snake_case ) ,[{'''label''': '''NEGATIVE''', '''score''': 1.0}] ) lowercase__ : Union[str, Any] = text_classifier('''Birds are a type of animal''' ) self.assertEqual(nested_simplify(_snake_case ) ,[{'''label''': '''POSITIVE''', '''score''': 0.988}] ) @slow @require_tf def UpperCAmelCase ( self : str ) -> Tuple: """simple docstring""" lowercase__ : str = pipeline('''text-classification''' ,framework='''tf''' ) lowercase__ : Union[str, Any] = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(_snake_case ) ,[{'''label''': '''POSITIVE''', '''score''': 1.0}] ) lowercase__ : int = text_classifier('''This is bad !''' ) self.assertEqual(nested_simplify(_snake_case ) ,[{'''label''': '''NEGATIVE''', '''score''': 1.0}] ) lowercase__ : List[Any] = text_classifier('''Birds are a type of animal''' ) self.assertEqual(nested_simplify(_snake_case ) ,[{'''label''': '''POSITIVE''', '''score''': 0.988}] ) def UpperCAmelCase ( self : List[Any] ,_snake_case : str ,_snake_case : Union[str, Any] ,_snake_case : Tuple ) -> str: """simple docstring""" lowercase__ : Dict = TextClassificationPipeline(model=_snake_case ,tokenizer=_snake_case ) return text_classifier, ["HuggingFace is in", "This is another test"] def UpperCAmelCase ( self : int ,_snake_case : Optional[int] ,_snake_case : str ) -> str: """simple docstring""" lowercase__ : int = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 lowercase__ : int = '''HuggingFace is in''' lowercase__ : List[Any] = text_classifier(_snake_case ) self.assertEqual(nested_simplify(_snake_case ) ,[{'''label''': ANY(_snake_case ), '''score''': ANY(_snake_case )}] ) self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() ) lowercase__ : Union[str, Any] = ['''HuggingFace is in ''', '''Paris is in France'''] lowercase__ : Optional[int] = text_classifier(_snake_case ) self.assertEqual( nested_simplify(_snake_case ) ,[{'''label''': ANY(_snake_case ), '''score''': ANY(_snake_case )}, {'''label''': ANY(_snake_case ), '''score''': ANY(_snake_case )}] ,) self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() ) self.assertTrue(outputs[1]['''label'''] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format lowercase__ : Dict = text_classifier(_snake_case ,top_k=_snake_case ) lowercase__ : List[str] = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(_snake_case ) ,[[{'''label''': ANY(_snake_case ), '''score''': ANY(_snake_case )}] * N, [{'''label''': ANY(_snake_case ), '''score''': ANY(_snake_case )}] * N] ,) lowercase__ : Union[str, Any] = {'''text''': '''HuggingFace is in ''', '''text_pair''': '''Paris is in France'''} lowercase__ : Optional[int] = text_classifier(_snake_case ) self.assertEqual( nested_simplify(_snake_case ) ,{'''label''': ANY(_snake_case ), '''score''': ANY(_snake_case )} ,) self.assertTrue(outputs['''label'''] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. lowercase__ : List[str] = [['''HuggingFace is in ''', '''Paris is in France''']] with self.assertRaises(_snake_case ): text_classifier(_snake_case ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility lowercase__ : Dict = text_classifier([[['''HuggingFace is in ''', '''Paris is in France''']]] ) self.assertEqual( nested_simplify(_snake_case ) ,[{'''label''': ANY(_snake_case ), '''score''': ANY(_snake_case )}] ,) self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() )
16
"""simple docstring""" from ..utils import DummyObject, requires_backends class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : List[str] = ["torch", "torchsde"] def __init__( self : Tuple ,*_snake_case : Union[str, Any] ,**_snake_case : Any ) -> Union[str, Any]: """simple docstring""" requires_backends(self ,['''torch''', '''torchsde'''] ) @classmethod def UpperCAmelCase ( cls : List[str] ,*_snake_case : int ,**_snake_case : Union[str, Any] ) -> str: """simple docstring""" requires_backends(cls ,['''torch''', '''torchsde'''] ) @classmethod def UpperCAmelCase ( cls : List[Any] ,*_snake_case : List[Any] ,**_snake_case : List[str] ) -> List[Any]: """simple docstring""" requires_backends(cls ,['''torch''', '''torchsde'''] )
16
1
"""simple docstring""" from abc import ABC, abstractmethod from typing import List, Optional class __A ( A_ ): '''simple docstring''' def __init__( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" self.test() def UpperCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" lowercase__ : Tuple = 0 lowercase__ : Dict = False while not completed: if counter == 1: self.reset() lowercase__ : int = self.advance() if not self.does_advance(_snake_case ): raise Exception( '''Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.''' ) lowercase__ , lowercase__ , lowercase__ : Any = self.update(_snake_case ) counter += 1 if counter > 10_000: raise Exception('''update() does not fulfill the constraint.''' ) if self.remaining() != 0: raise Exception('''Custom Constraint is not defined correctly.''' ) @abstractmethod def UpperCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : int ) -> Optional[int]: """simple docstring""" raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def UpperCAmelCase ( self : Optional[Any] ,_snake_case : int ) -> Dict: """simple docstring""" raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def UpperCAmelCase ( self : Any ) -> Tuple: """simple docstring""" raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def UpperCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def UpperCAmelCase ( self : List[str] ,_snake_case : Union[str, Any]=False ) -> Dict: """simple docstring""" raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class __A ( A_ ): '''simple docstring''' def __init__( self : List[Any] ,_snake_case : List[int] ) -> Any: """simple docstring""" super(_snake_case ,self ).__init__() if not isinstance(_snake_case ,_snake_case ) or len(_snake_case ) == 0: raise ValueError(f"""`token_ids` has to be a non-empty list, but is {token_ids}.""" ) if any((not isinstance(_snake_case ,_snake_case ) or token_id < 0) for token_id in token_ids ): raise ValueError(f"""Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.""" ) lowercase__ : List[str] = token_ids lowercase__ : Tuple = len(self.token_ids ) lowercase__ : Tuple = -1 # the index of the currently fulfilled step lowercase__ : List[Any] = False def UpperCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def UpperCAmelCase ( self : Any ,_snake_case : int ) -> Union[str, Any]: """simple docstring""" if not isinstance(_snake_case ,_snake_case ): raise ValueError(f"""`token_id` has to be an `int`, but is {token_id} of type {type(_snake_case )}""" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : int ) -> Any: """simple docstring""" if not isinstance(_snake_case ,_snake_case ): raise ValueError(f"""`token_id` has to be an `int`, but is {token_id} of type {type(_snake_case )}""" ) lowercase__ : Optional[int] = False lowercase__ : List[Any] = False lowercase__ : str = False if self.does_advance(_snake_case ): self.fulfilled_idx += 1 lowercase__ : Union[str, Any] = True if self.fulfilled_idx == (self.seqlen - 1): lowercase__ : Optional[int] = True lowercase__ : str = completed else: # failed to make progress. lowercase__ : List[Any] = True self.reset() return stepped, completed, reset def UpperCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" lowercase__ : Tuple = False lowercase__ : Any = 0 def UpperCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" return self.seqlen - (self.fulfilled_idx + 1) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Tuple=False ) -> List[Any]: """simple docstring""" lowercase__ : Union[str, Any] = PhrasalConstraint(self.token_ids ) if stateful: lowercase__ : Union[str, Any] = self.seqlen lowercase__ : Tuple = self.fulfilled_idx lowercase__ : Tuple = self.completed return new_constraint class __A : '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : List[List[int]] ,_snake_case : int=True ) -> Tuple: """simple docstring""" lowercase__ : Tuple = max([len(_snake_case ) for one in nested_token_ids] ) lowercase__ : List[str] = {} for token_ids in nested_token_ids: lowercase__ : Optional[int] = root for tidx, token_id in enumerate(_snake_case ): if token_id not in level: lowercase__ : str = {} lowercase__ : str = level[token_id] if no_subsets and self.has_subsets(_snake_case ,_snake_case ): raise ValueError( '''Each list in `nested_token_ids` can\'t be a complete subset of another list, but is''' f""" {nested_token_ids}.""" ) lowercase__ : int = root def UpperCAmelCase ( self : List[Any] ,_snake_case : Tuple ) -> List[str]: """simple docstring""" lowercase__ : Any = self.trie for current_token in current_seq: lowercase__ : int = start[current_token] lowercase__ : Union[str, Any] = list(start.keys() ) return next_tokens def UpperCAmelCase ( self : List[Any] ,_snake_case : Optional[int] ) -> Dict: """simple docstring""" lowercase__ : Tuple = self.next_tokens(_snake_case ) return len(_snake_case ) == 0 def UpperCAmelCase ( self : str ,_snake_case : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase__ : List[str] = list(root.values() ) if len(_snake_case ) == 0: return 1 else: return sum([self.count_leaves(_snake_case ) for nn in next_nodes] ) def UpperCAmelCase ( self : int ,_snake_case : Tuple ,_snake_case : str ) -> Union[str, Any]: """simple docstring""" lowercase__ : Union[str, Any] = self.count_leaves(_snake_case ) return len(_snake_case ) != leaf_count class __A ( A_ ): '''simple docstring''' def __init__( self : str ,_snake_case : List[List[int]] ) -> List[str]: """simple docstring""" super(_snake_case ,self ).__init__() if not isinstance(_snake_case ,_snake_case ) or len(_snake_case ) == 0: raise ValueError(f"""`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.""" ) if any(not isinstance(_snake_case ,_snake_case ) for token_ids in nested_token_ids ): raise ValueError(f"""`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.""" ) if any( any((not isinstance(_snake_case ,_snake_case ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f"""Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.""" ) lowercase__ : Tuple = DisjunctiveTrie(_snake_case ) lowercase__ : Tuple = nested_token_ids lowercase__ : str = self.trie.max_height lowercase__ : int = [] lowercase__ : int = False def UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ : Any = self.trie.next_tokens(self.current_seq ) if len(_snake_case ) == 0: return None else: return token_list def UpperCAmelCase ( self : List[str] ,_snake_case : int ) -> Optional[Any]: """simple docstring""" if not isinstance(_snake_case ,_snake_case ): raise ValueError(f"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(_snake_case )}""" ) lowercase__ : List[Any] = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def UpperCAmelCase ( self : Any ,_snake_case : int ) -> Tuple: """simple docstring""" if not isinstance(_snake_case ,_snake_case ): raise ValueError(f"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(_snake_case )}""" ) lowercase__ : List[str] = False lowercase__ : Tuple = False lowercase__ : List[Any] = False if self.does_advance(_snake_case ): self.current_seq.append(_snake_case ) lowercase__ : Optional[Any] = True else: lowercase__ : str = True self.reset() lowercase__ : Any = self.trie.reached_leaf(self.current_seq ) lowercase__ : Dict = completed return stepped, completed, reset def UpperCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[int] = False lowercase__ : Dict = [] def UpperCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def UpperCAmelCase ( self : Tuple ,_snake_case : Tuple=False ) -> Dict: """simple docstring""" lowercase__ : List[str] = DisjunctiveConstraint(self.token_ids ) if stateful: lowercase__ : Any = self.seqlen lowercase__ : Tuple = self.current_seq lowercase__ : int = self.completed return new_constraint class __A : '''simple docstring''' def __init__( self : Optional[int] ,_snake_case : List[Constraint] ) -> int: """simple docstring""" lowercase__ : str = constraints # max # of steps required to fulfill a given constraint lowercase__ : str = max([c.seqlen for c in constraints] ) lowercase__ : Any = len(_snake_case ) lowercase__ : Optional[Any] = False self.init_state() def UpperCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" lowercase__ : str = [] lowercase__ : Tuple = None lowercase__ : Optional[Any] = [constraint.copy(stateful=_snake_case ) for constraint in self.constraints] def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" lowercase__ : List[str] = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" lowercase__ : List[Any] = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" lowercase__ : Tuple = constraint.advance() if isinstance(_snake_case ,_snake_case ): token_list.append(_snake_case ) elif isinstance(_snake_case ,_snake_case ): token_list.extend(_snake_case ) else: lowercase__ : List[Any] = self.inprogress_constraint.advance() if isinstance(_snake_case ,_snake_case ): token_list.append(_snake_case ) elif isinstance(_snake_case ,_snake_case ): token_list.extend(_snake_case ) if len(_snake_case ) == 0: return None else: return token_list def UpperCAmelCase ( self : Dict ,_snake_case : Optional[List[int]] ) -> Optional[int]: """simple docstring""" self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint lowercase__ , lowercase__ : Dict = self.add(_snake_case ) # the entire list of constraints are fulfilled if self.completed: break def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : int ) -> int: """simple docstring""" if not isinstance(_snake_case ,_snake_case ): raise ValueError(f"""`token_id` should be an `int`, but is `{token_id}`.""" ) lowercase__ , lowercase__ : Union[str, Any] = False, False if self.completed: lowercase__ : List[Any] = True lowercase__ : Union[str, Any] = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state lowercase__ , lowercase__ , lowercase__ : Dict = self.inprogress_constraint.update(_snake_case ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=_snake_case ) ) lowercase__ : str = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) lowercase__ : Union[str, Any] = None if len(self.pending_constraints ) == 0: # we're done! lowercase__ : List[str] = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(_snake_case ): lowercase__ , lowercase__ , lowercase__ : Dict = pending_constraint.update(_snake_case ) if not stepped: raise Exception( '''`constraint.update(token_id)` is not yielding incremental progress, ''' '''even though `constraint.does_advance(token_id)` is true.''' ) if complete: self.complete_constraints.append(_snake_case ) lowercase__ : str = None if not complete and stepped: lowercase__ : Optional[Any] = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". lowercase__ : int = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. lowercase__ : Any = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def UpperCAmelCase ( self : List[Any] ,_snake_case : str=True ) -> Union[str, Any]: """simple docstring""" lowercase__ : Any = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: lowercase__ : Optional[int] = [ constraint.copy(stateful=_snake_case ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: lowercase__ : List[Any] = self.inprogress_constraint.copy(stateful=_snake_case ) lowercase__ : Optional[int] = [constraint.copy() for constraint in self.pending_constraints] return new_state
16
"""simple docstring""" import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node lowerCAmelCase_ = 4 lowerCAmelCase_ = 3 class __A ( A_ ): '''simple docstring''' pass def __UpperCAmelCase ( __lowerCamelCase ) -> Dict: for shard in shards: for i in range(__lowerCamelCase ): yield {"i": i, "shard": shard} def __UpperCAmelCase ( ) -> Tuple: lowercase__ : int = int(os.environ['''RANK'''] ) lowercase__ : str = int(os.environ['''WORLD_SIZE'''] ) lowercase__ : List[Any] = ArgumentParser() parser.add_argument('''--streaming''' , type=__lowerCamelCase ) parser.add_argument('''--local_rank''' , type=__lowerCamelCase ) parser.add_argument('''--num_workers''' , type=__lowerCamelCase , default=0 ) lowercase__ : int = parser.parse_args() lowercase__ : Optional[Any] = args.streaming lowercase__ : List[Any] = args.num_workers lowercase__ : Optional[Any] = {'''shards''': [f"""shard_{shard_idx}""" for shard_idx in range(__lowerCamelCase )]} lowercase__ : Dict = IterableDataset.from_generator(__lowerCamelCase , gen_kwargs=__lowerCamelCase ) if not streaming: lowercase__ : int = Dataset.from_list(list(__lowerCamelCase ) ) lowercase__ : int = split_dataset_by_node(__lowerCamelCase , rank=__lowerCamelCase , world_size=__lowerCamelCase ) lowercase__ : Optional[Any] = torch.utils.data.DataLoader(__lowerCamelCase , num_workers=__lowerCamelCase ) lowercase__ : Optional[Any] = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowercase__ : str = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) lowercase__ : str = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
16
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig lowerCAmelCase_ = { 'google/tapas-base-finetuned-sqa': ( 'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json' ), 'google/tapas-base-finetuned-wtq': ( 'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json' ), 'google/tapas-base-finetuned-wikisql-supervised': ( 'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json' ), 'google/tapas-base-finetuned-tabfact': ( 'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json' ), } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = "tapas" def __init__( self : List[Any] ,_snake_case : Dict=30_522 ,_snake_case : Union[str, Any]=768 ,_snake_case : int=12 ,_snake_case : Union[str, Any]=12 ,_snake_case : Union[str, Any]=3_072 ,_snake_case : List[Any]="gelu" ,_snake_case : Optional[int]=0.1 ,_snake_case : Tuple=0.1 ,_snake_case : List[Any]=1_024 ,_snake_case : Any=[3, 256, 256, 2, 256, 256, 10] ,_snake_case : List[Any]=0.02 ,_snake_case : Union[str, Any]=1e-12 ,_snake_case : str=0 ,_snake_case : Any=10.0 ,_snake_case : int=0 ,_snake_case : Optional[Any]=1.0 ,_snake_case : List[str]=None ,_snake_case : Tuple=1.0 ,_snake_case : Tuple=False ,_snake_case : List[Any]=None ,_snake_case : int=1.0 ,_snake_case : List[Any]=1.0 ,_snake_case : Optional[int]=False ,_snake_case : Optional[int]=False ,_snake_case : Optional[int]="ratio" ,_snake_case : Any=None ,_snake_case : Union[str, Any]=None ,_snake_case : List[str]=64 ,_snake_case : Optional[Any]=32 ,_snake_case : Optional[Any]=False ,_snake_case : Optional[int]=True ,_snake_case : Dict=False ,_snake_case : Tuple=False ,_snake_case : int=True ,_snake_case : List[str]=False ,_snake_case : Dict=None ,_snake_case : Optional[int]=None ,**_snake_case : int ,) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=_snake_case ,**_snake_case ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) lowercase__ : Optional[int] = vocab_size lowercase__ : List[str] = hidden_size lowercase__ : Any = num_hidden_layers lowercase__ : Optional[Any] = num_attention_heads lowercase__ : Optional[int] = hidden_act lowercase__ : List[Any] = intermediate_size lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : Dict = attention_probs_dropout_prob lowercase__ : str = max_position_embeddings lowercase__ : Dict = type_vocab_sizes lowercase__ : Optional[Any] = initializer_range lowercase__ : Dict = layer_norm_eps # Fine-tuning task hyperparameters lowercase__ : Any = positive_label_weight lowercase__ : int = num_aggregation_labels lowercase__ : List[str] = aggregation_loss_weight lowercase__ : Optional[int] = use_answer_as_supervision lowercase__ : Optional[Any] = answer_loss_importance lowercase__ : Union[str, Any] = use_normalized_answer_loss lowercase__ : str = huber_loss_delta lowercase__ : str = temperature lowercase__ : int = aggregation_temperature lowercase__ : List[Any] = use_gumbel_for_cells lowercase__ : Tuple = use_gumbel_for_aggregation lowercase__ : Union[str, Any] = average_approximation_function lowercase__ : Union[str, Any] = cell_selection_preference lowercase__ : Any = answer_loss_cutoff lowercase__ : List[Any] = max_num_rows lowercase__ : str = max_num_columns lowercase__ : int = average_logits_per_cell lowercase__ : str = select_one_column lowercase__ : str = allow_empty_column_selection lowercase__ : Any = init_cell_selection_weights_to_zero lowercase__ : Optional[int] = reset_position_index_per_cell lowercase__ : Union[str, Any] = disable_per_token_loss # Aggregation hyperparameters lowercase__ : Optional[Any] = aggregation_labels lowercase__ : List[Any] = no_aggregation_label_index if isinstance(self.aggregation_labels ,_snake_case ): lowercase__ : Union[str, Any] = {int(_snake_case ): v for k, v in aggregation_labels.items()}
16
"""simple docstring""" from ...configuration_utils import PretrainedConfig lowerCAmelCase_ = { 'google/tapas-base-finetuned-sqa': ( 'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json' ), 'google/tapas-base-finetuned-wtq': ( 'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json' ), 'google/tapas-base-finetuned-wikisql-supervised': ( 'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json' ), 'google/tapas-base-finetuned-tabfact': ( 'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json' ), } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = "tapas" def __init__( self : List[Any] ,_snake_case : Dict=30_522 ,_snake_case : Union[str, Any]=768 ,_snake_case : int=12 ,_snake_case : Union[str, Any]=12 ,_snake_case : Union[str, Any]=3_072 ,_snake_case : List[Any]="gelu" ,_snake_case : Optional[int]=0.1 ,_snake_case : Tuple=0.1 ,_snake_case : List[Any]=1_024 ,_snake_case : Any=[3, 256, 256, 2, 256, 256, 10] ,_snake_case : List[Any]=0.02 ,_snake_case : Union[str, Any]=1e-12 ,_snake_case : str=0 ,_snake_case : Any=10.0 ,_snake_case : int=0 ,_snake_case : Optional[Any]=1.0 ,_snake_case : List[str]=None ,_snake_case : Tuple=1.0 ,_snake_case : Tuple=False ,_snake_case : List[Any]=None ,_snake_case : int=1.0 ,_snake_case : List[Any]=1.0 ,_snake_case : Optional[int]=False ,_snake_case : Optional[int]=False ,_snake_case : Optional[int]="ratio" ,_snake_case : Any=None ,_snake_case : Union[str, Any]=None ,_snake_case : List[str]=64 ,_snake_case : Optional[Any]=32 ,_snake_case : Optional[Any]=False ,_snake_case : Optional[int]=True ,_snake_case : Dict=False ,_snake_case : Tuple=False ,_snake_case : int=True ,_snake_case : List[str]=False ,_snake_case : Dict=None ,_snake_case : Optional[int]=None ,**_snake_case : int ,) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=_snake_case ,**_snake_case ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) lowercase__ : Optional[int] = vocab_size lowercase__ : List[str] = hidden_size lowercase__ : Any = num_hidden_layers lowercase__ : Optional[Any] = num_attention_heads lowercase__ : Optional[int] = hidden_act lowercase__ : List[Any] = intermediate_size lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : Dict = attention_probs_dropout_prob lowercase__ : str = max_position_embeddings lowercase__ : Dict = type_vocab_sizes lowercase__ : Optional[Any] = initializer_range lowercase__ : Dict = layer_norm_eps # Fine-tuning task hyperparameters lowercase__ : Any = positive_label_weight lowercase__ : int = num_aggregation_labels lowercase__ : List[str] = aggregation_loss_weight lowercase__ : Optional[int] = use_answer_as_supervision lowercase__ : Optional[Any] = answer_loss_importance lowercase__ : Union[str, Any] = use_normalized_answer_loss lowercase__ : str = huber_loss_delta lowercase__ : str = temperature lowercase__ : int = aggregation_temperature lowercase__ : List[Any] = use_gumbel_for_cells lowercase__ : Tuple = use_gumbel_for_aggregation lowercase__ : Union[str, Any] = average_approximation_function lowercase__ : Union[str, Any] = cell_selection_preference lowercase__ : Any = answer_loss_cutoff lowercase__ : List[Any] = max_num_rows lowercase__ : str = max_num_columns lowercase__ : int = average_logits_per_cell lowercase__ : str = select_one_column lowercase__ : str = allow_empty_column_selection lowercase__ : Any = init_cell_selection_weights_to_zero lowercase__ : Optional[int] = reset_position_index_per_cell lowercase__ : Union[str, Any] = disable_per_token_loss # Aggregation hyperparameters lowercase__ : Optional[Any] = aggregation_labels lowercase__ : List[Any] = no_aggregation_label_index if isinstance(self.aggregation_labels ,_snake_case ): lowercase__ : Union[str, Any] = {int(_snake_case ): v for k, v in aggregation_labels.items()}
16
1
"""simple docstring""" import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node lowerCAmelCase_ = 4 lowerCAmelCase_ = 3 class __A ( A_ ): '''simple docstring''' pass def __UpperCAmelCase ( __lowerCamelCase ) -> Dict: for shard in shards: for i in range(__lowerCamelCase ): yield {"i": i, "shard": shard} def __UpperCAmelCase ( ) -> Tuple: lowercase__ : int = int(os.environ['''RANK'''] ) lowercase__ : str = int(os.environ['''WORLD_SIZE'''] ) lowercase__ : List[Any] = ArgumentParser() parser.add_argument('''--streaming''' , type=__lowerCamelCase ) parser.add_argument('''--local_rank''' , type=__lowerCamelCase ) parser.add_argument('''--num_workers''' , type=__lowerCamelCase , default=0 ) lowercase__ : int = parser.parse_args() lowercase__ : Optional[Any] = args.streaming lowercase__ : List[Any] = args.num_workers lowercase__ : Optional[Any] = {'''shards''': [f"""shard_{shard_idx}""" for shard_idx in range(__lowerCamelCase )]} lowercase__ : Dict = IterableDataset.from_generator(__lowerCamelCase , gen_kwargs=__lowerCamelCase ) if not streaming: lowercase__ : int = Dataset.from_list(list(__lowerCamelCase ) ) lowercase__ : int = split_dataset_by_node(__lowerCamelCase , rank=__lowerCamelCase , world_size=__lowerCamelCase ) lowercase__ : Optional[Any] = torch.utils.data.DataLoader(__lowerCamelCase , num_workers=__lowerCamelCase ) lowercase__ : Optional[Any] = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowercase__ : str = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) lowercase__ : str = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
16
"""simple docstring""" import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : '''simple docstring''' def __init__( self : Optional[int] ,_snake_case : Optional[Any] ,_snake_case : Union[str, Any]=13 ,_snake_case : Any=32 ,_snake_case : int=2 ,_snake_case : str=3 ,_snake_case : Optional[Any]=16 ,_snake_case : List[Any]=[1, 2, 1] ,_snake_case : Dict=[2, 2, 4] ,_snake_case : List[Any]=2 ,_snake_case : Any=2.0 ,_snake_case : Optional[int]=True ,_snake_case : Optional[int]=0.0 ,_snake_case : Union[str, Any]=0.0 ,_snake_case : str=0.1 ,_snake_case : List[Any]="gelu" ,_snake_case : Tuple=False ,_snake_case : Optional[int]=True ,_snake_case : str=0.02 ,_snake_case : List[str]=1e-5 ,_snake_case : int=True ,_snake_case : Dict=None ,_snake_case : str=True ,_snake_case : List[Any]=10 ,_snake_case : Any=8 ,) -> Union[str, Any]: """simple docstring""" lowercase__ : Dict = parent lowercase__ : Any = batch_size lowercase__ : Union[str, Any] = image_size lowercase__ : Dict = patch_size lowercase__ : int = num_channels lowercase__ : Any = embed_dim lowercase__ : int = depths lowercase__ : Dict = num_heads lowercase__ : List[Any] = window_size lowercase__ : int = mlp_ratio lowercase__ : Optional[int] = qkv_bias lowercase__ : str = hidden_dropout_prob lowercase__ : List[Any] = attention_probs_dropout_prob lowercase__ : Dict = drop_path_rate lowercase__ : int = hidden_act lowercase__ : Tuple = use_absolute_embeddings lowercase__ : Tuple = patch_norm lowercase__ : Tuple = layer_norm_eps lowercase__ : Optional[Any] = initializer_range lowercase__ : int = is_training lowercase__ : Optional[int] = scope lowercase__ : str = use_labels lowercase__ : Dict = type_sequence_label_size lowercase__ : Union[str, Any] = encoder_stride def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Optional[Any] = None if self.use_labels: lowercase__ : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" return SwinvaConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def UpperCAmelCase ( self : str ,_snake_case : Dict ,_snake_case : List[str] ,_snake_case : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ : Any = SwinvaModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : str = model(_snake_case ) lowercase__ : List[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase__ : Tuple = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : List[str] ,_snake_case : Optional[Any] ,_snake_case : int ) -> Any: """simple docstring""" lowercase__ : Union[str, Any] = SwinvaForMaskedImageModeling(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Tuple = model(_snake_case ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase__ : Optional[int] = 1 lowercase__ : List[Any] = SwinvaForMaskedImageModeling(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ : str = model(_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase ( self : str ,_snake_case : str ,_snake_case : str ,_snake_case : Tuple ) -> Any: """simple docstring""" lowercase__ : Tuple = self.type_sequence_label_size lowercase__ : Dict = SwinvaForImageClassification(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : str = model(_snake_case ,labels=_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self : Dict ) -> Dict: """simple docstring""" lowercase__ : Optional[int] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = config_and_inputs lowercase__ : List[str] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) lowerCAmelCase : Optional[int] = ( {"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification} if is_torch_available() else {} ) lowerCAmelCase : List[Any] = False lowerCAmelCase : Dict = False lowerCAmelCase : List[Any] = False lowerCAmelCase : Any = False def UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[Any] = SwinvaModelTester(self ) lowercase__ : List[str] = ConfigTester(self ,config_class=_snake_case ,embed_dim=37 ) def UpperCAmelCase ( self : int ) -> Any: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self : str ) -> List[Any]: """simple docstring""" lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) @unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''' ) def UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason='''Swinv2 does not use inputs_embeds''' ) def UpperCAmelCase ( self : List[str] ) -> str: """simple docstring""" pass def UpperCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[Any] = model_class(_snake_case ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) lowercase__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_snake_case ,nn.Linear ) ) def UpperCAmelCase ( self : int ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : str = model_class(_snake_case ) lowercase__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[Any] = [*signature.parameters.keys()] lowercase__ : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_snake_case ) def UpperCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Tuple = True for model_class in self.all_model_classes: lowercase__ : Optional[int] = True lowercase__ : str = False lowercase__ : Union[str, Any] = True lowercase__ : Optional[Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : str = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : Dict = outputs.attentions lowercase__ : Any = len(self.model_tester.depths ) self.assertEqual(len(_snake_case ) ,_snake_case ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ : List[Any] = True lowercase__ : Optional[Any] = config.window_size**2 lowercase__ : Any = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : List[str] = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : Optional[Any] = outputs.attentions self.assertEqual(len(_snake_case ) ,_snake_case ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) lowercase__ : Optional[Any] = len(_snake_case ) # Check attention is always last and order is fine lowercase__ : Optional[int] = True lowercase__ : Tuple = True lowercase__ : Optional[Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : Optional[Any] = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) if hasattr(self.model_tester ,'''num_hidden_states_types''' ): lowercase__ : int = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states lowercase__ : List[str] = 2 self.assertEqual(out_len + added_hidden_states ,len(_snake_case ) ) lowercase__ : Optional[int] = outputs.attentions self.assertEqual(len(_snake_case ) ,_snake_case ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) def UpperCAmelCase ( self : List[str] ,_snake_case : int ,_snake_case : List[str] ,_snake_case : Optional[int] ,_snake_case : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : List[Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : int = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : Optional[int] = outputs.hidden_states lowercase__ : List[Any] = getattr( self.model_tester ,'''expected_num_hidden_layers''' ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_snake_case ) ,_snake_case ) # Swinv2 has a different seq_length lowercase__ : Dict = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) lowercase__ : Tuple = outputs.reshaped_hidden_states self.assertEqual(len(_snake_case ) ,_snake_case ) lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[str] = reshaped_hidden_states[0].shape lowercase__ : int = ( reshaped_hidden_states[0].view(_snake_case ,_snake_case ,height * width ).permute(0 ,2 ,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def UpperCAmelCase ( self : Tuple ) -> int: """simple docstring""" lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowercase__ : List[str] = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,_snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : str = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,_snake_case ) def UpperCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = 3 lowercase__ : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase__ : Optional[int] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : Dict = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase__ : Dict = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowercase__ : str = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Dict = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,(padded_height, padded_width) ) def UpperCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_snake_case ) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Union[str, Any] = SwinvaModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Tuple = _config_zero_init(_snake_case ) for model_class in self.all_model_classes: lowercase__ : Optional[int] = model_class(config=_snake_case ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" ,) @require_vision @require_torch class __A ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" return ( AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self : Any ) -> List[str]: """simple docstring""" lowercase__ : str = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ).to( _snake_case ) lowercase__ : Union[str, Any] = self.default_image_processor lowercase__ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowercase__ : Dict = image_processor(images=_snake_case ,return_tensors='''pt''' ).to(_snake_case ) # forward pass with torch.no_grad(): lowercase__ : Optional[Any] = model(**_snake_case ) # verify the logits lowercase__ : str = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape ,_snake_case ) lowercase__ : Dict = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_snake_case ,atol=1e-4 ) )
16
1
"""simple docstring""" from statistics import mean import numpy as np def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> list: lowercase__ : Union[str, Any] = 0 # Number of processes finished lowercase__ : Optional[Any] = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. lowercase__ : Union[str, Any] = [0] * no_of_process # List to include calculation results lowercase__ : List[Any] = [0] * no_of_process # Sort by arrival time. lowercase__ : int = [burst_time[i] for i in np.argsort(__lowerCamelCase )] lowercase__ : str = [process_name[i] for i in np.argsort(__lowerCamelCase )] arrival_time.sort() while no_of_process > finished_process_count: lowercase__ : List[Any] = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: lowercase__ : str = arrival_time[i] lowercase__ : Optional[Any] = 0 # Index showing the location of the process being performed lowercase__ : Optional[int] = 0 # Saves the current response ratio. lowercase__ : str = 0 for i in range(0 , __lowerCamelCase ): if finished_process[i] == 0 and arrival_time[i] <= current_time: lowercase__ : Tuple = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: lowercase__ : int = temp lowercase__ : Optional[Any] = i # Calculate the turn around time lowercase__ : List[Any] = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. lowercase__ : List[Any] = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> list: lowercase__ : str = [0] * no_of_process for i in range(0 , __lowerCamelCase ): lowercase__ : str = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": lowerCAmelCase_ = 5 lowerCAmelCase_ = ['A', 'B', 'C', 'D', 'E'] lowerCAmelCase_ = [1, 2, 3, 4, 5] lowerCAmelCase_ = [1, 2, 3, 4, 5] lowerCAmelCase_ = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) lowerCAmelCase_ = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print('Process name \tArrival time \tBurst time \tTurn around time \tWaiting time') for i in range(0, no_of_process): print( F'''{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t''' F'''{turn_around_time[i]}\t\t\t{waiting_time[i]}''' ) print(F'''average waiting time : {mean(waiting_time):.5f}''') print(F'''average turn around time : {mean(turn_around_time):.5f}''')
16
"""simple docstring""" import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCAmelCase_ = version.parse(importlib_metadata.version('nltk')) if NLTK_VERSION >= version.Version('3.6.4'): from nltk import word_tokenize lowerCAmelCase_ = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n' lowerCAmelCase_ = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n' lowerCAmelCase_ = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''string''' ,id='''sequence''' ), '''references''': datasets.Value('''string''' ,id='''sequence''' ), } ) ,codebase_urls=['''https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'''] ,reference_urls=[ '''https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score''', '''https://en.wikipedia.org/wiki/METEOR''', ] ,) def UpperCAmelCase ( self : str ,_snake_case : Dict ) -> Dict: """simple docstring""" import nltk nltk.download('''wordnet''' ) if NLTK_VERSION >= version.Version('''3.6.5''' ): nltk.download('''punkt''' ) if NLTK_VERSION >= version.Version('''3.6.6''' ): nltk.download('''omw-1.4''' ) def UpperCAmelCase ( self : Dict ,_snake_case : Dict ,_snake_case : List[str] ,_snake_case : Tuple=0.9 ,_snake_case : Optional[int]=3 ,_snake_case : Union[str, Any]=0.5 ) -> List[str]: """simple docstring""" if NLTK_VERSION >= version.Version('''3.6.5''' ): lowercase__ : int = [ meteor_score.single_meteor_score( word_tokenize(_snake_case ) ,word_tokenize(_snake_case ) ,alpha=_snake_case ,beta=_snake_case ,gamma=_snake_case ) for ref, pred in zip(_snake_case ,_snake_case ) ] else: lowercase__ : Tuple = [ meteor_score.single_meteor_score(_snake_case ,_snake_case ,alpha=_snake_case ,beta=_snake_case ,gamma=_snake_case ) for ref, pred in zip(_snake_case ,_snake_case ) ] return {"meteor": np.mean(_snake_case )}
16
1
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(A_ ) class __A ( A_ ): '''simple docstring''' def __init__( self : List[str] ,**_snake_case : Dict ) -> List[Any]: """simple docstring""" super().__init__(**_snake_case ) requires_backends(self ,'''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[int] ,_snake_case : Union[str, List[str], "Image", List["Image"]] ,**_snake_case : int ) -> Optional[Any]: """simple docstring""" return super().__call__(_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Dict ,**_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ : List[str] = {} if "candidate_labels" in kwargs: lowercase__ : Any = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: lowercase__ : Optional[Any] = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[int] ,_snake_case : Dict=None ,_snake_case : Union[str, Any]="This is a photo of {}." ) -> List[str]: """simple docstring""" lowercase__ : List[Any] = load_image(_snake_case ) lowercase__ : int = self.image_processor(images=[image] ,return_tensors=self.framework ) lowercase__ : str = candidate_labels lowercase__ : Dict = [hypothesis_template.format(_snake_case ) for x in candidate_labels] lowercase__ : Any = self.tokenizer(_snake_case ,return_tensors=self.framework ,padding=_snake_case ) lowercase__ : Optional[int] = [text_inputs] return inputs def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ : Optional[int] = model_inputs.pop('''candidate_labels''' ) lowercase__ : Union[str, Any] = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] ,_snake_case ): lowercase__ : List[str] = text_inputs[0] else: # Batching case. lowercase__ : int = text_inputs[0][0] lowercase__ : Tuple = self.model(**_snake_case ,**_snake_case ) lowercase__ : Union[str, Any] = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def UpperCAmelCase ( self : Any ,_snake_case : Tuple ) -> Any: """simple docstring""" lowercase__ : Dict = model_outputs.pop('''candidate_labels''' ) lowercase__ : Optional[Any] = model_outputs['''logits'''][0] if self.framework == "pt": lowercase__ : Optional[int] = logits.softmax(dim=-1 ).squeeze(-1 ) lowercase__ : Tuple = probs.tolist() if not isinstance(_snake_case ,_snake_case ): lowercase__ : Any = [scores] elif self.framework == "tf": lowercase__ : List[str] = stable_softmax(_snake_case ,axis=-1 ) lowercase__ : Optional[Any] = probs.numpy().tolist() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) lowercase__ : Union[str, Any] = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(_snake_case ,_snake_case ) ,key=lambda _snake_case : -x[0] ) ] return result
16
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = '▁' lowerCAmelCase_ = {'vocab_file': 'sentencepiece.bpe.model'} lowerCAmelCase_ = { 'vocab_file': { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model', } } lowerCAmelCase_ = { 'facebook/xglm-564M': 2_048, } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[Any] = VOCAB_FILES_NAMES lowerCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : int = ["input_ids", "attention_mask"] def __init__( self : int ,_snake_case : Dict ,_snake_case : Dict="<s>" ,_snake_case : Dict="</s>" ,_snake_case : str="</s>" ,_snake_case : Optional[Any]="<s>" ,_snake_case : Optional[Any]="<unk>" ,_snake_case : Optional[int]="<pad>" ,_snake_case : Optional[Dict[str, Any]] = None ,**_snake_case : str ,) -> None: """simple docstring""" lowercase__ : Any = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer lowercase__ : Any = 7 lowercase__ : Optional[int] = [f"""<madeupword{i}>""" for i in range(self.num_madeup_words )] lowercase__ : Dict = kwargs.get('''additional_special_tokens''' ,[] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=_snake_case ,eos_token=_snake_case ,unk_token=_snake_case ,sep_token=_snake_case ,cls_token=_snake_case ,pad_token=_snake_case ,sp_model_kwargs=self.sp_model_kwargs ,**_snake_case ,) lowercase__ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_snake_case ) ) lowercase__ : str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase__ : Optional[int] = 1 # Mimic fairseq token-to-id alignment for the first 4 token lowercase__ : Optional[int] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} lowercase__ : List[str] = len(self.sp_model ) lowercase__ : Tuple = {f"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(_snake_case ) lowercase__ : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : int ) -> Optional[int]: """simple docstring""" lowercase__ : List[Any] = self.__dict__.copy() lowercase__ : Optional[int] = None lowercase__ : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self : Dict ,_snake_case : List[str] ) -> Any: """simple docstring""" lowercase__ : int = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): lowercase__ : Dict = {} lowercase__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCAmelCase ( self : Any ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.sep_token_id] + token_ids_a lowercase__ : Optional[Any] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def UpperCAmelCase ( self : Any ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ,_snake_case : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case ,token_ids_a=_snake_case ,already_has_special_tokens=_snake_case ) if token_ids_a is None: return [1] + ([0] * len(_snake_case )) return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ : List[Any] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def UpperCAmelCase ( self : str ) -> Tuple: """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ : Union[str, Any] = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self : List[Any] ,_snake_case : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(_snake_case ,out_type=_snake_case ) def UpperCAmelCase ( self : int ,_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase__ : Tuple = self.sp_model.PieceToId(_snake_case ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase ( self : Any ,_snake_case : List[str] ) -> Any: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase ( self : Tuple ,_snake_case : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = ''''''.join(_snake_case ).replace(_snake_case ,''' ''' ).strip() return out_string def UpperCAmelCase ( self : Any ,_snake_case : str ,_snake_case : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_snake_case ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ : Any = os.path.join( _snake_case ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case ,'''wb''' ) as fi: lowercase__ : Dict = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,)
16
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class __A : '''simple docstring''' lowerCAmelCase : List[Any] = MBartConfig lowerCAmelCase : int = {} lowerCAmelCase : Optional[int] = "gelu" def __init__( self : str ,_snake_case : Any ,_snake_case : Optional[int]=13 ,_snake_case : str=7 ,_snake_case : Any=True ,_snake_case : Union[str, Any]=False ,_snake_case : List[str]=99 ,_snake_case : Any=32 ,_snake_case : Optional[int]=2 ,_snake_case : Dict=4 ,_snake_case : str=37 ,_snake_case : Optional[int]=0.1 ,_snake_case : Dict=0.1 ,_snake_case : List[str]=20 ,_snake_case : Optional[Any]=2 ,_snake_case : Optional[Any]=1 ,_snake_case : Optional[int]=0 ,) -> Optional[int]: """simple docstring""" lowercase__ : List[str] = parent lowercase__ : Optional[Any] = batch_size lowercase__ : Union[str, Any] = seq_length lowercase__ : Tuple = is_training lowercase__ : Optional[Any] = use_labels lowercase__ : Any = vocab_size lowercase__ : Tuple = hidden_size lowercase__ : Dict = num_hidden_layers lowercase__ : Optional[Any] = num_attention_heads lowercase__ : Any = intermediate_size lowercase__ : Any = hidden_dropout_prob lowercase__ : Optional[int] = attention_probs_dropout_prob lowercase__ : str = max_position_embeddings lowercase__ : Union[str, Any] = eos_token_id lowercase__ : List[Any] = pad_token_id lowercase__ : Tuple = bos_token_id def UpperCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size ) lowercase__ : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) ,1 ) lowercase__ : Optional[int] = tf.concat([input_ids, eos_tensor] ,axis=1 ) lowercase__ : str = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase__ : Union[str, Any] = self.config_cls( vocab_size=self.vocab_size ,d_model=self.hidden_size ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_ids=[2] ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.pad_token_id ,**self.config_updates ,) lowercase__ : Tuple = prepare_mbart_inputs_dict(_snake_case ,_snake_case ,_snake_case ) return config, inputs_dict def UpperCAmelCase ( self : int ,_snake_case : Dict ,_snake_case : Optional[Any] ) -> str: """simple docstring""" lowercase__ : Union[str, Any] = TFMBartModel(config=_snake_case ).get_decoder() lowercase__ : List[str] = inputs_dict['''input_ids'''] lowercase__ : Dict = input_ids[:1, :] lowercase__ : Any = inputs_dict['''attention_mask'''][:1, :] lowercase__ : List[Any] = inputs_dict['''head_mask'''] lowercase__ : List[Any] = 1 # first forward pass lowercase__ : Any = model(_snake_case ,attention_mask=_snake_case ,head_mask=_snake_case ,use_cache=_snake_case ) lowercase__ , lowercase__ : int = outputs.to_tuple() lowercase__ : Dict = past_key_values[1] def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , ) -> int: if attention_mask is None: lowercase__ : int = tf.cast(tf.math.not_equal(__lowerCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowercase__ : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowercase__ : Optional[int] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowercase__ : List[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowercase__ : Any = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[Any] = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowerCAmelCase : Any = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowerCAmelCase : Optional[Any] = ( { "conversational": TFMBartForConditionalGeneration, "feature-extraction": TFMBartModel, "summarization": TFMBartForConditionalGeneration, "text2text-generation": TFMBartForConditionalGeneration, "translation": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowerCAmelCase : Optional[int] = True lowerCAmelCase : Optional[Any] = False lowerCAmelCase : str = False def UpperCAmelCase ( self : Optional[Any] ,_snake_case : List[Any] ,_snake_case : Dict ,_snake_case : int ,_snake_case : List[Any] ,_snake_case : List[Any] ) -> List[str]: """simple docstring""" if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def UpperCAmelCase ( self : int ) -> List[str]: """simple docstring""" lowercase__ : Dict = TFMBartModelTester(self ) lowercase__ : Optional[Any] = ConfigTester(self ,config_class=_snake_case ) def UpperCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_snake_case ) @require_sentencepiece @require_tokenizers @require_tf class __A ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase : List[Any] = [ " UN Chief Says There Is No Military Solution in Syria", ] lowerCAmelCase : Dict = [ "Şeful ONU declară că nu există o soluţie militară în Siria", ] lowerCAmelCase : str = "facebook/mbart-large-en-ro" @cached_property def UpperCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ : Dict = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def UpperCAmelCase ( self : List[Any] ,**_snake_case : str ) -> Optional[int]: """simple docstring""" lowercase__ : Dict = self.translate_src_text(**_snake_case ) self.assertListEqual(self.expected_text ,_snake_case ) def UpperCAmelCase ( self : Any ,**_snake_case : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ : str = self.tokenizer(self.src_text ,**_snake_case ,return_tensors='''tf''' ) lowercase__ : Dict = self.model.generate( model_inputs.input_ids ,attention_mask=model_inputs.attention_mask ,num_beams=2 ) lowercase__ : List[str] = self.tokenizer.batch_decode(_snake_case ,skip_special_tokens=_snake_case ) return generated_words @slow def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" self._assert_generated_batch_equal_expected()
16
"""simple docstring""" import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = True ) -> Union[str, Any]: print(f"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 1_28: if name[-1] == "S": lowercase__ : str = timm.create_model('''levit_128s''' , pretrained=__lowerCamelCase ) else: lowercase__ : Tuple = timm.create_model('''levit_128''' , pretrained=__lowerCamelCase ) if hidden_sizes == 1_92: lowercase__ : Union[str, Any] = timm.create_model('''levit_192''' , pretrained=__lowerCamelCase ) if hidden_sizes == 2_56: lowercase__ : str = timm.create_model('''levit_256''' , pretrained=__lowerCamelCase ) if hidden_sizes == 3_84: lowercase__ : str = timm.create_model('''levit_384''' , pretrained=__lowerCamelCase ) from_model.eval() lowercase__ : Optional[int] = LevitForImageClassificationWithTeacher(__lowerCamelCase ).eval() lowercase__ : str = OrderedDict() lowercase__ : int = from_model.state_dict() lowercase__ : Dict = list(from_model.state_dict().keys() ) lowercase__ : Any = list(our_model.state_dict().keys() ) print(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) for i in range(len(__lowerCamelCase ) ): lowercase__ : str = weights[og_keys[i]] our_model.load_state_dict(__lowerCamelCase ) lowercase__ : Optional[int] = torch.randn((2, 3, 2_24, 2_24) ) lowercase__ : Optional[int] = from_model(__lowerCamelCase ) lowercase__ : List[Any] = our_model(__lowerCamelCase ).logits assert torch.allclose(__lowerCamelCase , __lowerCamelCase ), "The model logits don't match the original one." lowercase__ : Any = name print(__lowerCamelCase ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) lowercase__ : int = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f"""Pushed {checkpoint_name}""" ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = True ) -> List[Any]: lowercase__ : Any = '''imagenet-1k-id2label.json''' lowercase__ : Tuple = 10_00 lowercase__ : Dict = (1, num_labels) lowercase__ : List[str] = '''huggingface/label-files''' lowercase__ : str = num_labels lowercase__ : List[Any] = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ : Union[str, Any] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : Union[str, Any] = idalabel lowercase__ : Optional[int] = {v: k for k, v in idalabel.items()} lowercase__ : List[Any] = partial(__lowerCamelCase , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase ) lowercase__ : Tuple = { '''levit-128S''': 1_28, '''levit-128''': 1_28, '''levit-192''': 1_92, '''levit-256''': 2_56, '''levit-384''': 3_84, } lowercase__ : Any = { '''levit-128S''': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-128''': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-192''': ImageNetPreTrainedConfig( hidden_sizes=[1_92, 2_88, 3_84] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-256''': ImageNetPreTrainedConfig( hidden_sizes=[2_56, 3_84, 5_12] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-384''': ImageNetPreTrainedConfig( hidden_sizes=[3_84, 5_12, 7_68] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , __lowerCamelCase , names_to_config[model_name] , __lowerCamelCase , __lowerCamelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return config, expected_shape if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
16
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase_ = { 'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'], 'processing_layoutlmv2': ['LayoutLMv2Processor'], 'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['LayoutLMv2TokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['LayoutLMv2FeatureExtractor'] lowerCAmelCase_ = ['LayoutLMv2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv2ForQuestionAnswering', 'LayoutLMv2ForSequenceClassification', 'LayoutLMv2ForTokenClassification', 'LayoutLMv2Layer', 'LayoutLMv2Model', 'LayoutLMv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __A : '''simple docstring''' lowerCAmelCase : List[str] lowerCAmelCase : Optional[str] = None # Automatically constructed lowerCAmelCase : ClassVar[str] = "dict" lowerCAmelCase : ClassVar[Any] = None lowerCAmelCase : str = field(default="Translation" ,init=A_ ,repr=A_ ) def __call__( self : List[str] ) -> Any: """simple docstring""" return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def UpperCAmelCase ( self : List[str] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class __A : '''simple docstring''' lowerCAmelCase : Optional[List] = None lowerCAmelCase : Optional[int] = None lowerCAmelCase : Optional[str] = None # Automatically constructed lowerCAmelCase : ClassVar[str] = "dict" lowerCAmelCase : ClassVar[Any] = None lowerCAmelCase : str = field(default="TranslationVariableLanguages" ,init=A_ ,repr=A_ ) def UpperCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[int] = sorted(set(self.languages ) ) if self.languages else None lowercase__ : Dict = len(self.languages ) if self.languages else None def __call__( self : List[Any] ) -> List[Any]: """simple docstring""" return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def UpperCAmelCase ( self : Dict ,_snake_case : Tuple ) -> int: """simple docstring""" lowercase__ : List[Any] = set(self.languages ) if self.languages and set(_snake_case ) - lang_set: raise ValueError( f"""Some languages in example ({", ".join(sorted(set(_snake_case ) - lang_set ) )}) are not in valid set ({", ".join(_snake_case )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. lowercase__ : str = [] for lang, text in translation_dict.items(): if isinstance(_snake_case ,_snake_case ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. lowercase__ , lowercase__ : Optional[Any] = zip(*sorted(_snake_case ) ) return {"language": languages, "translation": translations} def UpperCAmelCase ( self : List[Any] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
16
1
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase = 1_00 ) -> int: lowercase__ : Optional[Any] = n * (n + 1) * (2 * n + 1) / 6 lowercase__ : List[Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'''{solution() = }''')
16
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase_ = 16 lowerCAmelCase_ = 32 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = 16 ) -> Optional[Any]: lowercase__ : Optional[Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowercase__ : int = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) lowercase__ : str = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCamelCase , max_length=__lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ : str = datasets.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : Union[str, Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ : List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ : Optional[int] = 16 elif accelerator.mixed_precision != "no": lowercase__ : List[Any] = 8 else: lowercase__ : int = None return tokenizer.pad( __lowerCamelCase , padding='''longest''' , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. lowercase__ : List[Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) lowercase__ : str = DataLoader( tokenized_datasets['''validation'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase_ = mocked_dataloaders # noqa: F811 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __lowerCamelCase ) == "1": lowercase__ : List[Any] = 2 # Initialize accelerator lowercase__ : Optional[int] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : str = config['''lr'''] lowercase__ : str = int(config['''num_epochs'''] ) lowercase__ : Optional[int] = int(config['''seed'''] ) lowercase__ : Tuple = int(config['''batch_size'''] ) lowercase__ : List[Any] = evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__lowerCamelCase ) def inner_training_loop(__lowerCamelCase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : List[str] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ : Tuple = model.to(accelerator.device ) # Instantiate optimizer lowercase__ : List[str] = AdamW(params=model.parameters() , lr=__lowerCamelCase ) lowercase__ , lowercase__ : List[Any] = get_dataloaders(__lowerCamelCase , __lowerCamelCase ) # Instantiate scheduler lowercase__ : Optional[int] = get_linear_schedule_with_warmup( optimizer=__lowerCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__lowerCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Optional[int] = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Now we train the model for epoch in range(__lowerCamelCase ): model.train() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase__ : Dict = model(**__lowerCamelCase ) lowercase__ : List[Any] = outputs.loss accelerator.backward(__lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ : Tuple = model(**__lowerCamelCase ) lowercase__ : Any = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ : int = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__lowerCamelCase , references=__lowerCamelCase , ) lowercase__ : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __lowerCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def __UpperCAmelCase ( ) -> Dict: lowercase__ : Optional[int] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__lowerCamelCase , default=__lowerCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowercase__ : int = parser.parse_args() lowercase__ : Union[str, Any] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
16
1
"""simple docstring""" from collections.abc import Sequence def __UpperCAmelCase ( __lowerCamelCase = None ) -> int: if nums is None or not nums: raise ValueError('''Input sequence should not be empty''' ) lowercase__ : Tuple = nums[0] for i in range(1 , len(__lowerCamelCase ) ): lowercase__ : str = nums[i] lowercase__ : Tuple = max(__lowerCamelCase , ans + num , __lowerCamelCase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user lowerCAmelCase_ = int(input('Enter number of elements : ').strip()) lowerCAmelCase_ = list(map(int, input('\nEnter the numbers : ').strip().split()))[:n] print(max_subsequence_sum(array))
16
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __UpperCAmelCase ( __lowerCamelCase ) -> Any: lowercase__ : Optional[int] = [] embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""", f"""stage{idx}.patch_embed.proj.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""", f"""stage{idx}.patch_embed.proj.bias""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""", f"""stage{idx}.patch_embed.norm.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""", f"""stage{idx}.patch_embed.norm.bias""", ) ) return embed def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Dict: lowercase__ : str = [] attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj.bias""", ) ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", f"""stage{idx}.blocks.{cnt}.norm1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", f"""stage{idx}.blocks.{cnt}.norm1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", f"""stage{idx}.blocks.{cnt}.norm2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", f"""stage{idx}.blocks.{cnt}.norm2.bias""") ) return attention_weights def __UpperCAmelCase ( __lowerCamelCase ) -> Tuple: lowercase__ : List[str] = [] token.append((f"""cvt.encoder.stages.{idx}.cls_token""", '''stage2.cls_token''') ) return token def __UpperCAmelCase ( ) -> Optional[int]: lowercase__ : List[str] = [] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: lowercase__ : List[Any] = '''imagenet-1k-id2label.json''' lowercase__ : Optional[Any] = 10_00 lowercase__ : Optional[Any] = '''huggingface/label-files''' lowercase__ : Dict = num_labels lowercase__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) ) , '''r''' ) ) lowercase__ : int = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = idalabel lowercase__ : str = {v: k for k, v in idalabel.items()} lowercase__ : Any = CvtConfig(num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13": lowercase__ : int = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21": lowercase__ : int = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowercase__ : List[Any] = [2, 2, 20] lowercase__ : Any = [3, 12, 16] lowercase__ : Tuple = [1_92, 7_68, 10_24] lowercase__ : List[Any] = CvtForImageClassification(__lowerCamelCase ) lowercase__ : str = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) lowercase__ : List[str] = image_size lowercase__ : Union[str, Any] = torch.load(__lowerCamelCase , map_location=torch.device('''cpu''' ) ) lowercase__ : int = OrderedDict() lowercase__ : List[Any] = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowercase__ : Any = list_of_state_dict + cls_token(__lowerCamelCase ) lowercase__ : Any = list_of_state_dict + embeddings(__lowerCamelCase ) for cnt in range(config.depth[idx] ): lowercase__ : Tuple = list_of_state_dict + attention(__lowerCamelCase , __lowerCamelCase ) lowercase__ : List[Any] = list_of_state_dict + final() for gg in list_of_state_dict: print(__lowerCamelCase ) for i in range(len(__lowerCamelCase ) ): lowercase__ : Optional[Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) image_processor.save_pretrained(__lowerCamelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=R'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCAmelCase_ = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
16
1
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> int: while b: lowercase__ , lowercase__ : str = b, a % b return a def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> int: return a if b == 0 else euclidean_gcd_recursive(__lowerCamelCase , a % b ) def __UpperCAmelCase ( ) -> Tuple: print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" ) print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" ) print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" ) print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" ) print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" ) print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" ) print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" ) print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" ) if __name__ == "__main__": main()
16
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str: if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError('''iterations must be defined as integers''' ) if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not number >= 1: raise ValueError( '''starting number must be and integer and be more than 0''' ) if not iterations >= 1: raise ValueError('''Iterations must be done more than 0 times to play FizzBuzz''' ) lowercase__ : Tuple = '''''' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(__lowerCamelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
16
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase=False , __lowerCamelCase=False , __lowerCamelCase=False ) -> str: lowercase__ : Dict = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""transformer.blocks.{i}.norm1.weight""", f"""vilt.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""transformer.blocks.{i}.norm1.bias""", f"""vilt.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""transformer.blocks.{i}.attn.proj.weight""", f"""vilt.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""transformer.blocks.{i}.attn.proj.bias""", f"""vilt.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""transformer.blocks.{i}.norm2.weight""", f"""vilt.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""transformer.blocks.{i}.norm2.bias""", f"""vilt.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (f"""transformer.blocks.{i}.mlp.fc1.weight""", f"""vilt.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""transformer.blocks.{i}.mlp.fc1.bias""", f"""vilt.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""transformer.blocks.{i}.mlp.fc2.weight""", f"""vilt.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""transformer.blocks.{i}.mlp.fc2.bias""", f"""vilt.encoder.layer.{i}.output.dense.bias""") ) # embeddings rename_keys.extend( [ # text embeddings ('''text_embeddings.word_embeddings.weight''', '''vilt.embeddings.text_embeddings.word_embeddings.weight'''), ( '''text_embeddings.position_embeddings.weight''', '''vilt.embeddings.text_embeddings.position_embeddings.weight''', ), ('''text_embeddings.position_ids''', '''vilt.embeddings.text_embeddings.position_ids'''), ( '''text_embeddings.token_type_embeddings.weight''', '''vilt.embeddings.text_embeddings.token_type_embeddings.weight''', ), ('''text_embeddings.LayerNorm.weight''', '''vilt.embeddings.text_embeddings.LayerNorm.weight'''), ('''text_embeddings.LayerNorm.bias''', '''vilt.embeddings.text_embeddings.LayerNorm.bias'''), # patch embeddings ('''transformer.cls_token''', '''vilt.embeddings.cls_token'''), ('''transformer.patch_embed.proj.weight''', '''vilt.embeddings.patch_embeddings.projection.weight'''), ('''transformer.patch_embed.proj.bias''', '''vilt.embeddings.patch_embeddings.projection.bias'''), ('''transformer.pos_embed''', '''vilt.embeddings.position_embeddings'''), # token type embeddings ('''token_type_embeddings.weight''', '''vilt.embeddings.token_type_embeddings.weight'''), ] ) # final layernorm + pooler rename_keys.extend( [ ('''transformer.norm.weight''', '''vilt.layernorm.weight'''), ('''transformer.norm.bias''', '''vilt.layernorm.bias'''), ('''pooler.dense.weight''', '''vilt.pooler.dense.weight'''), ('''pooler.dense.bias''', '''vilt.pooler.dense.bias'''), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('''vqa_classifier.0.weight''', '''classifier.0.weight'''), ('''vqa_classifier.0.bias''', '''classifier.0.bias'''), ('''vqa_classifier.1.weight''', '''classifier.1.weight'''), ('''vqa_classifier.1.bias''', '''classifier.1.bias'''), ('''vqa_classifier.3.weight''', '''classifier.3.weight'''), ('''vqa_classifier.3.bias''', '''classifier.3.bias'''), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('''nlvr2_classifier.0.weight''', '''classifier.0.weight'''), ('''nlvr2_classifier.0.bias''', '''classifier.0.bias'''), ('''nlvr2_classifier.1.weight''', '''classifier.1.weight'''), ('''nlvr2_classifier.1.bias''', '''classifier.1.bias'''), ('''nlvr2_classifier.3.weight''', '''classifier.3.weight'''), ('''nlvr2_classifier.3.bias''', '''classifier.3.bias'''), ] ) else: pass return rename_keys def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Tuple: for i in range(config.num_hidden_layers ): lowercase__ : List[str] = '''vilt.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase__ : Tuple = state_dict.pop(f"""transformer.blocks.{i}.attn.qkv.weight""" ) lowercase__ : int = state_dict.pop(f"""transformer.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase__ : str = in_proj_weight[ : config.hidden_size, : ] lowercase__ : Any = in_proj_bias[: config.hidden_size] lowercase__ : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase__ : str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase__ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] lowercase__ : List[str] = in_proj_bias[-config.hidden_size :] def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: lowercase__ : Tuple = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str: lowercase__ : int = dct.pop(__lowerCamelCase ) lowercase__ : Optional[Any] = val @torch.no_grad() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str: lowercase__ : Tuple = ViltConfig(image_size=3_84 , patch_size=32 , tie_word_embeddings=__lowerCamelCase ) lowercase__ : Optional[Any] = False lowercase__ : List[str] = False lowercase__ : Union[str, Any] = False lowercase__ : Optional[Any] = False if "vqa" in checkpoint_url: lowercase__ : Union[str, Any] = True lowercase__ : Optional[int] = 31_29 lowercase__ : Tuple = '''huggingface/label-files''' lowercase__ : Tuple = '''vqa2-id2label.json''' lowercase__ : Optional[Any] = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ : Any = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : int = idalabel lowercase__ : int = {v: k for k, v in idalabel.items()} lowercase__ : Tuple = ViltForQuestionAnswering(__lowerCamelCase ) elif "nlvr" in checkpoint_url: lowercase__ : Union[str, Any] = True lowercase__ : int = 2 lowercase__ : Any = {0: '''False''', 1: '''True'''} lowercase__ : List[str] = {v: k for k, v in config.idalabel.items()} lowercase__ : Dict = 3 lowercase__ : List[Any] = ViltForImagesAndTextClassification(__lowerCamelCase ) elif "irtr" in checkpoint_url: lowercase__ : List[Any] = True lowercase__ : Tuple = ViltForImageAndTextRetrieval(__lowerCamelCase ) elif "mlm_itm" in checkpoint_url: lowercase__ : Dict = True lowercase__ : int = ViltForMaskedLM(__lowerCamelCase ) else: raise ValueError('''Unknown model type''' ) # load state_dict of original model, remove and rename some keys lowercase__ : int = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location='''cpu''' )['''state_dict'''] lowercase__ : Optional[int] = create_rename_keys(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) read_in_q_k_v(__lowerCamelCase , __lowerCamelCase ) if mlm_model or irtr_model: lowercase__ : Dict = ['''itm_score.fc.weight''', '''itm_score.fc.bias'''] for k in ignore_keys: state_dict.pop(__lowerCamelCase , __lowerCamelCase ) # load state dict into HuggingFace model model.eval() if mlm_model: lowercase__ , lowercase__ : str = model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(__lowerCamelCase ) # Define processor lowercase__ : Union[str, Any] = ViltImageProcessor(size=3_84 ) lowercase__ : Dict = BertTokenizer.from_pretrained('''bert-base-uncased''' ) lowercase__ : Union[str, Any] = ViltProcessor(__lowerCamelCase , __lowerCamelCase ) # Forward pass on example inputs (image + text) if nlvr_model: lowercase__ : str = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=__lowerCamelCase ).raw ) lowercase__ : Any = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=__lowerCamelCase ).raw ) lowercase__ : Optional[Any] = ( '''The left image contains twice the number of dogs as the right image, and at least two dogs in total are''' ''' standing.''' ) lowercase__ : Any = processor(__lowerCamelCase , __lowerCamelCase , return_tensors='''pt''' ) lowercase__ : Any = processor(__lowerCamelCase , __lowerCamelCase , return_tensors='''pt''' ) lowercase__ : Union[str, Any] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: lowercase__ : str = Image.open(requests.get('''http://images.cocodataset.org/val2017/000000039769.jpg''' , stream=__lowerCamelCase ).raw ) if mlm_model: lowercase__ : Union[str, Any] = '''a bunch of [MASK] laying on a [MASK].''' else: lowercase__ : Union[str, Any] = '''How many cats are there?''' lowercase__ : int = processor(__lowerCamelCase , __lowerCamelCase , return_tensors='''pt''' ) lowercase__ : Optional[int] = model(**__lowerCamelCase ) # Verify outputs if mlm_model: lowercase__ : str = torch.Size([1, 11, 3_05_22] ) lowercase__ : Dict = torch.tensor([-1_2.5_0_6_1, -1_2.5_1_2_3, -1_2.5_1_7_4] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , __lowerCamelCase , atol=1E-4 ) # verify masked token prediction equals "cats" lowercase__ : List[Any] = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: lowercase__ : Tuple = torch.Size([1, 31_29] ) lowercase__ : List[str] = torch.tensor([-1_5.9_4_9_5, -1_8.1_4_7_2, -1_0.3_0_4_1] ) assert torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1E-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , __lowerCamelCase , atol=1E-4 ) # verify vqa prediction equals "2" lowercase__ : Optional[Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: lowercase__ : Dict = torch.Size([1, 2] ) lowercase__ : Dict = torch.tensor([-2.8_7_2_1, 2.1_2_9_1] ) assert torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1E-4 ) assert outputs.logits.shape == expected_shape Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) print(f"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCAmelCase_ = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
16
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : '''simple docstring''' def __init__( self : str ,_snake_case : List[Any] ,_snake_case : Optional[int]=3 ,_snake_case : Optional[int]=32 ,_snake_case : Union[str, Any]=3 ,_snake_case : int=10 ,_snake_case : List[str]=[10, 20, 30, 40] ,_snake_case : Any=[1, 1, 2, 1] ,_snake_case : int=True ,_snake_case : Optional[Any]=True ,_snake_case : Union[str, Any]="relu" ,_snake_case : Dict=3 ,_snake_case : Any=None ,) -> str: """simple docstring""" lowercase__ : int = parent lowercase__ : Optional[Any] = batch_size lowercase__ : Optional[Any] = image_size lowercase__ : Optional[Any] = num_channels lowercase__ : Optional[Any] = embeddings_size lowercase__ : Optional[Any] = hidden_sizes lowercase__ : str = depths lowercase__ : Tuple = is_training lowercase__ : List[Any] = use_labels lowercase__ : Union[str, Any] = hidden_act lowercase__ : Union[str, Any] = num_labels lowercase__ : Tuple = scope lowercase__ : Optional[Any] = len(_snake_case ) def UpperCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Tuple = None if self.use_labels: lowercase__ : Dict = ids_tensor([self.batch_size] ,self.num_labels ) lowercase__ : int = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" return ResNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def UpperCAmelCase ( self : List[str] ,_snake_case : Optional[int] ,_snake_case : int ,_snake_case : Tuple ) -> List[Any]: """simple docstring""" lowercase__ : Optional[int] = TFResNetModel(config=_snake_case ) lowercase__ : List[str] = model(_snake_case ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def UpperCAmelCase ( self : Optional[int] ,_snake_case : Optional[Any] ,_snake_case : int ,_snake_case : Any ) -> Tuple: """simple docstring""" lowercase__ : Tuple = self.num_labels lowercase__ : Union[str, Any] = TFResNetForImageClassification(_snake_case ) lowercase__ : List[str] = model(_snake_case ,labels=_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCAmelCase ( self : Tuple ) -> str: """simple docstring""" lowercase__ : Dict = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = config_and_inputs lowercase__ : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[int] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () lowerCAmelCase : Any = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) lowerCAmelCase : List[Any] = False lowerCAmelCase : List[Any] = False lowerCAmelCase : int = False lowerCAmelCase : Union[str, Any] = False lowerCAmelCase : List[str] = False def UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = TFResNetModelTester(self ) lowercase__ : int = ConfigTester(self ,config_class=_snake_case ,has_text_modality=_snake_case ) def UpperCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" return @unittest.skip(reason='''ResNet does not use inputs_embeds''' ) def UpperCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass @unittest.skip(reason='''ResNet does not support input and output embeddings''' ) def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" pass def UpperCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : str = model_class(_snake_case ) lowercase__ : Dict = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[int] = [*signature.parameters.keys()] lowercase__ : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_snake_case ) def UpperCAmelCase ( self : Tuple ) -> Any: """simple docstring""" lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" def check_hidden_states_output(_snake_case : Optional[int] ,_snake_case : List[str] ,_snake_case : Optional[Any] ): lowercase__ : str = model_class(_snake_case ) lowercase__ : Union[str, Any] = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__ : Tuple = self.model_tester.num_stages self.assertEqual(len(_snake_case ) ,expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase__ : List[Any] = layer_type lowercase__ : Dict = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Dict = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def UpperCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Optional[Any] = TFResNetModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def __UpperCAmelCase ( ) -> Dict: lowercase__ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class __A ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self : str ) -> Any: """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ : Tuple = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowercase__ : Any = self.default_image_processor lowercase__ : int = prepare_img() lowercase__ : Tuple = image_processor(images=_snake_case ,return_tensors='''tf''' ) # forward pass lowercase__ : Dict = model(**_snake_case ) # verify the logits lowercase__ : List[str] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape ,_snake_case ) lowercase__ : Any = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() ,_snake_case ,atol=1e-4 ) )
16
1
"""simple docstring""" from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __UpperCAmelCase ( __lowerCamelCase ) -> Dict: # A local function to see if a dot lands in the circle. def is_in_circle(__lowerCamelCase , __lowerCamelCase ) -> bool: lowercase__ : Union[str, Any] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle lowercase__ : Optional[Any] = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(__lowerCamelCase ) ) # The ratio of the area for circle to square is pi/4. lowercase__ : Optional[int] = proportion * 4 print(f"""The estimated value of pi is {pi_estimate}""" ) print(f"""The numpy value of pi is {pi}""" ) print(f"""The total error is {abs(pi - pi_estimate )}""" ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = 0.0 , __lowerCamelCase = 1.0 , ) -> float: return mean( function_to_integrate(uniform(__lowerCamelCase , __lowerCamelCase ) ) for _ in range(__lowerCamelCase ) ) * (max_value - min_value) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = 0.0 , __lowerCamelCase = 1.0 ) -> None: def identity_function(__lowerCamelCase ) -> float: return x lowercase__ : List[Any] = area_under_curve_estimator( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowercase__ : Dict = (max_value * max_value - min_value * min_value) / 2 print('''******************''' ) print(f"""Estimating area under y=x where x varies from {min_value} to {max_value}""" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {expected_value}""" ) print(f"""Total error is {abs(estimated_value - expected_value )}""" ) print('''******************''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> None: def function_to_integrate(__lowerCamelCase ) -> float: return sqrt(4.0 - x * x ) lowercase__ : int = area_under_curve_estimator( __lowerCamelCase , __lowerCamelCase , 0.0 , 2.0 ) print('''******************''' ) print('''Estimating pi using area_under_curve_estimator''' ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {pi}""" ) print(f"""Total error is {abs(estimated_value - pi )}""" ) print('''******************''' ) if __name__ == "__main__": import doctest doctest.testmod()
16
"""simple docstring""" import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: if "model" in orig_key: lowercase__ : Tuple = orig_key.replace('''model.''' , '''''' ) if "norm1" in orig_key: lowercase__ : List[str] = orig_key.replace('''norm1''' , '''attention.output.LayerNorm''' ) if "norm2" in orig_key: lowercase__ : List[str] = orig_key.replace('''norm2''' , '''output.LayerNorm''' ) if "norm" in orig_key: lowercase__ : List[str] = orig_key.replace('''norm''' , '''LayerNorm''' ) if "transformer" in orig_key: lowercase__ : Union[str, Any] = orig_key.split('''.''' )[0].split('''_''' )[-1] lowercase__ : List[str] = orig_key.replace(f"""transformer_{layer_num}""" , f"""encoder.layer.{layer_num}""" ) if "mha.attn" in orig_key: lowercase__ : Union[str, Any] = orig_key.replace('''mha.attn''' , '''attention.self''' ) if "mha" in orig_key: lowercase__ : str = orig_key.replace('''mha''' , '''attention''' ) if "W_q" in orig_key: lowercase__ : Any = orig_key.replace('''W_q''' , '''self.query''' ) if "W_k" in orig_key: lowercase__ : List[Any] = orig_key.replace('''W_k''' , '''self.key''' ) if "W_v" in orig_key: lowercase__ : Any = orig_key.replace('''W_v''' , '''self.value''' ) if "ff1" in orig_key: lowercase__ : Optional[int] = orig_key.replace('''ff1''' , '''intermediate.dense''' ) if "ff2" in orig_key: lowercase__ : Optional[Any] = orig_key.replace('''ff2''' , '''output.dense''' ) if "ff" in orig_key: lowercase__ : List[str] = orig_key.replace('''ff''' , '''output.dense''' ) if "mlm_class" in orig_key: lowercase__ : int = orig_key.replace('''mlm.mlm_class''' , '''cls.predictions.decoder''' ) if "mlm" in orig_key: lowercase__ : Optional[Any] = orig_key.replace('''mlm''' , '''cls.predictions.transform''' ) if "cls" not in orig_key: lowercase__ : Optional[Any] = '''yoso.''' + orig_key return orig_key def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: for key in orig_state_dict.copy().keys(): lowercase__ : Optional[Any] = orig_state_dict.pop(__lowerCamelCase ) if ("pooler" in key) or ("sen_class" in key): continue else: lowercase__ : Tuple = val lowercase__ : Union[str, Any] = orig_state_dict['''cls.predictions.decoder.bias'''] lowercase__ : List[str] = torch.arange(__lowerCamelCase ).expand((1, -1) ) + 2 return orig_state_dict def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : Tuple = torch.load(__lowerCamelCase , map_location='''cpu''' )['''model_state_dict'''] lowercase__ : List[Any] = YosoConfig.from_json_file(__lowerCamelCase ) lowercase__ : List[Any] = YosoForMaskedLM(__lowerCamelCase ) lowercase__ : Optional[Any] = convert_checkpoint_helper(config.max_position_embeddings , __lowerCamelCase ) print(model.load_state_dict(__lowerCamelCase ) ) model.eval() model.save_pretrained(__lowerCamelCase ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to YOSO pytorch checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for YOSO model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase_ = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
16
1
"""simple docstring""" import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __A : '''simple docstring''' @staticmethod def UpperCAmelCase ( *_snake_case : Optional[int] ,**_snake_case : Optional[Any] ) -> int: """simple docstring""" pass @is_pipeline_test @require_vision @require_torch class __A ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase : List[str] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : str ,_snake_case : str ,_snake_case : Dict ) -> Tuple: """simple docstring""" lowercase__ : str = pipeline( '''zero-shot-object-detection''' ,model='''hf-internal-testing/tiny-random-owlvit-object-detection''' ) lowercase__ : Optional[int] = [ { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], } ] return object_detector, examples def UpperCAmelCase ( self : str ,_snake_case : str ,_snake_case : Dict ) -> List[Any]: """simple docstring""" lowercase__ : List[Any] = object_detector(examples[0] ,threshold=0.0 ) lowercase__ : Optional[int] = len(_snake_case ) self.assertGreater(_snake_case ,0 ) self.assertEqual( _snake_case ,[ { '''score''': ANY(_snake_case ), '''label''': ANY(_snake_case ), '''box''': {'''xmin''': ANY(_snake_case ), '''ymin''': ANY(_snake_case ), '''xmax''': ANY(_snake_case ), '''ymax''': ANY(_snake_case )}, } for i in range(_snake_case ) ] ,) @require_tf @unittest.skip('''Zero Shot Object Detection not implemented in TF''' ) def UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" pass @require_torch def UpperCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" lowercase__ : Tuple = pipeline( '''zero-shot-object-detection''' ,model='''hf-internal-testing/tiny-random-owlvit-object-detection''' ) lowercase__ : str = object_detector( '''./tests/fixtures/tests_samples/COCO/000000039769.png''' ,candidate_labels=['''cat''', '''remote''', '''couch'''] ,threshold=0.64 ,) self.assertEqual( nested_simplify(_snake_case ,decimals=4 ) ,[ {'''score''': 0.7235, '''label''': '''cat''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7218, '''label''': '''remote''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7184, '''label''': '''couch''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.6748, '''label''': '''remote''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6656, '''label''': '''cat''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6614, '''label''': '''couch''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6456, '''label''': '''remote''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, {'''score''': 0.642, '''label''': '''remote''', '''box''': {'''xmin''': 67, '''ymin''': 274, '''xmax''': 93, '''ymax''': 297}}, {'''score''': 0.6419, '''label''': '''cat''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, ] ,) lowercase__ : str = object_detector( [ { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], } ] ,threshold=0.64 ,) self.assertEqual( nested_simplify(_snake_case ,decimals=4 ) ,[ [ {'''score''': 0.7235, '''label''': '''cat''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7218, '''label''': '''remote''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7184, '''label''': '''couch''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.6748, '''label''': '''remote''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6656, '''label''': '''cat''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6614, '''label''': '''couch''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6456, '''label''': '''remote''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, {'''score''': 0.642, '''label''': '''remote''', '''box''': {'''xmin''': 67, '''ymin''': 274, '''xmax''': 93, '''ymax''': 297}}, {'''score''': 0.6419, '''label''': '''cat''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, ] ] ,) @require_torch @slow def UpperCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" lowercase__ : List[str] = pipeline('''zero-shot-object-detection''' ) lowercase__ : Any = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' ,candidate_labels=['''cat''', '''remote''', '''couch'''] ,) self.assertEqual( nested_simplify(_snake_case ,decimals=4 ) ,[ {'''score''': 0.2868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2537, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.1474, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.1208, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ] ,) lowercase__ : int = object_detector( [ { '''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], }, { '''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], }, ] ,) self.assertEqual( nested_simplify(_snake_case ,decimals=4 ) ,[ [ {'''score''': 0.2868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2537, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.1474, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.1208, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ], [ {'''score''': 0.2868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2537, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.1474, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.1208, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ], ] ,) @require_tf @unittest.skip('''Zero Shot Object Detection not implemented in TF''' ) def UpperCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" pass @require_torch @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : List[Any] = 0.2 lowercase__ : List[Any] = pipeline('''zero-shot-object-detection''' ) lowercase__ : Any = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' ,candidate_labels=['''cat''', '''remote''', '''couch'''] ,threshold=_snake_case ,) self.assertEqual( nested_simplify(_snake_case ,decimals=4 ) ,[ {'''score''': 0.2868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2537, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, ] ,) @require_torch @slow def UpperCAmelCase ( self : str ) -> int: """simple docstring""" lowercase__ : Optional[int] = 2 lowercase__ : int = pipeline('''zero-shot-object-detection''' ) lowercase__ : Union[str, Any] = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' ,candidate_labels=['''cat''', '''remote''', '''couch'''] ,top_k=_snake_case ,) self.assertEqual( nested_simplify(_snake_case ,decimals=4 ) ,[ {'''score''': 0.2868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, ] ,)
16
"""simple docstring""" import os def __UpperCAmelCase ( ) -> int: with open(os.path.dirname(__lowerCamelCase ) + '''/p022_names.txt''' ) as file: lowercase__ : List[Any] = str(file.readlines()[0] ) lowercase__ : Dict = names.replace('''"''' , '''''' ).split(''',''' ) names.sort() lowercase__ : int = 0 lowercase__ : Optional[Any] = 0 for i, name in enumerate(__lowerCamelCase ): for letter in name: name_score += ord(__lowerCamelCase ) - 64 total_score += (i + 1) * name_score lowercase__ : List[str] = 0 return total_score if __name__ == "__main__": print(solution())
16
1
"""simple docstring""" import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask lowerCAmelCase_ = logging.getLogger(__name__) class __A ( A_ ): '''simple docstring''' def __init__( self : Optional[int] ,_snake_case : Tuple=-1 ) -> int: """simple docstring""" lowercase__ : Union[str, Any] = label_idx def UpperCAmelCase ( self : Any ,_snake_case : int ,_snake_case : Union[Split, str] ) -> List[InputExample]: """simple docstring""" if isinstance(_snake_case ,_snake_case ): lowercase__ : Optional[int] = mode.value lowercase__ : Optional[Any] = os.path.join(_snake_case ,f"""{mode}.txt""" ) lowercase__ : Union[str, Any] = 1 lowercase__ : Tuple = [] with open(_snake_case ,encoding='''utf-8''' ) as f: lowercase__ : Union[str, Any] = [] lowercase__ : Tuple = [] for line in f: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" ,words=_snake_case ,labels=_snake_case ) ) guid_index += 1 lowercase__ : List[str] = [] lowercase__ : List[Any] = [] else: lowercase__ : Dict = line.split(''' ''' ) words.append(splits[0] ) if len(_snake_case ) > 1: labels.append(splits[self.label_idx].replace('''\n''' ,'''''' ) ) else: # Examples could have no label for mode = "test" labels.append('''O''' ) if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" ,words=_snake_case ,labels=_snake_case ) ) return examples def UpperCAmelCase ( self : str ,_snake_case : TextIO ,_snake_case : TextIO ,_snake_case : List ) -> List[Any]: """simple docstring""" lowercase__ : Union[str, Any] = 0 for line in test_input_reader: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": writer.write(_snake_case ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: lowercase__ : Union[str, Any] = line.split()[0] + ''' ''' + preds_list[example_id].pop(0 ) + '''\n''' writer.write(_snake_case ) else: logger.warning('''Maximum sequence length exceeded: No prediction for \'%s\'.''' ,line.split()[0] ) def UpperCAmelCase ( self : Tuple ,_snake_case : str ) -> List[str]: """simple docstring""" if path: with open(_snake_case ,'''r''' ) as f: lowercase__ : str = f.read().splitlines() if "O" not in labels: lowercase__ : List[str] = ['''O'''] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __A ( A_ ): '''simple docstring''' def __init__( self : str ) -> Any: """simple docstring""" super().__init__(label_idx=-2 ) def UpperCAmelCase ( self : str ,_snake_case : str ) -> List[str]: """simple docstring""" if path: with open(_snake_case ,'''r''' ) as f: lowercase__ : int = f.read().splitlines() if "O" not in labels: lowercase__ : List[str] = ['''O'''] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __A ( A_ ): '''simple docstring''' def UpperCAmelCase ( self : int ,_snake_case : Optional[int] ,_snake_case : Union[Split, str] ) -> List[InputExample]: """simple docstring""" if isinstance(_snake_case ,_snake_case ): lowercase__ : List[str] = mode.value lowercase__ : str = os.path.join(_snake_case ,f"""{mode}.txt""" ) lowercase__ : Union[str, Any] = 1 lowercase__ : Tuple = [] with open(_snake_case ,encoding='''utf-8''' ) as f: for sentence in parse_incr(_snake_case ): lowercase__ : Tuple = [] lowercase__ : Any = [] for token in sentence: words.append(token['''form'''] ) labels.append(token['''upos'''] ) assert len(_snake_case ) == len(_snake_case ) if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" ,words=_snake_case ,labels=_snake_case ) ) guid_index += 1 return examples def UpperCAmelCase ( self : List[Any] ,_snake_case : TextIO ,_snake_case : TextIO ,_snake_case : List ) -> str: """simple docstring""" lowercase__ : Dict = 0 for sentence in parse_incr(_snake_case ): lowercase__ : Any = preds_list[example_id] lowercase__ : Union[str, Any] = '''''' for token in sentence: out += f"""{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) """ out += "\n" writer.write(_snake_case ) example_id += 1 def UpperCAmelCase ( self : List[str] ,_snake_case : str ) -> List[str]: """simple docstring""" if path: with open(_snake_case ,'''r''' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
16
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(A_ ) class __A ( A_ ): '''simple docstring''' def __init__( self : List[str] ,**_snake_case : Dict ) -> List[Any]: """simple docstring""" super().__init__(**_snake_case ) requires_backends(self ,'''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[int] ,_snake_case : Union[str, List[str], "Image", List["Image"]] ,**_snake_case : int ) -> Optional[Any]: """simple docstring""" return super().__call__(_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Dict ,**_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ : List[str] = {} if "candidate_labels" in kwargs: lowercase__ : Any = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: lowercase__ : Optional[Any] = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[int] ,_snake_case : Dict=None ,_snake_case : Union[str, Any]="This is a photo of {}." ) -> List[str]: """simple docstring""" lowercase__ : List[Any] = load_image(_snake_case ) lowercase__ : int = self.image_processor(images=[image] ,return_tensors=self.framework ) lowercase__ : str = candidate_labels lowercase__ : Dict = [hypothesis_template.format(_snake_case ) for x in candidate_labels] lowercase__ : Any = self.tokenizer(_snake_case ,return_tensors=self.framework ,padding=_snake_case ) lowercase__ : Optional[int] = [text_inputs] return inputs def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ : Optional[int] = model_inputs.pop('''candidate_labels''' ) lowercase__ : Union[str, Any] = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] ,_snake_case ): lowercase__ : List[str] = text_inputs[0] else: # Batching case. lowercase__ : int = text_inputs[0][0] lowercase__ : Tuple = self.model(**_snake_case ,**_snake_case ) lowercase__ : Union[str, Any] = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def UpperCAmelCase ( self : Any ,_snake_case : Tuple ) -> Any: """simple docstring""" lowercase__ : Dict = model_outputs.pop('''candidate_labels''' ) lowercase__ : Optional[Any] = model_outputs['''logits'''][0] if self.framework == "pt": lowercase__ : Optional[int] = logits.softmax(dim=-1 ).squeeze(-1 ) lowercase__ : Tuple = probs.tolist() if not isinstance(_snake_case ,_snake_case ): lowercase__ : Any = [scores] elif self.framework == "tf": lowercase__ : List[str] = stable_softmax(_snake_case ,axis=-1 ) lowercase__ : Optional[Any] = probs.numpy().tolist() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) lowercase__ : Union[str, Any] = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(_snake_case ,_snake_case ) ,key=lambda _snake_case : -x[0] ) ] return result
16
1
"""simple docstring""" from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def __UpperCAmelCase ( __lowerCamelCase ) -> int: if isinstance(__lowerCamelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class __A : '''simple docstring''' def UpperCAmelCase ( self : Any ,_snake_case : Optional[Any] ,_snake_case : Tuple ) -> Dict: """simple docstring""" pass def UpperCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" pass def UpperCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" pass def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Dict ,_snake_case : Dict ,_snake_case : Optional[Any] ,_snake_case : Dict ,_snake_case : Optional[Any]=None ,**_snake_case : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowercase__ : str = VisionTextDualEncoderConfig.from_vision_text_configs(_snake_case ,_snake_case ) lowercase__ : Tuple = TFVisionTextDualEncoderModel(_snake_case ) lowercase__ : Union[str, Any] = model(input_ids=_snake_case ,pixel_values=_snake_case ,attention_mask=_snake_case ) self.assertEqual(output['''text_embeds'''].shape ,(input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape ,(pixel_values.shape[0], config.projection_dim) ) def UpperCAmelCase ( self : int ,_snake_case : Any ,_snake_case : Any ,_snake_case : Any ,_snake_case : int ,_snake_case : List[str]=None ,**_snake_case : str ) -> int: """simple docstring""" lowercase__ , lowercase__ : str = self.get_vision_text_model(_snake_case ,_snake_case ) lowercase__ : str = TFVisionTextDualEncoderModel(vision_model=_snake_case ,text_model=_snake_case ) lowercase__ : Dict = model(input_ids=_snake_case ,pixel_values=_snake_case ,attention_mask=_snake_case ) self.assertEqual(output['''text_embeds'''].shape ,(input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape ,(pixel_values.shape[0], model.config.projection_dim) ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : int ,_snake_case : Tuple ,_snake_case : Optional[Any] ,_snake_case : List[Any] ,_snake_case : str=None ,**_snake_case : str ) -> Dict: """simple docstring""" lowercase__ , lowercase__ : List[str] = self.get_vision_text_model(_snake_case ,_snake_case ) lowercase__ : str = {'''vision_model''': vision_model, '''text_model''': text_model} lowercase__ : List[Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_snake_case ) lowercase__ : Tuple = model(input_ids=_snake_case ,pixel_values=_snake_case ,attention_mask=_snake_case ) self.assertEqual(output['''text_embeds'''].shape ,(input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape ,(pixel_values.shape[0], model.config.projection_dim) ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Tuple ,_snake_case : Any ,_snake_case : List[str] ,_snake_case : List[Any] ,_snake_case : Any=None ,**_snake_case : List[str] ) -> str: """simple docstring""" lowercase__ , lowercase__ : int = self.get_vision_text_model(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = TFVisionTextDualEncoderModel(vision_model=_snake_case ,text_model=_snake_case ) lowercase__ : List[Any] = model(input_ids=_snake_case ,pixel_values=_snake_case ,attention_mask=_snake_case ) lowercase__ : Tuple = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_snake_case ) lowercase__ : List[str] = TFVisionTextDualEncoderModel.from_pretrained(_snake_case ) lowercase__ : Any = model(input_ids=_snake_case ,pixel_values=_snake_case ,attention_mask=_snake_case ) lowercase__ : Dict = after_output[0].numpy() lowercase__ : Optional[int] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_snake_case ,1e-5 ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Dict ,_snake_case : str ,_snake_case : str ,_snake_case : Optional[Any] ,_snake_case : Optional[int]=None ,**_snake_case : str ) -> Any: """simple docstring""" lowercase__ , lowercase__ : str = self.get_vision_text_model(_snake_case ,_snake_case ) lowercase__ : Dict = TFVisionTextDualEncoderModel(vision_model=_snake_case ,text_model=_snake_case ) lowercase__ : Optional[Any] = model( input_ids=_snake_case ,pixel_values=_snake_case ,attention_mask=_snake_case ,output_attentions=_snake_case ) lowercase__ : List[str] = output.vision_model_output.attentions self.assertEqual(len(_snake_case ) ,vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase__ : Tuple = to_atuple(vision_model.config.image_size ) lowercase__ : int = to_atuple(vision_model.config.patch_size ) lowercase__ : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowercase__ : Any = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] ,(vision_config.num_attention_heads, seq_len, seq_len) ) lowercase__ : List[Any] = output.text_model_output.attentions self.assertEqual(len(_snake_case ) ,text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] ,(text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) ,) def UpperCAmelCase ( self : Optional[int] ,_snake_case : np.ndarray ,_snake_case : np.ndarray ,_snake_case : float ) -> List[Any]: """simple docstring""" lowercase__ : Union[str, Any] = np.abs((a - b) ).max() self.assertLessEqual(_snake_case ,_snake_case ,f"""Difference between torch and flax is {diff} (>= {tol}).""" ) def UpperCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" lowercase__ : List[Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_snake_case ) def UpperCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" lowercase__ : Optional[Any] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_snake_case ) def UpperCAmelCase ( self : Tuple ) -> Any: """simple docstring""" lowercase__ : List[Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_snake_case ) def UpperCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" lowercase__ : List[Any] = self.prepare_config_and_inputs() self.check_save_load(**_snake_case ) def UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_snake_case ) @slow def UpperCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" lowercase__ , lowercase__ : List[Any] = self.get_pretrained_model_and_inputs() lowercase__ : str = model_a(**_snake_case ) lowercase__ : Optional[int] = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_snake_case ) lowercase__ : Dict = TFVisionTextDualEncoderModel.from_pretrained(_snake_case ) lowercase__ : Tuple = model_a(**_snake_case ) lowercase__ : Optional[int] = after_outputs[0].numpy() lowercase__ : List[str] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_snake_case ,1e-5 ) @require_tf class __A ( A_ ,unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[int] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' ,'''hf-internal-testing/tiny-random-bert''' ) lowercase__ : Any = 13 lowercase__ : Optional[int] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowercase__ : Union[str, Any] = ids_tensor([batch_size, 4] ,model.text_model.config.vocab_size ) lowercase__ : int = random_attention_mask([batch_size, 4] ) lowercase__ : int = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Dict ,_snake_case : List[str] ) -> Any: """simple docstring""" lowercase__ : Optional[Any] = TFViTModel(_snake_case ,name='''vision_model''' ) lowercase__ : Optional[int] = TFBertModel(_snake_case ,name='''text_model''' ) return vision_model, text_model def UpperCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" lowercase__ : Tuple = TFViTModelTester(self ) lowercase__ : List[str] = TFBertModelTester(self ) lowercase__ : Optional[Any] = vit_model_tester.prepare_config_and_inputs() lowercase__ : str = bert_model_tester.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Any = vision_config_and_inputs ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : Optional[Any] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __A ( A_ ,unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" lowercase__ : Any = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-deit-tf''' ,'''hf-internal-testing/tiny-random-roberta''' ) lowercase__ : Optional[Any] = 13 lowercase__ : Union[str, Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowercase__ : Tuple = ids_tensor([batch_size, 4] ,model.text_model.config.vocab_size ) lowercase__ : Tuple = random_attention_mask([batch_size, 4] ) lowercase__ : str = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Any ,_snake_case : Optional[int] ,_snake_case : Union[str, Any] ,_snake_case : Optional[int] ,_snake_case : Dict=None ,**_snake_case : str ) -> str: """simple docstring""" lowercase__ , lowercase__ : List[Any] = self.get_vision_text_model(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = TFVisionTextDualEncoderModel(vision_model=_snake_case ,text_model=_snake_case ) lowercase__ : str = model( input_ids=_snake_case ,pixel_values=_snake_case ,attention_mask=_snake_case ,output_attentions=_snake_case ) lowercase__ : int = output.vision_model_output.attentions self.assertEqual(len(_snake_case ) ,vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) lowercase__ : Union[str, Any] = to_atuple(vision_model.config.image_size ) lowercase__ : Optional[Any] = to_atuple(vision_model.config.patch_size ) lowercase__ : Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowercase__ : Dict = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] ,(vision_config.num_attention_heads, seq_len, seq_len) ) lowercase__ : Optional[Any] = output.text_model_output.attentions self.assertEqual(len(_snake_case ) ,text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] ,(text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) ,) def UpperCAmelCase ( self : Any ,_snake_case : str ,_snake_case : List[Any] ) -> int: """simple docstring""" lowercase__ : Optional[Any] = TFDeiTModel(_snake_case ,name='''vision_model''' ) lowercase__ : int = TFRobertaModel(_snake_case ,name='''text_model''' ) return vision_model, text_model def UpperCAmelCase ( self : str ) -> str: """simple docstring""" lowercase__ : Tuple = TFDeiTModelTester(self ) lowercase__ : Optional[Any] = TFRobertaModelTester(self ) lowercase__ : List[str] = vit_model_tester.prepare_config_and_inputs() lowercase__ : Dict = bert_model_tester.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : int = vision_config_and_inputs ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : Optional[Any] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __A ( A_ ,unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" lowercase__ : List[Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-clip-tf''' ,'''hf-internal-testing/tiny-random-bert''' ) lowercase__ : List[str] = 13 lowercase__ : List[str] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowercase__ : Any = ids_tensor([batch_size, 4] ,model.text_model.config.vocab_size ) lowercase__ : Dict = random_attention_mask([batch_size, 4] ) lowercase__ : Dict = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def UpperCAmelCase ( self : Any ,_snake_case : List[str] ,_snake_case : int ) -> List[str]: """simple docstring""" lowercase__ : Tuple = TFCLIPVisionModel(_snake_case ,name='''vision_model''' ) lowercase__ : Optional[int] = TFBertModel(_snake_case ,name='''text_model''' ) return vision_model, text_model def UpperCAmelCase ( self : Dict ) -> Dict: """simple docstring""" lowercase__ : Optional[int] = TFCLIPVisionModelTester(self ) lowercase__ : List[Any] = TFBertModelTester(self ) lowercase__ : List[Any] = clip_model_tester.prepare_config_and_inputs() lowercase__ : List[Any] = bert_model_tester.prepare_config_and_inputs() lowercase__ , lowercase__ : Tuple = vision_config_and_inputs ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : str = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class __A ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" lowercase__ : Optional[int] = TFVisionTextDualEncoderModel.from_pretrained( '''clip-italian/clip-italian''' ,logit_scale_init_value=1.0 ,from_pt=_snake_case ) lowercase__ : Optional[Any] = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' ) lowercase__ : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowercase__ : Any = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] ,images=_snake_case ,padding=_snake_case ,return_tensors='''np''' ) lowercase__ : Optional[Any] = model(**_snake_case ) # verify the logits self.assertEqual(outputs.logits_per_image.shape ,(inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape ,(inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) ,) lowercase__ : List[Any] = np.array([[1.228_4727, 0.310_4122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() ,_snake_case ,atol=1e-3 ) )
16
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[Any]: print('''\nThe shortest path matrix using Floyd Warshall algorithm\n''' ) for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): if dist[i][j] != float('''inf''' ): print(int(dist[i][j] ) , end='''\t''' ) else: print('''INF''' , end='''\t''' ) print() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : str = [[float('''inf''' ) for _ in range(__lowerCamelCase )] for _ in range(__lowerCamelCase )] for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): lowercase__ : List[str] = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(__lowerCamelCase ): # looping through rows of graph array for i in range(__lowerCamelCase ): # looping through columns of graph array for j in range(__lowerCamelCase ): if ( dist[i][k] != float('''inf''' ) and dist[k][j] != float('''inf''' ) and dist[i][k] + dist[k][j] < dist[i][j] ): lowercase__ : str = dist[i][k] + dist[k][j] _print_dist(__lowerCamelCase , __lowerCamelCase ) return dist, v if __name__ == "__main__": lowerCAmelCase_ = int(input('Enter number of vertices: ')) lowerCAmelCase_ = int(input('Enter number of edges: ')) lowerCAmelCase_ = [[float('inf') for i in range(v)] for j in range(v)] for i in range(v): lowerCAmelCase_ = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('\nEdge ', i + 1) lowerCAmelCase_ = int(input('Enter source:')) lowerCAmelCase_ = int(input('Enter destination:')) lowerCAmelCase_ = float(input('Enter weight:')) lowerCAmelCase_ = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
16
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase_ = { 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' def __init__( self : Dict ,*_snake_case : Any ,**_snake_case : str ) -> None: """simple docstring""" warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' ,_snake_case ,) super().__init__(*_snake_case ,**_snake_case )
16
1
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor lowerCAmelCase_ = random.Random() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase=1.0 , __lowerCamelCase=None , __lowerCamelCase=None ) -> int: if rng is None: lowercase__ : List[Any] = global_rng lowercase__ : Union[str, Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __A ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple ,_snake_case : Dict ,_snake_case : Optional[Any]=7 ,_snake_case : int=400 ,_snake_case : Dict=2_000 ,_snake_case : Dict=24 ,_snake_case : Any=24 ,_snake_case : str=0.0 ,_snake_case : Optional[Any]=16_000 ,_snake_case : List[str]=True ,_snake_case : Dict=True ,) -> Dict: """simple docstring""" lowercase__ : str = parent lowercase__ : Union[str, Any] = batch_size lowercase__ : Optional[Any] = min_seq_length lowercase__ : int = max_seq_length lowercase__ : Union[str, Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowercase__ : Tuple = feature_size lowercase__ : str = num_mel_bins lowercase__ : List[Any] = padding_value lowercase__ : Tuple = sampling_rate lowercase__ : List[Any] = return_attention_mask lowercase__ : Dict = do_normalize def UpperCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCAmelCase ( self : Any ,_snake_case : Any=False ,_snake_case : int=False ) -> Tuple: """simple docstring""" def _flatten(_snake_case : Optional[Any] ): return list(itertools.chain(*_snake_case ) ) if equal_length: lowercase__ : Union[str, Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowercase__ : Dict = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length ,self.max_seq_length ,self.seq_length_diff ) ] if numpify: lowercase__ : Optional[Any] = [np.asarray(_snake_case ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Tuple = SpeechaTextFeatureExtractor if is_speech_available() else None def UpperCAmelCase ( self : int ) -> List[str]: """simple docstring""" lowercase__ : Any = SpeechaTextFeatureExtractionTester(self ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : List[str] ) -> List[str]: """simple docstring""" self.assertTrue(np.all(np.mean(_snake_case ,axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_snake_case ,axis=0 ) - 1 ) < 1e-3 ) ) def UpperCAmelCase ( self : Tuple ) -> Any: """simple docstring""" lowercase__ : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowercase__ : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800 ,1_400 ,200 )] lowercase__ : Any = [np.asarray(_snake_case ) for speech_input in speech_inputs] # Test feature size lowercase__ : List[str] = feature_extractor(_snake_case ,padding=_snake_case ,return_tensors='''np''' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input lowercase__ : Dict = feature_extractor(speech_inputs[0] ,return_tensors='''np''' ).input_features lowercase__ : str = feature_extractor(np_speech_inputs[0] ,return_tensors='''np''' ).input_features self.assertTrue(np.allclose(_snake_case ,_snake_case ,atol=1e-3 ) ) # Test batched lowercase__ : Optional[int] = feature_extractor(_snake_case ,return_tensors='''np''' ).input_features lowercase__ : Union[str, Any] = feature_extractor(_snake_case ,return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(_snake_case ,_snake_case ): self.assertTrue(np.allclose(_snake_case ,_snake_case ,atol=1e-3 ) ) # Test 2-D numpy arrays are batched. lowercase__ : Any = [floats_list((1, x) )[0] for x in (800, 800, 800)] lowercase__ : Dict = np.asarray(_snake_case ) lowercase__ : str = feature_extractor(_snake_case ,return_tensors='''np''' ).input_features lowercase__ : Tuple = feature_extractor(_snake_case ,return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(_snake_case ,_snake_case ): self.assertTrue(np.allclose(_snake_case ,_snake_case ,atol=1e-3 ) ) def UpperCAmelCase ( self : Tuple ) -> str: """simple docstring""" lowercase__ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : str = [floats_list((1, x) )[0] for x in range(800 ,1_400 ,200 )] lowercase__ : str = ['''longest''', '''max_length''', '''do_not_pad'''] lowercase__ : Union[str, Any] = [None, 16, None] for max_length, padding in zip(_snake_case ,_snake_case ): lowercase__ : Union[str, Any] = feature_extractor( _snake_case ,padding=_snake_case ,max_length=_snake_case ,return_attention_mask=_snake_case ) lowercase__ : Any = inputs.input_features lowercase__ : Any = inputs.attention_mask lowercase__ : Optional[Any] = [np.sum(_snake_case ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def UpperCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" lowercase__ : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : List[Any] = [floats_list((1, x) )[0] for x in range(800 ,1_400 ,200 )] lowercase__ : List[Any] = ['''longest''', '''max_length''', '''do_not_pad'''] lowercase__ : Optional[int] = [None, 16, None] for max_length, padding in zip(_snake_case ,_snake_case ): lowercase__ : Optional[int] = feature_extractor( _snake_case ,max_length=_snake_case ,padding=_snake_case ,return_tensors='''np''' ,return_attention_mask=_snake_case ) lowercase__ : Any = inputs.input_features lowercase__ : Any = inputs.attention_mask lowercase__ : Tuple = [np.sum(_snake_case ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def UpperCAmelCase ( self : Any ) -> str: """simple docstring""" lowercase__ : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : Any = [floats_list((1, x) )[0] for x in range(800 ,1_400 ,200 )] lowercase__ : List[Any] = feature_extractor( _snake_case ,padding='''max_length''' ,max_length=4 ,truncation=_snake_case ,return_tensors='''np''' ,return_attention_mask=_snake_case ,) lowercase__ : Optional[int] = inputs.input_features lowercase__ : Optional[Any] = inputs.attention_mask lowercase__ : str = np.sum(attention_mask == 1 ,axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def UpperCAmelCase ( self : Tuple ) -> Any: """simple docstring""" lowercase__ : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : int = [floats_list((1, x) )[0] for x in range(800 ,1_400 ,200 )] lowercase__ : str = feature_extractor( _snake_case ,padding='''longest''' ,max_length=4 ,truncation=_snake_case ,return_tensors='''np''' ,return_attention_mask=_snake_case ,) lowercase__ : Optional[Any] = inputs.input_features lowercase__ : List[str] = inputs.attention_mask lowercase__ : int = np.sum(attention_mask == 1 ,axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape ,(3, 4, 24) ) lowercase__ : Dict = [floats_list((1, x) )[0] for x in range(800 ,1_400 ,200 )] lowercase__ : List[Any] = feature_extractor( _snake_case ,padding='''longest''' ,max_length=16 ,truncation=_snake_case ,return_tensors='''np''' ,return_attention_mask=_snake_case ,) lowercase__ : List[str] = inputs.input_features lowercase__ : List[Any] = inputs.attention_mask lowercase__ : Dict = np.sum(attention_mask == 1 ,axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape ,(3, 6, 24) ) def UpperCAmelCase ( self : str ) -> List[str]: """simple docstring""" import torch lowercase__ : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : int = np.random.rand(100 ,32 ).astype(np.floataa ) lowercase__ : Tuple = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowercase__ : Tuple = feature_extractor.pad([{'''input_features''': inputs}] ,return_tensors='''np''' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) lowercase__ : Union[str, Any] = feature_extractor.pad([{'''input_features''': inputs}] ,return_tensors='''pt''' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def UpperCAmelCase ( self : Any ,_snake_case : str ) -> Optional[Any]: """simple docstring""" from datasets import load_dataset lowercase__ : List[str] = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' ,'''clean''' ,split='''validation''' ) # automatic decoding with librispeech lowercase__ : int = ds.sort('''id''' ).select(range(_snake_case ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ : str = np.array([ -1.5745, -1.7713, -1.7020, -1.6069, -1.2250, -1.1105, -0.9072, -0.8241, -1.2310, -0.8098, -0.3320, -0.4101, -0.7985, -0.4996, -0.8213, -0.9128, -1.0420, -1.1286, -1.0440, -0.7999, -0.8405, -1.2275, -1.5443, -1.4625, ] ) # fmt: on lowercase__ : List[Any] = self._load_datasamples(1 ) lowercase__ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : Optional[Any] = feature_extractor(_snake_case ,return_tensors='''pt''' ).input_features self.assertEquals(input_features.shape ,(1, 584, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30] ,_snake_case ,atol=1e-4 ) )
16
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {'configuration_xglm': ['XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XGLMConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['XGLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['XGLMTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XGLMForCausalLM', 'XGLMModel', 'XGLMPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'FlaxXGLMForCausalLM', 'FlaxXGLMModel', 'FlaxXGLMPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXGLMForCausalLM', 'TFXGLMModel', 'TFXGLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
16
1
"""simple docstring""" import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('0.8.3'): raise Exception('requires gluonnlp == 0.8.3') if version.parse(mx.__version__) != version.parse('1.5.0'): raise Exception('requires mxnet == 1.5.0') logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = 'The Nymphenburg Palace is a beautiful palace in Munich!' def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[str]: lowercase__ : Tuple = { '''attention_cell''': '''multi_head''', '''num_layers''': 4, '''units''': 10_24, '''hidden_size''': 7_68, '''max_length''': 5_12, '''num_heads''': 8, '''scaled''': True, '''dropout''': 0.1, '''use_residual''': True, '''embed_size''': 10_24, '''embed_dropout''': 0.1, '''word_embed''': None, '''layer_norm_eps''': 1E-5, '''token_type_vocab_size''': 2, } lowercase__ : Optional[Any] = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py lowercase__ : Tuple = BERTEncoder( attention_cell=predefined_args['''attention_cell'''] , num_layers=predefined_args['''num_layers'''] , units=predefined_args['''units'''] , hidden_size=predefined_args['''hidden_size'''] , max_length=predefined_args['''max_length'''] , num_heads=predefined_args['''num_heads'''] , scaled=predefined_args['''scaled'''] , dropout=predefined_args['''dropout'''] , output_attention=__lowerCamelCase , output_all_encodings=__lowerCamelCase , use_residual=predefined_args['''use_residual'''] , activation=predefined_args.get('''activation''' , '''gelu''' ) , layer_norm_eps=predefined_args.get('''layer_norm_eps''' , __lowerCamelCase ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later lowercase__ : List[str] = '''openwebtext_ccnews_stories_books_cased''' # Specify download folder to Gluonnlp's vocab lowercase__ : Union[str, Any] = os.path.join(get_home_dir() , '''models''' ) lowercase__ : List[str] = _load_vocab(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , cls=__lowerCamelCase ) lowercase__ : str = nlp.model.BERTModel( __lowerCamelCase , len(__lowerCamelCase ) , units=predefined_args['''units'''] , embed_size=predefined_args['''embed_size'''] , embed_dropout=predefined_args['''embed_dropout'''] , word_embed=predefined_args['''word_embed'''] , use_pooler=__lowerCamelCase , use_token_type_embed=__lowerCamelCase , token_type_vocab_size=predefined_args['''token_type_vocab_size'''] , use_classifier=__lowerCamelCase , use_decoder=__lowerCamelCase , ) original_bort.load_parameters(__lowerCamelCase , cast_dtype=__lowerCamelCase , ignore_extra=__lowerCamelCase ) lowercase__ : List[Any] = original_bort._collect_params_with_prefix() # Build our config 🤗 lowercase__ : Optional[int] = { '''architectures''': ['''BertForMaskedLM'''], '''attention_probs_dropout_prob''': predefined_args['''dropout'''], '''hidden_act''': '''gelu''', '''hidden_dropout_prob''': predefined_args['''dropout'''], '''hidden_size''': predefined_args['''embed_size'''], '''initializer_range''': 0.0_2, '''intermediate_size''': predefined_args['''hidden_size'''], '''layer_norm_eps''': predefined_args['''layer_norm_eps'''], '''max_position_embeddings''': predefined_args['''max_length'''], '''model_type''': '''bort''', '''num_attention_heads''': predefined_args['''num_heads'''], '''num_hidden_layers''': predefined_args['''num_layers'''], '''pad_token_id''': 1, # 2 = BERT, 1 = RoBERTa '''type_vocab_size''': 1, # 2 = BERT, 1 = RoBERTa '''vocab_size''': len(__lowerCamelCase ), } lowercase__ : str = BertConfig.from_dict(__lowerCamelCase ) lowercase__ : str = BertForMaskedLM(__lowerCamelCase ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(__lowerCamelCase ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(__lowerCamelCase , __lowerCamelCase ): lowercase__ : str = hf_param.shape lowercase__ : int = to_torch(params[gluon_param] ) lowercase__ : Optional[Any] = gluon_param.shape assert ( shape_hf == shape_gluon ), f"""The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers""" return gluon_param lowercase__ : str = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , '''word_embed.0.weight''' ) lowercase__ : int = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , '''encoder.position_weight''' ) lowercase__ : int = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , '''encoder.layer_norm.beta''' ) lowercase__ : Optional[int] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , '''encoder.layer_norm.gamma''' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) lowercase__ : int = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): lowercase__ : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention lowercase__ : BertSelfAttention = layer.attention.self lowercase__ : Any = check_and_map_params( self_attn.key.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.bias""" ) lowercase__ : int = check_and_map_params( self_attn.key.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.weight""" ) lowercase__ : Optional[int] = check_and_map_params( self_attn.query.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.bias""" ) lowercase__ : int = check_and_map_params( self_attn.query.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.weight""" ) lowercase__ : Optional[int] = check_and_map_params( self_attn.value.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.bias""" ) lowercase__ : Optional[Any] = check_and_map_params( self_attn.value.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.weight""" ) # self attention output lowercase__ : BertSelfOutput = layer.attention.output lowercase__ : Union[str, Any] = check_and_map_params( self_output.dense.bias , f"""encoder.transformer_cells.{i}.proj.bias""" ) lowercase__ : List[str] = check_and_map_params( self_output.dense.weight , f"""encoder.transformer_cells.{i}.proj.weight""" ) lowercase__ : List[str] = check_and_map_params( self_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.layer_norm.beta""" ) lowercase__ : Any = check_and_map_params( self_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.layer_norm.gamma""" ) # intermediate lowercase__ : BertIntermediate = layer.intermediate lowercase__ : Dict = check_and_map_params( intermediate.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_1.bias""" ) lowercase__ : Union[str, Any] = check_and_map_params( intermediate.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_1.weight""" ) # output lowercase__ : BertOutput = layer.output lowercase__ : str = check_and_map_params( bert_output.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_2.bias""" ) lowercase__ : Any = check_and_map_params( bert_output.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_2.weight""" ) lowercase__ : int = check_and_map_params( bert_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.ffn.layer_norm.beta""" ) lowercase__ : Any = check_and_map_params( bert_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.ffn.layer_norm.gamma""" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models lowercase__ : str = RobertaTokenizer.from_pretrained('''roberta-base''' ) lowercase__ : Tuple = tokenizer.encode_plus(__lowerCamelCase )['''input_ids'''] # Get gluon output lowercase__ : List[str] = mx.nd.array([input_ids] ) lowercase__ : Union[str, Any] = original_bort(inputs=__lowerCamelCase , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(__lowerCamelCase ) lowercase__ : List[str] = BertModel.from_pretrained(__lowerCamelCase ) hf_bort_model.eval() lowercase__ : Tuple = tokenizer.encode_plus(__lowerCamelCase , return_tensors='''pt''' ) lowercase__ : Dict = hf_bort_model(**__lowerCamelCase )[0] lowercase__ : List[str] = output_gluon[0].asnumpy() lowercase__ : Optional[Any] = output_hf[0].detach().numpy() lowercase__ : List[str] = np.max(np.abs(hf_layer - gluon_layer ) ).item() lowercase__ : List[str] = np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-3 ) if success: print('''✔️ Both model do output the same tensors''' ) else: print('''❌ Both model do **NOT** output the same tensors''' ) print('''Absolute difference is:''' , __lowerCamelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--bort_checkpoint_path', default=None, type=str, required=True, help='Path the official Bort params file.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase_ = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
16
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class __A ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : Tuple = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Dict = TFAutoModel.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = AutoModel.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : Dict = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : str = TFAutoModelForPreTraining.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = AutoModelForPreTraining.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Any = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = TFAutoModelForCausalLM.from_pretrained(_snake_case ,from_pt=_snake_case ) lowercase__ , lowercase__ : Optional[Any] = TFAutoModelForCausalLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = AutoModelForCausalLM.from_pretrained(_snake_case ,from_tf=_snake_case ) lowercase__ , lowercase__ : Optional[Any] = AutoModelForCausalLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Any ) -> Tuple: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Any = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : str = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(_snake_case ,from_pt=_snake_case ) lowercase__ , lowercase__ : str = TFAutoModelForMaskedLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = AutoModelForMaskedLM.from_pretrained(_snake_case ,from_tf=_snake_case ) lowercase__ , lowercase__ : Any = AutoModelForMaskedLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Union[str, Any] = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained(_snake_case ,from_pt=_snake_case ) lowercase__ , lowercase__ : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ,from_tf=_snake_case ) lowercase__ , lowercase__ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : Tuple = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = TFAutoModelForSequenceClassification.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : List[Any] = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : str = TFAutoModelForQuestionAnswering.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = AutoModelForQuestionAnswering.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : Optional[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) lowercase__ : Union[str, Any] = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) def UpperCAmelCase ( self : int ) -> List[Any]: """simple docstring""" lowercase__ : List[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) lowercase__ : int = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 )
16
1
"""simple docstring""" import os from typing import Dict, List, Tuple, TypeVar, Union lowerCAmelCase_ = TypeVar('T') lowerCAmelCase_ = Union[List[T], Tuple[T, ...]] lowerCAmelCase_ = Union[T, List[T], Dict[str, T]] lowerCAmelCase_ = Union[str, bytes, os.PathLike]
16
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase = 50 ) -> int: lowercase__ : int = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F'''{solution() = }''')
16
1
"""simple docstring""" import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.17.0.dev0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/text-classification/requirements.txt') lowerCAmelCase_ = logging.getLogger(__name__) @dataclass class __A : '''simple docstring''' lowerCAmelCase : Optional[str] = field( default="tab_fact" ,metadata={"help": "The name of the dataset to use (via the datasets library)."} ) lowerCAmelCase : Optional[str] = field( default="tab_fact" ,metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ,) lowerCAmelCase : int = field( default=1_0_2_4 ,metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } ,) lowerCAmelCase : bool = field( default=A_ ,metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) lowerCAmelCase : bool = field( default=A_ ,metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } ,) lowerCAmelCase : Optional[int] = field( default=A_ ,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } ,) lowerCAmelCase : Optional[int] = field( default=A_ ,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } ,) lowerCAmelCase : Optional[int] = field( default=A_ ,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } ,) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "A csv or a json file containing the training data."} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "A csv or a json file containing the validation data."} ) lowerCAmelCase : Optional[str] = field(default=A_ ,metadata={"help": "A csv or a json file containing the test data."} ) def UpperCAmelCase ( self : str ) -> Any: """simple docstring""" if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('''Need either a GLUE task, a training/validation file or a dataset name.''' ) else: lowercase__ : List[str] = self.train_file.split('''.''' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." lowercase__ : Optional[int] = self.validation_file.split('''.''' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __A : '''simple docstring''' lowerCAmelCase : str = field( default=A_ ,metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,) lowerCAmelCase : bool = field( default=A_ ,metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} ,) lowerCAmelCase : str = field( default="main" ,metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} ,) lowerCAmelCase : bool = field( default=A_ ,metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } ,) def __UpperCAmelCase ( ) -> List[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase__ : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ : Optional[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ : Optional[Any] = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) lowercase__ : Tuple = training_args.get_process_log_level() logger.setLevel(__lowerCamelCase ) datasets.utils.logging.set_verbosity(__lowerCamelCase ) transformers.utils.logging.set_verbosity(__lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowercase__ : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase__ : List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowercase__ : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. lowercase__ : Any = {'''train''': data_args.train_file, '''validation''': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: lowercase__ : str = data_args.train_file.split('''.''' )[-1] lowercase__ : Tuple = data_args.test_file.split('''.''' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." lowercase__ : Dict = data_args.test_file else: raise ValueError('''Need either a GLUE task or a test file for `do_predict`.''' ) for key in data_files.keys(): logger.info(f"""load a local file for {key}: {data_files[key]}""" ) if data_args.train_file.endswith('''.csv''' ): # Loading a dataset from local csv files lowercase__ : Union[str, Any] = load_dataset('''csv''' , data_files=__lowerCamelCase , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files lowercase__ : Optional[Any] = load_dataset('''json''' , data_files=__lowerCamelCase , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels lowercase__ : int = raw_datasets['''train'''].features['''label'''].names lowercase__ : List[Any] = len(__lowerCamelCase ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ : int = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer lowercase__ : List[Any] = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=__lowerCamelCase , ) lowercase__ : Any = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: lowercase__ : str = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowercase__ : List[Any] = False # Some models have set the order of the labels to use, so let's make sure we do use it. lowercase__ : Any = {'''Refused''': 0, '''Entailed''': 1} lowercase__ : str = {0: '''Refused''', 1: '''Entailed'''} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) lowercase__ : str = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(__lowerCamelCase ): # Tokenize the texts def _convert_table_text_to_pandas(__lowerCamelCase ): lowercase__ : Dict = [_table_row.split('''#''' ) for _table_row in _table_text.strip('''\n''' ).split('''\n''' )] lowercase__ : List[Any] = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd lowercase__ : Tuple = examples['''statement'''] lowercase__ : str = list(map(_convert_table_text_to_pandas , examples['''table_text'''] ) ) lowercase__ : Dict = tokenizer(__lowerCamelCase , __lowerCamelCase , padding=__lowerCamelCase , max_length=__lowerCamelCase , truncation=__lowerCamelCase ) lowercase__ : List[Any] = examples['''label'''] return result with training_args.main_process_first(desc='''dataset map pre-processing''' ): lowercase__ : List[Any] = raw_datasets.map( __lowerCamelCase , batched=__lowerCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on dataset''' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) lowercase__ : str = raw_datasets['''train'''] if data_args.max_train_samples is not None: lowercase__ : Union[str, Any] = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) lowercase__ : Any = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: lowercase__ : Optional[int] = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('''--do_predict requires a test dataset''' ) lowercase__ : Optional[Any] = raw_datasets['''test'''] if data_args.max_predict_samples is not None: lowercase__ : str = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(__lowerCamelCase ) ) , 3 ): logger.info(f"""Sample {index} of the training set: {train_dataset[index]}.""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__lowerCamelCase ): lowercase__ : Union[str, Any] = p.predictions[0] if isinstance(p.predictions , __lowerCamelCase ) else p.predictions lowercase__ : Dict = np.argmax(__lowerCamelCase , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowercase__ : List[str] = default_data_collator elif training_args.fpaa: lowercase__ : Any = DataCollatorWithPadding(__lowerCamelCase , pad_to_multiple_of=8 ) else: lowercase__ : List[Any] = None # Initialize our Trainer lowercase__ : Union[str, Any] = Trainer( model=__lowerCamelCase , args=__lowerCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__lowerCamelCase , tokenizer=__lowerCamelCase , data_collator=__lowerCamelCase , ) # Training if training_args.do_train: lowercase__ : Dict = None if training_args.resume_from_checkpoint is not None: lowercase__ : Dict = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase__ : int = last_checkpoint lowercase__ : List[str] = trainer.train(resume_from_checkpoint=__lowerCamelCase ) lowercase__ : List[str] = train_result.metrics lowercase__ : List[str] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__lowerCamelCase ) ) lowercase__ : Any = min(__lowerCamelCase , len(__lowerCamelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' , __lowerCamelCase ) trainer.save_metrics('''train''' , __lowerCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase__ : Union[str, Any] = trainer.evaluate(eval_dataset=__lowerCamelCase ) lowercase__ : Union[str, Any] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__lowerCamelCase ) lowercase__ : Tuple = min(__lowerCamelCase , len(__lowerCamelCase ) ) trainer.log_metrics('''eval''' , __lowerCamelCase ) trainer.save_metrics('''eval''' , __lowerCamelCase ) if training_args.do_predict: logger.info('''*** Predict ***''' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. lowercase__ : Tuple = predict_dataset.remove_columns('''label''' ) lowercase__ : str = trainer.predict(__lowerCamelCase , metric_key_prefix='''predict''' ).predictions lowercase__ : Tuple = np.argmax(__lowerCamelCase , axis=1 ) lowercase__ : List[Any] = os.path.join(training_args.output_dir , '''predict_results_tabfact.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: logger.info('''***** Predict Results *****''' ) writer.write('''index\tprediction\n''' ) for index, item in enumerate(__lowerCamelCase ): lowercase__ : Optional[Any] = label_list[item] writer.write(f"""{index}\t{item}\n""" ) lowercase__ : Dict = {'''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''text-classification'''} if training_args.push_to_hub: trainer.push_to_hub(**__lowerCamelCase ) else: trainer.create_model_card(**__lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
16
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" debug_launcher(test_script.main ) def UpperCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" debug_launcher(test_ops.main )
16
1
"""simple docstring""" import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Dict = ["image_processor", "tokenizer"] lowerCAmelCase : Dict = "OwlViTImageProcessor" lowerCAmelCase : Optional[int] = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : int ,_snake_case : Dict=None ,_snake_case : str=None ,**_snake_case : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ : str = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' ,_snake_case ,) lowercase__ : int = kwargs.pop('''feature_extractor''' ) lowercase__ : Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_snake_case ,_snake_case ) def __call__( self : Tuple ,_snake_case : int=None ,_snake_case : Optional[int]=None ,_snake_case : Optional[Any]=None ,_snake_case : Any="max_length" ,_snake_case : Optional[Any]="np" ,**_snake_case : List[Any] ) -> Any: """simple docstring""" if text is None and query_images is None and images is None: raise ValueError( '''You have to specify at least one text or query image or image. All three cannot be none.''' ) if text is not None: if isinstance(_snake_case ,_snake_case ) or (isinstance(_snake_case ,_snake_case ) and not isinstance(text[0] ,_snake_case )): lowercase__ : List[Any] = [self.tokenizer(_snake_case ,padding=_snake_case ,return_tensors=_snake_case ,**_snake_case )] elif isinstance(_snake_case ,_snake_case ) and isinstance(text[0] ,_snake_case ): lowercase__ : int = [] # Maximum number of queries across batch lowercase__ : int = max([len(_snake_case ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(_snake_case ) != max_num_queries: lowercase__ : Dict = t + [''' '''] * (max_num_queries - len(_snake_case )) lowercase__ : Tuple = self.tokenizer(_snake_case ,padding=_snake_case ,return_tensors=_snake_case ,**_snake_case ) encodings.append(_snake_case ) else: raise TypeError('''Input text should be a string, a list of strings or a nested list of strings''' ) if return_tensors == "np": lowercase__ : Tuple = np.concatenate([encoding['''input_ids'''] for encoding in encodings] ,axis=0 ) lowercase__ : Tuple = np.concatenate([encoding['''attention_mask'''] for encoding in encodings] ,axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp lowercase__ : Union[str, Any] = jnp.concatenate([encoding['''input_ids'''] for encoding in encodings] ,axis=0 ) lowercase__ : Optional[Any] = jnp.concatenate([encoding['''attention_mask'''] for encoding in encodings] ,axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch lowercase__ : Dict = torch.cat([encoding['''input_ids'''] for encoding in encodings] ,dim=0 ) lowercase__ : Optional[Any] = torch.cat([encoding['''attention_mask'''] for encoding in encodings] ,dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf lowercase__ : Dict = tf.stack([encoding['''input_ids'''] for encoding in encodings] ,axis=0 ) lowercase__ : Optional[Any] = tf.stack([encoding['''attention_mask'''] for encoding in encodings] ,axis=0 ) else: raise ValueError('''Target return tensor type could not be returned''' ) lowercase__ : Dict = BatchEncoding() lowercase__ : Tuple = input_ids lowercase__ : Any = attention_mask if query_images is not None: lowercase__ : Tuple = BatchEncoding() lowercase__ : Dict = self.image_processor( _snake_case ,return_tensors=_snake_case ,**_snake_case ).pixel_values lowercase__ : Dict = query_pixel_values if images is not None: lowercase__ : Union[str, Any] = self.image_processor(_snake_case ,return_tensors=_snake_case ,**_snake_case ) if text is not None and images is not None: lowercase__ : Tuple = image_features.pixel_values return encoding elif query_images is not None and images is not None: lowercase__ : Any = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**_snake_case ) ,tensor_type=_snake_case ) def UpperCAmelCase ( self : Tuple ,*_snake_case : Union[str, Any] ,**_snake_case : Tuple ) -> Tuple: """simple docstring""" return self.image_processor.post_process(*_snake_case ,**_snake_case ) def UpperCAmelCase ( self : List[Any] ,*_snake_case : Optional[Any] ,**_snake_case : Dict ) -> Union[str, Any]: """simple docstring""" return self.image_processor.post_process_object_detection(*_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Dict ,*_snake_case : Optional[int] ,**_snake_case : Optional[int] ) -> Union[str, Any]: """simple docstring""" return self.image_processor.post_process_image_guided_detection(*_snake_case ,**_snake_case ) def UpperCAmelCase ( self : List[Any] ,*_snake_case : Dict ,**_snake_case : Dict ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Optional[int] ,*_snake_case : Dict ,**_snake_case : Optional[Any] ) -> str: """simple docstring""" return self.tokenizer.decode(*_snake_case ,**_snake_case ) @property def UpperCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' ,_snake_case ,) return self.image_processor_class @property def UpperCAmelCase ( self : Any ) -> str: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' ,_snake_case ,) return self.image_processor
16
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) lowerCAmelCase_ = { 'configuration_speecht5': [ 'SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP', 'SpeechT5Config', 'SpeechT5HifiGanConfig', ], 'feature_extraction_speecht5': ['SpeechT5FeatureExtractor'], 'processing_speecht5': ['SpeechT5Processor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['SpeechT5Tokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'SpeechT5ForSpeechToText', 'SpeechT5ForSpeechToSpeech', 'SpeechT5ForTextToSpeech', 'SpeechT5Model', 'SpeechT5PreTrainedModel', 'SpeechT5HifiGan', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
1
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def __UpperCAmelCase ( ) -> None: print('''Making key files...''' ) make_key_files('''rsa''' , 10_24 ) print('''Key files generation successful.''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> tuple[tuple[int, int], tuple[int, int]]: print('''Generating prime p...''' ) lowercase__ : Optional[Any] = rabinMiller.generate_large_prime(__lowerCamelCase ) print('''Generating prime q...''' ) lowercase__ : Tuple = rabinMiller.generate_large_prime(__lowerCamelCase ) lowercase__ : str = p * q print('''Generating e that is relatively prime to (p - 1) * (q - 1)...''' ) while True: lowercase__ : Optional[int] = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(__lowerCamelCase , (p - 1) * (q - 1) ) == 1: break print('''Calculating d that is mod inverse of e...''' ) lowercase__ : List[Any] = cryptoMath.find_mod_inverse(__lowerCamelCase , (p - 1) * (q - 1) ) lowercase__ : str = (n, e) lowercase__ : int = (n, d) return (public_key, private_key) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> None: if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print('''\nWARNING:''' ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" '''Use a different name or delete these files and re-run this program.''' ) sys.exit() lowercase__ , lowercase__ : Union[str, Any] = generate_key(__lowerCamelCase ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" , '''w''' ) as out_file: out_file.write(f"""{key_size},{public_key[0]},{public_key[1]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" , '''w''' ) as out_file: out_file.write(f"""{key_size},{private_key[0]},{private_key[1]}""" ) if __name__ == "__main__": main()
16
"""simple docstring""" from ..utils import DummyObject, requires_backends class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : List[str] = ["torch", "torchsde"] def __init__( self : Tuple ,*_snake_case : Union[str, Any] ,**_snake_case : Any ) -> Union[str, Any]: """simple docstring""" requires_backends(self ,['''torch''', '''torchsde'''] ) @classmethod def UpperCAmelCase ( cls : List[str] ,*_snake_case : int ,**_snake_case : Union[str, Any] ) -> str: """simple docstring""" requires_backends(cls ,['''torch''', '''torchsde'''] ) @classmethod def UpperCAmelCase ( cls : List[Any] ,*_snake_case : List[Any] ,**_snake_case : List[str] ) -> List[Any]: """simple docstring""" requires_backends(cls ,['''torch''', '''torchsde'''] )
16
1
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: if exponent == 1: return base if exponent % 2 == 0: lowercase__ : List[str] = _modexpt(__lowerCamelCase , exponent // 2 , __lowerCamelCase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(__lowerCamelCase , exponent - 1 , __lowerCamelCase )) % modulo_value def __UpperCAmelCase ( __lowerCamelCase = 17_77 , __lowerCamelCase = 18_55 , __lowerCamelCase = 8 ) -> int: lowercase__ : Tuple = base for _ in range(1 , __lowerCamelCase ): lowercase__ : List[str] = _modexpt(__lowerCamelCase , __lowerCamelCase , 10**digits ) return result if __name__ == "__main__": print(F'''{solution() = }''')
16
"""simple docstring""" import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node lowerCAmelCase_ = 4 lowerCAmelCase_ = 3 class __A ( A_ ): '''simple docstring''' pass def __UpperCAmelCase ( __lowerCamelCase ) -> Dict: for shard in shards: for i in range(__lowerCamelCase ): yield {"i": i, "shard": shard} def __UpperCAmelCase ( ) -> Tuple: lowercase__ : int = int(os.environ['''RANK'''] ) lowercase__ : str = int(os.environ['''WORLD_SIZE'''] ) lowercase__ : List[Any] = ArgumentParser() parser.add_argument('''--streaming''' , type=__lowerCamelCase ) parser.add_argument('''--local_rank''' , type=__lowerCamelCase ) parser.add_argument('''--num_workers''' , type=__lowerCamelCase , default=0 ) lowercase__ : int = parser.parse_args() lowercase__ : Optional[Any] = args.streaming lowercase__ : List[Any] = args.num_workers lowercase__ : Optional[Any] = {'''shards''': [f"""shard_{shard_idx}""" for shard_idx in range(__lowerCamelCase )]} lowercase__ : Dict = IterableDataset.from_generator(__lowerCamelCase , gen_kwargs=__lowerCamelCase ) if not streaming: lowercase__ : int = Dataset.from_list(list(__lowerCamelCase ) ) lowercase__ : int = split_dataset_by_node(__lowerCamelCase , rank=__lowerCamelCase , world_size=__lowerCamelCase ) lowercase__ : Optional[Any] = torch.utils.data.DataLoader(__lowerCamelCase , num_workers=__lowerCamelCase ) lowercase__ : Optional[Any] = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowercase__ : str = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) lowercase__ : str = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
16
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) lowerCAmelCase_ = { 'configuration_speecht5': [ 'SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP', 'SpeechT5Config', 'SpeechT5HifiGanConfig', ], 'feature_extraction_speecht5': ['SpeechT5FeatureExtractor'], 'processing_speecht5': ['SpeechT5Processor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['SpeechT5Tokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'SpeechT5ForSpeechToText', 'SpeechT5ForSpeechToSpeech', 'SpeechT5ForTextToSpeech', 'SpeechT5Model', 'SpeechT5PreTrainedModel', 'SpeechT5HifiGan', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
"""simple docstring""" from ...configuration_utils import PretrainedConfig lowerCAmelCase_ = { 'google/tapas-base-finetuned-sqa': ( 'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json' ), 'google/tapas-base-finetuned-wtq': ( 'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json' ), 'google/tapas-base-finetuned-wikisql-supervised': ( 'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json' ), 'google/tapas-base-finetuned-tabfact': ( 'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json' ), } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = "tapas" def __init__( self : List[Any] ,_snake_case : Dict=30_522 ,_snake_case : Union[str, Any]=768 ,_snake_case : int=12 ,_snake_case : Union[str, Any]=12 ,_snake_case : Union[str, Any]=3_072 ,_snake_case : List[Any]="gelu" ,_snake_case : Optional[int]=0.1 ,_snake_case : Tuple=0.1 ,_snake_case : List[Any]=1_024 ,_snake_case : Any=[3, 256, 256, 2, 256, 256, 10] ,_snake_case : List[Any]=0.02 ,_snake_case : Union[str, Any]=1e-12 ,_snake_case : str=0 ,_snake_case : Any=10.0 ,_snake_case : int=0 ,_snake_case : Optional[Any]=1.0 ,_snake_case : List[str]=None ,_snake_case : Tuple=1.0 ,_snake_case : Tuple=False ,_snake_case : List[Any]=None ,_snake_case : int=1.0 ,_snake_case : List[Any]=1.0 ,_snake_case : Optional[int]=False ,_snake_case : Optional[int]=False ,_snake_case : Optional[int]="ratio" ,_snake_case : Any=None ,_snake_case : Union[str, Any]=None ,_snake_case : List[str]=64 ,_snake_case : Optional[Any]=32 ,_snake_case : Optional[Any]=False ,_snake_case : Optional[int]=True ,_snake_case : Dict=False ,_snake_case : Tuple=False ,_snake_case : int=True ,_snake_case : List[str]=False ,_snake_case : Dict=None ,_snake_case : Optional[int]=None ,**_snake_case : int ,) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=_snake_case ,**_snake_case ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) lowercase__ : Optional[int] = vocab_size lowercase__ : List[str] = hidden_size lowercase__ : Any = num_hidden_layers lowercase__ : Optional[Any] = num_attention_heads lowercase__ : Optional[int] = hidden_act lowercase__ : List[Any] = intermediate_size lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : Dict = attention_probs_dropout_prob lowercase__ : str = max_position_embeddings lowercase__ : Dict = type_vocab_sizes lowercase__ : Optional[Any] = initializer_range lowercase__ : Dict = layer_norm_eps # Fine-tuning task hyperparameters lowercase__ : Any = positive_label_weight lowercase__ : int = num_aggregation_labels lowercase__ : List[str] = aggregation_loss_weight lowercase__ : Optional[int] = use_answer_as_supervision lowercase__ : Optional[Any] = answer_loss_importance lowercase__ : Union[str, Any] = use_normalized_answer_loss lowercase__ : str = huber_loss_delta lowercase__ : str = temperature lowercase__ : int = aggregation_temperature lowercase__ : List[Any] = use_gumbel_for_cells lowercase__ : Tuple = use_gumbel_for_aggregation lowercase__ : Union[str, Any] = average_approximation_function lowercase__ : Union[str, Any] = cell_selection_preference lowercase__ : Any = answer_loss_cutoff lowercase__ : List[Any] = max_num_rows lowercase__ : str = max_num_columns lowercase__ : int = average_logits_per_cell lowercase__ : str = select_one_column lowercase__ : str = allow_empty_column_selection lowercase__ : Any = init_cell_selection_weights_to_zero lowercase__ : Optional[int] = reset_position_index_per_cell lowercase__ : Union[str, Any] = disable_per_token_loss # Aggregation hyperparameters lowercase__ : Optional[Any] = aggregation_labels lowercase__ : List[Any] = no_aggregation_label_index if isinstance(self.aggregation_labels ,_snake_case ): lowercase__ : Union[str, Any] = {int(_snake_case ): v for k, v in aggregation_labels.items()}
16
1
"""simple docstring""" import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer lowerCAmelCase_ = ['bert-base-uncased', 'bert-base-cased'] lowerCAmelCase_ = 'hf-internal-testing/tiny-bert-tf-only' if is_tf_available(): class __A ( tf.keras.Model ): '''simple docstring''' def __init__( self : Optional[Any] ,_snake_case : Tuple ) -> List[str]: """simple docstring""" super().__init__() lowercase__ : str = tokenizer lowercase__ : Optional[int] = AutoConfig.from_pretrained(_snake_case ) lowercase__ : int = TFAutoModel.from_config(_snake_case ) def UpperCAmelCase ( self : Tuple ,_snake_case : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ : List[str] = self.tokenizer(_snake_case ) lowercase__ : Optional[int] = self.bert(**_snake_case ) return out["pooler_output"] @require_tf @require_tensorflow_text class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" super().setUp() lowercase__ : int = [ BertTokenizer.from_pretrained(_snake_case ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false lowercase__ : Dict = [TFBertTokenizer.from_pretrained(_snake_case ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(_snake_case ,use_fast_bert_tokenizer=_snake_case ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) lowercase__ : int = [ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] lowercase__ : Dict = list(zip(self.test_sentences ,self.test_sentences[::-1] ) ) def UpperCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" for tokenizer, tf_tokenizer in zip(self.tokenizers ,self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): lowercase__ : Optional[Any] = tokenizer(_snake_case ,return_tensors='''tf''' ,padding='''longest''' ) lowercase__ : Union[str, Any] = tf_tokenizer(_snake_case ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] ,tf.intaa ) == tf_outputs[key] ) ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: lowercase__ : Optional[int] = tf_tokenizer(self.paired_sentences ) lowercase__ : Optional[Any] = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] ,text_pair=[sentence[1] for sentence in self.paired_sentences] ,) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] ,tf.intaa ) == separated_outputs[key] ) ) @slow def UpperCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: lowercase__ : Tuple = tf.function(_snake_case ) for test_inputs in (self.test_sentences, self.paired_sentences): lowercase__ : int = tf.constant(_snake_case ) lowercase__ : List[Any] = compiled_tokenizer(_snake_case ) lowercase__ : Dict = tf_tokenizer(_snake_case ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def UpperCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: lowercase__ : Tuple = ModelToSave(tokenizer=_snake_case ) lowercase__ : str = tf.convert_to_tensor(self.test_sentences ) lowercase__ : Optional[Any] = model(_snake_case ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: lowercase__ : List[Any] = Path(_snake_case ) / '''saved.model''' model.save(_snake_case ) lowercase__ : Union[str, Any] = tf.keras.models.load_model(_snake_case ) lowercase__ : Dict = loaded_model(_snake_case ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) ,1e-5 )
16
"""simple docstring""" import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : '''simple docstring''' def __init__( self : Optional[int] ,_snake_case : Optional[Any] ,_snake_case : Union[str, Any]=13 ,_snake_case : Any=32 ,_snake_case : int=2 ,_snake_case : str=3 ,_snake_case : Optional[Any]=16 ,_snake_case : List[Any]=[1, 2, 1] ,_snake_case : Dict=[2, 2, 4] ,_snake_case : List[Any]=2 ,_snake_case : Any=2.0 ,_snake_case : Optional[int]=True ,_snake_case : Optional[int]=0.0 ,_snake_case : Union[str, Any]=0.0 ,_snake_case : str=0.1 ,_snake_case : List[Any]="gelu" ,_snake_case : Tuple=False ,_snake_case : Optional[int]=True ,_snake_case : str=0.02 ,_snake_case : List[str]=1e-5 ,_snake_case : int=True ,_snake_case : Dict=None ,_snake_case : str=True ,_snake_case : List[Any]=10 ,_snake_case : Any=8 ,) -> Union[str, Any]: """simple docstring""" lowercase__ : Dict = parent lowercase__ : Any = batch_size lowercase__ : Union[str, Any] = image_size lowercase__ : Dict = patch_size lowercase__ : int = num_channels lowercase__ : Any = embed_dim lowercase__ : int = depths lowercase__ : Dict = num_heads lowercase__ : List[Any] = window_size lowercase__ : int = mlp_ratio lowercase__ : Optional[int] = qkv_bias lowercase__ : str = hidden_dropout_prob lowercase__ : List[Any] = attention_probs_dropout_prob lowercase__ : Dict = drop_path_rate lowercase__ : int = hidden_act lowercase__ : Tuple = use_absolute_embeddings lowercase__ : Tuple = patch_norm lowercase__ : Tuple = layer_norm_eps lowercase__ : Optional[Any] = initializer_range lowercase__ : int = is_training lowercase__ : Optional[int] = scope lowercase__ : str = use_labels lowercase__ : Dict = type_sequence_label_size lowercase__ : Union[str, Any] = encoder_stride def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Optional[Any] = None if self.use_labels: lowercase__ : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" return SwinvaConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def UpperCAmelCase ( self : str ,_snake_case : Dict ,_snake_case : List[str] ,_snake_case : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ : Any = SwinvaModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : str = model(_snake_case ) lowercase__ : List[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase__ : Tuple = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : List[str] ,_snake_case : Optional[Any] ,_snake_case : int ) -> Any: """simple docstring""" lowercase__ : Union[str, Any] = SwinvaForMaskedImageModeling(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Tuple = model(_snake_case ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase__ : Optional[int] = 1 lowercase__ : List[Any] = SwinvaForMaskedImageModeling(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ : str = model(_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase ( self : str ,_snake_case : str ,_snake_case : str ,_snake_case : Tuple ) -> Any: """simple docstring""" lowercase__ : Tuple = self.type_sequence_label_size lowercase__ : Dict = SwinvaForImageClassification(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : str = model(_snake_case ,labels=_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self : Dict ) -> Dict: """simple docstring""" lowercase__ : Optional[int] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = config_and_inputs lowercase__ : List[str] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) lowerCAmelCase : Optional[int] = ( {"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification} if is_torch_available() else {} ) lowerCAmelCase : List[Any] = False lowerCAmelCase : Dict = False lowerCAmelCase : List[Any] = False lowerCAmelCase : Any = False def UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[Any] = SwinvaModelTester(self ) lowercase__ : List[str] = ConfigTester(self ,config_class=_snake_case ,embed_dim=37 ) def UpperCAmelCase ( self : int ) -> Any: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self : str ) -> List[Any]: """simple docstring""" lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) @unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''' ) def UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason='''Swinv2 does not use inputs_embeds''' ) def UpperCAmelCase ( self : List[str] ) -> str: """simple docstring""" pass def UpperCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[Any] = model_class(_snake_case ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) lowercase__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_snake_case ,nn.Linear ) ) def UpperCAmelCase ( self : int ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : str = model_class(_snake_case ) lowercase__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[Any] = [*signature.parameters.keys()] lowercase__ : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_snake_case ) def UpperCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Tuple = True for model_class in self.all_model_classes: lowercase__ : Optional[int] = True lowercase__ : str = False lowercase__ : Union[str, Any] = True lowercase__ : Optional[Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : str = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : Dict = outputs.attentions lowercase__ : Any = len(self.model_tester.depths ) self.assertEqual(len(_snake_case ) ,_snake_case ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ : List[Any] = True lowercase__ : Optional[Any] = config.window_size**2 lowercase__ : Any = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : List[str] = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : Optional[Any] = outputs.attentions self.assertEqual(len(_snake_case ) ,_snake_case ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) lowercase__ : Optional[Any] = len(_snake_case ) # Check attention is always last and order is fine lowercase__ : Optional[int] = True lowercase__ : Tuple = True lowercase__ : Optional[Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : Optional[Any] = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) if hasattr(self.model_tester ,'''num_hidden_states_types''' ): lowercase__ : int = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states lowercase__ : List[str] = 2 self.assertEqual(out_len + added_hidden_states ,len(_snake_case ) ) lowercase__ : Optional[int] = outputs.attentions self.assertEqual(len(_snake_case ) ,_snake_case ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) def UpperCAmelCase ( self : List[str] ,_snake_case : int ,_snake_case : List[str] ,_snake_case : Optional[int] ,_snake_case : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : List[Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : int = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : Optional[int] = outputs.hidden_states lowercase__ : List[Any] = getattr( self.model_tester ,'''expected_num_hidden_layers''' ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_snake_case ) ,_snake_case ) # Swinv2 has a different seq_length lowercase__ : Dict = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) lowercase__ : Tuple = outputs.reshaped_hidden_states self.assertEqual(len(_snake_case ) ,_snake_case ) lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[str] = reshaped_hidden_states[0].shape lowercase__ : int = ( reshaped_hidden_states[0].view(_snake_case ,_snake_case ,height * width ).permute(0 ,2 ,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def UpperCAmelCase ( self : Tuple ) -> int: """simple docstring""" lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowercase__ : List[str] = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,_snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : str = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,_snake_case ) def UpperCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = 3 lowercase__ : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase__ : Optional[int] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : Dict = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase__ : Dict = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowercase__ : str = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Dict = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,(padded_height, padded_width) ) def UpperCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_snake_case ) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Union[str, Any] = SwinvaModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Tuple = _config_zero_init(_snake_case ) for model_class in self.all_model_classes: lowercase__ : Optional[int] = model_class(config=_snake_case ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" ,) @require_vision @require_torch class __A ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" return ( AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self : Any ) -> List[str]: """simple docstring""" lowercase__ : str = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ).to( _snake_case ) lowercase__ : Union[str, Any] = self.default_image_processor lowercase__ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowercase__ : Dict = image_processor(images=_snake_case ,return_tensors='''pt''' ).to(_snake_case ) # forward pass with torch.no_grad(): lowercase__ : Optional[Any] = model(**_snake_case ) # verify the logits lowercase__ : str = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape ,_snake_case ) lowercase__ : Dict = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_snake_case ,atol=1e-4 ) )
16
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase_ = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
"""simple docstring""" import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCAmelCase_ = version.parse(importlib_metadata.version('nltk')) if NLTK_VERSION >= version.Version('3.6.4'): from nltk import word_tokenize lowerCAmelCase_ = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n' lowerCAmelCase_ = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n' lowerCAmelCase_ = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''string''' ,id='''sequence''' ), '''references''': datasets.Value('''string''' ,id='''sequence''' ), } ) ,codebase_urls=['''https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'''] ,reference_urls=[ '''https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score''', '''https://en.wikipedia.org/wiki/METEOR''', ] ,) def UpperCAmelCase ( self : str ,_snake_case : Dict ) -> Dict: """simple docstring""" import nltk nltk.download('''wordnet''' ) if NLTK_VERSION >= version.Version('''3.6.5''' ): nltk.download('''punkt''' ) if NLTK_VERSION >= version.Version('''3.6.6''' ): nltk.download('''omw-1.4''' ) def UpperCAmelCase ( self : Dict ,_snake_case : Dict ,_snake_case : List[str] ,_snake_case : Tuple=0.9 ,_snake_case : Optional[int]=3 ,_snake_case : Union[str, Any]=0.5 ) -> List[str]: """simple docstring""" if NLTK_VERSION >= version.Version('''3.6.5''' ): lowercase__ : int = [ meteor_score.single_meteor_score( word_tokenize(_snake_case ) ,word_tokenize(_snake_case ) ,alpha=_snake_case ,beta=_snake_case ,gamma=_snake_case ) for ref, pred in zip(_snake_case ,_snake_case ) ] else: lowercase__ : Tuple = [ meteor_score.single_meteor_score(_snake_case ,_snake_case ,alpha=_snake_case ,beta=_snake_case ,gamma=_snake_case ) for ref, pred in zip(_snake_case ,_snake_case ) ] return {"meteor": np.mean(_snake_case )}
16
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { 'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'LILT_PRETRAINED_MODEL_ARCHIVE_LIST', 'LiltForQuestionAnswering', 'LiltForSequenceClassification', 'LiltForTokenClassification', 'LiltModel', 'LiltPreTrainedModel', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = '▁' lowerCAmelCase_ = {'vocab_file': 'sentencepiece.bpe.model'} lowerCAmelCase_ = { 'vocab_file': { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model', } } lowerCAmelCase_ = { 'facebook/xglm-564M': 2_048, } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[Any] = VOCAB_FILES_NAMES lowerCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : int = ["input_ids", "attention_mask"] def __init__( self : int ,_snake_case : Dict ,_snake_case : Dict="<s>" ,_snake_case : Dict="</s>" ,_snake_case : str="</s>" ,_snake_case : Optional[Any]="<s>" ,_snake_case : Optional[Any]="<unk>" ,_snake_case : Optional[int]="<pad>" ,_snake_case : Optional[Dict[str, Any]] = None ,**_snake_case : str ,) -> None: """simple docstring""" lowercase__ : Any = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer lowercase__ : Any = 7 lowercase__ : Optional[int] = [f"""<madeupword{i}>""" for i in range(self.num_madeup_words )] lowercase__ : Dict = kwargs.get('''additional_special_tokens''' ,[] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=_snake_case ,eos_token=_snake_case ,unk_token=_snake_case ,sep_token=_snake_case ,cls_token=_snake_case ,pad_token=_snake_case ,sp_model_kwargs=self.sp_model_kwargs ,**_snake_case ,) lowercase__ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_snake_case ) ) lowercase__ : str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase__ : Optional[int] = 1 # Mimic fairseq token-to-id alignment for the first 4 token lowercase__ : Optional[int] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} lowercase__ : List[str] = len(self.sp_model ) lowercase__ : Tuple = {f"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(_snake_case ) lowercase__ : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : int ) -> Optional[int]: """simple docstring""" lowercase__ : List[Any] = self.__dict__.copy() lowercase__ : Optional[int] = None lowercase__ : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self : Dict ,_snake_case : List[str] ) -> Any: """simple docstring""" lowercase__ : int = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): lowercase__ : Dict = {} lowercase__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCAmelCase ( self : Any ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.sep_token_id] + token_ids_a lowercase__ : Optional[Any] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def UpperCAmelCase ( self : Any ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ,_snake_case : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case ,token_ids_a=_snake_case ,already_has_special_tokens=_snake_case ) if token_ids_a is None: return [1] + ([0] * len(_snake_case )) return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ : List[Any] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def UpperCAmelCase ( self : str ) -> Tuple: """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ : Union[str, Any] = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self : List[Any] ,_snake_case : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(_snake_case ,out_type=_snake_case ) def UpperCAmelCase ( self : int ,_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase__ : Tuple = self.sp_model.PieceToId(_snake_case ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase ( self : Any ,_snake_case : List[str] ) -> Any: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase ( self : Tuple ,_snake_case : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = ''''''.join(_snake_case ).replace(_snake_case ,''' ''' ).strip() return out_string def UpperCAmelCase ( self : Any ,_snake_case : str ,_snake_case : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_snake_case ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ : Any = os.path.join( _snake_case ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case ,'''wb''' ) as fi: lowercase__ : Dict = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,)
16
1
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str: for attribute in key.split('''.''' ): lowercase__ : Union[str, Any] = getattr(__lowerCamelCase , __lowerCamelCase ) if weight_type is not None: lowercase__ : List[str] = getattr(__lowerCamelCase , __lowerCamelCase ).shape else: lowercase__ : int = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowercase__ : Optional[int] = value elif weight_type == "weight_g": lowercase__ : str = value elif weight_type == "weight_v": lowercase__ : Any = value elif weight_type == "bias": lowercase__ : List[Any] = value else: lowercase__ : Optional[int] = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: lowercase__ : int = [] lowercase__ : Tuple = fairseq_model.state_dict() lowercase__ : Union[str, Any] = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): lowercase__ : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == '''group''' , ) lowercase__ : Tuple = True else: for key, mapped_key in MAPPING.items(): lowercase__ : str = '''hubert.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or (key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0] and not is_finetuned): lowercase__ : Tuple = True if "*" in mapped_key: lowercase__ : List[Any] = name.split(__lowerCamelCase )[0].split('''.''' )[-2] lowercase__ : Any = mapped_key.replace('''*''' , __lowerCamelCase ) if "weight_g" in name: lowercase__ : Optional[Any] = '''weight_g''' elif "weight_v" in name: lowercase__ : List[str] = '''weight_v''' elif "weight" in name: lowercase__ : Optional[Any] = '''weight''' elif "bias" in name: lowercase__ : Any = '''bias''' else: lowercase__ : List[str] = None set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: lowercase__ : List[str] = full_name.split('''conv_layers.''' )[-1] lowercase__ : str = name.split('''.''' ) lowercase__ : Optional[int] = int(items[0] ) lowercase__ : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowercase__ : Any = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowercase__ : Tuple = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowercase__ : Any = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowercase__ : Any = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=True ) -> Any: if config_path is not None: lowercase__ : int = HubertConfig.from_pretrained(__lowerCamelCase ) else: lowercase__ : int = HubertConfig() if is_finetuned: if dict_path: lowercase__ : Optional[int] = Dictionary.load(__lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowercase__ : Optional[Any] = target_dict.pad_index lowercase__ : List[str] = target_dict.bos_index lowercase__ : int = target_dict.eos_index lowercase__ : List[Any] = len(target_dict.symbols ) lowercase__ : Tuple = os.path.join(__lowerCamelCase , '''vocab.json''' ) if not os.path.isdir(__lowerCamelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__lowerCamelCase ) ) return os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices , __lowerCamelCase ) lowercase__ : Dict = WavaVecaCTCTokenizer( __lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__lowerCamelCase , ) lowercase__ : Any = True if config.feat_extract_norm == '''layer''' else False lowercase__ : Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) lowercase__ : Tuple = WavaVecaProcessor(feature_extractor=__lowerCamelCase , tokenizer=__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) lowercase__ : str = HubertForCTC(__lowerCamelCase ) else: lowercase__ : int = HubertModel(__lowerCamelCase ) if is_finetuned: lowercase__ , lowercase__ , lowercase__ : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: lowercase__ , lowercase__ , lowercase__ : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) lowercase__ : Optional[int] = model[0].eval() recursively_load_weights(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) hf_wavavec.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) lowerCAmelCase_ = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
16
"""simple docstring""" import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = True ) -> Union[str, Any]: print(f"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 1_28: if name[-1] == "S": lowercase__ : str = timm.create_model('''levit_128s''' , pretrained=__lowerCamelCase ) else: lowercase__ : Tuple = timm.create_model('''levit_128''' , pretrained=__lowerCamelCase ) if hidden_sizes == 1_92: lowercase__ : Union[str, Any] = timm.create_model('''levit_192''' , pretrained=__lowerCamelCase ) if hidden_sizes == 2_56: lowercase__ : str = timm.create_model('''levit_256''' , pretrained=__lowerCamelCase ) if hidden_sizes == 3_84: lowercase__ : str = timm.create_model('''levit_384''' , pretrained=__lowerCamelCase ) from_model.eval() lowercase__ : Optional[int] = LevitForImageClassificationWithTeacher(__lowerCamelCase ).eval() lowercase__ : str = OrderedDict() lowercase__ : int = from_model.state_dict() lowercase__ : Dict = list(from_model.state_dict().keys() ) lowercase__ : Any = list(our_model.state_dict().keys() ) print(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) for i in range(len(__lowerCamelCase ) ): lowercase__ : str = weights[og_keys[i]] our_model.load_state_dict(__lowerCamelCase ) lowercase__ : Optional[int] = torch.randn((2, 3, 2_24, 2_24) ) lowercase__ : Optional[int] = from_model(__lowerCamelCase ) lowercase__ : List[Any] = our_model(__lowerCamelCase ).logits assert torch.allclose(__lowerCamelCase , __lowerCamelCase ), "The model logits don't match the original one." lowercase__ : Any = name print(__lowerCamelCase ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) lowercase__ : int = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f"""Pushed {checkpoint_name}""" ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = True ) -> List[Any]: lowercase__ : Any = '''imagenet-1k-id2label.json''' lowercase__ : Tuple = 10_00 lowercase__ : Dict = (1, num_labels) lowercase__ : List[str] = '''huggingface/label-files''' lowercase__ : str = num_labels lowercase__ : List[Any] = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ : Union[str, Any] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : Union[str, Any] = idalabel lowercase__ : Optional[int] = {v: k for k, v in idalabel.items()} lowercase__ : List[Any] = partial(__lowerCamelCase , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase ) lowercase__ : Tuple = { '''levit-128S''': 1_28, '''levit-128''': 1_28, '''levit-192''': 1_92, '''levit-256''': 2_56, '''levit-384''': 3_84, } lowercase__ : Any = { '''levit-128S''': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-128''': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-192''': ImageNetPreTrainedConfig( hidden_sizes=[1_92, 2_88, 3_84] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-256''': ImageNetPreTrainedConfig( hidden_sizes=[2_56, 3_84, 5_12] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-384''': ImageNetPreTrainedConfig( hidden_sizes=[3_84, 5_12, 7_68] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , __lowerCamelCase , names_to_config[model_name] , __lowerCamelCase , __lowerCamelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return config, expected_shape if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
16
1
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'salesforce/blip2-opt-2.7b': 'https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json', } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = "blip_2_vision_model" def __init__( self : Optional[Any] ,_snake_case : Union[str, Any]=1_408 ,_snake_case : List[str]=6_144 ,_snake_case : Optional[Any]=39 ,_snake_case : Dict=16 ,_snake_case : int=224 ,_snake_case : str=14 ,_snake_case : Tuple="gelu" ,_snake_case : Optional[int]=0.0_0001 ,_snake_case : Any=0.0 ,_snake_case : List[str]=1e-10 ,_snake_case : Optional[int]=True ,**_snake_case : List[str] ,) -> Optional[int]: """simple docstring""" super().__init__(**_snake_case ) lowercase__ : List[Any] = hidden_size lowercase__ : Tuple = intermediate_size lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Any = num_attention_heads lowercase__ : str = patch_size lowercase__ : List[str] = image_size lowercase__ : List[str] = initializer_range lowercase__ : Optional[Any] = attention_dropout lowercase__ : Any = layer_norm_eps lowercase__ : Optional[int] = hidden_act lowercase__ : str = qkv_bias @classmethod def UpperCAmelCase ( cls : List[str] ,_snake_case : Union[str, os.PathLike] ,**_snake_case : Optional[int] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(_snake_case ) lowercase__ , lowercase__ : Dict = cls.get_config_dict(_snake_case ,**_snake_case ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": lowercase__ : str = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls ,'''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_snake_case ,**_snake_case ) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = "blip_2_qformer" def __init__( self : List[str] ,_snake_case : int=30_522 ,_snake_case : str=768 ,_snake_case : List[str]=12 ,_snake_case : List[str]=12 ,_snake_case : Union[str, Any]=3_072 ,_snake_case : Optional[int]="gelu" ,_snake_case : List[Any]=0.1 ,_snake_case : int=0.1 ,_snake_case : Optional[Any]=512 ,_snake_case : Optional[int]=0.02 ,_snake_case : List[Any]=1e-12 ,_snake_case : Union[str, Any]=0 ,_snake_case : Tuple="absolute" ,_snake_case : Dict=2 ,_snake_case : Union[str, Any]=1_408 ,**_snake_case : int ,) -> Any: """simple docstring""" super().__init__(pad_token_id=_snake_case ,**_snake_case ) lowercase__ : Any = vocab_size lowercase__ : List[Any] = hidden_size lowercase__ : Union[str, Any] = num_hidden_layers lowercase__ : str = num_attention_heads lowercase__ : str = hidden_act lowercase__ : Optional[Any] = intermediate_size lowercase__ : str = hidden_dropout_prob lowercase__ : List[str] = attention_probs_dropout_prob lowercase__ : Union[str, Any] = max_position_embeddings lowercase__ : str = initializer_range lowercase__ : List[str] = layer_norm_eps lowercase__ : str = position_embedding_type lowercase__ : List[str] = cross_attention_frequency lowercase__ : str = encoder_hidden_size @classmethod def UpperCAmelCase ( cls : Tuple ,_snake_case : Union[str, os.PathLike] ,**_snake_case : Union[str, Any] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(_snake_case ) lowercase__ , lowercase__ : Dict = cls.get_config_dict(_snake_case ,**_snake_case ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": lowercase__ : Tuple = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls ,'''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_snake_case ,**_snake_case ) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Dict = "blip-2" lowerCAmelCase : Tuple = True def __init__( self : List[Any] ,_snake_case : str=None ,_snake_case : Tuple=None ,_snake_case : Optional[Any]=None ,_snake_case : List[Any]=32 ,**_snake_case : List[Any] ) -> int: """simple docstring""" super().__init__(**_snake_case ) if vision_config is None: lowercase__ : Optional[Any] = {} logger.info('''vision_config is None. initializing the Blip2VisionConfig with default values.''' ) if qformer_config is None: lowercase__ : Optional[Any] = {} logger.info('''qformer_config is None. Initializing the Blip2QFormerConfig with default values.''' ) if text_config is None: lowercase__ : Optional[Any] = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) lowercase__ : List[str] = BlipaVisionConfig(**_snake_case ) lowercase__ : Union[str, Any] = BlipaQFormerConfig(**_snake_case ) lowercase__ : Tuple = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' lowercase__ : List[str] = CONFIG_MAPPING[text_model_type](**_snake_case ) lowercase__ : int = self.text_config.tie_word_embeddings lowercase__ : Any = self.text_config.is_encoder_decoder lowercase__ : Union[str, Any] = num_query_tokens lowercase__ : Union[str, Any] = self.vision_config.hidden_size lowercase__ : Optional[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES lowercase__ : List[str] = 1.0 lowercase__ : Any = 0.02 @classmethod def UpperCAmelCase ( cls : Tuple ,_snake_case : BlipaVisionConfig ,_snake_case : BlipaQFormerConfig ,_snake_case : PretrainedConfig ,**_snake_case : int ,) -> List[str]: """simple docstring""" return cls( vision_config=vision_config.to_dict() ,qformer_config=qformer_config.to_dict() ,text_config=text_config.to_dict() ,**_snake_case ,) def UpperCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" lowercase__ : List[Any] = copy.deepcopy(self.__dict__ ) lowercase__ : int = self.vision_config.to_dict() lowercase__ : Dict = self.qformer_config.to_dict() lowercase__ : List[str] = self.text_config.to_dict() lowercase__ : Optional[int] = self.__class__.model_type return output
16
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __A : '''simple docstring''' lowerCAmelCase : List[str] lowerCAmelCase : Optional[str] = None # Automatically constructed lowerCAmelCase : ClassVar[str] = "dict" lowerCAmelCase : ClassVar[Any] = None lowerCAmelCase : str = field(default="Translation" ,init=A_ ,repr=A_ ) def __call__( self : List[str] ) -> Any: """simple docstring""" return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def UpperCAmelCase ( self : List[str] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class __A : '''simple docstring''' lowerCAmelCase : Optional[List] = None lowerCAmelCase : Optional[int] = None lowerCAmelCase : Optional[str] = None # Automatically constructed lowerCAmelCase : ClassVar[str] = "dict" lowerCAmelCase : ClassVar[Any] = None lowerCAmelCase : str = field(default="TranslationVariableLanguages" ,init=A_ ,repr=A_ ) def UpperCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[int] = sorted(set(self.languages ) ) if self.languages else None lowercase__ : Dict = len(self.languages ) if self.languages else None def __call__( self : List[Any] ) -> List[Any]: """simple docstring""" return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def UpperCAmelCase ( self : Dict ,_snake_case : Tuple ) -> int: """simple docstring""" lowercase__ : List[Any] = set(self.languages ) if self.languages and set(_snake_case ) - lang_set: raise ValueError( f"""Some languages in example ({", ".join(sorted(set(_snake_case ) - lang_set ) )}) are not in valid set ({", ".join(_snake_case )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. lowercase__ : str = [] for lang, text in translation_dict.items(): if isinstance(_snake_case ,_snake_case ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. lowercase__ , lowercase__ : Optional[Any] = zip(*sorted(_snake_case ) ) return {"language": languages, "translation": translations} def UpperCAmelCase ( self : List[Any] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
16
1
"""simple docstring""" import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) -> Union[str, Any]: lowercase__ : List[Any] = AutoConfig.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) lowercase__ : List[str] = AutoModelForSeqaSeqLM.from_config(__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) AutoTokenizer.from_pretrained(__lowerCamelCase ).save_pretrained(__lowerCamelCase ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
16
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase_ = 16 lowerCAmelCase_ = 32 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = 16 ) -> Optional[Any]: lowercase__ : Optional[Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowercase__ : int = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) lowercase__ : str = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCamelCase , max_length=__lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ : str = datasets.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : Union[str, Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ : List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ : Optional[int] = 16 elif accelerator.mixed_precision != "no": lowercase__ : List[Any] = 8 else: lowercase__ : int = None return tokenizer.pad( __lowerCamelCase , padding='''longest''' , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. lowercase__ : List[Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) lowercase__ : str = DataLoader( tokenized_datasets['''validation'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase_ = mocked_dataloaders # noqa: F811 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __lowerCamelCase ) == "1": lowercase__ : List[Any] = 2 # Initialize accelerator lowercase__ : Optional[int] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : str = config['''lr'''] lowercase__ : str = int(config['''num_epochs'''] ) lowercase__ : Optional[int] = int(config['''seed'''] ) lowercase__ : Tuple = int(config['''batch_size'''] ) lowercase__ : List[Any] = evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__lowerCamelCase ) def inner_training_loop(__lowerCamelCase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : List[str] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ : Tuple = model.to(accelerator.device ) # Instantiate optimizer lowercase__ : List[str] = AdamW(params=model.parameters() , lr=__lowerCamelCase ) lowercase__ , lowercase__ : List[Any] = get_dataloaders(__lowerCamelCase , __lowerCamelCase ) # Instantiate scheduler lowercase__ : Optional[int] = get_linear_schedule_with_warmup( optimizer=__lowerCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__lowerCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Optional[int] = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Now we train the model for epoch in range(__lowerCamelCase ): model.train() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase__ : Dict = model(**__lowerCamelCase ) lowercase__ : List[Any] = outputs.loss accelerator.backward(__lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ : Tuple = model(**__lowerCamelCase ) lowercase__ : Any = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ : int = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__lowerCamelCase , references=__lowerCamelCase , ) lowercase__ : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __lowerCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def __UpperCAmelCase ( ) -> Dict: lowercase__ : Optional[int] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__lowerCamelCase , default=__lowerCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowercase__ : int = parser.parse_args() lowercase__ : Union[str, Any] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
16
1
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'vocab_file': 'spiece.model'} lowerCAmelCase_ = { 'vocab_file': { 'TsinghuaAI/CPM-Generate': 'https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model', } } class __A ( A_ ): '''simple docstring''' def __init__( self : str ,_snake_case : Tuple ,_snake_case : int=False ,_snake_case : Union[str, Any]=True ,_snake_case : List[Any]=False ,_snake_case : Dict="<s>" ,_snake_case : Optional[Any]="</s>" ,_snake_case : List[str]="<unk>" ,_snake_case : int="<sep>" ,_snake_case : List[Any]="<pad>" ,_snake_case : Union[str, Any]="<cls>" ,_snake_case : str="<mask>" ,_snake_case : int=["<eop>", "<eod>"] ,_snake_case : Optional[Dict[str, Any]] = None ,**_snake_case : Optional[int] ,) -> None: """simple docstring""" lowercase__ : Union[str, Any] = AddedToken(_snake_case ,lstrip=_snake_case ,rstrip=_snake_case ) if isinstance(_snake_case ,_snake_case ) else mask_token lowercase__ : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_snake_case ,remove_space=_snake_case ,keep_accents=_snake_case ,bos_token=_snake_case ,eos_token=_snake_case ,unk_token=_snake_case ,sep_token=_snake_case ,pad_token=_snake_case ,cls_token=_snake_case ,mask_token=_snake_case ,additional_special_tokens=_snake_case ,sp_model_kwargs=self.sp_model_kwargs ,**_snake_case ,) lowercase__ : Any = 3 lowercase__ : Union[str, Any] = do_lower_case lowercase__ : Optional[int] = remove_space lowercase__ : Optional[Any] = keep_accents lowercase__ : List[str] = vocab_file lowercase__ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_snake_case ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( '''You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ''' '''See https://pypi.org/project/jieba/ for installation.''' ) lowercase__ : Union[str, Any] = jieba lowercase__ : Tuple = str.maketrans(''' \n''' ,'''\u2582\u2583''' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" return len(self.sp_model ) def UpperCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" lowercase__ : List[str] = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ : Any = self.__dict__.copy() lowercase__ : Optional[int] = None return state def __setstate__( self : List[str] ,_snake_case : int ) -> Union[str, Any]: """simple docstring""" lowercase__ : str = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): lowercase__ : Dict = {} lowercase__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self : List[str] ,_snake_case : Optional[Any] ) -> Optional[Any]: """simple docstring""" if self.remove_space: lowercase__ : str = ''' '''.join(inputs.strip().split() ) else: lowercase__ : List[str] = inputs lowercase__ : Tuple = outputs.replace('''``''' ,'''"''' ).replace('''\'\'''' ,'''"''' ) if not self.keep_accents: lowercase__ : Tuple = unicodedata.normalize('''NFKD''' ,_snake_case ) lowercase__ : List[str] = ''''''.join([c for c in outputs if not unicodedata.combining(_snake_case )] ) if self.do_lower_case: lowercase__ : List[str] = outputs.lower() return outputs def UpperCAmelCase ( self : int ,_snake_case : str ) -> List[str]: """simple docstring""" lowercase__ : Tuple = self.preprocess_text(_snake_case ) lowercase__ : int = self.sp_model.encode(_snake_case ,out_type=_snake_case ) lowercase__ : List[Any] = [] for piece in pieces: if len(_snake_case ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): lowercase__ : List[str] = self.sp_model.EncodeAsPieces(piece[:-1].replace(_snake_case ,'''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowercase__ : int = cur_pieces[1:] else: lowercase__ : Union[str, Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_snake_case ) else: new_pieces.append(_snake_case ) return new_pieces def UpperCAmelCase ( self : List[str] ,_snake_case : List[Any] ) -> Union[str, Any]: """simple docstring""" return self.sp_model.PieceToId(_snake_case ) def UpperCAmelCase ( self : List[Any] ,_snake_case : Optional[Any] ) -> Tuple: """simple docstring""" return self.sp_model.IdToPiece(_snake_case ) def UpperCAmelCase ( self : Dict ,_snake_case : int ) -> Tuple: """simple docstring""" lowercase__ : List[Any] = ''''''.join(_snake_case ).replace(_snake_case ,''' ''' ).strip() return out_string def UpperCAmelCase ( self : Tuple ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ : Tuple = [self.sep_token_id] lowercase__ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCAmelCase ( self : List[str] ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ,_snake_case : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case ,token_ids_a=_snake_case ,already_has_special_tokens=_snake_case ) if token_ids_a is not None: return ([0] * len(_snake_case )) + [1] + ([0] * len(_snake_case )) + [1, 1] return ([0] * len(_snake_case )) + [1, 1] def UpperCAmelCase ( self : List[Any] ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ : Tuple = [self.sep_token_id] lowercase__ : Any = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : str ,_snake_case : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_snake_case ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ : List[Any] = os.path.join( _snake_case ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case ,'''wb''' ) as fi: lowercase__ : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,) def UpperCAmelCase ( self : List[Any] ,*_snake_case : List[Any] ,**_snake_case : List[str] ) -> Dict: """simple docstring""" lowercase__ : Union[str, Any] = super()._decode(*_snake_case ,**_snake_case ) lowercase__ : Tuple = text.replace(''' ''' ,'''''' ).replace('''\u2582''' ,''' ''' ).replace('''\u2583''' ,'''\n''' ) return text
16
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __UpperCAmelCase ( __lowerCamelCase ) -> Any: lowercase__ : Optional[int] = [] embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""", f"""stage{idx}.patch_embed.proj.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""", f"""stage{idx}.patch_embed.proj.bias""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""", f"""stage{idx}.patch_embed.norm.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""", f"""stage{idx}.patch_embed.norm.bias""", ) ) return embed def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Dict: lowercase__ : str = [] attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj.bias""", ) ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", f"""stage{idx}.blocks.{cnt}.norm1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", f"""stage{idx}.blocks.{cnt}.norm1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", f"""stage{idx}.blocks.{cnt}.norm2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", f"""stage{idx}.blocks.{cnt}.norm2.bias""") ) return attention_weights def __UpperCAmelCase ( __lowerCamelCase ) -> Tuple: lowercase__ : List[str] = [] token.append((f"""cvt.encoder.stages.{idx}.cls_token""", '''stage2.cls_token''') ) return token def __UpperCAmelCase ( ) -> Optional[int]: lowercase__ : List[str] = [] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: lowercase__ : List[Any] = '''imagenet-1k-id2label.json''' lowercase__ : Optional[Any] = 10_00 lowercase__ : Optional[Any] = '''huggingface/label-files''' lowercase__ : Dict = num_labels lowercase__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) ) , '''r''' ) ) lowercase__ : int = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = idalabel lowercase__ : str = {v: k for k, v in idalabel.items()} lowercase__ : Any = CvtConfig(num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13": lowercase__ : int = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21": lowercase__ : int = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowercase__ : List[Any] = [2, 2, 20] lowercase__ : Any = [3, 12, 16] lowercase__ : Tuple = [1_92, 7_68, 10_24] lowercase__ : List[Any] = CvtForImageClassification(__lowerCamelCase ) lowercase__ : str = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) lowercase__ : List[str] = image_size lowercase__ : Union[str, Any] = torch.load(__lowerCamelCase , map_location=torch.device('''cpu''' ) ) lowercase__ : int = OrderedDict() lowercase__ : List[Any] = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowercase__ : Any = list_of_state_dict + cls_token(__lowerCamelCase ) lowercase__ : Any = list_of_state_dict + embeddings(__lowerCamelCase ) for cnt in range(config.depth[idx] ): lowercase__ : Tuple = list_of_state_dict + attention(__lowerCamelCase , __lowerCamelCase ) lowercase__ : List[Any] = list_of_state_dict + final() for gg in list_of_state_dict: print(__lowerCamelCase ) for i in range(len(__lowerCamelCase ) ): lowercase__ : Optional[Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) image_processor.save_pretrained(__lowerCamelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=R'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCAmelCase_ = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
16
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = ["pixel_values"] def __init__( self : Optional[int] ,_snake_case : bool = True ,_snake_case : Dict[str, int] = None ,_snake_case : int = 0.9 ,_snake_case : PILImageResampling = PILImageResampling.BICUBIC ,_snake_case : bool = True ,_snake_case : Dict[str, int] = None ,_snake_case : Union[int, float] = 1 / 255 ,_snake_case : bool = True ,_snake_case : bool = True ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,**_snake_case : int ,) -> None: """simple docstring""" super().__init__(**_snake_case ) lowercase__ : List[Any] = size if size is not None else {'''shortest_edge''': 224} lowercase__ : Optional[Any] = get_size_dict(_snake_case ,default_to_square=_snake_case ) lowercase__ : Dict = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase__ : Dict = get_size_dict(_snake_case ,param_name='''crop_size''' ) lowercase__ : int = do_resize lowercase__ : Optional[Any] = size lowercase__ : Tuple = crop_pct lowercase__ : int = resample lowercase__ : Dict = do_center_crop lowercase__ : int = crop_size lowercase__ : List[Any] = do_rescale lowercase__ : int = rescale_factor lowercase__ : List[Any] = do_normalize lowercase__ : str = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowercase__ : str = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase ( self : Optional[Any] ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : Optional[float] = None ,_snake_case : PILImageResampling = PILImageResampling.BICUBIC ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Optional[Any] ,) -> np.ndarray: """simple docstring""" lowercase__ : Optional[int] = get_size_dict(_snake_case ,default_to_square=_snake_case ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f"""size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) if crop_pct is not None: if "shortest_edge" in size: lowercase__ : Dict = int(size['''shortest_edge'''] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: lowercase__ : Tuple = int(size['''height'''] / crop_pct ) else: lowercase__ : List[str] = (int(size['''height'''] / crop_pct ), int(size['''width'''] / crop_pct )) else: raise ValueError('''Invalid size for resize: {}'''.format(_snake_case ) ) lowercase__ : List[Any] = get_resize_output_image_size(_snake_case ,size=_snake_case ,default_to_square=_snake_case ) else: if "shortest_edge" in size: lowercase__ : Tuple = get_resize_output_image_size(_snake_case ,size=size['''shortest_edge'''] ,default_to_square=_snake_case ) elif "height" in size and "width" in size: lowercase__ : Optional[Any] = (size['''height'''], size['''width''']) else: raise ValueError('''Invalid size for resize: {}'''.format(_snake_case ) ) return resize(_snake_case ,size=_snake_case ,resample=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : List[Any] ,) -> np.ndarray: """simple docstring""" lowercase__ : Union[str, Any] = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(f"""size must contain 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_snake_case ,size=(size['''height'''], size['''width''']) ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : int ,_snake_case : np.ndarray ,_snake_case : Union[int, float] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : str ,) -> Union[str, Any]: """simple docstring""" return rescale(_snake_case ,scale=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : np.ndarray ,_snake_case : Union[float, List[float]] ,_snake_case : Union[float, List[float]] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Optional[Any] ,) -> np.ndarray: """simple docstring""" return normalize(_snake_case ,mean=_snake_case ,std=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : ImageInput ,_snake_case : bool = None ,_snake_case : Dict[str, int] = None ,_snake_case : int = None ,_snake_case : PILImageResampling = None ,_snake_case : bool = None ,_snake_case : Dict[str, int] = None ,_snake_case : bool = None ,_snake_case : float = None ,_snake_case : bool = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[str, TensorType]] = None ,_snake_case : ChannelDimension = ChannelDimension.FIRST ,**_snake_case : List[Any] ,) -> PIL.Image.Image: """simple docstring""" lowercase__ : List[Any] = do_resize if do_resize is not None else self.do_resize lowercase__ : int = crop_pct if crop_pct is not None else self.crop_pct lowercase__ : List[Any] = resample if resample is not None else self.resample lowercase__ : int = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ : str = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : Dict = do_normalize if do_normalize is not None else self.do_normalize lowercase__ : Union[str, Any] = image_mean if image_mean is not None else self.image_mean lowercase__ : List[str] = image_std if image_std is not None else self.image_std lowercase__ : Optional[Any] = size if size is not None else self.size lowercase__ : Optional[Any] = get_size_dict(_snake_case ,default_to_square=_snake_case ) lowercase__ : Dict = crop_size if crop_size is not None else self.crop_size lowercase__ : List[Any] = get_size_dict(_snake_case ,param_name='''crop_size''' ) lowercase__ : Dict = make_list_of_images(_snake_case ) if not valid_images(_snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_pct is None: raise ValueError('''Crop_pct must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. lowercase__ : int = [to_numpy_array(_snake_case ) for image in images] if do_resize: lowercase__ : Optional[Any] = [self.resize(image=_snake_case ,size=_snake_case ,crop_pct=_snake_case ,resample=_snake_case ) for image in images] if do_center_crop: lowercase__ : List[Any] = [self.center_crop(image=_snake_case ,size=_snake_case ) for image in images] if do_rescale: lowercase__ : List[Any] = [self.rescale(image=_snake_case ,scale=_snake_case ) for image in images] if do_normalize: lowercase__ : Union[str, Any] = [self.normalize(image=_snake_case ,mean=_snake_case ,std=_snake_case ) for image in images] lowercase__ : List[Any] = [to_channel_dimension_format(_snake_case ,_snake_case ) for image in images] lowercase__ : Optional[int] = {'''pixel_values''': images} return BatchFeature(data=_snake_case ,tensor_type=_snake_case )
16
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str: if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError('''iterations must be defined as integers''' ) if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not number >= 1: raise ValueError( '''starting number must be and integer and be more than 0''' ) if not iterations >= 1: raise ValueError('''Iterations must be done more than 0 times to play FizzBuzz''' ) lowercase__ : Tuple = '''''' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(__lowerCamelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
16
1
"""simple docstring""" from __future__ import annotations from random import random class __A : '''simple docstring''' def __init__( self : str ,_snake_case : int | None = None ) -> Any: """simple docstring""" lowercase__ : int = value lowercase__ : Any = random() lowercase__ : Node | None = None lowercase__ : Node | None = None def __repr__( self : Tuple ) -> str: """simple docstring""" from pprint import pformat if self.left is None and self.right is None: return f"""'{self.value}: {self.prior:.5}'""" else: return pformat( {f"""{self.value}: {self.prior:.5}""": (self.left, self.right)} ,indent=1 ) def __str__( self : Dict ) -> str: """simple docstring""" lowercase__ : Dict = str(self.value ) + ''' ''' lowercase__ : Dict = str(self.left or '''''' ) lowercase__ : List[str] = str(self.right or '''''' ) return value + left + right def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> tuple[Node | None, Node | None]: if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: lowercase__ , lowercase__ : Dict = split(root.left , __lowerCamelCase ) return left, root else: lowercase__ , lowercase__ : Optional[Any] = split(root.right , __lowerCamelCase ) return root, right def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Node | None: if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: lowercase__ : Optional[int] = merge(left.right , __lowerCamelCase ) return left else: lowercase__ : str = merge(__lowerCamelCase , right.left ) return right def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Node | None: lowercase__ : Union[str, Any] = Node(__lowerCamelCase ) lowercase__ , lowercase__ : Optional[Any] = split(__lowerCamelCase , __lowerCamelCase ) return merge(merge(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Node | None: lowercase__ , lowercase__ : List[str] = split(__lowerCamelCase , value - 1 ) lowercase__ , lowercase__ : Tuple = split(__lowerCamelCase , __lowerCamelCase ) return merge(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase ) -> None: if not root: # None return else: inorder(root.left ) print(root.value , end=''',''' ) inorder(root.right ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Node | None: for arg in args.split(): if arg[0] == "+": lowercase__ : Any = insert(__lowerCamelCase , int(arg[1:] ) ) elif arg[0] == "-": lowercase__ : List[Any] = erase(__lowerCamelCase , int(arg[1:] ) ) else: print('''Unknown command''' ) return root def __UpperCAmelCase ( ) -> None: lowercase__ : str = None print( '''enter numbers to create a tree, + value to add value into treap, ''' '''- value to erase all nodes with value. \'q\' to quit. ''' ) lowercase__ : Optional[Any] = input() while args != "q": lowercase__ : Union[str, Any] = interact_treap(__lowerCamelCase , __lowerCamelCase ) print(__lowerCamelCase ) lowercase__ : Optional[Any] = input() print('''good by!''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
16
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : '''simple docstring''' def __init__( self : str ,_snake_case : List[Any] ,_snake_case : Optional[int]=3 ,_snake_case : Optional[int]=32 ,_snake_case : Union[str, Any]=3 ,_snake_case : int=10 ,_snake_case : List[str]=[10, 20, 30, 40] ,_snake_case : Any=[1, 1, 2, 1] ,_snake_case : int=True ,_snake_case : Optional[Any]=True ,_snake_case : Union[str, Any]="relu" ,_snake_case : Dict=3 ,_snake_case : Any=None ,) -> str: """simple docstring""" lowercase__ : int = parent lowercase__ : Optional[Any] = batch_size lowercase__ : Optional[Any] = image_size lowercase__ : Optional[Any] = num_channels lowercase__ : Optional[Any] = embeddings_size lowercase__ : Optional[Any] = hidden_sizes lowercase__ : str = depths lowercase__ : Tuple = is_training lowercase__ : List[Any] = use_labels lowercase__ : Union[str, Any] = hidden_act lowercase__ : Union[str, Any] = num_labels lowercase__ : Tuple = scope lowercase__ : Optional[Any] = len(_snake_case ) def UpperCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Tuple = None if self.use_labels: lowercase__ : Dict = ids_tensor([self.batch_size] ,self.num_labels ) lowercase__ : int = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" return ResNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def UpperCAmelCase ( self : List[str] ,_snake_case : Optional[int] ,_snake_case : int ,_snake_case : Tuple ) -> List[Any]: """simple docstring""" lowercase__ : Optional[int] = TFResNetModel(config=_snake_case ) lowercase__ : List[str] = model(_snake_case ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def UpperCAmelCase ( self : Optional[int] ,_snake_case : Optional[Any] ,_snake_case : int ,_snake_case : Any ) -> Tuple: """simple docstring""" lowercase__ : Tuple = self.num_labels lowercase__ : Union[str, Any] = TFResNetForImageClassification(_snake_case ) lowercase__ : List[str] = model(_snake_case ,labels=_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCAmelCase ( self : Tuple ) -> str: """simple docstring""" lowercase__ : Dict = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = config_and_inputs lowercase__ : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[int] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () lowerCAmelCase : Any = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) lowerCAmelCase : List[Any] = False lowerCAmelCase : List[Any] = False lowerCAmelCase : int = False lowerCAmelCase : Union[str, Any] = False lowerCAmelCase : List[str] = False def UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = TFResNetModelTester(self ) lowercase__ : int = ConfigTester(self ,config_class=_snake_case ,has_text_modality=_snake_case ) def UpperCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" return @unittest.skip(reason='''ResNet does not use inputs_embeds''' ) def UpperCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass @unittest.skip(reason='''ResNet does not support input and output embeddings''' ) def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" pass def UpperCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : str = model_class(_snake_case ) lowercase__ : Dict = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[int] = [*signature.parameters.keys()] lowercase__ : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_snake_case ) def UpperCAmelCase ( self : Tuple ) -> Any: """simple docstring""" lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" def check_hidden_states_output(_snake_case : Optional[int] ,_snake_case : List[str] ,_snake_case : Optional[Any] ): lowercase__ : str = model_class(_snake_case ) lowercase__ : Union[str, Any] = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__ : Tuple = self.model_tester.num_stages self.assertEqual(len(_snake_case ) ,expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase__ : List[Any] = layer_type lowercase__ : Dict = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Dict = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def UpperCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Optional[Any] = TFResNetModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def __UpperCAmelCase ( ) -> Dict: lowercase__ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class __A ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self : str ) -> Any: """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ : Tuple = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowercase__ : Any = self.default_image_processor lowercase__ : int = prepare_img() lowercase__ : Tuple = image_processor(images=_snake_case ,return_tensors='''tf''' ) # forward pass lowercase__ : Dict = model(**_snake_case ) # verify the logits lowercase__ : List[str] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape ,_snake_case ) lowercase__ : Any = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() ,_snake_case ,atol=1e-4 ) )
16
1
"""simple docstring""" import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', } lowerCAmelCase_ = { 'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'}, 'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'}, } lowerCAmelCase_ = { 'ctrl': 256, } lowerCAmelCase_ = { 'Pregnancy': 168_629, 'Christianity': 7_675, 'Explain': 106_423, 'Fitness': 63_440, 'Saving': 63_163, 'Ask': 27_171, 'Ass': 95_985, 'Joke': 163_509, 'Questions': 45_622, 'Thoughts': 49_605, 'Retail': 52_342, 'Feminism': 164_338, 'Writing': 11_992, 'Atheism': 192_263, 'Netflix': 48_616, 'Computing': 39_639, 'Opinion': 43_213, 'Alone': 44_967, 'Funny': 58_917, 'Gaming': 40_358, 'Human': 4_088, 'India': 1_331, 'Joker': 77_138, 'Diet': 36_206, 'Legal': 11_859, 'Norman': 4_939, 'Tip': 72_689, 'Weight': 52_343, 'Movies': 46_273, 'Running': 23_425, 'Science': 2_090, 'Horror': 37_793, 'Confession': 60_572, 'Finance': 12_250, 'Politics': 16_360, 'Scary': 191_985, 'Support': 12_654, 'Technologies': 32_516, 'Teenage': 66_160, 'Event': 32_769, 'Learned': 67_460, 'Notion': 182_770, 'Wikipedia': 37_583, 'Books': 6_665, 'Extract': 76_050, 'Confessions': 102_701, 'Conspiracy': 75_932, 'Links': 63_674, 'Narcissus': 150_425, 'Relationship': 54_766, 'Relationships': 134_796, 'Reviews': 41_671, 'News': 4_256, 'Translation': 26_820, 'multilingual': 128_406, } def __UpperCAmelCase ( __lowerCamelCase ) -> Union[str, Any]: lowercase__ : Dict = set() lowercase__ : Optional[int] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase__ : Dict = char lowercase__ : Tuple = set(__lowerCamelCase ) return pairs class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[str] = VOCAB_FILES_NAMES lowerCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : Optional[Any] = CONTROL_CODES def __init__( self : int ,_snake_case : str ,_snake_case : Tuple ,_snake_case : List[str]="<unk>" ,**_snake_case : List[str] ) -> Tuple: """simple docstring""" super().__init__(unk_token=_snake_case ,**_snake_case ) with open(_snake_case ,encoding='''utf-8''' ) as vocab_handle: lowercase__ : Dict = json.load(_snake_case ) lowercase__ : str = {v: k for k, v in self.encoder.items()} with open(_snake_case ,encoding='''utf-8''' ) as merges_handle: lowercase__ : Union[str, Any] = merges_handle.read().split('''\n''' )[1:-1] lowercase__ : List[Any] = [tuple(merge.split() ) for merge in merges] lowercase__ : List[str] = dict(zip(_snake_case ,range(len(_snake_case ) ) ) ) lowercase__ : int = {} @property def UpperCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" return len(self.encoder ) def UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return dict(self.encoder ,**self.added_tokens_encoder ) def UpperCAmelCase ( self : Any ,_snake_case : Union[str, Any] ) -> Tuple: """simple docstring""" if token in self.cache: return self.cache[token] lowercase__ : str = tuple(_snake_case ) lowercase__ : Dict = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) lowercase__ : Any = get_pairs(_snake_case ) if not pairs: return token while True: lowercase__ : Dict = min(_snake_case ,key=lambda _snake_case : self.bpe_ranks.get(_snake_case ,float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowercase__ , lowercase__ : Any = bigram lowercase__ : Tuple = [] lowercase__ : Any = 0 while i < len(_snake_case ): try: lowercase__ : Optional[Any] = word.index(_snake_case ,_snake_case ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase__ : int = j if word[i] == first and i < len(_snake_case ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase__ : Tuple = tuple(_snake_case ) lowercase__ : int = new_word if len(_snake_case ) == 1: break else: lowercase__ : Optional[Any] = get_pairs(_snake_case ) lowercase__ : Union[str, Any] = '''@@ '''.join(_snake_case ) lowercase__ : List[Any] = word[:-4] lowercase__ : int = word return word def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ : List[str] = [] lowercase__ : int = re.findall(r'''\S+\n?''' ,_snake_case ) for token in words: split_tokens.extend(list(self.bpe(_snake_case ).split(''' ''' ) ) ) return split_tokens def UpperCAmelCase ( self : List[Any] ,_snake_case : List[Any] ) -> Tuple: """simple docstring""" return self.encoder.get(_snake_case ,self.encoder.get(self.unk_token ) ) def UpperCAmelCase ( self : Optional[int] ,_snake_case : str ) -> Optional[Any]: """simple docstring""" return self.decoder.get(_snake_case ,self.unk_token ) def UpperCAmelCase ( self : List[str] ,_snake_case : str ) -> Any: """simple docstring""" lowercase__ : List[str] = ''' '''.join(_snake_case ).replace('''@@ ''' ,'''''' ).strip() return out_string def UpperCAmelCase ( self : Dict ,_snake_case : str ,_snake_case : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_snake_case ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ : int = os.path.join( _snake_case ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ : Dict = os.path.join( _snake_case ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(_snake_case ,'''w''' ,encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=_snake_case ,ensure_ascii=_snake_case ) + '''\n''' ) lowercase__ : Optional[int] = 0 with open(_snake_case ,'''w''' ,encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda _snake_case : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) lowercase__ : List[Any] = token_index writer.write(''' '''.join(_snake_case ) + '''\n''' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
16
"""simple docstring""" import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: if "model" in orig_key: lowercase__ : Tuple = orig_key.replace('''model.''' , '''''' ) if "norm1" in orig_key: lowercase__ : List[str] = orig_key.replace('''norm1''' , '''attention.output.LayerNorm''' ) if "norm2" in orig_key: lowercase__ : List[str] = orig_key.replace('''norm2''' , '''output.LayerNorm''' ) if "norm" in orig_key: lowercase__ : List[str] = orig_key.replace('''norm''' , '''LayerNorm''' ) if "transformer" in orig_key: lowercase__ : Union[str, Any] = orig_key.split('''.''' )[0].split('''_''' )[-1] lowercase__ : List[str] = orig_key.replace(f"""transformer_{layer_num}""" , f"""encoder.layer.{layer_num}""" ) if "mha.attn" in orig_key: lowercase__ : Union[str, Any] = orig_key.replace('''mha.attn''' , '''attention.self''' ) if "mha" in orig_key: lowercase__ : str = orig_key.replace('''mha''' , '''attention''' ) if "W_q" in orig_key: lowercase__ : Any = orig_key.replace('''W_q''' , '''self.query''' ) if "W_k" in orig_key: lowercase__ : List[Any] = orig_key.replace('''W_k''' , '''self.key''' ) if "W_v" in orig_key: lowercase__ : Any = orig_key.replace('''W_v''' , '''self.value''' ) if "ff1" in orig_key: lowercase__ : Optional[int] = orig_key.replace('''ff1''' , '''intermediate.dense''' ) if "ff2" in orig_key: lowercase__ : Optional[Any] = orig_key.replace('''ff2''' , '''output.dense''' ) if "ff" in orig_key: lowercase__ : List[str] = orig_key.replace('''ff''' , '''output.dense''' ) if "mlm_class" in orig_key: lowercase__ : int = orig_key.replace('''mlm.mlm_class''' , '''cls.predictions.decoder''' ) if "mlm" in orig_key: lowercase__ : Optional[Any] = orig_key.replace('''mlm''' , '''cls.predictions.transform''' ) if "cls" not in orig_key: lowercase__ : Optional[Any] = '''yoso.''' + orig_key return orig_key def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: for key in orig_state_dict.copy().keys(): lowercase__ : Optional[Any] = orig_state_dict.pop(__lowerCamelCase ) if ("pooler" in key) or ("sen_class" in key): continue else: lowercase__ : Tuple = val lowercase__ : Union[str, Any] = orig_state_dict['''cls.predictions.decoder.bias'''] lowercase__ : List[str] = torch.arange(__lowerCamelCase ).expand((1, -1) ) + 2 return orig_state_dict def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : Tuple = torch.load(__lowerCamelCase , map_location='''cpu''' )['''model_state_dict'''] lowercase__ : List[Any] = YosoConfig.from_json_file(__lowerCamelCase ) lowercase__ : List[Any] = YosoForMaskedLM(__lowerCamelCase ) lowercase__ : Optional[Any] = convert_checkpoint_helper(config.max_position_embeddings , __lowerCamelCase ) print(model.load_state_dict(__lowerCamelCase ) ) model.eval() model.save_pretrained(__lowerCamelCase ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to YOSO pytorch checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for YOSO model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase_ = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
16
1
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class __A : '''simple docstring''' def __init__( self : int ,_snake_case : Union[str, Any] ,_snake_case : Tuple=12 ,_snake_case : Optional[int]=7 ,_snake_case : List[Any]=True ,_snake_case : int=True ,_snake_case : Optional[int]=True ,_snake_case : Union[str, Any]=99 ,_snake_case : int=32 ,_snake_case : int=32 ,_snake_case : List[Any]=2 ,_snake_case : int=4 ,_snake_case : Union[str, Any]=37 ,_snake_case : Dict=0.1 ,_snake_case : int=0.1 ,_snake_case : int=512 ,_snake_case : Tuple=0.02 ,_snake_case : Optional[Any]=0 ,_snake_case : Union[str, Any]=None ,) -> Optional[int]: """simple docstring""" lowercase__ : List[str] = parent lowercase__ : str = batch_size lowercase__ : Optional[int] = seq_length lowercase__ : Optional[Any] = is_training lowercase__ : Dict = use_input_mask lowercase__ : Union[str, Any] = use_labels lowercase__ : str = vocab_size lowercase__ : Optional[int] = hidden_size lowercase__ : Optional[Any] = projection_dim lowercase__ : str = num_hidden_layers lowercase__ : Any = num_attention_heads lowercase__ : List[str] = intermediate_size lowercase__ : Union[str, Any] = dropout lowercase__ : Optional[int] = attention_dropout lowercase__ : List[str] = max_position_embeddings lowercase__ : Tuple = initializer_range lowercase__ : Union[str, Any] = scope lowercase__ : Union[str, Any] = bos_token_id def UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ : int = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase__ : Any = None if self.use_input_mask: lowercase__ : int = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: lowercase__ : Any = input_mask.numpy() lowercase__ , lowercase__ : List[str] = input_mask.shape lowercase__ : Tuple = np.random.randint(1 ,seq_length - 1 ,size=(batch_size,) ) for batch_idx, start_index in enumerate(_snake_case ): lowercase__ : Union[str, Any] = 1 lowercase__ : Any = 0 lowercase__ : str = self.get_config() return config, input_ids, tf.convert_to_tensor(_snake_case ) def UpperCAmelCase ( self : Tuple ) -> str: """simple docstring""" return BlipTextConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,projection_dim=self.projection_dim ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,dropout=self.dropout ,attention_dropout=self.attention_dropout ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,bos_token_id=self.bos_token_id ,) def UpperCAmelCase ( self : List[Any] ,_snake_case : Dict ,_snake_case : List[Any] ,_snake_case : List[Any] ) -> Dict: """simple docstring""" lowercase__ : Optional[Any] = TFBlipTextModel(config=_snake_case ) lowercase__ : List[Any] = model(_snake_case ,attention_mask=_snake_case ,training=_snake_case ) lowercase__ : List[Any] = model(_snake_case ,training=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" lowercase__ : List[str] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Any = config_and_inputs lowercase__ : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : int = (TFBlipTextModel,) if is_tf_available() else () lowerCAmelCase : Optional[Any] = False lowerCAmelCase : List[Any] = False lowerCAmelCase : Union[str, Any] = False def UpperCAmelCase ( self : Any ) -> Any: """simple docstring""" lowercase__ : Optional[Any] = BlipTextModelTester(self ) lowercase__ : List[Any] = ConfigTester(self ,config_class=_snake_case ,hidden_size=37 ) def UpperCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" pass def UpperCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def UpperCAmelCase ( self : int ) -> str: """simple docstring""" pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" pass @slow def UpperCAmelCase ( self : int ) -> List[Any]: """simple docstring""" for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : str = TFBlipTextModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def UpperCAmelCase ( self : Dict ,_snake_case : List[str]=True ) -> Optional[int]: """simple docstring""" super().test_pt_tf_model_equivalence(allow_missing_keys=_snake_case )
16
"""simple docstring""" import os def __UpperCAmelCase ( ) -> int: with open(os.path.dirname(__lowerCamelCase ) + '''/p022_names.txt''' ) as file: lowercase__ : List[Any] = str(file.readlines()[0] ) lowercase__ : Dict = names.replace('''"''' , '''''' ).split(''',''' ) names.sort() lowercase__ : int = 0 lowercase__ : Optional[Any] = 0 for i, name in enumerate(__lowerCamelCase ): for letter in name: name_score += ord(__lowerCamelCase ) - 64 total_score += (i + 1) * name_score lowercase__ : List[str] = 0 return total_score if __name__ == "__main__": print(solution())
16
1
"""simple docstring""" import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __A ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Tuple = MODEL_FOR_MASKED_LM_MAPPING lowerCAmelCase : Any = TF_MODEL_FOR_MASKED_LM_MAPPING def UpperCAmelCase ( self : List[Any] ) -> int: """simple docstring""" super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ : Dict = pipeline(task='''fill-mask''' ,model='''sshleifer/tiny-distilroberta-base''' ,top_k=2 ,framework='''tf''' ) lowercase__ : List[str] = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(_snake_case ,decimals=6 ) ,[ {'''sequence''': '''My name is grouped''', '''score''': 2.1e-05, '''token''': 38_015, '''token_str''': ''' grouped'''}, {'''sequence''': '''My name is accuser''', '''score''': 2.1e-05, '''token''': 25_506, '''token_str''': ''' accuser'''}, ] ,) lowercase__ : List[str] = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(_snake_case ,decimals=6 ) ,[ { '''sequence''': '''The largest city in France is grouped''', '''score''': 2.1e-05, '''token''': 38_015, '''token_str''': ''' grouped''', }, { '''sequence''': '''The largest city in France is accuser''', '''score''': 2.1e-05, '''token''': 25_506, '''token_str''': ''' accuser''', }, ] ,) lowercase__ : Any = unmasker('''My name is <mask>''' ,targets=[''' Patrick''', ''' Clara''', ''' Teven'''] ,top_k=3 ) self.assertEqual( nested_simplify(_snake_case ,decimals=6 ) ,[ {'''sequence''': '''My name is Clara''', '''score''': 2e-05, '''token''': 13_606, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Patrick''', '''score''': 2e-05, '''token''': 3_499, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 1.9e-05, '''token''': 2_941, '''token_str''': ''' Te'''}, ] ,) @require_torch def UpperCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[Any] = pipeline(task='''fill-mask''' ,model='''sshleifer/tiny-distilroberta-base''' ,top_k=2 ,framework='''pt''' ) lowercase__ : Any = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(_snake_case ,decimals=6 ) ,[ {'''sequence''': '''My name is Maul''', '''score''': 2.2e-05, '''token''': 35_676, '''token_str''': ''' Maul'''}, {'''sequence''': '''My name isELS''', '''score''': 2.2e-05, '''token''': 16_416, '''token_str''': '''ELS'''}, ] ,) lowercase__ : int = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(_snake_case ,decimals=6 ) ,[ { '''sequence''': '''The largest city in France is Maul''', '''score''': 2.2e-05, '''token''': 35_676, '''token_str''': ''' Maul''', }, {'''sequence''': '''The largest city in France isELS''', '''score''': 2.2e-05, '''token''': 16_416, '''token_str''': '''ELS'''}, ] ,) lowercase__ : Optional[int] = unmasker('''My name is <mask>''' ,targets=[''' Patrick''', ''' Clara''', ''' Teven'''] ,top_k=3 ) self.assertEqual( nested_simplify(_snake_case ,decimals=6 ) ,[ {'''sequence''': '''My name is Patrick''', '''score''': 2.1e-05, '''token''': 3_499, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 2e-05, '''token''': 2_941, '''token_str''': ''' Te'''}, {'''sequence''': '''My name is Clara''', '''score''': 2e-05, '''token''': 13_606, '''token_str''': ''' Clara'''}, ] ,) lowercase__ : Any = unmasker('''My name is <mask> <mask>''' ,top_k=2 ) self.assertEqual( nested_simplify(_snake_case ,decimals=6 ) ,[ [ { '''score''': 2.2e-05, '''token''': 35_676, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is Maul<mask></s>''', }, {'''score''': 2.2e-05, '''token''': 16_416, '''token_str''': '''ELS''', '''sequence''': '''<s>My name isELS<mask></s>'''}, ], [ { '''score''': 2.2e-05, '''token''': 35_676, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is<mask> Maul</s>''', }, {'''score''': 2.2e-05, '''token''': 16_416, '''token_str''': '''ELS''', '''sequence''': '''<s>My name is<mask>ELS</s>'''}, ], ] ,) @require_torch_gpu def UpperCAmelCase ( self : str ) -> int: """simple docstring""" lowercase__ : List[str] = pipeline('''fill-mask''' ,model='''hf-internal-testing/tiny-random-distilbert''' ,device=0 ,framework='''pt''' ) # convert model to fp16 pipe.model.half() lowercase__ : Union[str, Any] = pipe('''Paris is the [MASK] of France.''' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(_snake_case ,_snake_case ) @slow @require_torch def UpperCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" lowercase__ : Dict = pipeline(task='''fill-mask''' ,model='''distilroberta-base''' ,top_k=2 ,framework='''pt''' ) self.run_large_test(_snake_case ) @slow @require_tf def UpperCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" lowercase__ : Dict = pipeline(task='''fill-mask''' ,model='''distilroberta-base''' ,top_k=2 ,framework='''tf''' ) self.run_large_test(_snake_case ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Dict ) -> Optional[int]: """simple docstring""" lowercase__ : Tuple = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(_snake_case ) ,[ {'''sequence''': '''My name is John''', '''score''': 0.008, '''token''': 610, '''token_str''': ''' John'''}, {'''sequence''': '''My name is Chris''', '''score''': 0.007, '''token''': 1_573, '''token_str''': ''' Chris'''}, ] ,) lowercase__ : int = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(_snake_case ) ,[ { '''sequence''': '''The largest city in France is Paris''', '''score''': 0.251, '''token''': 2_201, '''token_str''': ''' Paris''', }, { '''sequence''': '''The largest city in France is Lyon''', '''score''': 0.214, '''token''': 12_790, '''token_str''': ''' Lyon''', }, ] ,) lowercase__ : Dict = unmasker('''My name is <mask>''' ,targets=[''' Patrick''', ''' Clara''', ''' Teven'''] ,top_k=3 ) self.assertEqual( nested_simplify(_snake_case ) ,[ {'''sequence''': '''My name is Patrick''', '''score''': 0.005, '''token''': 3_499, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Clara''', '''score''': 0.000, '''token''': 13_606, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Te''', '''score''': 0.000, '''token''': 2_941, '''token_str''': ''' Te'''}, ] ,) @require_torch def UpperCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" lowercase__ : str = pipeline(task='''fill-mask''' ,model='''sshleifer/tiny-distilroberta-base''' ,framework='''pt''' ) lowercase__ : Tuple = None lowercase__ : str = None self.run_pipeline_test(_snake_case ,[] ) @require_tf def UpperCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" lowercase__ : Union[str, Any] = pipeline(task='''fill-mask''' ,model='''sshleifer/tiny-distilroberta-base''' ,framework='''tf''' ) lowercase__ : str = None lowercase__ : List[Any] = None self.run_pipeline_test(_snake_case ,[] ) def UpperCAmelCase ( self : str ,_snake_case : Optional[int] ,_snake_case : Any ,_snake_case : Union[str, Any] ) -> List[Any]: """simple docstring""" if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('''The provided tokenizer has no mask token, (probably reformer or wav2vec2)''' ) lowercase__ : List[str] = FillMaskPipeline(model=_snake_case ,tokenizer=_snake_case ) lowercase__ : List[str] = [ f"""This is another {tokenizer.mask_token} test""", ] return fill_masker, examples def UpperCAmelCase ( self : List[Any] ,_snake_case : Union[str, Any] ,_snake_case : str ) -> Optional[Any]: """simple docstring""" lowercase__ : List[str] = fill_masker.tokenizer lowercase__ : List[Any] = fill_masker.model lowercase__ : str = fill_masker( f"""This is a {tokenizer.mask_token}""" ,) self.assertEqual( _snake_case ,[ {'''sequence''': ANY(_snake_case ), '''score''': ANY(_snake_case ), '''token''': ANY(_snake_case ), '''token_str''': ANY(_snake_case )}, {'''sequence''': ANY(_snake_case ), '''score''': ANY(_snake_case ), '''token''': ANY(_snake_case ), '''token_str''': ANY(_snake_case )}, {'''sequence''': ANY(_snake_case ), '''score''': ANY(_snake_case ), '''token''': ANY(_snake_case ), '''token_str''': ANY(_snake_case )}, {'''sequence''': ANY(_snake_case ), '''score''': ANY(_snake_case ), '''token''': ANY(_snake_case ), '''token_str''': ANY(_snake_case )}, {'''sequence''': ANY(_snake_case ), '''score''': ANY(_snake_case ), '''token''': ANY(_snake_case ), '''token_str''': ANY(_snake_case )}, ] ,) lowercase__ : int = fill_masker([f"""This is a {tokenizer.mask_token}"""] ) self.assertEqual( _snake_case ,[ {'''sequence''': ANY(_snake_case ), '''score''': ANY(_snake_case ), '''token''': ANY(_snake_case ), '''token_str''': ANY(_snake_case )}, {'''sequence''': ANY(_snake_case ), '''score''': ANY(_snake_case ), '''token''': ANY(_snake_case ), '''token_str''': ANY(_snake_case )}, {'''sequence''': ANY(_snake_case ), '''score''': ANY(_snake_case ), '''token''': ANY(_snake_case ), '''token_str''': ANY(_snake_case )}, {'''sequence''': ANY(_snake_case ), '''score''': ANY(_snake_case ), '''token''': ANY(_snake_case ), '''token_str''': ANY(_snake_case )}, {'''sequence''': ANY(_snake_case ), '''score''': ANY(_snake_case ), '''token''': ANY(_snake_case ), '''token_str''': ANY(_snake_case )}, ] ,) lowercase__ : Optional[Any] = fill_masker([f"""This is a {tokenizer.mask_token}""", f"""Another {tokenizer.mask_token} great test."""] ) self.assertEqual( _snake_case ,[ [ {'''sequence''': ANY(_snake_case ), '''score''': ANY(_snake_case ), '''token''': ANY(_snake_case ), '''token_str''': ANY(_snake_case )}, {'''sequence''': ANY(_snake_case ), '''score''': ANY(_snake_case ), '''token''': ANY(_snake_case ), '''token_str''': ANY(_snake_case )}, {'''sequence''': ANY(_snake_case ), '''score''': ANY(_snake_case ), '''token''': ANY(_snake_case ), '''token_str''': ANY(_snake_case )}, {'''sequence''': ANY(_snake_case ), '''score''': ANY(_snake_case ), '''token''': ANY(_snake_case ), '''token_str''': ANY(_snake_case )}, {'''sequence''': ANY(_snake_case ), '''score''': ANY(_snake_case ), '''token''': ANY(_snake_case ), '''token_str''': ANY(_snake_case )}, ], [ {'''sequence''': ANY(_snake_case ), '''score''': ANY(_snake_case ), '''token''': ANY(_snake_case ), '''token_str''': ANY(_snake_case )}, {'''sequence''': ANY(_snake_case ), '''score''': ANY(_snake_case ), '''token''': ANY(_snake_case ), '''token_str''': ANY(_snake_case )}, {'''sequence''': ANY(_snake_case ), '''score''': ANY(_snake_case ), '''token''': ANY(_snake_case ), '''token_str''': ANY(_snake_case )}, {'''sequence''': ANY(_snake_case ), '''score''': ANY(_snake_case ), '''token''': ANY(_snake_case ), '''token_str''': ANY(_snake_case )}, {'''sequence''': ANY(_snake_case ), '''score''': ANY(_snake_case ), '''token''': ANY(_snake_case ), '''token_str''': ANY(_snake_case )}, ], ] ,) with self.assertRaises(_snake_case ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(_snake_case ): fill_masker('''This is''' ) self.run_test_top_k(_snake_case ,_snake_case ) self.run_test_targets(_snake_case ,_snake_case ) self.run_test_top_k_targets(_snake_case ,_snake_case ) self.fill_mask_with_duplicate_targets_and_top_k(_snake_case ,_snake_case ) self.fill_mask_with_multiple_masks(_snake_case ,_snake_case ) def UpperCAmelCase ( self : List[Any] ,_snake_case : Any ,_snake_case : Dict ) -> Tuple: """simple docstring""" lowercase__ : Tuple = tokenizer.get_vocab() lowercase__ : List[Any] = sorted(vocab.keys() )[:2] # Pipeline argument lowercase__ : Dict = FillMaskPipeline(model=_snake_case ,tokenizer=_snake_case ,targets=_snake_case ) lowercase__ : Optional[Any] = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( _snake_case ,[ {'''sequence''': ANY(_snake_case ), '''score''': ANY(_snake_case ), '''token''': ANY(_snake_case ), '''token_str''': ANY(_snake_case )}, {'''sequence''': ANY(_snake_case ), '''score''': ANY(_snake_case ), '''token''': ANY(_snake_case ), '''token_str''': ANY(_snake_case )}, ] ,) lowercase__ : Tuple = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} ,_snake_case ) lowercase__ : Tuple = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} ,set(_snake_case ) ) # Call argument lowercase__ : str = FillMaskPipeline(model=_snake_case ,tokenizer=_snake_case ) lowercase__ : Union[str, Any] = fill_masker(f"""This is a {tokenizer.mask_token}""" ,targets=_snake_case ) self.assertEqual( _snake_case ,[ {'''sequence''': ANY(_snake_case ), '''score''': ANY(_snake_case ), '''token''': ANY(_snake_case ), '''token_str''': ANY(_snake_case )}, {'''sequence''': ANY(_snake_case ), '''score''': ANY(_snake_case ), '''token''': ANY(_snake_case ), '''token_str''': ANY(_snake_case )}, ] ,) lowercase__ : int = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} ,_snake_case ) lowercase__ : Dict = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} ,set(_snake_case ) ) # Score equivalence lowercase__ : Union[str, Any] = fill_masker(f"""This is a {tokenizer.mask_token}""" ,targets=_snake_case ) lowercase__ : Tuple = [top_mask['''token_str'''] for top_mask in outputs] lowercase__ : str = [top_mask['''score'''] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_snake_case ) == set(_snake_case ): lowercase__ : Union[str, Any] = fill_masker(f"""This is a {tokenizer.mask_token}""" ,targets=_snake_case ) lowercase__ : Optional[int] = [top_mask['''score'''] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(_snake_case ) ,nested_simplify(_snake_case ) ) # Raises with invalid with self.assertRaises(_snake_case ): lowercase__ : str = fill_masker(f"""This is a {tokenizer.mask_token}""" ,targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(_snake_case ): lowercase__ : str = fill_masker(f"""This is a {tokenizer.mask_token}""" ,targets=[''''''] ) with self.assertRaises(_snake_case ): lowercase__ : Tuple = fill_masker(f"""This is a {tokenizer.mask_token}""" ,targets='''''' ) def UpperCAmelCase ( self : Tuple ,_snake_case : Any ,_snake_case : Optional[int] ) -> List[str]: """simple docstring""" lowercase__ : List[Any] = FillMaskPipeline(model=_snake_case ,tokenizer=_snake_case ,top_k=2 ) lowercase__ : List[str] = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( _snake_case ,[ {'''sequence''': ANY(_snake_case ), '''score''': ANY(_snake_case ), '''token''': ANY(_snake_case ), '''token_str''': ANY(_snake_case )}, {'''sequence''': ANY(_snake_case ), '''score''': ANY(_snake_case ), '''token''': ANY(_snake_case ), '''token_str''': ANY(_snake_case )}, ] ,) lowercase__ : Optional[Any] = FillMaskPipeline(model=_snake_case ,tokenizer=_snake_case ) lowercase__ : Dict = fill_masker(f"""This is a {tokenizer.mask_token}""" ,top_k=2 ) self.assertEqual( _snake_case ,[ {'''sequence''': ANY(_snake_case ), '''score''': ANY(_snake_case ), '''token''': ANY(_snake_case ), '''token_str''': ANY(_snake_case )}, {'''sequence''': ANY(_snake_case ), '''score''': ANY(_snake_case ), '''token''': ANY(_snake_case ), '''token_str''': ANY(_snake_case )}, ] ,) self.assertEqual(nested_simplify(_snake_case ) ,nested_simplify(_snake_case ) ) def UpperCAmelCase ( self : Any ,_snake_case : Optional[int] ,_snake_case : List[str] ) -> List[Any]: """simple docstring""" lowercase__ : int = tokenizer.get_vocab() lowercase__ : Optional[int] = FillMaskPipeline(model=_snake_case ,tokenizer=_snake_case ) # top_k=2, ntargets=3 lowercase__ : Tuple = sorted(vocab.keys() )[:3] lowercase__ : int = fill_masker(f"""This is a {tokenizer.mask_token}""" ,top_k=2 ,targets=_snake_case ) # If we use the most probably targets, and filter differently, we should still # have the same results lowercase__ : str = [el['''token_str'''] for el in sorted(_snake_case ,key=lambda _snake_case : x["score"] ,reverse=_snake_case )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_snake_case ).issubset(_snake_case ): lowercase__ : Dict = fill_masker(f"""This is a {tokenizer.mask_token}""" ,top_k=3 ,targets=_snake_case ) # They should yield exactly the same result self.assertEqual(nested_simplify(_snake_case ) ,nested_simplify(_snake_case ) ) def UpperCAmelCase ( self : List[str] ,_snake_case : List[Any] ,_snake_case : Any ) -> Optional[int]: """simple docstring""" lowercase__ : Union[str, Any] = FillMaskPipeline(model=_snake_case ,tokenizer=_snake_case ) lowercase__ : Tuple = tokenizer.get_vocab() # String duplicates + id duplicates lowercase__ : Optional[int] = sorted(vocab.keys() )[:3] lowercase__ : List[str] = [targets[0], targets[1], targets[0], targets[2], targets[1]] lowercase__ : Optional[int] = fill_masker(f"""My name is {tokenizer.mask_token}""" ,targets=_snake_case ,top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(_snake_case ) ,3 ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Dict ,_snake_case : Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ : Optional[int] = FillMaskPipeline(model=_snake_case ,tokenizer=_snake_case ) lowercase__ : int = fill_masker( f"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" ,top_k=2 ) self.assertEqual( _snake_case ,[ [ {'''sequence''': ANY(_snake_case ), '''score''': ANY(_snake_case ), '''token''': ANY(_snake_case ), '''token_str''': ANY(_snake_case )}, {'''sequence''': ANY(_snake_case ), '''score''': ANY(_snake_case ), '''token''': ANY(_snake_case ), '''token_str''': ANY(_snake_case )}, ], [ {'''sequence''': ANY(_snake_case ), '''score''': ANY(_snake_case ), '''token''': ANY(_snake_case ), '''token_str''': ANY(_snake_case )}, {'''sequence''': ANY(_snake_case ), '''score''': ANY(_snake_case ), '''token''': ANY(_snake_case ), '''token_str''': ANY(_snake_case )}, ], [ {'''sequence''': ANY(_snake_case ), '''score''': ANY(_snake_case ), '''token''': ANY(_snake_case ), '''token_str''': ANY(_snake_case )}, {'''sequence''': ANY(_snake_case ), '''score''': ANY(_snake_case ), '''token''': ANY(_snake_case ), '''token_str''': ANY(_snake_case )}, ], ] ,)
16
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(A_ ) class __A ( A_ ): '''simple docstring''' def __init__( self : List[str] ,**_snake_case : Dict ) -> List[Any]: """simple docstring""" super().__init__(**_snake_case ) requires_backends(self ,'''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[int] ,_snake_case : Union[str, List[str], "Image", List["Image"]] ,**_snake_case : int ) -> Optional[Any]: """simple docstring""" return super().__call__(_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Dict ,**_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ : List[str] = {} if "candidate_labels" in kwargs: lowercase__ : Any = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: lowercase__ : Optional[Any] = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[int] ,_snake_case : Dict=None ,_snake_case : Union[str, Any]="This is a photo of {}." ) -> List[str]: """simple docstring""" lowercase__ : List[Any] = load_image(_snake_case ) lowercase__ : int = self.image_processor(images=[image] ,return_tensors=self.framework ) lowercase__ : str = candidate_labels lowercase__ : Dict = [hypothesis_template.format(_snake_case ) for x in candidate_labels] lowercase__ : Any = self.tokenizer(_snake_case ,return_tensors=self.framework ,padding=_snake_case ) lowercase__ : Optional[int] = [text_inputs] return inputs def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ : Optional[int] = model_inputs.pop('''candidate_labels''' ) lowercase__ : Union[str, Any] = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] ,_snake_case ): lowercase__ : List[str] = text_inputs[0] else: # Batching case. lowercase__ : int = text_inputs[0][0] lowercase__ : Tuple = self.model(**_snake_case ,**_snake_case ) lowercase__ : Union[str, Any] = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def UpperCAmelCase ( self : Any ,_snake_case : Tuple ) -> Any: """simple docstring""" lowercase__ : Dict = model_outputs.pop('''candidate_labels''' ) lowercase__ : Optional[Any] = model_outputs['''logits'''][0] if self.framework == "pt": lowercase__ : Optional[int] = logits.softmax(dim=-1 ).squeeze(-1 ) lowercase__ : Tuple = probs.tolist() if not isinstance(_snake_case ,_snake_case ): lowercase__ : Any = [scores] elif self.framework == "tf": lowercase__ : List[str] = stable_softmax(_snake_case ,axis=-1 ) lowercase__ : Optional[Any] = probs.numpy().tolist() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) lowercase__ : Union[str, Any] = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(_snake_case ,_snake_case ) ,key=lambda _snake_case : -x[0] ) ] return result
16
1
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase_ = 16 lowerCAmelCase_ = 32 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = 16 ) -> Optional[Any]: lowercase__ : Optional[Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowercase__ : int = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) lowercase__ : str = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCamelCase , max_length=__lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ : str = datasets.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : Union[str, Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ : List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ : Optional[int] = 16 elif accelerator.mixed_precision != "no": lowercase__ : List[Any] = 8 else: lowercase__ : int = None return tokenizer.pad( __lowerCamelCase , padding='''longest''' , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. lowercase__ : List[Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) lowercase__ : str = DataLoader( tokenized_datasets['''validation'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase_ = mocked_dataloaders # noqa: F811 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __lowerCamelCase ) == "1": lowercase__ : List[Any] = 2 # Initialize accelerator lowercase__ : Optional[int] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : str = config['''lr'''] lowercase__ : str = int(config['''num_epochs'''] ) lowercase__ : Optional[int] = int(config['''seed'''] ) lowercase__ : Tuple = int(config['''batch_size'''] ) lowercase__ : List[Any] = evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__lowerCamelCase ) def inner_training_loop(__lowerCamelCase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : List[str] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ : Tuple = model.to(accelerator.device ) # Instantiate optimizer lowercase__ : List[str] = AdamW(params=model.parameters() , lr=__lowerCamelCase ) lowercase__ , lowercase__ : List[Any] = get_dataloaders(__lowerCamelCase , __lowerCamelCase ) # Instantiate scheduler lowercase__ : Optional[int] = get_linear_schedule_with_warmup( optimizer=__lowerCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__lowerCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Optional[int] = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Now we train the model for epoch in range(__lowerCamelCase ): model.train() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase__ : Dict = model(**__lowerCamelCase ) lowercase__ : List[Any] = outputs.loss accelerator.backward(__lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ : Tuple = model(**__lowerCamelCase ) lowercase__ : Any = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ : int = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__lowerCamelCase , references=__lowerCamelCase , ) lowercase__ : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __lowerCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def __UpperCAmelCase ( ) -> Dict: lowercase__ : Optional[int] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__lowerCamelCase , default=__lowerCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowercase__ : int = parser.parse_args() lowercase__ : Union[str, Any] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
16
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[Any]: print('''\nThe shortest path matrix using Floyd Warshall algorithm\n''' ) for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): if dist[i][j] != float('''inf''' ): print(int(dist[i][j] ) , end='''\t''' ) else: print('''INF''' , end='''\t''' ) print() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : str = [[float('''inf''' ) for _ in range(__lowerCamelCase )] for _ in range(__lowerCamelCase )] for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): lowercase__ : List[str] = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(__lowerCamelCase ): # looping through rows of graph array for i in range(__lowerCamelCase ): # looping through columns of graph array for j in range(__lowerCamelCase ): if ( dist[i][k] != float('''inf''' ) and dist[k][j] != float('''inf''' ) and dist[i][k] + dist[k][j] < dist[i][j] ): lowercase__ : str = dist[i][k] + dist[k][j] _print_dist(__lowerCamelCase , __lowerCamelCase ) return dist, v if __name__ == "__main__": lowerCAmelCase_ = int(input('Enter number of vertices: ')) lowerCAmelCase_ = int(input('Enter number of edges: ')) lowerCAmelCase_ = [[float('inf') for i in range(v)] for j in range(v)] for i in range(v): lowerCAmelCase_ = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('\nEdge ', i + 1) lowerCAmelCase_ = int(input('Enter source:')) lowerCAmelCase_ = int(input('Enter destination:')) lowerCAmelCase_ = float(input('Enter weight:')) lowerCAmelCase_ = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
16
1
"""simple docstring""" import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class __A : '''simple docstring''' def __init__( self : int ,_snake_case : Optional[Any] ,_snake_case : List[str]=3 ,_snake_case : Optional[int]=7 ,_snake_case : int=True ,_snake_case : Tuple=True ,_snake_case : List[Any]=False ,_snake_case : Dict=True ,_snake_case : Tuple=99 ,_snake_case : int=32 ,_snake_case : Optional[Any]=5 ,_snake_case : List[Any]=4 ,_snake_case : Tuple=37 ,_snake_case : Any="gelu" ,_snake_case : Union[str, Any]=0.1 ,_snake_case : Optional[int]=0.1 ,_snake_case : List[str]=512 ,_snake_case : str=16 ,_snake_case : Dict=2 ,_snake_case : List[str]=0.02 ,_snake_case : Any=3 ,_snake_case : Optional[Any]=4 ,_snake_case : List[Any]=None ,) -> List[Any]: """simple docstring""" lowercase__ : int = parent lowercase__ : Union[str, Any] = batch_size lowercase__ : Optional[Any] = seq_length lowercase__ : Optional[Any] = is_training lowercase__ : Optional[Any] = use_input_mask lowercase__ : Optional[int] = use_token_type_ids lowercase__ : List[str] = use_labels lowercase__ : List[Any] = vocab_size lowercase__ : str = hidden_size lowercase__ : int = num_hidden_layers lowercase__ : List[Any] = num_attention_heads lowercase__ : Union[str, Any] = intermediate_size lowercase__ : Union[str, Any] = hidden_act lowercase__ : str = hidden_dropout_prob lowercase__ : Any = attention_probs_dropout_prob lowercase__ : Tuple = max_position_embeddings lowercase__ : Optional[Any] = type_vocab_size lowercase__ : Tuple = type_sequence_label_size lowercase__ : List[str] = initializer_range lowercase__ : Any = num_labels lowercase__ : str = num_choices lowercase__ : Dict = scope def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase__ : int = None if self.use_input_mask: lowercase__ : str = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : Dict = None lowercase__ : int = None lowercase__ : List[str] = None lowercase__ : int = None if self.use_labels: lowercase__ : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase__ : Any = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowercase__ : str = ids_tensor([self.batch_size] ,self.num_choices ) lowercase__ : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" return FalconConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=_snake_case ,initializer_range=self.initializer_range ,pad_token_id=1 ,new_decoder_architecture=_snake_case ,) def UpperCAmelCase ( self : Dict ,_snake_case : Dict ,_snake_case : List[str] ,_snake_case : Optional[Any] ,_snake_case : List[str] ,_snake_case : Any ,_snake_case : str ,_snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : Union[str, Any] = FalconModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : str = model(_snake_case ,attention_mask=_snake_case ) lowercase__ : Union[str, Any] = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self : str ,_snake_case : Any ,_snake_case : Optional[int] ,_snake_case : List[str] ,_snake_case : Tuple ,_snake_case : Dict ,_snake_case : Dict ,_snake_case : Dict ,_snake_case : Any ,_snake_case : Union[str, Any] ,) -> List[str]: """simple docstring""" lowercase__ : str = True lowercase__ : Dict = FalconModel(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Optional[Any] = model( _snake_case ,attention_mask=_snake_case ,encoder_hidden_states=_snake_case ,encoder_attention_mask=_snake_case ,) lowercase__ : Optional[Any] = model( _snake_case ,attention_mask=_snake_case ,encoder_hidden_states=_snake_case ,) lowercase__ : Dict = model(_snake_case ,attention_mask=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self : Dict ,_snake_case : Tuple ,_snake_case : str ,_snake_case : List[Any] ,_snake_case : Optional[Any] ,_snake_case : Union[str, Any] ,_snake_case : str ,_snake_case : Tuple ,_snake_case : Union[str, Any] ,_snake_case : str ,) -> List[str]: """simple docstring""" lowercase__ : List[str] = FalconForCausalLM(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Any = model(_snake_case ,attention_mask=_snake_case ,labels=_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : str ,_snake_case : int ,_snake_case : int ,_snake_case : Tuple ,_snake_case : Optional[int] ,_snake_case : Dict ,_snake_case : Dict ,_snake_case : str ,_snake_case : Union[str, Any] ,) -> List[Any]: """simple docstring""" lowercase__ : Optional[Any] = True lowercase__ : str = True lowercase__ : str = FalconForCausalLM(config=_snake_case ) model.to(_snake_case ) model.eval() # first forward pass lowercase__ : Any = model( _snake_case ,attention_mask=_snake_case ,encoder_hidden_states=_snake_case ,encoder_attention_mask=_snake_case ,use_cache=_snake_case ,) lowercase__ : Union[str, Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase__ : Any = ids_tensor((self.batch_size, 3) ,config.vocab_size ) lowercase__ : List[str] = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and lowercase__ : Union[str, Any] = torch.cat([input_ids, next_tokens] ,dim=-1 ) lowercase__ : str = torch.cat([input_mask, next_mask] ,dim=-1 ) lowercase__ : List[str] = model( _snake_case ,attention_mask=_snake_case ,encoder_hidden_states=_snake_case ,encoder_attention_mask=_snake_case ,output_hidden_states=_snake_case ,)['''hidden_states'''][0] lowercase__ : List[str] = model( _snake_case ,attention_mask=_snake_case ,encoder_hidden_states=_snake_case ,encoder_attention_mask=_snake_case ,past_key_values=_snake_case ,output_hidden_states=_snake_case ,)['''hidden_states'''][0] # select random slice lowercase__ : int = ids_tensor((1,) ,output_from_past.shape[-1] ).item() lowercase__ : str = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase__ : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_snake_case ,_snake_case ,atol=1e-3 ) ) def UpperCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" lowercase__ : str = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : Optional[Any] = config_and_inputs lowercase__ : Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __A ( A_ ,A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[int] = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase : List[Any] = (FalconForCausalLM,) if is_torch_available() else () lowerCAmelCase : int = ( { "feature-extraction": FalconModel, "text-classification": FalconForSequenceClassification, "text-generation": FalconForCausalLM, "question-answering": FalconForQuestionAnswering, "token-classification": FalconForTokenClassification, "zero-shot": FalconForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase : Dict = False lowerCAmelCase : List[str] = False def UpperCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" lowercase__ : Tuple = FalconModelTester(self ) lowercase__ : Any = ConfigTester(self ,config_class=_snake_case ,hidden_size=37 ) def UpperCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self : Any ) -> int: """simple docstring""" lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" lowercase__ , *lowercase__ : Dict = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: lowercase__ : Dict = alibi self.model_tester.create_and_check_model(_snake_case ,*_snake_case ) def UpperCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : str = 3 lowercase__ : Optional[int] = input_dict['''input_ids'''] lowercase__ : Optional[Any] = input_ids.ne(1 ).to(_snake_case ) lowercase__ : List[str] = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) lowercase__ : int = FalconForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : List[Any] = model(_snake_case ,attention_mask=_snake_case ,labels=_snake_case ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase ( self : str ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Union[str, Any] = 3 lowercase__ : str = '''single_label_classification''' lowercase__ : Tuple = input_dict['''input_ids'''] lowercase__ : str = input_ids.ne(1 ).to(_snake_case ) lowercase__ : Optional[int] = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) lowercase__ : Union[str, Any] = FalconForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : List[Any] = model(_snake_case ,attention_mask=_snake_case ,labels=_snake_case ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase ( self : str ) -> str: """simple docstring""" lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Union[str, Any] = input_dict['''input_ids'''] lowercase__ : Union[str, Any] = FalconForCausalLM(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Optional[Any] = model(_snake_case ,use_cache=_snake_case ) lowercase__ : int = input_ids.shape[0] lowercase__ : List[str] = model._convert_to_rw_cache(result.past_key_values ) lowercase__ : List[str] = model._convert_cache_to_standard_format(_snake_case ,_snake_case ) for layer in range(len(_snake_case ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def UpperCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" lowercase__ , lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Optional[int] = 3 lowercase__ : Dict = '''multi_label_classification''' lowercase__ : Optional[int] = input_dict['''input_ids'''] lowercase__ : Dict = input_ids.ne(1 ).to(_snake_case ) lowercase__ : Any = ids_tensor( [self.model_tester.batch_size, config.num_labels] ,self.model_tester.type_sequence_label_size ).to(torch.float ) lowercase__ : Tuple = FalconForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Tuple = model(_snake_case ,attention_mask=_snake_case ,labels=_snake_case ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" for model_class in self.all_generative_model_classes: lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(_snake_case ,'''use_cache''' ): return lowercase__ : Optional[Any] = model_class(_snake_case ).to(_snake_case ) if "use_cache" not in inputs: lowercase__ : Optional[int] = True lowercase__ : List[str] = model(**_snake_case ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return lowercase__ : Tuple = ( getattr(_snake_case ,'''decoder_layers''' ,_snake_case ) or getattr(_snake_case ,'''num_decoder_layers''' ,_snake_case ) or config.num_hidden_layers ) lowercase__ : Optional[int] = getattr(_snake_case ,'''num_kv_heads''' ,config.num_attention_heads ) lowercase__ : Optional[int] = getattr(_snake_case ,'''d_model''' ,config.hidden_size ) lowercase__ : Union[str, Any] = embed_dim // num_attention_heads lowercase__ : Union[str, Any] = outputs['''past_key_values'''] self.assertEqual(len(_snake_case ) ,_snake_case ) lowercase__ , lowercase__ : Union[str, Any] = inputs['''input_ids'''].shape for i in range(_snake_case ): if config.new_decoder_architecture: lowercase__ : Union[str, Any] = config.num_attention_heads elif config.multi_query: lowercase__ : Union[str, Any] = 1 self.assertEqual(len(past_kv[0] ) ,2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape ,(batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape ,(batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class __A ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : Any ) -> Any: """simple docstring""" lowercase__ : Dict = AutoTokenizer.from_pretrained('''Rocketknight1/falcon-rw-1b''' ) lowercase__ : int = FalconForCausalLM.from_pretrained('''Rocketknight1/falcon-rw-1b''' ) model.eval() model.to(_snake_case ) lowercase__ : int = tokenizer('''My favorite food is''' ,return_tensors='''pt''' ).to(_snake_case ) lowercase__ : List[Any] = ( '''My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.''' ) lowercase__ : Dict = model.generate(**_snake_case ,do_sample=_snake_case ,max_new_tokens=19 ) lowercase__ : Optional[int] = tokenizer.batch_decode(_snake_case )[0] self.assertEqual(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: lowercase__ : List[Any] = AutoTokenizer.from_pretrained(_snake_case ) lowercase__ : List[Any] = FalconForCausalLM.from_pretrained(_snake_case ) model.eval() model.to(_snake_case ) lowercase__ : Optional[int] = tokenizer('''My favorite food is''' ,return_tensors='''pt''' ).to(_snake_case ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**_snake_case ,do_sample=_snake_case ,max_new_tokens=4 ) model.generate(**_snake_case ,do_sample=_snake_case ,max_new_tokens=4 ) model.generate(**_snake_case ,num_beams=2 ,max_new_tokens=4 ) @slow def UpperCAmelCase ( self : int ) -> Any: """simple docstring""" with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: lowercase__ : Any = AutoTokenizer.from_pretrained(_snake_case ) lowercase__ : Optional[Any] = FalconForCausalLM.from_pretrained(_snake_case ) model.eval() model.to(device=_snake_case ) lowercase__ : Any = tokenizer('''My favorite food is''' ,return_tensors='''pt''' ).to(_snake_case ) # Test results are the same with and without cache lowercase__ : Dict = model.generate(**_snake_case ,do_sample=_snake_case ,max_new_tokens=20 ,use_cache=_snake_case ) lowercase__ : Tuple = model.generate(**_snake_case ,do_sample=_snake_case ,max_new_tokens=20 ,use_cache=_snake_case ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
16
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' def __init__( self : Dict ,*_snake_case : Any ,**_snake_case : str ) -> None: """simple docstring""" warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' ,_snake_case ,) super().__init__(*_snake_case ,**_snake_case )
16
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {'configuration_xglm': ['XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XGLMConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['XGLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['XGLMTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XGLMForCausalLM', 'XGLMModel', 'XGLMPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'FlaxXGLMForCausalLM', 'FlaxXGLMModel', 'FlaxXGLMPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXGLMForCausalLM', 'TFXGLMModel', 'TFXGLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
16
1
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=A_ ) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = field(default="image-classification" ,metadata={"include_in_asdict_even_if_is_default": True} ) lowerCAmelCase : ClassVar[Features] = Features({"image": Image()} ) lowerCAmelCase : ClassVar[Features] = Features({"labels": ClassLabel} ) lowerCAmelCase : str = "image" lowerCAmelCase : str = "labels" def UpperCAmelCase ( self : List[str] ,_snake_case : str ) -> str: """simple docstring""" if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] ,_snake_case ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) lowercase__ : Union[str, Any] = copy.deepcopy(self ) lowercase__ : List[Any] = self.label_schema.copy() lowercase__ : str = features[self.label_column] lowercase__ : str = label_schema return task_template @property def UpperCAmelCase ( self : List[str] ) -> Dict[str, str]: """simple docstring""" return { self.image_column: "image", self.label_column: "labels", }
16
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class __A ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : Tuple = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Dict = TFAutoModel.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = AutoModel.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : Dict = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : str = TFAutoModelForPreTraining.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = AutoModelForPreTraining.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Any = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = TFAutoModelForCausalLM.from_pretrained(_snake_case ,from_pt=_snake_case ) lowercase__ , lowercase__ : Optional[Any] = TFAutoModelForCausalLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = AutoModelForCausalLM.from_pretrained(_snake_case ,from_tf=_snake_case ) lowercase__ , lowercase__ : Optional[Any] = AutoModelForCausalLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Any ) -> Tuple: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Any = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : str = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(_snake_case ,from_pt=_snake_case ) lowercase__ , lowercase__ : str = TFAutoModelForMaskedLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = AutoModelForMaskedLM.from_pretrained(_snake_case ,from_tf=_snake_case ) lowercase__ , lowercase__ : Any = AutoModelForMaskedLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Union[str, Any] = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained(_snake_case ,from_pt=_snake_case ) lowercase__ , lowercase__ : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ,from_tf=_snake_case ) lowercase__ , lowercase__ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : Tuple = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = TFAutoModelForSequenceClassification.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : List[Any] = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : str = TFAutoModelForQuestionAnswering.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = AutoModelForQuestionAnswering.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : Optional[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) lowercase__ : Union[str, Any] = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) def UpperCAmelCase ( self : int ) -> List[Any]: """simple docstring""" lowercase__ : List[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) lowercase__ : int = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 )
16
1
"""simple docstring""" import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __UpperCAmelCase ( __lowerCamelCase ) -> Any: if is_torch_version('''<''' , '''2.0.0''' ) or not hasattr(__lowerCamelCase , '''_dynamo''' ): return False return isinstance(__lowerCamelCase , torch._dynamo.eval_frame.OptimizedModule ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = True ) -> Dict: lowercase__ : Optional[Any] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) lowercase__ : Any = is_compiled_module(__lowerCamelCase ) if is_compiled: lowercase__ : Dict = model lowercase__ : Tuple = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(__lowerCamelCase , __lowerCamelCase ): lowercase__ : int = model.module if not keep_fpaa_wrapper: lowercase__ : str = getattr(__lowerCamelCase , '''forward''' ) lowercase__ : List[str] = model.__dict__.pop('''_original_forward''' , __lowerCamelCase ) if original_forward is not None: while hasattr(__lowerCamelCase , '''__wrapped__''' ): lowercase__ : List[Any] = forward.__wrapped__ if forward == original_forward: break lowercase__ : Optional[Any] = forward if getattr(__lowerCamelCase , '''_converted_to_transformer_engine''' , __lowerCamelCase ): convert_model(__lowerCamelCase , to_transformer_engine=__lowerCamelCase ) if is_compiled: lowercase__ : Optional[Any] = model lowercase__ : Tuple = compiled_model return model def __UpperCAmelCase ( ) -> str: PartialState().wait_for_everyone() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: if PartialState().distributed_type == DistributedType.TPU: xm.save(__lowerCamelCase , __lowerCamelCase ) elif PartialState().local_process_index == 0: torch.save(__lowerCamelCase , __lowerCamelCase ) @contextmanager def __UpperCAmelCase ( **__lowerCamelCase ) -> Optional[Any]: for key, value in kwargs.items(): lowercase__ : Tuple = str(__lowerCamelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __UpperCAmelCase ( __lowerCamelCase ) -> List[Any]: if not hasattr(__lowerCamelCase , '''__qualname__''' ) and not hasattr(__lowerCamelCase , '''__name__''' ): lowercase__ : Tuple = getattr(__lowerCamelCase , '''__class__''' , __lowerCamelCase ) if hasattr(__lowerCamelCase , '''__qualname__''' ): return obj.__qualname__ if hasattr(__lowerCamelCase , '''__name__''' ): return obj.__name__ return str(__lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str: for key, value in source.items(): if isinstance(__lowerCamelCase , __lowerCamelCase ): lowercase__ : List[str] = destination.setdefault(__lowerCamelCase , {} ) merge_dicts(__lowerCamelCase , __lowerCamelCase ) else: lowercase__ : Any = value return destination def __UpperCAmelCase ( __lowerCamelCase = None ) -> bool: if port is None: lowercase__ : Optional[Any] = 2_95_00 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('''localhost''', port) ) == 0
16
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase = 50 ) -> int: lowercase__ : int = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F'''{solution() = }''')
16
1
"""simple docstring""" import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) lowerCAmelCase_ = '\\n Text data.\n Second line of data.' lowerCAmelCase_ = 'file' @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> Union[str, Any]: lowercase__ : Union[str, Any] = tmp_path_factory.mktemp('''data''' ) / (FILE_PATH + '''.zstd''') lowercase__ : Any = bytes(__lowerCamelCase , '''utf-8''' ) with zstd.open(__lowerCamelCase , '''wb''' ) as f: f.write(__lowerCamelCase ) return path @pytest.fixture def __UpperCAmelCase ( __lowerCamelCase ) -> Tuple: with open(os.path.join(tmpfs.local_root_dir , __lowerCamelCase ) , '''w''' ) as f: f.write(__lowerCamelCase ) return FILE_PATH @pytest.mark.parametrize('''compression_format''' , ['''gzip''', '''xz''', '''zstd'''] ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: lowercase__ : str = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_path} lowercase__ : str = input_paths[compression_format] lowercase__ : Tuple = tmp_path / '''cache''' lowercase__ : Optional[int] = DownloadConfig(cache_dir=__lowerCamelCase , extract_compressed_file=__lowerCamelCase ) lowercase__ : Union[str, Any] = cached_path(__lowerCamelCase , download_config=__lowerCamelCase ) with open(__lowerCamelCase ) as f: lowercase__ : Dict = f.read() with open(__lowerCamelCase ) as f: lowercase__ : int = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('''default_extracted''' , [True, False] ) @pytest.mark.parametrize('''default_cache_dir''' , [True, False] ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: lowercase__ : Any = '''custom_cache''' lowercase__ : Tuple = '''custom_extracted_dir''' lowercase__ : Tuple = tmp_path / '''custom_extracted_path''' if default_extracted: lowercase__ : List[Any] = ('''downloads''' if default_cache_dir else custom_cache_dir, '''extracted''') else: monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_DIR''' , __lowerCamelCase ) monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(__lowerCamelCase ) ) lowercase__ : str = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) lowercase__ : int = xz_file lowercase__ : List[Any] = ( DownloadConfig(extract_compressed_file=__lowerCamelCase ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=__lowerCamelCase ) ) lowercase__ : Union[str, Any] = cached_path(__lowerCamelCase , download_config=__lowerCamelCase ) assert Path(__lowerCamelCase ).parent.parts[-2:] == expected def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: # absolute path lowercase__ : List[Any] = str(Path(__lowerCamelCase ).resolve() ) assert cached_path(__lowerCamelCase ) == text_file # relative path lowercase__ : Union[str, Any] = str(Path(__lowerCamelCase ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(__lowerCamelCase ) == text_file def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: # absolute path lowercase__ : Dict = str(tmp_path.resolve() / '''__missing_file__.txt''' ) with pytest.raises(__lowerCamelCase ): cached_path(__lowerCamelCase ) # relative path lowercase__ : Dict = '''./__missing_file__.txt''' with pytest.raises(__lowerCamelCase ): cached_path(__lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase ) -> int: lowercase__ : List[str] = get_from_cache(f"""tmp://{tmpfs_file}""" ) with open(__lowerCamelCase ) as f: lowercase__ : int = f.read() assert output_file_content == FILE_CONTENT @patch('''datasets.config.HF_DATASETS_OFFLINE''' , __lowerCamelCase ) def __UpperCAmelCase ( ) -> Tuple: with pytest.raises(__lowerCamelCase ): cached_path('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , __lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase ) -> List[Any]: lowercase__ : str = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(__lowerCamelCase ): http_get('''https://huggingface.co''' , temp_file=__lowerCamelCase ) with pytest.raises(__lowerCamelCase ): http_head('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , __lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase ) -> List[str]: lowercase__ : List[str] = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(__lowerCamelCase ): ftp_get('''ftp://huggingface.co''' , temp_file=__lowerCamelCase ) with pytest.raises(__lowerCamelCase ): ftp_head('''ftp://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , __lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase ) -> Union[str, Any]: lowercase__ : List[Any] = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(__lowerCamelCase ): fsspec_get('''s3://huggingface.co''' , temp_file=__lowerCamelCase ) with pytest.raises(__lowerCamelCase ): fsspec_head('''s3://huggingface.co''' )
16
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" debug_launcher(test_script.main ) def UpperCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" debug_launcher(test_ops.main )
16
1
"""simple docstring""" import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def __UpperCAmelCase ( __lowerCamelCase ) -> List[str]: lowercase__ : Optional[int] = FileLock(str(tmpdir / '''foo.lock''' ) ) lowercase__ : List[Any] = FileLock(str(tmpdir / '''foo.lock''' ) ) lowercase__ : int = 0.0_1 with locka.acquire(): with pytest.raises(__lowerCamelCase ): lowercase__ : int = time.time() locka.acquire(__lowerCamelCase ) assert time.time() - _start > timeout def __UpperCAmelCase ( __lowerCamelCase ) -> List[Any]: lowercase__ : Any = '''a''' * 10_00 + '''.lock''' lowercase__ : str = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('''.lock''' ) assert not locka._lock_file.endswith(__lowerCamelCase ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 lowercase__ : Dict = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__lowerCamelCase ): locka.acquire(0 )
16
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) lowerCAmelCase_ = { 'configuration_speecht5': [ 'SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP', 'SpeechT5Config', 'SpeechT5HifiGanConfig', ], 'feature_extraction_speecht5': ['SpeechT5FeatureExtractor'], 'processing_speecht5': ['SpeechT5Processor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['SpeechT5Tokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'SpeechT5ForSpeechToText', 'SpeechT5ForSpeechToSpeech', 'SpeechT5ForTextToSpeech', 'SpeechT5Model', 'SpeechT5PreTrainedModel', 'SpeechT5HifiGan', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
1
"""simple docstring""" import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration lowerCAmelCase_ = { 'tiny.en': 'https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt', 'tiny': 'https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt', 'base.en': 'https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt', 'base': 'https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt', 'small.en': 'https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt', 'small': 'https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt', 'medium.en': 'https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt', 'medium': 'https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt', 'large': 'https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt', 'large-v2': 'https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt', } def __UpperCAmelCase ( __lowerCamelCase ) -> List[Any]: lowercase__ : Dict = ['''layers''', '''blocks'''] for k in ignore_keys: state_dict.pop(__lowerCamelCase , __lowerCamelCase ) lowerCAmelCase_ = { 'blocks': 'layers', 'mlp.0': 'fc1', 'mlp.2': 'fc2', 'mlp_ln': 'final_layer_norm', '.attn.query': '.self_attn.q_proj', '.attn.key': '.self_attn.k_proj', '.attn.value': '.self_attn.v_proj', '.attn_ln': '.self_attn_layer_norm', '.attn.out': '.self_attn.out_proj', '.cross_attn.query': '.encoder_attn.q_proj', '.cross_attn.key': '.encoder_attn.k_proj', '.cross_attn.value': '.encoder_attn.v_proj', '.cross_attn_ln': '.encoder_attn_layer_norm', '.cross_attn.out': '.encoder_attn.out_proj', 'decoder.ln.': 'decoder.layer_norm.', 'encoder.ln.': 'encoder.layer_norm.', 'token_embedding': 'embed_tokens', 'encoder.positional_embedding': 'encoder.embed_positions.weight', 'decoder.positional_embedding': 'decoder.embed_positions.weight', 'ln_post': 'layer_norm', } def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[Any]: lowercase__ : List[str] = list(s_dict.keys() ) for key in keys: lowercase__ : Any = key for k, v in WHISPER_MAPPING.items(): if k in key: lowercase__ : Any = new_key.replace(__lowerCamelCase , __lowerCamelCase ) print(f"""{key} -> {new_key}""" ) lowercase__ : Dict = s_dict.pop(__lowerCamelCase ) return s_dict def __UpperCAmelCase ( __lowerCamelCase ) -> Union[str, Any]: lowercase__ , lowercase__ : Tuple = emb.weight.shape lowercase__ : str = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) lowercase__ : List[str] = emb.weight.data return lin_layer def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> bytes: os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) lowercase__ : Optional[int] = os.path.basename(__lowerCamelCase ) lowercase__ : Dict = url.split('''/''' )[-2] lowercase__ : Any = os.path.join(__lowerCamelCase , __lowerCamelCase ) if os.path.exists(__lowerCamelCase ) and not os.path.isfile(__lowerCamelCase ): raise RuntimeError(f"""{download_target} exists and is not a regular file""" ) if os.path.isfile(__lowerCamelCase ): lowercase__ : List[Any] = open(__lowerCamelCase , '''rb''' ).read() if hashlib.shaaaa(__lowerCamelCase ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(f"""{download_target} exists, but the SHA256 checksum does not match; re-downloading the file""" ) with urllib.request.urlopen(__lowerCamelCase ) as source, open(__lowerCamelCase , '''wb''' ) as output: with tqdm( total=int(source.info().get('''Content-Length''' ) ) , ncols=80 , unit='''iB''' , unit_scale=__lowerCamelCase , unit_divisor=10_24 ) as loop: while True: lowercase__ : List[Any] = source.read(81_92 ) if not buffer: break output.write(__lowerCamelCase ) loop.update(len(__lowerCamelCase ) ) lowercase__ : int = open(__lowerCamelCase , '''rb''' ).read() if hashlib.shaaaa(__lowerCamelCase ).hexdigest() != expected_shaaaa: raise RuntimeError( '''Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.''' ) return model_bytes def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Dict: if ".pt" not in checkpoint_path: lowercase__ : Any = _download(_MODELS[checkpoint_path] ) else: lowercase__ : Optional[Any] = torch.load(__lowerCamelCase , map_location='''cpu''' ) lowercase__ : Tuple = original_checkpoint['''dims'''] lowercase__ : Optional[Any] = original_checkpoint['''model_state_dict'''] lowercase__ : Optional[Any] = state_dict['''decoder.token_embedding.weight'''] remove_ignore_keys_(__lowerCamelCase ) rename_keys(__lowerCamelCase ) lowercase__ : List[Any] = True lowercase__ : Dict = state_dict['''decoder.layers.0.fc1.weight'''].shape[0] lowercase__ : Optional[int] = WhisperConfig( vocab_size=dimensions['''n_vocab'''] , encoder_ffn_dim=__lowerCamelCase , decoder_ffn_dim=__lowerCamelCase , num_mel_bins=dimensions['''n_mels'''] , d_model=dimensions['''n_audio_state'''] , max_target_positions=dimensions['''n_text_ctx'''] , encoder_layers=dimensions['''n_audio_layer'''] , encoder_attention_heads=dimensions['''n_audio_head'''] , decoder_layers=dimensions['''n_text_layer'''] , decoder_attention_heads=dimensions['''n_text_state'''] , max_source_positions=dimensions['''n_audio_ctx'''] , ) lowercase__ : Any = WhisperForConditionalGeneration(__lowerCamelCase ) lowercase__ , lowercase__ : Any = model.model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) if len(__lowerCamelCase ) > 0 and not set(__lowerCamelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' f""" but all the following weights are missing {missing}""" ) if tie_embeds: lowercase__ : int = make_linear_from_emb(model.model.decoder.embed_tokens ) else: lowercase__ : Optional[Any] = proj_out_weights model.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Patht to the downloaded checkpoints') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') lowerCAmelCase_ = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
16
"""simple docstring""" from ..utils import DummyObject, requires_backends class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : List[str] = ["torch", "torchsde"] def __init__( self : Tuple ,*_snake_case : Union[str, Any] ,**_snake_case : Any ) -> Union[str, Any]: """simple docstring""" requires_backends(self ,['''torch''', '''torchsde'''] ) @classmethod def UpperCAmelCase ( cls : List[str] ,*_snake_case : int ,**_snake_case : Union[str, Any] ) -> str: """simple docstring""" requires_backends(cls ,['''torch''', '''torchsde'''] ) @classmethod def UpperCAmelCase ( cls : List[Any] ,*_snake_case : List[Any] ,**_snake_case : List[str] ) -> List[Any]: """simple docstring""" requires_backends(cls ,['''torch''', '''torchsde'''] )
16
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'vocab_file': 'vocab.txt'} lowerCAmelCase_ = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } lowerCAmelCase_ = { 'YituTech/conv-bert-base': 512, 'YituTech/conv-bert-medium-small': 512, 'YituTech/conv-bert-small': 512, } lowerCAmelCase_ = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = VOCAB_FILES_NAMES lowerCAmelCase : str = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : Any = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : Dict = ConvBertTokenizer def __init__( self : Union[str, Any] ,_snake_case : Tuple=None ,_snake_case : Dict=None ,_snake_case : Union[str, Any]=True ,_snake_case : List[str]="[UNK]" ,_snake_case : str="[SEP]" ,_snake_case : str="[PAD]" ,_snake_case : int="[CLS]" ,_snake_case : int="[MASK]" ,_snake_case : Optional[int]=True ,_snake_case : Optional[int]=None ,**_snake_case : List[Any] ,) -> Tuple: """simple docstring""" super().__init__( _snake_case ,tokenizer_file=_snake_case ,do_lower_case=_snake_case ,unk_token=_snake_case ,sep_token=_snake_case ,pad_token=_snake_case ,cls_token=_snake_case ,mask_token=_snake_case ,tokenize_chinese_chars=_snake_case ,strip_accents=_snake_case ,**_snake_case ,) lowercase__ : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' ,_snake_case ) != do_lower_case or normalizer_state.get('''strip_accents''' ,_snake_case ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' ,_snake_case ) != tokenize_chinese_chars ): lowercase__ : int = getattr(_snake_case ,normalizer_state.pop('''type''' ) ) lowercase__ : Optional[Any] = do_lower_case lowercase__ : List[str] = strip_accents lowercase__ : Optional[Any] = tokenize_chinese_chars lowercase__ : List[str] = normalizer_class(**_snake_case ) lowercase__ : Optional[int] = do_lower_case def UpperCAmelCase ( self : int ,_snake_case : Dict ,_snake_case : Dict=None ) -> Tuple: """simple docstring""" lowercase__ : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase ( self : Any ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ : Tuple = [self.sep_token_id] lowercase__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase ( self : Optional[int] ,_snake_case : str ,_snake_case : Optional[str] = None ) -> Tuple[str]: """simple docstring""" lowercase__ : str = self._tokenizer.model.save(_snake_case ,name=_snake_case ) return tuple(_snake_case )
16
"""simple docstring""" import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node lowerCAmelCase_ = 4 lowerCAmelCase_ = 3 class __A ( A_ ): '''simple docstring''' pass def __UpperCAmelCase ( __lowerCamelCase ) -> Dict: for shard in shards: for i in range(__lowerCamelCase ): yield {"i": i, "shard": shard} def __UpperCAmelCase ( ) -> Tuple: lowercase__ : int = int(os.environ['''RANK'''] ) lowercase__ : str = int(os.environ['''WORLD_SIZE'''] ) lowercase__ : List[Any] = ArgumentParser() parser.add_argument('''--streaming''' , type=__lowerCamelCase ) parser.add_argument('''--local_rank''' , type=__lowerCamelCase ) parser.add_argument('''--num_workers''' , type=__lowerCamelCase , default=0 ) lowercase__ : int = parser.parse_args() lowercase__ : Optional[Any] = args.streaming lowercase__ : List[Any] = args.num_workers lowercase__ : Optional[Any] = {'''shards''': [f"""shard_{shard_idx}""" for shard_idx in range(__lowerCamelCase )]} lowercase__ : Dict = IterableDataset.from_generator(__lowerCamelCase , gen_kwargs=__lowerCamelCase ) if not streaming: lowercase__ : int = Dataset.from_list(list(__lowerCamelCase ) ) lowercase__ : int = split_dataset_by_node(__lowerCamelCase , rank=__lowerCamelCase , world_size=__lowerCamelCase ) lowercase__ : Optional[Any] = torch.utils.data.DataLoader(__lowerCamelCase , num_workers=__lowerCamelCase ) lowercase__ : Optional[Any] = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowercase__ : str = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) lowercase__ : str = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
16
1
"""simple docstring""" import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]: # Initialise PyTorch model lowercase__ : List[Any] = RemBertConfig.from_json_file(__lowerCamelCase ) print('''Building PyTorch model from configuration: {}'''.format(str(__lowerCamelCase ) ) ) lowercase__ : Dict = RemBertModel(__lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Save pytorch-model print('''Save PyTorch model to {}'''.format(__lowerCamelCase ) ) torch.save(model.state_dict() , __lowerCamelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase_ = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
16
"""simple docstring""" from ...configuration_utils import PretrainedConfig lowerCAmelCase_ = { 'google/tapas-base-finetuned-sqa': ( 'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json' ), 'google/tapas-base-finetuned-wtq': ( 'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json' ), 'google/tapas-base-finetuned-wikisql-supervised': ( 'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json' ), 'google/tapas-base-finetuned-tabfact': ( 'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json' ), } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = "tapas" def __init__( self : List[Any] ,_snake_case : Dict=30_522 ,_snake_case : Union[str, Any]=768 ,_snake_case : int=12 ,_snake_case : Union[str, Any]=12 ,_snake_case : Union[str, Any]=3_072 ,_snake_case : List[Any]="gelu" ,_snake_case : Optional[int]=0.1 ,_snake_case : Tuple=0.1 ,_snake_case : List[Any]=1_024 ,_snake_case : Any=[3, 256, 256, 2, 256, 256, 10] ,_snake_case : List[Any]=0.02 ,_snake_case : Union[str, Any]=1e-12 ,_snake_case : str=0 ,_snake_case : Any=10.0 ,_snake_case : int=0 ,_snake_case : Optional[Any]=1.0 ,_snake_case : List[str]=None ,_snake_case : Tuple=1.0 ,_snake_case : Tuple=False ,_snake_case : List[Any]=None ,_snake_case : int=1.0 ,_snake_case : List[Any]=1.0 ,_snake_case : Optional[int]=False ,_snake_case : Optional[int]=False ,_snake_case : Optional[int]="ratio" ,_snake_case : Any=None ,_snake_case : Union[str, Any]=None ,_snake_case : List[str]=64 ,_snake_case : Optional[Any]=32 ,_snake_case : Optional[Any]=False ,_snake_case : Optional[int]=True ,_snake_case : Dict=False ,_snake_case : Tuple=False ,_snake_case : int=True ,_snake_case : List[str]=False ,_snake_case : Dict=None ,_snake_case : Optional[int]=None ,**_snake_case : int ,) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=_snake_case ,**_snake_case ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) lowercase__ : Optional[int] = vocab_size lowercase__ : List[str] = hidden_size lowercase__ : Any = num_hidden_layers lowercase__ : Optional[Any] = num_attention_heads lowercase__ : Optional[int] = hidden_act lowercase__ : List[Any] = intermediate_size lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : Dict = attention_probs_dropout_prob lowercase__ : str = max_position_embeddings lowercase__ : Dict = type_vocab_sizes lowercase__ : Optional[Any] = initializer_range lowercase__ : Dict = layer_norm_eps # Fine-tuning task hyperparameters lowercase__ : Any = positive_label_weight lowercase__ : int = num_aggregation_labels lowercase__ : List[str] = aggregation_loss_weight lowercase__ : Optional[int] = use_answer_as_supervision lowercase__ : Optional[Any] = answer_loss_importance lowercase__ : Union[str, Any] = use_normalized_answer_loss lowercase__ : str = huber_loss_delta lowercase__ : str = temperature lowercase__ : int = aggregation_temperature lowercase__ : List[Any] = use_gumbel_for_cells lowercase__ : Tuple = use_gumbel_for_aggregation lowercase__ : Union[str, Any] = average_approximation_function lowercase__ : Union[str, Any] = cell_selection_preference lowercase__ : Any = answer_loss_cutoff lowercase__ : List[Any] = max_num_rows lowercase__ : str = max_num_columns lowercase__ : int = average_logits_per_cell lowercase__ : str = select_one_column lowercase__ : str = allow_empty_column_selection lowercase__ : Any = init_cell_selection_weights_to_zero lowercase__ : Optional[int] = reset_position_index_per_cell lowercase__ : Union[str, Any] = disable_per_token_loss # Aggregation hyperparameters lowercase__ : Optional[Any] = aggregation_labels lowercase__ : List[Any] = no_aggregation_label_index if isinstance(self.aggregation_labels ,_snake_case ): lowercase__ : Union[str, Any] = {int(_snake_case ): v for k, v in aggregation_labels.items()}
16
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowerCAmelCase_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['MLukeTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
"""simple docstring""" import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : '''simple docstring''' def __init__( self : Optional[int] ,_snake_case : Optional[Any] ,_snake_case : Union[str, Any]=13 ,_snake_case : Any=32 ,_snake_case : int=2 ,_snake_case : str=3 ,_snake_case : Optional[Any]=16 ,_snake_case : List[Any]=[1, 2, 1] ,_snake_case : Dict=[2, 2, 4] ,_snake_case : List[Any]=2 ,_snake_case : Any=2.0 ,_snake_case : Optional[int]=True ,_snake_case : Optional[int]=0.0 ,_snake_case : Union[str, Any]=0.0 ,_snake_case : str=0.1 ,_snake_case : List[Any]="gelu" ,_snake_case : Tuple=False ,_snake_case : Optional[int]=True ,_snake_case : str=0.02 ,_snake_case : List[str]=1e-5 ,_snake_case : int=True ,_snake_case : Dict=None ,_snake_case : str=True ,_snake_case : List[Any]=10 ,_snake_case : Any=8 ,) -> Union[str, Any]: """simple docstring""" lowercase__ : Dict = parent lowercase__ : Any = batch_size lowercase__ : Union[str, Any] = image_size lowercase__ : Dict = patch_size lowercase__ : int = num_channels lowercase__ : Any = embed_dim lowercase__ : int = depths lowercase__ : Dict = num_heads lowercase__ : List[Any] = window_size lowercase__ : int = mlp_ratio lowercase__ : Optional[int] = qkv_bias lowercase__ : str = hidden_dropout_prob lowercase__ : List[Any] = attention_probs_dropout_prob lowercase__ : Dict = drop_path_rate lowercase__ : int = hidden_act lowercase__ : Tuple = use_absolute_embeddings lowercase__ : Tuple = patch_norm lowercase__ : Tuple = layer_norm_eps lowercase__ : Optional[Any] = initializer_range lowercase__ : int = is_training lowercase__ : Optional[int] = scope lowercase__ : str = use_labels lowercase__ : Dict = type_sequence_label_size lowercase__ : Union[str, Any] = encoder_stride def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Optional[Any] = None if self.use_labels: lowercase__ : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" return SwinvaConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def UpperCAmelCase ( self : str ,_snake_case : Dict ,_snake_case : List[str] ,_snake_case : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ : Any = SwinvaModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : str = model(_snake_case ) lowercase__ : List[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase__ : Tuple = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : List[str] ,_snake_case : Optional[Any] ,_snake_case : int ) -> Any: """simple docstring""" lowercase__ : Union[str, Any] = SwinvaForMaskedImageModeling(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Tuple = model(_snake_case ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase__ : Optional[int] = 1 lowercase__ : List[Any] = SwinvaForMaskedImageModeling(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ : str = model(_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase ( self : str ,_snake_case : str ,_snake_case : str ,_snake_case : Tuple ) -> Any: """simple docstring""" lowercase__ : Tuple = self.type_sequence_label_size lowercase__ : Dict = SwinvaForImageClassification(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : str = model(_snake_case ,labels=_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self : Dict ) -> Dict: """simple docstring""" lowercase__ : Optional[int] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = config_and_inputs lowercase__ : List[str] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) lowerCAmelCase : Optional[int] = ( {"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification} if is_torch_available() else {} ) lowerCAmelCase : List[Any] = False lowerCAmelCase : Dict = False lowerCAmelCase : List[Any] = False lowerCAmelCase : Any = False def UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[Any] = SwinvaModelTester(self ) lowercase__ : List[str] = ConfigTester(self ,config_class=_snake_case ,embed_dim=37 ) def UpperCAmelCase ( self : int ) -> Any: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self : str ) -> List[Any]: """simple docstring""" lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) @unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''' ) def UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason='''Swinv2 does not use inputs_embeds''' ) def UpperCAmelCase ( self : List[str] ) -> str: """simple docstring""" pass def UpperCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[Any] = model_class(_snake_case ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) lowercase__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_snake_case ,nn.Linear ) ) def UpperCAmelCase ( self : int ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : str = model_class(_snake_case ) lowercase__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[Any] = [*signature.parameters.keys()] lowercase__ : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_snake_case ) def UpperCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Tuple = True for model_class in self.all_model_classes: lowercase__ : Optional[int] = True lowercase__ : str = False lowercase__ : Union[str, Any] = True lowercase__ : Optional[Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : str = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : Dict = outputs.attentions lowercase__ : Any = len(self.model_tester.depths ) self.assertEqual(len(_snake_case ) ,_snake_case ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ : List[Any] = True lowercase__ : Optional[Any] = config.window_size**2 lowercase__ : Any = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : List[str] = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : Optional[Any] = outputs.attentions self.assertEqual(len(_snake_case ) ,_snake_case ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) lowercase__ : Optional[Any] = len(_snake_case ) # Check attention is always last and order is fine lowercase__ : Optional[int] = True lowercase__ : Tuple = True lowercase__ : Optional[Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : Optional[Any] = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) if hasattr(self.model_tester ,'''num_hidden_states_types''' ): lowercase__ : int = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states lowercase__ : List[str] = 2 self.assertEqual(out_len + added_hidden_states ,len(_snake_case ) ) lowercase__ : Optional[int] = outputs.attentions self.assertEqual(len(_snake_case ) ,_snake_case ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) def UpperCAmelCase ( self : List[str] ,_snake_case : int ,_snake_case : List[str] ,_snake_case : Optional[int] ,_snake_case : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : List[Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : int = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : Optional[int] = outputs.hidden_states lowercase__ : List[Any] = getattr( self.model_tester ,'''expected_num_hidden_layers''' ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_snake_case ) ,_snake_case ) # Swinv2 has a different seq_length lowercase__ : Dict = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) lowercase__ : Tuple = outputs.reshaped_hidden_states self.assertEqual(len(_snake_case ) ,_snake_case ) lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[str] = reshaped_hidden_states[0].shape lowercase__ : int = ( reshaped_hidden_states[0].view(_snake_case ,_snake_case ,height * width ).permute(0 ,2 ,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def UpperCAmelCase ( self : Tuple ) -> int: """simple docstring""" lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowercase__ : List[str] = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,_snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : str = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,_snake_case ) def UpperCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = 3 lowercase__ : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase__ : Optional[int] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : Dict = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase__ : Dict = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowercase__ : str = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Dict = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,(padded_height, padded_width) ) def UpperCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_snake_case ) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Union[str, Any] = SwinvaModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Tuple = _config_zero_init(_snake_case ) for model_class in self.all_model_classes: lowercase__ : Optional[int] = model_class(config=_snake_case ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" ,) @require_vision @require_torch class __A ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" return ( AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self : Any ) -> List[str]: """simple docstring""" lowercase__ : str = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ).to( _snake_case ) lowercase__ : Union[str, Any] = self.default_image_processor lowercase__ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowercase__ : Dict = image_processor(images=_snake_case ,return_tensors='''pt''' ).to(_snake_case ) # forward pass with torch.no_grad(): lowercase__ : Optional[Any] = model(**_snake_case ) # verify the logits lowercase__ : str = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape ,_snake_case ) lowercase__ : Dict = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_snake_case ,atol=1e-4 ) )
16
1
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class __A : '''simple docstring''' def __init__( self : Dict ,_snake_case : Union[str, Any]=2 ,_snake_case : str=3 ,_snake_case : Optional[Any]=64 ,_snake_case : Optional[int]=None ) -> int: """simple docstring""" lowercase__ : Any = np.random.default_rng(_snake_case ) lowercase__ : str = length lowercase__ : List[str] = rng.normal(size=(length,) ).astype(np.floataa ) lowercase__ : Dict = a * self.x + b + rng.normal(scale=0.1 ,size=(length,) ).astype(np.floataa ) def __len__( self : str ) -> int: """simple docstring""" return self.length def __getitem__( self : Tuple ,_snake_case : Tuple ) -> List[Any]: """simple docstring""" return {"x": self.x[i], "y": self.y[i]} class __A ( torch.nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : Tuple=0 ,_snake_case : Optional[Any]=0 ,_snake_case : Optional[int]=False ) -> Optional[Any]: """simple docstring""" super().__init__() lowercase__ : int = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowercase__ : int = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowercase__ : Tuple = True def UpperCAmelCase ( self : Dict ,_snake_case : Tuple=None ) -> str: """simple docstring""" if self.first_batch: print(f"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) lowercase__ : Any = False return x * self.a[0] + self.b[0] class __A ( torch.nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ,_snake_case : List[Any]=0 ,_snake_case : Optional[Any]=0 ,_snake_case : Optional[Any]=False ) -> Any: """simple docstring""" super().__init__() lowercase__ : int = torch.nn.Parameter(torch.tensor(_snake_case ).float() ) lowercase__ : Tuple = torch.nn.Parameter(torch.tensor(_snake_case ).float() ) lowercase__ : Any = True def UpperCAmelCase ( self : int ,_snake_case : Optional[Any]=None ) -> Tuple: """simple docstring""" if self.first_batch: print(f"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) lowercase__ : List[str] = False return x * self.a + self.b def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = 16 ) -> Optional[Any]: from datasets import load_dataset from transformers import AutoTokenizer lowercase__ : List[str] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowercase__ : Tuple = {'''train''': '''tests/test_samples/MRPC/train.csv''', '''validation''': '''tests/test_samples/MRPC/dev.csv'''} lowercase__ : str = load_dataset('''csv''' , data_files=__lowerCamelCase ) lowercase__ : Union[str, Any] = datasets['''train'''].unique('''label''' ) lowercase__ : List[Any] = {v: i for i, v in enumerate(__lowerCamelCase )} def tokenize_function(__lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) lowercase__ : int = tokenizer( examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCamelCase , max_length=__lowerCamelCase , padding='''max_length''' ) if "label" in examples: lowercase__ : str = [label_to_id[l] for l in examples['''label''']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowercase__ : Any = datasets.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=['''sentence1''', '''sentence2''', '''label'''] , ) def collate_fn(__lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__lowerCamelCase , padding='''max_length''' , max_length=1_28 , return_tensors='''pt''' ) return tokenizer.pad(__lowerCamelCase , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. lowercase__ : int = DataLoader(tokenized_datasets['''train'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=2 ) lowercase__ : Optional[Any] = DataLoader(tokenized_datasets['''validation'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=1 ) return train_dataloader, eval_dataloader
16
"""simple docstring""" import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCAmelCase_ = version.parse(importlib_metadata.version('nltk')) if NLTK_VERSION >= version.Version('3.6.4'): from nltk import word_tokenize lowerCAmelCase_ = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n' lowerCAmelCase_ = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n' lowerCAmelCase_ = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''string''' ,id='''sequence''' ), '''references''': datasets.Value('''string''' ,id='''sequence''' ), } ) ,codebase_urls=['''https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'''] ,reference_urls=[ '''https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score''', '''https://en.wikipedia.org/wiki/METEOR''', ] ,) def UpperCAmelCase ( self : str ,_snake_case : Dict ) -> Dict: """simple docstring""" import nltk nltk.download('''wordnet''' ) if NLTK_VERSION >= version.Version('''3.6.5''' ): nltk.download('''punkt''' ) if NLTK_VERSION >= version.Version('''3.6.6''' ): nltk.download('''omw-1.4''' ) def UpperCAmelCase ( self : Dict ,_snake_case : Dict ,_snake_case : List[str] ,_snake_case : Tuple=0.9 ,_snake_case : Optional[int]=3 ,_snake_case : Union[str, Any]=0.5 ) -> List[str]: """simple docstring""" if NLTK_VERSION >= version.Version('''3.6.5''' ): lowercase__ : int = [ meteor_score.single_meteor_score( word_tokenize(_snake_case ) ,word_tokenize(_snake_case ) ,alpha=_snake_case ,beta=_snake_case ,gamma=_snake_case ) for ref, pred in zip(_snake_case ,_snake_case ) ] else: lowercase__ : Tuple = [ meteor_score.single_meteor_score(_snake_case ,_snake_case ,alpha=_snake_case ,beta=_snake_case ,gamma=_snake_case ) for ref, pred in zip(_snake_case ,_snake_case ) ] return {"meteor": np.mean(_snake_case )}
16
1
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class __A ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : int ) -> Any: """simple docstring""" lowercase__ : Tuple = AutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' ,return_dict=_snake_case ).to(_snake_case ) lowercase__ : int = AutoTokenizer.from_pretrained('''google/mt5-small''' ) lowercase__ : Optional[Any] = tokenizer('''Hello there''' ,return_tensors='''pt''' ).input_ids lowercase__ : List[Any] = tokenizer('''Hi I am''' ,return_tensors='''pt''' ).input_ids lowercase__ : Optional[Any] = model(input_ids.to(_snake_case ) ,labels=labels.to(_snake_case ) ).loss lowercase__ : Tuple = -(labels.shape[-1] * loss.item()) lowercase__ : List[str] = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
16
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = '▁' lowerCAmelCase_ = {'vocab_file': 'sentencepiece.bpe.model'} lowerCAmelCase_ = { 'vocab_file': { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model', } } lowerCAmelCase_ = { 'facebook/xglm-564M': 2_048, } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[Any] = VOCAB_FILES_NAMES lowerCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : int = ["input_ids", "attention_mask"] def __init__( self : int ,_snake_case : Dict ,_snake_case : Dict="<s>" ,_snake_case : Dict="</s>" ,_snake_case : str="</s>" ,_snake_case : Optional[Any]="<s>" ,_snake_case : Optional[Any]="<unk>" ,_snake_case : Optional[int]="<pad>" ,_snake_case : Optional[Dict[str, Any]] = None ,**_snake_case : str ,) -> None: """simple docstring""" lowercase__ : Any = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer lowercase__ : Any = 7 lowercase__ : Optional[int] = [f"""<madeupword{i}>""" for i in range(self.num_madeup_words )] lowercase__ : Dict = kwargs.get('''additional_special_tokens''' ,[] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=_snake_case ,eos_token=_snake_case ,unk_token=_snake_case ,sep_token=_snake_case ,cls_token=_snake_case ,pad_token=_snake_case ,sp_model_kwargs=self.sp_model_kwargs ,**_snake_case ,) lowercase__ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_snake_case ) ) lowercase__ : str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase__ : Optional[int] = 1 # Mimic fairseq token-to-id alignment for the first 4 token lowercase__ : Optional[int] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} lowercase__ : List[str] = len(self.sp_model ) lowercase__ : Tuple = {f"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(_snake_case ) lowercase__ : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : int ) -> Optional[int]: """simple docstring""" lowercase__ : List[Any] = self.__dict__.copy() lowercase__ : Optional[int] = None lowercase__ : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self : Dict ,_snake_case : List[str] ) -> Any: """simple docstring""" lowercase__ : int = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): lowercase__ : Dict = {} lowercase__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCAmelCase ( self : Any ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.sep_token_id] + token_ids_a lowercase__ : Optional[Any] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def UpperCAmelCase ( self : Any ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ,_snake_case : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case ,token_ids_a=_snake_case ,already_has_special_tokens=_snake_case ) if token_ids_a is None: return [1] + ([0] * len(_snake_case )) return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ : List[Any] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def UpperCAmelCase ( self : str ) -> Tuple: """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ : Union[str, Any] = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self : List[Any] ,_snake_case : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(_snake_case ,out_type=_snake_case ) def UpperCAmelCase ( self : int ,_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase__ : Tuple = self.sp_model.PieceToId(_snake_case ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase ( self : Any ,_snake_case : List[str] ) -> Any: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase ( self : Tuple ,_snake_case : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = ''''''.join(_snake_case ).replace(_snake_case ,''' ''' ).strip() return out_string def UpperCAmelCase ( self : Any ,_snake_case : str ,_snake_case : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_snake_case ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ : Any = os.path.join( _snake_case ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case ,'''wb''' ) as fi: lowercase__ : Dict = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,)
16
1
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase ) -> int: lowercase__ : Union[str, Any] = hex_num.strip() if not hex_num: raise ValueError('''No value was passed to the function''' ) lowercase__ : str = hex_num[0] == '''-''' if is_negative: lowercase__ : Union[str, Any] = hex_num[1:] try: lowercase__ : Tuple = int(__lowerCamelCase , 16 ) except ValueError: raise ValueError('''Invalid value was passed to the function''' ) lowercase__ : Union[str, Any] = '''''' while int_num > 0: lowercase__ : Any = str(int_num % 2 ) + bin_str int_num >>= 1 return int(('''-''' + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
16
"""simple docstring""" import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = True ) -> Union[str, Any]: print(f"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 1_28: if name[-1] == "S": lowercase__ : str = timm.create_model('''levit_128s''' , pretrained=__lowerCamelCase ) else: lowercase__ : Tuple = timm.create_model('''levit_128''' , pretrained=__lowerCamelCase ) if hidden_sizes == 1_92: lowercase__ : Union[str, Any] = timm.create_model('''levit_192''' , pretrained=__lowerCamelCase ) if hidden_sizes == 2_56: lowercase__ : str = timm.create_model('''levit_256''' , pretrained=__lowerCamelCase ) if hidden_sizes == 3_84: lowercase__ : str = timm.create_model('''levit_384''' , pretrained=__lowerCamelCase ) from_model.eval() lowercase__ : Optional[int] = LevitForImageClassificationWithTeacher(__lowerCamelCase ).eval() lowercase__ : str = OrderedDict() lowercase__ : int = from_model.state_dict() lowercase__ : Dict = list(from_model.state_dict().keys() ) lowercase__ : Any = list(our_model.state_dict().keys() ) print(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) for i in range(len(__lowerCamelCase ) ): lowercase__ : str = weights[og_keys[i]] our_model.load_state_dict(__lowerCamelCase ) lowercase__ : Optional[int] = torch.randn((2, 3, 2_24, 2_24) ) lowercase__ : Optional[int] = from_model(__lowerCamelCase ) lowercase__ : List[Any] = our_model(__lowerCamelCase ).logits assert torch.allclose(__lowerCamelCase , __lowerCamelCase ), "The model logits don't match the original one." lowercase__ : Any = name print(__lowerCamelCase ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) lowercase__ : int = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f"""Pushed {checkpoint_name}""" ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = True ) -> List[Any]: lowercase__ : Any = '''imagenet-1k-id2label.json''' lowercase__ : Tuple = 10_00 lowercase__ : Dict = (1, num_labels) lowercase__ : List[str] = '''huggingface/label-files''' lowercase__ : str = num_labels lowercase__ : List[Any] = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ : Union[str, Any] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : Union[str, Any] = idalabel lowercase__ : Optional[int] = {v: k for k, v in idalabel.items()} lowercase__ : List[Any] = partial(__lowerCamelCase , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase ) lowercase__ : Tuple = { '''levit-128S''': 1_28, '''levit-128''': 1_28, '''levit-192''': 1_92, '''levit-256''': 2_56, '''levit-384''': 3_84, } lowercase__ : Any = { '''levit-128S''': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-128''': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-192''': ImageNetPreTrainedConfig( hidden_sizes=[1_92, 2_88, 3_84] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-256''': ImageNetPreTrainedConfig( hidden_sizes=[2_56, 3_84, 5_12] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-384''': ImageNetPreTrainedConfig( hidden_sizes=[3_84, 5_12, 7_68] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , __lowerCamelCase , names_to_config[model_name] , __lowerCamelCase , __lowerCamelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return config, expected_shape if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
16
1
"""simple docstring""" lowerCAmelCase_ = [ 'Audio', 'Array2D', 'Array3D', 'Array4D', 'Array5D', 'ClassLabel', 'Features', 'Sequence', 'Value', 'Image', 'Translation', 'TranslationVariableLanguages', ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
16
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __A : '''simple docstring''' lowerCAmelCase : List[str] lowerCAmelCase : Optional[str] = None # Automatically constructed lowerCAmelCase : ClassVar[str] = "dict" lowerCAmelCase : ClassVar[Any] = None lowerCAmelCase : str = field(default="Translation" ,init=A_ ,repr=A_ ) def __call__( self : List[str] ) -> Any: """simple docstring""" return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def UpperCAmelCase ( self : List[str] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class __A : '''simple docstring''' lowerCAmelCase : Optional[List] = None lowerCAmelCase : Optional[int] = None lowerCAmelCase : Optional[str] = None # Automatically constructed lowerCAmelCase : ClassVar[str] = "dict" lowerCAmelCase : ClassVar[Any] = None lowerCAmelCase : str = field(default="TranslationVariableLanguages" ,init=A_ ,repr=A_ ) def UpperCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[int] = sorted(set(self.languages ) ) if self.languages else None lowercase__ : Dict = len(self.languages ) if self.languages else None def __call__( self : List[Any] ) -> List[Any]: """simple docstring""" return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def UpperCAmelCase ( self : Dict ,_snake_case : Tuple ) -> int: """simple docstring""" lowercase__ : List[Any] = set(self.languages ) if self.languages and set(_snake_case ) - lang_set: raise ValueError( f"""Some languages in example ({", ".join(sorted(set(_snake_case ) - lang_set ) )}) are not in valid set ({", ".join(_snake_case )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. lowercase__ : str = [] for lang, text in translation_dict.items(): if isinstance(_snake_case ,_snake_case ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. lowercase__ , lowercase__ : Optional[Any] = zip(*sorted(_snake_case ) ) return {"language": languages, "translation": translations} def UpperCAmelCase ( self : List[Any] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
16
1
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[Any]: print('''\nThe shortest path matrix using Floyd Warshall algorithm\n''' ) for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): if dist[i][j] != float('''inf''' ): print(int(dist[i][j] ) , end='''\t''' ) else: print('''INF''' , end='''\t''' ) print() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : str = [[float('''inf''' ) for _ in range(__lowerCamelCase )] for _ in range(__lowerCamelCase )] for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): lowercase__ : List[str] = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(__lowerCamelCase ): # looping through rows of graph array for i in range(__lowerCamelCase ): # looping through columns of graph array for j in range(__lowerCamelCase ): if ( dist[i][k] != float('''inf''' ) and dist[k][j] != float('''inf''' ) and dist[i][k] + dist[k][j] < dist[i][j] ): lowercase__ : str = dist[i][k] + dist[k][j] _print_dist(__lowerCamelCase , __lowerCamelCase ) return dist, v if __name__ == "__main__": lowerCAmelCase_ = int(input('Enter number of vertices: ')) lowerCAmelCase_ = int(input('Enter number of edges: ')) lowerCAmelCase_ = [[float('inf') for i in range(v)] for j in range(v)] for i in range(v): lowerCAmelCase_ = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('\nEdge ', i + 1) lowerCAmelCase_ = int(input('Enter source:')) lowerCAmelCase_ = int(input('Enter destination:')) lowerCAmelCase_ = float(input('Enter weight:')) lowerCAmelCase_ = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
16
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase_ = 16 lowerCAmelCase_ = 32 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = 16 ) -> Optional[Any]: lowercase__ : Optional[Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowercase__ : int = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) lowercase__ : str = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCamelCase , max_length=__lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ : str = datasets.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : Union[str, Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ : List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ : Optional[int] = 16 elif accelerator.mixed_precision != "no": lowercase__ : List[Any] = 8 else: lowercase__ : int = None return tokenizer.pad( __lowerCamelCase , padding='''longest''' , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. lowercase__ : List[Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) lowercase__ : str = DataLoader( tokenized_datasets['''validation'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase_ = mocked_dataloaders # noqa: F811 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __lowerCamelCase ) == "1": lowercase__ : List[Any] = 2 # Initialize accelerator lowercase__ : Optional[int] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : str = config['''lr'''] lowercase__ : str = int(config['''num_epochs'''] ) lowercase__ : Optional[int] = int(config['''seed'''] ) lowercase__ : Tuple = int(config['''batch_size'''] ) lowercase__ : List[Any] = evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__lowerCamelCase ) def inner_training_loop(__lowerCamelCase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : List[str] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ : Tuple = model.to(accelerator.device ) # Instantiate optimizer lowercase__ : List[str] = AdamW(params=model.parameters() , lr=__lowerCamelCase ) lowercase__ , lowercase__ : List[Any] = get_dataloaders(__lowerCamelCase , __lowerCamelCase ) # Instantiate scheduler lowercase__ : Optional[int] = get_linear_schedule_with_warmup( optimizer=__lowerCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__lowerCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Optional[int] = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Now we train the model for epoch in range(__lowerCamelCase ): model.train() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase__ : Dict = model(**__lowerCamelCase ) lowercase__ : List[Any] = outputs.loss accelerator.backward(__lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ : Tuple = model(**__lowerCamelCase ) lowercase__ : Any = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ : int = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__lowerCamelCase , references=__lowerCamelCase , ) lowercase__ : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __lowerCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def __UpperCAmelCase ( ) -> Dict: lowercase__ : Optional[int] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__lowerCamelCase , default=__lowerCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowercase__ : int = parser.parse_args() lowercase__ : Union[str, Any] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
16
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { 'configuration_xlm_roberta_xl': [ 'XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaXLConfig', 'XLMRobertaXLOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaXLForCausalLM', 'XLMRobertaXLForMaskedLM', 'XLMRobertaXLForMultipleChoice', 'XLMRobertaXLForQuestionAnswering', 'XLMRobertaXLForSequenceClassification', 'XLMRobertaXLForTokenClassification', 'XLMRobertaXLModel', 'XLMRobertaXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
16
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __UpperCAmelCase ( __lowerCamelCase ) -> Any: lowercase__ : Optional[int] = [] embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""", f"""stage{idx}.patch_embed.proj.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""", f"""stage{idx}.patch_embed.proj.bias""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""", f"""stage{idx}.patch_embed.norm.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""", f"""stage{idx}.patch_embed.norm.bias""", ) ) return embed def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Dict: lowercase__ : str = [] attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj.bias""", ) ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", f"""stage{idx}.blocks.{cnt}.norm1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", f"""stage{idx}.blocks.{cnt}.norm1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", f"""stage{idx}.blocks.{cnt}.norm2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", f"""stage{idx}.blocks.{cnt}.norm2.bias""") ) return attention_weights def __UpperCAmelCase ( __lowerCamelCase ) -> Tuple: lowercase__ : List[str] = [] token.append((f"""cvt.encoder.stages.{idx}.cls_token""", '''stage2.cls_token''') ) return token def __UpperCAmelCase ( ) -> Optional[int]: lowercase__ : List[str] = [] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: lowercase__ : List[Any] = '''imagenet-1k-id2label.json''' lowercase__ : Optional[Any] = 10_00 lowercase__ : Optional[Any] = '''huggingface/label-files''' lowercase__ : Dict = num_labels lowercase__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) ) , '''r''' ) ) lowercase__ : int = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = idalabel lowercase__ : str = {v: k for k, v in idalabel.items()} lowercase__ : Any = CvtConfig(num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13": lowercase__ : int = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21": lowercase__ : int = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowercase__ : List[Any] = [2, 2, 20] lowercase__ : Any = [3, 12, 16] lowercase__ : Tuple = [1_92, 7_68, 10_24] lowercase__ : List[Any] = CvtForImageClassification(__lowerCamelCase ) lowercase__ : str = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) lowercase__ : List[str] = image_size lowercase__ : Union[str, Any] = torch.load(__lowerCamelCase , map_location=torch.device('''cpu''' ) ) lowercase__ : int = OrderedDict() lowercase__ : List[Any] = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowercase__ : Any = list_of_state_dict + cls_token(__lowerCamelCase ) lowercase__ : Any = list_of_state_dict + embeddings(__lowerCamelCase ) for cnt in range(config.depth[idx] ): lowercase__ : Tuple = list_of_state_dict + attention(__lowerCamelCase , __lowerCamelCase ) lowercase__ : List[Any] = list_of_state_dict + final() for gg in list_of_state_dict: print(__lowerCamelCase ) for i in range(len(__lowerCamelCase ) ): lowercase__ : Optional[Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) image_processor.save_pretrained(__lowerCamelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=R'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCAmelCase_ = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
16
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' def __init__( self : Any ,*_snake_case : int ,**_snake_case : str ) -> None: """simple docstring""" warnings.warn( '''The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PoolFormerImageProcessor instead.''' ,_snake_case ,) super().__init__(*_snake_case ,**_snake_case )
16
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str: if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError('''iterations must be defined as integers''' ) if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not number >= 1: raise ValueError( '''starting number must be and integer and be more than 0''' ) if not iterations >= 1: raise ValueError('''Iterations must be done more than 0 times to play FizzBuzz''' ) lowercase__ : Tuple = '''''' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(__lowerCamelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
16
1
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase ) -> int: if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError('''Input value must be an \'int\' type''' ) lowercase__ : List[str] = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
16
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : '''simple docstring''' def __init__( self : str ,_snake_case : List[Any] ,_snake_case : Optional[int]=3 ,_snake_case : Optional[int]=32 ,_snake_case : Union[str, Any]=3 ,_snake_case : int=10 ,_snake_case : List[str]=[10, 20, 30, 40] ,_snake_case : Any=[1, 1, 2, 1] ,_snake_case : int=True ,_snake_case : Optional[Any]=True ,_snake_case : Union[str, Any]="relu" ,_snake_case : Dict=3 ,_snake_case : Any=None ,) -> str: """simple docstring""" lowercase__ : int = parent lowercase__ : Optional[Any] = batch_size lowercase__ : Optional[Any] = image_size lowercase__ : Optional[Any] = num_channels lowercase__ : Optional[Any] = embeddings_size lowercase__ : Optional[Any] = hidden_sizes lowercase__ : str = depths lowercase__ : Tuple = is_training lowercase__ : List[Any] = use_labels lowercase__ : Union[str, Any] = hidden_act lowercase__ : Union[str, Any] = num_labels lowercase__ : Tuple = scope lowercase__ : Optional[Any] = len(_snake_case ) def UpperCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Tuple = None if self.use_labels: lowercase__ : Dict = ids_tensor([self.batch_size] ,self.num_labels ) lowercase__ : int = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" return ResNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def UpperCAmelCase ( self : List[str] ,_snake_case : Optional[int] ,_snake_case : int ,_snake_case : Tuple ) -> List[Any]: """simple docstring""" lowercase__ : Optional[int] = TFResNetModel(config=_snake_case ) lowercase__ : List[str] = model(_snake_case ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def UpperCAmelCase ( self : Optional[int] ,_snake_case : Optional[Any] ,_snake_case : int ,_snake_case : Any ) -> Tuple: """simple docstring""" lowercase__ : Tuple = self.num_labels lowercase__ : Union[str, Any] = TFResNetForImageClassification(_snake_case ) lowercase__ : List[str] = model(_snake_case ,labels=_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCAmelCase ( self : Tuple ) -> str: """simple docstring""" lowercase__ : Dict = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = config_and_inputs lowercase__ : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[int] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () lowerCAmelCase : Any = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) lowerCAmelCase : List[Any] = False lowerCAmelCase : List[Any] = False lowerCAmelCase : int = False lowerCAmelCase : Union[str, Any] = False lowerCAmelCase : List[str] = False def UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = TFResNetModelTester(self ) lowercase__ : int = ConfigTester(self ,config_class=_snake_case ,has_text_modality=_snake_case ) def UpperCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" return @unittest.skip(reason='''ResNet does not use inputs_embeds''' ) def UpperCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass @unittest.skip(reason='''ResNet does not support input and output embeddings''' ) def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" pass def UpperCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : str = model_class(_snake_case ) lowercase__ : Dict = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[int] = [*signature.parameters.keys()] lowercase__ : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_snake_case ) def UpperCAmelCase ( self : Tuple ) -> Any: """simple docstring""" lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" def check_hidden_states_output(_snake_case : Optional[int] ,_snake_case : List[str] ,_snake_case : Optional[Any] ): lowercase__ : str = model_class(_snake_case ) lowercase__ : Union[str, Any] = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__ : Tuple = self.model_tester.num_stages self.assertEqual(len(_snake_case ) ,expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase__ : List[Any] = layer_type lowercase__ : Dict = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Dict = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def UpperCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Optional[Any] = TFResNetModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def __UpperCAmelCase ( ) -> Dict: lowercase__ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class __A ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self : str ) -> Any: """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ : Tuple = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowercase__ : Any = self.default_image_processor lowercase__ : int = prepare_img() lowercase__ : Tuple = image_processor(images=_snake_case ,return_tensors='''tf''' ) # forward pass lowercase__ : Dict = model(**_snake_case ) # verify the logits lowercase__ : List[str] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape ,_snake_case ) lowercase__ : Any = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() ,_snake_case ,atol=1e-4 ) )
16
1
"""simple docstring""" lowerCAmelCase_ = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] lowerCAmelCase_ = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] lowerCAmelCase_ = { 0: 'Sunday', 1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday', 6: 'Saturday', } def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str: assert len(str(__lowerCamelCase ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: lowercase__ : Tuple = year // 1_00 lowercase__ : Dict = (5 * (century % 4) + 2) % 7 lowercase__ : List[str] = year % 1_00 lowercase__ : int = centurian % 12 lowercase__ : str = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 lowercase__ : Optional[int] = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_00) == 0) else DOOMSDAY_LEAP[month - 1] ) lowercase__ : str = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
16
"""simple docstring""" import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: if "model" in orig_key: lowercase__ : Tuple = orig_key.replace('''model.''' , '''''' ) if "norm1" in orig_key: lowercase__ : List[str] = orig_key.replace('''norm1''' , '''attention.output.LayerNorm''' ) if "norm2" in orig_key: lowercase__ : List[str] = orig_key.replace('''norm2''' , '''output.LayerNorm''' ) if "norm" in orig_key: lowercase__ : List[str] = orig_key.replace('''norm''' , '''LayerNorm''' ) if "transformer" in orig_key: lowercase__ : Union[str, Any] = orig_key.split('''.''' )[0].split('''_''' )[-1] lowercase__ : List[str] = orig_key.replace(f"""transformer_{layer_num}""" , f"""encoder.layer.{layer_num}""" ) if "mha.attn" in orig_key: lowercase__ : Union[str, Any] = orig_key.replace('''mha.attn''' , '''attention.self''' ) if "mha" in orig_key: lowercase__ : str = orig_key.replace('''mha''' , '''attention''' ) if "W_q" in orig_key: lowercase__ : Any = orig_key.replace('''W_q''' , '''self.query''' ) if "W_k" in orig_key: lowercase__ : List[Any] = orig_key.replace('''W_k''' , '''self.key''' ) if "W_v" in orig_key: lowercase__ : Any = orig_key.replace('''W_v''' , '''self.value''' ) if "ff1" in orig_key: lowercase__ : Optional[int] = orig_key.replace('''ff1''' , '''intermediate.dense''' ) if "ff2" in orig_key: lowercase__ : Optional[Any] = orig_key.replace('''ff2''' , '''output.dense''' ) if "ff" in orig_key: lowercase__ : List[str] = orig_key.replace('''ff''' , '''output.dense''' ) if "mlm_class" in orig_key: lowercase__ : int = orig_key.replace('''mlm.mlm_class''' , '''cls.predictions.decoder''' ) if "mlm" in orig_key: lowercase__ : Optional[Any] = orig_key.replace('''mlm''' , '''cls.predictions.transform''' ) if "cls" not in orig_key: lowercase__ : Optional[Any] = '''yoso.''' + orig_key return orig_key def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: for key in orig_state_dict.copy().keys(): lowercase__ : Optional[Any] = orig_state_dict.pop(__lowerCamelCase ) if ("pooler" in key) or ("sen_class" in key): continue else: lowercase__ : Tuple = val lowercase__ : Union[str, Any] = orig_state_dict['''cls.predictions.decoder.bias'''] lowercase__ : List[str] = torch.arange(__lowerCamelCase ).expand((1, -1) ) + 2 return orig_state_dict def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : Tuple = torch.load(__lowerCamelCase , map_location='''cpu''' )['''model_state_dict'''] lowercase__ : List[Any] = YosoConfig.from_json_file(__lowerCamelCase ) lowercase__ : List[Any] = YosoForMaskedLM(__lowerCamelCase ) lowercase__ : Optional[Any] = convert_checkpoint_helper(config.max_position_embeddings , __lowerCamelCase ) print(model.load_state_dict(__lowerCamelCase ) ) model.eval() model.save_pretrained(__lowerCamelCase ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to YOSO pytorch checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for YOSO model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase_ = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
16
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase_ = { 'configuration_wav2vec2': ['WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Wav2Vec2Config'], 'feature_extraction_wav2vec2': ['Wav2Vec2FeatureExtractor'], 'processing_wav2vec2': ['Wav2Vec2Processor'], 'tokenization_wav2vec2': ['Wav2Vec2CTCTokenizer', 'Wav2Vec2Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Wav2Vec2ForAudioFrameClassification', 'Wav2Vec2ForCTC', 'Wav2Vec2ForMaskedLM', 'Wav2Vec2ForPreTraining', 'Wav2Vec2ForSequenceClassification', 'Wav2Vec2ForXVector', 'Wav2Vec2Model', 'Wav2Vec2PreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWav2Vec2ForCTC', 'TFWav2Vec2Model', 'TFWav2Vec2PreTrainedModel', 'TFWav2Vec2ForSequenceClassification', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'FlaxWav2Vec2ForCTC', 'FlaxWav2Vec2ForPreTraining', 'FlaxWav2Vec2Model', 'FlaxWav2Vec2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
"""simple docstring""" import os def __UpperCAmelCase ( ) -> int: with open(os.path.dirname(__lowerCamelCase ) + '''/p022_names.txt''' ) as file: lowercase__ : List[Any] = str(file.readlines()[0] ) lowercase__ : Dict = names.replace('''"''' , '''''' ).split(''',''' ) names.sort() lowercase__ : int = 0 lowercase__ : Optional[Any] = 0 for i, name in enumerate(__lowerCamelCase ): for letter in name: name_score += ord(__lowerCamelCase ) - 64 total_score += (i + 1) * name_score lowercase__ : List[str] = 0 return total_score if __name__ == "__main__": print(solution())
16
1
"""simple docstring""" import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class __A : '''simple docstring''' def __init__( self : Any ,_snake_case : str ,_snake_case : List[Any]=2 ,_snake_case : List[Any]=8 ,_snake_case : List[Any]=True ,_snake_case : Optional[int]=True ,_snake_case : str=True ,_snake_case : int=True ,_snake_case : str=99 ,_snake_case : Tuple=16 ,_snake_case : List[str]=5 ,_snake_case : Any=2 ,_snake_case : Dict=36 ,_snake_case : Optional[int]="gelu" ,_snake_case : Any=0.0 ,_snake_case : int=0.0 ,_snake_case : Union[str, Any]=512 ,_snake_case : Optional[Any]=16 ,_snake_case : Optional[Any]=2 ,_snake_case : Optional[Any]=0.02 ,_snake_case : Tuple=3 ,_snake_case : List[str]=4 ,_snake_case : Tuple=None ,) -> int: """simple docstring""" lowercase__ : List[Any] = parent lowercase__ : List[str] = batch_size lowercase__ : int = seq_length lowercase__ : Dict = is_training lowercase__ : List[Any] = use_input_mask lowercase__ : Tuple = use_token_type_ids lowercase__ : List[str] = use_labels lowercase__ : str = vocab_size lowercase__ : Optional[int] = hidden_size lowercase__ : List[Any] = num_hidden_layers lowercase__ : str = num_attention_heads lowercase__ : Dict = intermediate_size lowercase__ : int = hidden_act lowercase__ : int = hidden_dropout_prob lowercase__ : Optional[Any] = attention_probs_dropout_prob lowercase__ : Any = max_position_embeddings lowercase__ : Optional[Any] = type_vocab_size lowercase__ : Union[str, Any] = type_sequence_label_size lowercase__ : int = initializer_range lowercase__ : Any = num_labels lowercase__ : List[Any] = num_choices lowercase__ : Optional[int] = scope def UpperCAmelCase ( self : str ) -> str: """simple docstring""" lowercase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase__ : Optional[Any] = None if self.use_input_mask: lowercase__ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : Optional[int] = None if self.use_token_type_ids: lowercase__ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) lowercase__ : List[Any] = None lowercase__ : Tuple = None lowercase__ : List[Any] = None if self.use_labels: lowercase__ : Dict = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowercase__ : int = ids_tensor([self.batch_size] ,self.num_choices ) lowercase__ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return MraConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=_snake_case ,initializer_range=self.initializer_range ,) def UpperCAmelCase ( self : List[str] ) -> str: """simple docstring""" lowercase__ : Union[str, Any] = self.get_config() lowercase__ : int = 300 return config def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : str = self.prepare_config_and_inputs() lowercase__ : Optional[int] = True lowercase__ : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCAmelCase ( self : str ,_snake_case : str ,_snake_case : int ,_snake_case : Optional[Any] ,_snake_case : List[Any] ,_snake_case : Tuple ,_snake_case : Tuple ,_snake_case : Dict ) -> Tuple: """simple docstring""" lowercase__ : List[Any] = MraModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : List[Any] = model(_snake_case ,attention_mask=_snake_case ,token_type_ids=_snake_case ) lowercase__ : Optional[Any] = model(_snake_case ,token_type_ids=_snake_case ) lowercase__ : Union[str, Any] = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self : int ,_snake_case : Optional[Any] ,_snake_case : Optional[Any] ,_snake_case : List[str] ,_snake_case : Any ,_snake_case : Tuple ,_snake_case : int ,_snake_case : Optional[Any] ,_snake_case : Dict ,_snake_case : Tuple ,) -> Tuple: """simple docstring""" lowercase__ : Any = True lowercase__ : Optional[Any] = MraModel(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Tuple = model( _snake_case ,attention_mask=_snake_case ,token_type_ids=_snake_case ,encoder_hidden_states=_snake_case ,encoder_attention_mask=_snake_case ,) lowercase__ : int = model( _snake_case ,attention_mask=_snake_case ,token_type_ids=_snake_case ,encoder_hidden_states=_snake_case ,) lowercase__ : Optional[Any] = model(_snake_case ,attention_mask=_snake_case ,token_type_ids=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : List[str] ,_snake_case : str ,_snake_case : int ,_snake_case : Optional[int] ,_snake_case : Tuple ,_snake_case : Tuple ,_snake_case : str ) -> Optional[Any]: """simple docstring""" lowercase__ : int = MraForMaskedLM(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Optional[Any] = model(_snake_case ,attention_mask=_snake_case ,token_type_ids=_snake_case ,labels=_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Dict ,_snake_case : Any ,_snake_case : List[Any] ,_snake_case : int ,_snake_case : Union[str, Any] ,_snake_case : Union[str, Any] ,_snake_case : List[str] ) -> Any: """simple docstring""" lowercase__ : List[str] = MraForQuestionAnswering(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Union[str, Any] = model( _snake_case ,attention_mask=_snake_case ,token_type_ids=_snake_case ,start_positions=_snake_case ,end_positions=_snake_case ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def UpperCAmelCase ( self : str ,_snake_case : List[Any] ,_snake_case : Dict ,_snake_case : str ,_snake_case : int ,_snake_case : List[str] ,_snake_case : Tuple ,_snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : Tuple = self.num_labels lowercase__ : Tuple = MraForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Optional[Any] = model(_snake_case ,attention_mask=_snake_case ,token_type_ids=_snake_case ,labels=_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCAmelCase ( self : Optional[int] ,_snake_case : Tuple ,_snake_case : Dict ,_snake_case : Any ,_snake_case : Optional[Any] ,_snake_case : Union[str, Any] ,_snake_case : List[Any] ,_snake_case : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : List[Any] = self.num_labels lowercase__ : int = MraForTokenClassification(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : int = model(_snake_case ,attention_mask=_snake_case ,token_type_ids=_snake_case ,labels=_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self : Optional[int] ,_snake_case : Union[str, Any] ,_snake_case : Optional[int] ,_snake_case : Union[str, Any] ,_snake_case : Any ,_snake_case : str ,_snake_case : Optional[int] ,_snake_case : Optional[int] ) -> Dict: """simple docstring""" lowercase__ : Optional[Any] = self.num_choices lowercase__ : str = MraForMultipleChoice(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : List[Any] = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() lowercase__ : Tuple = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() lowercase__ : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() lowercase__ : Optional[Any] = model( _snake_case ,attention_mask=_snake_case ,token_type_ids=_snake_case ,labels=_snake_case ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def UpperCAmelCase ( self : List[Any] ) -> str: """simple docstring""" lowercase__ : Tuple = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : Dict = config_and_inputs lowercase__ : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[int] = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase : int = False lowerCAmelCase : int = False lowerCAmelCase : List[Any] = False lowerCAmelCase : Union[str, Any] = False lowerCAmelCase : Dict = () def UpperCAmelCase ( self : int ) -> List[str]: """simple docstring""" lowercase__ : Dict = MraModelTester(self ) lowercase__ : Optional[int] = ConfigTester(self ,config_class=_snake_case ,hidden_size=37 ) def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self : int ) -> Tuple: """simple docstring""" lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCAmelCase ( self : Any ) -> Dict: """simple docstring""" lowercase__ : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase__ : Any = type self.model_tester.create_and_check_model(*_snake_case ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_snake_case ) def UpperCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_snake_case ) def UpperCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_snake_case ) def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_snake_case ) def UpperCAmelCase ( self : str ) -> str: """simple docstring""" lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_snake_case ) @slow def UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : str = MraModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @unittest.skip(reason='''MRA does not output attentions''' ) def UpperCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" return @require_torch class __A ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" lowercase__ : List[str] = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' ) lowercase__ : int = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): lowercase__ : int = model(_snake_case )[0] lowercase__ : Optional[Any] = torch.Size((1, 256, 768) ) self.assertEqual(output.shape ,_snake_case ) lowercase__ : str = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,_snake_case ,atol=1e-4 ) ) @slow def UpperCAmelCase ( self : str ) -> List[str]: """simple docstring""" lowercase__ : Tuple = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' ) lowercase__ : Any = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): lowercase__ : int = model(_snake_case )[0] lowercase__ : Dict = 50_265 lowercase__ : List[str] = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape ,_snake_case ) lowercase__ : Union[str, Any] = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,_snake_case ,atol=1e-4 ) ) @slow def UpperCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" lowercase__ : int = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' ) lowercase__ : List[str] = torch.arange(4_096 ).unsqueeze(0 ) with torch.no_grad(): lowercase__ : List[str] = model(_snake_case )[0] lowercase__ : Any = 50_265 lowercase__ : List[str] = torch.Size((1, 4_096, vocab_size) ) self.assertEqual(output.shape ,_snake_case ) lowercase__ : Union[str, Any] = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,_snake_case ,atol=1e-4 ) )
16
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(A_ ) class __A ( A_ ): '''simple docstring''' def __init__( self : List[str] ,**_snake_case : Dict ) -> List[Any]: """simple docstring""" super().__init__(**_snake_case ) requires_backends(self ,'''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[int] ,_snake_case : Union[str, List[str], "Image", List["Image"]] ,**_snake_case : int ) -> Optional[Any]: """simple docstring""" return super().__call__(_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Dict ,**_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ : List[str] = {} if "candidate_labels" in kwargs: lowercase__ : Any = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: lowercase__ : Optional[Any] = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[int] ,_snake_case : Dict=None ,_snake_case : Union[str, Any]="This is a photo of {}." ) -> List[str]: """simple docstring""" lowercase__ : List[Any] = load_image(_snake_case ) lowercase__ : int = self.image_processor(images=[image] ,return_tensors=self.framework ) lowercase__ : str = candidate_labels lowercase__ : Dict = [hypothesis_template.format(_snake_case ) for x in candidate_labels] lowercase__ : Any = self.tokenizer(_snake_case ,return_tensors=self.framework ,padding=_snake_case ) lowercase__ : Optional[int] = [text_inputs] return inputs def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ : Optional[int] = model_inputs.pop('''candidate_labels''' ) lowercase__ : Union[str, Any] = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] ,_snake_case ): lowercase__ : List[str] = text_inputs[0] else: # Batching case. lowercase__ : int = text_inputs[0][0] lowercase__ : Tuple = self.model(**_snake_case ,**_snake_case ) lowercase__ : Union[str, Any] = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def UpperCAmelCase ( self : Any ,_snake_case : Tuple ) -> Any: """simple docstring""" lowercase__ : Dict = model_outputs.pop('''candidate_labels''' ) lowercase__ : Optional[Any] = model_outputs['''logits'''][0] if self.framework == "pt": lowercase__ : Optional[int] = logits.softmax(dim=-1 ).squeeze(-1 ) lowercase__ : Tuple = probs.tolist() if not isinstance(_snake_case ,_snake_case ): lowercase__ : Any = [scores] elif self.framework == "tf": lowercase__ : List[str] = stable_softmax(_snake_case ,axis=-1 ) lowercase__ : Optional[Any] = probs.numpy().tolist() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) lowercase__ : Union[str, Any] = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(_snake_case ,_snake_case ) ,key=lambda _snake_case : -x[0] ) ] return result
16
1
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" ,"False" ) ) is not True ,reason="Skipping test because should only be run when releasing minor transformers version" ,) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 6_5_0, "eval_accuracy": 0.6, "eval_loss": 0.9}, }, { "framework": "tensorflow", "script": "run_tf.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 6_0_0, "eval_accuracy": 0.3, "eval_loss": 0.9}, }, ] ) class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() ,encoding='''utf-8''' ,check=_snake_case ,) assert hasattr(self ,'''env''' ) def UpperCAmelCase ( self : List[Any] ,_snake_case : Any=1 ) -> Any: """simple docstring""" return HuggingFace( entry_point=self.script ,source_dir=self.env.test_path ,role=self.env.role ,image_uri=self.env.image_uri ,base_job_name=f"""{self.env.base_job_name}-single""" ,instance_count=_snake_case ,instance_type=self.instance_type ,debugger_hook_config=_snake_case ,hyperparameters={**self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path} ,metric_definitions=self.env.metric_definitions ,py_version='''py36''' ,) def UpperCAmelCase ( self : Tuple ,_snake_case : List[Any] ) -> List[Any]: """simple docstring""" TrainingJobAnalytics(_snake_case ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) def UpperCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ : Tuple = self.create_estimator() # run training estimator.fit() # result dataframe lowercase__ : Any = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowercase__ : Any = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) lowercase__ : Dict = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowercase__ : List[Any] = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' ,999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" ,'''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} ,_snake_case )
16
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[Any]: print('''\nThe shortest path matrix using Floyd Warshall algorithm\n''' ) for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): if dist[i][j] != float('''inf''' ): print(int(dist[i][j] ) , end='''\t''' ) else: print('''INF''' , end='''\t''' ) print() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : str = [[float('''inf''' ) for _ in range(__lowerCamelCase )] for _ in range(__lowerCamelCase )] for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): lowercase__ : List[str] = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(__lowerCamelCase ): # looping through rows of graph array for i in range(__lowerCamelCase ): # looping through columns of graph array for j in range(__lowerCamelCase ): if ( dist[i][k] != float('''inf''' ) and dist[k][j] != float('''inf''' ) and dist[i][k] + dist[k][j] < dist[i][j] ): lowercase__ : str = dist[i][k] + dist[k][j] _print_dist(__lowerCamelCase , __lowerCamelCase ) return dist, v if __name__ == "__main__": lowerCAmelCase_ = int(input('Enter number of vertices: ')) lowerCAmelCase_ = int(input('Enter number of edges: ')) lowerCAmelCase_ = [[float('inf') for i in range(v)] for j in range(v)] for i in range(v): lowerCAmelCase_ = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('\nEdge ', i + 1) lowerCAmelCase_ = int(input('Enter source:')) lowerCAmelCase_ = int(input('Enter destination:')) lowerCAmelCase_ = float(input('Enter weight:')) lowerCAmelCase_ = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
16
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = {'configuration_sew': ['SEW_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SEWConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'SEW_PRETRAINED_MODEL_ARCHIVE_LIST', 'SEWForCTC', 'SEWForSequenceClassification', 'SEWModel', 'SEWPreTrainedModel', ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' def __init__( self : Dict ,*_snake_case : Any ,**_snake_case : str ) -> None: """simple docstring""" warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' ,_snake_case ,) super().__init__(*_snake_case ,**_snake_case )
16
1
"""simple docstring""" import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase_ = '▁' lowerCAmelCase_ = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : int = BigBirdTokenizer lowerCAmelCase : Any = BigBirdTokenizerFast lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : List[Any] = True def UpperCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" super().setUp() lowercase__ : Tuple = self.tokenizer_class(_snake_case ,keep_accents=_snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self : str ) -> Any: """simple docstring""" lowercase__ : Tuple = '''<s>''' lowercase__ : Optional[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case ) ,_snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case ) ,_snake_case ) def UpperCAmelCase ( self : Dict ) -> str: """simple docstring""" lowercase__ : Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'''<unk>''' ) self.assertEqual(vocab_keys[1] ,'''<s>''' ) self.assertEqual(vocab_keys[-1] ,'''[MASK]''' ) self.assertEqual(len(_snake_case ) ,1_004 ) def UpperCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size ,1_000 ) def UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" if not self.test_rust_tokenizer: return lowercase__ : Optional[int] = self.get_tokenizer() lowercase__ : int = self.get_rust_tokenizer() lowercase__ : List[Any] = '''I was born in 92000, and this is falsé.''' lowercase__ : Dict = tokenizer.tokenize(_snake_case ) lowercase__ : Any = rust_tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case ,_snake_case ) lowercase__ : Any = tokenizer.encode(_snake_case ,add_special_tokens=_snake_case ) lowercase__ : Optional[Any] = rust_tokenizer.encode(_snake_case ,add_special_tokens=_snake_case ) self.assertListEqual(_snake_case ,_snake_case ) lowercase__ : List[Any] = self.get_rust_tokenizer() lowercase__ : Dict = tokenizer.encode(_snake_case ) lowercase__ : Tuple = rust_tokenizer.encode(_snake_case ) self.assertListEqual(_snake_case ,_snake_case ) def UpperCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ : Optional[int] = BigBirdTokenizer(_snake_case ,keep_accents=_snake_case ) lowercase__ : Tuple = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_snake_case ,['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_snake_case ) ,[285, 46, 10, 170, 382] ,) lowercase__ : Optional[Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _snake_case ,[ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] ,) lowercase__ : Optional[int] = tokenizer.convert_tokens_to_ids(_snake_case ) self.assertListEqual( _snake_case ,[8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] ,) lowercase__ : str = tokenizer.convert_ids_to_tokens(_snake_case ) self.assertListEqual( _snake_case ,[ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] ,) @cached_property def UpperCAmelCase ( self : List[Any] ) -> int: """simple docstring""" return BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) @slow def UpperCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ : Optional[int] = '''Hello World!''' lowercase__ : Union[str, Any] = [65, 18_536, 2_260, 101, 66] self.assertListEqual(_snake_case ,self.big_tokenizer.encode(_snake_case ) ) @slow def UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ : Dict = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) # fmt: off lowercase__ : int = [65, 871, 419, 358, 946, 991, 2_521, 452, 358, 1_357, 387, 7_751, 3_536, 112, 985, 456, 126, 865, 938, 5_400, 5_734, 458, 1_368, 467, 786, 2_462, 5_246, 1_159, 633, 865, 4_519, 457, 582, 852, 2_557, 427, 916, 508, 405, 34_324, 497, 391, 408, 11_342, 1_244, 385, 100, 938, 985, 456, 574, 362, 12_597, 3_200, 3_129, 1_172, 66] # noqa: E231 # fmt: on self.assertListEqual(_snake_case ,self.big_tokenizer.encode(_snake_case ) ) @require_torch @slow def UpperCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence lowercase__ : Dict = list(self.big_tokenizer.get_vocab().keys() )[:10] lowercase__ : Union[str, Any] = ''' '''.join(_snake_case ) lowercase__ : int = self.big_tokenizer.encode_plus(_snake_case ,return_tensors='''pt''' ,return_token_type_ids=_snake_case ) lowercase__ : List[Any] = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] ,return_tensors='''pt''' ,return_token_type_ids=_snake_case ) lowercase__ : Tuple = BigBirdConfig(attention_type='''original_full''' ) lowercase__ : Any = BigBirdModel(_snake_case ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_snake_case ) model(**_snake_case ) @slow def UpperCAmelCase ( self : int ) -> Tuple: """simple docstring""" lowercase__ : Tuple = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) lowercase__ : int = tokenizer.decode(tokenizer('''Paris is the [MASK].''' ).input_ids ) self.assertTrue(decoded_text == '''[CLS] Paris is the[MASK].[SEP]''' ) @slow def UpperCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" lowercase__ : Union[str, Any] = {'''input_ids''': [[65, 39_286, 458, 36_335, 2_001, 456, 13_073, 13_266, 455, 113, 7_746, 1_741, 11_157, 391, 13_073, 13_266, 455, 113, 3_967, 35_412, 113, 4_936, 109, 3_870, 2_377, 113, 30_084, 45_720, 458, 134, 17_496, 112, 503, 11_672, 113, 118, 112, 5_665, 13_347, 38_687, 112, 1_496, 31_389, 112, 3_268, 47_264, 134, 962, 112, 16_377, 8_035, 23_130, 430, 12_169, 15_518, 28_592, 458, 146, 41_697, 109, 391, 12_169, 15_518, 16_689, 458, 146, 41_358, 109, 452, 726, 4_034, 111, 763, 35_412, 5_082, 388, 1_903, 111, 9_051, 391, 2_870, 48_918, 1_900, 1_123, 550, 998, 112, 9_586, 15_985, 455, 391, 410, 22_955, 37_636, 114, 66], [65, 448, 17_496, 419, 3_663, 385, 763, 113, 27_533, 2_870, 3_283, 13_043, 1_639, 24_713, 523, 656, 24_013, 18_550, 2_521, 517, 27_014, 21_244, 420, 1_212, 1_465, 391, 927, 4_833, 388, 578, 11_786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2_169, 7_687, 21_932, 18_146, 726, 363, 17_032, 3_391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_snake_case ,model_name='''google/bigbird-roberta-base''' ,revision='''215c99f1600e06f83acce68422f2035b2b5c3510''' ,)
16
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {'configuration_xglm': ['XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XGLMConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['XGLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['XGLMTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XGLMForCausalLM', 'XGLMModel', 'XGLMPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'FlaxXGLMForCausalLM', 'FlaxXGLMModel', 'FlaxXGLMPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXGLMForCausalLM', 'TFXGLMModel', 'TFXGLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
16
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: lowerCAmelCase_ = None lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase_ = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', }, 'tokenizer_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json', }, } lowerCAmelCase_ = { 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } lowerCAmelCase_ = '▁' class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[Any] = VOCAB_FILES_NAMES lowerCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : Optional[int] = AlbertTokenizer def __init__( self : List[Any] ,_snake_case : Tuple=None ,_snake_case : Union[str, Any]=None ,_snake_case : List[Any]=True ,_snake_case : int=True ,_snake_case : Dict=False ,_snake_case : Optional[int]="[CLS]" ,_snake_case : List[Any]="[SEP]" ,_snake_case : Tuple="<unk>" ,_snake_case : int="[SEP]" ,_snake_case : List[Any]="<pad>" ,_snake_case : Optional[int]="[CLS]" ,_snake_case : int="[MASK]" ,**_snake_case : Optional[Any] ,) -> List[str]: """simple docstring""" lowercase__ : List[str] = ( AddedToken(_snake_case ,lstrip=_snake_case ,rstrip=_snake_case ,normalized=_snake_case ) if isinstance(_snake_case ,_snake_case ) else mask_token ) super().__init__( _snake_case ,tokenizer_file=_snake_case ,do_lower_case=_snake_case ,remove_space=_snake_case ,keep_accents=_snake_case ,bos_token=_snake_case ,eos_token=_snake_case ,unk_token=_snake_case ,sep_token=_snake_case ,pad_token=_snake_case ,cls_token=_snake_case ,mask_token=_snake_case ,**_snake_case ,) lowercase__ : Optional[int] = do_lower_case lowercase__ : str = remove_space lowercase__ : Dict = keep_accents lowercase__ : List[str] = vocab_file lowercase__ : str = False if not self.vocab_file else True def UpperCAmelCase ( self : Optional[Any] ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ : Union[str, Any] = [self.sep_token_id] lowercase__ : List[str] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase ( self : Dict ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ : List[str] = [self.sep_token_id] lowercase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase ( self : List[str] ,_snake_case : str ,_snake_case : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_snake_case ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ : List[Any] = os.path.join( _snake_case ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ): copyfile(self.vocab_file ,_snake_case ) return (out_vocab_file,)
16
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class __A ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : Tuple = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Dict = TFAutoModel.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = AutoModel.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : Dict = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : str = TFAutoModelForPreTraining.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = AutoModelForPreTraining.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Any = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = TFAutoModelForCausalLM.from_pretrained(_snake_case ,from_pt=_snake_case ) lowercase__ , lowercase__ : Optional[Any] = TFAutoModelForCausalLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = AutoModelForCausalLM.from_pretrained(_snake_case ,from_tf=_snake_case ) lowercase__ , lowercase__ : Optional[Any] = AutoModelForCausalLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Any ) -> Tuple: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Any = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : str = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(_snake_case ,from_pt=_snake_case ) lowercase__ , lowercase__ : str = TFAutoModelForMaskedLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = AutoModelForMaskedLM.from_pretrained(_snake_case ,from_tf=_snake_case ) lowercase__ , lowercase__ : Any = AutoModelForMaskedLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Union[str, Any] = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained(_snake_case ,from_pt=_snake_case ) lowercase__ , lowercase__ : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ,from_tf=_snake_case ) lowercase__ , lowercase__ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : Tuple = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = TFAutoModelForSequenceClassification.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : List[Any] = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : str = TFAutoModelForQuestionAnswering.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = AutoModelForQuestionAnswering.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : Optional[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) lowercase__ : Union[str, Any] = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) def UpperCAmelCase ( self : int ) -> List[Any]: """simple docstring""" lowercase__ : List[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) lowercase__ : int = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 )
16
1
"""simple docstring""" from functools import lru_cache def __UpperCAmelCase ( __lowerCamelCase ) -> set: lowercase__ : Optional[Any] = 2 lowercase__ : Any = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(__lowerCamelCase ) if n > 1: factors.add(__lowerCamelCase ) return factors @lru_cache def __UpperCAmelCase ( __lowerCamelCase ) -> int: return len(unique_prime_factors(__lowerCamelCase ) ) def __UpperCAmelCase ( __lowerCamelCase ) -> bool: return len(set(__lowerCamelCase ) ) in (0, 1) def __UpperCAmelCase ( __lowerCamelCase ) -> list: lowercase__ : str = 2 while True: # Increment each value of a generated range lowercase__ : Any = [base + i for i in range(__lowerCamelCase )] # Run elements through out unique_prime_factors function # Append our target number to the end. lowercase__ : List[Any] = [upf_len(__lowerCamelCase ) for x in group] checker.append(__lowerCamelCase ) # If all numbers in the list are equal, return the group variable. if equality(__lowerCamelCase ): return group # Increment our base variable by 1 base += 1 def __UpperCAmelCase ( __lowerCamelCase = 4 ) -> int: lowercase__ : Dict = run(__lowerCamelCase ) return results[0] if len(__lowerCamelCase ) else None if __name__ == "__main__": print(solution())
16
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase = 50 ) -> int: lowercase__ : int = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F'''{solution() = }''')
16
1
"""simple docstring""" import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : List[str] = KandinskyVaaPriorPipeline lowerCAmelCase : str = ["prompt"] lowerCAmelCase : List[str] = ["prompt", "negative_prompt"] lowerCAmelCase : List[str] = [ "num_images_per_prompt", "generator", "num_inference_steps", "latents", "negative_prompt", "guidance_scale", "output_type", "return_dict", ] lowerCAmelCase : str = False @property def UpperCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" return 32 @property def UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return 32 @property def UpperCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" return self.time_input_dim @property def UpperCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" return self.time_input_dim * 4 @property def UpperCAmelCase ( self : str ) -> List[Any]: """simple docstring""" return 100 @property def UpperCAmelCase ( self : int ) -> Dict: """simple docstring""" lowercase__ : Any = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCAmelCase ( self : List[Any] ) -> int: """simple docstring""" torch.manual_seed(0 ) lowercase__ : Any = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) return CLIPTextModelWithProjection(_snake_case ) @property def UpperCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ : Optional[int] = { '''num_attention_heads''': 2, '''attention_head_dim''': 12, '''embedding_dim''': self.text_embedder_hidden_size, '''num_layers''': 1, } lowercase__ : Tuple = PriorTransformer(**_snake_case ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 lowercase__ : Union[str, Any] = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ : str = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size ,image_size=224 ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=37 ,num_attention_heads=4 ,num_channels=3 ,num_hidden_layers=5 ,patch_size=14 ,) lowercase__ : Any = CLIPVisionModelWithProjection(_snake_case ) return model @property def UpperCAmelCase ( self : int ) -> List[str]: """simple docstring""" lowercase__ : List[Any] = CLIPImageProcessor( crop_size=224 ,do_center_crop=_snake_case ,do_normalize=_snake_case ,do_resize=_snake_case ,image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] ,image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] ,resample=3 ,size=224 ,) return image_processor def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase__ : List[str] = self.dummy_prior lowercase__ : Optional[Any] = self.dummy_image_encoder lowercase__ : Optional[int] = self.dummy_text_encoder lowercase__ : Optional[int] = self.dummy_tokenizer lowercase__ : Tuple = self.dummy_image_processor lowercase__ : Dict = UnCLIPScheduler( variance_type='''fixed_small_log''' ,prediction_type='''sample''' ,num_train_timesteps=1_000 ,clip_sample=_snake_case ,clip_sample_range=10.0 ,) lowercase__ : Optional[Any] = { '''prior''': prior, '''image_encoder''': image_encoder, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''scheduler''': scheduler, '''image_processor''': image_processor, } return components def UpperCAmelCase ( self : int ,_snake_case : Optional[int] ,_snake_case : int=0 ) -> Optional[int]: """simple docstring""" if str(_snake_case ).startswith('''mps''' ): lowercase__ : Optional[int] = torch.manual_seed(_snake_case ) else: lowercase__ : str = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowercase__ : str = { '''prompt''': '''horse''', '''generator''': generator, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def UpperCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" lowercase__ : Dict = '''cpu''' lowercase__ : Optional[int] = self.get_dummy_components() lowercase__ : Optional[int] = self.pipeline_class(**_snake_case ) lowercase__ : Union[str, Any] = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : Optional[Any] = pipe(**self.get_dummy_inputs(_snake_case ) ) lowercase__ : List[Any] = output.image_embeds lowercase__ : Dict = pipe( **self.get_dummy_inputs(_snake_case ) ,return_dict=_snake_case ,)[0] lowercase__ : Any = image[0, -10:] lowercase__ : int = image_from_tuple[0, -10:] assert image.shape == (1, 32) lowercase__ : Optional[Any] = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def UpperCAmelCase ( self : List[str] ) -> int: """simple docstring""" lowercase__ : Any = torch_device == '''cpu''' lowercase__ : Optional[Any] = True lowercase__ : int = False self._test_inference_batch_single_identical( test_max_difference=_snake_case ,relax_max_difference=_snake_case ,test_mean_pixel_difference=_snake_case ,) @skip_mps def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowercase__ : str = torch_device == '''cpu''' lowercase__ : Union[str, Any] = False self._test_attention_slicing_forward_pass( test_max_difference=_snake_case ,test_mean_pixel_difference=_snake_case ,)
16
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" debug_launcher(test_script.main ) def UpperCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" debug_launcher(test_ops.main )
16
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = '▁' lowerCAmelCase_ = {'vocab_file': 'sentencepiece.bpe.model'} lowerCAmelCase_ = { 'vocab_file': { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model', } } lowerCAmelCase_ = { 'facebook/xglm-564M': 2_048, } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[Any] = VOCAB_FILES_NAMES lowerCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : int = ["input_ids", "attention_mask"] def __init__( self : int ,_snake_case : Dict ,_snake_case : Dict="<s>" ,_snake_case : Dict="</s>" ,_snake_case : str="</s>" ,_snake_case : Optional[Any]="<s>" ,_snake_case : Optional[Any]="<unk>" ,_snake_case : Optional[int]="<pad>" ,_snake_case : Optional[Dict[str, Any]] = None ,**_snake_case : str ,) -> None: """simple docstring""" lowercase__ : Any = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer lowercase__ : Any = 7 lowercase__ : Optional[int] = [f"""<madeupword{i}>""" for i in range(self.num_madeup_words )] lowercase__ : Dict = kwargs.get('''additional_special_tokens''' ,[] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=_snake_case ,eos_token=_snake_case ,unk_token=_snake_case ,sep_token=_snake_case ,cls_token=_snake_case ,pad_token=_snake_case ,sp_model_kwargs=self.sp_model_kwargs ,**_snake_case ,) lowercase__ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_snake_case ) ) lowercase__ : str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase__ : Optional[int] = 1 # Mimic fairseq token-to-id alignment for the first 4 token lowercase__ : Optional[int] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} lowercase__ : List[str] = len(self.sp_model ) lowercase__ : Tuple = {f"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(_snake_case ) lowercase__ : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : int ) -> Optional[int]: """simple docstring""" lowercase__ : List[Any] = self.__dict__.copy() lowercase__ : Optional[int] = None lowercase__ : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self : Dict ,_snake_case : List[str] ) -> Any: """simple docstring""" lowercase__ : int = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): lowercase__ : Dict = {} lowercase__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCAmelCase ( self : Any ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.sep_token_id] + token_ids_a lowercase__ : Optional[Any] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def UpperCAmelCase ( self : Any ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ,_snake_case : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case ,token_ids_a=_snake_case ,already_has_special_tokens=_snake_case ) if token_ids_a is None: return [1] + ([0] * len(_snake_case )) return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ : List[Any] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def UpperCAmelCase ( self : str ) -> Tuple: """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ : Union[str, Any] = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self : List[Any] ,_snake_case : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(_snake_case ,out_type=_snake_case ) def UpperCAmelCase ( self : int ,_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase__ : Tuple = self.sp_model.PieceToId(_snake_case ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase ( self : Any ,_snake_case : List[str] ) -> Any: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase ( self : Tuple ,_snake_case : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = ''''''.join(_snake_case ).replace(_snake_case ,''' ''' ).strip() return out_string def UpperCAmelCase ( self : Any ,_snake_case : str ,_snake_case : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_snake_case ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ : Any = os.path.join( _snake_case ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case ,'''wb''' ) as fi: lowercase__ : Dict = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,)
16
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) lowerCAmelCase_ = { 'configuration_speecht5': [ 'SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP', 'SpeechT5Config', 'SpeechT5HifiGanConfig', ], 'feature_extraction_speecht5': ['SpeechT5FeatureExtractor'], 'processing_speecht5': ['SpeechT5Processor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['SpeechT5Tokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'SpeechT5ForSpeechToText', 'SpeechT5ForSpeechToSpeech', 'SpeechT5ForTextToSpeech', 'SpeechT5Model', 'SpeechT5PreTrainedModel', 'SpeechT5HifiGan', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
1
"""simple docstring""" import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class __A : '''simple docstring''' def __init__( self : Tuple ,_snake_case : Union[str, Any] ,_snake_case : int=13 ,_snake_case : Tuple=7 ,_snake_case : List[Any]=True ,_snake_case : int=True ,_snake_case : Union[str, Any]=False ,_snake_case : List[Any]=True ,_snake_case : Any=99 ,_snake_case : str=32 ,_snake_case : int=5 ,_snake_case : int=4 ,_snake_case : int=37 ,_snake_case : Tuple="gelu" ,_snake_case : int=0.1 ,_snake_case : List[str]=0.1 ,_snake_case : Union[str, Any]=512 ,_snake_case : Optional[int]=16 ,_snake_case : int=2 ,_snake_case : List[Any]=0.02 ,_snake_case : Optional[int]=3 ,_snake_case : List[str]=4 ,_snake_case : Union[str, Any]=None ,) -> int: """simple docstring""" lowercase__ : Optional[int] = parent lowercase__ : Dict = batch_size lowercase__ : int = seq_length lowercase__ : Optional[int] = is_training lowercase__ : Optional[int] = use_input_mask lowercase__ : str = use_token_type_ids lowercase__ : Optional[int] = use_labels lowercase__ : List[Any] = vocab_size lowercase__ : List[Any] = hidden_size lowercase__ : List[str] = num_hidden_layers lowercase__ : Optional[int] = num_attention_heads lowercase__ : Union[str, Any] = intermediate_size lowercase__ : Any = hidden_act lowercase__ : Optional[Any] = hidden_dropout_prob lowercase__ : str = attention_probs_dropout_prob lowercase__ : Any = max_position_embeddings lowercase__ : Dict = type_vocab_size lowercase__ : Union[str, Any] = type_sequence_label_size lowercase__ : Dict = initializer_range lowercase__ : str = num_labels lowercase__ : Optional[Any] = num_choices lowercase__ : Union[str, Any] = scope def UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase__ : Optional[Any] = None if self.use_input_mask: lowercase__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : Union[str, Any] = None if self.use_token_type_ids: lowercase__ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) lowercase__ : Tuple = None lowercase__ : List[str] = None lowercase__ : Tuple = None if self.use_labels: lowercase__ : str = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowercase__ : str = ids_tensor([self.batch_size] ,self.num_choices ) lowercase__ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" return LlamaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=_snake_case ,initializer_range=self.initializer_range ,) def UpperCAmelCase ( self : Optional[int] ,_snake_case : List[str] ,_snake_case : Dict ,_snake_case : Optional[int] ,_snake_case : Dict ,_snake_case : Dict ,_snake_case : List[Any] ,_snake_case : str ) -> Any: """simple docstring""" lowercase__ : Any = LlamaModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : List[str] = model(_snake_case ,attention_mask=_snake_case ) lowercase__ : Optional[Any] = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self : Dict ,_snake_case : Tuple ,_snake_case : int ,_snake_case : List[str] ,_snake_case : Optional[int] ,_snake_case : Optional[Any] ,_snake_case : Dict ,_snake_case : List[str] ,_snake_case : Optional[Any] ,_snake_case : Optional[int] ,) -> List[str]: """simple docstring""" lowercase__ : int = True lowercase__ : Optional[int] = LlamaModel(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Optional[Any] = model( _snake_case ,attention_mask=_snake_case ,encoder_hidden_states=_snake_case ,encoder_attention_mask=_snake_case ,) lowercase__ : List[Any] = model( _snake_case ,attention_mask=_snake_case ,encoder_hidden_states=_snake_case ,) lowercase__ : List[Any] = model(_snake_case ,attention_mask=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self : Dict ,_snake_case : str ,_snake_case : Any ,_snake_case : str ,_snake_case : int ,_snake_case : Dict ,_snake_case : Optional[Any] ,_snake_case : Optional[int] ,_snake_case : str ,_snake_case : Any ,) -> Union[str, Any]: """simple docstring""" lowercase__ : List[Any] = LlamaForCausalLM(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Union[str, Any] = model(_snake_case ,attention_mask=_snake_case ,labels=_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self : Tuple ,_snake_case : int ,_snake_case : Optional[Any] ,_snake_case : List[str] ,_snake_case : str ,_snake_case : Dict ,_snake_case : Dict ,_snake_case : Tuple ,_snake_case : str ,_snake_case : Any ,) -> Dict: """simple docstring""" lowercase__ : Optional[Any] = True lowercase__ : Dict = True lowercase__ : Optional[int] = LlamaForCausalLM(config=_snake_case ) model.to(_snake_case ) model.eval() # first forward pass lowercase__ : Any = model( _snake_case ,attention_mask=_snake_case ,encoder_hidden_states=_snake_case ,encoder_attention_mask=_snake_case ,use_cache=_snake_case ,) lowercase__ : Optional[int] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase__ : List[Any] = ids_tensor((self.batch_size, 3) ,config.vocab_size ) lowercase__ : Tuple = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and lowercase__ : Union[str, Any] = torch.cat([input_ids, next_tokens] ,dim=-1 ) lowercase__ : Dict = torch.cat([input_mask, next_mask] ,dim=-1 ) lowercase__ : Optional[int] = model( _snake_case ,attention_mask=_snake_case ,encoder_hidden_states=_snake_case ,encoder_attention_mask=_snake_case ,output_hidden_states=_snake_case ,)['''hidden_states'''][0] lowercase__ : str = model( _snake_case ,attention_mask=_snake_case ,encoder_hidden_states=_snake_case ,encoder_attention_mask=_snake_case ,past_key_values=_snake_case ,output_hidden_states=_snake_case ,)['''hidden_states'''][0] # select random slice lowercase__ : Optional[Any] = ids_tensor((1,) ,output_from_past.shape[-1] ).item() lowercase__ : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase__ : str = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_snake_case ,_snake_case ,atol=1e-3 ) ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ : Optional[Any] = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : Union[str, Any] = config_and_inputs lowercase__ : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __A ( A_ ,A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : List[Any] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () lowerCAmelCase : int = (LlamaForCausalLM,) if is_torch_available() else () lowerCAmelCase : int = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase : List[str] = False lowerCAmelCase : List[Any] = False def UpperCAmelCase ( self : Tuple ) -> str: """simple docstring""" lowercase__ : str = LlamaModelTester(self ) lowercase__ : List[Any] = ConfigTester(self ,config_class=_snake_case ,hidden_size=37 ) def UpperCAmelCase ( self : Any ) -> str: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self : Dict ) -> Dict: """simple docstring""" lowercase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCAmelCase ( self : Any ) -> str: """simple docstring""" lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase__ : List[str] = type self.model_tester.create_and_check_model(*_snake_case ) def UpperCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = 3 lowercase__ : Tuple = input_dict['''input_ids'''] lowercase__ : Tuple = input_ids.ne(1 ).to(_snake_case ) lowercase__ : List[str] = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) lowercase__ : List[Any] = LlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Optional[Any] = model(_snake_case ,attention_mask=_snake_case ,labels=_snake_case ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = 3 lowercase__ : int = '''single_label_classification''' lowercase__ : List[str] = input_dict['''input_ids'''] lowercase__ : Any = input_ids.ne(1 ).to(_snake_case ) lowercase__ : Tuple = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) lowercase__ : Optional[Any] = LlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Optional[Any] = model(_snake_case ,attention_mask=_snake_case ,labels=_snake_case ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Tuple = 3 lowercase__ : List[Any] = '''multi_label_classification''' lowercase__ : Any = input_dict['''input_ids'''] lowercase__ : Dict = input_ids.ne(1 ).to(_snake_case ) lowercase__ : int = ids_tensor( [self.model_tester.batch_size, config.num_labels] ,self.model_tester.type_sequence_label_size ).to(torch.float ) lowercase__ : Union[str, Any] = LlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : int = model(_snake_case ,attention_mask=_snake_case ,labels=_snake_case ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''LLaMA buffers include complex numbers, which breaks this test''' ) def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : str ) -> Optional[Any]: """simple docstring""" lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = ids_tensor([1, 10] ,config.vocab_size ) lowercase__ : Union[str, Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] ,config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase__ : Optional[int] = LlamaModel(_snake_case ) original_model.to(_snake_case ) original_model.eval() lowercase__ : Dict = original_model(_snake_case ).last_hidden_state lowercase__ : str = original_model(_snake_case ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase__ : List[str] = {'''type''': scaling_type, '''factor''': 10.0} lowercase__ : Tuple = LlamaModel(_snake_case ) scaled_model.to(_snake_case ) scaled_model.eval() lowercase__ : Union[str, Any] = scaled_model(_snake_case ).last_hidden_state lowercase__ : Tuple = scaled_model(_snake_case ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_snake_case ,_snake_case ,atol=1e-5 ) ) else: self.assertFalse(torch.allclose(_snake_case ,_snake_case ,atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_snake_case ,_snake_case ,atol=1e-5 ) ) @require_torch class __A ( unittest.TestCase ): '''simple docstring''' @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def UpperCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" lowercase__ : List[str] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] lowercase__ : Dict = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-7b-hf''' ,device_map='''auto''' ) lowercase__ : Optional[Any] = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 lowercase__ : Optional[int] = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) ,_snake_case ,atol=1e-2 ,rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowercase__ : str = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,_snake_case ,atol=1e-5 ,rtol=1e-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : str = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] lowercase__ : Union[str, Any] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-hf''' ,device_map='''auto''' ) lowercase__ : List[Any] = model(torch.tensor(_snake_case ) ) # Expected mean on dim = -1 lowercase__ : Tuple = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) ,_snake_case ,atol=1e-2 ,rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowercase__ : Optional[Any] = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,_snake_case ,atol=1e-5 ,rtol=1e-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def UpperCAmelCase ( self : Tuple ) -> Any: """simple docstring""" lowercase__ : Union[str, Any] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] lowercase__ : Tuple = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' ,device_map='''auto''' ) lowercase__ : str = model(torch.tensor(_snake_case ) ) # Expected mean on dim = -1 lowercase__ : List[Any] = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) ,_snake_case ,atol=1e-2 ,rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowercase__ : Optional[Any] = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) ,_snake_case ,atol=1e-2 ,rtol=1e-2 ) @unittest.skip( '''Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test''' ) @slow def UpperCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" lowercase__ : Tuple = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] lowercase__ : Tuple = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-70b-hf''' ,device_map='''auto''' ) lowercase__ : Optional[Any] = model(torch.tensor(_snake_case ) ) lowercase__ : Union[str, Any] = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] ,dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) ,_snake_case ,atol=1e-2 ,rtol=1e-2 ) # fmt: off lowercase__ : Optional[Any] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,_snake_case ,atol=1e-5 ,rtol=1e-5 ) @unittest.skip('''Model is curently gated''' ) @slow def UpperCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" lowercase__ : Any = '''Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi''' lowercase__ : str = '''Simply put, the theory of relativity states that ''' lowercase__ : List[Any] = LlamaTokenizer.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' ) lowercase__ : int = tokenizer.encode(_snake_case ,return_tensors='''pt''' ) lowercase__ : Any = LlamaForCausalLM.from_pretrained( '''meta-llama/Llama-2-13b-chat-hf''' ,device_map='''sequential''' ,use_safetensors=_snake_case ) # greedy generation outputs lowercase__ : List[str] = model.generate(_snake_case ,max_new_tokens=64 ,top_p=_snake_case ,temperature=1 ,do_sample=_snake_case ) lowercase__ : Any = tokenizer.decode(generated_ids[0] ,skip_special_tokens=_snake_case ) self.assertEqual(_snake_case ,_snake_case )
16
"""simple docstring""" from ..utils import DummyObject, requires_backends class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : List[str] = ["torch", "torchsde"] def __init__( self : Tuple ,*_snake_case : Union[str, Any] ,**_snake_case : Any ) -> Union[str, Any]: """simple docstring""" requires_backends(self ,['''torch''', '''torchsde'''] ) @classmethod def UpperCAmelCase ( cls : List[str] ,*_snake_case : int ,**_snake_case : Union[str, Any] ) -> str: """simple docstring""" requires_backends(cls ,['''torch''', '''torchsde'''] ) @classmethod def UpperCAmelCase ( cls : List[Any] ,*_snake_case : List[Any] ,**_snake_case : List[str] ) -> List[Any]: """simple docstring""" requires_backends(cls ,['''torch''', '''torchsde'''] )
16
1
"""simple docstring""" import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: if "model" in orig_key: lowercase__ : Tuple = orig_key.replace('''model.''' , '''''' ) if "norm1" in orig_key: lowercase__ : List[str] = orig_key.replace('''norm1''' , '''attention.output.LayerNorm''' ) if "norm2" in orig_key: lowercase__ : List[str] = orig_key.replace('''norm2''' , '''output.LayerNorm''' ) if "norm" in orig_key: lowercase__ : List[str] = orig_key.replace('''norm''' , '''LayerNorm''' ) if "transformer" in orig_key: lowercase__ : Union[str, Any] = orig_key.split('''.''' )[0].split('''_''' )[-1] lowercase__ : List[str] = orig_key.replace(f"""transformer_{layer_num}""" , f"""encoder.layer.{layer_num}""" ) if "mha.attn" in orig_key: lowercase__ : Union[str, Any] = orig_key.replace('''mha.attn''' , '''attention.self''' ) if "mha" in orig_key: lowercase__ : str = orig_key.replace('''mha''' , '''attention''' ) if "W_q" in orig_key: lowercase__ : Any = orig_key.replace('''W_q''' , '''self.query''' ) if "W_k" in orig_key: lowercase__ : List[Any] = orig_key.replace('''W_k''' , '''self.key''' ) if "W_v" in orig_key: lowercase__ : Any = orig_key.replace('''W_v''' , '''self.value''' ) if "ff1" in orig_key: lowercase__ : Optional[int] = orig_key.replace('''ff1''' , '''intermediate.dense''' ) if "ff2" in orig_key: lowercase__ : Optional[Any] = orig_key.replace('''ff2''' , '''output.dense''' ) if "ff" in orig_key: lowercase__ : List[str] = orig_key.replace('''ff''' , '''output.dense''' ) if "mlm_class" in orig_key: lowercase__ : int = orig_key.replace('''mlm.mlm_class''' , '''cls.predictions.decoder''' ) if "mlm" in orig_key: lowercase__ : Optional[Any] = orig_key.replace('''mlm''' , '''cls.predictions.transform''' ) if "cls" not in orig_key: lowercase__ : Optional[Any] = '''yoso.''' + orig_key return orig_key def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: for key in orig_state_dict.copy().keys(): lowercase__ : Optional[Any] = orig_state_dict.pop(__lowerCamelCase ) if ("pooler" in key) or ("sen_class" in key): continue else: lowercase__ : Tuple = val lowercase__ : Union[str, Any] = orig_state_dict['''cls.predictions.decoder.bias'''] lowercase__ : List[str] = torch.arange(__lowerCamelCase ).expand((1, -1) ) + 2 return orig_state_dict def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : Tuple = torch.load(__lowerCamelCase , map_location='''cpu''' )['''model_state_dict'''] lowercase__ : List[Any] = YosoConfig.from_json_file(__lowerCamelCase ) lowercase__ : List[Any] = YosoForMaskedLM(__lowerCamelCase ) lowercase__ : Optional[Any] = convert_checkpoint_helper(config.max_position_embeddings , __lowerCamelCase ) print(model.load_state_dict(__lowerCamelCase ) ) model.eval() model.save_pretrained(__lowerCamelCase ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to YOSO pytorch checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for YOSO model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase_ = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
16
"""simple docstring""" import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node lowerCAmelCase_ = 4 lowerCAmelCase_ = 3 class __A ( A_ ): '''simple docstring''' pass def __UpperCAmelCase ( __lowerCamelCase ) -> Dict: for shard in shards: for i in range(__lowerCamelCase ): yield {"i": i, "shard": shard} def __UpperCAmelCase ( ) -> Tuple: lowercase__ : int = int(os.environ['''RANK'''] ) lowercase__ : str = int(os.environ['''WORLD_SIZE'''] ) lowercase__ : List[Any] = ArgumentParser() parser.add_argument('''--streaming''' , type=__lowerCamelCase ) parser.add_argument('''--local_rank''' , type=__lowerCamelCase ) parser.add_argument('''--num_workers''' , type=__lowerCamelCase , default=0 ) lowercase__ : int = parser.parse_args() lowercase__ : Optional[Any] = args.streaming lowercase__ : List[Any] = args.num_workers lowercase__ : Optional[Any] = {'''shards''': [f"""shard_{shard_idx}""" for shard_idx in range(__lowerCamelCase )]} lowercase__ : Dict = IterableDataset.from_generator(__lowerCamelCase , gen_kwargs=__lowerCamelCase ) if not streaming: lowercase__ : int = Dataset.from_list(list(__lowerCamelCase ) ) lowercase__ : int = split_dataset_by_node(__lowerCamelCase , rank=__lowerCamelCase , world_size=__lowerCamelCase ) lowercase__ : Optional[Any] = torch.utils.data.DataLoader(__lowerCamelCase , num_workers=__lowerCamelCase ) lowercase__ : Optional[Any] = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowercase__ : str = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) lowercase__ : str = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
16
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['FNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['FNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'FNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FNetForMaskedLM', 'FNetForMultipleChoice', 'FNetForNextSentencePrediction', 'FNetForPreTraining', 'FNetForQuestionAnswering', 'FNetForSequenceClassification', 'FNetForTokenClassification', 'FNetLayer', 'FNetModel', 'FNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
"""simple docstring""" from ...configuration_utils import PretrainedConfig lowerCAmelCase_ = { 'google/tapas-base-finetuned-sqa': ( 'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json' ), 'google/tapas-base-finetuned-wtq': ( 'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json' ), 'google/tapas-base-finetuned-wikisql-supervised': ( 'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json' ), 'google/tapas-base-finetuned-tabfact': ( 'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json' ), } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = "tapas" def __init__( self : List[Any] ,_snake_case : Dict=30_522 ,_snake_case : Union[str, Any]=768 ,_snake_case : int=12 ,_snake_case : Union[str, Any]=12 ,_snake_case : Union[str, Any]=3_072 ,_snake_case : List[Any]="gelu" ,_snake_case : Optional[int]=0.1 ,_snake_case : Tuple=0.1 ,_snake_case : List[Any]=1_024 ,_snake_case : Any=[3, 256, 256, 2, 256, 256, 10] ,_snake_case : List[Any]=0.02 ,_snake_case : Union[str, Any]=1e-12 ,_snake_case : str=0 ,_snake_case : Any=10.0 ,_snake_case : int=0 ,_snake_case : Optional[Any]=1.0 ,_snake_case : List[str]=None ,_snake_case : Tuple=1.0 ,_snake_case : Tuple=False ,_snake_case : List[Any]=None ,_snake_case : int=1.0 ,_snake_case : List[Any]=1.0 ,_snake_case : Optional[int]=False ,_snake_case : Optional[int]=False ,_snake_case : Optional[int]="ratio" ,_snake_case : Any=None ,_snake_case : Union[str, Any]=None ,_snake_case : List[str]=64 ,_snake_case : Optional[Any]=32 ,_snake_case : Optional[Any]=False ,_snake_case : Optional[int]=True ,_snake_case : Dict=False ,_snake_case : Tuple=False ,_snake_case : int=True ,_snake_case : List[str]=False ,_snake_case : Dict=None ,_snake_case : Optional[int]=None ,**_snake_case : int ,) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=_snake_case ,**_snake_case ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) lowercase__ : Optional[int] = vocab_size lowercase__ : List[str] = hidden_size lowercase__ : Any = num_hidden_layers lowercase__ : Optional[Any] = num_attention_heads lowercase__ : Optional[int] = hidden_act lowercase__ : List[Any] = intermediate_size lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : Dict = attention_probs_dropout_prob lowercase__ : str = max_position_embeddings lowercase__ : Dict = type_vocab_sizes lowercase__ : Optional[Any] = initializer_range lowercase__ : Dict = layer_norm_eps # Fine-tuning task hyperparameters lowercase__ : Any = positive_label_weight lowercase__ : int = num_aggregation_labels lowercase__ : List[str] = aggregation_loss_weight lowercase__ : Optional[int] = use_answer_as_supervision lowercase__ : Optional[Any] = answer_loss_importance lowercase__ : Union[str, Any] = use_normalized_answer_loss lowercase__ : str = huber_loss_delta lowercase__ : str = temperature lowercase__ : int = aggregation_temperature lowercase__ : List[Any] = use_gumbel_for_cells lowercase__ : Tuple = use_gumbel_for_aggregation lowercase__ : Union[str, Any] = average_approximation_function lowercase__ : Union[str, Any] = cell_selection_preference lowercase__ : Any = answer_loss_cutoff lowercase__ : List[Any] = max_num_rows lowercase__ : str = max_num_columns lowercase__ : int = average_logits_per_cell lowercase__ : str = select_one_column lowercase__ : str = allow_empty_column_selection lowercase__ : Any = init_cell_selection_weights_to_zero lowercase__ : Optional[int] = reset_position_index_per_cell lowercase__ : Union[str, Any] = disable_per_token_loss # Aggregation hyperparameters lowercase__ : Optional[Any] = aggregation_labels lowercase__ : List[Any] = no_aggregation_label_index if isinstance(self.aggregation_labels ,_snake_case ): lowercase__ : Union[str, Any] = {int(_snake_case ): v for k, v in aggregation_labels.items()}
16
1
"""simple docstring""" from math import isclose, sqrt def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> tuple[float, float, float]: lowercase__ : Union[str, Any] = point_y / 4 / point_x lowercase__ : Any = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) lowercase__ : Dict = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) lowercase__ : Any = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 lowercase__ : Optional[Any] = outgoing_gradient**2 + 4 lowercase__ : List[str] = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) lowercase__ : Union[str, Any] = (point_y - outgoing_gradient * point_x) ** 2 - 1_00 lowercase__ : List[Any] = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) lowercase__ : Optional[int] = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point lowercase__ : Any = x_minus if isclose(__lowerCamelCase , __lowerCamelCase ) else x_plus lowercase__ : Dict = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def __UpperCAmelCase ( __lowerCamelCase = 1.4 , __lowerCamelCase = -9.6 ) -> int: lowercase__ : int = 0 lowercase__ : float = first_x_coord lowercase__ : float = first_y_coord lowercase__ : float = (1_0.1 - point_y) / (0.0 - point_x) while not (-0.0_1 <= point_x <= 0.0_1 and point_y > 0): lowercase__ , lowercase__ , lowercase__ : List[Any] = next_point(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F'''{solution() = }''')
16
"""simple docstring""" import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : '''simple docstring''' def __init__( self : Optional[int] ,_snake_case : Optional[Any] ,_snake_case : Union[str, Any]=13 ,_snake_case : Any=32 ,_snake_case : int=2 ,_snake_case : str=3 ,_snake_case : Optional[Any]=16 ,_snake_case : List[Any]=[1, 2, 1] ,_snake_case : Dict=[2, 2, 4] ,_snake_case : List[Any]=2 ,_snake_case : Any=2.0 ,_snake_case : Optional[int]=True ,_snake_case : Optional[int]=0.0 ,_snake_case : Union[str, Any]=0.0 ,_snake_case : str=0.1 ,_snake_case : List[Any]="gelu" ,_snake_case : Tuple=False ,_snake_case : Optional[int]=True ,_snake_case : str=0.02 ,_snake_case : List[str]=1e-5 ,_snake_case : int=True ,_snake_case : Dict=None ,_snake_case : str=True ,_snake_case : List[Any]=10 ,_snake_case : Any=8 ,) -> Union[str, Any]: """simple docstring""" lowercase__ : Dict = parent lowercase__ : Any = batch_size lowercase__ : Union[str, Any] = image_size lowercase__ : Dict = patch_size lowercase__ : int = num_channels lowercase__ : Any = embed_dim lowercase__ : int = depths lowercase__ : Dict = num_heads lowercase__ : List[Any] = window_size lowercase__ : int = mlp_ratio lowercase__ : Optional[int] = qkv_bias lowercase__ : str = hidden_dropout_prob lowercase__ : List[Any] = attention_probs_dropout_prob lowercase__ : Dict = drop_path_rate lowercase__ : int = hidden_act lowercase__ : Tuple = use_absolute_embeddings lowercase__ : Tuple = patch_norm lowercase__ : Tuple = layer_norm_eps lowercase__ : Optional[Any] = initializer_range lowercase__ : int = is_training lowercase__ : Optional[int] = scope lowercase__ : str = use_labels lowercase__ : Dict = type_sequence_label_size lowercase__ : Union[str, Any] = encoder_stride def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Optional[Any] = None if self.use_labels: lowercase__ : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" return SwinvaConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def UpperCAmelCase ( self : str ,_snake_case : Dict ,_snake_case : List[str] ,_snake_case : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ : Any = SwinvaModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : str = model(_snake_case ) lowercase__ : List[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase__ : Tuple = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : List[str] ,_snake_case : Optional[Any] ,_snake_case : int ) -> Any: """simple docstring""" lowercase__ : Union[str, Any] = SwinvaForMaskedImageModeling(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Tuple = model(_snake_case ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase__ : Optional[int] = 1 lowercase__ : List[Any] = SwinvaForMaskedImageModeling(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ : str = model(_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase ( self : str ,_snake_case : str ,_snake_case : str ,_snake_case : Tuple ) -> Any: """simple docstring""" lowercase__ : Tuple = self.type_sequence_label_size lowercase__ : Dict = SwinvaForImageClassification(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : str = model(_snake_case ,labels=_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self : Dict ) -> Dict: """simple docstring""" lowercase__ : Optional[int] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = config_and_inputs lowercase__ : List[str] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) lowerCAmelCase : Optional[int] = ( {"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification} if is_torch_available() else {} ) lowerCAmelCase : List[Any] = False lowerCAmelCase : Dict = False lowerCAmelCase : List[Any] = False lowerCAmelCase : Any = False def UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[Any] = SwinvaModelTester(self ) lowercase__ : List[str] = ConfigTester(self ,config_class=_snake_case ,embed_dim=37 ) def UpperCAmelCase ( self : int ) -> Any: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self : str ) -> List[Any]: """simple docstring""" lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) @unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''' ) def UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason='''Swinv2 does not use inputs_embeds''' ) def UpperCAmelCase ( self : List[str] ) -> str: """simple docstring""" pass def UpperCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[Any] = model_class(_snake_case ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) lowercase__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_snake_case ,nn.Linear ) ) def UpperCAmelCase ( self : int ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : str = model_class(_snake_case ) lowercase__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[Any] = [*signature.parameters.keys()] lowercase__ : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_snake_case ) def UpperCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Tuple = True for model_class in self.all_model_classes: lowercase__ : Optional[int] = True lowercase__ : str = False lowercase__ : Union[str, Any] = True lowercase__ : Optional[Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : str = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : Dict = outputs.attentions lowercase__ : Any = len(self.model_tester.depths ) self.assertEqual(len(_snake_case ) ,_snake_case ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ : List[Any] = True lowercase__ : Optional[Any] = config.window_size**2 lowercase__ : Any = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : List[str] = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : Optional[Any] = outputs.attentions self.assertEqual(len(_snake_case ) ,_snake_case ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) lowercase__ : Optional[Any] = len(_snake_case ) # Check attention is always last and order is fine lowercase__ : Optional[int] = True lowercase__ : Tuple = True lowercase__ : Optional[Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : Optional[Any] = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) if hasattr(self.model_tester ,'''num_hidden_states_types''' ): lowercase__ : int = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states lowercase__ : List[str] = 2 self.assertEqual(out_len + added_hidden_states ,len(_snake_case ) ) lowercase__ : Optional[int] = outputs.attentions self.assertEqual(len(_snake_case ) ,_snake_case ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) def UpperCAmelCase ( self : List[str] ,_snake_case : int ,_snake_case : List[str] ,_snake_case : Optional[int] ,_snake_case : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : List[Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : int = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : Optional[int] = outputs.hidden_states lowercase__ : List[Any] = getattr( self.model_tester ,'''expected_num_hidden_layers''' ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_snake_case ) ,_snake_case ) # Swinv2 has a different seq_length lowercase__ : Dict = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) lowercase__ : Tuple = outputs.reshaped_hidden_states self.assertEqual(len(_snake_case ) ,_snake_case ) lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[str] = reshaped_hidden_states[0].shape lowercase__ : int = ( reshaped_hidden_states[0].view(_snake_case ,_snake_case ,height * width ).permute(0 ,2 ,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def UpperCAmelCase ( self : Tuple ) -> int: """simple docstring""" lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowercase__ : List[str] = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,_snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : str = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,_snake_case ) def UpperCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = 3 lowercase__ : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase__ : Optional[int] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : Dict = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase__ : Dict = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowercase__ : str = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Dict = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,(padded_height, padded_width) ) def UpperCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_snake_case ) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Union[str, Any] = SwinvaModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Tuple = _config_zero_init(_snake_case ) for model_class in self.all_model_classes: lowercase__ : Optional[int] = model_class(config=_snake_case ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" ,) @require_vision @require_torch class __A ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" return ( AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self : Any ) -> List[str]: """simple docstring""" lowercase__ : str = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ).to( _snake_case ) lowercase__ : Union[str, Any] = self.default_image_processor lowercase__ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowercase__ : Dict = image_processor(images=_snake_case ,return_tensors='''pt''' ).to(_snake_case ) # forward pass with torch.no_grad(): lowercase__ : Optional[Any] = model(**_snake_case ) # verify the logits lowercase__ : str = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape ,_snake_case ) lowercase__ : Dict = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_snake_case ,atol=1e-4 ) )
16
1
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str: return "\n".join( f"""{number} * {i} = {number * i}""" for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
16
"""simple docstring""" import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCAmelCase_ = version.parse(importlib_metadata.version('nltk')) if NLTK_VERSION >= version.Version('3.6.4'): from nltk import word_tokenize lowerCAmelCase_ = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n' lowerCAmelCase_ = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n' lowerCAmelCase_ = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''string''' ,id='''sequence''' ), '''references''': datasets.Value('''string''' ,id='''sequence''' ), } ) ,codebase_urls=['''https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'''] ,reference_urls=[ '''https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score''', '''https://en.wikipedia.org/wiki/METEOR''', ] ,) def UpperCAmelCase ( self : str ,_snake_case : Dict ) -> Dict: """simple docstring""" import nltk nltk.download('''wordnet''' ) if NLTK_VERSION >= version.Version('''3.6.5''' ): nltk.download('''punkt''' ) if NLTK_VERSION >= version.Version('''3.6.6''' ): nltk.download('''omw-1.4''' ) def UpperCAmelCase ( self : Dict ,_snake_case : Dict ,_snake_case : List[str] ,_snake_case : Tuple=0.9 ,_snake_case : Optional[int]=3 ,_snake_case : Union[str, Any]=0.5 ) -> List[str]: """simple docstring""" if NLTK_VERSION >= version.Version('''3.6.5''' ): lowercase__ : int = [ meteor_score.single_meteor_score( word_tokenize(_snake_case ) ,word_tokenize(_snake_case ) ,alpha=_snake_case ,beta=_snake_case ,gamma=_snake_case ) for ref, pred in zip(_snake_case ,_snake_case ) ] else: lowercase__ : Tuple = [ meteor_score.single_meteor_score(_snake_case ,_snake_case ,alpha=_snake_case ,beta=_snake_case ,gamma=_snake_case ) for ref, pred in zip(_snake_case ,_snake_case ) ] return {"meteor": np.mean(_snake_case )}
16
1
"""simple docstring""" # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase_ = { 'configuration_cpmant': ['CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CpmAntConfig'], 'tokenization_cpmant': ['CpmAntTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST', 'CpmAntForCausalLM', 'CpmAntModel', 'CpmAntPreTrainedModel', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = '▁' lowerCAmelCase_ = {'vocab_file': 'sentencepiece.bpe.model'} lowerCAmelCase_ = { 'vocab_file': { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model', } } lowerCAmelCase_ = { 'facebook/xglm-564M': 2_048, } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[Any] = VOCAB_FILES_NAMES lowerCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : int = ["input_ids", "attention_mask"] def __init__( self : int ,_snake_case : Dict ,_snake_case : Dict="<s>" ,_snake_case : Dict="</s>" ,_snake_case : str="</s>" ,_snake_case : Optional[Any]="<s>" ,_snake_case : Optional[Any]="<unk>" ,_snake_case : Optional[int]="<pad>" ,_snake_case : Optional[Dict[str, Any]] = None ,**_snake_case : str ,) -> None: """simple docstring""" lowercase__ : Any = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer lowercase__ : Any = 7 lowercase__ : Optional[int] = [f"""<madeupword{i}>""" for i in range(self.num_madeup_words )] lowercase__ : Dict = kwargs.get('''additional_special_tokens''' ,[] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=_snake_case ,eos_token=_snake_case ,unk_token=_snake_case ,sep_token=_snake_case ,cls_token=_snake_case ,pad_token=_snake_case ,sp_model_kwargs=self.sp_model_kwargs ,**_snake_case ,) lowercase__ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_snake_case ) ) lowercase__ : str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase__ : Optional[int] = 1 # Mimic fairseq token-to-id alignment for the first 4 token lowercase__ : Optional[int] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} lowercase__ : List[str] = len(self.sp_model ) lowercase__ : Tuple = {f"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(_snake_case ) lowercase__ : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : int ) -> Optional[int]: """simple docstring""" lowercase__ : List[Any] = self.__dict__.copy() lowercase__ : Optional[int] = None lowercase__ : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self : Dict ,_snake_case : List[str] ) -> Any: """simple docstring""" lowercase__ : int = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): lowercase__ : Dict = {} lowercase__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCAmelCase ( self : Any ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.sep_token_id] + token_ids_a lowercase__ : Optional[Any] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def UpperCAmelCase ( self : Any ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ,_snake_case : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case ,token_ids_a=_snake_case ,already_has_special_tokens=_snake_case ) if token_ids_a is None: return [1] + ([0] * len(_snake_case )) return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ : List[Any] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def UpperCAmelCase ( self : str ) -> Tuple: """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ : Union[str, Any] = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self : List[Any] ,_snake_case : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(_snake_case ,out_type=_snake_case ) def UpperCAmelCase ( self : int ,_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase__ : Tuple = self.sp_model.PieceToId(_snake_case ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase ( self : Any ,_snake_case : List[str] ) -> Any: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase ( self : Tuple ,_snake_case : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = ''''''.join(_snake_case ).replace(_snake_case ,''' ''' ).strip() return out_string def UpperCAmelCase ( self : Any ,_snake_case : str ,_snake_case : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_snake_case ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ : Any = os.path.join( _snake_case ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case ,'''wb''' ) as fi: lowercase__ : Dict = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,)
16
1
"""simple docstring""" import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __A : '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : int ,_snake_case : Any=3 ,_snake_case : List[Any]=32 ,_snake_case : str=3 ,_snake_case : List[Any]=10 ,_snake_case : Any=[8, 16, 32, 64] ,_snake_case : Optional[int]=[1, 1, 2, 1] ,_snake_case : Dict=True ,_snake_case : Dict=True ,_snake_case : List[Any]="relu" ,_snake_case : int=3 ,_snake_case : Dict=None ,_snake_case : List[Any]=["stage2", "stage3", "stage4"] ,_snake_case : List[Any]=[2, 3, 4] ,_snake_case : int=1 ,) -> Optional[int]: """simple docstring""" lowercase__ : Any = parent lowercase__ : Dict = batch_size lowercase__ : Any = image_size lowercase__ : Dict = num_channels lowercase__ : int = embeddings_size lowercase__ : str = hidden_sizes lowercase__ : Tuple = depths lowercase__ : Tuple = is_training lowercase__ : str = use_labels lowercase__ : int = hidden_act lowercase__ : List[Any] = num_labels lowercase__ : Dict = scope lowercase__ : Dict = len(_snake_case ) lowercase__ : Optional[int] = out_features lowercase__ : List[str] = out_indices lowercase__ : Any = num_groups def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Optional[int] = None if self.use_labels: lowercase__ : str = ids_tensor([self.batch_size] ,self.num_labels ) lowercase__ : Optional[int] = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" return BitConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,out_features=self.out_features ,out_indices=self.out_indices ,num_groups=self.num_groups ,) def UpperCAmelCase ( self : Tuple ,_snake_case : Optional[Any] ,_snake_case : Any ,_snake_case : str ) -> int: """simple docstring""" lowercase__ : Tuple = BitModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Union[str, Any] = model(_snake_case ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def UpperCAmelCase ( self : str ,_snake_case : List[str] ,_snake_case : int ,_snake_case : Optional[int] ) -> Dict: """simple docstring""" lowercase__ : Optional[int] = self.num_labels lowercase__ : List[str] = BitForImageClassification(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : int = model(_snake_case ,labels=_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : List[Any] ,_snake_case : Tuple ,_snake_case : str ) -> Dict: """simple docstring""" lowercase__ : int = BitBackbone(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : str = model(_snake_case ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowercase__ : Tuple = None lowercase__ : Optional[int] = BitBackbone(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : int = model(_snake_case ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) ,1 ) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] ) def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Optional[Any] = config_and_inputs lowercase__ : Any = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : List[str] = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () lowerCAmelCase : List[str] = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) lowerCAmelCase : Any = False lowerCAmelCase : str = False lowerCAmelCase : str = False lowerCAmelCase : Optional[int] = False lowerCAmelCase : List[str] = False def UpperCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" lowercase__ : Optional[Any] = BitModelTester(self ) lowercase__ : Tuple = ConfigTester(self ,config_class=_snake_case ,has_text_modality=_snake_case ) def UpperCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self : int ) -> Tuple: """simple docstring""" return @unittest.skip(reason='''Bit does not output attentions''' ) def UpperCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def UpperCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" pass def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = model_class(_snake_case ) lowercase__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : List[str] = [*signature.parameters.keys()] lowercase__ : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_snake_case ) def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_snake_case ) def UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[Any] = model_class(config=_snake_case ) for name, module in model.named_modules(): if isinstance(_snake_case ,(nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) ,msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" ,) self.assertTrue( torch.all(module.bias == 0 ) ,msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" ,) def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" def check_hidden_states_output(_snake_case : Union[str, Any] ,_snake_case : int ,_snake_case : Optional[Any] ): lowercase__ : Optional[int] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : Tuple = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__ : int = self.model_tester.num_stages self.assertEqual(len(_snake_case ) ,expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : str = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase__ : Dict = layer_type lowercase__ : Tuple = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : List[Any] = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def UpperCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" pass def UpperCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def UpperCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Dict = BitModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def __UpperCAmelCase ( ) -> List[str]: lowercase__ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __A ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ : Union[str, Any] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_snake_case ) lowercase__ : List[Any] = self.default_image_processor lowercase__ : str = prepare_img() lowercase__ : str = image_processor(images=_snake_case ,return_tensors='''pt''' ).to(_snake_case ) # forward pass with torch.no_grad(): lowercase__ : Optional[int] = model(**_snake_case ) # verify the logits lowercase__ : Tuple = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape ,_snake_case ) lowercase__ : List[str] = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_snake_case ,atol=1e-4 ) ) @require_torch class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[int] = (BitBackbone,) if is_torch_available() else () lowerCAmelCase : Any = BitConfig lowerCAmelCase : Optional[int] = False def UpperCAmelCase ( self : Any ) -> Any: """simple docstring""" lowercase__ : Tuple = BitModelTester(self )
16
"""simple docstring""" import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = True ) -> Union[str, Any]: print(f"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 1_28: if name[-1] == "S": lowercase__ : str = timm.create_model('''levit_128s''' , pretrained=__lowerCamelCase ) else: lowercase__ : Tuple = timm.create_model('''levit_128''' , pretrained=__lowerCamelCase ) if hidden_sizes == 1_92: lowercase__ : Union[str, Any] = timm.create_model('''levit_192''' , pretrained=__lowerCamelCase ) if hidden_sizes == 2_56: lowercase__ : str = timm.create_model('''levit_256''' , pretrained=__lowerCamelCase ) if hidden_sizes == 3_84: lowercase__ : str = timm.create_model('''levit_384''' , pretrained=__lowerCamelCase ) from_model.eval() lowercase__ : Optional[int] = LevitForImageClassificationWithTeacher(__lowerCamelCase ).eval() lowercase__ : str = OrderedDict() lowercase__ : int = from_model.state_dict() lowercase__ : Dict = list(from_model.state_dict().keys() ) lowercase__ : Any = list(our_model.state_dict().keys() ) print(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) for i in range(len(__lowerCamelCase ) ): lowercase__ : str = weights[og_keys[i]] our_model.load_state_dict(__lowerCamelCase ) lowercase__ : Optional[int] = torch.randn((2, 3, 2_24, 2_24) ) lowercase__ : Optional[int] = from_model(__lowerCamelCase ) lowercase__ : List[Any] = our_model(__lowerCamelCase ).logits assert torch.allclose(__lowerCamelCase , __lowerCamelCase ), "The model logits don't match the original one." lowercase__ : Any = name print(__lowerCamelCase ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) lowercase__ : int = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f"""Pushed {checkpoint_name}""" ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = True ) -> List[Any]: lowercase__ : Any = '''imagenet-1k-id2label.json''' lowercase__ : Tuple = 10_00 lowercase__ : Dict = (1, num_labels) lowercase__ : List[str] = '''huggingface/label-files''' lowercase__ : str = num_labels lowercase__ : List[Any] = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ : Union[str, Any] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : Union[str, Any] = idalabel lowercase__ : Optional[int] = {v: k for k, v in idalabel.items()} lowercase__ : List[Any] = partial(__lowerCamelCase , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase ) lowercase__ : Tuple = { '''levit-128S''': 1_28, '''levit-128''': 1_28, '''levit-192''': 1_92, '''levit-256''': 2_56, '''levit-384''': 3_84, } lowercase__ : Any = { '''levit-128S''': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-128''': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-192''': ImageNetPreTrainedConfig( hidden_sizes=[1_92, 2_88, 3_84] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-256''': ImageNetPreTrainedConfig( hidden_sizes=[2_56, 3_84, 5_12] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-384''': ImageNetPreTrainedConfig( hidden_sizes=[3_84, 5_12, 7_68] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , __lowerCamelCase , names_to_config[model_name] , __lowerCamelCase , __lowerCamelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return config, expected_shape if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
16
1
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase_ = logging.get_logger(__name__) # TODO: upload to AWS lowerCAmelCase_ = { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json' ), } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = "retribert" def __init__( self : Optional[Any] ,_snake_case : int=30_522 ,_snake_case : Any=768 ,_snake_case : List[Any]=8 ,_snake_case : int=12 ,_snake_case : Union[str, Any]=3_072 ,_snake_case : List[Any]="gelu" ,_snake_case : int=0.1 ,_snake_case : Optional[Any]=0.1 ,_snake_case : str=512 ,_snake_case : Union[str, Any]=2 ,_snake_case : Optional[int]=0.02 ,_snake_case : str=1e-12 ,_snake_case : List[str]=True ,_snake_case : Dict=128 ,_snake_case : str=0 ,**_snake_case : Union[str, Any] ,) -> Union[str, Any]: """simple docstring""" super().__init__(pad_token_id=_snake_case ,**_snake_case ) lowercase__ : List[str] = vocab_size lowercase__ : Optional[Any] = hidden_size lowercase__ : int = num_hidden_layers lowercase__ : int = num_attention_heads lowercase__ : List[Any] = hidden_act lowercase__ : Dict = intermediate_size lowercase__ : Tuple = hidden_dropout_prob lowercase__ : int = attention_probs_dropout_prob lowercase__ : Optional[Any] = max_position_embeddings lowercase__ : List[Any] = type_vocab_size lowercase__ : Optional[Any] = initializer_range lowercase__ : List[str] = layer_norm_eps lowercase__ : int = share_encoders lowercase__ : Dict = projection_dim
16
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __A : '''simple docstring''' lowerCAmelCase : List[str] lowerCAmelCase : Optional[str] = None # Automatically constructed lowerCAmelCase : ClassVar[str] = "dict" lowerCAmelCase : ClassVar[Any] = None lowerCAmelCase : str = field(default="Translation" ,init=A_ ,repr=A_ ) def __call__( self : List[str] ) -> Any: """simple docstring""" return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def UpperCAmelCase ( self : List[str] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class __A : '''simple docstring''' lowerCAmelCase : Optional[List] = None lowerCAmelCase : Optional[int] = None lowerCAmelCase : Optional[str] = None # Automatically constructed lowerCAmelCase : ClassVar[str] = "dict" lowerCAmelCase : ClassVar[Any] = None lowerCAmelCase : str = field(default="TranslationVariableLanguages" ,init=A_ ,repr=A_ ) def UpperCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[int] = sorted(set(self.languages ) ) if self.languages else None lowercase__ : Dict = len(self.languages ) if self.languages else None def __call__( self : List[Any] ) -> List[Any]: """simple docstring""" return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def UpperCAmelCase ( self : Dict ,_snake_case : Tuple ) -> int: """simple docstring""" lowercase__ : List[Any] = set(self.languages ) if self.languages and set(_snake_case ) - lang_set: raise ValueError( f"""Some languages in example ({", ".join(sorted(set(_snake_case ) - lang_set ) )}) are not in valid set ({", ".join(_snake_case )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. lowercase__ : str = [] for lang, text in translation_dict.items(): if isinstance(_snake_case ,_snake_case ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. lowercase__ , lowercase__ : Optional[Any] = zip(*sorted(_snake_case ) ) return {"language": languages, "translation": translations} def UpperCAmelCase ( self : List[Any] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
16
1
"""simple docstring""" import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __A ( A_ ): '''simple docstring''' lowerCAmelCase : int = ["image_processor", "tokenizer"] lowerCAmelCase : Optional[Any] = "FlavaImageProcessor" lowerCAmelCase : Dict = ("BertTokenizer", "BertTokenizerFast") def __init__( self : Union[str, Any] ,_snake_case : List[str]=None ,_snake_case : List[str]=None ,**_snake_case : Union[str, Any] ) -> int: """simple docstring""" lowercase__ : Dict = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' ,_snake_case ,) lowercase__ : Dict = kwargs.pop('''feature_extractor''' ) lowercase__ : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_snake_case ,_snake_case ) lowercase__ : str = self.image_processor def __call__( self : Tuple ,_snake_case : Optional[ImageInput] = None ,_snake_case : Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None ,_snake_case : bool = True ,_snake_case : Union[bool, str, PaddingStrategy] = False ,_snake_case : Union[bool, str, TruncationStrategy] = False ,_snake_case : Optional[int] = None ,_snake_case : int = 0 ,_snake_case : Optional[int] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ,_snake_case : bool = False ,_snake_case : bool = False ,_snake_case : bool = False ,_snake_case : bool = False ,_snake_case : bool = True ,_snake_case : Optional[Union[str, TensorType]] = None ,**_snake_case : Any ,) -> Tuple: """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: lowercase__ : List[str] = self.tokenizer( text=_snake_case ,add_special_tokens=_snake_case ,padding=_snake_case ,truncation=_snake_case ,max_length=_snake_case ,stride=_snake_case ,pad_to_multiple_of=_snake_case ,return_token_type_ids=_snake_case ,return_attention_mask=_snake_case ,return_overflowing_tokens=_snake_case ,return_special_tokens_mask=_snake_case ,return_offsets_mapping=_snake_case ,return_length=_snake_case ,verbose=_snake_case ,return_tensors=_snake_case ,**_snake_case ,) if images is not None: lowercase__ : List[Any] = self.image_processor( _snake_case ,return_image_mask=_snake_case ,return_codebook_pixels=_snake_case ,return_tensors=_snake_case ,**_snake_case ,) if text is not None and images is not None: encoding.update(_snake_case ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_snake_case ) ,tensor_type=_snake_case ) def UpperCAmelCase ( self : int ,*_snake_case : Any ,**_snake_case : List[str] ) -> int: """simple docstring""" return self.tokenizer.batch_decode(*_snake_case ,**_snake_case ) def UpperCAmelCase ( self : List[str] ,*_snake_case : List[Any] ,**_snake_case : Any ) -> Any: """simple docstring""" return self.tokenizer.decode(*_snake_case ,**_snake_case ) @property def UpperCAmelCase ( self : List[Any] ) -> int: """simple docstring""" lowercase__ : Optional[int] = self.tokenizer.model_input_names lowercase__ : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' ,_snake_case ,) return self.image_processor_class @property def UpperCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' ,_snake_case ,) return self.image_processor
16
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase_ = 16 lowerCAmelCase_ = 32 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = 16 ) -> Optional[Any]: lowercase__ : Optional[Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowercase__ : int = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) lowercase__ : str = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCamelCase , max_length=__lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ : str = datasets.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : Union[str, Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ : List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ : Optional[int] = 16 elif accelerator.mixed_precision != "no": lowercase__ : List[Any] = 8 else: lowercase__ : int = None return tokenizer.pad( __lowerCamelCase , padding='''longest''' , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. lowercase__ : List[Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) lowercase__ : str = DataLoader( tokenized_datasets['''validation'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase_ = mocked_dataloaders # noqa: F811 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __lowerCamelCase ) == "1": lowercase__ : List[Any] = 2 # Initialize accelerator lowercase__ : Optional[int] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : str = config['''lr'''] lowercase__ : str = int(config['''num_epochs'''] ) lowercase__ : Optional[int] = int(config['''seed'''] ) lowercase__ : Tuple = int(config['''batch_size'''] ) lowercase__ : List[Any] = evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__lowerCamelCase ) def inner_training_loop(__lowerCamelCase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : List[str] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ : Tuple = model.to(accelerator.device ) # Instantiate optimizer lowercase__ : List[str] = AdamW(params=model.parameters() , lr=__lowerCamelCase ) lowercase__ , lowercase__ : List[Any] = get_dataloaders(__lowerCamelCase , __lowerCamelCase ) # Instantiate scheduler lowercase__ : Optional[int] = get_linear_schedule_with_warmup( optimizer=__lowerCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__lowerCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Optional[int] = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Now we train the model for epoch in range(__lowerCamelCase ): model.train() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase__ : Dict = model(**__lowerCamelCase ) lowercase__ : List[Any] = outputs.loss accelerator.backward(__lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ : Tuple = model(**__lowerCamelCase ) lowercase__ : Any = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ : int = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__lowerCamelCase , references=__lowerCamelCase , ) lowercase__ : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __lowerCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def __UpperCAmelCase ( ) -> Dict: lowercase__ : Optional[int] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__lowerCamelCase , default=__lowerCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowercase__ : int = parser.parse_args() lowercase__ : Union[str, Any] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
16
1
"""simple docstring""" import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class __A ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Tuple = inspect.getfile(accelerate.test_utils ) lowerCAmelCase : List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_cli.py"] ) lowerCAmelCase : Tuple = ["accelerate", "launch"] lowerCAmelCase : Union[str, Any] = Path.home() / ".cache/huggingface/accelerate" lowerCAmelCase : Optional[int] = "default_config.yaml" lowerCAmelCase : Union[str, Any] = config_folder / config_file lowerCAmelCase : Union[str, Any] = config_folder / "_default_config.yaml" lowerCAmelCase : Optional[Any] = Path("tests/test_configs" ) @classmethod def UpperCAmelCase ( cls : Optional[Any] ) -> Optional[int]: """simple docstring""" if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def UpperCAmelCase ( cls : str ) -> Dict: """simple docstring""" if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def UpperCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[int] = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] ,env=os.environ.copy() ) def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" for config in sorted(self.test_config_path.glob('''**/*.yaml''' ) ): with self.subTest(config_file=_snake_case ): execute_subprocess_async( self.base_cmd + ['''--config_file''', str(_snake_case ), self.test_file_path] ,env=os.environ.copy() ) def UpperCAmelCase ( self : Tuple ) -> str: """simple docstring""" execute_subprocess_async(['''accelerate''', '''test'''] ,env=os.environ.copy() ) class __A ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase : str = "test-tpu" lowerCAmelCase : Dict = "us-central1-a" lowerCAmelCase : List[str] = "ls" lowerCAmelCase : Any = ["accelerate", "tpu-config"] lowerCAmelCase : Any = "cd /usr/share" lowerCAmelCase : Union[str, Any] = "tests/test_samples/test_command_file.sh" lowerCAmelCase : List[str] = "Running gcloud compute tpus tpu-vm ssh" def UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ : Dict = run_command( self.cmd + ['''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug'''] ,return_stdout=_snake_case ,) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" ,_snake_case ,) def UpperCAmelCase ( self : Any ) -> List[str]: """simple docstring""" lowercase__ : Tuple = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] ,return_stdout=_snake_case ,) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" ,_snake_case ,) def UpperCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" lowercase__ : List[str] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--debug'''] ,return_stdout=_snake_case ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" ,_snake_case ,) def UpperCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--debug'''] ,return_stdout=_snake_case ,) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" ,_snake_case ,) def UpperCAmelCase ( self : Any ) -> int: """simple docstring""" lowercase__ : Tuple = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--command''', '''echo "Hello World"''', '''--debug''', ] ,return_stdout=_snake_case ,) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all""" ,_snake_case ,) def UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command_file''', self.command_file, '''--debug'''] ,return_stdout=_snake_case ,) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" ,_snake_case ,) def UpperCAmelCase ( self : Any ) -> List[str]: """simple docstring""" lowercase__ : Tuple = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command_file''', self.command_file, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] ,return_stdout=_snake_case ,) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" ,_snake_case ,) def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowercase__ : int = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--debug'''] ,return_stdout=_snake_case ,) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all""" ,_snake_case ,) def UpperCAmelCase ( self : int ) -> List[str]: """simple docstring""" lowercase__ : Dict = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--accelerate_version''', '''12.0.0''', '''--debug''', ] ,return_stdout=_snake_case ,) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all""" ,_snake_case ,)
16
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __UpperCAmelCase ( __lowerCamelCase ) -> Any: lowercase__ : Optional[int] = [] embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""", f"""stage{idx}.patch_embed.proj.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""", f"""stage{idx}.patch_embed.proj.bias""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""", f"""stage{idx}.patch_embed.norm.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""", f"""stage{idx}.patch_embed.norm.bias""", ) ) return embed def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Dict: lowercase__ : str = [] attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj.bias""", ) ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", f"""stage{idx}.blocks.{cnt}.norm1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", f"""stage{idx}.blocks.{cnt}.norm1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", f"""stage{idx}.blocks.{cnt}.norm2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", f"""stage{idx}.blocks.{cnt}.norm2.bias""") ) return attention_weights def __UpperCAmelCase ( __lowerCamelCase ) -> Tuple: lowercase__ : List[str] = [] token.append((f"""cvt.encoder.stages.{idx}.cls_token""", '''stage2.cls_token''') ) return token def __UpperCAmelCase ( ) -> Optional[int]: lowercase__ : List[str] = [] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: lowercase__ : List[Any] = '''imagenet-1k-id2label.json''' lowercase__ : Optional[Any] = 10_00 lowercase__ : Optional[Any] = '''huggingface/label-files''' lowercase__ : Dict = num_labels lowercase__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) ) , '''r''' ) ) lowercase__ : int = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = idalabel lowercase__ : str = {v: k for k, v in idalabel.items()} lowercase__ : Any = CvtConfig(num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13": lowercase__ : int = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21": lowercase__ : int = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowercase__ : List[Any] = [2, 2, 20] lowercase__ : Any = [3, 12, 16] lowercase__ : Tuple = [1_92, 7_68, 10_24] lowercase__ : List[Any] = CvtForImageClassification(__lowerCamelCase ) lowercase__ : str = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) lowercase__ : List[str] = image_size lowercase__ : Union[str, Any] = torch.load(__lowerCamelCase , map_location=torch.device('''cpu''' ) ) lowercase__ : int = OrderedDict() lowercase__ : List[Any] = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowercase__ : Any = list_of_state_dict + cls_token(__lowerCamelCase ) lowercase__ : Any = list_of_state_dict + embeddings(__lowerCamelCase ) for cnt in range(config.depth[idx] ): lowercase__ : Tuple = list_of_state_dict + attention(__lowerCamelCase , __lowerCamelCase ) lowercase__ : List[Any] = list_of_state_dict + final() for gg in list_of_state_dict: print(__lowerCamelCase ) for i in range(len(__lowerCamelCase ) ): lowercase__ : Optional[Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) image_processor.save_pretrained(__lowerCamelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=R'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCAmelCase_ = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
16
1
"""simple docstring""" import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('>=', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType lowerCAmelCase_ = get_logger(__name__) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=0 ) -> List[Any]: os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) with FSDP.state_dict_type( __lowerCamelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): lowercase__ : Optional[int] = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: lowercase__ : Optional[Any] = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" lowercase__ : Tuple = os.path.join(__lowerCamelCase , __lowerCamelCase ) if accelerator.process_index == 0: logger.info(f"""Saving model to {output_model_file}""" ) torch.save(__lowerCamelCase , __lowerCamelCase ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: lowercase__ : Optional[int] = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) lowercase__ : Any = os.path.join(__lowerCamelCase , __lowerCamelCase ) logger.info(f"""Saving model to {output_model_file}""" ) torch.save(__lowerCamelCase , __lowerCamelCase ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: lowercase__ : Union[str, Any] = os.path.join(__lowerCamelCase , f"""{MODEL_NAME}_{model_index}""" ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) logger.info(f"""Saving model to {ckpt_dir}""" ) lowercase__ : Any = {'''model''': state_dict} dist_cp.save_state_dict( state_dict=__lowerCamelCase , storage_writer=dist_cp.FileSystemWriter(__lowerCamelCase ) , planner=DefaultSavePlanner() , ) logger.info(f"""Model saved to {ckpt_dir}""" ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=0 ) -> Tuple: accelerator.wait_for_everyone() with FSDP.state_dict_type( __lowerCamelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(__lowerCamelCase ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( '''Set the `sync_module_states` flag to `True` so that model states are synced across processes when ''' '''initializing FSDP object''' ) return lowercase__ : Optional[Any] = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" lowercase__ : Any = os.path.join(__lowerCamelCase , __lowerCamelCase ) logger.info(f"""Loading model from {input_model_file}""" ) lowercase__ : List[Any] = torch.load(__lowerCamelCase ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: lowercase__ : List[Any] = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) lowercase__ : Dict = os.path.join(__lowerCamelCase , __lowerCamelCase ) logger.info(f"""Loading model from {input_model_file}""" ) lowercase__ : List[str] = torch.load(__lowerCamelCase ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: lowercase__ : str = ( os.path.join(__lowerCamelCase , f"""{MODEL_NAME}_{model_index}""" ) if f"""{MODEL_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading model from {ckpt_dir}""" ) lowercase__ : Dict = {'''model''': model.state_dict()} dist_cp.load_state_dict( state_dict=__lowerCamelCase , storage_reader=dist_cp.FileSystemReader(__lowerCamelCase ) , planner=DefaultLoadPlanner() , ) lowercase__ : Optional[int] = state_dict['''model'''] logger.info(f"""Model loaded from {ckpt_dir}""" ) model.load_state_dict(__lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=0 ) -> int: os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) with FSDP.state_dict_type( __lowerCamelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): lowercase__ : Tuple = FSDP.optim_state_dict(__lowerCamelCase , __lowerCamelCase ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: lowercase__ : List[Any] = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) lowercase__ : Dict = os.path.join(__lowerCamelCase , __lowerCamelCase ) logger.info(f"""Saving Optimizer state to {output_optimizer_file}""" ) torch.save(__lowerCamelCase , __lowerCamelCase ) logger.info(f"""Optimizer state saved in {output_optimizer_file}""" ) else: lowercase__ : Any = os.path.join(__lowerCamelCase , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) logger.info(f"""Saving Optimizer state to {ckpt_dir}""" ) dist_cp.save_state_dict( state_dict={'''optimizer''': optim_state} , storage_writer=dist_cp.FileSystemWriter(__lowerCamelCase ) , planner=DefaultSavePlanner() , ) logger.info(f"""Optimizer state saved in {ckpt_dir}""" ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=0 ) -> Any: accelerator.wait_for_everyone() with FSDP.state_dict_type( __lowerCamelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: lowercase__ : Optional[Any] = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: lowercase__ : Optional[int] = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) lowercase__ : Any = os.path.join(__lowerCamelCase , __lowerCamelCase ) logger.info(f"""Loading Optimizer state from {input_optimizer_file}""" ) lowercase__ : Tuple = torch.load(__lowerCamelCase ) logger.info(f"""Optimizer state loaded from {input_optimizer_file}""" ) else: lowercase__ : Any = ( os.path.join(__lowerCamelCase , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) if f"""{OPTIMIZER_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading Optimizer from {ckpt_dir}""" ) lowercase__ : List[str] = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='''optimizer''' , storage_reader=dist_cp.FileSystemReader(__lowerCamelCase ) , ) lowercase__ : int = optim_state['''optimizer'''] logger.info(f"""Optimizer loaded from {ckpt_dir}""" ) lowercase__ : List[Any] = FSDP.optim_state_dict_to_load(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) optimizer.load_state_dict(__lowerCamelCase )
16
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str: if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError('''iterations must be defined as integers''' ) if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not number >= 1: raise ValueError( '''starting number must be and integer and be more than 0''' ) if not iterations >= 1: raise ValueError('''Iterations must be done more than 0 times to play FizzBuzz''' ) lowercase__ : Tuple = '''''' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(__lowerCamelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
16
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = { 'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'], 'tokenization_electra': ['ElectraTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['ElectraTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'ElectraForCausalLM', 'ElectraForMaskedLM', 'ElectraForMultipleChoice', 'ElectraForPreTraining', 'ElectraForQuestionAnswering', 'ElectraForSequenceClassification', 'ElectraForTokenClassification', 'ElectraModel', 'ElectraPreTrainedModel', 'load_tf_weights_in_electra', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFElectraForMaskedLM', 'TFElectraForMultipleChoice', 'TFElectraForPreTraining', 'TFElectraForQuestionAnswering', 'TFElectraForSequenceClassification', 'TFElectraForTokenClassification', 'TFElectraModel', 'TFElectraPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'FlaxElectraForCausalLM', 'FlaxElectraForMaskedLM', 'FlaxElectraForMultipleChoice', 'FlaxElectraForPreTraining', 'FlaxElectraForQuestionAnswering', 'FlaxElectraForSequenceClassification', 'FlaxElectraForTokenClassification', 'FlaxElectraModel', 'FlaxElectraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : '''simple docstring''' def __init__( self : str ,_snake_case : List[Any] ,_snake_case : Optional[int]=3 ,_snake_case : Optional[int]=32 ,_snake_case : Union[str, Any]=3 ,_snake_case : int=10 ,_snake_case : List[str]=[10, 20, 30, 40] ,_snake_case : Any=[1, 1, 2, 1] ,_snake_case : int=True ,_snake_case : Optional[Any]=True ,_snake_case : Union[str, Any]="relu" ,_snake_case : Dict=3 ,_snake_case : Any=None ,) -> str: """simple docstring""" lowercase__ : int = parent lowercase__ : Optional[Any] = batch_size lowercase__ : Optional[Any] = image_size lowercase__ : Optional[Any] = num_channels lowercase__ : Optional[Any] = embeddings_size lowercase__ : Optional[Any] = hidden_sizes lowercase__ : str = depths lowercase__ : Tuple = is_training lowercase__ : List[Any] = use_labels lowercase__ : Union[str, Any] = hidden_act lowercase__ : Union[str, Any] = num_labels lowercase__ : Tuple = scope lowercase__ : Optional[Any] = len(_snake_case ) def UpperCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Tuple = None if self.use_labels: lowercase__ : Dict = ids_tensor([self.batch_size] ,self.num_labels ) lowercase__ : int = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" return ResNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def UpperCAmelCase ( self : List[str] ,_snake_case : Optional[int] ,_snake_case : int ,_snake_case : Tuple ) -> List[Any]: """simple docstring""" lowercase__ : Optional[int] = TFResNetModel(config=_snake_case ) lowercase__ : List[str] = model(_snake_case ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def UpperCAmelCase ( self : Optional[int] ,_snake_case : Optional[Any] ,_snake_case : int ,_snake_case : Any ) -> Tuple: """simple docstring""" lowercase__ : Tuple = self.num_labels lowercase__ : Union[str, Any] = TFResNetForImageClassification(_snake_case ) lowercase__ : List[str] = model(_snake_case ,labels=_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCAmelCase ( self : Tuple ) -> str: """simple docstring""" lowercase__ : Dict = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = config_and_inputs lowercase__ : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[int] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () lowerCAmelCase : Any = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) lowerCAmelCase : List[Any] = False lowerCAmelCase : List[Any] = False lowerCAmelCase : int = False lowerCAmelCase : Union[str, Any] = False lowerCAmelCase : List[str] = False def UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = TFResNetModelTester(self ) lowercase__ : int = ConfigTester(self ,config_class=_snake_case ,has_text_modality=_snake_case ) def UpperCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" return @unittest.skip(reason='''ResNet does not use inputs_embeds''' ) def UpperCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass @unittest.skip(reason='''ResNet does not support input and output embeddings''' ) def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" pass def UpperCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : str = model_class(_snake_case ) lowercase__ : Dict = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[int] = [*signature.parameters.keys()] lowercase__ : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_snake_case ) def UpperCAmelCase ( self : Tuple ) -> Any: """simple docstring""" lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" def check_hidden_states_output(_snake_case : Optional[int] ,_snake_case : List[str] ,_snake_case : Optional[Any] ): lowercase__ : str = model_class(_snake_case ) lowercase__ : Union[str, Any] = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__ : Tuple = self.model_tester.num_stages self.assertEqual(len(_snake_case ) ,expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase__ : List[Any] = layer_type lowercase__ : Dict = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Dict = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def UpperCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Optional[Any] = TFResNetModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def __UpperCAmelCase ( ) -> Dict: lowercase__ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class __A ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self : str ) -> Any: """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ : Tuple = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowercase__ : Any = self.default_image_processor lowercase__ : int = prepare_img() lowercase__ : Tuple = image_processor(images=_snake_case ,return_tensors='''tf''' ) # forward pass lowercase__ : Dict = model(**_snake_case ) # verify the logits lowercase__ : List[str] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape ,_snake_case ) lowercase__ : Any = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() ,_snake_case ,atol=1e-4 ) )
16
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' def __init__( self : str ,*_snake_case : List[Any] ,**_snake_case : str ) -> None: """simple docstring""" warnings.warn( '''The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use LayoutLMv2ImageProcessor instead.''' ,_snake_case ,) super().__init__(*_snake_case ,**_snake_case )
16
"""simple docstring""" import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: if "model" in orig_key: lowercase__ : Tuple = orig_key.replace('''model.''' , '''''' ) if "norm1" in orig_key: lowercase__ : List[str] = orig_key.replace('''norm1''' , '''attention.output.LayerNorm''' ) if "norm2" in orig_key: lowercase__ : List[str] = orig_key.replace('''norm2''' , '''output.LayerNorm''' ) if "norm" in orig_key: lowercase__ : List[str] = orig_key.replace('''norm''' , '''LayerNorm''' ) if "transformer" in orig_key: lowercase__ : Union[str, Any] = orig_key.split('''.''' )[0].split('''_''' )[-1] lowercase__ : List[str] = orig_key.replace(f"""transformer_{layer_num}""" , f"""encoder.layer.{layer_num}""" ) if "mha.attn" in orig_key: lowercase__ : Union[str, Any] = orig_key.replace('''mha.attn''' , '''attention.self''' ) if "mha" in orig_key: lowercase__ : str = orig_key.replace('''mha''' , '''attention''' ) if "W_q" in orig_key: lowercase__ : Any = orig_key.replace('''W_q''' , '''self.query''' ) if "W_k" in orig_key: lowercase__ : List[Any] = orig_key.replace('''W_k''' , '''self.key''' ) if "W_v" in orig_key: lowercase__ : Any = orig_key.replace('''W_v''' , '''self.value''' ) if "ff1" in orig_key: lowercase__ : Optional[int] = orig_key.replace('''ff1''' , '''intermediate.dense''' ) if "ff2" in orig_key: lowercase__ : Optional[Any] = orig_key.replace('''ff2''' , '''output.dense''' ) if "ff" in orig_key: lowercase__ : List[str] = orig_key.replace('''ff''' , '''output.dense''' ) if "mlm_class" in orig_key: lowercase__ : int = orig_key.replace('''mlm.mlm_class''' , '''cls.predictions.decoder''' ) if "mlm" in orig_key: lowercase__ : Optional[Any] = orig_key.replace('''mlm''' , '''cls.predictions.transform''' ) if "cls" not in orig_key: lowercase__ : Optional[Any] = '''yoso.''' + orig_key return orig_key def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: for key in orig_state_dict.copy().keys(): lowercase__ : Optional[Any] = orig_state_dict.pop(__lowerCamelCase ) if ("pooler" in key) or ("sen_class" in key): continue else: lowercase__ : Tuple = val lowercase__ : Union[str, Any] = orig_state_dict['''cls.predictions.decoder.bias'''] lowercase__ : List[str] = torch.arange(__lowerCamelCase ).expand((1, -1) ) + 2 return orig_state_dict def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : Tuple = torch.load(__lowerCamelCase , map_location='''cpu''' )['''model_state_dict'''] lowercase__ : List[Any] = YosoConfig.from_json_file(__lowerCamelCase ) lowercase__ : List[Any] = YosoForMaskedLM(__lowerCamelCase ) lowercase__ : Optional[Any] = convert_checkpoint_helper(config.max_position_embeddings , __lowerCamelCase ) print(model.load_state_dict(__lowerCamelCase ) ) model.eval() model.save_pretrained(__lowerCamelCase ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to YOSO pytorch checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for YOSO model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase_ = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
16
1
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = ["image_processor", "tokenizer"] lowerCAmelCase : str = "CLIPImageProcessor" lowerCAmelCase : str = ("XLMRobertaTokenizer", "XLMRobertaTokenizerFast") def __init__( self : int ,_snake_case : Union[str, Any]=None ,_snake_case : List[str]=None ,**_snake_case : int ) -> Optional[int]: """simple docstring""" lowercase__ : Tuple = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' ,_snake_case ,) lowercase__ : int = kwargs.pop('''feature_extractor''' ) lowercase__ : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_snake_case ,_snake_case ) def __call__( self : Any ,_snake_case : List[str]=None ,_snake_case : str=None ,_snake_case : Optional[Any]=None ,**_snake_case : Union[str, Any] ) -> Optional[int]: """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: lowercase__ : Optional[int] = self.tokenizer(_snake_case ,return_tensors=_snake_case ,**_snake_case ) if images is not None: lowercase__ : Tuple = self.image_processor(_snake_case ,return_tensors=_snake_case ,**_snake_case ) if text is not None and images is not None: lowercase__ : List[str] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_snake_case ) ,tensor_type=_snake_case ) def UpperCAmelCase ( self : List[Any] ,*_snake_case : List[Any] ,**_snake_case : Dict ) -> int: """simple docstring""" return self.tokenizer.batch_decode(*_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Any ,*_snake_case : str ,**_snake_case : str ) -> Tuple: """simple docstring""" return self.tokenizer.decode(*_snake_case ,**_snake_case ) @property def UpperCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase__ : int = self.tokenizer.model_input_names lowercase__ : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
16
"""simple docstring""" import os def __UpperCAmelCase ( ) -> int: with open(os.path.dirname(__lowerCamelCase ) + '''/p022_names.txt''' ) as file: lowercase__ : List[Any] = str(file.readlines()[0] ) lowercase__ : Dict = names.replace('''"''' , '''''' ).split(''',''' ) names.sort() lowercase__ : int = 0 lowercase__ : Optional[Any] = 0 for i, name in enumerate(__lowerCamelCase ): for letter in name: name_score += ord(__lowerCamelCase ) - 64 total_score += (i + 1) * name_score lowercase__ : List[str] = 0 return total_score if __name__ == "__main__": print(solution())
16
1
"""simple docstring""" import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters lowerCAmelCase_ = logging.get_logger(__name__) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None ) -> Tuple: # Recurse if needed if "." in tensor_name: lowercase__ : List[str] = tensor_name.split('''.''' ) for split in splits[:-1]: lowercase__ : List[Any] = getattr(__lowerCamelCase , __lowerCamelCase ) if new_module is None: raise ValueError(f"""{module} has no attribute {split}.""" ) lowercase__ : Optional[int] = new_module lowercase__ : Tuple = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f"""{module} does not have a parameter or a buffer named {tensor_name}.""" ) lowercase__ : List[Any] = tensor_name in module._buffers lowercase__ : Any = getattr(__lowerCamelCase , __lowerCamelCase ) if old_value.device == torch.device('''meta''' ) and device not in ["meta", torch.device('''meta''' )] and value is None: raise ValueError(f"""{tensor_name} is on the meta device, we need a `value` to put in on {device}.""" ) lowercase__ : Any = False lowercase__ : List[str] = False if is_buffer or not is_bitsandbytes_available(): lowercase__ : Union[str, Any] = False lowercase__ : str = False else: lowercase__ : Any = hasattr(bnb.nn , '''Params4bit''' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) lowercase__ : int = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: lowercase__ : Tuple = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: lowercase__ : List[Any] = old_value.to(__lowerCamelCase ) elif isinstance(__lowerCamelCase , torch.Tensor ): lowercase__ : str = value.to('''cpu''' ) if value.dtype == torch.inta: lowercase__ : str = version.parse(importlib.metadata.version('''bitsandbytes''' ) ) > version.parse( '''0.37.2''' ) if not is_abit_serializable: raise ValueError( '''Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ''' '''Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.''' ) else: lowercase__ : Tuple = torch.tensor(__lowerCamelCase , device='''cpu''' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , __lowerCamelCase ) and fpaa_statistics is None: lowercase__ : str = new_value.T lowercase__ : str = old_value.__dict__ if is_abit: lowercase__ : Union[str, Any] = bnb.nn.IntaParams(__lowerCamelCase , requires_grad=__lowerCamelCase , **__lowerCamelCase ).to(__lowerCamelCase ) elif is_abit: lowercase__ : Optional[int] = bnb.nn.Paramsabit(__lowerCamelCase , requires_grad=__lowerCamelCase , **__lowerCamelCase ).to(__lowerCamelCase ) lowercase__ : Tuple = new_value if fpaa_statistics is not None: setattr(module.weight , '''SCB''' , fpaa_statistics.to(__lowerCamelCase ) ) else: if value is None: lowercase__ : Union[str, Any] = old_value.to(__lowerCamelCase ) elif isinstance(__lowerCamelCase , torch.Tensor ): lowercase__ : List[Any] = value.to(__lowerCamelCase ) else: lowercase__ : Optional[Any] = torch.tensor(__lowerCamelCase , device=__lowerCamelCase ) if is_buffer: lowercase__ : Tuple = new_value else: lowercase__ : List[Any] = nn.Parameter(__lowerCamelCase , requires_grad=old_value.requires_grad ) lowercase__ : int = new_value def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=False ) -> List[str]: for name, module in model.named_children(): if current_key_name is None: lowercase__ : Tuple = [] current_key_name.append(__lowerCamelCase ) if (isinstance(__lowerCamelCase , nn.Linear ) or isinstance(__lowerCamelCase , __lowerCamelCase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '''.'''.join(__lowerCamelCase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(__lowerCamelCase , __lowerCamelCase ): lowercase__ , lowercase__ : str = module.weight.shape else: lowercase__ : str = module.in_features lowercase__ : Union[str, Any] = module.out_features if quantization_config.quantization_method() == "llm_int8": lowercase__ : Union[str, Any] = bnb.nn.LinearabitLt( __lowerCamelCase , __lowerCamelCase , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) lowercase__ : List[Any] = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: lowercase__ : Tuple = bnb.nn.Linearabit( __lowerCamelCase , __lowerCamelCase , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) lowercase__ : Optional[int] = True # Store the module class in case we need to transpose the weight later lowercase__ : str = type(__lowerCamelCase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(__lowerCamelCase ) if len(list(module.children() ) ) > 0: lowercase__ , lowercase__ : Any = _replace_with_bnb_linear( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , has_been_replaced=__lowerCamelCase , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None ) -> Optional[Any]: lowercase__ : Dict = ['''lm_head'''] if modules_to_not_convert is None else modules_to_not_convert lowercase__ , lowercase__ : str = _replace_with_bnb_linear( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def __UpperCAmelCase ( *__lowerCamelCase , **__lowerCamelCase ) -> Union[str, Any]: warnings.warn( '''`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead''' , __lowerCamelCase , ) return replace_with_bnb_linear(*__lowerCamelCase , **__lowerCamelCase ) def __UpperCAmelCase ( *__lowerCamelCase , **__lowerCamelCase ) -> str: warnings.warn( '''`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead''' , __lowerCamelCase , ) return set_module_quantized_tensor_to_device(*__lowerCamelCase , **__lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[Any]: lowercase__ : List[str] = deepcopy(__lowerCamelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() lowercase__ : Union[str, Any] = find_tied_parameters(__lowerCamelCase ) # For compatibility with Accelerate < 0.18 if isinstance(__lowerCamelCase , __lowerCamelCase ): lowercase__ : Optional[int] = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: lowercase__ : Union[str, Any] = sum(__lowerCamelCase , [] ) lowercase__ : Dict = len(__lowerCamelCase ) > 0 # Check if it is a base model lowercase__ : Optional[Any] = not hasattr(__lowerCamelCase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowercase__ : Optional[int] = list(model.named_children() ) lowercase__ : int = [list_modules[-1][0]] # add last module together with tied weights lowercase__ : int = set(__lowerCamelCase ) - set(__lowerCamelCase ) lowercase__ : Dict = list(set(__lowerCamelCase ) ) + list(__lowerCamelCase ) # remove ".weight" from the keys lowercase__ : Dict = ['''.weight''', '''.bias'''] lowercase__ : Dict = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowercase__ : List[str] = name.replace(__lowerCamelCase , '''''' ) filtered_module_names.append(__lowerCamelCase ) return filtered_module_names
16
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(A_ ) class __A ( A_ ): '''simple docstring''' def __init__( self : List[str] ,**_snake_case : Dict ) -> List[Any]: """simple docstring""" super().__init__(**_snake_case ) requires_backends(self ,'''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[int] ,_snake_case : Union[str, List[str], "Image", List["Image"]] ,**_snake_case : int ) -> Optional[Any]: """simple docstring""" return super().__call__(_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Dict ,**_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ : List[str] = {} if "candidate_labels" in kwargs: lowercase__ : Any = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: lowercase__ : Optional[Any] = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[int] ,_snake_case : Dict=None ,_snake_case : Union[str, Any]="This is a photo of {}." ) -> List[str]: """simple docstring""" lowercase__ : List[Any] = load_image(_snake_case ) lowercase__ : int = self.image_processor(images=[image] ,return_tensors=self.framework ) lowercase__ : str = candidate_labels lowercase__ : Dict = [hypothesis_template.format(_snake_case ) for x in candidate_labels] lowercase__ : Any = self.tokenizer(_snake_case ,return_tensors=self.framework ,padding=_snake_case ) lowercase__ : Optional[int] = [text_inputs] return inputs def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ : Optional[int] = model_inputs.pop('''candidate_labels''' ) lowercase__ : Union[str, Any] = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] ,_snake_case ): lowercase__ : List[str] = text_inputs[0] else: # Batching case. lowercase__ : int = text_inputs[0][0] lowercase__ : Tuple = self.model(**_snake_case ,**_snake_case ) lowercase__ : Union[str, Any] = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def UpperCAmelCase ( self : Any ,_snake_case : Tuple ) -> Any: """simple docstring""" lowercase__ : Dict = model_outputs.pop('''candidate_labels''' ) lowercase__ : Optional[Any] = model_outputs['''logits'''][0] if self.framework == "pt": lowercase__ : Optional[int] = logits.softmax(dim=-1 ).squeeze(-1 ) lowercase__ : Tuple = probs.tolist() if not isinstance(_snake_case ,_snake_case ): lowercase__ : Any = [scores] elif self.framework == "tf": lowercase__ : List[str] = stable_softmax(_snake_case ,axis=-1 ) lowercase__ : Optional[Any] = probs.numpy().tolist() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) lowercase__ : Union[str, Any] = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(_snake_case ,_snake_case ) ,key=lambda _snake_case : -x[0] ) ] return result
16
1
"""simple docstring""" from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('''socket.socket''' ) @patch('''builtins.open''' ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> int: # ===== initialization ===== lowercase__ : List[str] = Mock() lowercase__ : Any = conn, Mock() lowercase__ : Optional[int] = iter([1, None] ) lowercase__ : Union[str, Any] = lambda __lowerCamelCase : next(__lowerCamelCase ) # ===== invoke ===== send_file(filename='''mytext.txt''' , testing=__lowerCamelCase ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
16
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[Any]: print('''\nThe shortest path matrix using Floyd Warshall algorithm\n''' ) for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): if dist[i][j] != float('''inf''' ): print(int(dist[i][j] ) , end='''\t''' ) else: print('''INF''' , end='''\t''' ) print() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : str = [[float('''inf''' ) for _ in range(__lowerCamelCase )] for _ in range(__lowerCamelCase )] for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): lowercase__ : List[str] = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(__lowerCamelCase ): # looping through rows of graph array for i in range(__lowerCamelCase ): # looping through columns of graph array for j in range(__lowerCamelCase ): if ( dist[i][k] != float('''inf''' ) and dist[k][j] != float('''inf''' ) and dist[i][k] + dist[k][j] < dist[i][j] ): lowercase__ : str = dist[i][k] + dist[k][j] _print_dist(__lowerCamelCase , __lowerCamelCase ) return dist, v if __name__ == "__main__": lowerCAmelCase_ = int(input('Enter number of vertices: ')) lowerCAmelCase_ = int(input('Enter number of edges: ')) lowerCAmelCase_ = [[float('inf') for i in range(v)] for j in range(v)] for i in range(v): lowerCAmelCase_ = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('\nEdge ', i + 1) lowerCAmelCase_ = int(input('Enter source:')) lowerCAmelCase_ = int(input('Enter destination:')) lowerCAmelCase_ = float(input('Enter weight:')) lowerCAmelCase_ = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
16
1
"""simple docstring""" import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : int = XLMTokenizer lowerCAmelCase : Tuple = False def UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__ : Dict = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] lowercase__ : Tuple = dict(zip(_snake_case ,range(len(_snake_case ) ) ) ) lowercase__ : Any = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] lowercase__ : Dict = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ : Dict = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file ,'''w''' ) as fp: fp.write(json.dumps(_snake_case ) ) with open(self.merges_file ,'''w''' ) as fp: fp.write('''\n'''.join(_snake_case ) ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[Any] ) -> List[str]: """simple docstring""" lowercase__ : List[str] = '''lower newer''' lowercase__ : Optional[int] = '''lower newer''' return input_text, output_text def UpperCAmelCase ( self : str ) -> Tuple: """simple docstring""" lowercase__ : str = XLMTokenizer(self.vocab_file ,self.merges_file ) lowercase__ : Tuple = '''lower''' lowercase__ : List[Any] = ['''low''', '''er</w>'''] lowercase__ : str = tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case ,_snake_case ) lowercase__ : Optional[int] = tokens + ['''<unk>'''] lowercase__ : Optional[int] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) ,_snake_case ) @slow def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[int] = XLMTokenizer.from_pretrained('''xlm-mlm-en-2048''' ) lowercase__ : str = tokenizer.encode('''sequence builders''' ,add_special_tokens=_snake_case ) lowercase__ : List[Any] = tokenizer.encode('''multi-sequence build''' ,add_special_tokens=_snake_case ) lowercase__ : Any = tokenizer.build_inputs_with_special_tokens(_snake_case ) lowercase__ : Tuple = tokenizer.build_inputs_with_special_tokens(_snake_case ,_snake_case ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
16
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' def __init__( self : Dict ,*_snake_case : Any ,**_snake_case : str ) -> None: """simple docstring""" warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' ,_snake_case ,) super().__init__(*_snake_case ,**_snake_case )
16
1
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device lowerCAmelCase_ = False class __A ( unittest.TestCase ): '''simple docstring''' pass @slow @require_torch_gpu class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[int] = VersatileDiffusionImageVariationPipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) lowercase__ : int = torch.manual_seed(0 ) lowercase__ : Any = pipe( image=_snake_case ,generator=_snake_case ,guidance_scale=7.5 ,num_inference_steps=50 ,output_type='''numpy''' ,).images lowercase__ : List[Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase__ : List[Any] = np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
16
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {'configuration_xglm': ['XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XGLMConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['XGLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['XGLMTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XGLMForCausalLM', 'XGLMModel', 'XGLMPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'FlaxXGLMForCausalLM', 'FlaxXGLMModel', 'FlaxXGLMPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXGLMForCausalLM', 'TFXGLMModel', 'TFXGLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
16
1
"""simple docstring""" import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset lowerCAmelCase_ = pd.read_csv( 'https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/' 'position_salaries.csv' ) lowerCAmelCase_ = dataset.iloc[:, 1:2].values lowerCAmelCase_ = dataset.iloc[:, 2].values lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ = train_test_split(X, y, test_size=0.2, random_state=0) lowerCAmelCase_ = PolynomialFeatures(degree=4) lowerCAmelCase_ = poly_reg.fit_transform(X) lowerCAmelCase_ = LinearRegression() pol_reg.fit(X_poly, y) def __UpperCAmelCase ( ) -> Tuple: plt.scatter(__lowerCamelCase , __lowerCamelCase , color='''red''' ) plt.plot(__lowerCamelCase , pol_reg.predict(poly_reg.fit_transform(__lowerCamelCase ) ) , color='''blue''' ) plt.title('''Truth or Bluff (Linear Regression)''' ) plt.xlabel('''Position level''' ) plt.ylabel('''Salary''' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
16
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class __A ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : Tuple = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Dict = TFAutoModel.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = AutoModel.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : Dict = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : str = TFAutoModelForPreTraining.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = AutoModelForPreTraining.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Any = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = TFAutoModelForCausalLM.from_pretrained(_snake_case ,from_pt=_snake_case ) lowercase__ , lowercase__ : Optional[Any] = TFAutoModelForCausalLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = AutoModelForCausalLM.from_pretrained(_snake_case ,from_tf=_snake_case ) lowercase__ , lowercase__ : Optional[Any] = AutoModelForCausalLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Any ) -> Tuple: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Any = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : str = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(_snake_case ,from_pt=_snake_case ) lowercase__ , lowercase__ : str = TFAutoModelForMaskedLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = AutoModelForMaskedLM.from_pretrained(_snake_case ,from_tf=_snake_case ) lowercase__ , lowercase__ : Any = AutoModelForMaskedLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Union[str, Any] = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained(_snake_case ,from_pt=_snake_case ) lowercase__ , lowercase__ : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ,from_tf=_snake_case ) lowercase__ , lowercase__ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : Tuple = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = TFAutoModelForSequenceClassification.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : List[Any] = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : str = TFAutoModelForQuestionAnswering.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = AutoModelForQuestionAnswering.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : Optional[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) lowercase__ : Union[str, Any] = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) def UpperCAmelCase ( self : int ) -> List[Any]: """simple docstring""" lowercase__ : List[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) lowercase__ : int = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 )
16
1
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> int: return int((input_a, input_a).count(0 ) != 0 ) def __UpperCAmelCase ( ) -> None: assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
16
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase = 50 ) -> int: lowercase__ : int = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F'''{solution() = }''')
16
1
"""simple docstring""" # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path lowerCAmelCase_ = Path(__file__).resolve().parents[3] / 'src' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) lowerCAmelCase_ = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'} lowerCAmelCase_ = 'zero2' lowerCAmelCase_ = 'zero3' lowerCAmelCase_ = [ZEROa, ZEROa] def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param lowercase__ : Optional[Any] = parameterized.to_safe_name('''_'''.join(str(__lowerCamelCase ) for x in param.args ) ) return f"""{func.__name__}_{param_based_name}""" # Cartesian-product of zero stages with models to test lowerCAmelCase_ = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class __A ( A_ ): '''simple docstring''' @parameterized.expand(_snake_case ,name_func=_snake_case ) def UpperCAmelCase ( self : str ,_snake_case : Tuple ,_snake_case : str ) -> Union[str, Any]: """simple docstring""" self.run_and_check( stage=_snake_case ,model=_snake_case ,distributed=_snake_case ,fpaa=_snake_case ,) @require_torch_multi_gpu @parameterized.expand(_snake_case ,name_func=_snake_case ) def UpperCAmelCase ( self : int ,_snake_case : Optional[int] ,_snake_case : Dict ) -> List[str]: """simple docstring""" self.run_and_check( stage=_snake_case ,model=_snake_case ,distributed=_snake_case ,fpaa=_snake_case ,) @parameterized.expand(_snake_case ,name_func=_snake_case ) def UpperCAmelCase ( self : int ,_snake_case : str ,_snake_case : List[Any] ) -> Union[str, Any]: """simple docstring""" self.run_and_check( stage=_snake_case ,model=_snake_case ,distributed=_snake_case ,fpaa=_snake_case ,) @require_torch_multi_gpu @parameterized.expand(_snake_case ,name_func=_snake_case ) def UpperCAmelCase ( self : List[str] ,_snake_case : str ,_snake_case : str ) -> Optional[Any]: """simple docstring""" self.run_and_check( stage=_snake_case ,model=_snake_case ,distributed=_snake_case ,fpaa=_snake_case ,) def UpperCAmelCase ( self : List[Any] ,_snake_case : Any ) -> Any: """simple docstring""" pass def UpperCAmelCase ( self : Tuple ,_snake_case : str ,_snake_case : str ,_snake_case : int = 10 ,_snake_case : bool = True ,_snake_case : bool = True ,_snake_case : bool = True ,) -> Any: """simple docstring""" lowercase__ : Optional[int] = models[model] lowercase__ : Optional[int] = self.run_trainer( stage=_snake_case ,model_name=_snake_case ,eval_steps=_snake_case ,num_train_epochs=1 ,distributed=_snake_case ,fpaa=_snake_case ,) self.do_checks(_snake_case ) return output_dir def UpperCAmelCase ( self : Any ,_snake_case : str ,_snake_case : str ,_snake_case : int = 10 ,_snake_case : int = 1 ,_snake_case : bool = True ,_snake_case : bool = True ,) -> List[str]: """simple docstring""" lowercase__ : Optional[int] = self.get_auto_remove_tmp_dir('''./xxx''' ,after=_snake_case ) lowercase__ : Union[str, Any] = f""" --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(_snake_case )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none """.split() if fpaa: args.extend(['''--fp16'''] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files lowercase__ : Any = f"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split() lowercase__ : Optional[int] = [f"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""] lowercase__ : int = self.get_launcher(_snake_case ) lowercase__ : List[str] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_snake_case ,env=self.get_env() ) return output_dir def UpperCAmelCase ( self : Optional[Any] ,_snake_case : List[str]=False ) -> Any: """simple docstring""" lowercase__ : Optional[int] = min(2 ,get_gpu_count() ) if distributed else 1 return f"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
16
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" debug_launcher(test_script.main ) def UpperCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" debug_launcher(test_ops.main )
16
1
"""simple docstring""" import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ , lowercase__ : Dict = FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-canny''' ,from_pt=_snake_case ,dtype=jnp.bfloataa ) lowercase__ , lowercase__ : Optional[int] = FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' ,controlnet=_snake_case ,from_pt=_snake_case ,dtype=jnp.bfloataa ) lowercase__ : Union[str, Any] = controlnet_params lowercase__ : Optional[Any] = '''bird''' lowercase__ : str = jax.device_count() lowercase__ : Union[str, Any] = pipe.prepare_text_inputs([prompts] * num_samples ) lowercase__ : Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ) lowercase__ : Optional[int] = pipe.prepare_image_inputs([canny_image] * num_samples ) lowercase__ : str = jax.random.PRNGKey(0 ) lowercase__ : Dict = jax.random.split(_snake_case ,jax.device_count() ) lowercase__ : Any = replicate(_snake_case ) lowercase__ : List[str] = shard(_snake_case ) lowercase__ : Dict = shard(_snake_case ) lowercase__ : Optional[Any] = pipe( prompt_ids=_snake_case ,image=_snake_case ,params=_snake_case ,prng_seed=_snake_case ,num_inference_steps=50 ,jit=_snake_case ,).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) lowercase__ : Any = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowercase__ : Optional[int] = images[0, 253:256, 253:256, -1] lowercase__ : str = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ : Any = jnp.array( [0.16_7969, 0.11_6699, 0.08_1543, 0.15_4297, 0.13_2812, 0.10_8887, 0.16_9922, 0.16_9922, 0.20_5078] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def UpperCAmelCase ( self : List[Any] ) -> str: """simple docstring""" lowercase__ , lowercase__ : int = FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-openpose''' ,from_pt=_snake_case ,dtype=jnp.bfloataa ) lowercase__ , lowercase__ : int = FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' ,controlnet=_snake_case ,from_pt=_snake_case ,dtype=jnp.bfloataa ) lowercase__ : Optional[Any] = controlnet_params lowercase__ : Optional[Any] = '''Chef in the kitchen''' lowercase__ : Union[str, Any] = jax.device_count() lowercase__ : List[str] = pipe.prepare_text_inputs([prompts] * num_samples ) lowercase__ : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png''' ) lowercase__ : Tuple = pipe.prepare_image_inputs([pose_image] * num_samples ) lowercase__ : Dict = jax.random.PRNGKey(0 ) lowercase__ : Optional[int] = jax.random.split(_snake_case ,jax.device_count() ) lowercase__ : Any = replicate(_snake_case ) lowercase__ : Optional[int] = shard(_snake_case ) lowercase__ : List[str] = shard(_snake_case ) lowercase__ : str = pipe( prompt_ids=_snake_case ,image=_snake_case ,params=_snake_case ,prng_seed=_snake_case ,num_inference_steps=50 ,jit=_snake_case ,).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) lowercase__ : Optional[Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowercase__ : Dict = images[0, 253:256, 253:256, -1] lowercase__ : Union[str, Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ : Tuple = jnp.array( [[0.27_1484, 0.26_1719, 0.27_5391, 0.27_7344, 0.27_9297, 0.29_1016, 0.29_4922, 0.30_2734, 0.30_2734]] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
16
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) lowerCAmelCase_ = { 'configuration_speecht5': [ 'SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP', 'SpeechT5Config', 'SpeechT5HifiGanConfig', ], 'feature_extraction_speecht5': ['SpeechT5FeatureExtractor'], 'processing_speecht5': ['SpeechT5Processor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['SpeechT5Tokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'SpeechT5ForSpeechToText', 'SpeechT5ForSpeechToSpeech', 'SpeechT5ForTextToSpeech', 'SpeechT5Model', 'SpeechT5PreTrainedModel', 'SpeechT5HifiGan', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
1
"""simple docstring""" import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = PriorTransformer lowerCAmelCase : int = "hidden_states" @property def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ : Dict = 4 lowercase__ : List[Any] = 8 lowercase__ : Any = 7 lowercase__ : int = floats_tensor((batch_size, embedding_dim) ).to(_snake_case ) lowercase__ : Any = floats_tensor((batch_size, embedding_dim) ).to(_snake_case ) lowercase__ : int = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(_snake_case ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def UpperCAmelCase ( self : str ,_snake_case : str=0 ) -> Optional[Any]: """simple docstring""" torch.manual_seed(_snake_case ) lowercase__ : Optional[Any] = 4 lowercase__ : Optional[int] = 8 lowercase__ : Any = 7 lowercase__ : str = torch.randn((batch_size, embedding_dim) ).to(_snake_case ) lowercase__ : List[Any] = torch.randn((batch_size, embedding_dim) ).to(_snake_case ) lowercase__ : Dict = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_snake_case ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def UpperCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" return (4, 8) @property def UpperCAmelCase ( self : Any ) -> List[str]: """simple docstring""" return (4, 8) def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : Tuple = { '''num_attention_heads''': 2, '''attention_head_dim''': 4, '''num_layers''': 2, '''embedding_dim''': 8, '''num_embeddings''': 7, '''additional_embeddings''': 4, } lowercase__ : Any = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase ( self : int ) -> int: """simple docstring""" lowercase__ , lowercase__ : Tuple = PriorTransformer.from_pretrained( '''hf-internal-testing/prior-dummy''' ,output_loading_info=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertEqual(len(loading_info['''missing_keys'''] ) ,0 ) model.to(_snake_case ) lowercase__ : Optional[Any] = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def UpperCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" lowercase__ , lowercase__ : Any = self.prepare_init_args_and_inputs_for_common() lowercase__ : List[str] = self.model_class(**_snake_case ) lowercase__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[Any] = [*signature.parameters.keys()] lowercase__ : int = ['''hidden_states''', '''timestep'''] self.assertListEqual(arg_names[:2] ,_snake_case ) def UpperCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ : Any = PriorTransformer.from_pretrained('''hf-internal-testing/prior-dummy''' ) lowercase__ : Dict = model.to(_snake_case ) if hasattr(_snake_case ,'''set_default_attn_processor''' ): model.set_default_attn_processor() lowercase__ : Dict = self.get_dummy_seed_input() with torch.no_grad(): lowercase__ : Optional[int] = model(**_snake_case )[0] lowercase__ : str = output[0, :5].flatten().cpu() print(_snake_case ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. lowercase__ : Optional[Any] = torch.tensor([-1.3436, -0.2870, 0.7538, 0.4368, -0.0239] ) self.assertTrue(torch_all_close(_snake_case ,_snake_case ,rtol=1e-2 ) ) @slow class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Dict ,_snake_case : List[str]=1 ,_snake_case : Tuple=768 ,_snake_case : List[Any]=77 ,_snake_case : Optional[Any]=0 ) -> List[Any]: """simple docstring""" torch.manual_seed(_snake_case ) lowercase__ : Tuple = batch_size lowercase__ : List[str] = embedding_dim lowercase__ : Tuple = num_embeddings lowercase__ : int = torch.randn((batch_size, embedding_dim) ).to(_snake_case ) lowercase__ : str = torch.randn((batch_size, embedding_dim) ).to(_snake_case ) lowercase__ : List[str] = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_snake_case ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def UpperCAmelCase ( self : int ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5861, 0.1283, -0.0931, 0.0882, 0.4476, 0.1329, -0.0498, 0.0640]], [37, [-0.4913, 0.0110, -0.0483, 0.0541, 0.4954, -0.0170, 0.0354, 0.1651]], # fmt: on ] ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[Any] ,_snake_case : Optional[Any] ) -> int: """simple docstring""" lowercase__ : List[Any] = PriorTransformer.from_pretrained('''kandinsky-community/kandinsky-2-1-prior''' ,subfolder='''prior''' ) model.to(_snake_case ) lowercase__ : List[str] = self.get_dummy_seed_input(seed=_snake_case ) with torch.no_grad(): lowercase__ : List[str] = model(**_snake_case )[0] assert list(sample.shape ) == [1, 768] lowercase__ : List[str] = sample[0, :8].flatten().cpu() print(_snake_case ) lowercase__ : Optional[Any] = torch.tensor(_snake_case ) assert torch_all_close(_snake_case ,_snake_case ,atol=1e-3 )
16
"""simple docstring""" from ..utils import DummyObject, requires_backends class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : List[str] = ["torch", "torchsde"] def __init__( self : Tuple ,*_snake_case : Union[str, Any] ,**_snake_case : Any ) -> Union[str, Any]: """simple docstring""" requires_backends(self ,['''torch''', '''torchsde'''] ) @classmethod def UpperCAmelCase ( cls : List[str] ,*_snake_case : int ,**_snake_case : Union[str, Any] ) -> str: """simple docstring""" requires_backends(cls ,['''torch''', '''torchsde'''] ) @classmethod def UpperCAmelCase ( cls : List[Any] ,*_snake_case : List[Any] ,**_snake_case : List[str] ) -> List[Any]: """simple docstring""" requires_backends(cls ,['''torch''', '''torchsde'''] )
16
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase_ = { 'configuration_mobilevit': ['MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileViTConfig', 'MobileViTOnnxConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['MobileViTFeatureExtractor'] lowerCAmelCase_ = ['MobileViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileViTForImageClassification', 'MobileViTForSemanticSegmentation', 'MobileViTModel', 'MobileViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileViTForImageClassification', 'TFMobileViTForSemanticSegmentation', 'TFMobileViTModel', 'TFMobileViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
"""simple docstring""" import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node lowerCAmelCase_ = 4 lowerCAmelCase_ = 3 class __A ( A_ ): '''simple docstring''' pass def __UpperCAmelCase ( __lowerCamelCase ) -> Dict: for shard in shards: for i in range(__lowerCamelCase ): yield {"i": i, "shard": shard} def __UpperCAmelCase ( ) -> Tuple: lowercase__ : int = int(os.environ['''RANK'''] ) lowercase__ : str = int(os.environ['''WORLD_SIZE'''] ) lowercase__ : List[Any] = ArgumentParser() parser.add_argument('''--streaming''' , type=__lowerCamelCase ) parser.add_argument('''--local_rank''' , type=__lowerCamelCase ) parser.add_argument('''--num_workers''' , type=__lowerCamelCase , default=0 ) lowercase__ : int = parser.parse_args() lowercase__ : Optional[Any] = args.streaming lowercase__ : List[Any] = args.num_workers lowercase__ : Optional[Any] = {'''shards''': [f"""shard_{shard_idx}""" for shard_idx in range(__lowerCamelCase )]} lowercase__ : Dict = IterableDataset.from_generator(__lowerCamelCase , gen_kwargs=__lowerCamelCase ) if not streaming: lowercase__ : int = Dataset.from_list(list(__lowerCamelCase ) ) lowercase__ : int = split_dataset_by_node(__lowerCamelCase , rank=__lowerCamelCase , world_size=__lowerCamelCase ) lowercase__ : Optional[Any] = torch.utils.data.DataLoader(__lowerCamelCase , num_workers=__lowerCamelCase ) lowercase__ : Optional[Any] = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowercase__ : str = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) lowercase__ : str = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
16
1
"""simple docstring""" import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class __A ( A_ ): '''simple docstring''' def UpperCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" lowercase__ : int = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type ,pa.intaa() ) def UpperCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" with self.assertRaises(_snake_case ): lowercase__ : Optional[Any] = pa.array(TypedSequence([1, 2, 3] ) ,type=pa.intaa() ) def UpperCAmelCase ( self : str ) -> List[Any]: """simple docstring""" with self.assertRaises(_snake_case ): lowercase__ : Dict = pa.array(TypedSequence([1, 2, 3] ,try_type=Value('''bool''' ) ,type=Value('''int64''' ) ) ) def UpperCAmelCase ( self : Any ) -> Tuple: """simple docstring""" lowercase__ : Union[str, Any] = pa.array(TypedSequence([1, 2, 3] ,type=Value('''int32''' ) ) ) self.assertEqual(arr.type ,pa.intaa() ) def UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): lowercase__ : List[str] = pa.array(TypedSequence(['''foo''', '''bar'''] ,type=Value('''int64''' ) ) ) def UpperCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" lowercase__ : Union[str, Any] = pa.array(TypedSequence([1, 2, 3] ,try_type=Value('''int32''' ) ) ) self.assertEqual(arr.type ,pa.intaa() ) def UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ : Dict = pa.array(TypedSequence(['''foo''', '''bar'''] ,try_type=Value('''int64''' ) ) ) self.assertEqual(arr.type ,pa.string() ) def UpperCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" lowercase__ : str = pa.array(TypedSequence([[[1, 2, 3]]] ,type=ArrayaD((1, 3) ,'''int64''' ) ) ) self.assertEqual(arr.type ,ArrayaDExtensionType((1, 3) ,'''int64''' ) ) def UpperCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): lowercase__ : List[str] = pa.array(TypedSequence(['''foo''', '''bar'''] ,type=ArrayaD((1, 3) ,'''int64''' ) ) ) def UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ : Tuple = pa.array(TypedSequence([[[1, 2, 3]]] ,try_type=ArrayaD((1, 3) ,'''int64''' ) ) ) self.assertEqual(arr.type ,ArrayaDExtensionType((1, 3) ,'''int64''' ) ) def UpperCAmelCase ( self : Tuple ) -> str: """simple docstring""" lowercase__ : List[Any] = pa.array(TypedSequence(['''foo''', '''bar'''] ,try_type=ArrayaD((1, 3) ,'''int64''' ) ) ) self.assertEqual(arr.type ,pa.string() ) @require_pil def UpperCAmelCase ( self : Any ) -> int: """simple docstring""" import PIL.Image lowercase__ : List[Any] = PIL.Image.fromarray(np.arange(10 ,dtype=np.uinta ).reshape(2 ,5 ) ) with patch( '''datasets.arrow_writer.cast_to_python_objects''' ,side_effect=_snake_case ) as mock_cast_to_python_objects: lowercase__ : int = pa.array(TypedSequence([{'''path''': None, '''bytes''': b'''image_bytes'''}, pil_image] ,type=Image() ) ) lowercase__ , lowercase__ : Tuple = mock_cast_to_python_objects.call_args_list[-1] self.assertIn('''optimize_list_casting''' ,_snake_case ) self.assertFalse(kwargs['''optimize_list_casting'''] ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str: lowercase__ : Optional[int] = pa.BufferReader(__lowerCamelCase ) if isinstance(__lowerCamelCase , pa.Buffer ) else pa.memory_map(__lowerCamelCase ) lowercase__ : Dict = pa.ipc.open_stream(__lowerCamelCase ) lowercase__ : pa.Table = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 10] ) @pytest.mark.parametrize( '''fields''' , [None, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}] ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[Any]: lowercase__ : List[Any] = pa.BufferOutputStream() lowercase__ : Dict = pa.schema(__lowerCamelCase ) if fields else None with ArrowWriter(stream=__lowerCamelCase , schema=__lowerCamelCase , writer_batch_size=__lowerCamelCase ) as writer: writer.write({'''col_1''': '''foo''', '''col_2''': 1} ) writer.write({'''col_1''': '''bar''', '''col_2''': 2} ) lowercase__ , lowercase__ : Tuple = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowercase__ : Any = {'''col_1''': pa.string(), '''col_2''': pa.intaa()} assert writer._schema == pa.schema(__lowerCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def __UpperCAmelCase ( ) -> List[str]: lowercase__ : List[Any] = pa.BufferOutputStream() lowercase__ : str = Features({'''labels''': ClassLabel(names=['''neg''', '''pos'''] )} ) with ArrowWriter(stream=__lowerCamelCase , features=__lowerCamelCase ) as writer: writer.write({'''labels''': 0} ) writer.write({'''labels''': 1} ) lowercase__ , lowercase__ : Optional[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata lowercase__ : Optional[int] = pa.BufferReader(output.getvalue() ) lowercase__ : Tuple = pa.ipc.open_stream(__lowerCamelCase ) lowercase__ : pa.Table = f.read_all() lowercase__ : Dict = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(__lowerCamelCase ) @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 10] ) def __UpperCAmelCase ( __lowerCamelCase ) -> List[Any]: lowercase__ : Optional[int] = pa.BufferOutputStream() with ArrowWriter( stream=__lowerCamelCase , writer_batch_size=__lowerCamelCase , hash_salt='''split_name''' , check_duplicates=__lowerCamelCase , ) as writer: with pytest.raises(__lowerCamelCase ): writer.write({'''col_1''': '''foo''', '''col_2''': 1} , key=[1, 2] ) lowercase__ , lowercase__ : Dict = writer.finalize() @pytest.mark.parametrize('''writer_batch_size''' , [None, 2, 10] ) def __UpperCAmelCase ( __lowerCamelCase ) -> Any: lowercase__ : str = pa.BufferOutputStream() with ArrowWriter( stream=__lowerCamelCase , writer_batch_size=__lowerCamelCase , hash_salt='''split_name''' , check_duplicates=__lowerCamelCase , ) as writer: with pytest.raises(__lowerCamelCase ): writer.write({'''col_1''': '''foo''', '''col_2''': 1} , key=10 ) writer.write({'''col_1''': '''bar''', '''col_2''': 2} , key=10 ) lowercase__ , lowercase__ : str = writer.finalize() @pytest.mark.parametrize('''writer_batch_size''' , [None, 2, 10] ) def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[Any]: lowercase__ : str = pa.BufferOutputStream() with ArrowWriter( stream=__lowerCamelCase , writer_batch_size=__lowerCamelCase , hash_salt='''split_name''' , check_duplicates=__lowerCamelCase , ) as writer: writer.write({'''col_1''': '''foo''', '''col_2''': 1} , key=1 ) writer.write({'''col_1''': '''bar''', '''col_2''': 2} , key=2 ) lowercase__ , lowercase__ : List[str] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 10] ) @pytest.mark.parametrize( '''fields''' , [None, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}] ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[Any]: lowercase__ : int = pa.BufferOutputStream() lowercase__ : Tuple = pa.schema(__lowerCamelCase ) if fields else None with ArrowWriter(stream=__lowerCamelCase , schema=__lowerCamelCase , writer_batch_size=__lowerCamelCase ) as writer: writer.write_batch({'''col_1''': ['''foo''', '''bar'''], '''col_2''': [1, 2]} ) writer.write_batch({'''col_1''': [], '''col_2''': []} ) lowercase__ , lowercase__ : List[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowercase__ : Tuple = {'''col_1''': pa.string(), '''col_2''': pa.intaa()} assert writer._schema == pa.schema(__lowerCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 10] ) @pytest.mark.parametrize( '''fields''' , [None, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}] ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: lowercase__ : Dict = pa.BufferOutputStream() lowercase__ : Tuple = pa.schema(__lowerCamelCase ) if fields else None with ArrowWriter(stream=__lowerCamelCase , schema=__lowerCamelCase , writer_batch_size=__lowerCamelCase ) as writer: writer.write_table(pa.Table.from_pydict({'''col_1''': ['''foo''', '''bar'''], '''col_2''': [1, 2]} ) ) lowercase__ , lowercase__ : Any = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowercase__ : Any = {'''col_1''': pa.string(), '''col_2''': pa.intaa()} assert writer._schema == pa.schema(__lowerCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 10] ) @pytest.mark.parametrize( '''fields''' , [None, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}] ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : Dict = pa.BufferOutputStream() lowercase__ : Dict = pa.schema(__lowerCamelCase ) if fields else None with ArrowWriter(stream=__lowerCamelCase , schema=__lowerCamelCase , writer_batch_size=__lowerCamelCase ) as writer: writer.write_row(pa.Table.from_pydict({'''col_1''': ['''foo'''], '''col_2''': [1]} ) ) writer.write_row(pa.Table.from_pydict({'''col_1''': ['''bar'''], '''col_2''': [2]} ) ) lowercase__ , lowercase__ : Dict = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowercase__ : Optional[int] = {'''col_1''': pa.string(), '''col_2''': pa.intaa()} assert writer._schema == pa.schema(__lowerCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def __UpperCAmelCase ( ) -> int: with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ : Optional[int] = {'''col_1''': pa.string(), '''col_2''': pa.intaa()} lowercase__ : Dict = os.path.join(__lowerCamelCase , '''test.arrow''' ) with ArrowWriter(path=__lowerCamelCase , schema=pa.schema(__lowerCamelCase ) ) as writer: writer.write_batch({'''col_1''': ['''foo''', '''bar'''], '''col_2''': [1, 2]} ) lowercase__ , lowercase__ : str = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(__lowerCamelCase , metadata=writer._schema.metadata ) _check_output(__lowerCamelCase , 1 ) def __UpperCAmelCase ( __lowerCamelCase ) -> Tuple: if pa.types.is_list(__lowerCamelCase ): return get_base_dtype(arr_type.value_type ) else: return arr_type def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Dict: if isinstance(lst[0] , __lowerCamelCase ): change_first_primitive_element_in_list(lst[0] , __lowerCamelCase ) else: lowercase__ : Optional[Any] = value @pytest.mark.parametrize('''optimized_int_type, expected_dtype''' , [(None, pa.intaa()), (Value('''int32''' ), pa.intaa())] ) @pytest.mark.parametrize('''sequence''' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: lowercase__ : Optional[int] = pa.array(TypedSequence(__lowerCamelCase , optimized_int_type=__lowerCamelCase ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( '''col, expected_dtype''' , [ ('''attention_mask''', pa.inta()), ('''special_tokens_mask''', pa.inta()), ('''token_type_ids''', pa.inta()), ('''input_ids''', pa.intaa()), ('''other''', pa.intaa()), ] , ) @pytest.mark.parametrize('''sequence''' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Any: # in range lowercase__ : Optional[int] = pa.array(OptimizedTypedSequence(__lowerCamelCase , col=__lowerCamelCase ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications lowercase__ : Tuple = copy.deepcopy(__lowerCamelCase ) lowercase__ : Dict = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(__lowerCamelCase , __lowerCamelCase ) lowercase__ : int = pa.array(OptimizedTypedSequence(__lowerCamelCase , col=__lowerCamelCase ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize('''raise_exception''' , [False, True] ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: lowercase__ : List[Any] = str(tmp_path / '''dataset-train.arrow''' ) try: with ArrowWriter(path=__lowerCamelCase ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def __UpperCAmelCase ( __lowerCamelCase ) -> Union[str, Any]: lowercase__ : int = '''mock://dataset-train.arrow''' with ArrowWriter(path=__lowerCamelCase , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(__lowerCamelCase ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({'''col_1''': '''foo''', '''col_2''': 1} ) writer.write({'''col_1''': '''bar''', '''col_2''': 2} ) lowercase__ , lowercase__ : int = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(__lowerCamelCase ) def __UpperCAmelCase ( ) -> Optional[int]: lowercase__ : List[Any] = pa.BufferOutputStream() with ParquetWriter(stream=__lowerCamelCase ) as writer: writer.write({'''col_1''': '''foo''', '''col_2''': 1} ) writer.write({'''col_1''': '''bar''', '''col_2''': 2} ) lowercase__ , lowercase__ : List[str] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 lowercase__ : str = pa.BufferReader(output.getvalue() ) lowercase__ : pa.Table = pq.read_table(__lowerCamelCase ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize('''embed_local_files''' , [False, True] ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Dict: import PIL.Image lowercase__ : Dict = str(tmp_path / '''test_image_rgb.jpg''' ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(__lowerCamelCase , format='''png''' ) lowercase__ : Tuple = pa.BufferOutputStream() with ParquetWriter( stream=__lowerCamelCase , features=Features({'''image''': Image()} ) , embed_local_files=__lowerCamelCase ) as writer: writer.write({'''image''': image_path} ) writer.finalize() lowercase__ : Any = pa.BufferReader(output.getvalue() ) lowercase__ : pa.Table = pq.read_table(__lowerCamelCase ) lowercase__ : Union[str, Any] = pa_table.to_pydict() if embed_local_files: assert isinstance(out['''image'''][0]['''path'''] , __lowerCamelCase ) with open(__lowerCamelCase , '''rb''' ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def __UpperCAmelCase ( ) -> Union[str, Any]: lowercase__ : Optional[Any] = pa.schema([pa.field('''col_1''' , pa.string() , nullable=__lowerCamelCase )] ) lowercase__ : List[Any] = pa.BufferOutputStream() with ArrowWriter(stream=__lowerCamelCase ) as writer: writer._build_writer(inferred_schema=__lowerCamelCase ) assert writer._schema == pa.schema([pa.field('''col_1''' , pa.string() )] )
16
"""simple docstring""" from ...configuration_utils import PretrainedConfig lowerCAmelCase_ = { 'google/tapas-base-finetuned-sqa': ( 'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json' ), 'google/tapas-base-finetuned-wtq': ( 'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json' ), 'google/tapas-base-finetuned-wikisql-supervised': ( 'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json' ), 'google/tapas-base-finetuned-tabfact': ( 'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json' ), } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = "tapas" def __init__( self : List[Any] ,_snake_case : Dict=30_522 ,_snake_case : Union[str, Any]=768 ,_snake_case : int=12 ,_snake_case : Union[str, Any]=12 ,_snake_case : Union[str, Any]=3_072 ,_snake_case : List[Any]="gelu" ,_snake_case : Optional[int]=0.1 ,_snake_case : Tuple=0.1 ,_snake_case : List[Any]=1_024 ,_snake_case : Any=[3, 256, 256, 2, 256, 256, 10] ,_snake_case : List[Any]=0.02 ,_snake_case : Union[str, Any]=1e-12 ,_snake_case : str=0 ,_snake_case : Any=10.0 ,_snake_case : int=0 ,_snake_case : Optional[Any]=1.0 ,_snake_case : List[str]=None ,_snake_case : Tuple=1.0 ,_snake_case : Tuple=False ,_snake_case : List[Any]=None ,_snake_case : int=1.0 ,_snake_case : List[Any]=1.0 ,_snake_case : Optional[int]=False ,_snake_case : Optional[int]=False ,_snake_case : Optional[int]="ratio" ,_snake_case : Any=None ,_snake_case : Union[str, Any]=None ,_snake_case : List[str]=64 ,_snake_case : Optional[Any]=32 ,_snake_case : Optional[Any]=False ,_snake_case : Optional[int]=True ,_snake_case : Dict=False ,_snake_case : Tuple=False ,_snake_case : int=True ,_snake_case : List[str]=False ,_snake_case : Dict=None ,_snake_case : Optional[int]=None ,**_snake_case : int ,) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=_snake_case ,**_snake_case ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) lowercase__ : Optional[int] = vocab_size lowercase__ : List[str] = hidden_size lowercase__ : Any = num_hidden_layers lowercase__ : Optional[Any] = num_attention_heads lowercase__ : Optional[int] = hidden_act lowercase__ : List[Any] = intermediate_size lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : Dict = attention_probs_dropout_prob lowercase__ : str = max_position_embeddings lowercase__ : Dict = type_vocab_sizes lowercase__ : Optional[Any] = initializer_range lowercase__ : Dict = layer_norm_eps # Fine-tuning task hyperparameters lowercase__ : Any = positive_label_weight lowercase__ : int = num_aggregation_labels lowercase__ : List[str] = aggregation_loss_weight lowercase__ : Optional[int] = use_answer_as_supervision lowercase__ : Optional[Any] = answer_loss_importance lowercase__ : Union[str, Any] = use_normalized_answer_loss lowercase__ : str = huber_loss_delta lowercase__ : str = temperature lowercase__ : int = aggregation_temperature lowercase__ : List[Any] = use_gumbel_for_cells lowercase__ : Tuple = use_gumbel_for_aggregation lowercase__ : Union[str, Any] = average_approximation_function lowercase__ : Union[str, Any] = cell_selection_preference lowercase__ : Any = answer_loss_cutoff lowercase__ : List[Any] = max_num_rows lowercase__ : str = max_num_columns lowercase__ : int = average_logits_per_cell lowercase__ : str = select_one_column lowercase__ : str = allow_empty_column_selection lowercase__ : Any = init_cell_selection_weights_to_zero lowercase__ : Optional[int] = reset_position_index_per_cell lowercase__ : Union[str, Any] = disable_per_token_loss # Aggregation hyperparameters lowercase__ : Optional[Any] = aggregation_labels lowercase__ : List[Any] = no_aggregation_label_index if isinstance(self.aggregation_labels ,_snake_case ): lowercase__ : Union[str, Any] = {int(_snake_case ): v for k, v in aggregation_labels.items()}
16
1