code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
def _snake_case ( lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = generate_pascal_triangle(lowerCAmelCase ) for row_idx in range(lowerCAmelCase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=" " ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=" " ) else: print(triangle[row_idx][col_idx] , end="" ) print() def _snake_case ( lowerCAmelCase : int ): """simple docstring""" if not isinstance(lowerCAmelCase , lowerCAmelCase ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) SCREAMING_SNAKE_CASE_ : list[list[int]] = [] for current_row_idx in range(lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : str = populate_current_row(lowerCAmelCase , lowerCAmelCase ) triangle.append(lowerCAmelCase ) return triangle def _snake_case ( lowerCAmelCase : list[list[int]] , lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = 1, 1 for current_col_idx in range(1 , lowerCAmelCase ): calculate_current_element( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return current_row def _snake_case ( lowerCAmelCase : list[list[int]] , lowerCAmelCase : list[int] , lowerCAmelCase : int , lowerCAmelCase : int , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = triangle[current_row_idx - 1][current_col_idx - 1] SCREAMING_SNAKE_CASE_ : List[Any] = triangle[current_row_idx - 1][current_col_idx] SCREAMING_SNAKE_CASE_ : Union[str, Any] = above_to_left_elt + above_to_right_elt def _snake_case ( lowerCAmelCase : int ): """simple docstring""" if not isinstance(lowerCAmelCase , lowerCAmelCase ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) SCREAMING_SNAKE_CASE_ : list[list[int]] = [[1]] for row_index in range(1 , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Tuple = [0] + result[-1] + [0] SCREAMING_SNAKE_CASE_ : List[str] = row_index + 1 # Calculate the number of distinct elements in a row SCREAMING_SNAKE_CASE_ : Optional[Any] = sum(divmod(lowerCAmelCase , 2 ) ) SCREAMING_SNAKE_CASE_ : List[Any] = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] SCREAMING_SNAKE_CASE_ : Optional[Any] = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() SCREAMING_SNAKE_CASE_ : Tuple = row_first_half + row_second_half result.append(lowerCAmelCase ) return result def _snake_case ( ): """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowerCAmelCase : Callable , lowerCAmelCase : int ) -> None: SCREAMING_SNAKE_CASE_ : Optional[int] = f'{func.__name__}({value})' SCREAMING_SNAKE_CASE_ : str = timeit(f'__main__.{call}' , setup="import __main__" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f'{call:38} -- {timing:.4f} seconds' ) for value in range(1_5 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(lowerCAmelCase , lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
18
from collections import defaultdict def _snake_case ( lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = 1 SCREAMING_SNAKE_CASE_ : Tuple = True for v in tree[start]: if v not in visited: ret += dfs(lowerCAmelCase ) if ret % 2 == 0: cuts.append(lowerCAmelCase ) return ret def _snake_case ( ): """simple docstring""" dfs(1 ) if __name__ == "__main__": __lowerCamelCase , __lowerCamelCase : Union[str, Any] = 10, 9 __lowerCamelCase : Optional[int] = defaultdict(list) __lowerCamelCase : dict[int, bool] = {} __lowerCamelCase : list[int] = [] __lowerCamelCase : Optional[Any] = 0 __lowerCamelCase : Any = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
18
1
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class a__ ( A__ ): A = 42 A = 42 A = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
18
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=lowerCAmelCase ) env_command_parser(subparsers=lowerCAmelCase ) launch_command_parser(subparsers=lowerCAmelCase ) tpu_command_parser(subparsers=lowerCAmelCase ) test_command_parser(subparsers=lowerCAmelCase ) # Let's go SCREAMING_SNAKE_CASE_ : Dict = parser.parse_args() if not hasattr(lowerCAmelCase , "func" ): parser.print_help() exit(1 ) # Run args.func(lowerCAmelCase ) if __name__ == "__main__": main()
18
1
import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets __lowerCamelCase : str = datasets.logging.get_logger(__name__) __lowerCamelCase : str = '''\ @inproceedings{bleurt, title={BLEURT: Learning Robust Metrics for Text Generation}, author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh}, booktitle={ACL}, year={2020}, url={https://arxiv.org/abs/2004.04696} } ''' __lowerCamelCase : Union[str, Any] = '''\ BLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018) and then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune it for your specific application (the latter is expected to perform better). See the project\'s README at https://github.com/google-research/bleurt#readme for more information. ''' __lowerCamelCase : List[str] = ''' BLEURT score. Args: `predictions` (list of str): prediction/candidate sentences `references` (list of str): reference sentences `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None. Returns: \'scores\': List of scores. Examples: >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> bleurt = datasets.load_metric("bleurt") >>> results = bleurt.compute(predictions=predictions, references=references) >>> print([round(v, 2) for v in results["scores"]]) [1.03, 1.04] ''' __lowerCamelCase : str = { '''bleurt-tiny-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip''', '''bleurt-tiny-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip''', '''bleurt-base-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip''', '''bleurt-base-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip''', '''bleurt-large-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip''', '''bleurt-large-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip''', '''BLEURT-20-D3''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip''', '''BLEURT-20-D6''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip''', '''BLEURT-20-D12''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip''', '''BLEURT-20''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip''', } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): def __UpperCamelCase ( self : Any ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,homepage="https://github.com/google-research/bleurt",inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { "predictions": datasets.Value("string",id="sequence" ), "references": datasets.Value("string",id="sequence" ), } ),codebase_urls=["https://github.com/google-research/bleurt"],reference_urls=["https://github.com/google-research/bleurt", "https://arxiv.org/abs/2004.04696"],) def __UpperCamelCase ( self : str,_A : Any ): """simple docstring""" if self.config_name == "default": logger.warning( "Using default BLEURT-Base checkpoint for sequence maximum length 128. " "You can use a bigger model for better results with e.g.: datasets.load_metric('bleurt', 'bleurt-large-512')." ) SCREAMING_SNAKE_CASE_ : str = "bleurt-base-128" if self.config_name.lower() in CHECKPOINT_URLS: SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: SCREAMING_SNAKE_CASE_ : List[Any] = self.config_name.upper() else: raise KeyError( F'{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}' ) # download the model checkpoint specified by self.config_name and set up the scorer SCREAMING_SNAKE_CASE_ : Union[str, Any] = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] ) SCREAMING_SNAKE_CASE_ : List[str] = score.BleurtScorer(os.path.join(_A,_A ) ) def __UpperCamelCase ( self : str,_A : List[Any],_A : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.scorer.score(references=_A,candidates=_A ) return {"scores": scores}
18
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer __lowerCamelCase : Optional[Any] = logging.get_logger(__name__) __lowerCamelCase : Dict = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __lowerCamelCase : int = { '''vocab_file''': { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt''' ), } } __lowerCamelCase : Any = { '''junnyu/roformer_chinese_small''': 15_36, '''junnyu/roformer_chinese_base''': 15_36, '''junnyu/roformer_chinese_char_small''': 5_12, '''junnyu/roformer_chinese_char_base''': 5_12, '''junnyu/roformer_small_discriminator''': 1_28, '''junnyu/roformer_small_generator''': 1_28, } __lowerCamelCase : Union[str, Any] = { '''junnyu/roformer_chinese_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_base''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_base''': {'''do_lower_case''': True}, '''junnyu/roformer_small_discriminator''': {'''do_lower_case''': True}, '''junnyu/roformer_small_generator''': {'''do_lower_case''': True}, } class a__ ( A__ ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = PRETRAINED_INIT_CONFIGURATION A = RoFormerTokenizer def __init__( self : List[str],_A : int=None,_A : int=None,_A : int=True,_A : List[Any]="[UNK]",_A : Tuple="[SEP]",_A : List[Any]="[PAD]",_A : Optional[int]="[CLS]",_A : Optional[Any]="[MASK]",_A : Optional[int]=True,_A : List[str]=None,**_A : List[Any],): """simple docstring""" super().__init__( _A,tokenizer_file=_A,do_lower_case=_A,unk_token=_A,sep_token=_A,pad_token=_A,cls_token=_A,mask_token=_A,tokenize_chinese_chars=_A,strip_accents=_A,**_A,) SCREAMING_SNAKE_CASE_ : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("lowercase",_A ) != do_lower_case or pre_tok_state.get("strip_accents",_A ) != strip_accents ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = getattr(_A,pre_tok_state.pop("type" ) ) SCREAMING_SNAKE_CASE_ : Any = do_lower_case SCREAMING_SNAKE_CASE_ : List[str] = strip_accents SCREAMING_SNAKE_CASE_ : str = pre_tok_class(**_A ) SCREAMING_SNAKE_CASE_ : List[str] = do_lower_case def __getstate__( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.__dict__.copy() SCREAMING_SNAKE_CASE_ : Optional[Any] = BertPreTokenizer() return state def __setstate__( self : List[Any],_A : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = d SCREAMING_SNAKE_CASE_ : List[str] = self.__dict__["_tokenizer"].get_vocab() SCREAMING_SNAKE_CASE_ : Any = PreTokenizer.custom(JiebaPreTokenizer(_A ) ) def __UpperCamelCase ( self : Union[str, Any],_A : List[Any],_A : str=None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCamelCase ( self : str,_A : List[int],_A : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCamelCase ( self : int,_A : str,_A : Optional[str] = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._tokenizer.model.save(_A,name=_A ) return tuple(_A ) def __UpperCamelCase ( self : int,_A : Optional[int],_A : List[Any]=None,_A : Tuple=None,_A : str=False,**_A : List[Any],): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = BertPreTokenizer() return super().save_pretrained(_A,_A,_A,_A,**_A )
18
1
from math import sqrt def _snake_case ( lowerCAmelCase : int ): """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) and ( number >= 0 ), "'number' must been an int and positive" SCREAMING_SNAKE_CASE_ : Optional[int] = True # 0 and 1 are none primes. if number <= 1: SCREAMING_SNAKE_CASE_ : Optional[Any] = False for divisor in range(2 , int(round(sqrt(lowerCAmelCase ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: SCREAMING_SNAKE_CASE_ : int = False break # precondition assert isinstance(lowerCAmelCase , lowerCAmelCase ), "'status' must been from type bool" return status def _snake_case ( lowerCAmelCase : Dict ): """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N SCREAMING_SNAKE_CASE_ : str = list(range(2 , n + 1 ) ) SCREAMING_SNAKE_CASE_ : List[Any] = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCAmelCase ) ): for j in range(i + 1 , len(lowerCAmelCase ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): SCREAMING_SNAKE_CASE_ : List[str] = 0 # filters actual prime numbers. SCREAMING_SNAKE_CASE_ : Union[str, Any] = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCAmelCase , lowerCAmelCase ), "'ans' must been from type list" return ans def _snake_case ( lowerCAmelCase : Dict ): """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) and (n > 2), "'N' must been an int and > 2" SCREAMING_SNAKE_CASE_ : Any = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(lowerCAmelCase ): ans.append(lowerCAmelCase ) # precondition assert isinstance(lowerCAmelCase , lowerCAmelCase ), "'ans' must been from type list" return ans def _snake_case ( lowerCAmelCase : int ): """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) and number >= 0, "'number' must been an int and >= 0" SCREAMING_SNAKE_CASE_ : Optional[Any] = [] # this list will be returns of the function. # potential prime number factors. SCREAMING_SNAKE_CASE_ : Optional[int] = 2 SCREAMING_SNAKE_CASE_ : List[Any] = number if number == 0 or number == 1: ans.append(lowerCAmelCase ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCAmelCase ): while quotient != 1: if is_prime(lowerCAmelCase ) and (quotient % factor == 0): ans.append(lowerCAmelCase ) quotient /= factor else: factor += 1 else: ans.append(lowerCAmelCase ) # precondition assert isinstance(lowerCAmelCase , lowerCAmelCase ), "'ans' must been from type list" return ans def _snake_case ( lowerCAmelCase : str ): """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 # prime factorization of 'number' SCREAMING_SNAKE_CASE_ : Union[str, Any] = prime_factorization(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = max(lowerCAmelCase ) # precondition assert isinstance(lowerCAmelCase , lowerCAmelCase ), "'ans' must been from type int" return ans def _snake_case ( lowerCAmelCase : int ): """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" SCREAMING_SNAKE_CASE_ : Dict = 0 # prime factorization of 'number' SCREAMING_SNAKE_CASE_ : Any = prime_factorization(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = min(lowerCAmelCase ) # precondition assert isinstance(lowerCAmelCase , lowerCAmelCase ), "'ans' must been from type int" return ans def _snake_case ( lowerCAmelCase : Optional[Any] ): """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ), "'number' must been an int" assert isinstance(number % 2 == 0 , lowerCAmelCase ), "compare bust been from type bool" return number % 2 == 0 def _snake_case ( lowerCAmelCase : Any ): """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ), "'number' must been an int" assert isinstance(number % 2 != 0 , lowerCAmelCase ), "compare bust been from type bool" return number % 2 != 0 def _snake_case ( lowerCAmelCase : List[str] ): """simple docstring""" assert ( isinstance(lowerCAmelCase , lowerCAmelCase ) and (number > 2) and is_even(lowerCAmelCase ) ), "'number' must been an int, even and > 2" SCREAMING_SNAKE_CASE_ : int = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' SCREAMING_SNAKE_CASE_ : List[str] = get_prime_numbers(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = len(lowerCAmelCase ) # run variable for while-loops. SCREAMING_SNAKE_CASE_ : List[Any] = 0 SCREAMING_SNAKE_CASE_ : int = None # exit variable. for break up the loops SCREAMING_SNAKE_CASE_ : Optional[int] = True while i < len_pn and loop: SCREAMING_SNAKE_CASE_ : int = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: SCREAMING_SNAKE_CASE_ : Optional[Any] = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(lowerCAmelCase , lowerCAmelCase ) and (len(lowerCAmelCase ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def _snake_case ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any ): """simple docstring""" assert ( isinstance(lowerCAmelCase , lowerCAmelCase ) and isinstance(lowerCAmelCase , lowerCAmelCase ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." SCREAMING_SNAKE_CASE_ : str = 0 while numbera != 0: SCREAMING_SNAKE_CASE_ : str = numbera % numbera SCREAMING_SNAKE_CASE_ : Any = numbera SCREAMING_SNAKE_CASE_ : Union[str, Any] = rest # precondition assert isinstance(lowerCAmelCase , lowerCAmelCase ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def _snake_case ( lowerCAmelCase : Any , lowerCAmelCase : Tuple ): """simple docstring""" assert ( isinstance(lowerCAmelCase , lowerCAmelCase ) and isinstance(lowerCAmelCase , lowerCAmelCase ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." SCREAMING_SNAKE_CASE_ : Any = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' SCREAMING_SNAKE_CASE_ : str = prime_factorization(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = prime_factorization(lowerCAmelCase ) elif numbera == 1 or numbera == 1: SCREAMING_SNAKE_CASE_ : Optional[Any] = [] SCREAMING_SNAKE_CASE_ : Any = [] SCREAMING_SNAKE_CASE_ : int = max(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = 0 SCREAMING_SNAKE_CASE_ : str = 0 SCREAMING_SNAKE_CASE_ : Any = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: SCREAMING_SNAKE_CASE_ : List[str] = prime_fac_a.count(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = prime_fac_a.count(lowerCAmelCase ) for _ in range(max(lowerCAmelCase , lowerCAmelCase ) ): ans *= n else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = prime_fac_a.count(lowerCAmelCase ) for _ in range(lowerCAmelCase ): ans *= n done.append(lowerCAmelCase ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: SCREAMING_SNAKE_CASE_ : List[str] = prime_fac_a.count(lowerCAmelCase ) for _ in range(lowerCAmelCase ): ans *= n done.append(lowerCAmelCase ) # precondition assert isinstance(lowerCAmelCase , lowerCAmelCase ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def _snake_case ( lowerCAmelCase : Optional[Any] ): """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) and (n >= 0), "'number' must been a positive int" SCREAMING_SNAKE_CASE_ : str = 0 SCREAMING_SNAKE_CASE_ : Optional[int] = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCAmelCase ): ans += 1 # precondition assert isinstance(lowerCAmelCase , lowerCAmelCase ) and is_prime( lowerCAmelCase ), "'ans' must been a prime number and from type int" return ans def _snake_case ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str ): """simple docstring""" assert ( is_prime(lowerCAmelCase ) and is_prime(lowerCAmelCase ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" SCREAMING_SNAKE_CASE_ : List[Any] = p_number_a + 1 # jump to the next number SCREAMING_SNAKE_CASE_ : List[Any] = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCAmelCase ): number += 1 while number < p_number_a: ans.append(lowerCAmelCase ) number += 1 # fetch the next prime number. while not is_prime(lowerCAmelCase ): number += 1 # precondition assert ( isinstance(lowerCAmelCase , lowerCAmelCase ) and ans[0] != p_number_a and ans[len(lowerCAmelCase ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def _snake_case ( lowerCAmelCase : Optional[Any] ): """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) and (n >= 1), "'n' must been int and >= 1" SCREAMING_SNAKE_CASE_ : List[str] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(lowerCAmelCase ) # precondition assert ans[0] == 1 and ans[len(lowerCAmelCase ) - 1] == n, "Error in function getDivisiors(...)" return ans def _snake_case ( lowerCAmelCase : Dict ): """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) and ( number > 1 ), "'number' must been an int and >= 1" SCREAMING_SNAKE_CASE_ : int = get_divisors(lowerCAmelCase ) # precondition assert ( isinstance(lowerCAmelCase , lowerCAmelCase ) and (divisors[0] == 1) and (divisors[len(lowerCAmelCase ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def _snake_case ( lowerCAmelCase : List[Any] , lowerCAmelCase : Any ): """simple docstring""" assert ( isinstance(lowerCAmelCase , lowerCAmelCase ) and isinstance(lowerCAmelCase , lowerCAmelCase ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. SCREAMING_SNAKE_CASE_ : Dict = gcd(abs(lowerCAmelCase ) , abs(lowerCAmelCase ) ) # precondition assert ( isinstance(lowerCAmelCase , lowerCAmelCase ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def _snake_case ( lowerCAmelCase : Tuple ): """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) and (n >= 0), "'n' must been a int and >= 0" SCREAMING_SNAKE_CASE_ : str = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def _snake_case ( lowerCAmelCase : int ): """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) and (n >= 0), "'n' must been an int and >= 0" SCREAMING_SNAKE_CASE_ : Tuple = 0 SCREAMING_SNAKE_CASE_ : Tuple = 1 SCREAMING_SNAKE_CASE_ : Any = 1 # this will be return for _ in range(n - 1 ): SCREAMING_SNAKE_CASE_ : str = ans ans += fiba SCREAMING_SNAKE_CASE_ : Optional[Any] = tmp return ans
18
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class a__ ( A__ ): def __init__( self : Tuple,_A : Optional[int],_A : Any=13,_A : List[str]=7,_A : int=True,_A : Dict=True,_A : Dict=False,_A : List[Any]=True,_A : Any=99,_A : Optional[int]=32,_A : Any=5,_A : List[Any]=4,_A : Dict=64,_A : Optional[Any]="gelu",_A : Tuple=0.1,_A : Any=0.1,_A : List[Any]=512,_A : Dict=16,_A : Optional[Any]=2,_A : Union[str, Any]=0.02,_A : List[str]=3,_A : Optional[Any]=4,_A : Union[str, Any]=None,_A : Tuple=2,_A : List[str]=2,_A : str=2,_A : Dict=2,_A : Optional[Any]=4,_A : Union[str, Any]=1,): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = parent SCREAMING_SNAKE_CASE_ : Optional[int] = batch_size SCREAMING_SNAKE_CASE_ : Dict = seq_length SCREAMING_SNAKE_CASE_ : Dict = is_training SCREAMING_SNAKE_CASE_ : Optional[int] = use_input_mask SCREAMING_SNAKE_CASE_ : int = use_token_type_ids SCREAMING_SNAKE_CASE_ : Optional[int] = use_labels SCREAMING_SNAKE_CASE_ : Tuple = vocab_size SCREAMING_SNAKE_CASE_ : Any = hidden_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Tuple = num_attention_heads SCREAMING_SNAKE_CASE_ : List[Any] = intermediate_size SCREAMING_SNAKE_CASE_ : List[str] = hidden_act SCREAMING_SNAKE_CASE_ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : str = max_position_embeddings SCREAMING_SNAKE_CASE_ : str = type_vocab_size SCREAMING_SNAKE_CASE_ : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE_ : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE_ : Tuple = num_labels SCREAMING_SNAKE_CASE_ : List[Any] = num_choices SCREAMING_SNAKE_CASE_ : Dict = scope SCREAMING_SNAKE_CASE_ : int = q_groups SCREAMING_SNAKE_CASE_ : Tuple = k_groups SCREAMING_SNAKE_CASE_ : List[Any] = v_groups SCREAMING_SNAKE_CASE_ : Tuple = post_attention_groups SCREAMING_SNAKE_CASE_ : int = intermediate_groups SCREAMING_SNAKE_CASE_ : List[Any] = output_groups def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) SCREAMING_SNAKE_CASE_ : List[Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = None SCREAMING_SNAKE_CASE_ : Any = None SCREAMING_SNAKE_CASE_ : str = None if self.use_labels: SCREAMING_SNAKE_CASE_ : str = ids_tensor([self.batch_size],self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size],self.num_choices ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : str ): """simple docstring""" return SqueezeBertConfig( embedding_size=self.hidden_size,vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,attention_probs_dropout_prob=self.hidden_dropout_prob,attention_dropout=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,initializer_range=self.initializer_range,q_groups=self.q_groups,k_groups=self.k_groups,v_groups=self.v_groups,post_attention_groups=self.post_attention_groups,intermediate_groups=self.intermediate_groups,output_groups=self.output_groups,) def __UpperCamelCase ( self : Tuple,_A : Union[str, Any],_A : Union[str, Any],_A : int,_A : Optional[int],_A : Union[str, Any],_A : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = SqueezeBertModel(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Any = model(_A,_A ) SCREAMING_SNAKE_CASE_ : List[str] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Dict,_A : Any,_A : Tuple,_A : str,_A : Any,_A : Union[str, Any],_A : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = SqueezeBertForMaskedLM(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : List[str] = model(_A,attention_mask=_A,labels=_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : Optional[int],_A : Union[str, Any],_A : Union[str, Any],_A : Any,_A : Tuple,_A : int,_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = SqueezeBertForQuestionAnswering(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model( _A,attention_mask=_A,start_positions=_A,end_positions=_A ) self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : List[Any],_A : List[str],_A : Tuple,_A : List[Any],_A : List[str],_A : List[str],_A : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.num_labels SCREAMING_SNAKE_CASE_ : List[str] = SqueezeBertForSequenceClassification(_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model(_A,attention_mask=_A,labels=_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : str,_A : Optional[int],_A : str,_A : List[Any],_A : List[str],_A : str,_A : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.num_labels SCREAMING_SNAKE_CASE_ : Optional[int] = SqueezeBertForTokenClassification(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[int] = model(_A,attention_mask=_A,labels=_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : List[Any],_A : Tuple,_A : str,_A : Optional[Any],_A : int,_A : str,_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.num_choices SCREAMING_SNAKE_CASE_ : Union[str, Any] = SqueezeBertForMultipleChoice(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = input_ids.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() SCREAMING_SNAKE_CASE_ : str = input_mask.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() SCREAMING_SNAKE_CASE_ : Optional[int] = model( _A,attention_mask=_A,labels=_A,) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)) : Dict = config_and_inputs SCREAMING_SNAKE_CASE_ : Dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class a__ ( A__ , A__ , unittest.TestCase ): A = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) A = ( { 'feature-extraction': SqueezeBertModel, 'fill-mask': SqueezeBertForMaskedLM, 'question-answering': SqueezeBertForQuestionAnswering, 'text-classification': SqueezeBertForSequenceClassification, 'token-classification': SqueezeBertForTokenClassification, 'zero-shot': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) A = False A = True A = False def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = SqueezeBertModelTester(self ) SCREAMING_SNAKE_CASE_ : List[str] = ConfigTester(self,config_class=_A,dim=37 ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*_A ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*_A ) def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*_A ) def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*_A ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*_A ) def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*_A ) @slow def __UpperCamelCase ( self : Any ): """simple docstring""" for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : Tuple = SqueezeBertModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_sentencepiece @require_tokenizers @require_torch class a__ ( unittest.TestCase ): @slow def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = SqueezeBertForSequenceClassification.from_pretrained("squeezebert/squeezebert-mnli" ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor([[1, 2_9414, 232, 328, 740, 1140, 1_2695, 69, 13, 1588, 2]] ) SCREAMING_SNAKE_CASE_ : List[Any] = model(_A )[0] SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.Size((1, 3) ) self.assertEqual(output.shape,_A ) SCREAMING_SNAKE_CASE_ : int = torch.tensor([[0.6401, -0.0349, -0.6041]] ) self.assertTrue(torch.allclose(_A,_A,atol=1E-4 ) )
18
1
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def _snake_case ( lowerCAmelCase : Dict=None ): """simple docstring""" if subparsers is not None: SCREAMING_SNAKE_CASE_ : int = subparsers.add_parser("env" ) else: SCREAMING_SNAKE_CASE_ : Dict = argparse.ArgumentParser("Accelerate env command" ) parser.add_argument( "--config_file" , default=lowerCAmelCase , help="The config file to use for the default values in the launching script." ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase ) return parser def _snake_case ( lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = torch.__version__ SCREAMING_SNAKE_CASE_ : List[str] = torch.cuda.is_available() SCREAMING_SNAKE_CASE_ : Optional[Any] = is_xpu_available() SCREAMING_SNAKE_CASE_ : str = is_npu_available() SCREAMING_SNAKE_CASE_ : int = "Not found" # Get the default from the config file. if args.config_file is not None or os.path.isfile(lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : List[str] = load_config_from_file(args.config_file ).to_dict() SCREAMING_SNAKE_CASE_ : str = { "`Accelerate` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "Numpy version": np.__version__, "PyTorch version (GPU?)": f'{pt_version} ({pt_cuda_available})', "PyTorch XPU available": str(lowerCAmelCase ), "PyTorch NPU available": str(lowerCAmelCase ), "System RAM": f'{psutil.virtual_memory().total / 1_0_2_4 ** 3:.2f} GB', } if pt_cuda_available: SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.cuda.get_device_name() print("\nCopy-and-paste the text below in your GitHub issue\n" ) print("\n".join([f'- {prop}: {val}' for prop, val in info.items()] ) ) print("- `Accelerate` default config:" if args.config_file is None else "- `Accelerate` config passed:" ) SCREAMING_SNAKE_CASE_ : Optional[int] = ( "\n".join([f'\t- {prop}: {val}' for prop, val in accelerate_config.items()] ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else f'\t{accelerate_config}' ) print(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = accelerate_config return info def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = env_command_parser() SCREAMING_SNAKE_CASE_ : Optional[Any] = parser.parse_args() env_command(lowerCAmelCase ) return 0 if __name__ == "__main__": raise SystemExit(main())
18
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def _snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Union[str, Any] = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE_ : List[str] = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def _snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : Dict , lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Optional[Any] = {"text": "string"} SCREAMING_SNAKE_CASE_ : Any = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE_ : List[str] = ( Features({feature: Value(lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE_ : Optional[Any] = TextDatasetReader(lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def _snake_case ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : List[str] = {"text": "string"} SCREAMING_SNAKE_CASE_ : List[str] = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase , split=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : Optional[int] ): """simple docstring""" if issubclass(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = text_path elif issubclass(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [text_path] SCREAMING_SNAKE_CASE_ : int = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Optional[int] = {"text": "string"} SCREAMING_SNAKE_CASE_ : List[str] = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) def _snake_case ( lowerCAmelCase : Dict , lowerCAmelCase : Dict , lowerCAmelCase : List[str]=("train",) ): """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) for split in splits: SCREAMING_SNAKE_CASE_ : int = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def _snake_case ( lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Union[str, Any] = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE_ : List[Any] = TextDatasetReader({"train": text_path} , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase ).read() _check_text_datasetdict(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def _snake_case ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = tmp_path / "cache" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" SCREAMING_SNAKE_CASE_ : Tuple = {"text": "string"} SCREAMING_SNAKE_CASE_ : Any = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE_ : Dict = ( Features({feature: Value(lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE_ : str = TextDatasetReader({"train": text_path} , features=lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_datasetdict(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def _snake_case ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any , lowerCAmelCase : Dict ): """simple docstring""" if split: SCREAMING_SNAKE_CASE_ : Optional[int] = {split: text_path} else: SCREAMING_SNAKE_CASE_ : List[Any] = "train" SCREAMING_SNAKE_CASE_ : Tuple = {"train": text_path, "test": text_path} SCREAMING_SNAKE_CASE_ : Any = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : List[str] = {"text": "string"} SCREAMING_SNAKE_CASE_ : str = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_datasetdict(lowerCAmelCase , lowerCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
18
1
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class a__ ( A__ ): @slow @require_torch def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny","prajjwal1/bert-tiny" ) SCREAMING_SNAKE_CASE_ : Dict = BertTokenizer.from_pretrained("bert-base-uncased" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = bertabert.config.encoder.vocab_size SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer.sep_token_id SCREAMING_SNAKE_CASE_ : Dict = tokenizer.cls_token_id SCREAMING_SNAKE_CASE_ : Optional[Any] = 128 SCREAMING_SNAKE_CASE_ : Optional[int] = datasets.load_dataset("cnn_dailymail","3.0.0",split="train[:1%]" ) SCREAMING_SNAKE_CASE_ : Any = datasets.load_dataset("cnn_dailymail","3.0.0",split="validation[:1%]" ) SCREAMING_SNAKE_CASE_ : Tuple = train_dataset.select(range(32 ) ) SCREAMING_SNAKE_CASE_ : int = val_dataset.select(range(16 ) ) SCREAMING_SNAKE_CASE_ : List[str] = 4 def _map_to_encoder_decoder_inputs(_A : Tuple ): # Tokenizer will automatically set [BOS] <text> [EOS] SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer(batch["article"],padding="max_length",truncation=_A,max_length=512 ) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer(batch["highlights"],padding="max_length",truncation=_A,max_length=128 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = inputs.input_ids SCREAMING_SNAKE_CASE_ : List[Any] = inputs.attention_mask SCREAMING_SNAKE_CASE_ : Dict = outputs.input_ids SCREAMING_SNAKE_CASE_ : Optional[int] = outputs.input_ids.copy() SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"] ] SCREAMING_SNAKE_CASE_ : List[str] = outputs.attention_mask assert all(len(_A ) == 512 for x in inputs.input_ids ) assert all(len(_A ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_A : int ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = pred.label_ids SCREAMING_SNAKE_CASE_ : str = pred.predictions # all unnecessary tokens are removed SCREAMING_SNAKE_CASE_ : List[str] = tokenizer.batch_decode(_A,skip_special_tokens=_A ) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer.batch_decode(_A,skip_special_tokens=_A ) SCREAMING_SNAKE_CASE_ : Any = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_A ) )] ) / len(_A ) return {"accuracy": accuracy} # map train dataset SCREAMING_SNAKE_CASE_ : int = train_dataset.map( _map_to_encoder_decoder_inputs,batched=_A,batch_size=_A,remove_columns=["article", "highlights"],) train_dataset.set_format( type="torch",columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"],) # same for validation dataset SCREAMING_SNAKE_CASE_ : Optional[int] = val_dataset.map( _map_to_encoder_decoder_inputs,batched=_A,batch_size=_A,remove_columns=["article", "highlights"],) val_dataset.set_format( type="torch",columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"],) SCREAMING_SNAKE_CASE_ : Tuple = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE_ : List[Any] = SeqaSeqTrainingArguments( output_dir=_A,per_device_train_batch_size=_A,per_device_eval_batch_size=_A,predict_with_generate=_A,evaluation_strategy="steps",do_train=_A,do_eval=_A,warmup_steps=0,eval_steps=2,logging_steps=2,) # instantiate trainer SCREAMING_SNAKE_CASE_ : Union[str, Any] = SeqaSeqTrainer( model=_A,args=_A,compute_metrics=_compute_metrics,train_dataset=_A,eval_dataset=_A,tokenizer=_A,) # start training trainer.train()
18
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def _snake_case ( lowerCAmelCase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class a__ ( A__ , A__ , A__ , unittest.TestCase ): A = StableDiffusionLatentUpscalePipeline A = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'height', 'width', 'cross_attention_kwargs', 'negative_prompt_embeds', 'prompt_embeds', } A = PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'} A = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A = frozenset([] ) A = True @property def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = 1 SCREAMING_SNAKE_CASE_ : Optional[int] = 4 SCREAMING_SNAKE_CASE_ : Optional[int] = (16, 16) SCREAMING_SNAKE_CASE_ : Dict = floats_tensor((batch_size, num_channels) + sizes,rng=random.Random(0 ) ).to(_A ) return image def __UpperCamelCase ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : str = UNetaDConditionModel( act_fn="gelu",attention_head_dim=8,norm_num_groups=_A,block_out_channels=[32, 32, 64, 64],time_cond_proj_dim=160,conv_in_kernel=1,conv_out_kernel=1,cross_attention_dim=32,down_block_types=( "KDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", ),in_channels=8,mid_block_type=_A,only_cross_attention=_A,out_channels=5,resnet_time_scale_shift="scale_shift",time_embedding_type="fourier",timestep_post_act="gelu",up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D"),) SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 32, 64, 64],in_channels=3,out_channels=3,down_block_types=[ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", ],up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],latent_channels=4,) SCREAMING_SNAKE_CASE_ : int = EulerDiscreteScheduler(prediction_type="sample" ) SCREAMING_SNAKE_CASE_ : List[Any] = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1000,hidden_act="quick_gelu",projection_dim=512,) SCREAMING_SNAKE_CASE_ : Tuple = CLIPTextModel(_A ) SCREAMING_SNAKE_CASE_ : int = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = { "unet": model.eval(), "vae": vae.eval(), "scheduler": scheduler, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def __UpperCamelCase ( self : List[Any],_A : int,_A : Tuple=0 ): """simple docstring""" if str(_A ).startswith("mps" ): SCREAMING_SNAKE_CASE_ : Optional[int] = torch.manual_seed(_A ) else: SCREAMING_SNAKE_CASE_ : Dict = torch.Generator(device=_A ).manual_seed(_A ) SCREAMING_SNAKE_CASE_ : Tuple = { "prompt": "A painting of a squirrel eating a burger", "image": self.dummy_image.cpu(), "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = "cpu" SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : List[str] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ : Tuple = self.get_dummy_inputs(_A ) SCREAMING_SNAKE_CASE_ : Dict = pipe(**_A ).images SCREAMING_SNAKE_CASE_ : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape,(1, 256, 256, 3) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) SCREAMING_SNAKE_CASE_ : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A,1E-3 ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def __UpperCamelCase ( self : int ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" super().test_save_load_local(expected_max_difference=3E-3 ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3E-3 ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = [ "DDIMScheduler", "DDPMScheduler", "PNDMScheduler", "HeunDiscreteScheduler", "EulerAncestralDiscreteScheduler", "KDPM2DiscreteScheduler", "KDPM2AncestralDiscreteScheduler", "DPMSolverSDEScheduler", ] SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : Any = self.pipeline_class(**_A ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ : Any = self.get_dummy_inputs(_A ) SCREAMING_SNAKE_CASE_ : Optional[Any] = 2 SCREAMING_SNAKE_CASE_ : Optional[int] = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue SCREAMING_SNAKE_CASE_ : Tuple = getattr(_A,scheduler_enum.name ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = scheduler_cls.from_config(pipe.scheduler.config ) SCREAMING_SNAKE_CASE_ : Optional[int] = pipe(**_A )[0] outputs.append(_A ) assert check_same_shape(_A ) @require_torch_gpu @slow class a__ ( unittest.TestCase ): def __UpperCamelCase ( self : Dict ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = torch.manual_seed(33 ) SCREAMING_SNAKE_CASE_ : Optional[int] = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4",torch_dtype=torch.floataa ) pipe.to("cuda" ) SCREAMING_SNAKE_CASE_ : List[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler",torch_dtype=torch.floataa ) upscaler.to("cuda" ) SCREAMING_SNAKE_CASE_ : Tuple = "a photo of an astronaut high resolution, unreal engine, ultra realistic" SCREAMING_SNAKE_CASE_ : str = pipe(_A,generator=_A,output_type="latent" ).images SCREAMING_SNAKE_CASE_ : Optional[Any] = upscaler( prompt=_A,image=_A,num_inference_steps=20,guidance_scale=0,generator=_A,output_type="np",).images[0] SCREAMING_SNAKE_CASE_ : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy" ) assert np.abs((expected_image - image).mean() ) < 5E-2 def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = torch.manual_seed(33 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler",torch_dtype=torch.floataa ) upscaler.to("cuda" ) SCREAMING_SNAKE_CASE_ : Any = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas" SCREAMING_SNAKE_CASE_ : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png" ) SCREAMING_SNAKE_CASE_ : str = upscaler( prompt=_A,image=_A,num_inference_steps=20,guidance_scale=0,generator=_A,output_type="np",).images[0] SCREAMING_SNAKE_CASE_ : Any = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy" ) assert np.abs((expected_image - image).max() ) < 5E-2
18
1
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : Path , lowerCAmelCase : str = None , lowerCAmelCase : str = None , lowerCAmelCase : str = None , ): """simple docstring""" if config_name_or_path is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = "facebook/rag-token-base" if model_type == "rag_token" else "facebook/rag-sequence-base" if generator_tokenizer_name_or_path is None: SCREAMING_SNAKE_CASE_ : Dict = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = question_encoder_name_or_path SCREAMING_SNAKE_CASE_ : Union[str, Any] = RagTokenForGeneration if model_type == "rag_token" else RagSequenceForGeneration # Save model. SCREAMING_SNAKE_CASE_ : List[Any] = RagConfig.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = AutoConfig.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = AutoConfig.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = gen_config SCREAMING_SNAKE_CASE_ : Optional[Any] = question_encoder_config SCREAMING_SNAKE_CASE_ : Dict = model_class.from_pretrained_question_encoder_generator( lowerCAmelCase , lowerCAmelCase , config=lowerCAmelCase ) rag_model.save_pretrained(lowerCAmelCase ) # Sanity check. model_class.from_pretrained(lowerCAmelCase ) # Save tokenizers. SCREAMING_SNAKE_CASE_ : Optional[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase ) gen_tokenizer.save_pretrained(dest_dir / "generator_tokenizer/" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCAmelCase ) question_encoder_tokenizer.save_pretrained(dest_dir / "question_encoder_tokenizer/" ) if __name__ == "__main__": __lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( '''--model_type''', choices=['''rag_sequence''', '''rag_token'''], required=True, type=str, help='''RAG model type: rag_sequence, rag_token''', ) parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''') parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''') parser.add_argument( '''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier''' ) parser.add_argument( '''--generator_tokenizer_name_or_path''', type=str, help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''', ) parser.add_argument( '''--question_encoder_tokenizer_name_or_path''', type=str, help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''', ) parser.add_argument( '''--config_name_or_path''', type=str, help=( '''Identifier of the model config to use, if not provided, resolves to a base config for a given''' ''' ``model_type``''' ), ) __lowerCamelCase : str = parser.parse_args() __lowerCamelCase : int = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
18
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging __lowerCamelCase : Optional[int] = logging.get_logger(__name__) __lowerCamelCase : Tuple = { '''deepmind/language-perceiver''': '''https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json''', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class a__ ( A__ ): A = 'perceiver' def __init__( self : List[Any],_A : Tuple=256,_A : str=1280,_A : List[Any]=768,_A : Union[str, Any]=1,_A : Union[str, Any]=26,_A : List[str]=8,_A : List[Any]=8,_A : List[Any]=None,_A : List[Any]=None,_A : Union[str, Any]="kv",_A : Any=1,_A : int=1,_A : Dict="gelu",_A : Any=0.1,_A : int=0.02,_A : int=1E-12,_A : Any=True,_A : Optional[Any]=262,_A : List[Any]=2048,_A : str=56,_A : Optional[int]=[368, 496],_A : Dict=16,_A : Tuple=1920,_A : List[Any]=16,_A : str=[1, 16, 224, 224],**_A : Optional[Any],): """simple docstring""" super().__init__(**_A ) SCREAMING_SNAKE_CASE_ : Dict = num_latents SCREAMING_SNAKE_CASE_ : List[Any] = d_latents SCREAMING_SNAKE_CASE_ : Union[str, Any] = d_model SCREAMING_SNAKE_CASE_ : Optional[int] = num_blocks SCREAMING_SNAKE_CASE_ : List[Any] = num_self_attends_per_block SCREAMING_SNAKE_CASE_ : Tuple = num_self_attention_heads SCREAMING_SNAKE_CASE_ : List[str] = num_cross_attention_heads SCREAMING_SNAKE_CASE_ : List[Any] = qk_channels SCREAMING_SNAKE_CASE_ : Any = v_channels SCREAMING_SNAKE_CASE_ : Any = cross_attention_shape_for_attention SCREAMING_SNAKE_CASE_ : List[str] = self_attention_widening_factor SCREAMING_SNAKE_CASE_ : Any = cross_attention_widening_factor SCREAMING_SNAKE_CASE_ : List[Any] = hidden_act SCREAMING_SNAKE_CASE_ : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Any = initializer_range SCREAMING_SNAKE_CASE_ : List[Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : Tuple = use_query_residual # masked language modeling attributes SCREAMING_SNAKE_CASE_ : List[str] = vocab_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = max_position_embeddings # image classification attributes SCREAMING_SNAKE_CASE_ : Dict = image_size # flow attributes SCREAMING_SNAKE_CASE_ : List[Any] = train_size # multimodal autoencoding attributes SCREAMING_SNAKE_CASE_ : str = num_frames SCREAMING_SNAKE_CASE_ : Any = audio_samples_per_frame SCREAMING_SNAKE_CASE_ : Tuple = samples_per_patch SCREAMING_SNAKE_CASE_ : Optional[Any] = output_shape class a__ ( A__ ): @property def __UpperCamelCase ( self : List[str] ): """simple docstring""" if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ : List[str] = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE_ : str = {0: "batch", 1: "sequence"} return OrderedDict( [ ("inputs", dynamic_axis), ("attention_mask", dynamic_axis), ] ) @property def __UpperCamelCase ( self : List[Any] ): """simple docstring""" return 1E-4 def __UpperCamelCase ( self : List[str],_A : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"],_A : int = -1,_A : int = -1,_A : int = -1,_A : bool = False,_A : Optional[TensorType] = None,_A : int = 3,_A : int = 40,_A : int = 40,): """simple docstring""" if isinstance(_A,_A ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ : Tuple = compute_effective_axis_dimension( _A,fixed_dimension=OnnxConfig.default_fixed_batch,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ : Tuple = preprocessor.num_special_tokens_to_add(_A ) SCREAMING_SNAKE_CASE_ : Any = compute_effective_axis_dimension( _A,fixed_dimension=OnnxConfig.default_fixed_sequence,num_token_to_add=_A ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE_ : Optional[Any] = [" ".join(["a"] ) * seq_length] * batch_size SCREAMING_SNAKE_CASE_ : str = dict(preprocessor(_A,return_tensors=_A ) ) SCREAMING_SNAKE_CASE_ : List[str] = inputs.pop("input_ids" ) return inputs elif isinstance(_A,_A ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ : Any = compute_effective_axis_dimension(_A,fixed_dimension=OnnxConfig.default_fixed_batch ) SCREAMING_SNAKE_CASE_ : Optional[int] = self._generate_dummy_images(_A,_A,_A,_A ) SCREAMING_SNAKE_CASE_ : Any = dict(preprocessor(images=_A,return_tensors=_A ) ) SCREAMING_SNAKE_CASE_ : Any = inputs.pop("pixel_values" ) return inputs else: raise ValueError( "Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor." )
18
1
def _snake_case ( lowerCAmelCase : int ): """simple docstring""" return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def _snake_case ( lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = 0 SCREAMING_SNAKE_CASE_ : Tuple = number while duplicate > 0: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = divmod(lowerCAmelCase , 1_0 ) fact_sum += factorial(lowerCAmelCase ) return fact_sum == number if __name__ == "__main__": print('''Program to check whether a number is a Krisnamurthy Number or not.''') __lowerCamelCase : Tuple = int(input('''Enter number: ''').strip()) print( f'''{number} is {'' if krishnamurthy(number) else 'not '}a Krishnamurthy Number.''' )
18
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class a__ ( yaml.SafeLoader ): def __UpperCamelCase ( self : str,_A : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = [self.constructed_objects[key_node] for key_node, _ in node.value] SCREAMING_SNAKE_CASE_ : List[str] = [tuple(_A ) if isinstance(_A,_A ) else key for key in keys] SCREAMING_SNAKE_CASE_ : Optional[int] = Counter(_A ) SCREAMING_SNAKE_CASE_ : Tuple = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F'Got duplicate yaml keys: {duplicate_keys}' ) def __UpperCamelCase ( self : Tuple,_A : Dict,_A : List[Any]=False ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = super().construct_mapping(_A,deep=_A ) self._check_no_duplicates_on_constructed_node(_A ) return mapping def _snake_case ( lowerCAmelCase : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: SCREAMING_SNAKE_CASE_ : List[Any] = full_content[1:].index("---" ) + 1 SCREAMING_SNAKE_CASE_ : int = "\n".join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(lowerCAmelCase ) class a__ ( A__ ): # class attributes A = {'train_eval_index'} # train-eval-index in the YAML metadata @classmethod def __UpperCamelCase ( cls : Any,_A : Path ): """simple docstring""" with open(_A,encoding="utf-8" ) as readme_file: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(_A ) else: return cls() def __UpperCamelCase ( self : Dict,_A : Path ): """simple docstring""" if path.exists(): with open(_A,encoding="utf-8" ) as readme_file: SCREAMING_SNAKE_CASE_ : int = readme_file.read() else: SCREAMING_SNAKE_CASE_ : Any = None SCREAMING_SNAKE_CASE_ : int = self._to_readme(_A ) with open(_A,"w",encoding="utf-8" ) as readme_file: readme_file.write(_A ) def __UpperCamelCase ( self : Optional[int],_A : Optional[str] = None ): """simple docstring""" if readme_content is not None: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = _split_yaml_from_readme(_A ) SCREAMING_SNAKE_CASE_ : Tuple = "---\n" + self.to_yaml_string() + "---\n" + content else: SCREAMING_SNAKE_CASE_ : Dict = "---\n" + self.to_yaml_string() + "---\n" return full_content @classmethod def __UpperCamelCase ( cls : Dict,_A : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = yaml.load(_A,Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields SCREAMING_SNAKE_CASE_ : Any = { (key.replace("-","_" ) if key.replace("-","_" ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**_A ) def __UpperCamelCase ( self : Dict ): """simple docstring""" return yaml.safe_dump( { (key.replace("_","-" ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() },sort_keys=_A,allow_unicode=_A,encoding="utf-8",).decode("utf-8" ) __lowerCamelCase : List[Any] = { '''image-classification''': [], '''translation''': [], '''image-segmentation''': [], '''fill-mask''': [], '''automatic-speech-recognition''': [], '''token-classification''': [], '''sentence-similarity''': [], '''audio-classification''': [], '''question-answering''': [], '''summarization''': [], '''zero-shot-classification''': [], '''table-to-text''': [], '''feature-extraction''': [], '''other''': [], '''multiple-choice''': [], '''text-classification''': [], '''text-to-image''': [], '''text2text-generation''': [], '''zero-shot-image-classification''': [], '''tabular-classification''': [], '''tabular-regression''': [], '''image-to-image''': [], '''tabular-to-text''': [], '''unconditional-image-generation''': [], '''text-retrieval''': [], '''text-to-speech''': [], '''object-detection''': [], '''audio-to-audio''': [], '''text-generation''': [], '''conversational''': [], '''table-question-answering''': [], '''visual-question-answering''': [], '''image-to-text''': [], '''reinforcement-learning''': [], '''voice-activity-detection''': [], '''time-series-forecasting''': [], '''document-question-answering''': [], } if __name__ == "__main__": from argparse import ArgumentParser __lowerCamelCase : List[Any] = ArgumentParser(usage='''Validate the yaml metadata block of a README.md file.''') ap.add_argument('''readme_filepath''') __lowerCamelCase : Dict = ap.parse_args() __lowerCamelCase : List[Any] = Path(args.readme_filepath) __lowerCamelCase : Optional[int] = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
18
1
from math import pow, sqrt def _snake_case ( *lowerCAmelCase : float ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = len(lowerCAmelCase ) > 0 and all(value > 0.0 for value in values ) return result def _snake_case ( lowerCAmelCase : float , lowerCAmelCase : float ): """simple docstring""" return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(lowerCAmelCase , lowerCAmelCase ) else ValueError("Input Error: Molar mass values must greater than 0." ) ) def _snake_case ( lowerCAmelCase : float , lowerCAmelCase : float , lowerCAmelCase : float ): """simple docstring""" return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) ) def _snake_case ( lowerCAmelCase : float , lowerCAmelCase : float , lowerCAmelCase : float ): """simple docstring""" return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) ) def _snake_case ( lowerCAmelCase : float , lowerCAmelCase : float , lowerCAmelCase : float ): """simple docstring""" return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) ) def _snake_case ( lowerCAmelCase : float , lowerCAmelCase : float , lowerCAmelCase : float ): """simple docstring""" return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) )
18
from __future__ import annotations from math import pi, sqrt def _snake_case ( lowerCAmelCase : float , lowerCAmelCase : float ): """simple docstring""" if inductance <= 0: raise ValueError("Inductance cannot be 0 or negative" ) elif capacitance <= 0: raise ValueError("Capacitance cannot be 0 or negative" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
18
1
import os from distutils.util import strtobool def _snake_case ( lowerCAmelCase : Dict , lowerCAmelCase : Tuple ): """simple docstring""" for e in env_keys: SCREAMING_SNAKE_CASE_ : Dict = int(os.environ.get(lowerCAmelCase , -1 ) ) if val >= 0: return val return default def _snake_case ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str]=False ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = os.environ.get(lowerCAmelCase , str(lowerCAmelCase ) ) return strtobool(lowerCAmelCase ) == 1 # As its name indicates `strtobool` actually returns an int... def _snake_case ( lowerCAmelCase : Dict , lowerCAmelCase : Tuple="no" ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = os.environ.get(lowerCAmelCase , str(lowerCAmelCase ) ) return value
18
def _snake_case ( lowerCAmelCase : list ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = len(lowerCAmelCase ) for i in range(1 , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : int = collection[i] SCREAMING_SNAKE_CASE_ : Any = 0 SCREAMING_SNAKE_CASE_ : Tuple = i - 1 while low <= high: SCREAMING_SNAKE_CASE_ : int = (low + high) // 2 if val < collection[mid]: SCREAMING_SNAKE_CASE_ : Optional[Any] = mid - 1 else: SCREAMING_SNAKE_CASE_ : Tuple = mid + 1 for j in range(lowerCAmelCase , lowerCAmelCase , -1 ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = collection[j - 1] SCREAMING_SNAKE_CASE_ : int = val return collection if __name__ == "__main__": __lowerCamelCase : Dict = input('''Enter numbers separated by a comma:\n''').strip() __lowerCamelCase : List[str] = [int(item) for item in user_input.split(''',''')] print(binary_insertion_sort(unsorted))
18
1
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 __lowerCamelCase : str = data_utils.TransfoXLTokenizer __lowerCamelCase : Optional[Any] = data_utils.TransfoXLCorpus __lowerCamelCase : Optional[int] = data_utils __lowerCamelCase : List[str] = data_utils def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : List[str] ): """simple docstring""" if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(lowerCAmelCase , "rb" ) as fp: SCREAMING_SNAKE_CASE_ : int = pickle.load(lowerCAmelCase , encoding="latin1" ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) SCREAMING_SNAKE_CASE_ : str = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["pretrained_vocab_file"] print(f'Save vocabulary to {pytorch_vocab_dump_path}' ) SCREAMING_SNAKE_CASE_ : List[str] = corpus.vocab.__dict__ torch.save(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = corpus.__dict__ corpus_dict_no_vocab.pop("vocab" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = pytorch_dump_folder_path + "/" + CORPUS_NAME print(f'Save dataset to {pytorch_dataset_dump_path}' ) torch.save(lowerCAmelCase , lowerCAmelCase ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model SCREAMING_SNAKE_CASE_ : Any = os.path.abspath(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.path.abspath(lowerCAmelCase ) print(f'Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.' ) # Initialise PyTorch model if transfo_xl_config_file == "": SCREAMING_SNAKE_CASE_ : int = TransfoXLConfig() else: SCREAMING_SNAKE_CASE_ : Optional[int] = TransfoXLConfig.from_json_file(lowerCAmelCase ) print(f'Building PyTorch model from configuration: {config}' ) SCREAMING_SNAKE_CASE_ : Tuple = TransfoXLLMHeadModel(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = load_tf_weights_in_transfo_xl(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Save pytorch-model SCREAMING_SNAKE_CASE_ : List[str] = os.path.join(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = os.path.join(lowerCAmelCase , lowerCAmelCase ) print(f'Save PyTorch model to {os.path.abspath(lowerCAmelCase )}' ) torch.save(model.state_dict() , lowerCAmelCase ) print(f'Save configuration file to {os.path.abspath(lowerCAmelCase )}' ) with open(lowerCAmelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __lowerCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--tf_checkpoint_path''', default='''''', type=str, help='''An optional path to a TensorFlow checkpoint path to be converted.''', ) parser.add_argument( '''--transfo_xl_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--transfo_xl_dataset_file''', default='''''', type=str, help='''An optional dataset file to be converted in a vocabulary.''', ) __lowerCamelCase : Optional[Any] = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
18
from collections.abc import Sequence from queue import Queue class a__ : def __init__( self : int,_A : List[Any],_A : Optional[Any],_A : Optional[int],_A : int=None,_A : List[str]=None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = start SCREAMING_SNAKE_CASE_ : List[str] = end SCREAMING_SNAKE_CASE_ : Tuple = val SCREAMING_SNAKE_CASE_ : List[str] = (start + end) // 2 SCREAMING_SNAKE_CASE_ : Optional[int] = left SCREAMING_SNAKE_CASE_ : str = right def __repr__( self : Tuple ): """simple docstring""" return F'SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})' class a__ : def __init__( self : Any,_A : Sequence,_A : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = collection SCREAMING_SNAKE_CASE_ : Optional[int] = function if self.collection: SCREAMING_SNAKE_CASE_ : List[str] = self._build_tree(0,len(_A ) - 1 ) def __UpperCamelCase ( self : int,_A : Any,_A : List[Any] ): """simple docstring""" self._update_tree(self.root,_A,_A ) def __UpperCamelCase ( self : str,_A : Any,_A : List[Any] ): """simple docstring""" return self._query_range(self.root,_A,_A ) def __UpperCamelCase ( self : Any,_A : Optional[int],_A : int ): """simple docstring""" if start == end: return SegmentTreeNode(_A,_A,self.collection[start] ) SCREAMING_SNAKE_CASE_ : List[Any] = (start + end) // 2 SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._build_tree(_A,_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = self._build_tree(mid + 1,_A ) return SegmentTreeNode(_A,_A,self.fn(left.val,right.val ),_A,_A ) def __UpperCamelCase ( self : int,_A : int,_A : Tuple,_A : Dict ): """simple docstring""" if node.start == i and node.end == i: SCREAMING_SNAKE_CASE_ : Union[str, Any] = val return if i <= node.mid: self._update_tree(node.left,_A,_A ) else: self._update_tree(node.right,_A,_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.fn(node.left.val,node.right.val ) def __UpperCamelCase ( self : str,_A : List[str],_A : Optional[int],_A : Optional[Any] ): """simple docstring""" if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left,_A,_A ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left,_A,node.mid ),self._query_range(node.right,node.mid + 1,_A ),) else: # range in right child tree return self._query_range(node.right,_A,_A ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" if self.root is not None: SCREAMING_SNAKE_CASE_ : int = Queue() queue.put(self.root ) while not queue.empty(): SCREAMING_SNAKE_CASE_ : Tuple = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('''*''' * 50) __lowerCamelCase : int = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
18
1
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def _snake_case ( lowerCAmelCase : Dict ): """simple docstring""" if ( (cp >= 0X4_E_0_0 and cp <= 0X9_F_F_F) or (cp >= 0X3_4_0_0 and cp <= 0X4_D_B_F) # or (cp >= 0X2_0_0_0_0 and cp <= 0X2_A_6_D_F) # or (cp >= 0X2_A_7_0_0 and cp <= 0X2_B_7_3_F) # or (cp >= 0X2_B_7_4_0 and cp <= 0X2_B_8_1_F) # or (cp >= 0X2_B_8_2_0 and cp <= 0X2_C_E_A_F) # or (cp >= 0XF_9_0_0 and cp <= 0XF_A_F_F) or (cp >= 0X2_F_8_0_0 and cp <= 0X2_F_A_1_F) # ): # return True return False def _snake_case ( lowerCAmelCase : str ): """simple docstring""" for char in word: SCREAMING_SNAKE_CASE_ : Any = ord(lowerCAmelCase ) if not _is_chinese_char(lowerCAmelCase ): return 0 return 1 def _snake_case ( lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = set() for token in tokens: SCREAMING_SNAKE_CASE_ : int = len(lowerCAmelCase ) > 1 and is_chinese(lowerCAmelCase ) if chinese_word: word_set.add(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = list(lowerCAmelCase ) return word_list def _snake_case ( lowerCAmelCase : List[str] , lowerCAmelCase : set() ): """simple docstring""" if not chinese_word_set: return bert_tokens SCREAMING_SNAKE_CASE_ : str = max([len(lowerCAmelCase ) for w in chinese_word_set] ) SCREAMING_SNAKE_CASE_ : int = bert_tokens SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = 0, len(lowerCAmelCase ) while start < end: SCREAMING_SNAKE_CASE_ : Optional[int] = True if is_chinese(bert_word[start] ): SCREAMING_SNAKE_CASE_ : List[str] = min(end - start , lowerCAmelCase ) for i in range(lowerCAmelCase , 1 , -1 ): SCREAMING_SNAKE_CASE_ : Tuple = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): SCREAMING_SNAKE_CASE_ : Optional[int] = "##" + bert_word[j] SCREAMING_SNAKE_CASE_ : int = start + i SCREAMING_SNAKE_CASE_ : Optional[Any] = False break if single_word: start += 1 return bert_word def _snake_case ( lowerCAmelCase : List[str] , lowerCAmelCase : LTP , lowerCAmelCase : BertTokenizer ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] for i in range(0 , len(lowerCAmelCase ) , 1_0_0 ): SCREAMING_SNAKE_CASE_ : Optional[int] = ltp_tokenizer.seg(lines[i : i + 1_0_0] )[0] SCREAMING_SNAKE_CASE_ : List[Any] = [get_chinese_word(lowerCAmelCase ) for r in res] ltp_res.extend(lowerCAmelCase ) assert len(lowerCAmelCase ) == len(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] for i in range(0 , len(lowerCAmelCase ) , 1_0_0 ): SCREAMING_SNAKE_CASE_ : str = bert_tokenizer(lines[i : i + 1_0_0] , add_special_tokens=lowerCAmelCase , truncation=lowerCAmelCase , max_length=5_1_2 ) bert_res.extend(res["input_ids"] ) assert len(lowerCAmelCase ) == len(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = [] for input_ids, chinese_word in zip(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : str = [] for id in input_ids: SCREAMING_SNAKE_CASE_ : Tuple = bert_tokenizer._convert_id_to_token(lowerCAmelCase ) input_tokens.append(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = add_sub_symbol(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(lowerCAmelCase ): if token[:2] == "##": SCREAMING_SNAKE_CASE_ : List[Any] = token[2:] # save chinese tokens' pos if len(lowerCAmelCase ) == 1 and _is_chinese_char(ord(lowerCAmelCase ) ): ref_id.append(lowerCAmelCase ) ref_ids.append(lowerCAmelCase ) assert len(lowerCAmelCase ) == len(lowerCAmelCase ) return ref_ids def _snake_case ( lowerCAmelCase : Optional[int] ): """simple docstring""" with open(args.file_name , "r" , encoding="utf-8" ) as f: SCREAMING_SNAKE_CASE_ : List[Any] = f.readlines() SCREAMING_SNAKE_CASE_ : int = [line.strip() for line in data if len(lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' SCREAMING_SNAKE_CASE_ : Union[str, Any] = LTP(args.ltp ) # faster in GPU device SCREAMING_SNAKE_CASE_ : Tuple = BertTokenizer.from_pretrained(args.bert ) SCREAMING_SNAKE_CASE_ : List[str] = prepare_ref(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) with open(args.save_path , "w" , encoding="utf-8" ) as f: SCREAMING_SNAKE_CASE_ : Optional[int] = [json.dumps(lowerCAmelCase ) + "\n" for ref in ref_ids] f.writelines(lowerCAmelCase ) if __name__ == "__main__": __lowerCamelCase : Any = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''' ) parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''') parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''') __lowerCamelCase : int = parser.parse_args() main(args)
18
def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : int ): """simple docstring""" while b: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = b, a % b return a def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : int ): """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(lowerCAmelCase , a % b ) def _snake_case ( ): """simple docstring""" print(f'euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}' ) print(f'euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}' ) print(f'euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}' ) print(f'euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}' ) print(f'euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}' ) print(f'euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}' ) print(f'euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}' ) print(f'euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}' ) if __name__ == "__main__": main()
18
1
def _snake_case ( lowerCAmelCase : float , lowerCAmelCase : list[float] ): """simple docstring""" if discount_rate < 0: raise ValueError("Discount rate cannot be negative" ) if not cash_flows: raise ValueError("Cash flows list cannot be empty" ) SCREAMING_SNAKE_CASE_ : str = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(lowerCAmelCase ) ) return round(lowerCAmelCase , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
18
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCamelCase : Dict = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[Any] = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys __lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
18
1
import cva import numpy as np class a__ : def __init__( self : Any,_A : float,_A : int ): """simple docstring""" if k in (0.04, 0.06): SCREAMING_SNAKE_CASE_ : Union[str, Any] = k SCREAMING_SNAKE_CASE_ : str = window_size else: raise ValueError("invalid k value" ) def __str__( self : Union[str, Any] ): """simple docstring""" return str(self.k ) def __UpperCamelCase ( self : Optional[int],_A : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = cva.imread(_A,0 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = img.shape SCREAMING_SNAKE_CASE_ : list[list[int]] = [] SCREAMING_SNAKE_CASE_ : Optional[Any] = img.copy() SCREAMING_SNAKE_CASE_ : Optional[Any] = cva.cvtColor(_A,cva.COLOR_GRAY2RGB ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = np.gradient(_A ) SCREAMING_SNAKE_CASE_ : str = dx**2 SCREAMING_SNAKE_CASE_ : Optional[Any] = dy**2 SCREAMING_SNAKE_CASE_ : Optional[Any] = dx * dy SCREAMING_SNAKE_CASE_ : Optional[Any] = 0.04 SCREAMING_SNAKE_CASE_ : str = self.window_size // 2 for y in range(_A,h - offset ): for x in range(_A,w - offset ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() SCREAMING_SNAKE_CASE_ : int = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() SCREAMING_SNAKE_CASE_ : Optional[int] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() SCREAMING_SNAKE_CASE_ : int = (wxx * wyy) - (wxy**2) SCREAMING_SNAKE_CASE_ : Optional[int] = wxx + wyy SCREAMING_SNAKE_CASE_ : List[Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0),0 ) color_img.itemset((y, x, 1),0 ) color_img.itemset((y, x, 2),255 ) return color_img, corner_list if __name__ == "__main__": __lowerCamelCase : Optional[int] = HarrisCorner(0.04, 3) __lowerCamelCase , __lowerCamelCase : List[Any] = edge_detect.detect('''path_to_image''') cva.imwrite('''detect.png''', color_img)
18
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : Path , lowerCAmelCase : str = None , lowerCAmelCase : str = None , lowerCAmelCase : str = None , ): """simple docstring""" if config_name_or_path is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = "facebook/rag-token-base" if model_type == "rag_token" else "facebook/rag-sequence-base" if generator_tokenizer_name_or_path is None: SCREAMING_SNAKE_CASE_ : Dict = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = question_encoder_name_or_path SCREAMING_SNAKE_CASE_ : Union[str, Any] = RagTokenForGeneration if model_type == "rag_token" else RagSequenceForGeneration # Save model. SCREAMING_SNAKE_CASE_ : List[Any] = RagConfig.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = AutoConfig.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = AutoConfig.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = gen_config SCREAMING_SNAKE_CASE_ : Optional[Any] = question_encoder_config SCREAMING_SNAKE_CASE_ : Dict = model_class.from_pretrained_question_encoder_generator( lowerCAmelCase , lowerCAmelCase , config=lowerCAmelCase ) rag_model.save_pretrained(lowerCAmelCase ) # Sanity check. model_class.from_pretrained(lowerCAmelCase ) # Save tokenizers. SCREAMING_SNAKE_CASE_ : Optional[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase ) gen_tokenizer.save_pretrained(dest_dir / "generator_tokenizer/" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCAmelCase ) question_encoder_tokenizer.save_pretrained(dest_dir / "question_encoder_tokenizer/" ) if __name__ == "__main__": __lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( '''--model_type''', choices=['''rag_sequence''', '''rag_token'''], required=True, type=str, help='''RAG model type: rag_sequence, rag_token''', ) parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''') parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''') parser.add_argument( '''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier''' ) parser.add_argument( '''--generator_tokenizer_name_or_path''', type=str, help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''', ) parser.add_argument( '''--question_encoder_tokenizer_name_or_path''', type=str, help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''', ) parser.add_argument( '''--config_name_or_path''', type=str, help=( '''Identifier of the model config to use, if not provided, resolves to a base config for a given''' ''' ``model_type``''' ), ) __lowerCamelCase : str = parser.parse_args() __lowerCamelCase : int = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
18
1
import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) __lowerCamelCase : Any = '''hf-internal-testing/tiny-random-bert''' __lowerCamelCase : Dict = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') __lowerCamelCase : Optional[int] = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class a__ ( unittest.TestCase ): def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = cached_file(_A,_A ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_A ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_A,_A ) ) ) with open(os.path.join(_A,"refs","main" ) ) as f: SCREAMING_SNAKE_CASE_ : Dict = f.read() self.assertEqual(_A,os.path.join(_A,"snapshots",_A,_A ) ) self.assertTrue(os.path.isfile(_A ) ) # File is cached at the same place the second time. SCREAMING_SNAKE_CASE_ : Union[str, Any] = cached_file(_A,_A ) self.assertEqual(_A,_A ) # Using a specific revision to test the full commit hash. SCREAMING_SNAKE_CASE_ : Union[str, Any] = cached_file(_A,_A,revision="9b8c223" ) self.assertEqual(_A,os.path.join(_A,"snapshots",_A,_A ) ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" with self.assertRaisesRegex(_A,"is not a valid model identifier" ): SCREAMING_SNAKE_CASE_ : Optional[Any] = cached_file("tiny-random-bert",_A ) with self.assertRaisesRegex(_A,"is not a valid git identifier" ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = cached_file(_A,_A,revision="aaaa" ) with self.assertRaisesRegex(_A,"does not appear to have a file named" ): SCREAMING_SNAKE_CASE_ : Any = cached_file(_A,"conf" ) def __UpperCamelCase ( self : Any ): """simple docstring""" with self.assertRaisesRegex(_A,"does not appear to have a file named" ): SCREAMING_SNAKE_CASE_ : Any = cached_file(_A,"conf" ) with open(os.path.join(_A,"refs","main" ) ) as f: SCREAMING_SNAKE_CASE_ : Optional[int] = f.read() self.assertTrue(os.path.isfile(os.path.join(_A,".no_exist",_A,"conf" ) ) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = cached_file(_A,"conf",_raise_exceptions_for_missing_entries=_A ) self.assertIsNone(_A ) SCREAMING_SNAKE_CASE_ : Any = cached_file(_A,"conf",local_files_only=_A,_raise_exceptions_for_missing_entries=_A ) self.assertIsNone(_A ) SCREAMING_SNAKE_CASE_ : int = mock.Mock() SCREAMING_SNAKE_CASE_ : int = 500 SCREAMING_SNAKE_CASE_ : Optional[int] = {} SCREAMING_SNAKE_CASE_ : List[Any] = HTTPError SCREAMING_SNAKE_CASE_ : List[str] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request",return_value=_A ) as mock_head: SCREAMING_SNAKE_CASE_ : Any = cached_file(_A,"conf",_raise_exceptions_for_connection_errors=_A ) self.assertIsNone(_A ) # This check we did call the fake head request mock_head.assert_called() def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" self.assertTrue(has_file("hf-internal-testing/tiny-bert-pt-only",_A ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only",_A ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only",_A ) ) def __UpperCamelCase ( self : Any ): """simple docstring""" self.assertIsNone(get_file_from_repo("bert-base-cased","ahah.txt" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(_A,"is not a valid model identifier" ): get_file_from_repo("bert-base-case",_A ) # The function raises if the revision does not exist. with self.assertRaisesRegex(_A,"is not a valid git identifier" ): get_file_from_repo("bert-base-cased",_A,revision="ahaha" ) SCREAMING_SNAKE_CASE_ : List[str] = get_file_from_repo("bert-base-cased",_A ) # The name is the cached name which is not very easy to test, so instead we load the content. SCREAMING_SNAKE_CASE_ : Dict = json.loads(open(_A,"r" ).read() ) self.assertEqual(config["hidden_size"],768 ) def __UpperCamelCase ( self : Any ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_ : Dict = Path(_A ) / "a.txt" filename.touch() self.assertEqual(get_file_from_repo(_A,"a.txt" ),str(_A ) ) self.assertIsNone(get_file_from_repo(_A,"b.txt" ) )
18
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class a__ ( unittest.TestCase ): def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = { "task_specific_params": { "summarization": {"length_penalty": 1.0, "max_length": 128, "min_length": 12, "num_beams": 4}, "summarization_cnn": {"length_penalty": 2.0, "max_length": 142, "min_length": 56, "num_beams": 4}, "summarization_xsum": {"length_penalty": 1.0, "max_length": 62, "min_length": 11, "num_beams": 6}, } } SCREAMING_SNAKE_CASE_ : Any = { "task_specific_params.summarization.length_penalty": 1.0, "task_specific_params.summarization.max_length": 128, "task_specific_params.summarization.min_length": 12, "task_specific_params.summarization.num_beams": 4, "task_specific_params.summarization_cnn.length_penalty": 2.0, "task_specific_params.summarization_cnn.max_length": 142, "task_specific_params.summarization_cnn.min_length": 56, "task_specific_params.summarization_cnn.num_beams": 4, "task_specific_params.summarization_xsum.length_penalty": 1.0, "task_specific_params.summarization_xsum.max_length": 62, "task_specific_params.summarization_xsum.min_length": 11, "task_specific_params.summarization_xsum.num_beams": 6, } self.assertEqual(flatten_dict(_A ),_A ) def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = np.random.randn(3,4 ) self.assertTrue(np.allclose(transpose(_A ),x.transpose() ) ) SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4,5 ) self.assertTrue(np.allclose(transpose(_A,axes=(1, 2, 0) ),x.transpose((1, 2, 0) ) ) ) @require_torch def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Any = torch.tensor(_A ) self.assertTrue(np.allclose(transpose(_A ),transpose(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ : Dict = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor(_A ) self.assertTrue(np.allclose(transpose(_A,axes=(1, 2, 0) ),transpose(_A,axes=(1, 2, 0) ).numpy() ) ) @require_tf def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tf.constant(_A ) self.assertTrue(np.allclose(transpose(_A ),transpose(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ : List[str] = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.constant(_A ) self.assertTrue(np.allclose(transpose(_A,axes=(1, 2, 0) ),transpose(_A,axes=(1, 2, 0) ).numpy() ) ) @require_flax def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Tuple = jnp.array(_A ) self.assertTrue(np.allclose(transpose(_A ),np.asarray(transpose(_A ) ) ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : List[Any] = jnp.array(_A ) self.assertTrue(np.allclose(transpose(_A,axes=(1, 2, 0) ),np.asarray(transpose(_A,axes=(1, 2, 0) ) ) ) ) def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4 ) self.assertTrue(np.allclose(reshape(_A,(4, 3) ),np.reshape(_A,(4, 3) ) ) ) SCREAMING_SNAKE_CASE_ : Any = np.random.randn(3,4,5 ) self.assertTrue(np.allclose(reshape(_A,(12, 5) ),np.reshape(_A,(12, 5) ) ) ) @require_torch def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor(_A ) self.assertTrue(np.allclose(reshape(_A,(4, 3) ),reshape(_A,(4, 3) ).numpy() ) ) SCREAMING_SNAKE_CASE_ : Dict = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : int = torch.tensor(_A ) self.assertTrue(np.allclose(reshape(_A,(12, 5) ),reshape(_A,(12, 5) ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tf.constant(_A ) self.assertTrue(np.allclose(reshape(_A,(4, 3) ),reshape(_A,(4, 3) ).numpy() ) ) SCREAMING_SNAKE_CASE_ : int = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : Any = tf.constant(_A ) self.assertTrue(np.allclose(reshape(_A,(12, 5) ),reshape(_A,(12, 5) ).numpy() ) ) @require_flax def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : int = jnp.array(_A ) self.assertTrue(np.allclose(reshape(_A,(4, 3) ),np.asarray(reshape(_A,(4, 3) ) ) ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : Tuple = jnp.array(_A ) self.assertTrue(np.allclose(reshape(_A,(12, 5) ),np.asarray(reshape(_A,(12, 5) ) ) ) ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = np.random.randn(1,3,4 ) self.assertTrue(np.allclose(squeeze(_A ),np.squeeze(_A ) ) ) SCREAMING_SNAKE_CASE_ : Any = np.random.randn(1,4,1,5 ) self.assertTrue(np.allclose(squeeze(_A,axis=2 ),np.squeeze(_A,axis=2 ) ) ) @require_torch def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = np.random.randn(1,3,4 ) SCREAMING_SNAKE_CASE_ : Any = torch.tensor(_A ) self.assertTrue(np.allclose(squeeze(_A ),squeeze(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ : Any = np.random.randn(1,4,1,5 ) SCREAMING_SNAKE_CASE_ : Dict = torch.tensor(_A ) self.assertTrue(np.allclose(squeeze(_A,axis=2 ),squeeze(_A,axis=2 ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = np.random.randn(1,3,4 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.constant(_A ) self.assertTrue(np.allclose(squeeze(_A ),squeeze(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ : Any = np.random.randn(1,4,1,5 ) SCREAMING_SNAKE_CASE_ : Optional[int] = tf.constant(_A ) self.assertTrue(np.allclose(squeeze(_A,axis=2 ),squeeze(_A,axis=2 ).numpy() ) ) @require_flax def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.random.randn(1,3,4 ) SCREAMING_SNAKE_CASE_ : List[str] = jnp.array(_A ) self.assertTrue(np.allclose(squeeze(_A ),np.asarray(squeeze(_A ) ) ) ) SCREAMING_SNAKE_CASE_ : str = np.random.randn(1,4,1,5 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = jnp.array(_A ) self.assertTrue(np.allclose(squeeze(_A,axis=2 ),np.asarray(squeeze(_A,axis=2 ) ) ) ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4 ) self.assertTrue(np.allclose(expand_dims(_A,axis=1 ),np.expand_dims(_A,axis=1 ) ) ) @require_torch def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor(_A ) self.assertTrue(np.allclose(expand_dims(_A,axis=1 ),expand_dims(_A,axis=1 ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Optional[int] = tf.constant(_A ) self.assertTrue(np.allclose(expand_dims(_A,axis=1 ),expand_dims(_A,axis=1 ).numpy() ) ) @require_flax def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = jnp.array(_A ) self.assertTrue(np.allclose(expand_dims(_A,axis=1 ),np.asarray(expand_dims(_A,axis=1 ) ) ) )
18
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __lowerCamelCase : Any = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : int = ['''BartphoTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
18
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : Tuple = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} __lowerCamelCase : List[Any] = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } __lowerCamelCase : int = { '''allenai/longformer-base-4096''': 40_96, '''allenai/longformer-large-4096''': 40_96, '''allenai/longformer-large-4096-finetuned-triviaqa''': 40_96, '''allenai/longformer-base-4096-extra.pos.embd.only''': 40_96, '''allenai/longformer-large-4096-extra.pos.embd.only''': 40_96, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE_ : str = bs[:] SCREAMING_SNAKE_CASE_ : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCAmelCase ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE_ : List[str] = [chr(lowerCAmelCase ) for n in cs] return dict(zip(lowerCAmelCase , lowerCAmelCase ) ) def _snake_case ( lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = set() SCREAMING_SNAKE_CASE_ : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE_ : List[str] = char return pairs class a__ ( A__ ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = ['input_ids', 'attention_mask'] def __init__( self : Union[str, Any],_A : List[Any],_A : Tuple,_A : str="replace",_A : Optional[int]="<s>",_A : Dict="</s>",_A : Any="</s>",_A : Optional[Any]="<s>",_A : Union[str, Any]="<unk>",_A : int="<pad>",_A : Dict="<mask>",_A : int=False,**_A : Dict,): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else bos_token SCREAMING_SNAKE_CASE_ : Optional[int] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else eos_token SCREAMING_SNAKE_CASE_ : str = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else sep_token SCREAMING_SNAKE_CASE_ : Union[str, Any] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else cls_token SCREAMING_SNAKE_CASE_ : List[str] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else unk_token SCREAMING_SNAKE_CASE_ : Optional[Any] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_ : Dict = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else mask_token super().__init__( errors=_A,bos_token=_A,eos_token=_A,unk_token=_A,sep_token=_A,cls_token=_A,pad_token=_A,mask_token=_A,add_prefix_space=_A,**_A,) with open(_A,encoding="utf-8" ) as vocab_handle: SCREAMING_SNAKE_CASE_ : Tuple = json.load(_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE_ : Any = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE_ : Optional[Any] = bytes_to_unicode() SCREAMING_SNAKE_CASE_ : str = {v: k for k, v in self.byte_encoder.items()} with open(_A,encoding="utf-8" ) as merges_handle: SCREAMING_SNAKE_CASE_ : int = merges_handle.read().split("\n" )[1:-1] SCREAMING_SNAKE_CASE_ : List[str] = [tuple(merge.split() ) for merge in bpe_merges] SCREAMING_SNAKE_CASE_ : Optional[int] = dict(zip(_A,range(len(_A ) ) ) ) SCREAMING_SNAKE_CASE_ : Any = {} SCREAMING_SNAKE_CASE_ : List[str] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE_ : List[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def __UpperCamelCase ( self : List[str] ): """simple docstring""" return len(self.encoder ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" return dict(self.encoder,**self.added_tokens_encoder ) def __UpperCamelCase ( self : Any,_A : int ): """simple docstring""" if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE_ : Union[str, Any] = tuple(_A ) SCREAMING_SNAKE_CASE_ : str = get_pairs(_A ) if not pairs: return token while True: SCREAMING_SNAKE_CASE_ : Tuple = min(_A,key=lambda _A : self.bpe_ranks.get(_A,float("inf" ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = bigram SCREAMING_SNAKE_CASE_ : int = [] SCREAMING_SNAKE_CASE_ : Dict = 0 while i < len(_A ): try: SCREAMING_SNAKE_CASE_ : Tuple = word.index(_A,_A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE_ : str = j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE_ : Dict = tuple(_A ) SCREAMING_SNAKE_CASE_ : List[str] = new_word if len(_A ) == 1: break else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_pairs(_A ) SCREAMING_SNAKE_CASE_ : List[str] = " ".join(_A ) SCREAMING_SNAKE_CASE_ : Any = word return word def __UpperCamelCase ( self : Dict,_A : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = [] for token in re.findall(self.pat,_A ): SCREAMING_SNAKE_CASE_ : Any = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_A ).split(" " ) ) return bpe_tokens def __UpperCamelCase ( self : Optional[int],_A : str ): """simple docstring""" return self.encoder.get(_A,self.encoder.get(self.unk_token ) ) def __UpperCamelCase ( self : Tuple,_A : str ): """simple docstring""" return self.decoder.get(_A ) def __UpperCamelCase ( self : List[str],_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = "".join(_A ) SCREAMING_SNAKE_CASE_ : Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8",errors=self.errors ) return text def __UpperCamelCase ( self : List[Any],_A : str,_A : Optional[str] = None ): """simple docstring""" if not os.path.isdir(_A ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return SCREAMING_SNAKE_CASE_ : Tuple = os.path.join( _A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE_ : Any = os.path.join( _A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(_A,"w",encoding="utf-8" ) as f: f.write(json.dumps(self.encoder,indent=2,sort_keys=_A,ensure_ascii=_A ) + "\n" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 with open(_A,"w",encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items(),key=lambda _A : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' " Please check that the tokenizer is not corrupted!" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = token_index writer.write(" ".join(_A ) + "\n" ) index += 1 return vocab_file, merge_file def __UpperCamelCase ( self : Optional[Any],_A : List[int],_A : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_ : str = [self.cls_token_id] SCREAMING_SNAKE_CASE_ : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCamelCase ( self : str,_A : List[int],_A : Optional[List[int]] = None,_A : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A,token_ids_a=_A,already_has_special_tokens=_A ) if token_ids_a is None: return [1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) + [1] def __UpperCamelCase ( self : Any,_A : List[int],_A : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase ( self : Any,_A : Union[str, Any],_A : Any=False,**_A : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = kwargs.pop("add_prefix_space",self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_A ) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE_ : str = " " + text return (text, kwargs)
18
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase : str = { '''configuration_bridgetower''': [ '''BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BridgeTowerConfig''', '''BridgeTowerTextConfig''', '''BridgeTowerVisionConfig''', ], '''processing_bridgetower''': ['''BridgeTowerProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = ['''BridgeTowerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = [ '''BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BridgeTowerForContrastiveLearning''', '''BridgeTowerForImageAndTextRetrieval''', '''BridgeTowerForMaskedLM''', '''BridgeTowerModel''', '''BridgeTowerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys __lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
18
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class a__ : def __init__( self : Optional[int],_A : Dict,_A : List[str]=13,_A : List[str]=7,_A : int=True,_A : str=True,_A : Union[str, Any]=True,_A : Tuple=True,_A : Dict=99,_A : Tuple=32,_A : Tuple=2,_A : Tuple=4,_A : Optional[Any]=37,_A : str="gelu",_A : Dict=0.1,_A : List[Any]=0.1,_A : List[str]=512,_A : str=16,_A : int=2,_A : Dict=0.02,_A : List[Any]=3,_A : Optional[Any]=4,_A : Optional[int]=None,): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = parent SCREAMING_SNAKE_CASE_ : Any = 13 SCREAMING_SNAKE_CASE_ : List[str] = 7 SCREAMING_SNAKE_CASE_ : Dict = True SCREAMING_SNAKE_CASE_ : Optional[Any] = True SCREAMING_SNAKE_CASE_ : Tuple = True SCREAMING_SNAKE_CASE_ : List[str] = True SCREAMING_SNAKE_CASE_ : List[str] = 99 SCREAMING_SNAKE_CASE_ : Tuple = 384 SCREAMING_SNAKE_CASE_ : Optional[Any] = 2 SCREAMING_SNAKE_CASE_ : Any = 4 SCREAMING_SNAKE_CASE_ : str = 37 SCREAMING_SNAKE_CASE_ : Optional[Any] = "gelu" SCREAMING_SNAKE_CASE_ : List[Any] = 0.1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0.1 SCREAMING_SNAKE_CASE_ : Dict = 512 SCREAMING_SNAKE_CASE_ : int = 16 SCREAMING_SNAKE_CASE_ : Optional[int] = 2 SCREAMING_SNAKE_CASE_ : Any = 0.02 SCREAMING_SNAKE_CASE_ : str = 3 SCREAMING_SNAKE_CASE_ : int = 4 SCREAMING_SNAKE_CASE_ : Dict = 128 SCREAMING_SNAKE_CASE_ : Any = 2 SCREAMING_SNAKE_CASE_ : Tuple = 9 SCREAMING_SNAKE_CASE_ : List[Any] = 1 SCREAMING_SNAKE_CASE_ : Any = None def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) SCREAMING_SNAKE_CASE_ : Any = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : List[str] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) SCREAMING_SNAKE_CASE_ : Dict = None SCREAMING_SNAKE_CASE_ : Dict = None SCREAMING_SNAKE_CASE_ : str = None if self.use_labels: SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size],self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size],self.num_choices ) SCREAMING_SNAKE_CASE_ : Any = ConvBertConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,initializer_range=self.initializer_range,return_dict=_A,) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : Optional[int],_A : List[Any],_A : int,_A : Tuple,_A : Optional[int],_A : Union[str, Any],_A : Union[str, Any],_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = TFConvBertModel(config=_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} SCREAMING_SNAKE_CASE_ : str = [input_ids, input_mask] SCREAMING_SNAKE_CASE_ : List[str] = model(_A ) SCREAMING_SNAKE_CASE_ : Dict = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Dict,_A : Dict,_A : int,_A : Union[str, Any],_A : List[Any],_A : int,_A : str,_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = TFConvBertForMaskedLM(config=_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_ : List[Any] = model(_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : Any,_A : Optional[int],_A : List[Any],_A : Union[str, Any],_A : List[Any],_A : Union[str, Any],_A : Optional[int],_A : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.num_labels SCREAMING_SNAKE_CASE_ : Any = TFConvBertForSequenceClassification(config=_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_ : Optional[Any] = model(_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : int,_A : int,_A : Dict,_A : List[str],_A : Tuple,_A : Dict,_A : Optional[int],_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.num_choices SCREAMING_SNAKE_CASE_ : Optional[int] = TFConvBertForMultipleChoice(config=_A ) SCREAMING_SNAKE_CASE_ : Any = tf.tile(tf.expand_dims(_A,1 ),(1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ : Any = tf.tile(tf.expand_dims(_A,1 ),(1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.tile(tf.expand_dims(_A,1 ),(1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ : int = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE_ : int = model(_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : List[Any],_A : Union[str, Any],_A : int,_A : Optional[int],_A : str,_A : str,_A : Tuple,_A : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.num_labels SCREAMING_SNAKE_CASE_ : Union[str, Any] = TFConvBertForTokenClassification(config=_A ) SCREAMING_SNAKE_CASE_ : Tuple = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_ : str = model(_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : List[Any],_A : int,_A : List[str],_A : List[Any],_A : Any,_A : Optional[int],_A : List[str],_A : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = TFConvBertForQuestionAnswering(config=_A ) SCREAMING_SNAKE_CASE_ : Dict = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_ : Any = model(_A ) self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : List[Any] = config_and_inputs SCREAMING_SNAKE_CASE_ : Any = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class a__ ( A__ , A__ , unittest.TestCase ): A = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) A = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) A = False A = False A = False def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = TFConvBertModelTester(self ) SCREAMING_SNAKE_CASE_ : Tuple = ConfigTester(self,config_class=_A,hidden_size=37 ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_A ) def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) @slow def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : List[str] = True SCREAMING_SNAKE_CASE_ : Any = True if hasattr(_A,"use_cache" ): SCREAMING_SNAKE_CASE_ : List[Any] = True SCREAMING_SNAKE_CASE_ : int = getattr(self.model_tester,"encoder_seq_length",self.model_tester.seq_length ) SCREAMING_SNAKE_CASE_ : Optional[Any] = getattr(self.model_tester,"key_length",_A ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : List[str] = self._prepare_for_class(_A,_A ) SCREAMING_SNAKE_CASE_ : List[Any] = model_class(_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = len(model(_A ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A,saved_model=_A ) SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join(_A,"saved_model","1" ) SCREAMING_SNAKE_CASE_ : Tuple = tf.keras.models.load_model(_A ) SCREAMING_SNAKE_CASE_ : str = model(_A ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE_ : Optional[Any] = outputs["encoder_hidden_states"] SCREAMING_SNAKE_CASE_ : str = outputs["encoder_attentions"] else: SCREAMING_SNAKE_CASE_ : Any = outputs["hidden_states"] SCREAMING_SNAKE_CASE_ : List[str] = outputs["attentions"] self.assertEqual(len(_A ),_A ) SCREAMING_SNAKE_CASE_ : Any = getattr( self.model_tester,"expected_num_hidden_layers",self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_A ),_A ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ),[self.model_tester.seq_length, self.model_tester.hidden_size],) self.assertEqual(len(_A ),self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ),[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length],) @slow def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(_A ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : List[str] = True SCREAMING_SNAKE_CASE_ : List[str] = getattr(self.model_tester,"decoder_seq_length",self.model_tester.seq_length ) SCREAMING_SNAKE_CASE_ : Any = getattr(self.model_tester,"encoder_seq_length",self.model_tester.seq_length ) SCREAMING_SNAKE_CASE_ : Optional[int] = getattr(self.model_tester,"key_length",_A ) SCREAMING_SNAKE_CASE_ : int = getattr(self.model_tester,"key_length",_A ) def check_decoder_attentions_output(_A : Dict ): SCREAMING_SNAKE_CASE_ : int = len(_A ) self.assertEqual(out_len % 2,0 ) SCREAMING_SNAKE_CASE_ : Tuple = outputs.decoder_attentions self.assertEqual(len(_A ),self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ),[self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length],) def check_encoder_attentions_output(_A : Tuple ): SCREAMING_SNAKE_CASE_ : int = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_A ),self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ),[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length],) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Optional[Any] = True SCREAMING_SNAKE_CASE_ : Optional[Any] = False SCREAMING_SNAKE_CASE_ : Tuple = model_class(_A ) SCREAMING_SNAKE_CASE_ : Any = model(self._prepare_for_class(_A,_A ) ) SCREAMING_SNAKE_CASE_ : Tuple = len(_A ) self.assertEqual(config.output_hidden_states,_A ) check_encoder_attentions_output(_A ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE_ : Optional[Any] = model_class(_A ) SCREAMING_SNAKE_CASE_ : int = model(self._prepare_for_class(_A,_A ) ) self.assertEqual(config.output_hidden_states,_A ) check_decoder_attentions_output(_A ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE_ : str = True SCREAMING_SNAKE_CASE_ : int = model_class(_A ) SCREAMING_SNAKE_CASE_ : List[str] = model(self._prepare_for_class(_A,_A ) ) self.assertEqual(config.output_hidden_states,_A ) check_encoder_attentions_output(_A ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE_ : str = True SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Dict = model_class(_A ) SCREAMING_SNAKE_CASE_ : str = model(self._prepare_for_class(_A,_A ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1),len(_A ) ) self.assertEqual(model.config.output_hidden_states,_A ) check_encoder_attentions_output(_A ) @require_tf class a__ ( unittest.TestCase ): @slow def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) SCREAMING_SNAKE_CASE_ : int = tf.constant([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE_ : Tuple = model(_A )[0] SCREAMING_SNAKE_CASE_ : List[Any] = [1, 6, 768] self.assertEqual(output.shape,_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ] ) tf.debugging.assert_near(output[:, :3, :3],_A,atol=1E-4 )
18
1
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets __lowerCamelCase : List[Any] = '''\ @inproceedings{lin-2004-rouge, title = "{ROUGE}: A Package for Automatic Evaluation of Summaries", author = "Lin, Chin-Yew", booktitle = "Text Summarization Branches Out", month = jul, year = "2004", address = "Barcelona, Spain", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W04-1013", pages = "74--81", } ''' __lowerCamelCase : str = '''\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge ''' __lowerCamelCase : Tuple = ''' Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring, `"rougeL"`: Longest common subsequence based scoring. `"rougeLSum"`: rougeLsum splits text using `"\n"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric(\'rouge\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\'] >>> print(results["rouge1"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results["rouge1"].mid.fmeasure) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { "predictions": datasets.Value("string",id="sequence" ), "references": datasets.Value("string",id="sequence" ), } ),codebase_urls=["https://github.com/google-research/google-research/tree/master/rouge"],reference_urls=[ "https://en.wikipedia.org/wiki/ROUGE_(metric)", "https://github.com/google-research/google-research/tree/master/rouge", ],) def __UpperCamelCase ( self : Any,_A : Dict,_A : str,_A : Optional[Any]=None,_A : Dict=True,_A : Optional[Any]=False ): """simple docstring""" if rouge_types is None: SCREAMING_SNAKE_CASE_ : List[Any] = ["rouge1", "rouge2", "rougeL", "rougeLsum"] SCREAMING_SNAKE_CASE_ : Optional[Any] = rouge_scorer.RougeScorer(rouge_types=_A,use_stemmer=_A ) if use_aggregator: SCREAMING_SNAKE_CASE_ : str = scoring.BootstrapAggregator() else: SCREAMING_SNAKE_CASE_ : List[Any] = [] for ref, pred in zip(_A,_A ): SCREAMING_SNAKE_CASE_ : Tuple = scorer.score(_A,_A ) if use_aggregator: aggregator.add_scores(_A ) else: scores.append(_A ) if use_aggregator: SCREAMING_SNAKE_CASE_ : List[str] = aggregator.aggregate() else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = {} for key in scores[0]: SCREAMING_SNAKE_CASE_ : str = [score[key] for score in scores] return result
18
def _snake_case ( lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = int(lowerCAmelCase ) if decimal in (0, 1): # Exit cases for the recursion return str(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = divmod(lowerCAmelCase , 2 ) return binary_recursive(lowerCAmelCase ) + str(lowerCAmelCase ) def _snake_case ( lowerCAmelCase : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = str(lowerCAmelCase ).strip() if not number: raise ValueError("No input value was provided" ) SCREAMING_SNAKE_CASE_ : List[str] = "-" if number.startswith("-" ) else "" SCREAMING_SNAKE_CASE_ : Optional[Any] = number.lstrip("-" ) if not number.isnumeric(): raise ValueError("Input value is not an integer" ) return f'{negative}0b{binary_recursive(int(lowerCAmelCase ) )}' if __name__ == "__main__": from doctest import testmod testmod()
18
1
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class a__ : A = 42 A = None # Automatically constructed A = "dict" A = None A = field(default='Translation' , init=A__ , repr=A__ ) def __call__( self : Tuple ): """simple docstring""" return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def __UpperCamelCase ( self : Any ): """simple docstring""" from .features import Value return {k: Value("string" ) for k in sorted(self.languages )} @dataclass class a__ : A = None A = None A = None # Automatically constructed A = "dict" A = None A = field(default='TranslationVariableLanguages' , init=A__ , repr=A__ ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = sorted(set(self.languages ) ) if self.languages else None SCREAMING_SNAKE_CASE_ : Optional[Any] = len(self.languages ) if self.languages else None def __call__( self : Dict ): """simple docstring""" return pa.struct({"language": pa.list_(pa.string() ), "translation": pa.list_(pa.string() )} ) def __UpperCamelCase ( self : List[Any],_A : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = set(self.languages ) if self.languages and set(_A ) - lang_set: raise ValueError( F'Some languages in example ({", ".join(sorted(set(_A ) - lang_set ) )}) are not in valid set ({", ".join(_A )}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] for lang, text in translation_dict.items(): if isinstance(_A,_A ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = zip(*sorted(_A ) ) return {"language": languages, "translation": translations} def __UpperCamelCase ( self : Dict ): """simple docstring""" from .features import Sequence, Value return { "language": Sequence(Value("string" ) ), "translation": Sequence(Value("string" ) ), }
18
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase : Union[str, Any] = { '''configuration_chinese_clip''': [ '''CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ChineseCLIPConfig''', '''ChineseCLIPOnnxConfig''', '''ChineseCLIPTextConfig''', '''ChineseCLIPVisionConfig''', ], '''processing_chinese_clip''': ['''ChineseCLIPProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = ['''ChineseCLIPFeatureExtractor'''] __lowerCamelCase : Optional[int] = ['''ChineseCLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : int = [ '''CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ChineseCLIPModel''', '''ChineseCLIPPreTrainedModel''', '''ChineseCLIPTextModel''', '''ChineseCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys __lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
18
1
import argparse import os import re __lowerCamelCase : int = '''src/diffusers''' # Pattern that looks at the indentation in a line. __lowerCamelCase : Union[str, Any] = re.compile(R'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. __lowerCamelCase : List[Any] = re.compile(R'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. __lowerCamelCase : Optional[Any] = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. __lowerCamelCase : List[str] = re.compile(R'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. __lowerCamelCase : List[str] = re.compile(R'''\[([^\]]+)\]''') def _snake_case ( lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = _re_indent.search(lowerCAmelCase ) return "" if search is None else search.groups()[0] def _snake_case ( lowerCAmelCase : List[str] , lowerCAmelCase : List[Any]="" , lowerCAmelCase : Dict=None , lowerCAmelCase : Any=None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = 0 SCREAMING_SNAKE_CASE_ : Optional[Any] = code.split("\n" ) if start_prompt is not None: while not lines[index].startswith(lowerCAmelCase ): index += 1 SCREAMING_SNAKE_CASE_ : List[Any] = ["\n".join(lines[:index] )] else: SCREAMING_SNAKE_CASE_ : List[str] = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). SCREAMING_SNAKE_CASE_ : List[Any] = [lines[index]] index += 1 while index < len(lowerCAmelCase ) and (end_prompt is None or not lines[index].startswith(lowerCAmelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(lowerCAmelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ): current_block.append(lines[index] ) blocks.append("\n".join(lowerCAmelCase ) ) if index < len(lowerCAmelCase ) - 1: SCREAMING_SNAKE_CASE_ : Any = [lines[index + 1]] index += 1 else: SCREAMING_SNAKE_CASE_ : Tuple = [] else: blocks.append("\n".join(lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ : Dict = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(lowerCAmelCase ) > 0: blocks.append("\n".join(lowerCAmelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowerCAmelCase ): blocks.append("\n".join(lines[index:] ) ) return blocks def _snake_case ( lowerCAmelCase : Tuple ): """simple docstring""" def _inner(lowerCAmelCase : List[str] ): return key(lowerCAmelCase ).lower().replace("_" , "" ) return _inner def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : Dict=None ): """simple docstring""" def noop(lowerCAmelCase : Optional[Any] ): return x if key is None: SCREAMING_SNAKE_CASE_ : Dict = noop # Constants are all uppercase, they go first. SCREAMING_SNAKE_CASE_ : List[Any] = [obj for obj in objects if key(lowerCAmelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. SCREAMING_SNAKE_CASE_ : Optional[Any] = [obj for obj in objects if key(lowerCAmelCase )[0].isupper() and not key(lowerCAmelCase ).isupper()] # Functions begin with a lowercase, they go last. SCREAMING_SNAKE_CASE_ : str = [obj for obj in objects if not key(lowerCAmelCase )[0].isupper()] SCREAMING_SNAKE_CASE_ : Union[str, Any] = ignore_underscore(lowerCAmelCase ) return sorted(lowerCAmelCase , key=lowerCAmelCase ) + sorted(lowerCAmelCase , key=lowerCAmelCase ) + sorted(lowerCAmelCase , key=lowerCAmelCase ) def _snake_case ( lowerCAmelCase : Tuple ): """simple docstring""" def _replace(lowerCAmelCase : Any ): SCREAMING_SNAKE_CASE_ : Optional[int] = match.groups()[0] if "," not in imports: return f'[{imports}]' SCREAMING_SNAKE_CASE_ : List[Any] = [part.strip().replace("\"" , "" ) for part in imports.split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: SCREAMING_SNAKE_CASE_ : Union[str, Any] = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(lowerCAmelCase )] ) + "]" SCREAMING_SNAKE_CASE_ : str = import_statement.split("\n" ) if len(lowerCAmelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. SCREAMING_SNAKE_CASE_ : str = 2 if lines[1].strip() == "[" else 1 SCREAMING_SNAKE_CASE_ : Tuple = [(i, _re_strip_line.search(lowerCAmelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] SCREAMING_SNAKE_CASE_ : Tuple = sort_objects(lowerCAmelCase , key=lambda lowerCAmelCase : x[1] ) SCREAMING_SNAKE_CASE_ : Optional[int] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(lowerCAmelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: SCREAMING_SNAKE_CASE_ : Any = _re_bracket_content.sub(_replace , lines[1] ) else: SCREAMING_SNAKE_CASE_ : int = [part.strip().replace("\"" , "" ) for part in lines[1].split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: SCREAMING_SNAKE_CASE_ : Tuple = keys[:-1] SCREAMING_SNAKE_CASE_ : Optional[int] = get_indent(lines[1] ) + ", ".join([f'"{k}"' for k in sort_objects(lowerCAmelCase )] ) return "\n".join(lowerCAmelCase ) else: # Finally we have to deal with imports fitting on one line SCREAMING_SNAKE_CASE_ : Dict = _re_bracket_content.sub(_replace , lowerCAmelCase ) return import_statement def _snake_case ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any]=True ): """simple docstring""" with open(lowerCAmelCase , "r" ) as f: SCREAMING_SNAKE_CASE_ : List[str] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 SCREAMING_SNAKE_CASE_ : Tuple = split_code_in_indented_blocks( lowerCAmelCase , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(lowerCAmelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. SCREAMING_SNAKE_CASE_ : int = main_blocks[block_idx] SCREAMING_SNAKE_CASE_ : Any = block.split("\n" ) # Get to the start of the imports. SCREAMING_SNAKE_CASE_ : str = 0 while line_idx < len(lowerCAmelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: SCREAMING_SNAKE_CASE_ : Optional[int] = len(lowerCAmelCase ) else: line_idx += 1 if line_idx >= len(lowerCAmelCase ): continue # Ignore beginning and last line: they don't contain anything. SCREAMING_SNAKE_CASE_ : Any = "\n".join(block_lines[line_idx:-1] ) SCREAMING_SNAKE_CASE_ : Any = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. SCREAMING_SNAKE_CASE_ : int = split_code_in_indented_blocks(lowerCAmelCase , indent_level=lowerCAmelCase ) # We have two categories of import key: list or _import_structure[key].append/extend SCREAMING_SNAKE_CASE_ : Any = _re_direct_key if "_import_structure" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. SCREAMING_SNAKE_CASE_ : List[Any] = [(pattern.search(lowerCAmelCase ).groups()[0] if pattern.search(lowerCAmelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. SCREAMING_SNAKE_CASE_ : Any = [(i, key) for i, key in enumerate(lowerCAmelCase ) if key is not None] SCREAMING_SNAKE_CASE_ : int = [x[0] for x in sorted(lowerCAmelCase , key=lambda lowerCAmelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. SCREAMING_SNAKE_CASE_ : List[str] = 0 SCREAMING_SNAKE_CASE_ : Any = [] for i in range(len(lowerCAmelCase ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: SCREAMING_SNAKE_CASE_ : Dict = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(lowerCAmelCase ) count += 1 # And we put our main block back together with its first and last line. SCREAMING_SNAKE_CASE_ : Dict = "\n".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(lowerCAmelCase ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(lowerCAmelCase , "w" ) as f: f.write("\n".join(lowerCAmelCase ) ) def _snake_case ( lowerCAmelCase : Union[str, Any]=True ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = [] for root, _, files in os.walk(lowerCAmelCase ): if "__init__.py" in files: SCREAMING_SNAKE_CASE_ : int = sort_imports(os.path.join(lowerCAmelCase , "__init__.py" ) , check_only=lowerCAmelCase ) if result: SCREAMING_SNAKE_CASE_ : Optional[int] = [os.path.join(lowerCAmelCase , "__init__.py" )] if len(lowerCAmelCase ) > 0: raise ValueError(f'Would overwrite {len(lowerCAmelCase )} files, run `make style`.' ) if __name__ == "__main__": __lowerCamelCase : Any = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') __lowerCamelCase : Any = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
18
import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument __lowerCamelCase : Any = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def _snake_case ( lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = list(s_dict.keys() ) for key in keys: SCREAMING_SNAKE_CASE_ : int = R".*/layers_(\d+)" SCREAMING_SNAKE_CASE_ : List[Any] = key if re.match(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Any = re.sub(R"layers_(\d+)" , R"block/\1/layer" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = R"(encoder|decoder)\/" if re.match(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : str = re.match(lowerCAmelCase , lowerCAmelCase ).groups() if groups[0] == "encoder": SCREAMING_SNAKE_CASE_ : Any = re.sub(R"/mlp/" , R"/1/mlp/" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = re.sub(R"/pre_mlp_layer_norm/" , R"/1/layer_norm/" , lowerCAmelCase ) elif groups[0] == "decoder": SCREAMING_SNAKE_CASE_ : List[str] = re.sub(R"/mlp/" , R"/2/mlp/" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = re.sub(R"/pre_mlp_layer_norm/" , R"/2/layer_norm/" , lowerCAmelCase ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: SCREAMING_SNAKE_CASE_ : List[Any] = new_key.replace(lowerCAmelCase , lowerCAmelCase ) print(f'{key} -> {new_key}' ) SCREAMING_SNAKE_CASE_ : List[Any] = s_dict.pop(lowerCAmelCase ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: SCREAMING_SNAKE_CASE_ : str = s_dict[ "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: SCREAMING_SNAKE_CASE_ : Optional[int] = s_dict[ "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: SCREAMING_SNAKE_CASE_ : Union[str, Any] = s_dict[key].shape[0] SCREAMING_SNAKE_CASE_ : List[Any] = s_dict[key] for idx in range(lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Tuple = expert_weihts[idx] print(f'{key} -> {key.replace("expert/" , "nested fstring" )}' ) s_dict.pop(lowerCAmelCase ) return s_dict __lowerCamelCase : List[Any] = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def _snake_case ( lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any] ): """simple docstring""" import regex as re with open(lowerCAmelCase , "r" ) as f: SCREAMING_SNAKE_CASE_ : Optional[Any] = f.read() SCREAMING_SNAKE_CASE_ : List[str] = re.findall(R"(.*) = ([0-9.]*)" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": SCREAMING_SNAKE_CASE_ : int = float(lowerCAmelCase ) if "." in value else int(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = re.findall(R"(.*activations) = \(\'(.*)\',\)" , lowerCAmelCase )[0] SCREAMING_SNAKE_CASE_ : List[str] = str(activation[1] ) SCREAMING_SNAKE_CASE_ : str = num_experts SCREAMING_SNAKE_CASE_ : Tuple = SwitchTransformersConfig(**lowerCAmelCase ) return config def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : str=None , lowerCAmelCase : Optional[Any]="./" , lowerCAmelCase : Dict=8 ): """simple docstring""" print(f'Loading flax weights from : {flax_checkpoint_path}' ) SCREAMING_SNAKE_CASE_ : int = checkpoints.load_tax_checkpoint(lowerCAmelCase ) if gin_file is not None: SCREAMING_SNAKE_CASE_ : int = convert_gin_to_config(lowerCAmelCase , lowerCAmelCase ) else: SCREAMING_SNAKE_CASE_ : Dict = SwitchTransformersConfig.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : str = SwitchTransformersForConditionalGeneration(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = flax_params["target"] SCREAMING_SNAKE_CASE_ : List[str] = flatten_dict(lowerCAmelCase , sep="/" ) SCREAMING_SNAKE_CASE_ : List[str] = rename_keys(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = unflatten_dict(lowerCAmelCase , sep="/" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(lowerCAmelCase , lowerCAmelCase ) print(f'Save PyTorch model to {pytorch_dump_path}' ) pt_model.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": __lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') __lowerCamelCase : Any = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
18
1
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class a__ ( A__ ): A = 42 A = jnp.floataa A = True def __UpperCamelCase ( self : Dict ): """simple docstring""" super().setup() SCREAMING_SNAKE_CASE_ : Any = nn.Dense(5,dtype=self.dtype ) def __call__( self : Any,*_A : str,**_A : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = super().__call__(*_A,**_A ) SCREAMING_SNAKE_CASE_ : List[str] = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class a__ ( A__ ): A = FlaxBigBirdForNaturalQuestionsModule def _snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : Optional[int] ): """simple docstring""" def cross_entropy(lowerCAmelCase : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int]=None ): SCREAMING_SNAKE_CASE_ : Optional[Any] = logits.shape[-1] SCREAMING_SNAKE_CASE_ : Optional[Any] = (labels[..., None] == jnp.arange(lowerCAmelCase )[None]).astype("f4" ) SCREAMING_SNAKE_CASE_ : str = jax.nn.log_softmax(lowerCAmelCase , axis=-1 ) SCREAMING_SNAKE_CASE_ : Optional[int] = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = reduction(lowerCAmelCase ) return loss SCREAMING_SNAKE_CASE_ : str = partial(lowerCAmelCase , reduction=jnp.mean ) SCREAMING_SNAKE_CASE_ : str = cross_entropy(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : str = cross_entropy(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = cross_entropy(lowerCAmelCase , lowerCAmelCase ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class a__ : A = "google/bigbird-roberta-base" A = 3000 A = 10500 A = 128 A = 3 A = 1 A = 5 # tx_args A = 3E-5 A = 0.0 A = 20000 A = 0.0095 A = "bigbird-roberta-natural-questions" A = "training-expt" A = "data/nq-training.jsonl" A = "data/nq-validation.jsonl" def __UpperCamelCase ( self : Dict ): """simple docstring""" os.makedirs(self.base_dir,exist_ok=_A ) SCREAMING_SNAKE_CASE_ : int = os.path.join(self.base_dir,self.save_dir ) SCREAMING_SNAKE_CASE_ : List[Any] = self.batch_size_per_device * jax.device_count() @dataclass class a__ : A = 42 A = 4096 # no dynamic padding on TPUs def __call__( self : str,_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.collate_fn(_A ) SCREAMING_SNAKE_CASE_ : str = jax.tree_util.tree_map(_A,_A ) return batch def __UpperCamelCase ( self : List[str],_A : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = self.fetch_inputs(features["input_ids"] ) SCREAMING_SNAKE_CASE_ : Any = { "input_ids": jnp.array(_A,dtype=jnp.intaa ), "attention_mask": jnp.array(_A,dtype=jnp.intaa ), "start_labels": jnp.array(features["start_token"],dtype=jnp.intaa ), "end_labels": jnp.array(features["end_token"],dtype=jnp.intaa ), "pooled_labels": jnp.array(features["category"],dtype=jnp.intaa ), } return batch def __UpperCamelCase ( self : Tuple,_A : list ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = [self._fetch_inputs(_A ) for ids in input_ids] return zip(*_A ) def __UpperCamelCase ( self : Optional[int],_A : list ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = [1 for _ in range(len(_A ) )] while len(_A ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def _snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : str , lowerCAmelCase : Any=None ): """simple docstring""" if seed is not None: SCREAMING_SNAKE_CASE_ : Optional[int] = dataset.shuffle(seed=lowerCAmelCase ) for i in range(len(lowerCAmelCase ) // batch_size ): SCREAMING_SNAKE_CASE_ : List[str] = dataset[i * batch_size : (i + 1) * batch_size] yield dict(lowerCAmelCase ) @partial(jax.pmap , axis_name="batch" ) def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int] ): """simple docstring""" def loss_fn(lowerCAmelCase : List[Any] ): SCREAMING_SNAKE_CASE_ : Optional[int] = model_inputs.pop("start_labels" ) SCREAMING_SNAKE_CASE_ : Dict = model_inputs.pop("end_labels" ) SCREAMING_SNAKE_CASE_ : List[str] = model_inputs.pop("pooled_labels" ) SCREAMING_SNAKE_CASE_ : Optional[Any] = state.apply_fn(**lowerCAmelCase , params=lowerCAmelCase , dropout_rng=lowerCAmelCase , train=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = outputs return state.loss_fn( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = jax.random.split(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = jax.value_and_grad(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = grad_fn(state.params ) SCREAMING_SNAKE_CASE_ : Optional[int] = jax.lax.pmean({"loss": loss} , axis_name="batch" ) SCREAMING_SNAKE_CASE_ : Tuple = jax.lax.pmean(lowerCAmelCase , "batch" ) SCREAMING_SNAKE_CASE_ : List[Any] = state.apply_gradients(grads=lowerCAmelCase ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="batch" ) def _snake_case ( lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = model_inputs.pop("start_labels" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = model_inputs.pop("end_labels" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = model_inputs.pop("pooled_labels" ) SCREAMING_SNAKE_CASE_ : str = state.apply_fn(**lowerCAmelCase , params=state.params , train=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = outputs SCREAMING_SNAKE_CASE_ : Tuple = state.loss_fn(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = jax.lax.pmean({"loss": loss} , axis_name="batch" ) return metrics class a__ ( train_state.TrainState ): A = struct.field(pytree_node=A__ ) @dataclass class a__ : A = 42 A = 42 A = 42 A = 42 A = 42 A = 42 A = None def __UpperCamelCase ( self : Dict,_A : Union[str, Any],_A : int,_A : Union[str, Any],_A : Dict=None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = model.params SCREAMING_SNAKE_CASE_ : int = TrainState.create( apply_fn=model.__call__,params=_A,tx=_A,loss_fn=_A,) if ckpt_dir is not None: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = restore_checkpoint(_A,_A ) SCREAMING_SNAKE_CASE_ : Any = { "lr": args.lr, "init_lr": args.init_lr, "warmup_steps": args.warmup_steps, "num_train_steps": num_train_steps, "weight_decay": args.weight_decay, } SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = build_tx(**_A ) SCREAMING_SNAKE_CASE_ : List[str] = train_state.TrainState( step=_A,apply_fn=model.__call__,params=_A,tx=_A,opt_state=_A,) SCREAMING_SNAKE_CASE_ : Optional[int] = args SCREAMING_SNAKE_CASE_ : Optional[int] = data_collator SCREAMING_SNAKE_CASE_ : int = lr SCREAMING_SNAKE_CASE_ : Dict = params SCREAMING_SNAKE_CASE_ : List[str] = jax_utils.replicate(_A ) return state def __UpperCamelCase ( self : Union[str, Any],_A : Optional[int],_A : List[Any],_A : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.args SCREAMING_SNAKE_CASE_ : List[Any] = len(_A ) // args.batch_size SCREAMING_SNAKE_CASE_ : Optional[int] = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE_ : str = jax.random.split(_A,jax.device_count() ) for epoch in range(args.max_epochs ): SCREAMING_SNAKE_CASE_ : Any = jnp.array(0,dtype=jnp.floataa ) SCREAMING_SNAKE_CASE_ : Any = get_batched_dataset(_A,args.batch_size,seed=_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 for batch in tqdm(_A,total=_A,desc=F'Running EPOCH-{epoch}' ): SCREAMING_SNAKE_CASE_ : Optional[int] = self.data_collator(_A ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = self.train_step_fn(_A,_A,**_A ) running_loss += jax_utils.unreplicate(metrics["loss"] ) i += 1 if i % args.logging_steps == 0: SCREAMING_SNAKE_CASE_ : int = jax_utils.unreplicate(state.step ) SCREAMING_SNAKE_CASE_ : int = running_loss.item() / i SCREAMING_SNAKE_CASE_ : Dict = self.scheduler_fn(state_step - 1 ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.evaluate(_A,_A ) SCREAMING_SNAKE_CASE_ : int = { "step": state_step.item(), "eval_loss": eval_loss.item(), "tr_loss": tr_loss, "lr": lr.item(), } tqdm.write(str(_A ) ) self.logger.log(_A,commit=_A ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F'-e{epoch}-s{i}',state=_A ) def __UpperCamelCase ( self : List[Any],_A : Dict,_A : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = get_batched_dataset(_A,self.args.batch_size ) SCREAMING_SNAKE_CASE_ : Optional[int] = len(_A ) // self.args.batch_size SCREAMING_SNAKE_CASE_ : Optional[Any] = jnp.array(0,dtype=jnp.floataa ) SCREAMING_SNAKE_CASE_ : Any = 0 for batch in tqdm(_A,total=_A,desc="Evaluating ... " ): SCREAMING_SNAKE_CASE_ : int = self.data_collator(_A ) SCREAMING_SNAKE_CASE_ : int = self.val_step_fn(_A,**_A ) running_loss += jax_utils.unreplicate(metrics["loss"] ) i += 1 return running_loss / i def __UpperCamelCase ( self : Union[str, Any],_A : Union[str, Any],_A : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = jax_utils.unreplicate(_A ) print(F'SAVING CHECKPOINT IN {save_dir}',end=" ... " ) self.model_save_fn(_A,params=state.params ) with open(os.path.join(_A,"opt_state.msgpack" ),"wb" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args,os.path.join(_A,"args.joblib" ) ) joblib.dump(self.data_collator,os.path.join(_A,"data_collator.joblib" ) ) with open(os.path.join(_A,"training_state.json" ),"w" ) as f: json.dump({"step": state.step.item()},_A ) print("DONE" ) def _snake_case ( lowerCAmelCase : Any , lowerCAmelCase : Any ): """simple docstring""" print(f'RESTORING CHECKPOINT FROM {save_dir}' , end=" ... " ) with open(os.path.join(lowerCAmelCase , "flax_model.msgpack" ) , "rb" ) as f: SCREAMING_SNAKE_CASE_ : Union[str, Any] = from_bytes(state.params , f.read() ) with open(os.path.join(lowerCAmelCase , "opt_state.msgpack" ) , "rb" ) as f: SCREAMING_SNAKE_CASE_ : int = from_bytes(state.opt_state , f.read() ) SCREAMING_SNAKE_CASE_ : str = joblib.load(os.path.join(lowerCAmelCase , "args.joblib" ) ) SCREAMING_SNAKE_CASE_ : Any = joblib.load(os.path.join(lowerCAmelCase , "data_collator.joblib" ) ) with open(os.path.join(lowerCAmelCase , "training_state.json" ) , "r" ) as f: SCREAMING_SNAKE_CASE_ : Optional[int] = json.load(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = training_state["step"] print("DONE" ) return params, opt_state, step, args, data_collator def _snake_case ( lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = num_train_steps - warmup_steps SCREAMING_SNAKE_CASE_ : str = optax.linear_schedule(init_value=lowerCAmelCase , end_value=lowerCAmelCase , transition_steps=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = optax.linear_schedule(init_value=lowerCAmelCase , end_value=1E-7 , transition_steps=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def _snake_case ( lowerCAmelCase : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] ): """simple docstring""" def weight_decay_mask(lowerCAmelCase : Dict ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = traverse_util.flatten_dict(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = {k: (v[-1] != "bias" and v[-2:] != ("LayerNorm", "scale")) for k, v in params.items()} return traverse_util.unflatten_dict(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = scheduler_fn(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = optax.adamw(learning_rate=lowerCAmelCase , weight_decay=lowerCAmelCase , mask=lowerCAmelCase ) return tx, lr
18
from math import factorial, radians def _snake_case ( lowerCAmelCase : float , lowerCAmelCase : int = 1_8 , lowerCAmelCase : int = 1_0 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians SCREAMING_SNAKE_CASE_ : Tuple = radians(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = angle_in_radians SCREAMING_SNAKE_CASE_ : List[str] = 3 SCREAMING_SNAKE_CASE_ : str = -1 for _ in range(lowerCAmelCase ): result += (b * (angle_in_radians**a)) / factorial(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(lowerCAmelCase , lowerCAmelCase ) if __name__ == "__main__": __import__('''doctest''').testmod()
18
1
from __future__ import annotations def _snake_case ( lowerCAmelCase : list[list[int]] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = len(lowerCAmelCase ) # We need to create solution object to save path. SCREAMING_SNAKE_CASE_ : str = [[0 for _ in range(lowerCAmelCase )] for _ in range(lowerCAmelCase )] SCREAMING_SNAKE_CASE_ : Union[str, Any] = run_maze(lowerCAmelCase , 0 , 0 , lowerCAmelCase ) if solved: print("\n".join(str(lowerCAmelCase ) for row in solutions ) ) else: print("No solution exists!" ) return solved def _snake_case ( lowerCAmelCase : list[list[int]] , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : list[list[int]] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = len(lowerCAmelCase ) # Final check point. if i == j == (size - 1): SCREAMING_SNAKE_CASE_ : List[str] = 1 return True SCREAMING_SNAKE_CASE_ : List[Any] = (not i < 0) and (not j < 0) # Check lower bounds SCREAMING_SNAKE_CASE_ : List[str] = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. SCREAMING_SNAKE_CASE_ : int = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited SCREAMING_SNAKE_CASE_ : Union[str, Any] = 1 # check for directions if ( run_maze(lowerCAmelCase , i + 1 , lowerCAmelCase , lowerCAmelCase ) or run_maze(lowerCAmelCase , lowerCAmelCase , j + 1 , lowerCAmelCase ) or run_maze(lowerCAmelCase , i - 1 , lowerCAmelCase , lowerCAmelCase ) or run_maze(lowerCAmelCase , lowerCAmelCase , j - 1 , lowerCAmelCase ) ): return True SCREAMING_SNAKE_CASE_ : List[str] = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
18
from functools import lru_cache @lru_cache def _snake_case ( lowerCAmelCase : int ): """simple docstring""" if num < 0: raise ValueError("Number should not be negative." ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
18
1
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : Tuple = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} __lowerCamelCase : List[Any] = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } __lowerCamelCase : int = { '''allenai/longformer-base-4096''': 40_96, '''allenai/longformer-large-4096''': 40_96, '''allenai/longformer-large-4096-finetuned-triviaqa''': 40_96, '''allenai/longformer-base-4096-extra.pos.embd.only''': 40_96, '''allenai/longformer-large-4096-extra.pos.embd.only''': 40_96, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE_ : str = bs[:] SCREAMING_SNAKE_CASE_ : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCAmelCase ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE_ : List[str] = [chr(lowerCAmelCase ) for n in cs] return dict(zip(lowerCAmelCase , lowerCAmelCase ) ) def _snake_case ( lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = set() SCREAMING_SNAKE_CASE_ : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE_ : List[str] = char return pairs class a__ ( A__ ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = ['input_ids', 'attention_mask'] def __init__( self : Union[str, Any],_A : List[Any],_A : Tuple,_A : str="replace",_A : Optional[int]="<s>",_A : Dict="</s>",_A : Any="</s>",_A : Optional[Any]="<s>",_A : Union[str, Any]="<unk>",_A : int="<pad>",_A : Dict="<mask>",_A : int=False,**_A : Dict,): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else bos_token SCREAMING_SNAKE_CASE_ : Optional[int] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else eos_token SCREAMING_SNAKE_CASE_ : str = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else sep_token SCREAMING_SNAKE_CASE_ : Union[str, Any] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else cls_token SCREAMING_SNAKE_CASE_ : List[str] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else unk_token SCREAMING_SNAKE_CASE_ : Optional[Any] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_ : Dict = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else mask_token super().__init__( errors=_A,bos_token=_A,eos_token=_A,unk_token=_A,sep_token=_A,cls_token=_A,pad_token=_A,mask_token=_A,add_prefix_space=_A,**_A,) with open(_A,encoding="utf-8" ) as vocab_handle: SCREAMING_SNAKE_CASE_ : Tuple = json.load(_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE_ : Any = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE_ : Optional[Any] = bytes_to_unicode() SCREAMING_SNAKE_CASE_ : str = {v: k for k, v in self.byte_encoder.items()} with open(_A,encoding="utf-8" ) as merges_handle: SCREAMING_SNAKE_CASE_ : int = merges_handle.read().split("\n" )[1:-1] SCREAMING_SNAKE_CASE_ : List[str] = [tuple(merge.split() ) for merge in bpe_merges] SCREAMING_SNAKE_CASE_ : Optional[int] = dict(zip(_A,range(len(_A ) ) ) ) SCREAMING_SNAKE_CASE_ : Any = {} SCREAMING_SNAKE_CASE_ : List[str] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE_ : List[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def __UpperCamelCase ( self : List[str] ): """simple docstring""" return len(self.encoder ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" return dict(self.encoder,**self.added_tokens_encoder ) def __UpperCamelCase ( self : Any,_A : int ): """simple docstring""" if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE_ : Union[str, Any] = tuple(_A ) SCREAMING_SNAKE_CASE_ : str = get_pairs(_A ) if not pairs: return token while True: SCREAMING_SNAKE_CASE_ : Tuple = min(_A,key=lambda _A : self.bpe_ranks.get(_A,float("inf" ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = bigram SCREAMING_SNAKE_CASE_ : int = [] SCREAMING_SNAKE_CASE_ : Dict = 0 while i < len(_A ): try: SCREAMING_SNAKE_CASE_ : Tuple = word.index(_A,_A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE_ : str = j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE_ : Dict = tuple(_A ) SCREAMING_SNAKE_CASE_ : List[str] = new_word if len(_A ) == 1: break else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_pairs(_A ) SCREAMING_SNAKE_CASE_ : List[str] = " ".join(_A ) SCREAMING_SNAKE_CASE_ : Any = word return word def __UpperCamelCase ( self : Dict,_A : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = [] for token in re.findall(self.pat,_A ): SCREAMING_SNAKE_CASE_ : Any = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_A ).split(" " ) ) return bpe_tokens def __UpperCamelCase ( self : Optional[int],_A : str ): """simple docstring""" return self.encoder.get(_A,self.encoder.get(self.unk_token ) ) def __UpperCamelCase ( self : Tuple,_A : str ): """simple docstring""" return self.decoder.get(_A ) def __UpperCamelCase ( self : List[str],_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = "".join(_A ) SCREAMING_SNAKE_CASE_ : Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8",errors=self.errors ) return text def __UpperCamelCase ( self : List[Any],_A : str,_A : Optional[str] = None ): """simple docstring""" if not os.path.isdir(_A ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return SCREAMING_SNAKE_CASE_ : Tuple = os.path.join( _A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE_ : Any = os.path.join( _A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(_A,"w",encoding="utf-8" ) as f: f.write(json.dumps(self.encoder,indent=2,sort_keys=_A,ensure_ascii=_A ) + "\n" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 with open(_A,"w",encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items(),key=lambda _A : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' " Please check that the tokenizer is not corrupted!" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = token_index writer.write(" ".join(_A ) + "\n" ) index += 1 return vocab_file, merge_file def __UpperCamelCase ( self : Optional[Any],_A : List[int],_A : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_ : str = [self.cls_token_id] SCREAMING_SNAKE_CASE_ : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCamelCase ( self : str,_A : List[int],_A : Optional[List[int]] = None,_A : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A,token_ids_a=_A,already_has_special_tokens=_A ) if token_ids_a is None: return [1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) + [1] def __UpperCamelCase ( self : Any,_A : List[int],_A : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase ( self : Any,_A : Union[str, Any],_A : Any=False,**_A : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = kwargs.pop("add_prefix_space",self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_A ) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE_ : str = " " + text return (text, kwargs)
18
from collections import defaultdict def _snake_case ( lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = 1 SCREAMING_SNAKE_CASE_ : Tuple = True for v in tree[start]: if v not in visited: ret += dfs(lowerCAmelCase ) if ret % 2 == 0: cuts.append(lowerCAmelCase ) return ret def _snake_case ( ): """simple docstring""" dfs(1 ) if __name__ == "__main__": __lowerCamelCase , __lowerCamelCase : Union[str, Any] = 10, 9 __lowerCamelCase : Optional[int] = defaultdict(list) __lowerCamelCase : dict[int, bool] = {} __lowerCamelCase : list[int] = [] __lowerCamelCase : Optional[Any] = 0 __lowerCamelCase : Any = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
18
1
from math import factorial, pi def _snake_case ( lowerCAmelCase : float , lowerCAmelCase : int = 3_0 ): """simple docstring""" if not isinstance(lowerCAmelCase , (int, float) ): raise ValueError("maclaurin_sin() requires either an int or float for theta" ) if not isinstance(lowerCAmelCase , lowerCAmelCase ) or accuracy <= 0: raise ValueError("maclaurin_sin() requires a positive int for accuracy" ) SCREAMING_SNAKE_CASE_ : int = float(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(lowerCAmelCase ) ) def _snake_case ( lowerCAmelCase : float , lowerCAmelCase : int = 3_0 ): """simple docstring""" if not isinstance(lowerCAmelCase , (int, float) ): raise ValueError("maclaurin_cos() requires either an int or float for theta" ) if not isinstance(lowerCAmelCase , lowerCAmelCase ) or accuracy <= 0: raise ValueError("maclaurin_cos() requires a positive int for accuracy" ) SCREAMING_SNAKE_CASE_ : str = float(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
18
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=lowerCAmelCase ) env_command_parser(subparsers=lowerCAmelCase ) launch_command_parser(subparsers=lowerCAmelCase ) tpu_command_parser(subparsers=lowerCAmelCase ) test_command_parser(subparsers=lowerCAmelCase ) # Let's go SCREAMING_SNAKE_CASE_ : Dict = parser.parse_args() if not hasattr(lowerCAmelCase , "func" ): parser.print_help() exit(1 ) # Run args.func(lowerCAmelCase ) if __name__ == "__main__": main()
18
1
from __future__ import annotations import requests __lowerCamelCase : int = set( '''approved_at_utc approved_by author_flair_background_color author_flair_css_class author_flair_richtext author_flair_template_id author_fullname author_premium can_mod_post category clicked content_categories created_utc downs edited gilded gildings hidden hide_score is_created_from_ads_ui is_meta is_original_content is_reddit_media_domain is_video link_flair_css_class link_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title name permalink pwls quarantine saved score secure_media secure_media_embed selftext subreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type total_awards_received ups upvote_ratio url user_reports'''.split() ) def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : int = 1 , lowerCAmelCase : str = "new" , lowerCAmelCase : list | None = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(lowerCAmelCase ) - valid_terms ) ): SCREAMING_SNAKE_CASE_ : List[Any] = f'Invalid search term: {invalid_search_terms}' raise ValueError(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = requests.get( f'https://reddit.com/r/{subreddit}/{age}.json?limit={limit}' , headers={"User-agent": "A random string"} , ) if response.status_code == 4_2_9: raise requests.HTTPError SCREAMING_SNAKE_CASE_ : Union[str, Any] = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(lowerCAmelCase )} SCREAMING_SNAKE_CASE_ : List[str] = {} for id_ in range(lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : int = { item: data["data"]["children"][id_]["data"][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('''learnpython''', wanted_data=['''title''', '''url''', '''selftext''']))
18
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer __lowerCamelCase : Optional[Any] = logging.get_logger(__name__) __lowerCamelCase : Dict = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __lowerCamelCase : int = { '''vocab_file''': { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt''' ), } } __lowerCamelCase : Any = { '''junnyu/roformer_chinese_small''': 15_36, '''junnyu/roformer_chinese_base''': 15_36, '''junnyu/roformer_chinese_char_small''': 5_12, '''junnyu/roformer_chinese_char_base''': 5_12, '''junnyu/roformer_small_discriminator''': 1_28, '''junnyu/roformer_small_generator''': 1_28, } __lowerCamelCase : Union[str, Any] = { '''junnyu/roformer_chinese_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_base''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_base''': {'''do_lower_case''': True}, '''junnyu/roformer_small_discriminator''': {'''do_lower_case''': True}, '''junnyu/roformer_small_generator''': {'''do_lower_case''': True}, } class a__ ( A__ ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = PRETRAINED_INIT_CONFIGURATION A = RoFormerTokenizer def __init__( self : List[str],_A : int=None,_A : int=None,_A : int=True,_A : List[Any]="[UNK]",_A : Tuple="[SEP]",_A : List[Any]="[PAD]",_A : Optional[int]="[CLS]",_A : Optional[Any]="[MASK]",_A : Optional[int]=True,_A : List[str]=None,**_A : List[Any],): """simple docstring""" super().__init__( _A,tokenizer_file=_A,do_lower_case=_A,unk_token=_A,sep_token=_A,pad_token=_A,cls_token=_A,mask_token=_A,tokenize_chinese_chars=_A,strip_accents=_A,**_A,) SCREAMING_SNAKE_CASE_ : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("lowercase",_A ) != do_lower_case or pre_tok_state.get("strip_accents",_A ) != strip_accents ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = getattr(_A,pre_tok_state.pop("type" ) ) SCREAMING_SNAKE_CASE_ : Any = do_lower_case SCREAMING_SNAKE_CASE_ : List[str] = strip_accents SCREAMING_SNAKE_CASE_ : str = pre_tok_class(**_A ) SCREAMING_SNAKE_CASE_ : List[str] = do_lower_case def __getstate__( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.__dict__.copy() SCREAMING_SNAKE_CASE_ : Optional[Any] = BertPreTokenizer() return state def __setstate__( self : List[Any],_A : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = d SCREAMING_SNAKE_CASE_ : List[str] = self.__dict__["_tokenizer"].get_vocab() SCREAMING_SNAKE_CASE_ : Any = PreTokenizer.custom(JiebaPreTokenizer(_A ) ) def __UpperCamelCase ( self : Union[str, Any],_A : List[Any],_A : str=None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCamelCase ( self : str,_A : List[int],_A : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCamelCase ( self : int,_A : str,_A : Optional[str] = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._tokenizer.model.save(_A,name=_A ) return tuple(_A ) def __UpperCamelCase ( self : int,_A : Optional[int],_A : List[Any]=None,_A : Tuple=None,_A : str=False,**_A : List[Any],): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = BertPreTokenizer() return super().save_pretrained(_A,_A,_A,_A,**_A )
18
1
from collections import defaultdict from math import gcd def _snake_case ( lowerCAmelCase : int = 1_5_0_0_0_0_0 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : defaultdict = defaultdict(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : str = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , lowerCAmelCase , 2 ): if gcd(lowerCAmelCase , lowerCAmelCase ) > 1: continue SCREAMING_SNAKE_CASE_ : int = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(lowerCAmelCase , limit + 1 , lowerCAmelCase ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(f'''{solution() = }''')
18
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class a__ ( A__ ): def __init__( self : Tuple,_A : Optional[int],_A : Any=13,_A : List[str]=7,_A : int=True,_A : Dict=True,_A : Dict=False,_A : List[Any]=True,_A : Any=99,_A : Optional[int]=32,_A : Any=5,_A : List[Any]=4,_A : Dict=64,_A : Optional[Any]="gelu",_A : Tuple=0.1,_A : Any=0.1,_A : List[Any]=512,_A : Dict=16,_A : Optional[Any]=2,_A : Union[str, Any]=0.02,_A : List[str]=3,_A : Optional[Any]=4,_A : Union[str, Any]=None,_A : Tuple=2,_A : List[str]=2,_A : str=2,_A : Dict=2,_A : Optional[Any]=4,_A : Union[str, Any]=1,): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = parent SCREAMING_SNAKE_CASE_ : Optional[int] = batch_size SCREAMING_SNAKE_CASE_ : Dict = seq_length SCREAMING_SNAKE_CASE_ : Dict = is_training SCREAMING_SNAKE_CASE_ : Optional[int] = use_input_mask SCREAMING_SNAKE_CASE_ : int = use_token_type_ids SCREAMING_SNAKE_CASE_ : Optional[int] = use_labels SCREAMING_SNAKE_CASE_ : Tuple = vocab_size SCREAMING_SNAKE_CASE_ : Any = hidden_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Tuple = num_attention_heads SCREAMING_SNAKE_CASE_ : List[Any] = intermediate_size SCREAMING_SNAKE_CASE_ : List[str] = hidden_act SCREAMING_SNAKE_CASE_ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : str = max_position_embeddings SCREAMING_SNAKE_CASE_ : str = type_vocab_size SCREAMING_SNAKE_CASE_ : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE_ : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE_ : Tuple = num_labels SCREAMING_SNAKE_CASE_ : List[Any] = num_choices SCREAMING_SNAKE_CASE_ : Dict = scope SCREAMING_SNAKE_CASE_ : int = q_groups SCREAMING_SNAKE_CASE_ : Tuple = k_groups SCREAMING_SNAKE_CASE_ : List[Any] = v_groups SCREAMING_SNAKE_CASE_ : Tuple = post_attention_groups SCREAMING_SNAKE_CASE_ : int = intermediate_groups SCREAMING_SNAKE_CASE_ : List[Any] = output_groups def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) SCREAMING_SNAKE_CASE_ : List[Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = None SCREAMING_SNAKE_CASE_ : Any = None SCREAMING_SNAKE_CASE_ : str = None if self.use_labels: SCREAMING_SNAKE_CASE_ : str = ids_tensor([self.batch_size],self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size],self.num_choices ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : str ): """simple docstring""" return SqueezeBertConfig( embedding_size=self.hidden_size,vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,attention_probs_dropout_prob=self.hidden_dropout_prob,attention_dropout=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,initializer_range=self.initializer_range,q_groups=self.q_groups,k_groups=self.k_groups,v_groups=self.v_groups,post_attention_groups=self.post_attention_groups,intermediate_groups=self.intermediate_groups,output_groups=self.output_groups,) def __UpperCamelCase ( self : Tuple,_A : Union[str, Any],_A : Union[str, Any],_A : int,_A : Optional[int],_A : Union[str, Any],_A : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = SqueezeBertModel(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Any = model(_A,_A ) SCREAMING_SNAKE_CASE_ : List[str] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Dict,_A : Any,_A : Tuple,_A : str,_A : Any,_A : Union[str, Any],_A : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = SqueezeBertForMaskedLM(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : List[str] = model(_A,attention_mask=_A,labels=_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : Optional[int],_A : Union[str, Any],_A : Union[str, Any],_A : Any,_A : Tuple,_A : int,_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = SqueezeBertForQuestionAnswering(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model( _A,attention_mask=_A,start_positions=_A,end_positions=_A ) self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : List[Any],_A : List[str],_A : Tuple,_A : List[Any],_A : List[str],_A : List[str],_A : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.num_labels SCREAMING_SNAKE_CASE_ : List[str] = SqueezeBertForSequenceClassification(_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model(_A,attention_mask=_A,labels=_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : str,_A : Optional[int],_A : str,_A : List[Any],_A : List[str],_A : str,_A : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.num_labels SCREAMING_SNAKE_CASE_ : Optional[int] = SqueezeBertForTokenClassification(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[int] = model(_A,attention_mask=_A,labels=_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : List[Any],_A : Tuple,_A : str,_A : Optional[Any],_A : int,_A : str,_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.num_choices SCREAMING_SNAKE_CASE_ : Union[str, Any] = SqueezeBertForMultipleChoice(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = input_ids.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() SCREAMING_SNAKE_CASE_ : str = input_mask.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() SCREAMING_SNAKE_CASE_ : Optional[int] = model( _A,attention_mask=_A,labels=_A,) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)) : Dict = config_and_inputs SCREAMING_SNAKE_CASE_ : Dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class a__ ( A__ , A__ , unittest.TestCase ): A = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) A = ( { 'feature-extraction': SqueezeBertModel, 'fill-mask': SqueezeBertForMaskedLM, 'question-answering': SqueezeBertForQuestionAnswering, 'text-classification': SqueezeBertForSequenceClassification, 'token-classification': SqueezeBertForTokenClassification, 'zero-shot': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) A = False A = True A = False def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = SqueezeBertModelTester(self ) SCREAMING_SNAKE_CASE_ : List[str] = ConfigTester(self,config_class=_A,dim=37 ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*_A ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*_A ) def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*_A ) def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*_A ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*_A ) def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*_A ) @slow def __UpperCamelCase ( self : Any ): """simple docstring""" for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : Tuple = SqueezeBertModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_sentencepiece @require_tokenizers @require_torch class a__ ( unittest.TestCase ): @slow def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = SqueezeBertForSequenceClassification.from_pretrained("squeezebert/squeezebert-mnli" ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor([[1, 2_9414, 232, 328, 740, 1140, 1_2695, 69, 13, 1588, 2]] ) SCREAMING_SNAKE_CASE_ : List[Any] = model(_A )[0] SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.Size((1, 3) ) self.assertEqual(output.shape,_A ) SCREAMING_SNAKE_CASE_ : int = torch.tensor([[0.6401, -0.0349, -0.6041]] ) self.assertTrue(torch.allclose(_A,_A,atol=1E-4 ) )
18
1
def _snake_case ( lowerCAmelCase : int ): """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('''Program to check whether a number is a Perfect number or not...''') __lowerCamelCase : Any = int(input('''Enter number: ''').strip()) print(f'''{number} is {'' if perfect(number) else 'not '}a Perfect Number.''')
18
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def _snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Union[str, Any] = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE_ : List[str] = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def _snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : Dict , lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Optional[Any] = {"text": "string"} SCREAMING_SNAKE_CASE_ : Any = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE_ : List[str] = ( Features({feature: Value(lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE_ : Optional[Any] = TextDatasetReader(lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def _snake_case ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : List[str] = {"text": "string"} SCREAMING_SNAKE_CASE_ : List[str] = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase , split=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : Optional[int] ): """simple docstring""" if issubclass(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = text_path elif issubclass(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [text_path] SCREAMING_SNAKE_CASE_ : int = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Optional[int] = {"text": "string"} SCREAMING_SNAKE_CASE_ : List[str] = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) def _snake_case ( lowerCAmelCase : Dict , lowerCAmelCase : Dict , lowerCAmelCase : List[str]=("train",) ): """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) for split in splits: SCREAMING_SNAKE_CASE_ : int = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def _snake_case ( lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Union[str, Any] = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE_ : List[Any] = TextDatasetReader({"train": text_path} , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase ).read() _check_text_datasetdict(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def _snake_case ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = tmp_path / "cache" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" SCREAMING_SNAKE_CASE_ : Tuple = {"text": "string"} SCREAMING_SNAKE_CASE_ : Any = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE_ : Dict = ( Features({feature: Value(lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE_ : str = TextDatasetReader({"train": text_path} , features=lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_datasetdict(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def _snake_case ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any , lowerCAmelCase : Dict ): """simple docstring""" if split: SCREAMING_SNAKE_CASE_ : Optional[int] = {split: text_path} else: SCREAMING_SNAKE_CASE_ : List[Any] = "train" SCREAMING_SNAKE_CASE_ : Tuple = {"train": text_path, "test": text_path} SCREAMING_SNAKE_CASE_ : Any = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : List[str] = {"text": "string"} SCREAMING_SNAKE_CASE_ : str = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_datasetdict(lowerCAmelCase , lowerCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
18
1
def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : int ): """simple docstring""" while b: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = b, a % b return a def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : int ): """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(lowerCAmelCase , a % b ) def _snake_case ( ): """simple docstring""" print(f'euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}' ) print(f'euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}' ) print(f'euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}' ) print(f'euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}' ) print(f'euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}' ) print(f'euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}' ) print(f'euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}' ) print(f'euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}' ) if __name__ == "__main__": main()
18
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def _snake_case ( lowerCAmelCase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class a__ ( A__ , A__ , A__ , unittest.TestCase ): A = StableDiffusionLatentUpscalePipeline A = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'height', 'width', 'cross_attention_kwargs', 'negative_prompt_embeds', 'prompt_embeds', } A = PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'} A = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A = frozenset([] ) A = True @property def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = 1 SCREAMING_SNAKE_CASE_ : Optional[int] = 4 SCREAMING_SNAKE_CASE_ : Optional[int] = (16, 16) SCREAMING_SNAKE_CASE_ : Dict = floats_tensor((batch_size, num_channels) + sizes,rng=random.Random(0 ) ).to(_A ) return image def __UpperCamelCase ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : str = UNetaDConditionModel( act_fn="gelu",attention_head_dim=8,norm_num_groups=_A,block_out_channels=[32, 32, 64, 64],time_cond_proj_dim=160,conv_in_kernel=1,conv_out_kernel=1,cross_attention_dim=32,down_block_types=( "KDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", ),in_channels=8,mid_block_type=_A,only_cross_attention=_A,out_channels=5,resnet_time_scale_shift="scale_shift",time_embedding_type="fourier",timestep_post_act="gelu",up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D"),) SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 32, 64, 64],in_channels=3,out_channels=3,down_block_types=[ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", ],up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],latent_channels=4,) SCREAMING_SNAKE_CASE_ : int = EulerDiscreteScheduler(prediction_type="sample" ) SCREAMING_SNAKE_CASE_ : List[Any] = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1000,hidden_act="quick_gelu",projection_dim=512,) SCREAMING_SNAKE_CASE_ : Tuple = CLIPTextModel(_A ) SCREAMING_SNAKE_CASE_ : int = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = { "unet": model.eval(), "vae": vae.eval(), "scheduler": scheduler, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def __UpperCamelCase ( self : List[Any],_A : int,_A : Tuple=0 ): """simple docstring""" if str(_A ).startswith("mps" ): SCREAMING_SNAKE_CASE_ : Optional[int] = torch.manual_seed(_A ) else: SCREAMING_SNAKE_CASE_ : Dict = torch.Generator(device=_A ).manual_seed(_A ) SCREAMING_SNAKE_CASE_ : Tuple = { "prompt": "A painting of a squirrel eating a burger", "image": self.dummy_image.cpu(), "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = "cpu" SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : List[str] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ : Tuple = self.get_dummy_inputs(_A ) SCREAMING_SNAKE_CASE_ : Dict = pipe(**_A ).images SCREAMING_SNAKE_CASE_ : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape,(1, 256, 256, 3) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) SCREAMING_SNAKE_CASE_ : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A,1E-3 ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def __UpperCamelCase ( self : int ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" super().test_save_load_local(expected_max_difference=3E-3 ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3E-3 ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = [ "DDIMScheduler", "DDPMScheduler", "PNDMScheduler", "HeunDiscreteScheduler", "EulerAncestralDiscreteScheduler", "KDPM2DiscreteScheduler", "KDPM2AncestralDiscreteScheduler", "DPMSolverSDEScheduler", ] SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : Any = self.pipeline_class(**_A ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ : Any = self.get_dummy_inputs(_A ) SCREAMING_SNAKE_CASE_ : Optional[Any] = 2 SCREAMING_SNAKE_CASE_ : Optional[int] = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue SCREAMING_SNAKE_CASE_ : Tuple = getattr(_A,scheduler_enum.name ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = scheduler_cls.from_config(pipe.scheduler.config ) SCREAMING_SNAKE_CASE_ : Optional[int] = pipe(**_A )[0] outputs.append(_A ) assert check_same_shape(_A ) @require_torch_gpu @slow class a__ ( unittest.TestCase ): def __UpperCamelCase ( self : Dict ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = torch.manual_seed(33 ) SCREAMING_SNAKE_CASE_ : Optional[int] = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4",torch_dtype=torch.floataa ) pipe.to("cuda" ) SCREAMING_SNAKE_CASE_ : List[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler",torch_dtype=torch.floataa ) upscaler.to("cuda" ) SCREAMING_SNAKE_CASE_ : Tuple = "a photo of an astronaut high resolution, unreal engine, ultra realistic" SCREAMING_SNAKE_CASE_ : str = pipe(_A,generator=_A,output_type="latent" ).images SCREAMING_SNAKE_CASE_ : Optional[Any] = upscaler( prompt=_A,image=_A,num_inference_steps=20,guidance_scale=0,generator=_A,output_type="np",).images[0] SCREAMING_SNAKE_CASE_ : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy" ) assert np.abs((expected_image - image).mean() ) < 5E-2 def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = torch.manual_seed(33 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler",torch_dtype=torch.floataa ) upscaler.to("cuda" ) SCREAMING_SNAKE_CASE_ : Any = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas" SCREAMING_SNAKE_CASE_ : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png" ) SCREAMING_SNAKE_CASE_ : str = upscaler( prompt=_A,image=_A,num_inference_steps=20,guidance_scale=0,generator=_A,output_type="np",).images[0] SCREAMING_SNAKE_CASE_ : Any = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy" ) assert np.abs((expected_image - image).max() ) < 5E-2
18
1
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def _snake_case ( lowerCAmelCase : Tuple ): """simple docstring""" return EnvironmentCommand() class a__ ( A__ ): @staticmethod def __UpperCamelCase ( _A : ArgumentParser ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = parser.add_parser("env" ) download_parser.set_defaults(func=_A ) def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = huggingface_hub.__version__ SCREAMING_SNAKE_CASE_ : Optional[int] = "not installed" SCREAMING_SNAKE_CASE_ : Optional[int] = "NA" if is_torch_available(): import torch SCREAMING_SNAKE_CASE_ : int = torch.__version__ SCREAMING_SNAKE_CASE_ : int = torch.cuda.is_available() SCREAMING_SNAKE_CASE_ : List[Any] = "not installed" if is_transformers_available(): import transformers SCREAMING_SNAKE_CASE_ : Optional[int] = transformers.__version__ SCREAMING_SNAKE_CASE_ : str = "not installed" if is_accelerate_available(): import accelerate SCREAMING_SNAKE_CASE_ : Union[str, Any] = accelerate.__version__ SCREAMING_SNAKE_CASE_ : List[str] = "not installed" if is_xformers_available(): import xformers SCREAMING_SNAKE_CASE_ : int = xformers.__version__ SCREAMING_SNAKE_CASE_ : str = { "`diffusers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "PyTorch version (GPU?)": F'{pt_version} ({pt_cuda_available})', "Huggingface_hub version": hub_version, "Transformers version": transformers_version, "Accelerate version": accelerate_version, "xFormers version": xformers_version, "Using GPU in script?": "<fill in>", "Using distributed or parallel set-up in script?": "<fill in>", } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" ) print(self.format_dict(_A ) ) return info @staticmethod def __UpperCamelCase ( _A : int ): """simple docstring""" return "\n".join([F'- {prop}: {val}' for prop, val in d.items()] ) + "\n"
18
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging __lowerCamelCase : Optional[int] = logging.get_logger(__name__) __lowerCamelCase : Tuple = { '''deepmind/language-perceiver''': '''https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json''', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class a__ ( A__ ): A = 'perceiver' def __init__( self : List[Any],_A : Tuple=256,_A : str=1280,_A : List[Any]=768,_A : Union[str, Any]=1,_A : Union[str, Any]=26,_A : List[str]=8,_A : List[Any]=8,_A : List[Any]=None,_A : List[Any]=None,_A : Union[str, Any]="kv",_A : Any=1,_A : int=1,_A : Dict="gelu",_A : Any=0.1,_A : int=0.02,_A : int=1E-12,_A : Any=True,_A : Optional[Any]=262,_A : List[Any]=2048,_A : str=56,_A : Optional[int]=[368, 496],_A : Dict=16,_A : Tuple=1920,_A : List[Any]=16,_A : str=[1, 16, 224, 224],**_A : Optional[Any],): """simple docstring""" super().__init__(**_A ) SCREAMING_SNAKE_CASE_ : Dict = num_latents SCREAMING_SNAKE_CASE_ : List[Any] = d_latents SCREAMING_SNAKE_CASE_ : Union[str, Any] = d_model SCREAMING_SNAKE_CASE_ : Optional[int] = num_blocks SCREAMING_SNAKE_CASE_ : List[Any] = num_self_attends_per_block SCREAMING_SNAKE_CASE_ : Tuple = num_self_attention_heads SCREAMING_SNAKE_CASE_ : List[str] = num_cross_attention_heads SCREAMING_SNAKE_CASE_ : List[Any] = qk_channels SCREAMING_SNAKE_CASE_ : Any = v_channels SCREAMING_SNAKE_CASE_ : Any = cross_attention_shape_for_attention SCREAMING_SNAKE_CASE_ : List[str] = self_attention_widening_factor SCREAMING_SNAKE_CASE_ : Any = cross_attention_widening_factor SCREAMING_SNAKE_CASE_ : List[Any] = hidden_act SCREAMING_SNAKE_CASE_ : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Any = initializer_range SCREAMING_SNAKE_CASE_ : List[Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : Tuple = use_query_residual # masked language modeling attributes SCREAMING_SNAKE_CASE_ : List[str] = vocab_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = max_position_embeddings # image classification attributes SCREAMING_SNAKE_CASE_ : Dict = image_size # flow attributes SCREAMING_SNAKE_CASE_ : List[Any] = train_size # multimodal autoencoding attributes SCREAMING_SNAKE_CASE_ : str = num_frames SCREAMING_SNAKE_CASE_ : Any = audio_samples_per_frame SCREAMING_SNAKE_CASE_ : Tuple = samples_per_patch SCREAMING_SNAKE_CASE_ : Optional[Any] = output_shape class a__ ( A__ ): @property def __UpperCamelCase ( self : List[str] ): """simple docstring""" if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ : List[str] = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE_ : str = {0: "batch", 1: "sequence"} return OrderedDict( [ ("inputs", dynamic_axis), ("attention_mask", dynamic_axis), ] ) @property def __UpperCamelCase ( self : List[Any] ): """simple docstring""" return 1E-4 def __UpperCamelCase ( self : List[str],_A : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"],_A : int = -1,_A : int = -1,_A : int = -1,_A : bool = False,_A : Optional[TensorType] = None,_A : int = 3,_A : int = 40,_A : int = 40,): """simple docstring""" if isinstance(_A,_A ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ : Tuple = compute_effective_axis_dimension( _A,fixed_dimension=OnnxConfig.default_fixed_batch,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ : Tuple = preprocessor.num_special_tokens_to_add(_A ) SCREAMING_SNAKE_CASE_ : Any = compute_effective_axis_dimension( _A,fixed_dimension=OnnxConfig.default_fixed_sequence,num_token_to_add=_A ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE_ : Optional[Any] = [" ".join(["a"] ) * seq_length] * batch_size SCREAMING_SNAKE_CASE_ : str = dict(preprocessor(_A,return_tensors=_A ) ) SCREAMING_SNAKE_CASE_ : List[str] = inputs.pop("input_ids" ) return inputs elif isinstance(_A,_A ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ : Any = compute_effective_axis_dimension(_A,fixed_dimension=OnnxConfig.default_fixed_batch ) SCREAMING_SNAKE_CASE_ : Optional[int] = self._generate_dummy_images(_A,_A,_A,_A ) SCREAMING_SNAKE_CASE_ : Any = dict(preprocessor(images=_A,return_tensors=_A ) ) SCREAMING_SNAKE_CASE_ : Any = inputs.pop("pixel_values" ) return inputs else: raise ValueError( "Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor." )
18
1
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowerCamelCase : Tuple = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class a__ ( A__ , unittest.TestCase ): A = XLMRobertaTokenizer A = XLMRobertaTokenizerFast A = True A = True def __UpperCamelCase ( self : List[str] ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE_ : int = XLMRobertaTokenizer(_A,keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = "<pad>" SCREAMING_SNAKE_CASE_ : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ),_A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ),_A ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0],"<s>" ) self.assertEqual(vocab_keys[1],"<pad>" ) self.assertEqual(vocab_keys[-1],"<mask>" ) self.assertEqual(len(_A ),1002 ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size,1002 ) def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = XLMRobertaTokenizer(_A,keep_accents=_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.tokenize("This is a test" ) self.assertListEqual(_A,["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ),[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]],) SCREAMING_SNAKE_CASE_ : int = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _A,[ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ],) SCREAMING_SNAKE_CASE_ : Tuple = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ],) SCREAMING_SNAKE_CASE_ : int = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A,[ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ],) def __UpperCamelCase ( self : Tuple ): """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return SCREAMING_SNAKE_CASE_ : Union[str, Any] = (self.rust_tokenizer_class, "hf-internal-testing/tiny-xlm-roberta", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE_ : str = self.rust_tokenizer_class.from_pretrained(_A,**_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.tokenizer_class.from_pretrained(_A,**_A ) SCREAMING_SNAKE_CASE_ : int = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ : List[str] = tokenizer_r.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ : Any = tokenizer_p.save_pretrained(_A ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(_A,_A ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer_r.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ : int = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A,_A ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_A ) # Save tokenizer rust, legacy_format=True SCREAMING_SNAKE_CASE_ : List[str] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ : Any = tokenizer_r.save_pretrained(_A,legacy_format=_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer_p.save_pretrained(_A ) # Checks it save with the same files self.assertSequenceEqual(_A,_A ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer_r.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ : Any = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A,_A ) ) shutil.rmtree(_A ) # Save tokenizer rust, legacy_format=False SCREAMING_SNAKE_CASE_ : Dict = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ : Any = tokenizer_r.save_pretrained(_A,legacy_format=_A ) SCREAMING_SNAKE_CASE_ : Tuple = tokenizer_p.save_pretrained(_A ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer_r.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A,_A ) ) shutil.rmtree(_A ) @cached_property def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" return XLMRobertaTokenizer.from_pretrained("xlm-roberta-base" ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(_A,f.name ) SCREAMING_SNAKE_CASE_ : Dict = XLMRobertaTokenizer(f.name,keep_accents=_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = pickle.dumps(_A ) pickle.loads(_A ) def __UpperCamelCase ( self : str ): """simple docstring""" if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Any = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ : int = "I was born in 92000, and this is falsé." SCREAMING_SNAKE_CASE_ : str = tokenizer.tokenize(_A ) SCREAMING_SNAKE_CASE_ : List[Any] = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A,_A ) SCREAMING_SNAKE_CASE_ : Any = tokenizer.encode(_A,add_special_tokens=_A ) SCREAMING_SNAKE_CASE_ : int = rust_tokenizer.encode(_A,add_special_tokens=_A ) self.assertListEqual(_A,_A ) SCREAMING_SNAKE_CASE_ : List[Any] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ : Any = tokenizer.encode(_A ) SCREAMING_SNAKE_CASE_ : Any = rust_tokenizer.encode(_A ) self.assertListEqual(_A,_A ) @slow def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = "Hello World!" SCREAMING_SNAKE_CASE_ : List[Any] = [0, 3_5378, 6661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_A,self.big_tokenizer.encode(_A ) ) @slow def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) SCREAMING_SNAKE_CASE_ : List[Any] = [ 0, 3293, 83, 10, 4552, 4989, 7986, 678, 10, 5915, 111, 17_9459, 12_4850, 4, 6044, 237, 12, 6, 5, 6, 4, 6780, 705, 15, 1388, 44, 378, 1_0114, 711, 152, 20, 6, 5, 2_2376, 642, 1221, 1_5190, 3_4153, 450, 5608, 959, 1119, 5_7702, 136, 186, 47, 1098, 2_9367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6044, 237, 6284, 5_0901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_A,self.big_tokenizer.encode(_A ) ) @slow def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = {"input_ids": [[0, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [0, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A,model_name="xlm-roberta-base",revision="d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3",)
18
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class a__ ( yaml.SafeLoader ): def __UpperCamelCase ( self : str,_A : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = [self.constructed_objects[key_node] for key_node, _ in node.value] SCREAMING_SNAKE_CASE_ : List[str] = [tuple(_A ) if isinstance(_A,_A ) else key for key in keys] SCREAMING_SNAKE_CASE_ : Optional[int] = Counter(_A ) SCREAMING_SNAKE_CASE_ : Tuple = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F'Got duplicate yaml keys: {duplicate_keys}' ) def __UpperCamelCase ( self : Tuple,_A : Dict,_A : List[Any]=False ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = super().construct_mapping(_A,deep=_A ) self._check_no_duplicates_on_constructed_node(_A ) return mapping def _snake_case ( lowerCAmelCase : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: SCREAMING_SNAKE_CASE_ : List[Any] = full_content[1:].index("---" ) + 1 SCREAMING_SNAKE_CASE_ : int = "\n".join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(lowerCAmelCase ) class a__ ( A__ ): # class attributes A = {'train_eval_index'} # train-eval-index in the YAML metadata @classmethod def __UpperCamelCase ( cls : Any,_A : Path ): """simple docstring""" with open(_A,encoding="utf-8" ) as readme_file: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(_A ) else: return cls() def __UpperCamelCase ( self : Dict,_A : Path ): """simple docstring""" if path.exists(): with open(_A,encoding="utf-8" ) as readme_file: SCREAMING_SNAKE_CASE_ : int = readme_file.read() else: SCREAMING_SNAKE_CASE_ : Any = None SCREAMING_SNAKE_CASE_ : int = self._to_readme(_A ) with open(_A,"w",encoding="utf-8" ) as readme_file: readme_file.write(_A ) def __UpperCamelCase ( self : Optional[int],_A : Optional[str] = None ): """simple docstring""" if readme_content is not None: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = _split_yaml_from_readme(_A ) SCREAMING_SNAKE_CASE_ : Tuple = "---\n" + self.to_yaml_string() + "---\n" + content else: SCREAMING_SNAKE_CASE_ : Dict = "---\n" + self.to_yaml_string() + "---\n" return full_content @classmethod def __UpperCamelCase ( cls : Dict,_A : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = yaml.load(_A,Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields SCREAMING_SNAKE_CASE_ : Any = { (key.replace("-","_" ) if key.replace("-","_" ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**_A ) def __UpperCamelCase ( self : Dict ): """simple docstring""" return yaml.safe_dump( { (key.replace("_","-" ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() },sort_keys=_A,allow_unicode=_A,encoding="utf-8",).decode("utf-8" ) __lowerCamelCase : List[Any] = { '''image-classification''': [], '''translation''': [], '''image-segmentation''': [], '''fill-mask''': [], '''automatic-speech-recognition''': [], '''token-classification''': [], '''sentence-similarity''': [], '''audio-classification''': [], '''question-answering''': [], '''summarization''': [], '''zero-shot-classification''': [], '''table-to-text''': [], '''feature-extraction''': [], '''other''': [], '''multiple-choice''': [], '''text-classification''': [], '''text-to-image''': [], '''text2text-generation''': [], '''zero-shot-image-classification''': [], '''tabular-classification''': [], '''tabular-regression''': [], '''image-to-image''': [], '''tabular-to-text''': [], '''unconditional-image-generation''': [], '''text-retrieval''': [], '''text-to-speech''': [], '''object-detection''': [], '''audio-to-audio''': [], '''text-generation''': [], '''conversational''': [], '''table-question-answering''': [], '''visual-question-answering''': [], '''image-to-text''': [], '''reinforcement-learning''': [], '''voice-activity-detection''': [], '''time-series-forecasting''': [], '''document-question-answering''': [], } if __name__ == "__main__": from argparse import ArgumentParser __lowerCamelCase : List[Any] = ArgumentParser(usage='''Validate the yaml metadata block of a README.md file.''') ap.add_argument('''readme_filepath''') __lowerCamelCase : Dict = ap.parse_args() __lowerCamelCase : List[Any] = Path(args.readme_filepath) __lowerCamelCase : Optional[int] = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
18
1
from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : Any = logging.get_logger(__name__) __lowerCamelCase : Tuple = { '''microsoft/xprophetnet-large-wiki100-cased''': ( '''https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json''' ), } class a__ ( A__ ): A = 'xlm-prophetnet' A = ['past_key_values'] A = { 'num_attention_heads': 'num_encoder_attention_heads', } def __init__( self : Optional[Any],_A : Optional[float] = 0.1,_A : Optional[Union[str, Callable]] = "gelu",_A : Optional[int] = 3_0522,_A : Optional[int] = 1024,_A : Optional[int] = 4096,_A : Optional[int] = 12,_A : Optional[int] = 16,_A : Optional[int] = 4096,_A : Optional[int] = 12,_A : Optional[int] = 16,_A : Optional[float] = 0.1,_A : Optional[float] = 0.1,_A : Optional[int] = 512,_A : Optional[float] = 0.02,_A : Optional[bool] = True,_A : Optional[bool] = True,_A : Optional[int] = 0,_A : Optional[int] = 2,_A : Optional[int] = 32,_A : Optional[int] = 128,_A : Optional[bool] = False,_A : Optional[float] = 0.0,_A : Optional[bool] = True,_A : Optional[int] = 0,_A : Optional[int] = 1,_A : Optional[int] = 2,**_A : str,): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = vocab_size SCREAMING_SNAKE_CASE_ : Tuple = hidden_size SCREAMING_SNAKE_CASE_ : str = encoder_ffn_dim SCREAMING_SNAKE_CASE_ : Any = num_encoder_layers SCREAMING_SNAKE_CASE_ : Any = num_encoder_attention_heads SCREAMING_SNAKE_CASE_ : int = decoder_ffn_dim SCREAMING_SNAKE_CASE_ : Optional[int] = num_decoder_layers SCREAMING_SNAKE_CASE_ : str = num_decoder_attention_heads SCREAMING_SNAKE_CASE_ : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE_ : Optional[int] = init_std # Normal(0, this parameter) SCREAMING_SNAKE_CASE_ : Dict = activation_function # parameters for xlmprophetnet SCREAMING_SNAKE_CASE_ : int = ngram SCREAMING_SNAKE_CASE_ : Optional[int] = num_buckets SCREAMING_SNAKE_CASE_ : Optional[int] = relative_max_distance SCREAMING_SNAKE_CASE_ : List[Any] = disable_ngram_loss SCREAMING_SNAKE_CASE_ : List[str] = eps # 3 Types of Dropout SCREAMING_SNAKE_CASE_ : str = attention_dropout SCREAMING_SNAKE_CASE_ : Tuple = activation_dropout SCREAMING_SNAKE_CASE_ : List[Any] = dropout SCREAMING_SNAKE_CASE_ : Any = use_cache super().__init__( pad_token_id=_A,bos_token_id=_A,eos_token_id=_A,is_encoder_decoder=_A,add_cross_attention=_A,decoder_start_token_id=_A,**_A,) @property def __UpperCamelCase ( self : Tuple ): """simple docstring""" return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def __UpperCamelCase ( self : Optional[int],_A : str ): """simple docstring""" raise NotImplementedError( "This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and" " `num_decoder_layers`." )
18
from __future__ import annotations from math import pi, sqrt def _snake_case ( lowerCAmelCase : float , lowerCAmelCase : float ): """simple docstring""" if inductance <= 0: raise ValueError("Inductance cannot be 0 or negative" ) elif capacitance <= 0: raise ValueError("Capacitance cannot be 0 or negative" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
18
1
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 __lowerCamelCase : Optional[Any] = get_tests_dir('''fixtures/dummy_feature_extractor_config.json''') __lowerCamelCase : int = get_tests_dir('''fixtures/vocab.json''') __lowerCamelCase : Any = get_tests_dir('''fixtures''') class a__ ( unittest.TestCase ): A = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] def __UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = 0 def __UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h" ) self.assertIsInstance(_A,_A ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ : str = WavaVecaConfig() SCREAMING_SNAKE_CASE_ : str = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h" ) # save in new folder model_config.save_pretrained(_A ) processor.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ : List[Any] = AutoProcessor.from_pretrained(_A ) self.assertIsInstance(_A,_A ) def __UpperCamelCase ( self : str ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(_A,os.path.join(_A,_A ) ) copyfile(_A,os.path.join(_A,"vocab.json" ) ) SCREAMING_SNAKE_CASE_ : str = AutoProcessor.from_pretrained(_A ) self.assertIsInstance(_A,_A ) def __UpperCamelCase ( self : Any ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ : List[str] = WavaVecaFeatureExtractor() SCREAMING_SNAKE_CASE_ : List[Any] = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = WavaVecaProcessor(_A,_A ) # save in new folder processor.save_pretrained(_A ) # drop `processor_class` in tokenizer with open(os.path.join(_A,_A ),"r" ) as f: SCREAMING_SNAKE_CASE_ : Optional[int] = json.load(_A ) config_dict.pop("processor_class" ) with open(os.path.join(_A,_A ),"w" ) as f: f.write(json.dumps(_A ) ) SCREAMING_SNAKE_CASE_ : List[Any] = AutoProcessor.from_pretrained(_A ) self.assertIsInstance(_A,_A ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ : Dict = WavaVecaFeatureExtractor() SCREAMING_SNAKE_CASE_ : Optional[int] = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h" ) SCREAMING_SNAKE_CASE_ : List[Any] = WavaVecaProcessor(_A,_A ) # save in new folder processor.save_pretrained(_A ) # drop `processor_class` in feature extractor with open(os.path.join(_A,_A ),"r" ) as f: SCREAMING_SNAKE_CASE_ : Dict = json.load(_A ) config_dict.pop("processor_class" ) with open(os.path.join(_A,_A ),"w" ) as f: f.write(json.dumps(_A ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoProcessor.from_pretrained(_A ) self.assertIsInstance(_A,_A ) def __UpperCamelCase ( self : str ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ : Tuple = WavaVecaConfig(processor_class="Wav2Vec2Processor" ) model_config.save_pretrained(_A ) # copy relevant files copyfile(_A,os.path.join(_A,"vocab.json" ) ) # create emtpy sample processor with open(os.path.join(_A,_A ),"w" ) as f: f.write("{}" ) SCREAMING_SNAKE_CASE_ : List[str] = AutoProcessor.from_pretrained(_A ) self.assertIsInstance(_A,_A ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" with self.assertRaises(_A ): SCREAMING_SNAKE_CASE_ : int = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(_A ): SCREAMING_SNAKE_CASE_ : Dict = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor",trust_remote_code=_A ) SCREAMING_SNAKE_CASE_ : Dict = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor",trust_remote_code=_A ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__,"NewProcessor" ) SCREAMING_SNAKE_CASE_ : Optional[int] = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__,"NewFeatureExtractor" ) SCREAMING_SNAKE_CASE_ : int = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__,"NewTokenizerFast" ) # Test we can also load the slow version SCREAMING_SNAKE_CASE_ : Optional[Any] = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor",trust_remote_code=_A,use_fast=_A ) SCREAMING_SNAKE_CASE_ : List[str] = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__,"NewTokenizer" ) else: self.assertEqual(tokenizer.__class__.__name__,"NewTokenizer" ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" try: AutoConfig.register("custom",_A ) AutoFeatureExtractor.register(_A,_A ) AutoTokenizer.register(_A,slow_tokenizer_class=_A ) AutoProcessor.register(_A,_A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): AutoProcessor.register(_A,_A ) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE_ : Optional[int] = CustomFeatureExtractor.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_ : Optional[int] = os.path.join(_A,"vocab.txt" ) with open(_A,"w",encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE_ : str = CustomTokenizer(_A ) SCREAMING_SNAKE_CASE_ : Optional[Any] = CustomProcessor(_A,_A ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ : Optional[Any] = AutoProcessor.from_pretrained(_A ) self.assertIsInstance(_A,_A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __UpperCamelCase ( self : List[str] ): """simple docstring""" class a__ ( A__ ): A = False class a__ ( A__ ): A = False class a__ ( A__ ): A = 'AutoFeatureExtractor' A = 'AutoTokenizer' A = False try: AutoConfig.register("custom",_A ) AutoFeatureExtractor.register(_A,_A ) AutoTokenizer.register(_A,slow_tokenizer_class=_A ) AutoProcessor.register(_A,_A ) # If remote code is not set, the default is to use local classes. SCREAMING_SNAKE_CASE_ : int = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" ) self.assertEqual(processor.__class__.__name__,"NewProcessor" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor",trust_remote_code=_A ) self.assertEqual(processor.__class__.__name__,"NewProcessor" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. SCREAMING_SNAKE_CASE_ : Optional[Any] = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor",trust_remote_code=_A ) self.assertEqual(processor.__class__.__name__,"NewProcessor" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(processor.__class__.__name__,"BertTokenizerFast" ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-convnext" ) self.assertEqual(processor.__class__.__name__,"ConvNextImageProcessor" ) @is_staging_test class a__ ( unittest.TestCase ): A = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def __UpperCamelCase ( cls : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = TOKEN HfFolder.save_token(_A ) @classmethod def __UpperCamelCase ( cls : Union[str, Any] ): """simple docstring""" try: delete_repo(token=cls._token,repo_id="test-processor" ) except HTTPError: pass try: delete_repo(token=cls._token,repo_id="valid_org/test-processor-org" ) except HTTPError: pass try: delete_repo(token=cls._token,repo_id="test-dynamic-processor" ) except HTTPError: pass def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = WavaVecaProcessor.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(_A,"test-processor" ),push_to_hub=_A,use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ : List[str] = WavaVecaProcessor.from_pretrained(F'{USER}/test-processor' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(_A,getattr(new_processor.feature_extractor,_A ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab(),processor.tokenizer.get_vocab() ) def __UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = WavaVecaProcessor.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(_A,"test-processor-org" ),push_to_hub=_A,use_auth_token=self._token,organization="valid_org",) SCREAMING_SNAKE_CASE_ : List[Any] = WavaVecaProcessor.from_pretrained("valid_org/test-processor-org" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(_A,getattr(new_processor.feature_extractor,_A ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab(),processor.tokenizer.get_vocab() ) def __UpperCamelCase ( self : str ): """simple docstring""" CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() SCREAMING_SNAKE_CASE_ : Optional[int] = CustomFeatureExtractor.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_ : List[Any] = os.path.join(_A,"vocab.txt" ) with open(_A,"w",encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE_ : str = CustomTokenizer(_A ) SCREAMING_SNAKE_CASE_ : Any = CustomProcessor(_A,_A ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F'{USER}/test-dynamic-processor',token=self._token ) SCREAMING_SNAKE_CASE_ : Optional[Any] = Repository(_A,clone_from=F'{USER}/test-dynamic-processor',token=self._token ) processor.save_pretrained(_A ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map,{ "AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor", "AutoProcessor": "custom_processing.CustomProcessor", },) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(_A,"tokenizer_config.json" ) ) as f: SCREAMING_SNAKE_CASE_ : Dict = json.load(_A ) self.assertDictEqual( tokenizer_config["auto_map"],{ "AutoTokenizer": ["custom_tokenization.CustomTokenizer", None], "AutoProcessor": "custom_processing.CustomProcessor", },) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(_A,"custom_feature_extraction.py" ) ) ) self.assertTrue(os.path.isfile(os.path.join(_A,"custom_tokenization.py" ) ) ) self.assertTrue(os.path.isfile(os.path.join(_A,"custom_processing.py" ) ) ) repo.push_to_hub() SCREAMING_SNAKE_CASE_ : int = AutoProcessor.from_pretrained(F'{USER}/test-dynamic-processor',trust_remote_code=_A ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__,"CustomProcessor" )
18
def _snake_case ( lowerCAmelCase : list ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = len(lowerCAmelCase ) for i in range(1 , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : int = collection[i] SCREAMING_SNAKE_CASE_ : Any = 0 SCREAMING_SNAKE_CASE_ : Tuple = i - 1 while low <= high: SCREAMING_SNAKE_CASE_ : int = (low + high) // 2 if val < collection[mid]: SCREAMING_SNAKE_CASE_ : Optional[Any] = mid - 1 else: SCREAMING_SNAKE_CASE_ : Tuple = mid + 1 for j in range(lowerCAmelCase , lowerCAmelCase , -1 ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = collection[j - 1] SCREAMING_SNAKE_CASE_ : int = val return collection if __name__ == "__main__": __lowerCamelCase : Dict = input('''Enter numbers separated by a comma:\n''').strip() __lowerCamelCase : List[str] = [int(item) for item in user_input.split(''',''')] print(binary_insertion_sort(unsorted))
18
1
__lowerCamelCase : Tuple = 2_56 # Modulus to hash a string __lowerCamelCase : int = 1_00_00_03 def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = len(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : str = len(lowerCAmelCase ) if p_len > t_len: return False SCREAMING_SNAKE_CASE_ : str = 0 SCREAMING_SNAKE_CASE_ : Dict = 0 SCREAMING_SNAKE_CASE_ : Optional[int] = 1 # Calculating the hash of pattern and substring of text for i in range(lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : List[str] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus SCREAMING_SNAKE_CASE_ : List[Any] = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue SCREAMING_SNAKE_CASE_ : List[str] = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = "abc1abc12" SCREAMING_SNAKE_CASE_ : Optional[int] = "alskfjaldsabc1abc1abc12k23adsfabcabc" SCREAMING_SNAKE_CASE_ : Union[str, Any] = "alskfjaldsk23adsfabcabc" assert rabin_karp(lowerCAmelCase , lowerCAmelCase ) and not rabin_karp(lowerCAmelCase , lowerCAmelCase ) # Test 2) SCREAMING_SNAKE_CASE_ : List[Any] = "ABABX" SCREAMING_SNAKE_CASE_ : Union[str, Any] = "ABABZABABYABABX" assert rabin_karp(lowerCAmelCase , lowerCAmelCase ) # Test 3) SCREAMING_SNAKE_CASE_ : Dict = "AAAB" SCREAMING_SNAKE_CASE_ : Union[str, Any] = "ABAAAAAB" assert rabin_karp(lowerCAmelCase , lowerCAmelCase ) # Test 4) SCREAMING_SNAKE_CASE_ : Tuple = "abcdabcy" SCREAMING_SNAKE_CASE_ : Optional[int] = "abcxabcdabxabcdabcdabcy" assert rabin_karp(lowerCAmelCase , lowerCAmelCase ) # Test 5) SCREAMING_SNAKE_CASE_ : List[Any] = "Lü" SCREAMING_SNAKE_CASE_ : List[Any] = "Lüsai" assert rabin_karp(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : str = "Lue" assert not rabin_karp(lowerCAmelCase , lowerCAmelCase ) print("Success." ) if __name__ == "__main__": test_rabin_karp()
18
from collections.abc import Sequence from queue import Queue class a__ : def __init__( self : int,_A : List[Any],_A : Optional[Any],_A : Optional[int],_A : int=None,_A : List[str]=None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = start SCREAMING_SNAKE_CASE_ : List[str] = end SCREAMING_SNAKE_CASE_ : Tuple = val SCREAMING_SNAKE_CASE_ : List[str] = (start + end) // 2 SCREAMING_SNAKE_CASE_ : Optional[int] = left SCREAMING_SNAKE_CASE_ : str = right def __repr__( self : Tuple ): """simple docstring""" return F'SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})' class a__ : def __init__( self : Any,_A : Sequence,_A : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = collection SCREAMING_SNAKE_CASE_ : Optional[int] = function if self.collection: SCREAMING_SNAKE_CASE_ : List[str] = self._build_tree(0,len(_A ) - 1 ) def __UpperCamelCase ( self : int,_A : Any,_A : List[Any] ): """simple docstring""" self._update_tree(self.root,_A,_A ) def __UpperCamelCase ( self : str,_A : Any,_A : List[Any] ): """simple docstring""" return self._query_range(self.root,_A,_A ) def __UpperCamelCase ( self : Any,_A : Optional[int],_A : int ): """simple docstring""" if start == end: return SegmentTreeNode(_A,_A,self.collection[start] ) SCREAMING_SNAKE_CASE_ : List[Any] = (start + end) // 2 SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._build_tree(_A,_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = self._build_tree(mid + 1,_A ) return SegmentTreeNode(_A,_A,self.fn(left.val,right.val ),_A,_A ) def __UpperCamelCase ( self : int,_A : int,_A : Tuple,_A : Dict ): """simple docstring""" if node.start == i and node.end == i: SCREAMING_SNAKE_CASE_ : Union[str, Any] = val return if i <= node.mid: self._update_tree(node.left,_A,_A ) else: self._update_tree(node.right,_A,_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.fn(node.left.val,node.right.val ) def __UpperCamelCase ( self : str,_A : List[str],_A : Optional[int],_A : Optional[Any] ): """simple docstring""" if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left,_A,_A ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left,_A,node.mid ),self._query_range(node.right,node.mid + 1,_A ),) else: # range in right child tree return self._query_range(node.right,_A,_A ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" if self.root is not None: SCREAMING_SNAKE_CASE_ : int = Queue() queue.put(self.root ) while not queue.empty(): SCREAMING_SNAKE_CASE_ : Tuple = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('''*''' * 50) __lowerCamelCase : int = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
18
1
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path __lowerCamelCase : Union[str, Any] = [ {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.de'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.en'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.fr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.frr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.it'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.simple'''}, {'''dataset''': '''snli''', '''config_name''': '''plain_text'''}, {'''dataset''': '''eli5''', '''config_name''': '''LFQA_reddit'''}, {'''dataset''': '''wiki40b''', '''config_name''': '''en'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.compressed'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.no_index'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.multiset.no_index'''}, {'''dataset''': '''natural_questions''', '''config_name''': '''default'''}, ] def _snake_case ( lowerCAmelCase : Any=True ): """simple docstring""" if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=A__ ) ) class a__ ( A__ ): A = None A = None def __UpperCamelCase ( self : Optional[int],_A : List[Any],_A : List[str] ): """simple docstring""" with TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_ : Optional[int] = dataset_module_factory(_A,cache_dir=_A ) SCREAMING_SNAKE_CASE_ : List[Any] = import_main_class(dataset_module.module_path,dataset=_A ) SCREAMING_SNAKE_CASE_ : DatasetBuilder = builder_cls( cache_dir=_A,config_name=_A,hash=dataset_module.hash,) SCREAMING_SNAKE_CASE_ : Union[str, Any] = "/".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=_A ).replace(os.sep,"/" ), config.DATASET_INFO_FILENAME, ] ) SCREAMING_SNAKE_CASE_ : Optional[int] = cached_path(_A,cache_dir=_A ) self.assertTrue(os.path.exists(_A ) ) @pytest.mark.integration def _snake_case ( lowerCAmelCase : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = tmp_path_factory.mktemp("test_hf_gcp" ) / "test_wikipedia_simple" SCREAMING_SNAKE_CASE_ : List[str] = dataset_module_factory("wikipedia" , cache_dir=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = import_main_class(dataset_module.module_path ) SCREAMING_SNAKE_CASE_ : DatasetBuilder = builder_cls( cache_dir=lowerCAmelCase , config_name="20220301.frr" , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam SCREAMING_SNAKE_CASE_ : Optional[int] = None builder_instance.download_and_prepare() SCREAMING_SNAKE_CASE_ : Optional[Any] = builder_instance.as_dataset() assert ds @pytest.mark.integration def _snake_case ( lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = dataset_module_factory("wikipedia" , cache_dir=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = import_main_class(dataset_module.module_path , dataset=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : DatasetBuilder = builder_cls( cache_dir=lowerCAmelCase , config_name="20220301.frr" , hash=dataset_module.hash , ) SCREAMING_SNAKE_CASE_ : List[Any] = builder_instance.as_streaming_dataset() assert ds assert isinstance(lowerCAmelCase , lowerCAmelCase ) assert "train" in ds assert isinstance(ds["train"] , lowerCAmelCase ) assert next(iter(ds["train"] ) )
18
def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : int ): """simple docstring""" while b: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = b, a % b return a def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : int ): """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(lowerCAmelCase , a % b ) def _snake_case ( ): """simple docstring""" print(f'euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}' ) print(f'euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}' ) print(f'euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}' ) print(f'euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}' ) print(f'euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}' ) print(f'euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}' ) print(f'euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}' ) print(f'euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}' ) if __name__ == "__main__": main()
18
1
def _snake_case ( lowerCAmelCase : list ): """simple docstring""" if len(lowerCAmelCase ) <= 1: return [tuple(lowerCAmelCase )] SCREAMING_SNAKE_CASE_ : Tuple = [] def generate(lowerCAmelCase : int , lowerCAmelCase : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , lowerCAmelCase ) for i in range(k - 1 ): if k % 2 == 0: # k is even SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = arr[k - 1], arr[i] else: # k is odd SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = arr[k - 1], arr[0] generate(k - 1 , lowerCAmelCase ) generate(len(lowerCAmelCase ) , lowerCAmelCase ) return res if __name__ == "__main__": __lowerCamelCase : Dict = input('''Enter numbers separated by a comma:\n''').strip() __lowerCamelCase : Dict = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
18
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCamelCase : Dict = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[Any] = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys __lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
18
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCamelCase : Dict = { '''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''], '''tokenization_biogpt''': ['''BioGptTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Tuple = [ '''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BioGptForCausalLM''', '''BioGptForTokenClassification''', '''BioGptForSequenceClassification''', '''BioGptModel''', '''BioGptPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys __lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
18
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : Path , lowerCAmelCase : str = None , lowerCAmelCase : str = None , lowerCAmelCase : str = None , ): """simple docstring""" if config_name_or_path is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = "facebook/rag-token-base" if model_type == "rag_token" else "facebook/rag-sequence-base" if generator_tokenizer_name_or_path is None: SCREAMING_SNAKE_CASE_ : Dict = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = question_encoder_name_or_path SCREAMING_SNAKE_CASE_ : Union[str, Any] = RagTokenForGeneration if model_type == "rag_token" else RagSequenceForGeneration # Save model. SCREAMING_SNAKE_CASE_ : List[Any] = RagConfig.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = AutoConfig.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = AutoConfig.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = gen_config SCREAMING_SNAKE_CASE_ : Optional[Any] = question_encoder_config SCREAMING_SNAKE_CASE_ : Dict = model_class.from_pretrained_question_encoder_generator( lowerCAmelCase , lowerCAmelCase , config=lowerCAmelCase ) rag_model.save_pretrained(lowerCAmelCase ) # Sanity check. model_class.from_pretrained(lowerCAmelCase ) # Save tokenizers. SCREAMING_SNAKE_CASE_ : Optional[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase ) gen_tokenizer.save_pretrained(dest_dir / "generator_tokenizer/" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCAmelCase ) question_encoder_tokenizer.save_pretrained(dest_dir / "question_encoder_tokenizer/" ) if __name__ == "__main__": __lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( '''--model_type''', choices=['''rag_sequence''', '''rag_token'''], required=True, type=str, help='''RAG model type: rag_sequence, rag_token''', ) parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''') parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''') parser.add_argument( '''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier''' ) parser.add_argument( '''--generator_tokenizer_name_or_path''', type=str, help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''', ) parser.add_argument( '''--question_encoder_tokenizer_name_or_path''', type=str, help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''', ) parser.add_argument( '''--config_name_or_path''', type=str, help=( '''Identifier of the model config to use, if not provided, resolves to a base config for a given''' ''' ``model_type``''' ), ) __lowerCamelCase : str = parser.parse_args() __lowerCamelCase : int = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
18
1
import mpmath # for roots of unity import numpy as np class a__ : def __init__( self : int,_A : Optional[int]=None,_A : Any=None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = list(poly_a or [0] )[:] SCREAMING_SNAKE_CASE_ : Optional[Any] = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() SCREAMING_SNAKE_CASE_ : Optional[int] = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() SCREAMING_SNAKE_CASE_ : Tuple = len(self.polyB ) # Add 0 to make lengths equal a power of 2 SCREAMING_SNAKE_CASE_ : List[Any] = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform SCREAMING_SNAKE_CASE_ : List[str] = complex(mpmath.root(x=1,n=self.c_max_length,k=1 ) ) # The product SCREAMING_SNAKE_CASE_ : List[Any] = self.__multiply() def __UpperCamelCase ( self : str,_A : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = [[x] for x in self.polyA] if which == "A" else [[x] for x in self.polyB] # Corner case if len(_A ) <= 1: return dft[0] # SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.c_max_length // 2 while next_ncol > 0: SCREAMING_SNAKE_CASE_ : Optional[int] = [[] for i in range(_A )] SCREAMING_SNAKE_CASE_ : str = self.root**next_ncol # First half of next step SCREAMING_SNAKE_CASE_ : int = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(_A ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step SCREAMING_SNAKE_CASE_ : Dict = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(_A ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update SCREAMING_SNAKE_CASE_ : Dict = new_dft SCREAMING_SNAKE_CASE_ : Union[str, Any] = next_ncol // 2 return dft[0] def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.__dft("A" ) SCREAMING_SNAKE_CASE_ : Any = self.__dft("B" ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT SCREAMING_SNAKE_CASE_ : Optional[Any] = 2 while next_ncol <= self.c_max_length: SCREAMING_SNAKE_CASE_ : Optional[Any] = [[] for i in range(_A )] SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.root ** (next_ncol // 2) SCREAMING_SNAKE_CASE_ : Dict = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update SCREAMING_SNAKE_CASE_ : Dict = new_inverse_c next_ncol *= 2 # Unpack SCREAMING_SNAKE_CASE_ : int = [round(x[0].real,8 ) + round(x[0].imag,8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = "A = " + " + ".join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A] ) ) SCREAMING_SNAKE_CASE_ : int = "B = " + " + ".join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B] ) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = "A*B = " + " + ".join( F'{coef}*x^{i}' for coef, i in enumerate(self.product ) ) return F'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
18
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class a__ ( unittest.TestCase ): def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = { "task_specific_params": { "summarization": {"length_penalty": 1.0, "max_length": 128, "min_length": 12, "num_beams": 4}, "summarization_cnn": {"length_penalty": 2.0, "max_length": 142, "min_length": 56, "num_beams": 4}, "summarization_xsum": {"length_penalty": 1.0, "max_length": 62, "min_length": 11, "num_beams": 6}, } } SCREAMING_SNAKE_CASE_ : Any = { "task_specific_params.summarization.length_penalty": 1.0, "task_specific_params.summarization.max_length": 128, "task_specific_params.summarization.min_length": 12, "task_specific_params.summarization.num_beams": 4, "task_specific_params.summarization_cnn.length_penalty": 2.0, "task_specific_params.summarization_cnn.max_length": 142, "task_specific_params.summarization_cnn.min_length": 56, "task_specific_params.summarization_cnn.num_beams": 4, "task_specific_params.summarization_xsum.length_penalty": 1.0, "task_specific_params.summarization_xsum.max_length": 62, "task_specific_params.summarization_xsum.min_length": 11, "task_specific_params.summarization_xsum.num_beams": 6, } self.assertEqual(flatten_dict(_A ),_A ) def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = np.random.randn(3,4 ) self.assertTrue(np.allclose(transpose(_A ),x.transpose() ) ) SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4,5 ) self.assertTrue(np.allclose(transpose(_A,axes=(1, 2, 0) ),x.transpose((1, 2, 0) ) ) ) @require_torch def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Any = torch.tensor(_A ) self.assertTrue(np.allclose(transpose(_A ),transpose(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ : Dict = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor(_A ) self.assertTrue(np.allclose(transpose(_A,axes=(1, 2, 0) ),transpose(_A,axes=(1, 2, 0) ).numpy() ) ) @require_tf def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tf.constant(_A ) self.assertTrue(np.allclose(transpose(_A ),transpose(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ : List[str] = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.constant(_A ) self.assertTrue(np.allclose(transpose(_A,axes=(1, 2, 0) ),transpose(_A,axes=(1, 2, 0) ).numpy() ) ) @require_flax def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Tuple = jnp.array(_A ) self.assertTrue(np.allclose(transpose(_A ),np.asarray(transpose(_A ) ) ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : List[Any] = jnp.array(_A ) self.assertTrue(np.allclose(transpose(_A,axes=(1, 2, 0) ),np.asarray(transpose(_A,axes=(1, 2, 0) ) ) ) ) def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4 ) self.assertTrue(np.allclose(reshape(_A,(4, 3) ),np.reshape(_A,(4, 3) ) ) ) SCREAMING_SNAKE_CASE_ : Any = np.random.randn(3,4,5 ) self.assertTrue(np.allclose(reshape(_A,(12, 5) ),np.reshape(_A,(12, 5) ) ) ) @require_torch def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor(_A ) self.assertTrue(np.allclose(reshape(_A,(4, 3) ),reshape(_A,(4, 3) ).numpy() ) ) SCREAMING_SNAKE_CASE_ : Dict = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : int = torch.tensor(_A ) self.assertTrue(np.allclose(reshape(_A,(12, 5) ),reshape(_A,(12, 5) ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tf.constant(_A ) self.assertTrue(np.allclose(reshape(_A,(4, 3) ),reshape(_A,(4, 3) ).numpy() ) ) SCREAMING_SNAKE_CASE_ : int = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : Any = tf.constant(_A ) self.assertTrue(np.allclose(reshape(_A,(12, 5) ),reshape(_A,(12, 5) ).numpy() ) ) @require_flax def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : int = jnp.array(_A ) self.assertTrue(np.allclose(reshape(_A,(4, 3) ),np.asarray(reshape(_A,(4, 3) ) ) ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : Tuple = jnp.array(_A ) self.assertTrue(np.allclose(reshape(_A,(12, 5) ),np.asarray(reshape(_A,(12, 5) ) ) ) ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = np.random.randn(1,3,4 ) self.assertTrue(np.allclose(squeeze(_A ),np.squeeze(_A ) ) ) SCREAMING_SNAKE_CASE_ : Any = np.random.randn(1,4,1,5 ) self.assertTrue(np.allclose(squeeze(_A,axis=2 ),np.squeeze(_A,axis=2 ) ) ) @require_torch def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = np.random.randn(1,3,4 ) SCREAMING_SNAKE_CASE_ : Any = torch.tensor(_A ) self.assertTrue(np.allclose(squeeze(_A ),squeeze(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ : Any = np.random.randn(1,4,1,5 ) SCREAMING_SNAKE_CASE_ : Dict = torch.tensor(_A ) self.assertTrue(np.allclose(squeeze(_A,axis=2 ),squeeze(_A,axis=2 ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = np.random.randn(1,3,4 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.constant(_A ) self.assertTrue(np.allclose(squeeze(_A ),squeeze(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ : Any = np.random.randn(1,4,1,5 ) SCREAMING_SNAKE_CASE_ : Optional[int] = tf.constant(_A ) self.assertTrue(np.allclose(squeeze(_A,axis=2 ),squeeze(_A,axis=2 ).numpy() ) ) @require_flax def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.random.randn(1,3,4 ) SCREAMING_SNAKE_CASE_ : List[str] = jnp.array(_A ) self.assertTrue(np.allclose(squeeze(_A ),np.asarray(squeeze(_A ) ) ) ) SCREAMING_SNAKE_CASE_ : str = np.random.randn(1,4,1,5 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = jnp.array(_A ) self.assertTrue(np.allclose(squeeze(_A,axis=2 ),np.asarray(squeeze(_A,axis=2 ) ) ) ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4 ) self.assertTrue(np.allclose(expand_dims(_A,axis=1 ),np.expand_dims(_A,axis=1 ) ) ) @require_torch def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor(_A ) self.assertTrue(np.allclose(expand_dims(_A,axis=1 ),expand_dims(_A,axis=1 ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Optional[int] = tf.constant(_A ) self.assertTrue(np.allclose(expand_dims(_A,axis=1 ),expand_dims(_A,axis=1 ).numpy() ) ) @require_flax def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = jnp.array(_A ) self.assertTrue(np.allclose(expand_dims(_A,axis=1 ),np.asarray(expand_dims(_A,axis=1 ) ) ) )
18
1
class a__ : def __init__( self : Optional[Any],_A : int,_A : List[str]=None,_A : Tuple=None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = data SCREAMING_SNAKE_CASE_ : int = previous SCREAMING_SNAKE_CASE_ : Optional[int] = next_node def __str__( self : Tuple ): """simple docstring""" return F'{self.data}' def __UpperCamelCase ( self : str ): """simple docstring""" return self.data def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" return self.next def __UpperCamelCase ( self : Any ): """simple docstring""" return self.previous class a__ : def __init__( self : Optional[int],_A : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = head def __iter__( self : Any ): """simple docstring""" return self def __UpperCamelCase ( self : Dict ): """simple docstring""" if not self.current: raise StopIteration else: SCREAMING_SNAKE_CASE_ : List[Any] = self.current.get_data() SCREAMING_SNAKE_CASE_ : Optional[Any] = self.current.get_next() return value class a__ : def __init__( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = None # First node in list SCREAMING_SNAKE_CASE_ : str = None # Last node in list def __str__( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.head SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] while current is not None: nodes.append(current.get_data() ) SCREAMING_SNAKE_CASE_ : Tuple = current.get_next() return " ".join(str(_A ) for node in nodes ) def __contains__( self : List[Any],_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.head while current: if current.get_data() == value: return True SCREAMING_SNAKE_CASE_ : List[str] = current.get_next() return False def __iter__( self : int ): """simple docstring""" return LinkedListIterator(self.head ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" if self.head: return self.head.get_data() return None def __UpperCamelCase ( self : Dict ): """simple docstring""" if self.tail: return self.tail.get_data() return None def __UpperCamelCase ( self : Tuple,_A : Node ): """simple docstring""" if self.head is None: SCREAMING_SNAKE_CASE_ : List[Any] = node SCREAMING_SNAKE_CASE_ : Union[str, Any] = node else: self.insert_before_node(self.head,_A ) def __UpperCamelCase ( self : Optional[Any],_A : Node ): """simple docstring""" if self.head is None: self.set_head(_A ) else: self.insert_after_node(self.tail,_A ) def __UpperCamelCase ( self : Optional[Any],_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = Node(_A ) if self.head is None: self.set_head(_A ) else: self.set_tail(_A ) def __UpperCamelCase ( self : Any,_A : Node,_A : Node ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = node SCREAMING_SNAKE_CASE_ : str = node.previous if node.get_previous() is None: SCREAMING_SNAKE_CASE_ : Optional[Any] = node_to_insert else: SCREAMING_SNAKE_CASE_ : Dict = node_to_insert SCREAMING_SNAKE_CASE_ : Any = node_to_insert def __UpperCamelCase ( self : List[Any],_A : Node,_A : Node ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = node SCREAMING_SNAKE_CASE_ : List[str] = node.next if node.get_next() is None: SCREAMING_SNAKE_CASE_ : Any = node_to_insert else: SCREAMING_SNAKE_CASE_ : str = node_to_insert SCREAMING_SNAKE_CASE_ : Any = node_to_insert def __UpperCamelCase ( self : str,_A : int,_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = 1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = Node(_A ) SCREAMING_SNAKE_CASE_ : int = self.head while node: if current_position == position: self.insert_before_node(_A,_A ) return current_position += 1 SCREAMING_SNAKE_CASE_ : List[str] = node.next self.insert_after_node(self.tail,_A ) def __UpperCamelCase ( self : Union[str, Any],_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.head while node: if node.get_data() == item: return node SCREAMING_SNAKE_CASE_ : int = node.get_next() raise Exception("Node not found" ) def __UpperCamelCase ( self : List[str],_A : List[Any] ): """simple docstring""" if (node := self.get_node(_A )) is not None: if node == self.head: SCREAMING_SNAKE_CASE_ : Tuple = self.head.get_next() if node == self.tail: SCREAMING_SNAKE_CASE_ : int = self.tail.get_previous() self.remove_node_pointers(_A ) @staticmethod def __UpperCamelCase ( _A : Node ): """simple docstring""" if node.get_next(): SCREAMING_SNAKE_CASE_ : Union[str, Any] = node.previous if node.get_previous(): SCREAMING_SNAKE_CASE_ : List[Any] = node.next SCREAMING_SNAKE_CASE_ : str = None SCREAMING_SNAKE_CASE_ : str = None def __UpperCamelCase ( self : List[Any] ): """simple docstring""" return self.head is None def _snake_case ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
18
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : Tuple = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} __lowerCamelCase : List[Any] = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } __lowerCamelCase : int = { '''allenai/longformer-base-4096''': 40_96, '''allenai/longformer-large-4096''': 40_96, '''allenai/longformer-large-4096-finetuned-triviaqa''': 40_96, '''allenai/longformer-base-4096-extra.pos.embd.only''': 40_96, '''allenai/longformer-large-4096-extra.pos.embd.only''': 40_96, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE_ : str = bs[:] SCREAMING_SNAKE_CASE_ : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCAmelCase ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE_ : List[str] = [chr(lowerCAmelCase ) for n in cs] return dict(zip(lowerCAmelCase , lowerCAmelCase ) ) def _snake_case ( lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = set() SCREAMING_SNAKE_CASE_ : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE_ : List[str] = char return pairs class a__ ( A__ ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = ['input_ids', 'attention_mask'] def __init__( self : Union[str, Any],_A : List[Any],_A : Tuple,_A : str="replace",_A : Optional[int]="<s>",_A : Dict="</s>",_A : Any="</s>",_A : Optional[Any]="<s>",_A : Union[str, Any]="<unk>",_A : int="<pad>",_A : Dict="<mask>",_A : int=False,**_A : Dict,): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else bos_token SCREAMING_SNAKE_CASE_ : Optional[int] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else eos_token SCREAMING_SNAKE_CASE_ : str = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else sep_token SCREAMING_SNAKE_CASE_ : Union[str, Any] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else cls_token SCREAMING_SNAKE_CASE_ : List[str] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else unk_token SCREAMING_SNAKE_CASE_ : Optional[Any] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_ : Dict = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else mask_token super().__init__( errors=_A,bos_token=_A,eos_token=_A,unk_token=_A,sep_token=_A,cls_token=_A,pad_token=_A,mask_token=_A,add_prefix_space=_A,**_A,) with open(_A,encoding="utf-8" ) as vocab_handle: SCREAMING_SNAKE_CASE_ : Tuple = json.load(_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE_ : Any = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE_ : Optional[Any] = bytes_to_unicode() SCREAMING_SNAKE_CASE_ : str = {v: k for k, v in self.byte_encoder.items()} with open(_A,encoding="utf-8" ) as merges_handle: SCREAMING_SNAKE_CASE_ : int = merges_handle.read().split("\n" )[1:-1] SCREAMING_SNAKE_CASE_ : List[str] = [tuple(merge.split() ) for merge in bpe_merges] SCREAMING_SNAKE_CASE_ : Optional[int] = dict(zip(_A,range(len(_A ) ) ) ) SCREAMING_SNAKE_CASE_ : Any = {} SCREAMING_SNAKE_CASE_ : List[str] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE_ : List[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def __UpperCamelCase ( self : List[str] ): """simple docstring""" return len(self.encoder ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" return dict(self.encoder,**self.added_tokens_encoder ) def __UpperCamelCase ( self : Any,_A : int ): """simple docstring""" if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE_ : Union[str, Any] = tuple(_A ) SCREAMING_SNAKE_CASE_ : str = get_pairs(_A ) if not pairs: return token while True: SCREAMING_SNAKE_CASE_ : Tuple = min(_A,key=lambda _A : self.bpe_ranks.get(_A,float("inf" ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = bigram SCREAMING_SNAKE_CASE_ : int = [] SCREAMING_SNAKE_CASE_ : Dict = 0 while i < len(_A ): try: SCREAMING_SNAKE_CASE_ : Tuple = word.index(_A,_A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE_ : str = j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE_ : Dict = tuple(_A ) SCREAMING_SNAKE_CASE_ : List[str] = new_word if len(_A ) == 1: break else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_pairs(_A ) SCREAMING_SNAKE_CASE_ : List[str] = " ".join(_A ) SCREAMING_SNAKE_CASE_ : Any = word return word def __UpperCamelCase ( self : Dict,_A : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = [] for token in re.findall(self.pat,_A ): SCREAMING_SNAKE_CASE_ : Any = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_A ).split(" " ) ) return bpe_tokens def __UpperCamelCase ( self : Optional[int],_A : str ): """simple docstring""" return self.encoder.get(_A,self.encoder.get(self.unk_token ) ) def __UpperCamelCase ( self : Tuple,_A : str ): """simple docstring""" return self.decoder.get(_A ) def __UpperCamelCase ( self : List[str],_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = "".join(_A ) SCREAMING_SNAKE_CASE_ : Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8",errors=self.errors ) return text def __UpperCamelCase ( self : List[Any],_A : str,_A : Optional[str] = None ): """simple docstring""" if not os.path.isdir(_A ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return SCREAMING_SNAKE_CASE_ : Tuple = os.path.join( _A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE_ : Any = os.path.join( _A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(_A,"w",encoding="utf-8" ) as f: f.write(json.dumps(self.encoder,indent=2,sort_keys=_A,ensure_ascii=_A ) + "\n" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 with open(_A,"w",encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items(),key=lambda _A : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' " Please check that the tokenizer is not corrupted!" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = token_index writer.write(" ".join(_A ) + "\n" ) index += 1 return vocab_file, merge_file def __UpperCamelCase ( self : Optional[Any],_A : List[int],_A : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_ : str = [self.cls_token_id] SCREAMING_SNAKE_CASE_ : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCamelCase ( self : str,_A : List[int],_A : Optional[List[int]] = None,_A : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A,token_ids_a=_A,already_has_special_tokens=_A ) if token_ids_a is None: return [1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) + [1] def __UpperCamelCase ( self : Any,_A : List[int],_A : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase ( self : Any,_A : Union[str, Any],_A : Any=False,**_A : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = kwargs.pop("add_prefix_space",self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_A ) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE_ : str = " " + text return (text, kwargs)
18
1
import baseaa def _snake_case ( lowerCAmelCase : str ): """simple docstring""" return baseaa.aaaencode(string.encode("utf-8" ) ) def _snake_case ( lowerCAmelCase : bytes ): """simple docstring""" return baseaa.aaadecode(lowerCAmelCase ).decode("utf-8" ) if __name__ == "__main__": import doctest doctest.testmod()
18
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class a__ : def __init__( self : Optional[int],_A : Dict,_A : List[str]=13,_A : List[str]=7,_A : int=True,_A : str=True,_A : Union[str, Any]=True,_A : Tuple=True,_A : Dict=99,_A : Tuple=32,_A : Tuple=2,_A : Tuple=4,_A : Optional[Any]=37,_A : str="gelu",_A : Dict=0.1,_A : List[Any]=0.1,_A : List[str]=512,_A : str=16,_A : int=2,_A : Dict=0.02,_A : List[Any]=3,_A : Optional[Any]=4,_A : Optional[int]=None,): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = parent SCREAMING_SNAKE_CASE_ : Any = 13 SCREAMING_SNAKE_CASE_ : List[str] = 7 SCREAMING_SNAKE_CASE_ : Dict = True SCREAMING_SNAKE_CASE_ : Optional[Any] = True SCREAMING_SNAKE_CASE_ : Tuple = True SCREAMING_SNAKE_CASE_ : List[str] = True SCREAMING_SNAKE_CASE_ : List[str] = 99 SCREAMING_SNAKE_CASE_ : Tuple = 384 SCREAMING_SNAKE_CASE_ : Optional[Any] = 2 SCREAMING_SNAKE_CASE_ : Any = 4 SCREAMING_SNAKE_CASE_ : str = 37 SCREAMING_SNAKE_CASE_ : Optional[Any] = "gelu" SCREAMING_SNAKE_CASE_ : List[Any] = 0.1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0.1 SCREAMING_SNAKE_CASE_ : Dict = 512 SCREAMING_SNAKE_CASE_ : int = 16 SCREAMING_SNAKE_CASE_ : Optional[int] = 2 SCREAMING_SNAKE_CASE_ : Any = 0.02 SCREAMING_SNAKE_CASE_ : str = 3 SCREAMING_SNAKE_CASE_ : int = 4 SCREAMING_SNAKE_CASE_ : Dict = 128 SCREAMING_SNAKE_CASE_ : Any = 2 SCREAMING_SNAKE_CASE_ : Tuple = 9 SCREAMING_SNAKE_CASE_ : List[Any] = 1 SCREAMING_SNAKE_CASE_ : Any = None def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) SCREAMING_SNAKE_CASE_ : Any = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : List[str] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) SCREAMING_SNAKE_CASE_ : Dict = None SCREAMING_SNAKE_CASE_ : Dict = None SCREAMING_SNAKE_CASE_ : str = None if self.use_labels: SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size],self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size],self.num_choices ) SCREAMING_SNAKE_CASE_ : Any = ConvBertConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,initializer_range=self.initializer_range,return_dict=_A,) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : Optional[int],_A : List[Any],_A : int,_A : Tuple,_A : Optional[int],_A : Union[str, Any],_A : Union[str, Any],_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = TFConvBertModel(config=_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} SCREAMING_SNAKE_CASE_ : str = [input_ids, input_mask] SCREAMING_SNAKE_CASE_ : List[str] = model(_A ) SCREAMING_SNAKE_CASE_ : Dict = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Dict,_A : Dict,_A : int,_A : Union[str, Any],_A : List[Any],_A : int,_A : str,_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = TFConvBertForMaskedLM(config=_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_ : List[Any] = model(_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : Any,_A : Optional[int],_A : List[Any],_A : Union[str, Any],_A : List[Any],_A : Union[str, Any],_A : Optional[int],_A : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.num_labels SCREAMING_SNAKE_CASE_ : Any = TFConvBertForSequenceClassification(config=_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_ : Optional[Any] = model(_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : int,_A : int,_A : Dict,_A : List[str],_A : Tuple,_A : Dict,_A : Optional[int],_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.num_choices SCREAMING_SNAKE_CASE_ : Optional[int] = TFConvBertForMultipleChoice(config=_A ) SCREAMING_SNAKE_CASE_ : Any = tf.tile(tf.expand_dims(_A,1 ),(1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ : Any = tf.tile(tf.expand_dims(_A,1 ),(1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.tile(tf.expand_dims(_A,1 ),(1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ : int = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE_ : int = model(_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : List[Any],_A : Union[str, Any],_A : int,_A : Optional[int],_A : str,_A : str,_A : Tuple,_A : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.num_labels SCREAMING_SNAKE_CASE_ : Union[str, Any] = TFConvBertForTokenClassification(config=_A ) SCREAMING_SNAKE_CASE_ : Tuple = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_ : str = model(_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : List[Any],_A : int,_A : List[str],_A : List[Any],_A : Any,_A : Optional[int],_A : List[str],_A : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = TFConvBertForQuestionAnswering(config=_A ) SCREAMING_SNAKE_CASE_ : Dict = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_ : Any = model(_A ) self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : List[Any] = config_and_inputs SCREAMING_SNAKE_CASE_ : Any = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class a__ ( A__ , A__ , unittest.TestCase ): A = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) A = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) A = False A = False A = False def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = TFConvBertModelTester(self ) SCREAMING_SNAKE_CASE_ : Tuple = ConfigTester(self,config_class=_A,hidden_size=37 ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_A ) def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) @slow def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : List[str] = True SCREAMING_SNAKE_CASE_ : Any = True if hasattr(_A,"use_cache" ): SCREAMING_SNAKE_CASE_ : List[Any] = True SCREAMING_SNAKE_CASE_ : int = getattr(self.model_tester,"encoder_seq_length",self.model_tester.seq_length ) SCREAMING_SNAKE_CASE_ : Optional[Any] = getattr(self.model_tester,"key_length",_A ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : List[str] = self._prepare_for_class(_A,_A ) SCREAMING_SNAKE_CASE_ : List[Any] = model_class(_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = len(model(_A ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A,saved_model=_A ) SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join(_A,"saved_model","1" ) SCREAMING_SNAKE_CASE_ : Tuple = tf.keras.models.load_model(_A ) SCREAMING_SNAKE_CASE_ : str = model(_A ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE_ : Optional[Any] = outputs["encoder_hidden_states"] SCREAMING_SNAKE_CASE_ : str = outputs["encoder_attentions"] else: SCREAMING_SNAKE_CASE_ : Any = outputs["hidden_states"] SCREAMING_SNAKE_CASE_ : List[str] = outputs["attentions"] self.assertEqual(len(_A ),_A ) SCREAMING_SNAKE_CASE_ : Any = getattr( self.model_tester,"expected_num_hidden_layers",self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_A ),_A ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ),[self.model_tester.seq_length, self.model_tester.hidden_size],) self.assertEqual(len(_A ),self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ),[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length],) @slow def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(_A ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : List[str] = True SCREAMING_SNAKE_CASE_ : List[str] = getattr(self.model_tester,"decoder_seq_length",self.model_tester.seq_length ) SCREAMING_SNAKE_CASE_ : Any = getattr(self.model_tester,"encoder_seq_length",self.model_tester.seq_length ) SCREAMING_SNAKE_CASE_ : Optional[int] = getattr(self.model_tester,"key_length",_A ) SCREAMING_SNAKE_CASE_ : int = getattr(self.model_tester,"key_length",_A ) def check_decoder_attentions_output(_A : Dict ): SCREAMING_SNAKE_CASE_ : int = len(_A ) self.assertEqual(out_len % 2,0 ) SCREAMING_SNAKE_CASE_ : Tuple = outputs.decoder_attentions self.assertEqual(len(_A ),self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ),[self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length],) def check_encoder_attentions_output(_A : Tuple ): SCREAMING_SNAKE_CASE_ : int = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_A ),self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ),[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length],) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Optional[Any] = True SCREAMING_SNAKE_CASE_ : Optional[Any] = False SCREAMING_SNAKE_CASE_ : Tuple = model_class(_A ) SCREAMING_SNAKE_CASE_ : Any = model(self._prepare_for_class(_A,_A ) ) SCREAMING_SNAKE_CASE_ : Tuple = len(_A ) self.assertEqual(config.output_hidden_states,_A ) check_encoder_attentions_output(_A ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE_ : Optional[Any] = model_class(_A ) SCREAMING_SNAKE_CASE_ : int = model(self._prepare_for_class(_A,_A ) ) self.assertEqual(config.output_hidden_states,_A ) check_decoder_attentions_output(_A ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE_ : str = True SCREAMING_SNAKE_CASE_ : int = model_class(_A ) SCREAMING_SNAKE_CASE_ : List[str] = model(self._prepare_for_class(_A,_A ) ) self.assertEqual(config.output_hidden_states,_A ) check_encoder_attentions_output(_A ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE_ : str = True SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Dict = model_class(_A ) SCREAMING_SNAKE_CASE_ : str = model(self._prepare_for_class(_A,_A ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1),len(_A ) ) self.assertEqual(model.config.output_hidden_states,_A ) check_encoder_attentions_output(_A ) @require_tf class a__ ( unittest.TestCase ): @slow def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) SCREAMING_SNAKE_CASE_ : int = tf.constant([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE_ : Tuple = model(_A )[0] SCREAMING_SNAKE_CASE_ : List[Any] = [1, 6, 768] self.assertEqual(output.shape,_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ] ) tf.debugging.assert_near(output[:, :3, :3],_A,atol=1E-4 )
18
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase : Dict = { '''google/vivit-b-16x2-kinetics400''': ( '''https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json''' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class a__ ( A__ ): A = 'vivit' def __init__( self : Tuple,_A : Any=224,_A : str=32,_A : Optional[Any]=[2, 16, 16],_A : Any=3,_A : Optional[Any]=768,_A : int=12,_A : Any=12,_A : str=3072,_A : List[Any]="gelu_fast",_A : Optional[int]=0.0,_A : Tuple=0.0,_A : int=0.02,_A : List[str]=1E-06,_A : Any=True,**_A : Any,): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = hidden_size SCREAMING_SNAKE_CASE_ : Dict = num_hidden_layers SCREAMING_SNAKE_CASE_ : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE_ : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = hidden_act SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : List[str] = initializer_range SCREAMING_SNAKE_CASE_ : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE_ : List[Any] = image_size SCREAMING_SNAKE_CASE_ : List[Any] = num_frames SCREAMING_SNAKE_CASE_ : Optional[Any] = tubelet_size SCREAMING_SNAKE_CASE_ : Optional[int] = num_channels SCREAMING_SNAKE_CASE_ : Dict = qkv_bias super().__init__(**_A )
18
def _snake_case ( lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = int(lowerCAmelCase ) if decimal in (0, 1): # Exit cases for the recursion return str(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = divmod(lowerCAmelCase , 2 ) return binary_recursive(lowerCAmelCase ) + str(lowerCAmelCase ) def _snake_case ( lowerCAmelCase : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = str(lowerCAmelCase ).strip() if not number: raise ValueError("No input value was provided" ) SCREAMING_SNAKE_CASE_ : List[str] = "-" if number.startswith("-" ) else "" SCREAMING_SNAKE_CASE_ : Optional[Any] = number.lstrip("-" ) if not number.isnumeric(): raise ValueError("Input value is not an integer" ) return f'{negative}0b{binary_recursive(int(lowerCAmelCase ) )}' if __name__ == "__main__": from doctest import testmod testmod()
18
1
import math def _a ( a :int ) -> bool: return math.sqrt(a ) * math.sqrt(a ) == num def _a ( a :int ) -> bool: a = 0 a = n while left <= right: a = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: a = mid - 1 else: a = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase : Union[str, Any] = { '''configuration_chinese_clip''': [ '''CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ChineseCLIPConfig''', '''ChineseCLIPOnnxConfig''', '''ChineseCLIPTextConfig''', '''ChineseCLIPVisionConfig''', ], '''processing_chinese_clip''': ['''ChineseCLIPProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = ['''ChineseCLIPFeatureExtractor'''] __lowerCamelCase : Optional[int] = ['''ChineseCLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : int = [ '''CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ChineseCLIPModel''', '''ChineseCLIPPreTrainedModel''', '''ChineseCLIPTextModel''', '''ChineseCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys __lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
18
0
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __A ( unittest.TestCase ): def _lowercase (self : Any ): UpperCAmelCase_ = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(__a ) ) def _lowercase (self : int ): UpperCAmelCase_ = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(__a ) ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(__a ) ) def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] self.assertTrue(is_safetensors_compatible(__a ) ) def _lowercase (self : str ): UpperCAmelCase_ = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", # Removed: 'text_encoder/model.safetensors', "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertFalse(is_safetensors_compatible(__a ) ) def _lowercase (self : Dict ): UpperCAmelCase_ = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] UpperCAmelCase_ = "fp16" self.assertTrue(is_safetensors_compatible(__a , variant=__a ) ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = [ "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] UpperCAmelCase_ = "fp16" self.assertTrue(is_safetensors_compatible(__a , variant=__a ) ) def _lowercase (self : Optional[int] ): # pass variant but use the non-variant filenames UpperCAmelCase_ = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] UpperCAmelCase_ = "fp16" self.assertTrue(is_safetensors_compatible(__a , variant=__a ) ) def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] UpperCAmelCase_ = "fp16" self.assertFalse(is_safetensors_compatible(__a , variant=__a ) ) def _lowercase (self : str ): UpperCAmelCase_ = [ "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", ] UpperCAmelCase_ = "fp16" self.assertTrue(is_safetensors_compatible(__a , variant=__a ) ) def _lowercase (self : Union[str, Any] ): # pass variant but use the non-variant filenames UpperCAmelCase_ = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] UpperCAmelCase_ = "fp16" self.assertTrue(is_safetensors_compatible(__a , variant=__a ) ) def _lowercase (self : int ): UpperCAmelCase_ = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", # 'text_encoder/model.fp16.safetensors', "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] UpperCAmelCase_ = "fp16" self.assertFalse(is_safetensors_compatible(__a , variant=__a ) )
1
import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument __lowerCamelCase : Any = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def _snake_case ( lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = list(s_dict.keys() ) for key in keys: SCREAMING_SNAKE_CASE_ : int = R".*/layers_(\d+)" SCREAMING_SNAKE_CASE_ : List[Any] = key if re.match(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Any = re.sub(R"layers_(\d+)" , R"block/\1/layer" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = R"(encoder|decoder)\/" if re.match(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : str = re.match(lowerCAmelCase , lowerCAmelCase ).groups() if groups[0] == "encoder": SCREAMING_SNAKE_CASE_ : Any = re.sub(R"/mlp/" , R"/1/mlp/" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = re.sub(R"/pre_mlp_layer_norm/" , R"/1/layer_norm/" , lowerCAmelCase ) elif groups[0] == "decoder": SCREAMING_SNAKE_CASE_ : List[str] = re.sub(R"/mlp/" , R"/2/mlp/" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = re.sub(R"/pre_mlp_layer_norm/" , R"/2/layer_norm/" , lowerCAmelCase ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: SCREAMING_SNAKE_CASE_ : List[Any] = new_key.replace(lowerCAmelCase , lowerCAmelCase ) print(f'{key} -> {new_key}' ) SCREAMING_SNAKE_CASE_ : List[Any] = s_dict.pop(lowerCAmelCase ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: SCREAMING_SNAKE_CASE_ : str = s_dict[ "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: SCREAMING_SNAKE_CASE_ : Optional[int] = s_dict[ "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: SCREAMING_SNAKE_CASE_ : Union[str, Any] = s_dict[key].shape[0] SCREAMING_SNAKE_CASE_ : List[Any] = s_dict[key] for idx in range(lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Tuple = expert_weihts[idx] print(f'{key} -> {key.replace("expert/" , "nested fstring" )}' ) s_dict.pop(lowerCAmelCase ) return s_dict __lowerCamelCase : List[Any] = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def _snake_case ( lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any] ): """simple docstring""" import regex as re with open(lowerCAmelCase , "r" ) as f: SCREAMING_SNAKE_CASE_ : Optional[Any] = f.read() SCREAMING_SNAKE_CASE_ : List[str] = re.findall(R"(.*) = ([0-9.]*)" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": SCREAMING_SNAKE_CASE_ : int = float(lowerCAmelCase ) if "." in value else int(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = re.findall(R"(.*activations) = \(\'(.*)\',\)" , lowerCAmelCase )[0] SCREAMING_SNAKE_CASE_ : List[str] = str(activation[1] ) SCREAMING_SNAKE_CASE_ : str = num_experts SCREAMING_SNAKE_CASE_ : Tuple = SwitchTransformersConfig(**lowerCAmelCase ) return config def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : str=None , lowerCAmelCase : Optional[Any]="./" , lowerCAmelCase : Dict=8 ): """simple docstring""" print(f'Loading flax weights from : {flax_checkpoint_path}' ) SCREAMING_SNAKE_CASE_ : int = checkpoints.load_tax_checkpoint(lowerCAmelCase ) if gin_file is not None: SCREAMING_SNAKE_CASE_ : int = convert_gin_to_config(lowerCAmelCase , lowerCAmelCase ) else: SCREAMING_SNAKE_CASE_ : Dict = SwitchTransformersConfig.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : str = SwitchTransformersForConditionalGeneration(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = flax_params["target"] SCREAMING_SNAKE_CASE_ : List[str] = flatten_dict(lowerCAmelCase , sep="/" ) SCREAMING_SNAKE_CASE_ : List[str] = rename_keys(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = unflatten_dict(lowerCAmelCase , sep="/" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(lowerCAmelCase , lowerCAmelCase ) print(f'Save PyTorch model to {pytorch_dump_path}' ) pt_model.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": __lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') __lowerCamelCase : Any = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
18
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : List[Any] = logging.get_logger(__name__) lowerCamelCase : int = {'ctrl': 'https://huggingface.co/ctrl/resolve/main/config.json'} class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Dict = """ctrl""" lowerCAmelCase__ : List[Any] = ["""past_key_values"""] lowerCAmelCase__ : str = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__(self : Tuple , UpperCamelCase : Optional[Any]=246534 , UpperCamelCase : Union[str, Any]=256 , UpperCamelCase : Optional[int]=1280 , UpperCamelCase : Any=8192 , UpperCamelCase : List[str]=48 , UpperCamelCase : List[Any]=16 , UpperCamelCase : Any=0.1 , UpperCamelCase : List[str]=0.1 , UpperCamelCase : str=1E-6 , UpperCamelCase : Optional[int]=0.02 , UpperCamelCase : Dict=True , **UpperCamelCase : Dict , ): '''simple docstring''' lowercase__ = vocab_size lowercase__ = n_positions lowercase__ = n_embd lowercase__ = n_layer lowercase__ = n_head lowercase__ = dff lowercase__ = resid_pdrop lowercase__ = embd_pdrop lowercase__ = layer_norm_epsilon lowercase__ = initializer_range lowercase__ = use_cache super().__init__(**UpperCamelCase )
2
from math import factorial, radians def _snake_case ( lowerCAmelCase : float , lowerCAmelCase : int = 1_8 , lowerCAmelCase : int = 1_0 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians SCREAMING_SNAKE_CASE_ : Tuple = radians(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = angle_in_radians SCREAMING_SNAKE_CASE_ : List[str] = 3 SCREAMING_SNAKE_CASE_ : str = -1 for _ in range(lowerCAmelCase ): result += (b * (angle_in_radians**a)) / factorial(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(lowerCAmelCase , lowerCAmelCase ) if __name__ == "__main__": __import__('''doctest''').testmod()
18
0
'''simple docstring''' import requests lowercase : List[str] = 'YOUR API KEY' def lowerCAmelCase_ ( snake_case__ , snake_case__ = giphy_api_key ): '''simple docstring''' A : str = '''+'''.join(query.split() ) A : Optional[Any] = F'https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}' A : Any = requests.get(snake_case__ ).json()['''data'''] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('\n'.join(get_gifs('space ship')))
3
from functools import lru_cache @lru_cache def _snake_case ( lowerCAmelCase : int ): """simple docstring""" if num < 0: raise ValueError("Number should not be negative." ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
18
0
'''simple docstring''' from __future__ import annotations from typing import Any def a_ ( lowerCamelCase : list ): if not postfix_notation: return 0 lowerCAmelCase = {'+', '-', '*', '/'} lowerCAmelCase = [] for token in postfix_notation: if token in operations: lowerCAmelCase , lowerCAmelCase = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(lowerCamelCase ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
4
from collections import defaultdict def _snake_case ( lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = 1 SCREAMING_SNAKE_CASE_ : Tuple = True for v in tree[start]: if v not in visited: ret += dfs(lowerCAmelCase ) if ret % 2 == 0: cuts.append(lowerCAmelCase ) return ret def _snake_case ( ): """simple docstring""" dfs(1 ) if __name__ == "__main__": __lowerCamelCase , __lowerCamelCase : Union[str, Any] = 10, 9 __lowerCamelCase : Optional[int] = defaultdict(list) __lowerCamelCase : dict[int, bool] = {} __lowerCamelCase : list[int] = [] __lowerCamelCase : Optional[Any] = 0 __lowerCamelCase : Any = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
18
0
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def UpperCAmelCase_ ( __snake_case = True , *__snake_case , **__snake_case ) -> Tuple: """simple docstring""" if not is_tqdm_available(): raise ImportError('''Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.''' ) _lowercase =False if main_process_only: _lowercase =PartialState().local_process_index == 0 return _tqdm(*__snake_case , **__snake_case , disable=__snake_case )
5
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=lowerCAmelCase ) env_command_parser(subparsers=lowerCAmelCase ) launch_command_parser(subparsers=lowerCAmelCase ) tpu_command_parser(subparsers=lowerCAmelCase ) test_command_parser(subparsers=lowerCAmelCase ) # Let's go SCREAMING_SNAKE_CASE_ : Dict = parser.parse_args() if not hasattr(lowerCAmelCase , "func" ): parser.print_help() exit(1 ) # Run args.func(lowerCAmelCase ) if __name__ == "__main__": main()
18
0
from typing import Dict from .base import GenericTensor, Pipeline class __A( a ): def SCREAMING_SNAKE_CASE_ ( self , _snake_case=None , _snake_case=None , _snake_case=None , **_snake_case ) -> Optional[Any]: '''simple docstring''' if tokenize_kwargs is None: __a = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( '''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' ) __a = truncation __a = tokenize_kwargs __a = {} if return_tensors is not None: __a = return_tensors return preprocess_params, {}, postprocess_params def SCREAMING_SNAKE_CASE_ ( self , _snake_case , **_snake_case ) -> Dict[str, GenericTensor]: '''simple docstring''' __a = self.framework __a = self.tokenizer(_snake_case , return_tensors=_snake_case , **_snake_case ) return model_inputs def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Optional[Any]: '''simple docstring''' __a = self.model(**_snake_case ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case=False ) -> Optional[int]: '''simple docstring''' if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self , *_snake_case , **_snake_case ) -> Any: '''simple docstring''' return super().__call__(*_snake_case , **_snake_case )
6
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer __lowerCamelCase : Optional[Any] = logging.get_logger(__name__) __lowerCamelCase : Dict = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __lowerCamelCase : int = { '''vocab_file''': { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt''' ), } } __lowerCamelCase : Any = { '''junnyu/roformer_chinese_small''': 15_36, '''junnyu/roformer_chinese_base''': 15_36, '''junnyu/roformer_chinese_char_small''': 5_12, '''junnyu/roformer_chinese_char_base''': 5_12, '''junnyu/roformer_small_discriminator''': 1_28, '''junnyu/roformer_small_generator''': 1_28, } __lowerCamelCase : Union[str, Any] = { '''junnyu/roformer_chinese_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_base''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_base''': {'''do_lower_case''': True}, '''junnyu/roformer_small_discriminator''': {'''do_lower_case''': True}, '''junnyu/roformer_small_generator''': {'''do_lower_case''': True}, } class a__ ( A__ ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = PRETRAINED_INIT_CONFIGURATION A = RoFormerTokenizer def __init__( self : List[str],_A : int=None,_A : int=None,_A : int=True,_A : List[Any]="[UNK]",_A : Tuple="[SEP]",_A : List[Any]="[PAD]",_A : Optional[int]="[CLS]",_A : Optional[Any]="[MASK]",_A : Optional[int]=True,_A : List[str]=None,**_A : List[Any],): """simple docstring""" super().__init__( _A,tokenizer_file=_A,do_lower_case=_A,unk_token=_A,sep_token=_A,pad_token=_A,cls_token=_A,mask_token=_A,tokenize_chinese_chars=_A,strip_accents=_A,**_A,) SCREAMING_SNAKE_CASE_ : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("lowercase",_A ) != do_lower_case or pre_tok_state.get("strip_accents",_A ) != strip_accents ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = getattr(_A,pre_tok_state.pop("type" ) ) SCREAMING_SNAKE_CASE_ : Any = do_lower_case SCREAMING_SNAKE_CASE_ : List[str] = strip_accents SCREAMING_SNAKE_CASE_ : str = pre_tok_class(**_A ) SCREAMING_SNAKE_CASE_ : List[str] = do_lower_case def __getstate__( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.__dict__.copy() SCREAMING_SNAKE_CASE_ : Optional[Any] = BertPreTokenizer() return state def __setstate__( self : List[Any],_A : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = d SCREAMING_SNAKE_CASE_ : List[str] = self.__dict__["_tokenizer"].get_vocab() SCREAMING_SNAKE_CASE_ : Any = PreTokenizer.custom(JiebaPreTokenizer(_A ) ) def __UpperCamelCase ( self : Union[str, Any],_A : List[Any],_A : str=None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCamelCase ( self : str,_A : List[int],_A : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCamelCase ( self : int,_A : str,_A : Optional[str] = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._tokenizer.model.save(_A,name=_A ) return tuple(_A ) def __UpperCamelCase ( self : int,_A : Optional[int],_A : List[Any]=None,_A : Tuple=None,_A : str=False,**_A : List[Any],): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = BertPreTokenizer() return super().save_pretrained(_A,_A,_A,_A,**_A )
18
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase_ = { "configuration_transfo_xl": ["TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP", "TransfoXLConfig"], "tokenization_transfo_xl": ["TransfoXLCorpus", "TransfoXLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "AdaptiveEmbedding", "TransfoXLForSequenceClassification", "TransfoXLLMHeadModel", "TransfoXLModel", "TransfoXLPreTrainedModel", "load_tf_weights_in_transfo_xl", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFAdaptiveEmbedding", "TFTransfoXLForSequenceClassification", "TFTransfoXLLMHeadModel", "TFTransfoXLMainLayer", "TFTransfoXLModel", "TFTransfoXLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class a__ ( A__ ): def __init__( self : Tuple,_A : Optional[int],_A : Any=13,_A : List[str]=7,_A : int=True,_A : Dict=True,_A : Dict=False,_A : List[Any]=True,_A : Any=99,_A : Optional[int]=32,_A : Any=5,_A : List[Any]=4,_A : Dict=64,_A : Optional[Any]="gelu",_A : Tuple=0.1,_A : Any=0.1,_A : List[Any]=512,_A : Dict=16,_A : Optional[Any]=2,_A : Union[str, Any]=0.02,_A : List[str]=3,_A : Optional[Any]=4,_A : Union[str, Any]=None,_A : Tuple=2,_A : List[str]=2,_A : str=2,_A : Dict=2,_A : Optional[Any]=4,_A : Union[str, Any]=1,): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = parent SCREAMING_SNAKE_CASE_ : Optional[int] = batch_size SCREAMING_SNAKE_CASE_ : Dict = seq_length SCREAMING_SNAKE_CASE_ : Dict = is_training SCREAMING_SNAKE_CASE_ : Optional[int] = use_input_mask SCREAMING_SNAKE_CASE_ : int = use_token_type_ids SCREAMING_SNAKE_CASE_ : Optional[int] = use_labels SCREAMING_SNAKE_CASE_ : Tuple = vocab_size SCREAMING_SNAKE_CASE_ : Any = hidden_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Tuple = num_attention_heads SCREAMING_SNAKE_CASE_ : List[Any] = intermediate_size SCREAMING_SNAKE_CASE_ : List[str] = hidden_act SCREAMING_SNAKE_CASE_ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : str = max_position_embeddings SCREAMING_SNAKE_CASE_ : str = type_vocab_size SCREAMING_SNAKE_CASE_ : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE_ : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE_ : Tuple = num_labels SCREAMING_SNAKE_CASE_ : List[Any] = num_choices SCREAMING_SNAKE_CASE_ : Dict = scope SCREAMING_SNAKE_CASE_ : int = q_groups SCREAMING_SNAKE_CASE_ : Tuple = k_groups SCREAMING_SNAKE_CASE_ : List[Any] = v_groups SCREAMING_SNAKE_CASE_ : Tuple = post_attention_groups SCREAMING_SNAKE_CASE_ : int = intermediate_groups SCREAMING_SNAKE_CASE_ : List[Any] = output_groups def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) SCREAMING_SNAKE_CASE_ : List[Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = None SCREAMING_SNAKE_CASE_ : Any = None SCREAMING_SNAKE_CASE_ : str = None if self.use_labels: SCREAMING_SNAKE_CASE_ : str = ids_tensor([self.batch_size],self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size],self.num_choices ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : str ): """simple docstring""" return SqueezeBertConfig( embedding_size=self.hidden_size,vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,attention_probs_dropout_prob=self.hidden_dropout_prob,attention_dropout=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,initializer_range=self.initializer_range,q_groups=self.q_groups,k_groups=self.k_groups,v_groups=self.v_groups,post_attention_groups=self.post_attention_groups,intermediate_groups=self.intermediate_groups,output_groups=self.output_groups,) def __UpperCamelCase ( self : Tuple,_A : Union[str, Any],_A : Union[str, Any],_A : int,_A : Optional[int],_A : Union[str, Any],_A : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = SqueezeBertModel(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Any = model(_A,_A ) SCREAMING_SNAKE_CASE_ : List[str] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Dict,_A : Any,_A : Tuple,_A : str,_A : Any,_A : Union[str, Any],_A : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = SqueezeBertForMaskedLM(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : List[str] = model(_A,attention_mask=_A,labels=_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : Optional[int],_A : Union[str, Any],_A : Union[str, Any],_A : Any,_A : Tuple,_A : int,_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = SqueezeBertForQuestionAnswering(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model( _A,attention_mask=_A,start_positions=_A,end_positions=_A ) self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : List[Any],_A : List[str],_A : Tuple,_A : List[Any],_A : List[str],_A : List[str],_A : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.num_labels SCREAMING_SNAKE_CASE_ : List[str] = SqueezeBertForSequenceClassification(_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model(_A,attention_mask=_A,labels=_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : str,_A : Optional[int],_A : str,_A : List[Any],_A : List[str],_A : str,_A : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.num_labels SCREAMING_SNAKE_CASE_ : Optional[int] = SqueezeBertForTokenClassification(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[int] = model(_A,attention_mask=_A,labels=_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : List[Any],_A : Tuple,_A : str,_A : Optional[Any],_A : int,_A : str,_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.num_choices SCREAMING_SNAKE_CASE_ : Union[str, Any] = SqueezeBertForMultipleChoice(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = input_ids.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() SCREAMING_SNAKE_CASE_ : str = input_mask.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() SCREAMING_SNAKE_CASE_ : Optional[int] = model( _A,attention_mask=_A,labels=_A,) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)) : Dict = config_and_inputs SCREAMING_SNAKE_CASE_ : Dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class a__ ( A__ , A__ , unittest.TestCase ): A = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) A = ( { 'feature-extraction': SqueezeBertModel, 'fill-mask': SqueezeBertForMaskedLM, 'question-answering': SqueezeBertForQuestionAnswering, 'text-classification': SqueezeBertForSequenceClassification, 'token-classification': SqueezeBertForTokenClassification, 'zero-shot': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) A = False A = True A = False def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = SqueezeBertModelTester(self ) SCREAMING_SNAKE_CASE_ : List[str] = ConfigTester(self,config_class=_A,dim=37 ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*_A ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*_A ) def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*_A ) def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*_A ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*_A ) def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*_A ) @slow def __UpperCamelCase ( self : Any ): """simple docstring""" for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : Tuple = SqueezeBertModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_sentencepiece @require_tokenizers @require_torch class a__ ( unittest.TestCase ): @slow def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = SqueezeBertForSequenceClassification.from_pretrained("squeezebert/squeezebert-mnli" ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor([[1, 2_9414, 232, 328, 740, 1140, 1_2695, 69, 13, 1588, 2]] ) SCREAMING_SNAKE_CASE_ : List[Any] = model(_A )[0] SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.Size((1, 3) ) self.assertEqual(output.shape,_A ) SCREAMING_SNAKE_CASE_ : int = torch.tensor([[0.6401, -0.0349, -0.6041]] ) self.assertTrue(torch.allclose(_A,_A,atol=1E-4 ) )
18
0
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class snake_case_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : str , _UpperCamelCase : Tuple , _UpperCamelCase : int=7 , _UpperCamelCase : Optional[int]=3 , _UpperCamelCase : List[Any]=1_8 , _UpperCamelCase : List[str]=3_0 , _UpperCamelCase : Optional[int]=4_0_0 , _UpperCamelCase : Union[str, Any]=True , _UpperCamelCase : List[str]=None , _UpperCamelCase : int=True , ) ->Optional[Any]: snake_case_ = size if size is not None else {'''height''': 1_8, '''width''': 1_8} snake_case_ = parent snake_case_ = batch_size snake_case_ = num_channels snake_case_ = image_size snake_case_ = min_resolution snake_case_ = max_resolution snake_case_ = do_resize snake_case_ = size snake_case_ = apply_ocr def snake_case__( self : List[str] ) ->str: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class snake_case_ ( __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def snake_case__( self : Any ) ->int: snake_case_ = LayoutLMvaImageProcessingTester(self ) @property def snake_case__( self : List[Any] ) ->Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def snake_case__( self : Optional[int] ) ->Tuple: snake_case_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_UpperCamelCase , '''size''' ) ) self.assertTrue(hasattr(_UpperCamelCase , '''apply_ocr''' ) ) def snake_case__( self : Dict ) ->Tuple: snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 1_8, '''width''': 1_8} ) snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {'''height''': 4_2, '''width''': 4_2} ) def snake_case__( self : Dict ) ->List[str]: pass def snake_case__( self : Optional[int] ) ->List[str]: # Initialize image_processing snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , Image.Image ) # Test not batched input snake_case_ = image_processing(image_inputs[0] , return_tensors='''pt''' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) self.assertIsInstance(encoding.words , _UpperCamelCase ) self.assertIsInstance(encoding.boxes , _UpperCamelCase ) # Test batched snake_case_ = image_processing(_UpperCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def snake_case__( self : str ) ->Tuple: # Initialize image_processing snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , numpify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , np.ndarray ) # Test not batched input snake_case_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched snake_case_ = image_processing(_UpperCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def snake_case__( self : Union[str, Any] ) ->List[str]: # Initialize image_processing snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , torchify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , torch.Tensor ) # Test not batched input snake_case_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched snake_case_ = image_processing(_UpperCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def snake_case__( self : Optional[int] ) ->str: # with apply_OCR = True snake_case_ = LayoutLMvaImageProcessor() from datasets import load_dataset snake_case_ = load_dataset('''hf-internal-testing/fixtures_docvqa''' , split='''test''' ) snake_case_ = Image.open(ds[0]['''file'''] ).convert('''RGB''' ) snake_case_ = image_processing(_UpperCamelCase , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 snake_case_ = [['''11:14''', '''to''', '''11:39''', '''a.m''', '''11:39''', '''to''', '''11:44''', '''a.m.''', '''11:44''', '''a.m.''', '''to''', '''12:25''', '''p.m.''', '''12:25''', '''to''', '''12:58''', '''p.m.''', '''12:58''', '''to''', '''4:00''', '''p.m.''', '''2:00''', '''to''', '''5:00''', '''p.m.''', '''Coffee''', '''Break''', '''Coffee''', '''will''', '''be''', '''served''', '''for''', '''men''', '''and''', '''women''', '''in''', '''the''', '''lobby''', '''adjacent''', '''to''', '''exhibit''', '''area.''', '''Please''', '''move''', '''into''', '''exhibit''', '''area.''', '''(Exhibits''', '''Open)''', '''TRRF''', '''GENERAL''', '''SESSION''', '''(PART''', '''|)''', '''Presiding:''', '''Lee''', '''A.''', '''Waller''', '''TRRF''', '''Vice''', '''President''', '''“Introductory''', '''Remarks”''', '''Lee''', '''A.''', '''Waller,''', '''TRRF''', '''Vice''', '''Presi-''', '''dent''', '''Individual''', '''Interviews''', '''with''', '''TRRF''', '''Public''', '''Board''', '''Members''', '''and''', '''Sci-''', '''entific''', '''Advisory''', '''Council''', '''Mem-''', '''bers''', '''Conducted''', '''by''', '''TRRF''', '''Treasurer''', '''Philip''', '''G.''', '''Kuehn''', '''to''', '''get''', '''answers''', '''which''', '''the''', '''public''', '''refrigerated''', '''warehousing''', '''industry''', '''is''', '''looking''', '''for.''', '''Plus''', '''questions''', '''from''', '''the''', '''floor.''', '''Dr.''', '''Emil''', '''M.''', '''Mrak,''', '''University''', '''of''', '''Cal-''', '''ifornia,''', '''Chairman,''', '''TRRF''', '''Board;''', '''Sam''', '''R.''', '''Cecil,''', '''University''', '''of''', '''Georgia''', '''College''', '''of''', '''Agriculture;''', '''Dr.''', '''Stanley''', '''Charm,''', '''Tufts''', '''University''', '''School''', '''of''', '''Medicine;''', '''Dr.''', '''Robert''', '''H.''', '''Cotton,''', '''ITT''', '''Continental''', '''Baking''', '''Company;''', '''Dr.''', '''Owen''', '''Fennema,''', '''University''', '''of''', '''Wis-''', '''consin;''', '''Dr.''', '''Robert''', '''E.''', '''Hardenburg,''', '''USDA.''', '''Questions''', '''and''', '''Answers''', '''Exhibits''', '''Open''', '''Capt.''', '''Jack''', '''Stoney''', '''Room''', '''TRRF''', '''Scientific''', '''Advisory''', '''Council''', '''Meeting''', '''Ballroom''', '''Foyer''']] # noqa: E231 snake_case_ = [[[1_4_1, 5_7, 2_1_4, 6_9], [2_2_8, 5_8, 2_5_2, 6_9], [1_4_1, 7_5, 2_1_6, 8_8], [2_3_0, 7_9, 2_8_0, 8_8], [1_4_2, 2_6_0, 2_1_8, 2_7_3], [2_3_0, 2_6_1, 2_5_5, 2_7_3], [1_4_3, 2_7_9, 2_1_8, 2_9_0], [2_3_1, 2_8_2, 2_9_0, 2_9_1], [1_4_3, 3_4_2, 2_1_8, 3_5_4], [2_3_1, 3_4_5, 2_8_9, 3_5_5], [2_0_2, 3_6_2, 2_2_7, 3_7_3], [1_4_3, 3_7_9, 2_2_0, 3_9_2], [2_3_1, 3_8_2, 2_9_1, 3_9_4], [1_4_4, 7_1_4, 2_2_0, 7_2_6], [2_3_1, 7_1_5, 2_5_6, 7_2_6], [1_4_4, 7_3_2, 2_2_0, 7_4_5], [2_3_2, 7_3_6, 2_9_1, 7_4_7], [1_4_4, 7_6_9, 2_1_8, 7_8_2], [2_3_1, 7_7_0, 2_5_6, 7_8_2], [1_4_1, 7_8_8, 2_0_2, 8_0_1], [2_1_5, 7_9_1, 2_7_4, 8_0_4], [1_4_3, 8_2_6, 2_0_4, 8_3_8], [2_1_5, 8_2_6, 2_4_0, 8_3_8], [1_4_2, 8_4_4, 2_0_2, 8_5_7], [2_1_5, 8_4_7, 2_7_4, 8_5_9], [3_3_4, 5_7, 4_2_7, 6_9], [4_4_0, 5_7, 5_2_2, 6_9], [3_6_9, 7_5, 4_6_1, 8_8], [4_6_9, 7_5, 5_1_6, 8_8], [5_2_8, 7_6, 5_6_2, 8_8], [5_7_0, 7_6, 6_6_7, 8_8], [6_7_5, 7_5, 7_1_1, 8_7], [7_2_1, 7_9, 7_7_8, 8_8], [7_8_9, 7_5, 8_4_0, 8_8], [3_6_9, 9_7, 4_7_0, 1_0_7], [4_8_4, 9_4, 5_0_7, 1_0_6], [5_1_8, 9_4, 5_6_2, 1_0_7], [5_7_6, 9_4, 6_5_5, 1_1_0], [6_6_8, 9_4, 7_9_2, 1_0_9], [8_0_4, 9_5, 8_2_9, 1_0_7], [3_6_9, 1_1_3, 4_6_5, 1_2_5], [4_7_7, 1_1_6, 5_4_7, 1_2_5], [5_6_2, 1_1_3, 6_5_8, 1_2_5], [6_7_1, 1_1_6, 7_4_8, 1_2_5], [7_6_1, 1_1_3, 8_1_1, 1_2_5], [3_6_9, 1_3_1, 4_6_5, 1_4_3], [4_7_7, 1_3_3, 5_4_8, 1_4_3], [5_6_3, 1_3_0, 6_9_8, 1_4_5], [7_1_0, 1_3_0, 8_0_2, 1_4_6], [3_3_6, 1_7_1, 4_1_2, 1_8_3], [4_2_3, 1_7_1, 5_7_2, 1_8_3], [5_8_2, 1_7_0, 7_1_6, 1_8_4], [7_2_8, 1_7_1, 8_1_7, 1_8_7], [8_2_9, 1_7_1, 8_4_4, 1_8_6], [3_3_8, 1_9_7, 4_8_2, 2_1_2], [5_0_7, 1_9_6, 5_5_7, 2_0_9], [5_6_9, 1_9_6, 5_9_5, 2_0_8], [6_1_0, 1_9_6, 7_0_2, 2_0_9], [5_0_5, 2_1_4, 5_8_3, 2_2_6], [5_9_5, 2_1_4, 6_5_6, 2_2_7], [6_7_0, 2_1_5, 8_0_7, 2_2_7], [3_3_5, 2_5_9, 5_4_3, 2_7_4], [5_5_6, 2_5_9, 7_0_8, 2_7_2], [3_7_2, 2_7_9, 4_2_2, 2_9_1], [4_3_5, 2_7_9, 4_6_0, 2_9_1], [4_7_4, 2_7_9, 5_7_4, 2_9_2], [5_8_7, 2_7_8, 6_6_4, 2_9_1], [6_7_6, 2_7_8, 7_3_8, 2_9_1], [7_5_1, 2_7_9, 8_3_4, 2_9_1], [3_7_2, 2_9_8, 4_3_4, 3_1_0], [3_3_5, 3_4_1, 4_8_3, 3_5_4], [4_9_7, 3_4_1, 6_5_5, 3_5_4], [6_6_7, 3_4_1, 7_2_8, 3_5_4], [7_4_0, 3_4_1, 8_2_5, 3_5_4], [3_3_5, 3_6_0, 4_3_0, 3_7_2], [4_4_2, 3_6_0, 5_3_4, 3_7_2], [5_4_5, 3_5_9, 6_8_7, 3_7_2], [6_9_7, 3_6_0, 7_5_4, 3_7_2], [7_6_5, 3_6_0, 8_2_3, 3_7_3], [3_3_4, 3_7_8, 4_2_8, 3_9_1], [4_4_0, 3_7_8, 5_7_7, 3_9_4], [5_9_0, 3_7_8, 7_0_5, 3_9_1], [7_2_0, 3_7_8, 8_0_1, 3_9_1], [3_3_4, 3_9_7, 4_0_0, 4_0_9], [3_7_0, 4_1_6, 5_2_9, 4_2_9], [5_4_4, 4_1_6, 5_7_6, 4_3_2], [5_8_7, 4_1_6, 6_6_5, 4_2_8], [6_7_7, 4_1_6, 8_1_4, 4_2_9], [3_7_2, 4_3_5, 4_5_2, 4_5_0], [4_6_5, 4_3_4, 4_9_5, 4_4_7], [5_1_1, 4_3_4, 6_0_0, 4_4_7], [6_1_1, 4_3_6, 6_3_7, 4_4_7], [6_4_9, 4_3_6, 6_9_4, 4_5_1], [7_0_5, 4_3_8, 8_2_4, 4_4_7], [3_6_9, 4_5_3, 4_5_2, 4_6_6], [4_6_4, 4_5_4, 5_0_9, 4_6_6], [5_2_2, 4_5_3, 6_1_1, 4_6_9], [6_2_5, 4_5_3, 7_9_2, 4_6_9], [3_7_0, 4_7_2, 5_5_6, 4_8_8], [5_7_0, 4_7_2, 6_8_4, 4_8_7], [6_9_7, 4_7_2, 7_1_8, 4_8_5], [7_3_2, 4_7_2, 8_3_5, 4_8_8], [3_6_9, 4_9_0, 4_1_1, 5_0_3], [4_2_5, 4_9_0, 4_8_4, 5_0_3], [4_9_6, 4_9_0, 6_3_5, 5_0_6], [6_4_5, 4_9_0, 7_0_7, 5_0_3], [7_1_8, 4_9_1, 7_6_1, 5_0_3], [7_7_1, 4_9_0, 8_4_0, 5_0_3], [3_3_6, 5_1_0, 3_7_4, 5_2_1], [3_8_8, 5_1_0, 4_4_7, 5_2_2], [4_6_0, 5_1_0, 4_8_9, 5_2_1], [5_0_3, 5_1_0, 5_8_0, 5_2_2], [5_9_2, 5_0_9, 7_3_6, 5_2_5], [7_4_5, 5_0_9, 7_7_0, 5_2_2], [7_8_1, 5_0_9, 8_4_0, 5_2_2], [3_3_8, 5_2_8, 4_3_4, 5_4_1], [4_4_8, 5_2_8, 5_9_6, 5_4_1], [6_0_9, 5_2_7, 6_8_7, 5_4_0], [7_0_0, 5_2_8, 7_9_2, 5_4_1], [3_3_6, 5_4_6, 3_9_7, 5_5_9], [4_0_7, 5_4_6, 4_3_1, 5_5_9], [4_4_3, 5_4_6, 5_2_5, 5_6_0], [5_3_7, 5_4_6, 6_8_0, 5_6_2], [6_8_8, 5_4_6, 7_1_4, 5_5_9], [7_2_2, 5_4_6, 8_3_7, 5_6_2], [3_3_6, 5_6_5, 4_4_9, 5_8_1], [4_6_1, 5_6_5, 4_8_5, 5_7_7], [4_9_7, 5_6_5, 6_6_5, 5_8_1], [6_8_1, 5_6_5, 7_1_8, 5_7_7], [7_3_2, 5_6_5, 8_3_7, 5_8_0], [3_3_7, 5_8_4, 4_3_8, 5_9_7], [4_5_2, 5_8_3, 5_2_1, 5_9_6], [5_3_5, 5_8_4, 6_7_7, 5_9_9], [6_9_0, 5_8_3, 7_8_7, 5_9_6], [8_0_1, 5_8_3, 8_2_5, 5_9_6], [3_3_8, 6_0_2, 4_7_8, 6_1_5], [4_9_2, 6_0_2, 5_3_0, 6_1_4], [5_4_3, 6_0_2, 6_3_8, 6_1_5], [6_5_0, 6_0_2, 6_7_6, 6_1_4], [6_8_8, 6_0_2, 7_8_8, 6_1_5], [8_0_2, 6_0_2, 8_4_3, 6_1_4], [3_3_7, 6_2_1, 5_0_2, 6_3_3], [5_1_6, 6_2_1, 6_1_5, 6_3_7], [6_2_9, 6_2_1, 7_7_4, 6_3_6], [7_8_9, 6_2_1, 8_2_7, 6_3_3], [3_3_7, 6_3_9, 4_1_8, 6_5_2], [4_3_2, 6_4_0, 5_7_1, 6_5_3], [5_8_7, 6_3_9, 7_3_1, 6_5_5], [7_4_3, 6_3_9, 7_6_9, 6_5_2], [7_8_0, 6_3_9, 8_4_1, 6_5_2], [3_3_8, 6_5_8, 4_4_0, 6_7_3], [4_5_5, 6_5_8, 4_9_1, 6_7_0], [5_0_8, 6_5_8, 6_0_2, 6_7_1], [6_1_6, 6_5_8, 6_3_8, 6_7_0], [6_5_4, 6_5_8, 8_3_5, 6_7_4], [3_3_7, 6_7_7, 4_2_9, 6_8_9], [3_3_7, 7_1_4, 4_8_2, 7_2_6], [4_9_5, 7_1_4, 5_4_8, 7_2_6], [5_6_1, 7_1_4, 6_8_3, 7_2_6], [3_3_8, 7_7_0, 4_6_1, 7_8_2], [4_7_4, 7_6_9, 5_5_4, 7_8_5], [4_8_9, 7_8_8, 5_6_2, 8_0_3], [5_7_6, 7_8_8, 6_4_3, 8_0_1], [6_5_6, 7_8_7, 7_5_1, 8_0_4], [7_6_4, 7_8_8, 8_4_4, 8_0_1], [3_3_4, 8_2_5, 4_2_1, 8_3_8], [4_3_0, 8_2_4, 5_7_4, 8_3_8], [5_8_4, 8_2_4, 7_2_3, 8_4_1], [3_3_5, 8_4_4, 4_5_0, 8_5_7], [4_6_4, 8_4_3, 5_8_3, 8_6_0], [6_2_8, 8_6_2, 7_5_5, 8_7_5], [7_6_9, 8_6_1, 8_4_8, 8_7_8]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , _UpperCamelCase ) self.assertListEqual(encoding.boxes , _UpperCamelCase ) # with apply_OCR = False snake_case_ = LayoutLMvaImageProcessor(apply_ocr=_UpperCamelCase ) snake_case_ = image_processing(_UpperCamelCase , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) )
8
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def _snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Union[str, Any] = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE_ : List[str] = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def _snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : Dict , lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Optional[Any] = {"text": "string"} SCREAMING_SNAKE_CASE_ : Any = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE_ : List[str] = ( Features({feature: Value(lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE_ : Optional[Any] = TextDatasetReader(lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def _snake_case ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : List[str] = {"text": "string"} SCREAMING_SNAKE_CASE_ : List[str] = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase , split=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : Optional[int] ): """simple docstring""" if issubclass(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = text_path elif issubclass(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [text_path] SCREAMING_SNAKE_CASE_ : int = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Optional[int] = {"text": "string"} SCREAMING_SNAKE_CASE_ : List[str] = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) def _snake_case ( lowerCAmelCase : Dict , lowerCAmelCase : Dict , lowerCAmelCase : List[str]=("train",) ): """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) for split in splits: SCREAMING_SNAKE_CASE_ : int = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def _snake_case ( lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Union[str, Any] = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE_ : List[Any] = TextDatasetReader({"train": text_path} , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase ).read() _check_text_datasetdict(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def _snake_case ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = tmp_path / "cache" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" SCREAMING_SNAKE_CASE_ : Tuple = {"text": "string"} SCREAMING_SNAKE_CASE_ : Any = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE_ : Dict = ( Features({feature: Value(lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE_ : str = TextDatasetReader({"train": text_path} , features=lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_datasetdict(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def _snake_case ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any , lowerCAmelCase : Dict ): """simple docstring""" if split: SCREAMING_SNAKE_CASE_ : Optional[int] = {split: text_path} else: SCREAMING_SNAKE_CASE_ : List[Any] = "train" SCREAMING_SNAKE_CASE_ : Tuple = {"train": text_path, "test": text_path} SCREAMING_SNAKE_CASE_ : Any = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : List[str] = {"text": "string"} SCREAMING_SNAKE_CASE_ : str = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_datasetdict(lowerCAmelCase , lowerCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
18
0
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def _UpperCamelCase ( lowercase__ ): return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) __lowerCAmelCase : Optional[Any] ='\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n' class _lowercase ( A__ ): '''simple docstring''' @staticmethod def __magic_name__( lowerCAmelCase__ :ArgumentParser ) -> Any: __SCREAMING_SNAKE_CASE : List[Any] = parser.add_parser( '''convert''' , help='''CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.''' , ) train_parser.add_argument('''--model_type''' , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''Model\'s type.''' ) train_parser.add_argument( '''--tf_checkpoint''' , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''TensorFlow checkpoint path or folder.''' ) train_parser.add_argument( '''--pytorch_dump_output''' , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''Path to the PyTorch saved model output.''' ) train_parser.add_argument('''--config''' , type=lowerCAmelCase__ , default='''''' , help='''Configuration file path or folder.''' ) train_parser.add_argument( '''--finetuning_task_name''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help='''Optional fine-tuning task name if the TF model was a finetuned model.''' , ) train_parser.set_defaults(func=lowerCAmelCase__ ) def __init__( self :int , lowerCAmelCase__ :str , lowerCAmelCase__ :str , lowerCAmelCase__ :str , lowerCAmelCase__ :str , lowerCAmelCase__ :str , *lowerCAmelCase__ :List[Any] , ) -> Dict: __SCREAMING_SNAKE_CASE : str = logging.get_logger('''transformers-cli/converting''' ) self._logger.info(f'''Loading model {model_type}''' ) __SCREAMING_SNAKE_CASE : Optional[int] = model_type __SCREAMING_SNAKE_CASE : str = tf_checkpoint __SCREAMING_SNAKE_CASE : Optional[int] = pytorch_dump_output __SCREAMING_SNAKE_CASE : str = config __SCREAMING_SNAKE_CASE : Optional[int] = finetuning_task_name def __magic_name__( self :int ) -> List[str]: if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowerCAmelCase__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowerCAmelCase__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowerCAmelCase__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(lowerCAmelCase__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowerCAmelCase__ ) if "ckpt" in self._tf_checkpoint.lower(): __SCREAMING_SNAKE_CASE : Dict = self._tf_checkpoint __SCREAMING_SNAKE_CASE : int = '''''' else: __SCREAMING_SNAKE_CASE : int = self._tf_checkpoint __SCREAMING_SNAKE_CASE : List[Any] = '''''' convert_transfo_xl_checkpoint_to_pytorch( lowerCAmelCase__ , self._config , self._pytorch_dump_output , lowerCAmelCase__ ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowerCAmelCase__ ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowerCAmelCase__ ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( '''--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]''' )
9
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def _snake_case ( lowerCAmelCase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class a__ ( A__ , A__ , A__ , unittest.TestCase ): A = StableDiffusionLatentUpscalePipeline A = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'height', 'width', 'cross_attention_kwargs', 'negative_prompt_embeds', 'prompt_embeds', } A = PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'} A = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A = frozenset([] ) A = True @property def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = 1 SCREAMING_SNAKE_CASE_ : Optional[int] = 4 SCREAMING_SNAKE_CASE_ : Optional[int] = (16, 16) SCREAMING_SNAKE_CASE_ : Dict = floats_tensor((batch_size, num_channels) + sizes,rng=random.Random(0 ) ).to(_A ) return image def __UpperCamelCase ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : str = UNetaDConditionModel( act_fn="gelu",attention_head_dim=8,norm_num_groups=_A,block_out_channels=[32, 32, 64, 64],time_cond_proj_dim=160,conv_in_kernel=1,conv_out_kernel=1,cross_attention_dim=32,down_block_types=( "KDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", ),in_channels=8,mid_block_type=_A,only_cross_attention=_A,out_channels=5,resnet_time_scale_shift="scale_shift",time_embedding_type="fourier",timestep_post_act="gelu",up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D"),) SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 32, 64, 64],in_channels=3,out_channels=3,down_block_types=[ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", ],up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],latent_channels=4,) SCREAMING_SNAKE_CASE_ : int = EulerDiscreteScheduler(prediction_type="sample" ) SCREAMING_SNAKE_CASE_ : List[Any] = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1000,hidden_act="quick_gelu",projection_dim=512,) SCREAMING_SNAKE_CASE_ : Tuple = CLIPTextModel(_A ) SCREAMING_SNAKE_CASE_ : int = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = { "unet": model.eval(), "vae": vae.eval(), "scheduler": scheduler, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def __UpperCamelCase ( self : List[Any],_A : int,_A : Tuple=0 ): """simple docstring""" if str(_A ).startswith("mps" ): SCREAMING_SNAKE_CASE_ : Optional[int] = torch.manual_seed(_A ) else: SCREAMING_SNAKE_CASE_ : Dict = torch.Generator(device=_A ).manual_seed(_A ) SCREAMING_SNAKE_CASE_ : Tuple = { "prompt": "A painting of a squirrel eating a burger", "image": self.dummy_image.cpu(), "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = "cpu" SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : List[str] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ : Tuple = self.get_dummy_inputs(_A ) SCREAMING_SNAKE_CASE_ : Dict = pipe(**_A ).images SCREAMING_SNAKE_CASE_ : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape,(1, 256, 256, 3) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) SCREAMING_SNAKE_CASE_ : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A,1E-3 ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def __UpperCamelCase ( self : int ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" super().test_save_load_local(expected_max_difference=3E-3 ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3E-3 ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = [ "DDIMScheduler", "DDPMScheduler", "PNDMScheduler", "HeunDiscreteScheduler", "EulerAncestralDiscreteScheduler", "KDPM2DiscreteScheduler", "KDPM2AncestralDiscreteScheduler", "DPMSolverSDEScheduler", ] SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : Any = self.pipeline_class(**_A ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ : Any = self.get_dummy_inputs(_A ) SCREAMING_SNAKE_CASE_ : Optional[Any] = 2 SCREAMING_SNAKE_CASE_ : Optional[int] = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue SCREAMING_SNAKE_CASE_ : Tuple = getattr(_A,scheduler_enum.name ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = scheduler_cls.from_config(pipe.scheduler.config ) SCREAMING_SNAKE_CASE_ : Optional[int] = pipe(**_A )[0] outputs.append(_A ) assert check_same_shape(_A ) @require_torch_gpu @slow class a__ ( unittest.TestCase ): def __UpperCamelCase ( self : Dict ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = torch.manual_seed(33 ) SCREAMING_SNAKE_CASE_ : Optional[int] = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4",torch_dtype=torch.floataa ) pipe.to("cuda" ) SCREAMING_SNAKE_CASE_ : List[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler",torch_dtype=torch.floataa ) upscaler.to("cuda" ) SCREAMING_SNAKE_CASE_ : Tuple = "a photo of an astronaut high resolution, unreal engine, ultra realistic" SCREAMING_SNAKE_CASE_ : str = pipe(_A,generator=_A,output_type="latent" ).images SCREAMING_SNAKE_CASE_ : Optional[Any] = upscaler( prompt=_A,image=_A,num_inference_steps=20,guidance_scale=0,generator=_A,output_type="np",).images[0] SCREAMING_SNAKE_CASE_ : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy" ) assert np.abs((expected_image - image).mean() ) < 5E-2 def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = torch.manual_seed(33 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler",torch_dtype=torch.floataa ) upscaler.to("cuda" ) SCREAMING_SNAKE_CASE_ : Any = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas" SCREAMING_SNAKE_CASE_ : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png" ) SCREAMING_SNAKE_CASE_ : str = upscaler( prompt=_A,image=_A,num_inference_steps=20,guidance_scale=0,generator=_A,output_type="np",).images[0] SCREAMING_SNAKE_CASE_ : Any = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy" ) assert np.abs((expected_image - image).max() ) < 5E-2
18
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = "▁" __A = {"vocab_file": "sentencepiece.bpe.model"} __A = { "vocab_file": { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model", } } __A = { "facebook/xglm-564M": 2048, } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["input_ids", "attention_mask"] def __init__(self : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any="<s>" , UpperCAmelCase_ : Optional[int]="</s>" , UpperCAmelCase_ : List[Any]="</s>" , UpperCAmelCase_ : Union[str, Any]="<s>" , UpperCAmelCase_ : Any="<unk>" , UpperCAmelCase_ : str="<pad>" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : str , ) ->None: '''simple docstring''' lowerCamelCase__: Dict ={} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer lowerCamelCase__: Tuple =7 lowerCamelCase__: int =[F"""<madeupword{i}>""" for i in range(self.num_madeup_words)] lowerCamelCase__: str =kwargs.get("additional_special_tokens" , []) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) lowerCamelCase__: Any =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(UpperCAmelCase_)) lowerCamelCase__: List[str] =vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCamelCase__: Union[str, Any] =1 # Mimic fairseq token-to-id alignment for the first 4 token lowerCamelCase__: Union[str, Any] ={"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} lowerCamelCase__: Any =len(self.sp_model) lowerCamelCase__: Tuple ={F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words)} self.fairseq_tokens_to_ids.update(UpperCAmelCase_) lowerCamelCase__: int ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__(self : Dict) ->List[str]: '''simple docstring''' lowerCamelCase__: List[Any] =self.__dict__.copy() lowerCamelCase__: str =None lowerCamelCase__: Any =self.sp_model.serialized_model_proto() return state def __setstate__(self : Any , UpperCAmelCase_ : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Optional[Any] =d # for backward compatibility if not hasattr(self , "sp_model_kwargs"): lowerCamelCase__: int ={} lowerCamelCase__: str =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a lowerCamelCase__: Any =[self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False) ->List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase_)) return [1] + ([0] * len(UpperCAmelCase_)) + [1, 1] + ([0] * len(UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' lowerCamelCase__: List[str] =[self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a) * [0] @property def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[int]: '''simple docstring''' return len(self.sp_model) + self.fairseq_offset + self.num_madeup_words def SCREAMING_SNAKE_CASE_ (self : int) ->str: '''simple docstring''' lowerCamelCase__: str ={self.convert_ids_to_tokens(UpperCAmelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : str) ->List[str]: '''simple docstring''' return self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Union[str, Any]) ->Dict: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCamelCase__: Optional[int] =self.sp_model.PieceToId(UpperCAmelCase_) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[str]) ->Optional[Any]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : Dict) ->Dict: '''simple docstring''' lowerCamelCase__: str ="".join(UpperCAmelCase_).replace(UpperCAmelCase_ , " ").strip() return out_string def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase_): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""") return lowerCamelCase__: List[str] =os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , UpperCAmelCase_) elif not os.path.isfile(self.vocab_file): with open(UpperCAmelCase_ , "wb") as fi: lowerCamelCase__: Optional[int] =self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_) return (out_vocab_file,)
10
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging __lowerCamelCase : Optional[int] = logging.get_logger(__name__) __lowerCamelCase : Tuple = { '''deepmind/language-perceiver''': '''https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json''', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class a__ ( A__ ): A = 'perceiver' def __init__( self : List[Any],_A : Tuple=256,_A : str=1280,_A : List[Any]=768,_A : Union[str, Any]=1,_A : Union[str, Any]=26,_A : List[str]=8,_A : List[Any]=8,_A : List[Any]=None,_A : List[Any]=None,_A : Union[str, Any]="kv",_A : Any=1,_A : int=1,_A : Dict="gelu",_A : Any=0.1,_A : int=0.02,_A : int=1E-12,_A : Any=True,_A : Optional[Any]=262,_A : List[Any]=2048,_A : str=56,_A : Optional[int]=[368, 496],_A : Dict=16,_A : Tuple=1920,_A : List[Any]=16,_A : str=[1, 16, 224, 224],**_A : Optional[Any],): """simple docstring""" super().__init__(**_A ) SCREAMING_SNAKE_CASE_ : Dict = num_latents SCREAMING_SNAKE_CASE_ : List[Any] = d_latents SCREAMING_SNAKE_CASE_ : Union[str, Any] = d_model SCREAMING_SNAKE_CASE_ : Optional[int] = num_blocks SCREAMING_SNAKE_CASE_ : List[Any] = num_self_attends_per_block SCREAMING_SNAKE_CASE_ : Tuple = num_self_attention_heads SCREAMING_SNAKE_CASE_ : List[str] = num_cross_attention_heads SCREAMING_SNAKE_CASE_ : List[Any] = qk_channels SCREAMING_SNAKE_CASE_ : Any = v_channels SCREAMING_SNAKE_CASE_ : Any = cross_attention_shape_for_attention SCREAMING_SNAKE_CASE_ : List[str] = self_attention_widening_factor SCREAMING_SNAKE_CASE_ : Any = cross_attention_widening_factor SCREAMING_SNAKE_CASE_ : List[Any] = hidden_act SCREAMING_SNAKE_CASE_ : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Any = initializer_range SCREAMING_SNAKE_CASE_ : List[Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : Tuple = use_query_residual # masked language modeling attributes SCREAMING_SNAKE_CASE_ : List[str] = vocab_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = max_position_embeddings # image classification attributes SCREAMING_SNAKE_CASE_ : Dict = image_size # flow attributes SCREAMING_SNAKE_CASE_ : List[Any] = train_size # multimodal autoencoding attributes SCREAMING_SNAKE_CASE_ : str = num_frames SCREAMING_SNAKE_CASE_ : Any = audio_samples_per_frame SCREAMING_SNAKE_CASE_ : Tuple = samples_per_patch SCREAMING_SNAKE_CASE_ : Optional[Any] = output_shape class a__ ( A__ ): @property def __UpperCamelCase ( self : List[str] ): """simple docstring""" if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ : List[str] = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE_ : str = {0: "batch", 1: "sequence"} return OrderedDict( [ ("inputs", dynamic_axis), ("attention_mask", dynamic_axis), ] ) @property def __UpperCamelCase ( self : List[Any] ): """simple docstring""" return 1E-4 def __UpperCamelCase ( self : List[str],_A : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"],_A : int = -1,_A : int = -1,_A : int = -1,_A : bool = False,_A : Optional[TensorType] = None,_A : int = 3,_A : int = 40,_A : int = 40,): """simple docstring""" if isinstance(_A,_A ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ : Tuple = compute_effective_axis_dimension( _A,fixed_dimension=OnnxConfig.default_fixed_batch,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ : Tuple = preprocessor.num_special_tokens_to_add(_A ) SCREAMING_SNAKE_CASE_ : Any = compute_effective_axis_dimension( _A,fixed_dimension=OnnxConfig.default_fixed_sequence,num_token_to_add=_A ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE_ : Optional[Any] = [" ".join(["a"] ) * seq_length] * batch_size SCREAMING_SNAKE_CASE_ : str = dict(preprocessor(_A,return_tensors=_A ) ) SCREAMING_SNAKE_CASE_ : List[str] = inputs.pop("input_ids" ) return inputs elif isinstance(_A,_A ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ : Any = compute_effective_axis_dimension(_A,fixed_dimension=OnnxConfig.default_fixed_batch ) SCREAMING_SNAKE_CASE_ : Optional[int] = self._generate_dummy_images(_A,_A,_A,_A ) SCREAMING_SNAKE_CASE_ : Any = dict(preprocessor(images=_A,return_tensors=_A ) ) SCREAMING_SNAKE_CASE_ : Any = inputs.pop("pixel_values" ) return inputs else: raise ValueError( "Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor." )
18
0
import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def _UpperCAmelCase (UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict ): _A : List[Any] = UniSpeechSatForSequenceClassification.from_pretrained(UpperCamelCase__ , config=UpperCamelCase__ ) _A : Optional[Any] = downstream_dict["projector.weight"] _A : List[Any] = downstream_dict["projector.bias"] _A : int = downstream_dict["model.post_net.linear.weight"] _A : Optional[int] = downstream_dict["model.post_net.linear.bias"] return model def _UpperCAmelCase (UpperCamelCase__ : Tuple , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] ): _A : Tuple = UniSpeechSatForAudioFrameClassification.from_pretrained(UpperCamelCase__ , config=UpperCamelCase__ ) _A : Optional[Any] = downstream_dict["model.linear.weight"] _A : Optional[int] = downstream_dict["model.linear.bias"] return model def _UpperCAmelCase (UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any] ): _A : List[Any] = UniSpeechSatForXVector.from_pretrained(UpperCamelCase__ , config=UpperCamelCase__ ) _A : str = downstream_dict["connector.weight"] _A : Optional[int] = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): _A : Union[str, Any] = downstream_dict[ f"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] _A : Tuple = downstream_dict[f"model.framelevel_feature_extractor.module.{i}.kernel.bias"] _A : Union[str, Any] = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] _A : Dict = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] _A : str = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] _A : Union[str, Any] = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] _A : int = downstream_dict["objective.W"] return model @torch.no_grad() def _UpperCAmelCase (UpperCamelCase__ : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict ): _A : List[Any] = torch.load(UpperCamelCase__ , map_location="cpu" ) _A : List[str] = checkpoint["Downstream"] _A : Union[str, Any] = UniSpeechSatConfig.from_pretrained(UpperCamelCase__ ) _A : int = WavaVecaFeatureExtractor.from_pretrained( UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , do_normalize=UpperCamelCase__ ) _A : List[Any] = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): _A : Union[str, Any] = convert_classification(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) elif arch.endswith("ForAudioFrameClassification" ): _A : List[Any] = convert_diarization(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) elif arch.endswith("ForXVector" ): _A : int = convert_xvector(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: raise NotImplementedError(f"S3PRL weights conversion is not supported for {arch}" ) if hf_config.use_weighted_layer_sum: _A : Optional[int] = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(UpperCamelCase__ ) hf_model.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') lowerCAmelCase__ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
11
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class a__ ( yaml.SafeLoader ): def __UpperCamelCase ( self : str,_A : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = [self.constructed_objects[key_node] for key_node, _ in node.value] SCREAMING_SNAKE_CASE_ : List[str] = [tuple(_A ) if isinstance(_A,_A ) else key for key in keys] SCREAMING_SNAKE_CASE_ : Optional[int] = Counter(_A ) SCREAMING_SNAKE_CASE_ : Tuple = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F'Got duplicate yaml keys: {duplicate_keys}' ) def __UpperCamelCase ( self : Tuple,_A : Dict,_A : List[Any]=False ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = super().construct_mapping(_A,deep=_A ) self._check_no_duplicates_on_constructed_node(_A ) return mapping def _snake_case ( lowerCAmelCase : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: SCREAMING_SNAKE_CASE_ : List[Any] = full_content[1:].index("---" ) + 1 SCREAMING_SNAKE_CASE_ : int = "\n".join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(lowerCAmelCase ) class a__ ( A__ ): # class attributes A = {'train_eval_index'} # train-eval-index in the YAML metadata @classmethod def __UpperCamelCase ( cls : Any,_A : Path ): """simple docstring""" with open(_A,encoding="utf-8" ) as readme_file: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(_A ) else: return cls() def __UpperCamelCase ( self : Dict,_A : Path ): """simple docstring""" if path.exists(): with open(_A,encoding="utf-8" ) as readme_file: SCREAMING_SNAKE_CASE_ : int = readme_file.read() else: SCREAMING_SNAKE_CASE_ : Any = None SCREAMING_SNAKE_CASE_ : int = self._to_readme(_A ) with open(_A,"w",encoding="utf-8" ) as readme_file: readme_file.write(_A ) def __UpperCamelCase ( self : Optional[int],_A : Optional[str] = None ): """simple docstring""" if readme_content is not None: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = _split_yaml_from_readme(_A ) SCREAMING_SNAKE_CASE_ : Tuple = "---\n" + self.to_yaml_string() + "---\n" + content else: SCREAMING_SNAKE_CASE_ : Dict = "---\n" + self.to_yaml_string() + "---\n" return full_content @classmethod def __UpperCamelCase ( cls : Dict,_A : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = yaml.load(_A,Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields SCREAMING_SNAKE_CASE_ : Any = { (key.replace("-","_" ) if key.replace("-","_" ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**_A ) def __UpperCamelCase ( self : Dict ): """simple docstring""" return yaml.safe_dump( { (key.replace("_","-" ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() },sort_keys=_A,allow_unicode=_A,encoding="utf-8",).decode("utf-8" ) __lowerCamelCase : List[Any] = { '''image-classification''': [], '''translation''': [], '''image-segmentation''': [], '''fill-mask''': [], '''automatic-speech-recognition''': [], '''token-classification''': [], '''sentence-similarity''': [], '''audio-classification''': [], '''question-answering''': [], '''summarization''': [], '''zero-shot-classification''': [], '''table-to-text''': [], '''feature-extraction''': [], '''other''': [], '''multiple-choice''': [], '''text-classification''': [], '''text-to-image''': [], '''text2text-generation''': [], '''zero-shot-image-classification''': [], '''tabular-classification''': [], '''tabular-regression''': [], '''image-to-image''': [], '''tabular-to-text''': [], '''unconditional-image-generation''': [], '''text-retrieval''': [], '''text-to-speech''': [], '''object-detection''': [], '''audio-to-audio''': [], '''text-generation''': [], '''conversational''': [], '''table-question-answering''': [], '''visual-question-answering''': [], '''image-to-text''': [], '''reinforcement-learning''': [], '''voice-activity-detection''': [], '''time-series-forecasting''': [], '''document-question-answering''': [], } if __name__ == "__main__": from argparse import ArgumentParser __lowerCamelCase : List[Any] = ArgumentParser(usage='''Validate the yaml metadata block of a README.md file.''') ap.add_argument('''readme_filepath''') __lowerCamelCase : Dict = ap.parse_args() __lowerCamelCase : List[Any] = Path(args.readme_filepath) __lowerCamelCase : Optional[int] = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
18
0
import numpy # List of input, output pairs UpperCAmelCase_ = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) UpperCAmelCase_ = (((515, 22, 13), 555), ((61, 35, 49), 150)) UpperCAmelCase_ = [2, 4, 1, 5] UpperCAmelCase_ = len(train_data) UpperCAmelCase_ = 0.009 def lowerCamelCase__ ( A__ : Dict , A__ : Optional[int]="train" ): '''simple docstring''' return calculate_hypothesis_value(A__ , A__ ) - output( A__ , A__ ) def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' __lowerCamelCase = 0 for i in range(len(A__ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def lowerCamelCase__ ( A__ : Union[str, Any] , A__ : Dict ): '''simple docstring''' if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def lowerCamelCase__ ( A__ : Dict , A__ : int ): '''simple docstring''' if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def lowerCamelCase__ ( A__ : str , A__ : List[Any]=m ): '''simple docstring''' __lowerCamelCase = 0 for i in range(A__ ): if index == -1: summation_value += _error(A__ ) else: summation_value += _error(A__ ) * train_data[i][0][index] return summation_value def lowerCamelCase__ ( A__ : str ): '''simple docstring''' __lowerCamelCase = summation_of_cost_derivative(A__ , A__ ) / m return cost_derivative_value def lowerCamelCase__ ( ): '''simple docstring''' global parameter_vector # Tune these values to set a tolerance value for predicted output __lowerCamelCase = 0.000_002 __lowerCamelCase = 0 __lowerCamelCase = 0 while True: j += 1 __lowerCamelCase = [0, 0, 0, 0] for i in range(0 , len(A__ ) ): __lowerCamelCase = get_cost_derivative(i - 1 ) __lowerCamelCase = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( A__ , A__ , atol=A__ , rtol=A__ , ): break __lowerCamelCase = temp_parameter_vector print(("""Number of iterations:""", j) ) def lowerCamelCase__ ( ): '''simple docstring''' for i in range(len(A__ ) ): print(("""Actual output value:""", output(A__ , """test""" )) ) print(("""Hypothesis output:""", calculate_hypothesis_value(A__ , """test""" )) ) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
12
from __future__ import annotations from math import pi, sqrt def _snake_case ( lowerCAmelCase : float , lowerCAmelCase : float ): """simple docstring""" if inductance <= 0: raise ValueError("Inductance cannot be 0 or negative" ) elif capacitance <= 0: raise ValueError("Capacitance cannot be 0 or negative" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
18
0
lowerCAmelCase : Optional[Any] = range(2, 20 + 1) lowerCAmelCase : Dict = [10**k for k in range(ks[-1] + 1)] lowerCAmelCase : dict[int, dict[int, list[list[int]]]] = {} def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[Any] = sum(a_i[j] for j in range(_UpperCAmelCase , len(_UpperCAmelCase ) ) ) SCREAMING_SNAKE_CASE_: Optional[int] = sum(a_i[j] * base[j] for j in range(min(len(_UpperCAmelCase ) , _UpperCAmelCase ) ) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = 0, 0 SCREAMING_SNAKE_CASE_: int = n - i SCREAMING_SNAKE_CASE_: str = memo.get(_UpperCAmelCase ) if sub_memo is not None: SCREAMING_SNAKE_CASE_: int = sub_memo.get(_UpperCAmelCase ) if jumps is not None and len(_UpperCAmelCase ) > 0: # find and make the largest jump without going over SCREAMING_SNAKE_CASE_: str = -1 for _k in range(len(_UpperCAmelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: SCREAMING_SNAKE_CASE_: Optional[Any] = _k break if max_jump >= 0: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = jumps[max_jump] # since the difference between jumps is cached, add c SCREAMING_SNAKE_CASE_: Union[str, Any] = diff + c for j in range(min(_UpperCAmelCase , len(_UpperCAmelCase ) ) ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = divmod(_UpperCAmelCase , 10 ) if new_c > 0: add(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) else: SCREAMING_SNAKE_CASE_: List[Any] = [] else: SCREAMING_SNAKE_CASE_: Union[str, Any] = {c: []} SCREAMING_SNAKE_CASE_: List[str] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = next_term(_UpperCAmelCase , k - 1 , i + dn , _UpperCAmelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = compute(_UpperCAmelCase , _UpperCAmelCase , i + dn , _UpperCAmelCase ) diff += _diff dn += terms_jumped SCREAMING_SNAKE_CASE_: Dict = sub_memo[c] # keep jumps sorted by # of terms skipped SCREAMING_SNAKE_CASE_: Tuple = 0 while j < len(_UpperCAmelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(_UpperCAmelCase , (diff, dn, k) ) return (diff, dn) def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if i >= n: return 0, i if k > len(_UpperCAmelCase ): a_i.extend([0 for _ in range(k - len(_UpperCAmelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) SCREAMING_SNAKE_CASE_: Tuple = i SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = 0, 0, 0 for j in range(len(_UpperCAmelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 SCREAMING_SNAKE_CASE_: Optional[int] = ds_c + ds_b diff += addend SCREAMING_SNAKE_CASE_: Dict = 0 for j in range(_UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[int] = a_i[j] + addend SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = divmod(_UpperCAmelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return diff, i - start_i def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): for j in range(_UpperCAmelCase , len(_UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_: str = digits[j] + addend if s >= 10: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = divmod(_UpperCAmelCase , 10 ) SCREAMING_SNAKE_CASE_: List[str] = addend // 10 + quotient else: SCREAMING_SNAKE_CASE_: Tuple = s SCREAMING_SNAKE_CASE_: List[Any] = addend // 10 if addend == 0: break while addend > 0: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = divmod(_UpperCAmelCase , 10 ) digits.append(_UpperCAmelCase ) def A_ ( _UpperCAmelCase = 10**15 ): SCREAMING_SNAKE_CASE_: str = [1] SCREAMING_SNAKE_CASE_: List[str] = 1 SCREAMING_SNAKE_CASE_: Dict = 0 while True: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = next_term(_UpperCAmelCase , 20 , i + dn , _UpperCAmelCase ) dn += terms_jumped if dn == n - i: break SCREAMING_SNAKE_CASE_: Union[str, Any] = 0 for j in range(len(_UpperCAmelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
13
def _snake_case ( lowerCAmelCase : list ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = len(lowerCAmelCase ) for i in range(1 , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : int = collection[i] SCREAMING_SNAKE_CASE_ : Any = 0 SCREAMING_SNAKE_CASE_ : Tuple = i - 1 while low <= high: SCREAMING_SNAKE_CASE_ : int = (low + high) // 2 if val < collection[mid]: SCREAMING_SNAKE_CASE_ : Optional[Any] = mid - 1 else: SCREAMING_SNAKE_CASE_ : Tuple = mid + 1 for j in range(lowerCAmelCase , lowerCAmelCase , -1 ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = collection[j - 1] SCREAMING_SNAKE_CASE_ : int = val return collection if __name__ == "__main__": __lowerCamelCase : Dict = input('''Enter numbers separated by a comma:\n''').strip() __lowerCamelCase : List[str] = [int(item) for item in user_input.split(''',''')] print(binary_insertion_sort(unsorted))
18
0
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) _lowerCamelCase : List[Any] = """bert-base-cased""" _lowerCamelCase : Any = """fp16""" _lowerCamelCase : Tuple = """bf16""" _lowerCamelCase : List[str] = [FPaa, BFaa] @require_fsdp @require_cuda class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[Any]: '''simple docstring''' super().setUp() A__ = dict( ACCELERATE_USE_FSDP='''true''' , MASTER_ADDR='''localhost''' , MASTER_PORT='''10999''' , RANK='''0''' , LOCAL_RANK='''0''' , WORLD_SIZE='''1''' , ) def SCREAMING_SNAKE_CASE ( self : str) ->List[str]: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(UpperCAmelCase__): A__ = self.dist_env.copy() A__ = f"""{i + 1}""" A__ = strategy with mockenv_context(**UpperCAmelCase__): A__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1)) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Tuple: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(UpperCAmelCase__): A__ = self.dist_env.copy() A__ = prefetch_policy with mockenv_context(**UpperCAmelCase__): A__ = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1)) def SCREAMING_SNAKE_CASE ( self : Tuple) ->Dict: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(UpperCAmelCase__): A__ = self.dist_env.copy() A__ = state_dict_type with mockenv_context(**UpperCAmelCase__): A__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1)) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only) def SCREAMING_SNAKE_CASE ( self : str) ->int: '''simple docstring''' A__ = AutoModel.from_pretrained(UpperCAmelCase__) for policy in FSDP_AUTO_WRAP_POLICY: A__ = self.dist_env.copy() A__ = policy if policy == "TRANSFORMER_BASED_WRAP": A__ = '''BertLayer''' elif policy == "SIZE_BASED_WRAP": A__ = '''2000''' with mockenv_context(**UpperCAmelCase__): A__ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(UpperCAmelCase__) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy) A__ = self.dist_env.copy() A__ = '''TRANSFORMER_BASED_WRAP''' A__ = '''T5Layer''' with mockenv_context(**UpperCAmelCase__): A__ = FullyShardedDataParallelPlugin() with self.assertRaises(UpperCAmelCase__) as cm: fsdp_plugin.set_auto_wrap_policy(UpperCAmelCase__) self.assertTrue('''Could not find the transformer layer class to wrap in the model.''' in str(cm.exception)) A__ = self.dist_env.copy() A__ = '''SIZE_BASED_WRAP''' A__ = '''0''' with mockenv_context(**UpperCAmelCase__): A__ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(UpperCAmelCase__) self.assertIsNone(fsdp_plugin.auto_wrap_policy) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Optional[int]: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: A__ = self.dist_env.copy() A__ = mp_dtype with mockenv_context(**UpperCAmelCase__): A__ = Accelerator() if mp_dtype == "fp16": A__ = torch.floataa elif mp_dtype == "bf16": A__ = torch.bfloataa A__ = MixedPrecision(param_dtype=UpperCAmelCase__ , reduce_dtype=UpperCAmelCase__ , buffer_dtype=UpperCAmelCase__) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , UpperCAmelCase__) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , UpperCAmelCase__)) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler) AcceleratorState._reset_state(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Dict) ->str: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: A__ = self.dist_env.copy() A__ = str(UpperCAmelCase__).lower() with mockenv_context(**UpperCAmelCase__): A__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=UpperCAmelCase__)) @require_fsdp @require_multi_gpu @slow class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : str) ->List[Any]: '''simple docstring''' super().setUp() A__ = 0.82 A__ = [ '''fsdp_shard_grad_op_transformer_based_wrap''', '''fsdp_full_shard_transformer_based_wrap''', ] A__ = { '''multi_gpu_fp16''': 3_200, '''fsdp_shard_grad_op_transformer_based_wrap_fp16''': 2_000, '''fsdp_full_shard_transformer_based_wrap_fp16''': 1_900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } A__ = 160 A__ = 160 A__ = inspect.getfile(accelerate.test_utils) A__ = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ['''scripts''', '''external_deps''']) def SCREAMING_SNAKE_CASE ( self : str) ->Any: '''simple docstring''' A__ = os.path.join(self.test_scripts_folder , '''test_performance.py''') A__ = ['''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp'''] for config in self.performance_configs: A__ = cmd.copy() for i, strategy in enumerate(UpperCAmelCase__): if strategy.lower() in config: cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""") break if "fp32" in config: cmd_config.append('''--mixed_precision=no''') else: cmd_config.append('''--mixed_precision=fp16''') if "cpu_offload" in config: cmd_config.append('''--fsdp_offload_params=True''') for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(f"""--fsdp_auto_wrap_policy={policy}""") break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''') elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''') cmd_config.extend( [ self.test_file_path, f"""--output_dir={self.tmpdir}""", f"""--performance_lower_bound={self.performance_lower_bound}""", ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(UpperCAmelCase__ , env=os.environ.copy()) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[Any]: '''simple docstring''' A__ = os.path.join(self.test_scripts_folder , '''test_checkpointing.py''') A__ = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp''', '''--mixed_precision=fp16''', '''--fsdp_transformer_layer_cls_to_wrap=BertLayer''', ] for i, strategy in enumerate(UpperCAmelCase__): A__ = cmd.copy() cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""") if strategy != "FULL_SHARD": continue A__ = len(UpperCAmelCase__) for state_dict_type in FSDP_STATE_DICT_TYPE: A__ = cmd_config[:state_dict_config_index] cmd_config.append(f"""--fsdp_state_dict_type={state_dict_type}""") cmd_config.extend( [ self.test_file_path, f"""--output_dir={self.tmpdir}""", '''--partial_train_epoch=1''', ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(UpperCAmelCase__ , env=os.environ.copy()) A__ = cmd_config[:-1] A__ = os.path.join(self.tmpdir , '''epoch_0''') cmd_config.extend( [ f"""--resume_from_checkpoint={resume_from_checkpoint}""", ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(UpperCAmelCase__ , env=os.environ.copy()) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->int: '''simple docstring''' A__ = os.path.join(self.test_scripts_folder , '''test_peak_memory_usage.py''') A__ = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): A__ = cmd.copy() if "fp16" in spec: cmd_config.extend(['''--mixed_precision=fp16''']) else: cmd_config.extend(['''--mixed_precision=no''']) if "multi_gpu" in spec: continue else: cmd_config.extend(['''--use_fsdp''']) for i, strategy in enumerate(UpperCAmelCase__): if strategy.lower() in spec: cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""") break if "cpu_offload" in spec: cmd_config.append('''--fsdp_offload_params=True''') for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(f"""--fsdp_auto_wrap_policy={policy}""") break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''') elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''') cmd_config.extend( [ self.test_file_path, f"""--output_dir={self.tmpdir}""", f"""--peak_memory_upper_bound={peak_mem_upper_bound}""", f"""--n_train={self.n_train}""", f"""--n_val={self.n_val}""", ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(UpperCAmelCase__ , env=os.environ.copy())
14
from collections.abc import Sequence from queue import Queue class a__ : def __init__( self : int,_A : List[Any],_A : Optional[Any],_A : Optional[int],_A : int=None,_A : List[str]=None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = start SCREAMING_SNAKE_CASE_ : List[str] = end SCREAMING_SNAKE_CASE_ : Tuple = val SCREAMING_SNAKE_CASE_ : List[str] = (start + end) // 2 SCREAMING_SNAKE_CASE_ : Optional[int] = left SCREAMING_SNAKE_CASE_ : str = right def __repr__( self : Tuple ): """simple docstring""" return F'SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})' class a__ : def __init__( self : Any,_A : Sequence,_A : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = collection SCREAMING_SNAKE_CASE_ : Optional[int] = function if self.collection: SCREAMING_SNAKE_CASE_ : List[str] = self._build_tree(0,len(_A ) - 1 ) def __UpperCamelCase ( self : int,_A : Any,_A : List[Any] ): """simple docstring""" self._update_tree(self.root,_A,_A ) def __UpperCamelCase ( self : str,_A : Any,_A : List[Any] ): """simple docstring""" return self._query_range(self.root,_A,_A ) def __UpperCamelCase ( self : Any,_A : Optional[int],_A : int ): """simple docstring""" if start == end: return SegmentTreeNode(_A,_A,self.collection[start] ) SCREAMING_SNAKE_CASE_ : List[Any] = (start + end) // 2 SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._build_tree(_A,_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = self._build_tree(mid + 1,_A ) return SegmentTreeNode(_A,_A,self.fn(left.val,right.val ),_A,_A ) def __UpperCamelCase ( self : int,_A : int,_A : Tuple,_A : Dict ): """simple docstring""" if node.start == i and node.end == i: SCREAMING_SNAKE_CASE_ : Union[str, Any] = val return if i <= node.mid: self._update_tree(node.left,_A,_A ) else: self._update_tree(node.right,_A,_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.fn(node.left.val,node.right.val ) def __UpperCamelCase ( self : str,_A : List[str],_A : Optional[int],_A : Optional[Any] ): """simple docstring""" if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left,_A,_A ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left,_A,node.mid ),self._query_range(node.right,node.mid + 1,_A ),) else: # range in right child tree return self._query_range(node.right,_A,_A ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" if self.root is not None: SCREAMING_SNAKE_CASE_ : int = Queue() queue.put(self.root ) while not queue.empty(): SCREAMING_SNAKE_CASE_ : Tuple = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('''*''' * 50) __lowerCamelCase : int = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
18
0
from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract SCREAMING_SNAKE_CASE :str = logging.get_logger(__name__) def UpperCAmelCase ( a_ , a_ , a_ ) -> List[Any]: """simple docstring""" return [ int(1_0_0_0 * (box[0] / width) ), int(1_0_0_0 * (box[1] / height) ), int(1_0_0_0 * (box[2] / width) ), int(1_0_0_0 * (box[3] / height) ), ] def UpperCAmelCase ( a_ , a_ , a_ ) -> List[str]: """simple docstring""" __A = to_pil_image(a_ ) __A , __A = pil_image.size __A = pytesseract.image_to_data(a_ , lang=a_ , output_type="dict" , config=a_ ) __A , __A , __A , __A , __A = data["text"], data["left"], data["top"], data["width"], data["height"] # filter empty words and corresponding coordinates __A = [idx for idx, word in enumerate(a_ ) if not word.strip()] __A = [word for idx, word in enumerate(a_ ) if idx not in irrelevant_indices] __A = [coord for idx, coord in enumerate(a_ ) if idx not in irrelevant_indices] __A = [coord for idx, coord in enumerate(a_ ) if idx not in irrelevant_indices] __A = [coord for idx, coord in enumerate(a_ ) if idx not in irrelevant_indices] __A = [coord for idx, coord in enumerate(a_ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format __A = [] for x, y, w, h in zip(a_ , a_ , a_ , a_ ): __A = [x, y, x + w, y + h] actual_boxes.append(a_ ) # finally, normalize the bounding boxes __A = [] for box in actual_boxes: normalized_boxes.append(normalize_box(a_ , a_ , a_ ) ) assert len(a_ ) == len(a_ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = ["pixel_values"] def __init__( self : Union[str, Any] ,A : bool = True ,A : Dict[str, int] = None ,A : PILImageResampling = PILImageResampling.BILINEAR ,A : bool = True ,A : float = 1 / 2_55 ,A : bool = True ,A : Union[float, Iterable[float]] = None ,A : Union[float, Iterable[float]] = None ,A : bool = True ,A : Optional[str] = None ,A : Optional[str] = "" ,**A : Optional[Any] ,): super().__init__(**A ) __A = size if size is not None else {"height": 2_24, "width": 2_24} __A = get_size_dict(A ) __A = do_resize __A = size __A = resample __A = do_rescale __A = rescale_value __A = do_normalize __A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __A = image_std if image_std is not None else IMAGENET_STANDARD_STD __A = apply_ocr __A = ocr_lang __A = tesseract_config def UpperCamelCase_ ( self : Any ,A : np.ndarray ,A : Dict[str, int] ,A : PILImageResampling = PILImageResampling.BILINEAR ,A : Optional[Union[str, ChannelDimension]] = None ,**A : List[str] ,): __A = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) __A = (size["height"], size["width"]) return resize(A ,size=A ,resample=A ,data_format=A ,**A ) def UpperCamelCase_ ( self : Tuple ,A : np.ndarray ,A : Union[int, float] ,A : Optional[Union[str, ChannelDimension]] = None ,**A : List[Any] ,): return rescale(A ,scale=A ,data_format=A ,**A ) def UpperCamelCase_ ( self : Optional[Any] ,A : np.ndarray ,A : Union[float, Iterable[float]] ,A : Union[float, Iterable[float]] ,A : Optional[Union[str, ChannelDimension]] = None ,**A : List[Any] ,): return normalize(A ,mean=A ,std=A ,data_format=A ,**A ) def UpperCamelCase_ ( self : Any ,A : ImageInput ,A : bool = None ,A : Dict[str, int] = None ,A : List[str]=None ,A : bool = None ,A : float = None ,A : bool = None ,A : Union[float, Iterable[float]] = None ,A : Union[float, Iterable[float]] = None ,A : bool = None ,A : Optional[str] = None ,A : Optional[str] = None ,A : Optional[Union[str, TensorType]] = None ,A : ChannelDimension = ChannelDimension.FIRST ,**A : int ,): __A = do_resize if do_resize is not None else self.do_resize __A = size if size is not None else self.size __A = get_size_dict(A ) __A = resample if resample is not None else self.resample __A = do_rescale if do_rescale is not None else self.do_rescale __A = rescale_factor if rescale_factor is not None else self.rescale_factor __A = do_normalize if do_normalize is not None else self.do_normalize __A = image_mean if image_mean is not None else self.image_mean __A = image_std if image_std is not None else self.image_std __A = apply_ocr if apply_ocr is not None else self.apply_ocr __A = ocr_lang if ocr_lang is not None else self.ocr_lang __A = tesseract_config if tesseract_config is not None else self.tesseract_config __A = make_list_of_images(A ) if not valid_images(A ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("If do_normalize is True, image_mean and image_std must be specified." ) # All transformations expect numpy arrays. __A = [to_numpy_array(A ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self ,"pytesseract" ) __A = [] __A = [] for image in images: __A , __A = apply_tesseract(A ,A ,A ) words_batch.append(A ) boxes_batch.append(A ) if do_resize: __A = [self.resize(image=A ,size=A ,resample=A ) for image in images] if do_rescale: __A = [self.rescale(image=A ,scale=A ) for image in images] if do_normalize: __A = [self.normalize(image=A ,mean=A ,std=A ) for image in images] __A = [to_channel_dimension_format(A ,A ) for image in images] __A = BatchFeature(data={"pixel_values": images} ,tensor_type=A ) if apply_ocr: __A = words_batch __A = boxes_batch return data
15
def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : int ): """simple docstring""" while b: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = b, a % b return a def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : int ): """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(lowerCAmelCase , a % b ) def _snake_case ( ): """simple docstring""" print(f'euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}' ) print(f'euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}' ) print(f'euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}' ) print(f'euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}' ) print(f'euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}' ) print(f'euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}' ) print(f'euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}' ) print(f'euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}' ) if __name__ == "__main__": main()
18
0
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase ) -> int: if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(__lowerCamelCase ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
16
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCamelCase : Dict = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[Any] = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys __lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
18
0
"""simple docstring""" import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : str ): __lowercase = 3 __lowercase = 2_5_0 __lowercase = ids_tensor((batch_size, length), UpperCAmelCase__ ) __lowercase = torch.ones((batch_size, length), device=UpperCAmelCase__, dtype=torch.float ) / length return input_ids, scores def _lowercase ( self : List[Any] ): __lowercase ,__lowercase = self._get_tensors(5 ) __lowercase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=1_0 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(UpperCAmelCase__, UpperCAmelCase__ ) ) __lowercase ,__lowercase = self._get_tensors(9 ) self.assertFalse(criteria(UpperCAmelCase__, UpperCAmelCase__ ) ) __lowercase ,__lowercase = self._get_tensors(1_0 ) self.assertTrue(criteria(UpperCAmelCase__, UpperCAmelCase__ ) ) def _lowercase ( self : Any ): __lowercase = MaxLengthCriteria(max_length=1_0 ) __lowercase ,__lowercase = self._get_tensors(5 ) self.assertFalse(criteria(UpperCAmelCase__, UpperCAmelCase__ ) ) __lowercase ,__lowercase = self._get_tensors(9 ) self.assertFalse(criteria(UpperCAmelCase__, UpperCAmelCase__ ) ) __lowercase ,__lowercase = self._get_tensors(1_0 ) self.assertTrue(criteria(UpperCAmelCase__, UpperCAmelCase__ ) ) def _lowercase ( self : List[Any] ): __lowercase = MaxNewTokensCriteria(start_length=5, max_new_tokens=5 ) __lowercase ,__lowercase = self._get_tensors(5 ) self.assertFalse(criteria(UpperCAmelCase__, UpperCAmelCase__ ) ) __lowercase ,__lowercase = self._get_tensors(9 ) self.assertFalse(criteria(UpperCAmelCase__, UpperCAmelCase__ ) ) __lowercase ,__lowercase = self._get_tensors(1_0 ) self.assertTrue(criteria(UpperCAmelCase__, UpperCAmelCase__ ) ) __lowercase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length, 1_0 ) def _lowercase ( self : Optional[int] ): __lowercase ,__lowercase = self._get_tensors(5 ) __lowercase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(UpperCAmelCase__, UpperCAmelCase__ ) ) __lowercase = MaxTimeCriteria(max_time=0.1, initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(UpperCAmelCase__, UpperCAmelCase__ ) ) def _lowercase ( self : int ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ), 1_0 ) with self.assertWarns(UpperCAmelCase__ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ), 1_1 ) __lowercase = validate_stopping_criteria(StoppingCriteriaList(), 1_1 ) self.assertEqual(len(UpperCAmelCase__ ), 1 )
17
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : Path , lowerCAmelCase : str = None , lowerCAmelCase : str = None , lowerCAmelCase : str = None , ): """simple docstring""" if config_name_or_path is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = "facebook/rag-token-base" if model_type == "rag_token" else "facebook/rag-sequence-base" if generator_tokenizer_name_or_path is None: SCREAMING_SNAKE_CASE_ : Dict = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = question_encoder_name_or_path SCREAMING_SNAKE_CASE_ : Union[str, Any] = RagTokenForGeneration if model_type == "rag_token" else RagSequenceForGeneration # Save model. SCREAMING_SNAKE_CASE_ : List[Any] = RagConfig.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = AutoConfig.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = AutoConfig.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = gen_config SCREAMING_SNAKE_CASE_ : Optional[Any] = question_encoder_config SCREAMING_SNAKE_CASE_ : Dict = model_class.from_pretrained_question_encoder_generator( lowerCAmelCase , lowerCAmelCase , config=lowerCAmelCase ) rag_model.save_pretrained(lowerCAmelCase ) # Sanity check. model_class.from_pretrained(lowerCAmelCase ) # Save tokenizers. SCREAMING_SNAKE_CASE_ : Optional[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase ) gen_tokenizer.save_pretrained(dest_dir / "generator_tokenizer/" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCAmelCase ) question_encoder_tokenizer.save_pretrained(dest_dir / "question_encoder_tokenizer/" ) if __name__ == "__main__": __lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( '''--model_type''', choices=['''rag_sequence''', '''rag_token'''], required=True, type=str, help='''RAG model type: rag_sequence, rag_token''', ) parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''') parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''') parser.add_argument( '''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier''' ) parser.add_argument( '''--generator_tokenizer_name_or_path''', type=str, help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''', ) parser.add_argument( '''--question_encoder_tokenizer_name_or_path''', type=str, help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''', ) parser.add_argument( '''--config_name_or_path''', type=str, help=( '''Identifier of the model config to use, if not provided, resolves to a base config for a given''' ''' ``model_type``''' ), ) __lowerCamelCase : str = parser.parse_args() __lowerCamelCase : int = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
18
0
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin __A =get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') class _SCREAMING_SNAKE_CASE ( snake_case_ , unittest.TestCase ): lowerCAmelCase__ = BartphoTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = True def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: super().setUp() lowerCamelCase_ = ["▁This", "▁is", "▁a", "▁t", "est"] lowerCamelCase_ = dict(zip(lowercase , range(len(lowercase ) ) ) ) lowerCamelCase_ = {"unk_token": "<unk>"} lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"] ) with open(self.monolingual_vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(f'{token} {vocab_tokens[token]}\n' ) lowerCamelCase_ = BartphoTokenizer(lowercase , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE_( self , **lowercase ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **lowercase ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Optional[int]: lowerCamelCase_ = "This is a là test" lowerCamelCase_ = "This is a<unk><unk> test" return input_text, output_text def SCREAMING_SNAKE_CASE_( self ) -> Any: lowerCamelCase_ = BartphoTokenizer(lowercase , self.monolingual_vocab_file , **self.special_tokens_map ) lowerCamelCase_ = "This is a là test" lowerCamelCase_ = "▁This ▁is ▁a ▁l à ▁t est".split() lowerCamelCase_ = tokenizer.tokenize(lowercase ) self.assertListEqual(lowercase , lowercase ) lowerCamelCase_ = tokens + [tokenizer.unk_token] lowerCamelCase_ = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , lowercase )
19
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class a__ ( unittest.TestCase ): def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = { "task_specific_params": { "summarization": {"length_penalty": 1.0, "max_length": 128, "min_length": 12, "num_beams": 4}, "summarization_cnn": {"length_penalty": 2.0, "max_length": 142, "min_length": 56, "num_beams": 4}, "summarization_xsum": {"length_penalty": 1.0, "max_length": 62, "min_length": 11, "num_beams": 6}, } } SCREAMING_SNAKE_CASE_ : Any = { "task_specific_params.summarization.length_penalty": 1.0, "task_specific_params.summarization.max_length": 128, "task_specific_params.summarization.min_length": 12, "task_specific_params.summarization.num_beams": 4, "task_specific_params.summarization_cnn.length_penalty": 2.0, "task_specific_params.summarization_cnn.max_length": 142, "task_specific_params.summarization_cnn.min_length": 56, "task_specific_params.summarization_cnn.num_beams": 4, "task_specific_params.summarization_xsum.length_penalty": 1.0, "task_specific_params.summarization_xsum.max_length": 62, "task_specific_params.summarization_xsum.min_length": 11, "task_specific_params.summarization_xsum.num_beams": 6, } self.assertEqual(flatten_dict(_A ),_A ) def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = np.random.randn(3,4 ) self.assertTrue(np.allclose(transpose(_A ),x.transpose() ) ) SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4,5 ) self.assertTrue(np.allclose(transpose(_A,axes=(1, 2, 0) ),x.transpose((1, 2, 0) ) ) ) @require_torch def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Any = torch.tensor(_A ) self.assertTrue(np.allclose(transpose(_A ),transpose(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ : Dict = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor(_A ) self.assertTrue(np.allclose(transpose(_A,axes=(1, 2, 0) ),transpose(_A,axes=(1, 2, 0) ).numpy() ) ) @require_tf def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tf.constant(_A ) self.assertTrue(np.allclose(transpose(_A ),transpose(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ : List[str] = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.constant(_A ) self.assertTrue(np.allclose(transpose(_A,axes=(1, 2, 0) ),transpose(_A,axes=(1, 2, 0) ).numpy() ) ) @require_flax def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Tuple = jnp.array(_A ) self.assertTrue(np.allclose(transpose(_A ),np.asarray(transpose(_A ) ) ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : List[Any] = jnp.array(_A ) self.assertTrue(np.allclose(transpose(_A,axes=(1, 2, 0) ),np.asarray(transpose(_A,axes=(1, 2, 0) ) ) ) ) def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4 ) self.assertTrue(np.allclose(reshape(_A,(4, 3) ),np.reshape(_A,(4, 3) ) ) ) SCREAMING_SNAKE_CASE_ : Any = np.random.randn(3,4,5 ) self.assertTrue(np.allclose(reshape(_A,(12, 5) ),np.reshape(_A,(12, 5) ) ) ) @require_torch def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor(_A ) self.assertTrue(np.allclose(reshape(_A,(4, 3) ),reshape(_A,(4, 3) ).numpy() ) ) SCREAMING_SNAKE_CASE_ : Dict = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : int = torch.tensor(_A ) self.assertTrue(np.allclose(reshape(_A,(12, 5) ),reshape(_A,(12, 5) ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tf.constant(_A ) self.assertTrue(np.allclose(reshape(_A,(4, 3) ),reshape(_A,(4, 3) ).numpy() ) ) SCREAMING_SNAKE_CASE_ : int = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : Any = tf.constant(_A ) self.assertTrue(np.allclose(reshape(_A,(12, 5) ),reshape(_A,(12, 5) ).numpy() ) ) @require_flax def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : int = jnp.array(_A ) self.assertTrue(np.allclose(reshape(_A,(4, 3) ),np.asarray(reshape(_A,(4, 3) ) ) ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : Tuple = jnp.array(_A ) self.assertTrue(np.allclose(reshape(_A,(12, 5) ),np.asarray(reshape(_A,(12, 5) ) ) ) ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = np.random.randn(1,3,4 ) self.assertTrue(np.allclose(squeeze(_A ),np.squeeze(_A ) ) ) SCREAMING_SNAKE_CASE_ : Any = np.random.randn(1,4,1,5 ) self.assertTrue(np.allclose(squeeze(_A,axis=2 ),np.squeeze(_A,axis=2 ) ) ) @require_torch def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = np.random.randn(1,3,4 ) SCREAMING_SNAKE_CASE_ : Any = torch.tensor(_A ) self.assertTrue(np.allclose(squeeze(_A ),squeeze(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ : Any = np.random.randn(1,4,1,5 ) SCREAMING_SNAKE_CASE_ : Dict = torch.tensor(_A ) self.assertTrue(np.allclose(squeeze(_A,axis=2 ),squeeze(_A,axis=2 ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = np.random.randn(1,3,4 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.constant(_A ) self.assertTrue(np.allclose(squeeze(_A ),squeeze(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ : Any = np.random.randn(1,4,1,5 ) SCREAMING_SNAKE_CASE_ : Optional[int] = tf.constant(_A ) self.assertTrue(np.allclose(squeeze(_A,axis=2 ),squeeze(_A,axis=2 ).numpy() ) ) @require_flax def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.random.randn(1,3,4 ) SCREAMING_SNAKE_CASE_ : List[str] = jnp.array(_A ) self.assertTrue(np.allclose(squeeze(_A ),np.asarray(squeeze(_A ) ) ) ) SCREAMING_SNAKE_CASE_ : str = np.random.randn(1,4,1,5 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = jnp.array(_A ) self.assertTrue(np.allclose(squeeze(_A,axis=2 ),np.asarray(squeeze(_A,axis=2 ) ) ) ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4 ) self.assertTrue(np.allclose(expand_dims(_A,axis=1 ),np.expand_dims(_A,axis=1 ) ) ) @require_torch def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor(_A ) self.assertTrue(np.allclose(expand_dims(_A,axis=1 ),expand_dims(_A,axis=1 ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Optional[int] = tf.constant(_A ) self.assertTrue(np.allclose(expand_dims(_A,axis=1 ),expand_dims(_A,axis=1 ).numpy() ) ) @require_flax def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = jnp.array(_A ) self.assertTrue(np.allclose(expand_dims(_A,axis=1 ),np.asarray(expand_dims(_A,axis=1 ) ) ) )
18
0
lowercase : Union[str, Any] = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def _snake_case( ) -> None: lowercase : Tuple = input("""Enter message: """ ) lowercase : Dict = input("""Enter key [alphanumeric]: """ ) lowercase : Tuple = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): lowercase : Optional[Any] = """encrypt""" lowercase : Optional[int] = encrypt_message(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif mode.lower().startswith("""d""" ): lowercase : List[Any] = """decrypt""" lowercase : Union[str, Any] = decrypt_message(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(f"\n{mode.title()}ed message:" ) print(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: return translate_message(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , """encrypt""" ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: return translate_message(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , """decrypt""" ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: lowercase : str = [] lowercase : Tuple = 0 lowercase : Tuple = key.upper() for symbol in message: lowercase : int = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(SCREAMING_SNAKE_CASE__ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(SCREAMING_SNAKE_CASE__ ): lowercase : str = 0 else: translated.append(SCREAMING_SNAKE_CASE__ ) return "".join(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
20
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : Tuple = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} __lowerCamelCase : List[Any] = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } __lowerCamelCase : int = { '''allenai/longformer-base-4096''': 40_96, '''allenai/longformer-large-4096''': 40_96, '''allenai/longformer-large-4096-finetuned-triviaqa''': 40_96, '''allenai/longformer-base-4096-extra.pos.embd.only''': 40_96, '''allenai/longformer-large-4096-extra.pos.embd.only''': 40_96, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE_ : str = bs[:] SCREAMING_SNAKE_CASE_ : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCAmelCase ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE_ : List[str] = [chr(lowerCAmelCase ) for n in cs] return dict(zip(lowerCAmelCase , lowerCAmelCase ) ) def _snake_case ( lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = set() SCREAMING_SNAKE_CASE_ : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE_ : List[str] = char return pairs class a__ ( A__ ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = ['input_ids', 'attention_mask'] def __init__( self : Union[str, Any],_A : List[Any],_A : Tuple,_A : str="replace",_A : Optional[int]="<s>",_A : Dict="</s>",_A : Any="</s>",_A : Optional[Any]="<s>",_A : Union[str, Any]="<unk>",_A : int="<pad>",_A : Dict="<mask>",_A : int=False,**_A : Dict,): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else bos_token SCREAMING_SNAKE_CASE_ : Optional[int] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else eos_token SCREAMING_SNAKE_CASE_ : str = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else sep_token SCREAMING_SNAKE_CASE_ : Union[str, Any] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else cls_token SCREAMING_SNAKE_CASE_ : List[str] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else unk_token SCREAMING_SNAKE_CASE_ : Optional[Any] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_ : Dict = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else mask_token super().__init__( errors=_A,bos_token=_A,eos_token=_A,unk_token=_A,sep_token=_A,cls_token=_A,pad_token=_A,mask_token=_A,add_prefix_space=_A,**_A,) with open(_A,encoding="utf-8" ) as vocab_handle: SCREAMING_SNAKE_CASE_ : Tuple = json.load(_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE_ : Any = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE_ : Optional[Any] = bytes_to_unicode() SCREAMING_SNAKE_CASE_ : str = {v: k for k, v in self.byte_encoder.items()} with open(_A,encoding="utf-8" ) as merges_handle: SCREAMING_SNAKE_CASE_ : int = merges_handle.read().split("\n" )[1:-1] SCREAMING_SNAKE_CASE_ : List[str] = [tuple(merge.split() ) for merge in bpe_merges] SCREAMING_SNAKE_CASE_ : Optional[int] = dict(zip(_A,range(len(_A ) ) ) ) SCREAMING_SNAKE_CASE_ : Any = {} SCREAMING_SNAKE_CASE_ : List[str] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE_ : List[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def __UpperCamelCase ( self : List[str] ): """simple docstring""" return len(self.encoder ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" return dict(self.encoder,**self.added_tokens_encoder ) def __UpperCamelCase ( self : Any,_A : int ): """simple docstring""" if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE_ : Union[str, Any] = tuple(_A ) SCREAMING_SNAKE_CASE_ : str = get_pairs(_A ) if not pairs: return token while True: SCREAMING_SNAKE_CASE_ : Tuple = min(_A,key=lambda _A : self.bpe_ranks.get(_A,float("inf" ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = bigram SCREAMING_SNAKE_CASE_ : int = [] SCREAMING_SNAKE_CASE_ : Dict = 0 while i < len(_A ): try: SCREAMING_SNAKE_CASE_ : Tuple = word.index(_A,_A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE_ : str = j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE_ : Dict = tuple(_A ) SCREAMING_SNAKE_CASE_ : List[str] = new_word if len(_A ) == 1: break else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_pairs(_A ) SCREAMING_SNAKE_CASE_ : List[str] = " ".join(_A ) SCREAMING_SNAKE_CASE_ : Any = word return word def __UpperCamelCase ( self : Dict,_A : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = [] for token in re.findall(self.pat,_A ): SCREAMING_SNAKE_CASE_ : Any = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_A ).split(" " ) ) return bpe_tokens def __UpperCamelCase ( self : Optional[int],_A : str ): """simple docstring""" return self.encoder.get(_A,self.encoder.get(self.unk_token ) ) def __UpperCamelCase ( self : Tuple,_A : str ): """simple docstring""" return self.decoder.get(_A ) def __UpperCamelCase ( self : List[str],_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = "".join(_A ) SCREAMING_SNAKE_CASE_ : Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8",errors=self.errors ) return text def __UpperCamelCase ( self : List[Any],_A : str,_A : Optional[str] = None ): """simple docstring""" if not os.path.isdir(_A ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return SCREAMING_SNAKE_CASE_ : Tuple = os.path.join( _A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE_ : Any = os.path.join( _A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(_A,"w",encoding="utf-8" ) as f: f.write(json.dumps(self.encoder,indent=2,sort_keys=_A,ensure_ascii=_A ) + "\n" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 with open(_A,"w",encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items(),key=lambda _A : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' " Please check that the tokenizer is not corrupted!" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = token_index writer.write(" ".join(_A ) + "\n" ) index += 1 return vocab_file, merge_file def __UpperCamelCase ( self : Optional[Any],_A : List[int],_A : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_ : str = [self.cls_token_id] SCREAMING_SNAKE_CASE_ : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCamelCase ( self : str,_A : List[int],_A : Optional[List[int]] = None,_A : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A,token_ids_a=_A,already_has_special_tokens=_A ) if token_ids_a is None: return [1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) + [1] def __UpperCamelCase ( self : Any,_A : List[int],_A : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase ( self : Any,_A : Union[str, Any],_A : Any=False,**_A : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = kwargs.pop("add_prefix_space",self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_A ) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE_ : str = " " + text return (text, kwargs)
18
0
import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser( description=( "Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned" " Distillation" ) ) parser.add_argument("--model_type", default="bert", choices=["bert"]) parser.add_argument("--model_name", default="bert-base-uncased", type=str) parser.add_argument("--dump_checkpoint", default="serialization_dir/tf_bert-base-uncased_0247911.pth", type=str) parser.add_argument("--vocab_transform", action="store_true") SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args() if args.model_type == "bert": SCREAMING_SNAKE_CASE : Any = BertForMaskedLM.from_pretrained(args.model_name) SCREAMING_SNAKE_CASE : Union[str, Any] = "bert" else: raise ValueError("args.model_type should be \"bert\".") SCREAMING_SNAKE_CASE : Any = model.state_dict() SCREAMING_SNAKE_CASE : Tuple = {} for w in ["word_embeddings", "position_embeddings"]: SCREAMING_SNAKE_CASE : Dict = state_dict[F"{prefix}.embeddings.{w}.weight"] for w in ["weight", "bias"]: SCREAMING_SNAKE_CASE : List[str] = state_dict[F"{prefix}.embeddings.LayerNorm.{w}"] SCREAMING_SNAKE_CASE : Dict = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: SCREAMING_SNAKE_CASE : Tuple = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}" ] SCREAMING_SNAKE_CASE : Dict = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}" ] SCREAMING_SNAKE_CASE : Tuple = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}" ] SCREAMING_SNAKE_CASE : Dict = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}" ] SCREAMING_SNAKE_CASE : List[str] = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}" ] SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}" ] SCREAMING_SNAKE_CASE : Any = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}" ] SCREAMING_SNAKE_CASE : int = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}" ] std_idx += 1 SCREAMING_SNAKE_CASE : str = state_dict["cls.predictions.decoder.weight"] SCREAMING_SNAKE_CASE : Optional[int] = state_dict["cls.predictions.bias"] if args.vocab_transform: for w in ["weight", "bias"]: SCREAMING_SNAKE_CASE : List[str] = state_dict[F"cls.predictions.transform.dense.{w}"] SCREAMING_SNAKE_CASE : Optional[int] = state_dict[F"cls.predictions.transform.LayerNorm.{w}"] print(F"N layers selected for distillation: {std_idx}") print(F"Number of params transferred for distillation: {len(compressed_sd.keys())}") print(F"Save transferred checkpoint to {args.dump_checkpoint}.") torch.save(compressed_sd, args.dump_checkpoint)
21
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class a__ : def __init__( self : Optional[int],_A : Dict,_A : List[str]=13,_A : List[str]=7,_A : int=True,_A : str=True,_A : Union[str, Any]=True,_A : Tuple=True,_A : Dict=99,_A : Tuple=32,_A : Tuple=2,_A : Tuple=4,_A : Optional[Any]=37,_A : str="gelu",_A : Dict=0.1,_A : List[Any]=0.1,_A : List[str]=512,_A : str=16,_A : int=2,_A : Dict=0.02,_A : List[Any]=3,_A : Optional[Any]=4,_A : Optional[int]=None,): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = parent SCREAMING_SNAKE_CASE_ : Any = 13 SCREAMING_SNAKE_CASE_ : List[str] = 7 SCREAMING_SNAKE_CASE_ : Dict = True SCREAMING_SNAKE_CASE_ : Optional[Any] = True SCREAMING_SNAKE_CASE_ : Tuple = True SCREAMING_SNAKE_CASE_ : List[str] = True SCREAMING_SNAKE_CASE_ : List[str] = 99 SCREAMING_SNAKE_CASE_ : Tuple = 384 SCREAMING_SNAKE_CASE_ : Optional[Any] = 2 SCREAMING_SNAKE_CASE_ : Any = 4 SCREAMING_SNAKE_CASE_ : str = 37 SCREAMING_SNAKE_CASE_ : Optional[Any] = "gelu" SCREAMING_SNAKE_CASE_ : List[Any] = 0.1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0.1 SCREAMING_SNAKE_CASE_ : Dict = 512 SCREAMING_SNAKE_CASE_ : int = 16 SCREAMING_SNAKE_CASE_ : Optional[int] = 2 SCREAMING_SNAKE_CASE_ : Any = 0.02 SCREAMING_SNAKE_CASE_ : str = 3 SCREAMING_SNAKE_CASE_ : int = 4 SCREAMING_SNAKE_CASE_ : Dict = 128 SCREAMING_SNAKE_CASE_ : Any = 2 SCREAMING_SNAKE_CASE_ : Tuple = 9 SCREAMING_SNAKE_CASE_ : List[Any] = 1 SCREAMING_SNAKE_CASE_ : Any = None def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) SCREAMING_SNAKE_CASE_ : Any = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : List[str] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) SCREAMING_SNAKE_CASE_ : Dict = None SCREAMING_SNAKE_CASE_ : Dict = None SCREAMING_SNAKE_CASE_ : str = None if self.use_labels: SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size],self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size],self.num_choices ) SCREAMING_SNAKE_CASE_ : Any = ConvBertConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,initializer_range=self.initializer_range,return_dict=_A,) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : Optional[int],_A : List[Any],_A : int,_A : Tuple,_A : Optional[int],_A : Union[str, Any],_A : Union[str, Any],_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = TFConvBertModel(config=_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} SCREAMING_SNAKE_CASE_ : str = [input_ids, input_mask] SCREAMING_SNAKE_CASE_ : List[str] = model(_A ) SCREAMING_SNAKE_CASE_ : Dict = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Dict,_A : Dict,_A : int,_A : Union[str, Any],_A : List[Any],_A : int,_A : str,_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = TFConvBertForMaskedLM(config=_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_ : List[Any] = model(_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : Any,_A : Optional[int],_A : List[Any],_A : Union[str, Any],_A : List[Any],_A : Union[str, Any],_A : Optional[int],_A : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.num_labels SCREAMING_SNAKE_CASE_ : Any = TFConvBertForSequenceClassification(config=_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_ : Optional[Any] = model(_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : int,_A : int,_A : Dict,_A : List[str],_A : Tuple,_A : Dict,_A : Optional[int],_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.num_choices SCREAMING_SNAKE_CASE_ : Optional[int] = TFConvBertForMultipleChoice(config=_A ) SCREAMING_SNAKE_CASE_ : Any = tf.tile(tf.expand_dims(_A,1 ),(1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ : Any = tf.tile(tf.expand_dims(_A,1 ),(1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.tile(tf.expand_dims(_A,1 ),(1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ : int = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE_ : int = model(_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : List[Any],_A : Union[str, Any],_A : int,_A : Optional[int],_A : str,_A : str,_A : Tuple,_A : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.num_labels SCREAMING_SNAKE_CASE_ : Union[str, Any] = TFConvBertForTokenClassification(config=_A ) SCREAMING_SNAKE_CASE_ : Tuple = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_ : str = model(_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : List[Any],_A : int,_A : List[str],_A : List[Any],_A : Any,_A : Optional[int],_A : List[str],_A : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = TFConvBertForQuestionAnswering(config=_A ) SCREAMING_SNAKE_CASE_ : Dict = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_ : Any = model(_A ) self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : List[Any] = config_and_inputs SCREAMING_SNAKE_CASE_ : Any = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class a__ ( A__ , A__ , unittest.TestCase ): A = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) A = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) A = False A = False A = False def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = TFConvBertModelTester(self ) SCREAMING_SNAKE_CASE_ : Tuple = ConfigTester(self,config_class=_A,hidden_size=37 ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_A ) def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) @slow def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : List[str] = True SCREAMING_SNAKE_CASE_ : Any = True if hasattr(_A,"use_cache" ): SCREAMING_SNAKE_CASE_ : List[Any] = True SCREAMING_SNAKE_CASE_ : int = getattr(self.model_tester,"encoder_seq_length",self.model_tester.seq_length ) SCREAMING_SNAKE_CASE_ : Optional[Any] = getattr(self.model_tester,"key_length",_A ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : List[str] = self._prepare_for_class(_A,_A ) SCREAMING_SNAKE_CASE_ : List[Any] = model_class(_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = len(model(_A ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A,saved_model=_A ) SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join(_A,"saved_model","1" ) SCREAMING_SNAKE_CASE_ : Tuple = tf.keras.models.load_model(_A ) SCREAMING_SNAKE_CASE_ : str = model(_A ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE_ : Optional[Any] = outputs["encoder_hidden_states"] SCREAMING_SNAKE_CASE_ : str = outputs["encoder_attentions"] else: SCREAMING_SNAKE_CASE_ : Any = outputs["hidden_states"] SCREAMING_SNAKE_CASE_ : List[str] = outputs["attentions"] self.assertEqual(len(_A ),_A ) SCREAMING_SNAKE_CASE_ : Any = getattr( self.model_tester,"expected_num_hidden_layers",self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_A ),_A ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ),[self.model_tester.seq_length, self.model_tester.hidden_size],) self.assertEqual(len(_A ),self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ),[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length],) @slow def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(_A ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : List[str] = True SCREAMING_SNAKE_CASE_ : List[str] = getattr(self.model_tester,"decoder_seq_length",self.model_tester.seq_length ) SCREAMING_SNAKE_CASE_ : Any = getattr(self.model_tester,"encoder_seq_length",self.model_tester.seq_length ) SCREAMING_SNAKE_CASE_ : Optional[int] = getattr(self.model_tester,"key_length",_A ) SCREAMING_SNAKE_CASE_ : int = getattr(self.model_tester,"key_length",_A ) def check_decoder_attentions_output(_A : Dict ): SCREAMING_SNAKE_CASE_ : int = len(_A ) self.assertEqual(out_len % 2,0 ) SCREAMING_SNAKE_CASE_ : Tuple = outputs.decoder_attentions self.assertEqual(len(_A ),self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ),[self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length],) def check_encoder_attentions_output(_A : Tuple ): SCREAMING_SNAKE_CASE_ : int = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_A ),self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ),[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length],) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Optional[Any] = True SCREAMING_SNAKE_CASE_ : Optional[Any] = False SCREAMING_SNAKE_CASE_ : Tuple = model_class(_A ) SCREAMING_SNAKE_CASE_ : Any = model(self._prepare_for_class(_A,_A ) ) SCREAMING_SNAKE_CASE_ : Tuple = len(_A ) self.assertEqual(config.output_hidden_states,_A ) check_encoder_attentions_output(_A ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE_ : Optional[Any] = model_class(_A ) SCREAMING_SNAKE_CASE_ : int = model(self._prepare_for_class(_A,_A ) ) self.assertEqual(config.output_hidden_states,_A ) check_decoder_attentions_output(_A ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE_ : str = True SCREAMING_SNAKE_CASE_ : int = model_class(_A ) SCREAMING_SNAKE_CASE_ : List[str] = model(self._prepare_for_class(_A,_A ) ) self.assertEqual(config.output_hidden_states,_A ) check_encoder_attentions_output(_A ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE_ : str = True SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Dict = model_class(_A ) SCREAMING_SNAKE_CASE_ : str = model(self._prepare_for_class(_A,_A ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1),len(_A ) ) self.assertEqual(model.config.output_hidden_states,_A ) check_encoder_attentions_output(_A ) @require_tf class a__ ( unittest.TestCase ): @slow def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) SCREAMING_SNAKE_CASE_ : int = tf.constant([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE_ : Tuple = model(_A )[0] SCREAMING_SNAKE_CASE_ : List[Any] = [1, 6, 768] self.assertEqual(output.shape,_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ] ) tf.debugging.assert_near(output[:, :3, :3],_A,atol=1E-4 )
18
0
'''simple docstring''' def UpperCAmelCase_ ( __lowercase : dict ) -> set: '''simple docstring''' _UpperCAmelCase = set() # edges = list of graph's edges _UpperCAmelCase = get_edges(__lowercase ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: _UpperCAmelCase , _UpperCAmelCase = edges.pop() chosen_vertices.add(__lowercase ) chosen_vertices.add(__lowercase ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(__lowercase ) return chosen_vertices def UpperCAmelCase_ ( __lowercase : dict ) -> set: '''simple docstring''' _UpperCAmelCase = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
22
def _snake_case ( lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = int(lowerCAmelCase ) if decimal in (0, 1): # Exit cases for the recursion return str(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = divmod(lowerCAmelCase , 2 ) return binary_recursive(lowerCAmelCase ) + str(lowerCAmelCase ) def _snake_case ( lowerCAmelCase : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = str(lowerCAmelCase ).strip() if not number: raise ValueError("No input value was provided" ) SCREAMING_SNAKE_CASE_ : List[str] = "-" if number.startswith("-" ) else "" SCREAMING_SNAKE_CASE_ : Optional[Any] = number.lstrip("-" ) if not number.isnumeric(): raise ValueError("Input value is not an integer" ) return f'{negative}0b{binary_recursive(int(lowerCAmelCase ) )}' if __name__ == "__main__": from doctest import testmod testmod()
18
0
'''simple docstring''' UpperCamelCase__: Tuple = 8.314462 # Unit - J mol-1 K-1 def snake_case_ ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float ) -> float: if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def snake_case_ ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float ) -> float: if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
23
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase : Union[str, Any] = { '''configuration_chinese_clip''': [ '''CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ChineseCLIPConfig''', '''ChineseCLIPOnnxConfig''', '''ChineseCLIPTextConfig''', '''ChineseCLIPVisionConfig''', ], '''processing_chinese_clip''': ['''ChineseCLIPProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = ['''ChineseCLIPFeatureExtractor'''] __lowerCamelCase : Optional[int] = ['''ChineseCLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : int = [ '''CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ChineseCLIPModel''', '''ChineseCLIPPreTrainedModel''', '''ChineseCLIPTextModel''', '''ChineseCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys __lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
18
0
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename snake_case_ = 'http://www.mocksite.com/file1.txt' snake_case_ = '"text": ["foo", "foo"]' snake_case_ = '6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8' class SCREAMING_SNAKE_CASE__ : A_ : Optional[Any] = 200 A_ : List[str] = {'Content-Length': '100'} A_ : int = {} def a (self : List[str] , **a__ : Any ): """simple docstring""" return [bytes(a__ , '''utf-8''' )] def lowerCamelCase__ ( *snake_case_ : List[Any] , **snake_case_ : Optional[int] ) -> Tuple: return MockResponse() @pytest.mark.parametrize('''urls_type''' , [str, list, dict] ) def lowerCamelCase__ ( snake_case_ : Optional[int] , snake_case_ : int , snake_case_ : List[Any] ) -> Optional[int]: import requests monkeypatch.setattr(snake_case_ , '''request''' , snake_case_ ) __snake_case = URL if issubclass(snake_case_ , snake_case_ ): __snake_case = url elif issubclass(snake_case_ , snake_case_ ): __snake_case = [url] elif issubclass(snake_case_ , snake_case_ ): __snake_case = {'''train''': url} __snake_case = '''dummy''' __snake_case = '''downloads''' __snake_case = tmp_path __snake_case = DownloadConfig( cache_dir=os.path.join(snake_case_ , snake_case_ ) , use_etag=snake_case_ , ) __snake_case = DownloadManager(dataset_name=snake_case_ , download_config=snake_case_ ) __snake_case = dl_manager.download(snake_case_ ) __snake_case = urls for downloaded_paths in [downloaded_paths]: if isinstance(snake_case_ , snake_case_ ): __snake_case = [downloaded_paths] __snake_case = [urls] elif isinstance(snake_case_ , snake_case_ ): assert "train" in downloaded_paths.keys() __snake_case = downloaded_paths.values() __snake_case = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(snake_case_ , snake_case_ ): assert downloaded_path == dl_manager.downloaded_paths[input_url] __snake_case = Path(snake_case_ ) __snake_case = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() __snake_case = downloaded_path.read_text() assert content == CONTENT __snake_case = downloaded_path.with_suffix('''.json''' ) assert metadata_downloaded_path.exists() __snake_case = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('''paths_type''' , [str, list, dict] ) def lowerCamelCase__ ( snake_case_ : Tuple , snake_case_ : List[str] , snake_case_ : Optional[int] ) -> List[str]: __snake_case = str(snake_case_ ) if issubclass(snake_case_ , snake_case_ ): __snake_case = filename elif issubclass(snake_case_ , snake_case_ ): __snake_case = [filename] elif issubclass(snake_case_ , snake_case_ ): __snake_case = {'''train''': filename} __snake_case = '''dummy''' __snake_case = xz_file.parent __snake_case = '''extracted''' __snake_case = DownloadConfig( cache_dir=snake_case_ , use_etag=snake_case_ , ) __snake_case = DownloadManager(dataset_name=snake_case_ , download_config=snake_case_ ) __snake_case = dl_manager.extract(snake_case_ ) __snake_case = paths for extracted_paths in [extracted_paths]: if isinstance(snake_case_ , snake_case_ ): __snake_case = [extracted_paths] __snake_case = [paths] elif isinstance(snake_case_ , snake_case_ ): assert "train" in extracted_paths.keys() __snake_case = extracted_paths.values() __snake_case = paths.values() assert extracted_paths for extracted_path, input_path in zip(snake_case_ , snake_case_ ): assert extracted_path == dl_manager.extracted_paths[input_path] __snake_case = Path(snake_case_ ) __snake_case = extracted_path.parts assert parts[-1] == hash_url_to_filename(snake_case_ , etag=snake_case_ ) assert parts[-2] == extracted_subdir assert extracted_path.exists() __snake_case = extracted_path.read_text() __snake_case = text_file.read_text() assert extracted_file_content == expected_file_content def lowerCamelCase__ ( snake_case_ : Dict , snake_case_ : str ) -> Dict: assert path.endswith('''.jsonl''' ) for num_items, line in enumerate(snake_case_ , start=1 ): __snake_case = json.loads(line.decode('''utf-8''' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('''archive_jsonl''' , ['''tar_jsonl_path''', '''zip_jsonl_path'''] ) def lowerCamelCase__ ( snake_case_ : int , snake_case_ : Optional[Any] ) -> Any: __snake_case = request.getfixturevalue(snake_case_ ) __snake_case = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(snake_case_ ) , start=1 ): _test_jsonl(snake_case_ , snake_case_ ) assert num_jsonl == 2 @pytest.mark.parametrize('''archive_nested_jsonl''' , ['''tar_nested_jsonl_path''', '''zip_nested_jsonl_path'''] ) def lowerCamelCase__ ( snake_case_ : List[Any] , snake_case_ : Any ) -> Dict: __snake_case = request.getfixturevalue(snake_case_ ) __snake_case = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(snake_case_ ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(snake_case_ ) , start=1 ): _test_jsonl(snake_case_ , snake_case_ ) assert num_tar == 1 assert num_jsonl == 2 def lowerCamelCase__ ( snake_case_ : List[str] ) -> Optional[int]: __snake_case = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(snake_case_ ) , start=1 ): assert os.path.basename(snake_case_ ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
24
import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument __lowerCamelCase : Any = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def _snake_case ( lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = list(s_dict.keys() ) for key in keys: SCREAMING_SNAKE_CASE_ : int = R".*/layers_(\d+)" SCREAMING_SNAKE_CASE_ : List[Any] = key if re.match(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Any = re.sub(R"layers_(\d+)" , R"block/\1/layer" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = R"(encoder|decoder)\/" if re.match(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : str = re.match(lowerCAmelCase , lowerCAmelCase ).groups() if groups[0] == "encoder": SCREAMING_SNAKE_CASE_ : Any = re.sub(R"/mlp/" , R"/1/mlp/" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = re.sub(R"/pre_mlp_layer_norm/" , R"/1/layer_norm/" , lowerCAmelCase ) elif groups[0] == "decoder": SCREAMING_SNAKE_CASE_ : List[str] = re.sub(R"/mlp/" , R"/2/mlp/" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = re.sub(R"/pre_mlp_layer_norm/" , R"/2/layer_norm/" , lowerCAmelCase ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: SCREAMING_SNAKE_CASE_ : List[Any] = new_key.replace(lowerCAmelCase , lowerCAmelCase ) print(f'{key} -> {new_key}' ) SCREAMING_SNAKE_CASE_ : List[Any] = s_dict.pop(lowerCAmelCase ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: SCREAMING_SNAKE_CASE_ : str = s_dict[ "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: SCREAMING_SNAKE_CASE_ : Optional[int] = s_dict[ "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: SCREAMING_SNAKE_CASE_ : Union[str, Any] = s_dict[key].shape[0] SCREAMING_SNAKE_CASE_ : List[Any] = s_dict[key] for idx in range(lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Tuple = expert_weihts[idx] print(f'{key} -> {key.replace("expert/" , "nested fstring" )}' ) s_dict.pop(lowerCAmelCase ) return s_dict __lowerCamelCase : List[Any] = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def _snake_case ( lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any] ): """simple docstring""" import regex as re with open(lowerCAmelCase , "r" ) as f: SCREAMING_SNAKE_CASE_ : Optional[Any] = f.read() SCREAMING_SNAKE_CASE_ : List[str] = re.findall(R"(.*) = ([0-9.]*)" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": SCREAMING_SNAKE_CASE_ : int = float(lowerCAmelCase ) if "." in value else int(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = re.findall(R"(.*activations) = \(\'(.*)\',\)" , lowerCAmelCase )[0] SCREAMING_SNAKE_CASE_ : List[str] = str(activation[1] ) SCREAMING_SNAKE_CASE_ : str = num_experts SCREAMING_SNAKE_CASE_ : Tuple = SwitchTransformersConfig(**lowerCAmelCase ) return config def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : str=None , lowerCAmelCase : Optional[Any]="./" , lowerCAmelCase : Dict=8 ): """simple docstring""" print(f'Loading flax weights from : {flax_checkpoint_path}' ) SCREAMING_SNAKE_CASE_ : int = checkpoints.load_tax_checkpoint(lowerCAmelCase ) if gin_file is not None: SCREAMING_SNAKE_CASE_ : int = convert_gin_to_config(lowerCAmelCase , lowerCAmelCase ) else: SCREAMING_SNAKE_CASE_ : Dict = SwitchTransformersConfig.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : str = SwitchTransformersForConditionalGeneration(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = flax_params["target"] SCREAMING_SNAKE_CASE_ : List[str] = flatten_dict(lowerCAmelCase , sep="/" ) SCREAMING_SNAKE_CASE_ : List[str] = rename_keys(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = unflatten_dict(lowerCAmelCase , sep="/" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(lowerCAmelCase , lowerCAmelCase ) print(f'Save PyTorch model to {pytorch_dump_path}' ) pt_model.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": __lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') __lowerCamelCase : Any = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
18
0
"""simple docstring""" from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer UpperCAmelCase__ : Optional[int] = logging.get_logger(__name__) UpperCAmelCase__ : Optional[int] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase__ : int = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } UpperCAmelCase__ : Optional[int] = { 'facebook/blenderbot_small-90M': 5_1_2, } class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : Optional[Any] = VOCAB_FILES_NAMES __UpperCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Union[str, Any] = BlenderbotSmallTokenizer def __init__(self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__="<|endoftext|>" , SCREAMING_SNAKE_CASE__="<|endoftext|>" , SCREAMING_SNAKE_CASE__="<|endoftext|>" , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=True , **SCREAMING_SNAKE_CASE__ , ) -> List[str]: """simple docstring""" super().__init__( ByteLevelBPETokenizer( vocab=SCREAMING_SNAKE_CASE__ , merges=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ , trim_offsets=SCREAMING_SNAKE_CASE__ , ) , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) SCREAMING_SNAKE_CASE__ : Dict = add_prefix_space def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE__ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
25
from math import factorial, radians def _snake_case ( lowerCAmelCase : float , lowerCAmelCase : int = 1_8 , lowerCAmelCase : int = 1_0 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians SCREAMING_SNAKE_CASE_ : Tuple = radians(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = angle_in_radians SCREAMING_SNAKE_CASE_ : List[str] = 3 SCREAMING_SNAKE_CASE_ : str = -1 for _ in range(lowerCAmelCase ): result += (b * (angle_in_radians**a)) / factorial(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(lowerCAmelCase , lowerCAmelCase ) if __name__ == "__main__": __import__('''doctest''').testmod()
18
0
from math import asin, atan, cos, radians, sin, sqrt, tan _snake_case = 6_3_7_8_1_3_7.0 _snake_case = 6_3_5_6_7_5_2.3_1_4_2_4_5 _snake_case = 6378137 def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ): _A : Any = (AXIS_A - AXIS_B) / AXIS_A _A : Optional[int] = atan((1 - flattening) * tan(radians(snake_case_ ) ) ) _A : List[str] = atan((1 - flattening) * tan(radians(snake_case_ ) ) ) _A : Optional[Any] = radians(snake_case_ ) _A : str = radians(snake_case_ ) # Equation _A : Dict = sin((phi_a - phi_a) / 2 ) _A : List[str] = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda _A : Optional[int] = sqrt(sin_sq_phi + (cos(snake_case_ ) * cos(snake_case_ ) * sin_sq_lambda) ) return 2 * RADIUS * asin(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod()
26
from functools import lru_cache @lru_cache def _snake_case ( lowerCAmelCase : int ): """simple docstring""" if num < 0: raise ValueError("Number should not be negative." ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
18
0
'''simple docstring''' import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def lowerCamelCase (_SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Any=None ): __a : Tuple = None if token is not None: __a : int = {'Accept': 'application/vnd.github+json', 'Authorization': F"""Bearer {token}"""} __a : Dict = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" __a : List[str] = requests.get(_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE ).json() __a : Any = {} try: job_links.update({job['name']: job['html_url'] for job in result['jobs']} ) __a : Optional[int] = math.ceil((result['total_count'] - 100) / 100 ) for i in range(_SCREAMING_SNAKE_CASE ): __a : int = requests.get(url + F"""&page={i + 2}""" , headers=_SCREAMING_SNAKE_CASE ).json() job_links.update({job['name']: job['html_url'] for job in result['jobs']} ) return job_links except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def lowerCamelCase (_SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : int=None ): __a : List[str] = None if token is not None: __a : Union[str, Any] = {'Accept': 'application/vnd.github+json', 'Authorization': F"""Bearer {token}"""} __a : Union[str, Any] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100""" __a : Dict = requests.get(_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE ).json() __a : Union[str, Any] = {} try: artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} ) __a : int = math.ceil((result['total_count'] - 100) / 100 ) for i in range(_SCREAMING_SNAKE_CASE ): __a : Any = requests.get(url + F"""&page={i + 2}""" , headers=_SCREAMING_SNAKE_CASE ).json() artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} ) return artifacts except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def lowerCamelCase (_SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Tuple ): __a : List[Any] = None if token is not None: __a : int = {'Accept': 'application/vnd.github+json', 'Authorization': F"""Bearer {token}"""} __a : str = requests.get(_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE , allow_redirects=_SCREAMING_SNAKE_CASE ) __a : Optional[int] = result.headers['Location'] __a : Optional[Any] = requests.get(_SCREAMING_SNAKE_CASE , allow_redirects=_SCREAMING_SNAKE_CASE ) __a : List[str] = os.path.join(_SCREAMING_SNAKE_CASE , F"""{artifact_name}.zip""" ) with open(_SCREAMING_SNAKE_CASE , 'wb' ) as fp: fp.write(response.content ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Union[str, Any]=None ): __a : List[str] = [] __a : int = [] __a : int = None with zipfile.ZipFile(_SCREAMING_SNAKE_CASE ) as z: for filename in z.namelist(): if not os.path.isdir(_SCREAMING_SNAKE_CASE ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(_SCREAMING_SNAKE_CASE ) as f: for line in f: __a : List[Any] = line.decode('UTF-8' ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs __a : Tuple = line[: line.index(': ' )] __a : Union[str, Any] = line[line.index(': ' ) + len(': ' ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith('FAILED ' ): # `test` is the test method that failed __a : Tuple = line[len('FAILED ' ) :] failed_tests.append(_SCREAMING_SNAKE_CASE ) elif filename == "job_name.txt": __a : List[str] = line if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError( F"""`errors` and `failed_tests` should have the same number of elements. Got {len(_SCREAMING_SNAKE_CASE )} for `errors` """ F"""and {len(_SCREAMING_SNAKE_CASE )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some""" ' problem.' ) __a : Optional[Any] = None if job_name and job_links: __a : Tuple = job_links.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # A list with elements of the form (line of error, error, failed test) __a : str = [x + [y] + [job_link] for x, y in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] return result def lowerCamelCase (_SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int=None ): __a : Optional[int] = [] __a : str = [os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for p in os.listdir(_SCREAMING_SNAKE_CASE ) if p.endswith('.zip' )] for p in paths: errors.extend(get_errors_from_single_artifact(_SCREAMING_SNAKE_CASE , job_links=_SCREAMING_SNAKE_CASE ) ) return errors def lowerCamelCase (_SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any=None ): __a : List[Any] = Counter() counter.update([x[1] for x in logs] ) __a : Dict = counter.most_common() __a : str = {} for error, count in counts: if error_filter is None or error not in error_filter: __a : Union[str, Any] = {'count': count, 'failed_tests': [(x[2], x[0]) for x in logs if x[1] == error]} __a : List[str] = dict(sorted(r.items() , key=lambda _SCREAMING_SNAKE_CASE : item[1]["count"] , reverse=_SCREAMING_SNAKE_CASE ) ) return r def lowerCamelCase (_SCREAMING_SNAKE_CASE : Dict ): __a : Any = test.split('::' )[0] if test.startswith('tests/models/' ): __a : Tuple = test.split('/' )[2] else: __a : Union[str, Any] = None return test def lowerCamelCase (_SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[Any]=None ): __a : Optional[Any] = [(x[0], x[1], get_model(x[2] )) for x in logs] __a : Dict = [x for x in logs if x[2] is not None] __a : Any = {x[2] for x in logs} __a : Optional[int] = {} for test in tests: __a : Optional[Any] = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) __a : int = counter.most_common() __a : Dict = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} __a : List[str] = sum(error_counts.values() ) if n_errors > 0: __a : Optional[Any] = {'count': n_errors, 'errors': error_counts} __a : Optional[Any] = dict(sorted(r.items() , key=lambda _SCREAMING_SNAKE_CASE : item[1]["count"] , reverse=_SCREAMING_SNAKE_CASE ) ) return r def lowerCamelCase (_SCREAMING_SNAKE_CASE : str ): __a : Any = '| no. | error | status |' __a : Optional[int] = '|-:|:-|:-|' __a : Any = [header, sep] for error in reduced_by_error: __a : Union[str, Any] = reduced_by_error[error]['count'] __a : Union[str, Any] = F"""| {count} | {error[:100]} | |""" lines.append(_SCREAMING_SNAKE_CASE ) return "\n".join(_SCREAMING_SNAKE_CASE ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Tuple ): __a : Union[str, Any] = '| model | no. of errors | major error | count |' __a : Union[str, Any] = '|-:|-:|-:|-:|' __a : Any = [header, sep] for model in reduced_by_model: __a : Optional[int] = reduced_by_model[model]['count'] __a , __a : Any = list(reduced_by_model[model]['errors'].items() )[0] __a : Optional[int] = F"""| {model} | {count} | {error[:60]} | {_count} |""" lines.append(_SCREAMING_SNAKE_CASE ) return "\n".join(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowercase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') __lowercase : Union[str, Any] = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) __lowercase : Optional[Any] = get_job_links(args.workflow_run_id, token=args.token) __lowercase : str = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: __lowercase : List[Any] = k.find(' / ') __lowercase : Tuple = k[index + len(' / ') :] __lowercase : Union[str, Any] = v with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) __lowercase : Tuple = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) __lowercase : Union[str, Any] = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error __lowercase : Union[str, Any] = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors __lowercase : str = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) __lowercase : str = reduce_by_error(errors) __lowercase : int = reduce_by_model(errors) __lowercase : Optional[int] = make_github_table(reduced_by_error) __lowercase : Tuple = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa) with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa)
27
from collections import defaultdict def _snake_case ( lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = 1 SCREAMING_SNAKE_CASE_ : Tuple = True for v in tree[start]: if v not in visited: ret += dfs(lowerCAmelCase ) if ret % 2 == 0: cuts.append(lowerCAmelCase ) return ret def _snake_case ( ): """simple docstring""" dfs(1 ) if __name__ == "__main__": __lowerCamelCase , __lowerCamelCase : Union[str, Any] = 10, 9 __lowerCamelCase : Optional[int] = defaultdict(list) __lowerCamelCase : dict[int, bool] = {} __lowerCamelCase : list[int] = [] __lowerCamelCase : Optional[Any] = 0 __lowerCamelCase : Any = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
18
0
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( A__ , A__ ) -> bool: """simple docstring""" if len(A__ ) == 0: return False UpperCamelCase = len(A__ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , A__ ) else: return binary_search(a_list[midpoint + 1 :] , A__ ) if __name__ == "__main__": _lowerCamelCase : List[str] = input("Enter numbers separated by comma:\n").strip() _lowerCamelCase : Union[str, Any] = [int(item.strip()) for item in user_input.split(",")] _lowerCamelCase : Union[str, Any] = int(input("Enter the number to be found in the list:\n").strip()) _lowerCamelCase : int = "" if binary_search(sequence, target) else "not " print(f'''{target} was {not_str}found in {sequence}''')
28
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=lowerCAmelCase ) env_command_parser(subparsers=lowerCAmelCase ) launch_command_parser(subparsers=lowerCAmelCase ) tpu_command_parser(subparsers=lowerCAmelCase ) test_command_parser(subparsers=lowerCAmelCase ) # Let's go SCREAMING_SNAKE_CASE_ : Dict = parser.parse_args() if not hasattr(lowerCAmelCase , "func" ): parser.print_help() exit(1 ) # Run args.func(lowerCAmelCase ) if __name__ == "__main__": main()
18
0
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class lowerCamelCase : '''simple docstring''' def __init__( self , _UpperCamelCase , _UpperCamelCase=1_3 , _UpperCamelCase=7 , _UpperCamelCase=6 , _UpperCamelCase=1_7 , _UpperCamelCase=2_3 , _UpperCamelCase=1_1 , _UpperCamelCase=True , ) -> int: UpperCAmelCase_ : Dict = parent UpperCAmelCase_ : str = batch_size UpperCAmelCase_ : List[Any] = seq_length UpperCAmelCase_ : Any = act_dim UpperCAmelCase_ : Dict = state_dim UpperCAmelCase_ : List[str] = hidden_size UpperCAmelCase_ : List[Any] = max_length UpperCAmelCase_ : Optional[Any] = is_training def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase_ : Union[str, Any] = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) UpperCAmelCase_ : Optional[Any] = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) UpperCAmelCase_ : Tuple = floats_tensor((self.batch_size, self.seq_length, 1) ) UpperCAmelCase_ : Optional[Any] = floats_tensor((self.batch_size, self.seq_length, 1) ) UpperCAmelCase_ : str = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_0_0_0 ) UpperCAmelCase_ : Optional[Any] = random_attention_mask((self.batch_size, self.seq_length) ) UpperCAmelCase_ : Dict = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def __UpperCAmelCase ( self ) -> Optional[Any]: return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) -> List[str]: UpperCAmelCase_ : List[str] = DecisionTransformerModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() UpperCAmelCase_ : Dict = model(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def __UpperCAmelCase ( self ) -> Optional[Any]: UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : List[str] = config_and_inputs UpperCAmelCase_ : Any = { 'states': states, 'actions': actions, 'rewards': rewards, 'returns_to_go': returns_to_go, 'timesteps': timesteps, 'attention_mask': attention_mask, } return config, inputs_dict @require_torch class lowerCamelCase (_snake_case , _snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' _snake_case : int = (DecisionTransformerModel,) if is_torch_available() else () _snake_case : Tuple = () _snake_case : Any = {'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids _snake_case : List[Any] = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features _snake_case : Union[str, Any] = False _snake_case : Optional[int] = False _snake_case : List[str] = False _snake_case : Optional[int] = False _snake_case : List[str] = False _snake_case : int = False _snake_case : int = False _snake_case : List[str] = False _snake_case : List[Any] = False def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase_ : str = DecisionTransformerModelTester(self ) UpperCAmelCase_ : str = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=3_7 ) def __UpperCAmelCase ( self ) -> List[str]: self.config_tester.run_common_tests() def __UpperCAmelCase ( self ) -> Any: UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) @slow def __UpperCAmelCase ( self ) -> List[Any]: for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : int = DecisionTransformerModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def __UpperCAmelCase ( self ) -> Optional[Any]: UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : List[Any] = model_class(_UpperCamelCase ) UpperCAmelCase_ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Union[str, Any] = [*signature.parameters.keys()] UpperCAmelCase_ : List[str] = [ 'states', 'actions', 'rewards', 'returns_to_go', 'timesteps', 'attention_mask', ] self.assertListEqual(arg_names[: len(_UpperCamelCase )] , _UpperCamelCase ) @require_torch class lowerCamelCase (unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self ) -> int: UpperCAmelCase_ : Optional[Any] = 2 # number of steps of autoregressive prediction we will perform UpperCAmelCase_ : Optional[Any] = 1_0 # defined by the RL environment, may be normalized UpperCAmelCase_ : Tuple = DecisionTransformerModel.from_pretrained('edbeeching/decision-transformer-gym-hopper-expert' ) UpperCAmelCase_ : int = model.to(_UpperCamelCase ) UpperCAmelCase_ : int = model.config torch.manual_seed(0 ) UpperCAmelCase_ : str = torch.randn(1 , 1 , config.state_dim ).to(device=_UpperCamelCase , dtype=torch.floataa ) # env.reset() UpperCAmelCase_ : Tuple = torch.tensor( [[0.24_27_93, -0.28_69_30_74, 0.8_74_26_13], [0.67_81_52_74, -0.08_10_10_85, -0.12_95_21_47]] , device=_UpperCamelCase ) UpperCAmelCase_ : Tuple = torch.tensor(_UpperCamelCase , device=_UpperCamelCase , dtype=torch.floataa ).reshape(1 , 1 , 1 ) UpperCAmelCase_ : Optional[int] = state UpperCAmelCase_ : str = torch.zeros(1 , 0 , config.act_dim , device=_UpperCamelCase , dtype=torch.floataa ) UpperCAmelCase_ : List[Any] = torch.zeros(1 , 0 , device=_UpperCamelCase , dtype=torch.floataa ) UpperCAmelCase_ : Optional[int] = torch.tensor(0 , device=_UpperCamelCase , dtype=torch.long ).reshape(1 , 1 ) for step in range(_UpperCamelCase ): UpperCAmelCase_ : Union[str, Any] = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=_UpperCamelCase )] , dim=1 ) UpperCAmelCase_ : Tuple = torch.cat([rewards, torch.zeros(1 , 1 , device=_UpperCamelCase )] , dim=1 ) UpperCAmelCase_ : List[str] = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = model( states=_UpperCamelCase , actions=_UpperCamelCase , rewards=_UpperCamelCase , returns_to_go=_UpperCamelCase , timesteps=_UpperCamelCase , attention_mask=_UpperCamelCase , return_dict=_UpperCamelCase , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1E-4 ) ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=_UpperCamelCase , dtype=torch.floataa ), 1.0, False, {}, ) UpperCAmelCase_ : List[str] = action_pred[0, -1] UpperCAmelCase_ : Tuple = torch.cat([states, state] , dim=1 ) UpperCAmelCase_ : Tuple = returns_to_go[0, -1] - reward UpperCAmelCase_ : Optional[Any] = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) UpperCAmelCase_ : Optional[Any] = torch.cat( [timesteps, torch.ones((1, 1) , device=_UpperCamelCase , dtype=torch.long ) * (step + 1)] , dim=1 )
29
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer __lowerCamelCase : Optional[Any] = logging.get_logger(__name__) __lowerCamelCase : Dict = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __lowerCamelCase : int = { '''vocab_file''': { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt''' ), } } __lowerCamelCase : Any = { '''junnyu/roformer_chinese_small''': 15_36, '''junnyu/roformer_chinese_base''': 15_36, '''junnyu/roformer_chinese_char_small''': 5_12, '''junnyu/roformer_chinese_char_base''': 5_12, '''junnyu/roformer_small_discriminator''': 1_28, '''junnyu/roformer_small_generator''': 1_28, } __lowerCamelCase : Union[str, Any] = { '''junnyu/roformer_chinese_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_base''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_base''': {'''do_lower_case''': True}, '''junnyu/roformer_small_discriminator''': {'''do_lower_case''': True}, '''junnyu/roformer_small_generator''': {'''do_lower_case''': True}, } class a__ ( A__ ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = PRETRAINED_INIT_CONFIGURATION A = RoFormerTokenizer def __init__( self : List[str],_A : int=None,_A : int=None,_A : int=True,_A : List[Any]="[UNK]",_A : Tuple="[SEP]",_A : List[Any]="[PAD]",_A : Optional[int]="[CLS]",_A : Optional[Any]="[MASK]",_A : Optional[int]=True,_A : List[str]=None,**_A : List[Any],): """simple docstring""" super().__init__( _A,tokenizer_file=_A,do_lower_case=_A,unk_token=_A,sep_token=_A,pad_token=_A,cls_token=_A,mask_token=_A,tokenize_chinese_chars=_A,strip_accents=_A,**_A,) SCREAMING_SNAKE_CASE_ : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("lowercase",_A ) != do_lower_case or pre_tok_state.get("strip_accents",_A ) != strip_accents ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = getattr(_A,pre_tok_state.pop("type" ) ) SCREAMING_SNAKE_CASE_ : Any = do_lower_case SCREAMING_SNAKE_CASE_ : List[str] = strip_accents SCREAMING_SNAKE_CASE_ : str = pre_tok_class(**_A ) SCREAMING_SNAKE_CASE_ : List[str] = do_lower_case def __getstate__( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.__dict__.copy() SCREAMING_SNAKE_CASE_ : Optional[Any] = BertPreTokenizer() return state def __setstate__( self : List[Any],_A : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = d SCREAMING_SNAKE_CASE_ : List[str] = self.__dict__["_tokenizer"].get_vocab() SCREAMING_SNAKE_CASE_ : Any = PreTokenizer.custom(JiebaPreTokenizer(_A ) ) def __UpperCamelCase ( self : Union[str, Any],_A : List[Any],_A : str=None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCamelCase ( self : str,_A : List[int],_A : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCamelCase ( self : int,_A : str,_A : Optional[str] = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._tokenizer.model.save(_A,name=_A ) return tuple(_A ) def __UpperCamelCase ( self : int,_A : Optional[int],_A : List[Any]=None,_A : Tuple=None,_A : str=False,**_A : List[Any],): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = BertPreTokenizer() return super().save_pretrained(_A,_A,_A,_A,**_A )
18
0
def a ( snake_case__: int , snake_case__: int ): '''simple docstring''' return 1 if input_a == input_a else 0 def a ( ): '''simple docstring''' assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
30
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class a__ ( A__ ): def __init__( self : Tuple,_A : Optional[int],_A : Any=13,_A : List[str]=7,_A : int=True,_A : Dict=True,_A : Dict=False,_A : List[Any]=True,_A : Any=99,_A : Optional[int]=32,_A : Any=5,_A : List[Any]=4,_A : Dict=64,_A : Optional[Any]="gelu",_A : Tuple=0.1,_A : Any=0.1,_A : List[Any]=512,_A : Dict=16,_A : Optional[Any]=2,_A : Union[str, Any]=0.02,_A : List[str]=3,_A : Optional[Any]=4,_A : Union[str, Any]=None,_A : Tuple=2,_A : List[str]=2,_A : str=2,_A : Dict=2,_A : Optional[Any]=4,_A : Union[str, Any]=1,): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = parent SCREAMING_SNAKE_CASE_ : Optional[int] = batch_size SCREAMING_SNAKE_CASE_ : Dict = seq_length SCREAMING_SNAKE_CASE_ : Dict = is_training SCREAMING_SNAKE_CASE_ : Optional[int] = use_input_mask SCREAMING_SNAKE_CASE_ : int = use_token_type_ids SCREAMING_SNAKE_CASE_ : Optional[int] = use_labels SCREAMING_SNAKE_CASE_ : Tuple = vocab_size SCREAMING_SNAKE_CASE_ : Any = hidden_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Tuple = num_attention_heads SCREAMING_SNAKE_CASE_ : List[Any] = intermediate_size SCREAMING_SNAKE_CASE_ : List[str] = hidden_act SCREAMING_SNAKE_CASE_ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : str = max_position_embeddings SCREAMING_SNAKE_CASE_ : str = type_vocab_size SCREAMING_SNAKE_CASE_ : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE_ : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE_ : Tuple = num_labels SCREAMING_SNAKE_CASE_ : List[Any] = num_choices SCREAMING_SNAKE_CASE_ : Dict = scope SCREAMING_SNAKE_CASE_ : int = q_groups SCREAMING_SNAKE_CASE_ : Tuple = k_groups SCREAMING_SNAKE_CASE_ : List[Any] = v_groups SCREAMING_SNAKE_CASE_ : Tuple = post_attention_groups SCREAMING_SNAKE_CASE_ : int = intermediate_groups SCREAMING_SNAKE_CASE_ : List[Any] = output_groups def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) SCREAMING_SNAKE_CASE_ : List[Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = None SCREAMING_SNAKE_CASE_ : Any = None SCREAMING_SNAKE_CASE_ : str = None if self.use_labels: SCREAMING_SNAKE_CASE_ : str = ids_tensor([self.batch_size],self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size],self.num_choices ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : str ): """simple docstring""" return SqueezeBertConfig( embedding_size=self.hidden_size,vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,attention_probs_dropout_prob=self.hidden_dropout_prob,attention_dropout=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,initializer_range=self.initializer_range,q_groups=self.q_groups,k_groups=self.k_groups,v_groups=self.v_groups,post_attention_groups=self.post_attention_groups,intermediate_groups=self.intermediate_groups,output_groups=self.output_groups,) def __UpperCamelCase ( self : Tuple,_A : Union[str, Any],_A : Union[str, Any],_A : int,_A : Optional[int],_A : Union[str, Any],_A : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = SqueezeBertModel(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Any = model(_A,_A ) SCREAMING_SNAKE_CASE_ : List[str] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Dict,_A : Any,_A : Tuple,_A : str,_A : Any,_A : Union[str, Any],_A : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = SqueezeBertForMaskedLM(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : List[str] = model(_A,attention_mask=_A,labels=_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : Optional[int],_A : Union[str, Any],_A : Union[str, Any],_A : Any,_A : Tuple,_A : int,_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = SqueezeBertForQuestionAnswering(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model( _A,attention_mask=_A,start_positions=_A,end_positions=_A ) self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : List[Any],_A : List[str],_A : Tuple,_A : List[Any],_A : List[str],_A : List[str],_A : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.num_labels SCREAMING_SNAKE_CASE_ : List[str] = SqueezeBertForSequenceClassification(_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model(_A,attention_mask=_A,labels=_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : str,_A : Optional[int],_A : str,_A : List[Any],_A : List[str],_A : str,_A : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.num_labels SCREAMING_SNAKE_CASE_ : Optional[int] = SqueezeBertForTokenClassification(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[int] = model(_A,attention_mask=_A,labels=_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : List[Any],_A : Tuple,_A : str,_A : Optional[Any],_A : int,_A : str,_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.num_choices SCREAMING_SNAKE_CASE_ : Union[str, Any] = SqueezeBertForMultipleChoice(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = input_ids.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() SCREAMING_SNAKE_CASE_ : str = input_mask.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() SCREAMING_SNAKE_CASE_ : Optional[int] = model( _A,attention_mask=_A,labels=_A,) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)) : Dict = config_and_inputs SCREAMING_SNAKE_CASE_ : Dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class a__ ( A__ , A__ , unittest.TestCase ): A = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) A = ( { 'feature-extraction': SqueezeBertModel, 'fill-mask': SqueezeBertForMaskedLM, 'question-answering': SqueezeBertForQuestionAnswering, 'text-classification': SqueezeBertForSequenceClassification, 'token-classification': SqueezeBertForTokenClassification, 'zero-shot': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) A = False A = True A = False def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = SqueezeBertModelTester(self ) SCREAMING_SNAKE_CASE_ : List[str] = ConfigTester(self,config_class=_A,dim=37 ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*_A ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*_A ) def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*_A ) def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*_A ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*_A ) def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*_A ) @slow def __UpperCamelCase ( self : Any ): """simple docstring""" for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : Tuple = SqueezeBertModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_sentencepiece @require_tokenizers @require_torch class a__ ( unittest.TestCase ): @slow def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = SqueezeBertForSequenceClassification.from_pretrained("squeezebert/squeezebert-mnli" ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor([[1, 2_9414, 232, 328, 740, 1140, 1_2695, 69, 13, 1588, 2]] ) SCREAMING_SNAKE_CASE_ : List[Any] = model(_A )[0] SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.Size((1, 3) ) self.assertEqual(output.shape,_A ) SCREAMING_SNAKE_CASE_ : int = torch.tensor([[0.6401, -0.0349, -0.6041]] ) self.assertTrue(torch.allclose(_A,_A,atol=1E-4 ) )
18
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Dict = "bert-generation" def __init__( self : str , A : str=50358 , A : int=1024 , A : Optional[Any]=24 , A : Optional[int]=16 , A : str=4096 , A : Tuple="gelu" , A : str=0.1 , A : Dict=0.1 , A : Tuple=512 , A : Tuple=0.02 , A : Optional[int]=1E-12 , A : Union[str, Any]=0 , A : Any=2 , A : Dict=1 , A : Tuple="absolute" , A : List[Any]=True , **A : List[Any] , ): super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) _UpperCAmelCase : Optional[int] = vocab_size _UpperCAmelCase : List[str] = hidden_size _UpperCAmelCase : int = num_hidden_layers _UpperCAmelCase : List[str] = num_attention_heads _UpperCAmelCase : Optional[Any] = hidden_act _UpperCAmelCase : Tuple = intermediate_size _UpperCAmelCase : Optional[Any] = hidden_dropout_prob _UpperCAmelCase : Any = attention_probs_dropout_prob _UpperCAmelCase : List[str] = max_position_embeddings _UpperCAmelCase : str = initializer_range _UpperCAmelCase : List[Any] = layer_norm_eps _UpperCAmelCase : Optional[int] = position_embedding_type _UpperCAmelCase : int = use_cache
31
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def _snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Union[str, Any] = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE_ : List[str] = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def _snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : Dict , lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Optional[Any] = {"text": "string"} SCREAMING_SNAKE_CASE_ : Any = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE_ : List[str] = ( Features({feature: Value(lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE_ : Optional[Any] = TextDatasetReader(lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def _snake_case ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : List[str] = {"text": "string"} SCREAMING_SNAKE_CASE_ : List[str] = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase , split=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : Optional[int] ): """simple docstring""" if issubclass(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = text_path elif issubclass(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [text_path] SCREAMING_SNAKE_CASE_ : int = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Optional[int] = {"text": "string"} SCREAMING_SNAKE_CASE_ : List[str] = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) def _snake_case ( lowerCAmelCase : Dict , lowerCAmelCase : Dict , lowerCAmelCase : List[str]=("train",) ): """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) for split in splits: SCREAMING_SNAKE_CASE_ : int = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def _snake_case ( lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Union[str, Any] = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE_ : List[Any] = TextDatasetReader({"train": text_path} , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase ).read() _check_text_datasetdict(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def _snake_case ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = tmp_path / "cache" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" SCREAMING_SNAKE_CASE_ : Tuple = {"text": "string"} SCREAMING_SNAKE_CASE_ : Any = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE_ : Dict = ( Features({feature: Value(lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE_ : str = TextDatasetReader({"train": text_path} , features=lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_datasetdict(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def _snake_case ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any , lowerCAmelCase : Dict ): """simple docstring""" if split: SCREAMING_SNAKE_CASE_ : Optional[int] = {split: text_path} else: SCREAMING_SNAKE_CASE_ : List[Any] = "train" SCREAMING_SNAKE_CASE_ : Tuple = {"train": text_path, "test": text_path} SCREAMING_SNAKE_CASE_ : Any = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : List[str] = {"text": "string"} SCREAMING_SNAKE_CASE_ : str = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_datasetdict(lowerCAmelCase , lowerCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
18
0
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def SCREAMING_SNAKE_CASE_ ( *__A : str , __A : Optional[Union[Dict, Any]] = None , __A : Tuple=True , __A : int=2 ) -> Optional[Any]: """simple docstring""" from .. import __version__ a_ : Dict = take_from a_ : List[str] = () if not isinstance(args[0] , __A ): a_ : Optional[Any] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(__A ).base_version ) >= version.parse(__A ): raise ValueError( F"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'""" F""" version {__version__} is >= {version_name}""" ) a_ : Optional[Any] = None if isinstance(__A , __A ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(__A ),) a_ : Optional[int] = F"""The `{attribute}` argument is deprecated and will be removed in version {version_name}.""" elif hasattr(__A , __A ): values += (getattr(__A , __A ),) a_ : int = F"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}.""" elif deprecated_kwargs is None: a_ : Union[str, Any] = F"""`{attribute}` is deprecated and will be removed in version {version_name}.""" if warning is not None: a_ : str = warning + ' ' if standard_warn else '' warnings.warn(warning + message , __A , stacklevel=__A ) if isinstance(__A , __A ) and len(__A ) > 0: a_ : List[Any] = inspect.getouterframes(inspect.currentframe() )[1] a_ : Dict = call_frame.filename a_ : Union[str, Any] = call_frame.lineno a_ : Union[str, Any] = call_frame.function a_ , a_ : Dict = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" ) if len(__A ) == 0: return elif len(__A ) == 1: return values[0] return values
32
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def _snake_case ( lowerCAmelCase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class a__ ( A__ , A__ , A__ , unittest.TestCase ): A = StableDiffusionLatentUpscalePipeline A = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'height', 'width', 'cross_attention_kwargs', 'negative_prompt_embeds', 'prompt_embeds', } A = PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'} A = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A = frozenset([] ) A = True @property def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = 1 SCREAMING_SNAKE_CASE_ : Optional[int] = 4 SCREAMING_SNAKE_CASE_ : Optional[int] = (16, 16) SCREAMING_SNAKE_CASE_ : Dict = floats_tensor((batch_size, num_channels) + sizes,rng=random.Random(0 ) ).to(_A ) return image def __UpperCamelCase ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : str = UNetaDConditionModel( act_fn="gelu",attention_head_dim=8,norm_num_groups=_A,block_out_channels=[32, 32, 64, 64],time_cond_proj_dim=160,conv_in_kernel=1,conv_out_kernel=1,cross_attention_dim=32,down_block_types=( "KDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", ),in_channels=8,mid_block_type=_A,only_cross_attention=_A,out_channels=5,resnet_time_scale_shift="scale_shift",time_embedding_type="fourier",timestep_post_act="gelu",up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D"),) SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 32, 64, 64],in_channels=3,out_channels=3,down_block_types=[ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", ],up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],latent_channels=4,) SCREAMING_SNAKE_CASE_ : int = EulerDiscreteScheduler(prediction_type="sample" ) SCREAMING_SNAKE_CASE_ : List[Any] = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1000,hidden_act="quick_gelu",projection_dim=512,) SCREAMING_SNAKE_CASE_ : Tuple = CLIPTextModel(_A ) SCREAMING_SNAKE_CASE_ : int = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = { "unet": model.eval(), "vae": vae.eval(), "scheduler": scheduler, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def __UpperCamelCase ( self : List[Any],_A : int,_A : Tuple=0 ): """simple docstring""" if str(_A ).startswith("mps" ): SCREAMING_SNAKE_CASE_ : Optional[int] = torch.manual_seed(_A ) else: SCREAMING_SNAKE_CASE_ : Dict = torch.Generator(device=_A ).manual_seed(_A ) SCREAMING_SNAKE_CASE_ : Tuple = { "prompt": "A painting of a squirrel eating a burger", "image": self.dummy_image.cpu(), "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = "cpu" SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : List[str] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ : Tuple = self.get_dummy_inputs(_A ) SCREAMING_SNAKE_CASE_ : Dict = pipe(**_A ).images SCREAMING_SNAKE_CASE_ : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape,(1, 256, 256, 3) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) SCREAMING_SNAKE_CASE_ : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A,1E-3 ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def __UpperCamelCase ( self : int ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" super().test_save_load_local(expected_max_difference=3E-3 ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3E-3 ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = [ "DDIMScheduler", "DDPMScheduler", "PNDMScheduler", "HeunDiscreteScheduler", "EulerAncestralDiscreteScheduler", "KDPM2DiscreteScheduler", "KDPM2AncestralDiscreteScheduler", "DPMSolverSDEScheduler", ] SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : Any = self.pipeline_class(**_A ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ : Any = self.get_dummy_inputs(_A ) SCREAMING_SNAKE_CASE_ : Optional[Any] = 2 SCREAMING_SNAKE_CASE_ : Optional[int] = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue SCREAMING_SNAKE_CASE_ : Tuple = getattr(_A,scheduler_enum.name ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = scheduler_cls.from_config(pipe.scheduler.config ) SCREAMING_SNAKE_CASE_ : Optional[int] = pipe(**_A )[0] outputs.append(_A ) assert check_same_shape(_A ) @require_torch_gpu @slow class a__ ( unittest.TestCase ): def __UpperCamelCase ( self : Dict ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = torch.manual_seed(33 ) SCREAMING_SNAKE_CASE_ : Optional[int] = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4",torch_dtype=torch.floataa ) pipe.to("cuda" ) SCREAMING_SNAKE_CASE_ : List[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler",torch_dtype=torch.floataa ) upscaler.to("cuda" ) SCREAMING_SNAKE_CASE_ : Tuple = "a photo of an astronaut high resolution, unreal engine, ultra realistic" SCREAMING_SNAKE_CASE_ : str = pipe(_A,generator=_A,output_type="latent" ).images SCREAMING_SNAKE_CASE_ : Optional[Any] = upscaler( prompt=_A,image=_A,num_inference_steps=20,guidance_scale=0,generator=_A,output_type="np",).images[0] SCREAMING_SNAKE_CASE_ : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy" ) assert np.abs((expected_image - image).mean() ) < 5E-2 def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = torch.manual_seed(33 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler",torch_dtype=torch.floataa ) upscaler.to("cuda" ) SCREAMING_SNAKE_CASE_ : Any = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas" SCREAMING_SNAKE_CASE_ : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png" ) SCREAMING_SNAKE_CASE_ : str = upscaler( prompt=_A,image=_A,num_inference_steps=20,guidance_scale=0,generator=_A,output_type="np",).images[0] SCREAMING_SNAKE_CASE_ : Any = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy" ) assert np.abs((expected_image - image).max() ) < 5E-2
18
0
"""simple docstring""" import operator as op __A : Union[str, Any] = '''scaler.pt''' __A : List[str] = '''pytorch_model''' __A : List[Any] = '''random_states''' __A : int = '''optimizer''' __A : List[Any] = '''scheduler''' __A : Tuple = '''pytorch_model.bin''' __A : Union[str, Any] = '''pytorch_model.bin.index.json''' __A : Any = '''model.safetensors''' __A : int = '''model.safetensors.index.json''' __A : Any = '''1.10.2''' __A : List[Any] = '''py38''' __A : Union[str, Any] = '''4.17.0''' __A : Optional[Any] = ['''ml.p3.16xlarge''', '''ml.p3dn.24xlarge''', '''ml.p4dn.24xlarge'''] __A : int = ['''FULL_SHARD''', '''SHARD_GRAD_OP''', '''NO_SHARD''', '''HYBRID_SHARD''', '''HYBRID_SHARD_ZERO2'''] __A : int = ['''TRANSFORMER_BASED_WRAP''', '''SIZE_BASED_WRAP''', '''NO_WRAP'''] __A : Tuple = ['''BACKWARD_PRE''', '''BACKWARD_POST''', '''NO_PREFETCH'''] __A : Optional[Any] = ['''FULL_STATE_DICT''', '''LOCAL_STATE_DICT''', '''SHARDED_STATE_DICT'''] __A : Optional[int] = '''2.0.1''' __A : Union[str, Any] = ['''pdsh''', '''standard''', '''openmpi''', '''mvapich'''] __A : Optional[Any] = ['''default''', '''reduce-overhead''', '''max-autotune'''] __A : Optional[Any] = {'''>''': op.gt, '''>=''': op.ge, '''==''': op.eq, '''!=''': op.ne, '''<=''': op.le, '''<''': op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 __A : Dict = [ '''nnodes''', '''nproc_per_node''', '''rdzv_backend''', '''rdzv_endpoint''', '''rdzv_id''', '''rdzv_conf''', '''standalone''', '''max_restarts''', '''monitor_interval''', '''start_method''', '''role''', '''module''', '''m''', '''no_python''', '''run_path''', '''log_dir''', '''r''', '''redirects''', '''t''', '''tee''', '''node_rank''', '''master_addr''', '''master_port''', ] __A : List[str] = ['''DEEPSPEED''', '''MULTI_GPU''', '''FSDP''', '''MEGATRON_LM'''] __A : Optional[Any] = ['''DEEPSPEED''', '''MULTI_XPU''', '''FSDP''']
33
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging __lowerCamelCase : Optional[int] = logging.get_logger(__name__) __lowerCamelCase : Tuple = { '''deepmind/language-perceiver''': '''https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json''', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class a__ ( A__ ): A = 'perceiver' def __init__( self : List[Any],_A : Tuple=256,_A : str=1280,_A : List[Any]=768,_A : Union[str, Any]=1,_A : Union[str, Any]=26,_A : List[str]=8,_A : List[Any]=8,_A : List[Any]=None,_A : List[Any]=None,_A : Union[str, Any]="kv",_A : Any=1,_A : int=1,_A : Dict="gelu",_A : Any=0.1,_A : int=0.02,_A : int=1E-12,_A : Any=True,_A : Optional[Any]=262,_A : List[Any]=2048,_A : str=56,_A : Optional[int]=[368, 496],_A : Dict=16,_A : Tuple=1920,_A : List[Any]=16,_A : str=[1, 16, 224, 224],**_A : Optional[Any],): """simple docstring""" super().__init__(**_A ) SCREAMING_SNAKE_CASE_ : Dict = num_latents SCREAMING_SNAKE_CASE_ : List[Any] = d_latents SCREAMING_SNAKE_CASE_ : Union[str, Any] = d_model SCREAMING_SNAKE_CASE_ : Optional[int] = num_blocks SCREAMING_SNAKE_CASE_ : List[Any] = num_self_attends_per_block SCREAMING_SNAKE_CASE_ : Tuple = num_self_attention_heads SCREAMING_SNAKE_CASE_ : List[str] = num_cross_attention_heads SCREAMING_SNAKE_CASE_ : List[Any] = qk_channels SCREAMING_SNAKE_CASE_ : Any = v_channels SCREAMING_SNAKE_CASE_ : Any = cross_attention_shape_for_attention SCREAMING_SNAKE_CASE_ : List[str] = self_attention_widening_factor SCREAMING_SNAKE_CASE_ : Any = cross_attention_widening_factor SCREAMING_SNAKE_CASE_ : List[Any] = hidden_act SCREAMING_SNAKE_CASE_ : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Any = initializer_range SCREAMING_SNAKE_CASE_ : List[Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : Tuple = use_query_residual # masked language modeling attributes SCREAMING_SNAKE_CASE_ : List[str] = vocab_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = max_position_embeddings # image classification attributes SCREAMING_SNAKE_CASE_ : Dict = image_size # flow attributes SCREAMING_SNAKE_CASE_ : List[Any] = train_size # multimodal autoencoding attributes SCREAMING_SNAKE_CASE_ : str = num_frames SCREAMING_SNAKE_CASE_ : Any = audio_samples_per_frame SCREAMING_SNAKE_CASE_ : Tuple = samples_per_patch SCREAMING_SNAKE_CASE_ : Optional[Any] = output_shape class a__ ( A__ ): @property def __UpperCamelCase ( self : List[str] ): """simple docstring""" if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ : List[str] = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE_ : str = {0: "batch", 1: "sequence"} return OrderedDict( [ ("inputs", dynamic_axis), ("attention_mask", dynamic_axis), ] ) @property def __UpperCamelCase ( self : List[Any] ): """simple docstring""" return 1E-4 def __UpperCamelCase ( self : List[str],_A : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"],_A : int = -1,_A : int = -1,_A : int = -1,_A : bool = False,_A : Optional[TensorType] = None,_A : int = 3,_A : int = 40,_A : int = 40,): """simple docstring""" if isinstance(_A,_A ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ : Tuple = compute_effective_axis_dimension( _A,fixed_dimension=OnnxConfig.default_fixed_batch,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ : Tuple = preprocessor.num_special_tokens_to_add(_A ) SCREAMING_SNAKE_CASE_ : Any = compute_effective_axis_dimension( _A,fixed_dimension=OnnxConfig.default_fixed_sequence,num_token_to_add=_A ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE_ : Optional[Any] = [" ".join(["a"] ) * seq_length] * batch_size SCREAMING_SNAKE_CASE_ : str = dict(preprocessor(_A,return_tensors=_A ) ) SCREAMING_SNAKE_CASE_ : List[str] = inputs.pop("input_ids" ) return inputs elif isinstance(_A,_A ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ : Any = compute_effective_axis_dimension(_A,fixed_dimension=OnnxConfig.default_fixed_batch ) SCREAMING_SNAKE_CASE_ : Optional[int] = self._generate_dummy_images(_A,_A,_A,_A ) SCREAMING_SNAKE_CASE_ : Any = dict(preprocessor(images=_A,return_tensors=_A ) ) SCREAMING_SNAKE_CASE_ : Any = inputs.pop("pixel_values" ) return inputs else: raise ValueError( "Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor." )
18
0
'''simple docstring''' import logging from transformers import PretrainedConfig A =logging.getLogger(__name__) A ={ 'bertabs-finetuned-cnndm': 'https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json', } class _a ( __a ): __a : List[Any] = """bertabs""" def __init__( self : str , lowercase : Tuple=30_522 , lowercase : Any=512 , lowercase : int=6 , lowercase : int=512 , lowercase : Any=8 , lowercase : Tuple=512 , lowercase : List[str]=0.2 , lowercase : List[Any]=6 , lowercase : Any=768 , lowercase : List[str]=8 , lowercase : Union[str, Any]=2_048 , lowercase : Union[str, Any]=0.2 , **lowercase : List[str] , ): '''simple docstring''' super().__init__(**lowercase ) UpperCAmelCase = vocab_size UpperCAmelCase = max_pos UpperCAmelCase = enc_layers UpperCAmelCase = enc_hidden_size UpperCAmelCase = enc_heads UpperCAmelCase = enc_ff_size UpperCAmelCase = enc_dropout UpperCAmelCase = dec_layers UpperCAmelCase = dec_hidden_size UpperCAmelCase = dec_heads UpperCAmelCase = dec_ff_size UpperCAmelCase = dec_dropout
34
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class a__ ( yaml.SafeLoader ): def __UpperCamelCase ( self : str,_A : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = [self.constructed_objects[key_node] for key_node, _ in node.value] SCREAMING_SNAKE_CASE_ : List[str] = [tuple(_A ) if isinstance(_A,_A ) else key for key in keys] SCREAMING_SNAKE_CASE_ : Optional[int] = Counter(_A ) SCREAMING_SNAKE_CASE_ : Tuple = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F'Got duplicate yaml keys: {duplicate_keys}' ) def __UpperCamelCase ( self : Tuple,_A : Dict,_A : List[Any]=False ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = super().construct_mapping(_A,deep=_A ) self._check_no_duplicates_on_constructed_node(_A ) return mapping def _snake_case ( lowerCAmelCase : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: SCREAMING_SNAKE_CASE_ : List[Any] = full_content[1:].index("---" ) + 1 SCREAMING_SNAKE_CASE_ : int = "\n".join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(lowerCAmelCase ) class a__ ( A__ ): # class attributes A = {'train_eval_index'} # train-eval-index in the YAML metadata @classmethod def __UpperCamelCase ( cls : Any,_A : Path ): """simple docstring""" with open(_A,encoding="utf-8" ) as readme_file: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(_A ) else: return cls() def __UpperCamelCase ( self : Dict,_A : Path ): """simple docstring""" if path.exists(): with open(_A,encoding="utf-8" ) as readme_file: SCREAMING_SNAKE_CASE_ : int = readme_file.read() else: SCREAMING_SNAKE_CASE_ : Any = None SCREAMING_SNAKE_CASE_ : int = self._to_readme(_A ) with open(_A,"w",encoding="utf-8" ) as readme_file: readme_file.write(_A ) def __UpperCamelCase ( self : Optional[int],_A : Optional[str] = None ): """simple docstring""" if readme_content is not None: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = _split_yaml_from_readme(_A ) SCREAMING_SNAKE_CASE_ : Tuple = "---\n" + self.to_yaml_string() + "---\n" + content else: SCREAMING_SNAKE_CASE_ : Dict = "---\n" + self.to_yaml_string() + "---\n" return full_content @classmethod def __UpperCamelCase ( cls : Dict,_A : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = yaml.load(_A,Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields SCREAMING_SNAKE_CASE_ : Any = { (key.replace("-","_" ) if key.replace("-","_" ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**_A ) def __UpperCamelCase ( self : Dict ): """simple docstring""" return yaml.safe_dump( { (key.replace("_","-" ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() },sort_keys=_A,allow_unicode=_A,encoding="utf-8",).decode("utf-8" ) __lowerCamelCase : List[Any] = { '''image-classification''': [], '''translation''': [], '''image-segmentation''': [], '''fill-mask''': [], '''automatic-speech-recognition''': [], '''token-classification''': [], '''sentence-similarity''': [], '''audio-classification''': [], '''question-answering''': [], '''summarization''': [], '''zero-shot-classification''': [], '''table-to-text''': [], '''feature-extraction''': [], '''other''': [], '''multiple-choice''': [], '''text-classification''': [], '''text-to-image''': [], '''text2text-generation''': [], '''zero-shot-image-classification''': [], '''tabular-classification''': [], '''tabular-regression''': [], '''image-to-image''': [], '''tabular-to-text''': [], '''unconditional-image-generation''': [], '''text-retrieval''': [], '''text-to-speech''': [], '''object-detection''': [], '''audio-to-audio''': [], '''text-generation''': [], '''conversational''': [], '''table-question-answering''': [], '''visual-question-answering''': [], '''image-to-text''': [], '''reinforcement-learning''': [], '''voice-activity-detection''': [], '''time-series-forecasting''': [], '''document-question-answering''': [], } if __name__ == "__main__": from argparse import ArgumentParser __lowerCamelCase : List[Any] = ArgumentParser(usage='''Validate the yaml metadata block of a README.md file.''') ap.add_argument('''readme_filepath''') __lowerCamelCase : Dict = ap.parse_args() __lowerCamelCase : List[Any] = Path(args.readme_filepath) __lowerCamelCase : Optional[int] = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
18
0
'''simple docstring''' import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def __snake_case( _lowerCAmelCase , _lowerCAmelCase=() , _lowerCAmelCase=None , _lowerCAmelCase="no" , _lowerCAmelCase="29500" ) -> int: snake_case__ : List[str] = False snake_case__ : Tuple = False if any(key.startswith("""KAGGLE""" ) for key in os.environ.keys() ): snake_case__ : List[str] = True elif "IPython" in sys.modules: snake_case__ : int = """google.colab""" in str(sys.modules["""IPython"""].get_ipython() ) try: snake_case__ : Any = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}." ) if (in_colab or in_kaggle) and (os.environ.get("""TPU_NAME""" , _lowerCAmelCase ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( """To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside """ """your training function. Restart your notebook and make sure no cells initializes an """ """`Accelerator`.""" ) if num_processes is None: snake_case__ : Union[str, Any] = 8 snake_case__ : str = PrepareForLaunch(_lowerCAmelCase , distributed_type="""TPU""" ) print(f"Launching a training on {num_processes} TPU cores." ) xmp.spawn(_lowerCAmelCase , args=_lowerCAmelCase , nprocs=_lowerCAmelCase , start_method="""fork""" ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print("""Launching training on one GPU.""" ) else: print("""Launching training on one CPU.""" ) function(*_lowerCAmelCase ) else: if num_processes is None: raise ValueError( """You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.""" ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( """To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized """ """inside your training function. Restart your notebook and make sure no cells initializes an """ """`Accelerator`.""" ) if torch.cuda.is_initialized(): raise ValueError( """To launch a multi-GPU training from your notebook, you need to avoid running any instruction """ """using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA """ """function.""" ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_lowerCAmelCase , master_addr="""127.0.01""" , master_port=_lowerCAmelCase , mixed_precision=_lowerCAmelCase ): snake_case__ : Optional[Any] = PrepareForLaunch(_lowerCAmelCase , distributed_type="""MULTI_GPU""" ) print(f"Launching training on {num_processes} GPUs." ) try: start_processes(_lowerCAmelCase , args=_lowerCAmelCase , nprocs=_lowerCAmelCase , start_method="""fork""" ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( """CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. """ """This likely stems from an outside import causing issues once the `notebook_launcher()` is called. """ """Please review your imports and test them when running the `notebook_launcher()` to identify """ """which one is problematic.""" ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): snake_case__ : Tuple = """1""" print("""Launching training on MPS.""" ) elif torch.cuda.is_available(): print("""Launching training on one GPU.""" ) else: print("""Launching training on CPU.""" ) function(*_lowerCAmelCase ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase=() , _lowerCAmelCase=2 ) -> Tuple: from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_lowerCAmelCase , master_addr="""127.0.01""" , master_port="""29500""" , accelerate_mixed_precision="""no""" , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu="""yes""" , ): snake_case__ : Tuple = PrepareForLaunch(_lowerCAmelCase , debug=_lowerCAmelCase ) start_processes(_lowerCAmelCase , args=_lowerCAmelCase , nprocs=_lowerCAmelCase , start_method="""fork""" )
35
from __future__ import annotations from math import pi, sqrt def _snake_case ( lowerCAmelCase : float , lowerCAmelCase : float ): """simple docstring""" if inductance <= 0: raise ValueError("Inductance cannot be 0 or negative" ) elif capacitance <= 0: raise ValueError("Capacitance cannot be 0 or negative" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
18
0
def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = abs(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = 0 while n > 0: res += n % 10 n //= 10 return res def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = abs(_lowerCamelCase ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def A ( _lowerCamelCase ): '''simple docstring''' return sum(int(_lowerCamelCase ) for c in str(abs(_lowerCamelCase ) ) ) def A ( ): '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(_lowerCamelCase , _lowerCamelCase ) -> None: _lowerCAmelCase : Optional[Any] = F"{func.__name__}({value})" _lowerCAmelCase : str = timeit(F"__main__.{call}" , setup="import __main__" ) print(F"{call:56} = {func(_lowerCamelCase )} -- {timing:.4f} seconds" ) for value in (262_144, 1_125_899_906_842_624, 1_267_650_600_228_229_401_496_703_205_376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(_lowerCamelCase , _lowerCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
36
def _snake_case ( lowerCAmelCase : list ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = len(lowerCAmelCase ) for i in range(1 , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : int = collection[i] SCREAMING_SNAKE_CASE_ : Any = 0 SCREAMING_SNAKE_CASE_ : Tuple = i - 1 while low <= high: SCREAMING_SNAKE_CASE_ : int = (low + high) // 2 if val < collection[mid]: SCREAMING_SNAKE_CASE_ : Optional[Any] = mid - 1 else: SCREAMING_SNAKE_CASE_ : Tuple = mid + 1 for j in range(lowerCAmelCase , lowerCAmelCase , -1 ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = collection[j - 1] SCREAMING_SNAKE_CASE_ : int = val return collection if __name__ == "__main__": __lowerCamelCase : Dict = input('''Enter numbers separated by a comma:\n''').strip() __lowerCamelCase : List[str] = [int(item) for item in user_input.split(''',''')] print(binary_insertion_sort(unsorted))
18
0
'''simple docstring''' from math import factorial _lowerCAmelCase = {str(digit): factorial(digit) for digit in range(10)} def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" if not isinstance(UpperCamelCase , UpperCamelCase ): raise TypeError("""Parameter number must be int""" ) if number < 0: raise ValueError("""Parameter number must be greater than or equal to 0""" ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(UpperCamelCase ) ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase = 60 , UpperCamelCase = 1000000 ): """simple docstring""" if not isinstance(UpperCamelCase , UpperCamelCase ) or not isinstance(UpperCamelCase , UpperCamelCase ): raise TypeError("""Parameters chain_length and number_limit must be int""" ) if chain_length <= 0 or number_limit <= 0: raise ValueError( """Parameters chain_length and number_limit must be greater than 0""" ) # the counter for the chains with the exact desired length lowerCAmelCase__ : List[str] = 0 # the cached sizes of the previous chains lowerCAmelCase__ : dict[int, int] = {} for start_chain_element in range(1 , UpperCamelCase ): # The temporary set will contain the elements of the chain lowerCAmelCase__ : List[str] = set() lowerCAmelCase__ : Optional[int] = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. lowerCAmelCase__ : Any = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(UpperCamelCase ) chain_set_length += 1 lowerCAmelCase__ : List[Any] = digit_factorial_sum(UpperCamelCase ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] lowerCAmelCase__ : Optional[int] = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F"""{solution()}""")
37
from collections.abc import Sequence from queue import Queue class a__ : def __init__( self : int,_A : List[Any],_A : Optional[Any],_A : Optional[int],_A : int=None,_A : List[str]=None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = start SCREAMING_SNAKE_CASE_ : List[str] = end SCREAMING_SNAKE_CASE_ : Tuple = val SCREAMING_SNAKE_CASE_ : List[str] = (start + end) // 2 SCREAMING_SNAKE_CASE_ : Optional[int] = left SCREAMING_SNAKE_CASE_ : str = right def __repr__( self : Tuple ): """simple docstring""" return F'SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})' class a__ : def __init__( self : Any,_A : Sequence,_A : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = collection SCREAMING_SNAKE_CASE_ : Optional[int] = function if self.collection: SCREAMING_SNAKE_CASE_ : List[str] = self._build_tree(0,len(_A ) - 1 ) def __UpperCamelCase ( self : int,_A : Any,_A : List[Any] ): """simple docstring""" self._update_tree(self.root,_A,_A ) def __UpperCamelCase ( self : str,_A : Any,_A : List[Any] ): """simple docstring""" return self._query_range(self.root,_A,_A ) def __UpperCamelCase ( self : Any,_A : Optional[int],_A : int ): """simple docstring""" if start == end: return SegmentTreeNode(_A,_A,self.collection[start] ) SCREAMING_SNAKE_CASE_ : List[Any] = (start + end) // 2 SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._build_tree(_A,_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = self._build_tree(mid + 1,_A ) return SegmentTreeNode(_A,_A,self.fn(left.val,right.val ),_A,_A ) def __UpperCamelCase ( self : int,_A : int,_A : Tuple,_A : Dict ): """simple docstring""" if node.start == i and node.end == i: SCREAMING_SNAKE_CASE_ : Union[str, Any] = val return if i <= node.mid: self._update_tree(node.left,_A,_A ) else: self._update_tree(node.right,_A,_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.fn(node.left.val,node.right.val ) def __UpperCamelCase ( self : str,_A : List[str],_A : Optional[int],_A : Optional[Any] ): """simple docstring""" if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left,_A,_A ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left,_A,node.mid ),self._query_range(node.right,node.mid + 1,_A ),) else: # range in right child tree return self._query_range(node.right,_A,_A ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" if self.root is not None: SCREAMING_SNAKE_CASE_ : int = Queue() queue.put(self.root ) while not queue.empty(): SCREAMING_SNAKE_CASE_ : Tuple = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('''*''' * 50) __lowerCamelCase : int = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
18
0
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : str ) -> str: """simple docstring""" UpperCamelCase :int = 0 # if input_string is "aba" than new_input_string become "a|b|a" UpperCamelCase :Dict = """""" UpperCamelCase :int = """""" # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__magic_name__ ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring UpperCamelCase , UpperCamelCase :str = 0, 0 # length[i] shows the length of palindromic substring with center i UpperCamelCase :str = [1 for i in range(len(__magic_name__ ) )] # for each character in new_string find corresponding palindromic string UpperCamelCase :List[Any] = 0 for j in range(len(__magic_name__ ) ): UpperCamelCase :str = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__magic_name__ ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 UpperCamelCase :str = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: UpperCamelCase :Optional[int] = j - k + 1 # noqa: E741 UpperCamelCase :Tuple = j + k - 1 # update max_length and start position if max_length < length[j]: UpperCamelCase :int = length[j] UpperCamelCase :Dict = j # create that string UpperCamelCase :List[Any] = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
38
def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : int ): """simple docstring""" while b: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = b, a % b return a def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : int ): """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(lowerCAmelCase , a % b ) def _snake_case ( ): """simple docstring""" print(f'euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}' ) print(f'euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}' ) print(f'euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}' ) print(f'euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}' ) print(f'euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}' ) print(f'euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}' ) print(f'euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}' ) print(f'euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}' ) if __name__ == "__main__": main()
18
0
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class __lowerCamelCase ( snake_case__): """simple docstring""" def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" with open(UpperCAmelCase , encoding='utf-8' ) as input_file: _UpperCAmelCase = re.compile(R'(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)' ) _UpperCAmelCase = input_file.read() _UpperCAmelCase = regexp.search(UpperCAmelCase ) return match def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" with open(UpperCAmelCase , encoding='utf-8' ) as input_file: _UpperCAmelCase = re.compile(R'#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()' , re.DOTALL ) _UpperCAmelCase = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` _UpperCAmelCase = regexp.finditer(UpperCAmelCase ) _UpperCAmelCase = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = Path('./datasets' ) _UpperCAmelCase = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(UpperCAmelCase ) ): raise AssertionError(F"""open(...) must use utf-8 encoding in {dataset}""" ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = Path('./datasets' ) _UpperCAmelCase = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_print_statements(str(UpperCAmelCase ) ): raise AssertionError(F"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
39
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCamelCase : Dict = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[Any] = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys __lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
18
0
"""simple docstring""" def lowercase ( A_ , A_ )-> int: '''simple docstring''' while second != 0: a : List[str] = first & second first ^= second a : Union[str, Any] = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() __lowercase = int(input("""Enter the first number: """).strip()) __lowercase = int(input("""Enter the second number: """).strip()) print(f'''{add(first, second) = }''')
40
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : Path , lowerCAmelCase : str = None , lowerCAmelCase : str = None , lowerCAmelCase : str = None , ): """simple docstring""" if config_name_or_path is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = "facebook/rag-token-base" if model_type == "rag_token" else "facebook/rag-sequence-base" if generator_tokenizer_name_or_path is None: SCREAMING_SNAKE_CASE_ : Dict = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = question_encoder_name_or_path SCREAMING_SNAKE_CASE_ : Union[str, Any] = RagTokenForGeneration if model_type == "rag_token" else RagSequenceForGeneration # Save model. SCREAMING_SNAKE_CASE_ : List[Any] = RagConfig.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = AutoConfig.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = AutoConfig.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = gen_config SCREAMING_SNAKE_CASE_ : Optional[Any] = question_encoder_config SCREAMING_SNAKE_CASE_ : Dict = model_class.from_pretrained_question_encoder_generator( lowerCAmelCase , lowerCAmelCase , config=lowerCAmelCase ) rag_model.save_pretrained(lowerCAmelCase ) # Sanity check. model_class.from_pretrained(lowerCAmelCase ) # Save tokenizers. SCREAMING_SNAKE_CASE_ : Optional[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase ) gen_tokenizer.save_pretrained(dest_dir / "generator_tokenizer/" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCAmelCase ) question_encoder_tokenizer.save_pretrained(dest_dir / "question_encoder_tokenizer/" ) if __name__ == "__main__": __lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( '''--model_type''', choices=['''rag_sequence''', '''rag_token'''], required=True, type=str, help='''RAG model type: rag_sequence, rag_token''', ) parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''') parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''') parser.add_argument( '''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier''' ) parser.add_argument( '''--generator_tokenizer_name_or_path''', type=str, help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''', ) parser.add_argument( '''--question_encoder_tokenizer_name_or_path''', type=str, help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''', ) parser.add_argument( '''--config_name_or_path''', type=str, help=( '''Identifier of the model config to use, if not provided, resolves to a base config for a given''' ''' ``model_type``''' ), ) __lowerCamelCase : str = parser.parse_args() __lowerCamelCase : int = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
18
0
'''simple docstring''' import operator as op _A : Optional[Any] ='''scaler.pt''' _A : Optional[Any] ='''pytorch_model''' _A : int ='''random_states''' _A : List[Any] ='''optimizer''' _A : Dict ='''scheduler''' _A : Dict ='''pytorch_model.bin''' _A : Optional[Any] ='''pytorch_model.bin.index.json''' _A : List[str] ='''model.safetensors''' _A : List[Any] ='''model.safetensors.index.json''' _A : str ='''1.10.2''' _A : List[Any] ='''py38''' _A : int ='''4.17.0''' _A : List[str] =['''ml.p3.16xlarge''', '''ml.p3dn.24xlarge''', '''ml.p4dn.24xlarge'''] _A : Tuple =['''FULL_SHARD''', '''SHARD_GRAD_OP''', '''NO_SHARD''', '''HYBRID_SHARD''', '''HYBRID_SHARD_ZERO2'''] _A : Tuple =['''TRANSFORMER_BASED_WRAP''', '''SIZE_BASED_WRAP''', '''NO_WRAP'''] _A : Optional[int] =['''BACKWARD_PRE''', '''BACKWARD_POST''', '''NO_PREFETCH'''] _A : Optional[int] =['''FULL_STATE_DICT''', '''LOCAL_STATE_DICT''', '''SHARDED_STATE_DICT'''] _A : List[Any] ='''2.0.1''' _A : str =['''pdsh''', '''standard''', '''openmpi''', '''mvapich'''] _A : List[str] =['''default''', '''reduce-overhead''', '''max-autotune'''] _A : str ={'''>''': op.gt, '''>=''': op.ge, '''==''': op.eq, '''!=''': op.ne, '''<=''': op.le, '''<''': op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 _A : Tuple =[ '''nnodes''', '''nproc_per_node''', '''rdzv_backend''', '''rdzv_endpoint''', '''rdzv_id''', '''rdzv_conf''', '''standalone''', '''max_restarts''', '''monitor_interval''', '''start_method''', '''role''', '''module''', '''m''', '''no_python''', '''run_path''', '''log_dir''', '''r''', '''redirects''', '''t''', '''tee''', '''node_rank''', '''master_addr''', '''master_port''', ] _A : Any =['''DEEPSPEED''', '''MULTI_GPU''', '''FSDP''', '''MEGATRON_LM'''] _A : Union[str, Any] =['''DEEPSPEED''', '''MULTI_XPU''', '''FSDP''']
41
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class a__ ( unittest.TestCase ): def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = { "task_specific_params": { "summarization": {"length_penalty": 1.0, "max_length": 128, "min_length": 12, "num_beams": 4}, "summarization_cnn": {"length_penalty": 2.0, "max_length": 142, "min_length": 56, "num_beams": 4}, "summarization_xsum": {"length_penalty": 1.0, "max_length": 62, "min_length": 11, "num_beams": 6}, } } SCREAMING_SNAKE_CASE_ : Any = { "task_specific_params.summarization.length_penalty": 1.0, "task_specific_params.summarization.max_length": 128, "task_specific_params.summarization.min_length": 12, "task_specific_params.summarization.num_beams": 4, "task_specific_params.summarization_cnn.length_penalty": 2.0, "task_specific_params.summarization_cnn.max_length": 142, "task_specific_params.summarization_cnn.min_length": 56, "task_specific_params.summarization_cnn.num_beams": 4, "task_specific_params.summarization_xsum.length_penalty": 1.0, "task_specific_params.summarization_xsum.max_length": 62, "task_specific_params.summarization_xsum.min_length": 11, "task_specific_params.summarization_xsum.num_beams": 6, } self.assertEqual(flatten_dict(_A ),_A ) def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = np.random.randn(3,4 ) self.assertTrue(np.allclose(transpose(_A ),x.transpose() ) ) SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4,5 ) self.assertTrue(np.allclose(transpose(_A,axes=(1, 2, 0) ),x.transpose((1, 2, 0) ) ) ) @require_torch def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Any = torch.tensor(_A ) self.assertTrue(np.allclose(transpose(_A ),transpose(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ : Dict = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor(_A ) self.assertTrue(np.allclose(transpose(_A,axes=(1, 2, 0) ),transpose(_A,axes=(1, 2, 0) ).numpy() ) ) @require_tf def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tf.constant(_A ) self.assertTrue(np.allclose(transpose(_A ),transpose(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ : List[str] = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.constant(_A ) self.assertTrue(np.allclose(transpose(_A,axes=(1, 2, 0) ),transpose(_A,axes=(1, 2, 0) ).numpy() ) ) @require_flax def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Tuple = jnp.array(_A ) self.assertTrue(np.allclose(transpose(_A ),np.asarray(transpose(_A ) ) ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : List[Any] = jnp.array(_A ) self.assertTrue(np.allclose(transpose(_A,axes=(1, 2, 0) ),np.asarray(transpose(_A,axes=(1, 2, 0) ) ) ) ) def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4 ) self.assertTrue(np.allclose(reshape(_A,(4, 3) ),np.reshape(_A,(4, 3) ) ) ) SCREAMING_SNAKE_CASE_ : Any = np.random.randn(3,4,5 ) self.assertTrue(np.allclose(reshape(_A,(12, 5) ),np.reshape(_A,(12, 5) ) ) ) @require_torch def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor(_A ) self.assertTrue(np.allclose(reshape(_A,(4, 3) ),reshape(_A,(4, 3) ).numpy() ) ) SCREAMING_SNAKE_CASE_ : Dict = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : int = torch.tensor(_A ) self.assertTrue(np.allclose(reshape(_A,(12, 5) ),reshape(_A,(12, 5) ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tf.constant(_A ) self.assertTrue(np.allclose(reshape(_A,(4, 3) ),reshape(_A,(4, 3) ).numpy() ) ) SCREAMING_SNAKE_CASE_ : int = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : Any = tf.constant(_A ) self.assertTrue(np.allclose(reshape(_A,(12, 5) ),reshape(_A,(12, 5) ).numpy() ) ) @require_flax def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : int = jnp.array(_A ) self.assertTrue(np.allclose(reshape(_A,(4, 3) ),np.asarray(reshape(_A,(4, 3) ) ) ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : Tuple = jnp.array(_A ) self.assertTrue(np.allclose(reshape(_A,(12, 5) ),np.asarray(reshape(_A,(12, 5) ) ) ) ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = np.random.randn(1,3,4 ) self.assertTrue(np.allclose(squeeze(_A ),np.squeeze(_A ) ) ) SCREAMING_SNAKE_CASE_ : Any = np.random.randn(1,4,1,5 ) self.assertTrue(np.allclose(squeeze(_A,axis=2 ),np.squeeze(_A,axis=2 ) ) ) @require_torch def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = np.random.randn(1,3,4 ) SCREAMING_SNAKE_CASE_ : Any = torch.tensor(_A ) self.assertTrue(np.allclose(squeeze(_A ),squeeze(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ : Any = np.random.randn(1,4,1,5 ) SCREAMING_SNAKE_CASE_ : Dict = torch.tensor(_A ) self.assertTrue(np.allclose(squeeze(_A,axis=2 ),squeeze(_A,axis=2 ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = np.random.randn(1,3,4 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.constant(_A ) self.assertTrue(np.allclose(squeeze(_A ),squeeze(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ : Any = np.random.randn(1,4,1,5 ) SCREAMING_SNAKE_CASE_ : Optional[int] = tf.constant(_A ) self.assertTrue(np.allclose(squeeze(_A,axis=2 ),squeeze(_A,axis=2 ).numpy() ) ) @require_flax def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.random.randn(1,3,4 ) SCREAMING_SNAKE_CASE_ : List[str] = jnp.array(_A ) self.assertTrue(np.allclose(squeeze(_A ),np.asarray(squeeze(_A ) ) ) ) SCREAMING_SNAKE_CASE_ : str = np.random.randn(1,4,1,5 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = jnp.array(_A ) self.assertTrue(np.allclose(squeeze(_A,axis=2 ),np.asarray(squeeze(_A,axis=2 ) ) ) ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4 ) self.assertTrue(np.allclose(expand_dims(_A,axis=1 ),np.expand_dims(_A,axis=1 ) ) ) @require_torch def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor(_A ) self.assertTrue(np.allclose(expand_dims(_A,axis=1 ),expand_dims(_A,axis=1 ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Optional[int] = tf.constant(_A ) self.assertTrue(np.allclose(expand_dims(_A,axis=1 ),expand_dims(_A,axis=1 ).numpy() ) ) @require_flax def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = jnp.array(_A ) self.assertTrue(np.allclose(expand_dims(_A,axis=1 ),np.asarray(expand_dims(_A,axis=1 ) ) ) )
18
0
'''simple docstring''' from __future__ import annotations from collections.abc import MutableSequence class __UpperCAmelCase : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if len(lowerCAmelCase_ ) != degree + 1: raise ValueError( 'The number of coefficients should be equal to the degree + 1.' ) _snake_case = list(lowerCAmelCase_ ) _snake_case = degree def __add__( self , lowerCAmelCase_ ): """simple docstring""" if self.degree > polynomial_a.degree: _snake_case = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , lowerCAmelCase_ ) else: _snake_case = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , lowerCAmelCase_ ) def __sub__( self , lowerCAmelCase_ ): """simple docstring""" return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self ): """simple docstring""" return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self ): """simple docstring""" _snake_case = '' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(lowerCAmelCase_ ) return polynomial def __repr__( self ): """simple docstring""" return self.__str__() def lowerCamelCase ( self ): """simple docstring""" _snake_case = [0] * self.degree for i in range(self.degree ): _snake_case = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ = 0 ): """simple docstring""" _snake_case = [0] * (self.degree + 2) _snake_case = constant for i in range(self.degree + 1 ): _snake_case = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , lowerCAmelCase_ ) def __eq__( self , lowerCAmelCase_ ): """simple docstring""" if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self , lowerCAmelCase_ ): """simple docstring""" return not self.__eq__(lowerCAmelCase_ )
42
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : Tuple = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} __lowerCamelCase : List[Any] = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } __lowerCamelCase : int = { '''allenai/longformer-base-4096''': 40_96, '''allenai/longformer-large-4096''': 40_96, '''allenai/longformer-large-4096-finetuned-triviaqa''': 40_96, '''allenai/longformer-base-4096-extra.pos.embd.only''': 40_96, '''allenai/longformer-large-4096-extra.pos.embd.only''': 40_96, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE_ : str = bs[:] SCREAMING_SNAKE_CASE_ : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCAmelCase ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE_ : List[str] = [chr(lowerCAmelCase ) for n in cs] return dict(zip(lowerCAmelCase , lowerCAmelCase ) ) def _snake_case ( lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = set() SCREAMING_SNAKE_CASE_ : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE_ : List[str] = char return pairs class a__ ( A__ ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = ['input_ids', 'attention_mask'] def __init__( self : Union[str, Any],_A : List[Any],_A : Tuple,_A : str="replace",_A : Optional[int]="<s>",_A : Dict="</s>",_A : Any="</s>",_A : Optional[Any]="<s>",_A : Union[str, Any]="<unk>",_A : int="<pad>",_A : Dict="<mask>",_A : int=False,**_A : Dict,): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else bos_token SCREAMING_SNAKE_CASE_ : Optional[int] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else eos_token SCREAMING_SNAKE_CASE_ : str = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else sep_token SCREAMING_SNAKE_CASE_ : Union[str, Any] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else cls_token SCREAMING_SNAKE_CASE_ : List[str] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else unk_token SCREAMING_SNAKE_CASE_ : Optional[Any] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_ : Dict = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else mask_token super().__init__( errors=_A,bos_token=_A,eos_token=_A,unk_token=_A,sep_token=_A,cls_token=_A,pad_token=_A,mask_token=_A,add_prefix_space=_A,**_A,) with open(_A,encoding="utf-8" ) as vocab_handle: SCREAMING_SNAKE_CASE_ : Tuple = json.load(_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE_ : Any = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE_ : Optional[Any] = bytes_to_unicode() SCREAMING_SNAKE_CASE_ : str = {v: k for k, v in self.byte_encoder.items()} with open(_A,encoding="utf-8" ) as merges_handle: SCREAMING_SNAKE_CASE_ : int = merges_handle.read().split("\n" )[1:-1] SCREAMING_SNAKE_CASE_ : List[str] = [tuple(merge.split() ) for merge in bpe_merges] SCREAMING_SNAKE_CASE_ : Optional[int] = dict(zip(_A,range(len(_A ) ) ) ) SCREAMING_SNAKE_CASE_ : Any = {} SCREAMING_SNAKE_CASE_ : List[str] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE_ : List[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def __UpperCamelCase ( self : List[str] ): """simple docstring""" return len(self.encoder ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" return dict(self.encoder,**self.added_tokens_encoder ) def __UpperCamelCase ( self : Any,_A : int ): """simple docstring""" if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE_ : Union[str, Any] = tuple(_A ) SCREAMING_SNAKE_CASE_ : str = get_pairs(_A ) if not pairs: return token while True: SCREAMING_SNAKE_CASE_ : Tuple = min(_A,key=lambda _A : self.bpe_ranks.get(_A,float("inf" ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = bigram SCREAMING_SNAKE_CASE_ : int = [] SCREAMING_SNAKE_CASE_ : Dict = 0 while i < len(_A ): try: SCREAMING_SNAKE_CASE_ : Tuple = word.index(_A,_A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE_ : str = j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE_ : Dict = tuple(_A ) SCREAMING_SNAKE_CASE_ : List[str] = new_word if len(_A ) == 1: break else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_pairs(_A ) SCREAMING_SNAKE_CASE_ : List[str] = " ".join(_A ) SCREAMING_SNAKE_CASE_ : Any = word return word def __UpperCamelCase ( self : Dict,_A : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = [] for token in re.findall(self.pat,_A ): SCREAMING_SNAKE_CASE_ : Any = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_A ).split(" " ) ) return bpe_tokens def __UpperCamelCase ( self : Optional[int],_A : str ): """simple docstring""" return self.encoder.get(_A,self.encoder.get(self.unk_token ) ) def __UpperCamelCase ( self : Tuple,_A : str ): """simple docstring""" return self.decoder.get(_A ) def __UpperCamelCase ( self : List[str],_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = "".join(_A ) SCREAMING_SNAKE_CASE_ : Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8",errors=self.errors ) return text def __UpperCamelCase ( self : List[Any],_A : str,_A : Optional[str] = None ): """simple docstring""" if not os.path.isdir(_A ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return SCREAMING_SNAKE_CASE_ : Tuple = os.path.join( _A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE_ : Any = os.path.join( _A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(_A,"w",encoding="utf-8" ) as f: f.write(json.dumps(self.encoder,indent=2,sort_keys=_A,ensure_ascii=_A ) + "\n" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 with open(_A,"w",encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items(),key=lambda _A : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' " Please check that the tokenizer is not corrupted!" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = token_index writer.write(" ".join(_A ) + "\n" ) index += 1 return vocab_file, merge_file def __UpperCamelCase ( self : Optional[Any],_A : List[int],_A : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_ : str = [self.cls_token_id] SCREAMING_SNAKE_CASE_ : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCamelCase ( self : str,_A : List[int],_A : Optional[List[int]] = None,_A : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A,token_ids_a=_A,already_has_special_tokens=_A ) if token_ids_a is None: return [1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) + [1] def __UpperCamelCase ( self : Any,_A : List[int],_A : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase ( self : Any,_A : Union[str, Any],_A : Any=False,**_A : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = kwargs.pop("add_prefix_space",self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_A ) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE_ : str = " " + text return (text, kwargs)
18
0
__lowercase = [ (1000, '''M'''), (900, '''CM'''), (500, '''D'''), (400, '''CD'''), (100, '''C'''), (90, '''XC'''), (50, '''L'''), (40, '''XL'''), (10, '''X'''), (9, '''IX'''), (5, '''V'''), (4, '''IV'''), (1, '''I'''), ] def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Tuple = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1_000} __UpperCamelCase :List[Any] = 0 __UpperCamelCase :str = 0 while place < len(SCREAMING_SNAKE_CASE ): if (place + 1 < len(SCREAMING_SNAKE_CASE )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Optional[Any] = [] for arabic, roman in ROMAN: ((__UpperCamelCase) , (__UpperCamelCase)) :Tuple = divmod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) result.append(roman * factor ) if number == 0: break return "".join(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
43
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class a__ : def __init__( self : Optional[int],_A : Dict,_A : List[str]=13,_A : List[str]=7,_A : int=True,_A : str=True,_A : Union[str, Any]=True,_A : Tuple=True,_A : Dict=99,_A : Tuple=32,_A : Tuple=2,_A : Tuple=4,_A : Optional[Any]=37,_A : str="gelu",_A : Dict=0.1,_A : List[Any]=0.1,_A : List[str]=512,_A : str=16,_A : int=2,_A : Dict=0.02,_A : List[Any]=3,_A : Optional[Any]=4,_A : Optional[int]=None,): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = parent SCREAMING_SNAKE_CASE_ : Any = 13 SCREAMING_SNAKE_CASE_ : List[str] = 7 SCREAMING_SNAKE_CASE_ : Dict = True SCREAMING_SNAKE_CASE_ : Optional[Any] = True SCREAMING_SNAKE_CASE_ : Tuple = True SCREAMING_SNAKE_CASE_ : List[str] = True SCREAMING_SNAKE_CASE_ : List[str] = 99 SCREAMING_SNAKE_CASE_ : Tuple = 384 SCREAMING_SNAKE_CASE_ : Optional[Any] = 2 SCREAMING_SNAKE_CASE_ : Any = 4 SCREAMING_SNAKE_CASE_ : str = 37 SCREAMING_SNAKE_CASE_ : Optional[Any] = "gelu" SCREAMING_SNAKE_CASE_ : List[Any] = 0.1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0.1 SCREAMING_SNAKE_CASE_ : Dict = 512 SCREAMING_SNAKE_CASE_ : int = 16 SCREAMING_SNAKE_CASE_ : Optional[int] = 2 SCREAMING_SNAKE_CASE_ : Any = 0.02 SCREAMING_SNAKE_CASE_ : str = 3 SCREAMING_SNAKE_CASE_ : int = 4 SCREAMING_SNAKE_CASE_ : Dict = 128 SCREAMING_SNAKE_CASE_ : Any = 2 SCREAMING_SNAKE_CASE_ : Tuple = 9 SCREAMING_SNAKE_CASE_ : List[Any] = 1 SCREAMING_SNAKE_CASE_ : Any = None def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) SCREAMING_SNAKE_CASE_ : Any = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : List[str] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) SCREAMING_SNAKE_CASE_ : Dict = None SCREAMING_SNAKE_CASE_ : Dict = None SCREAMING_SNAKE_CASE_ : str = None if self.use_labels: SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size],self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size],self.num_choices ) SCREAMING_SNAKE_CASE_ : Any = ConvBertConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,initializer_range=self.initializer_range,return_dict=_A,) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : Optional[int],_A : List[Any],_A : int,_A : Tuple,_A : Optional[int],_A : Union[str, Any],_A : Union[str, Any],_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = TFConvBertModel(config=_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} SCREAMING_SNAKE_CASE_ : str = [input_ids, input_mask] SCREAMING_SNAKE_CASE_ : List[str] = model(_A ) SCREAMING_SNAKE_CASE_ : Dict = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Dict,_A : Dict,_A : int,_A : Union[str, Any],_A : List[Any],_A : int,_A : str,_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = TFConvBertForMaskedLM(config=_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_ : List[Any] = model(_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : Any,_A : Optional[int],_A : List[Any],_A : Union[str, Any],_A : List[Any],_A : Union[str, Any],_A : Optional[int],_A : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.num_labels SCREAMING_SNAKE_CASE_ : Any = TFConvBertForSequenceClassification(config=_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_ : Optional[Any] = model(_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : int,_A : int,_A : Dict,_A : List[str],_A : Tuple,_A : Dict,_A : Optional[int],_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.num_choices SCREAMING_SNAKE_CASE_ : Optional[int] = TFConvBertForMultipleChoice(config=_A ) SCREAMING_SNAKE_CASE_ : Any = tf.tile(tf.expand_dims(_A,1 ),(1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ : Any = tf.tile(tf.expand_dims(_A,1 ),(1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.tile(tf.expand_dims(_A,1 ),(1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ : int = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE_ : int = model(_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : List[Any],_A : Union[str, Any],_A : int,_A : Optional[int],_A : str,_A : str,_A : Tuple,_A : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.num_labels SCREAMING_SNAKE_CASE_ : Union[str, Any] = TFConvBertForTokenClassification(config=_A ) SCREAMING_SNAKE_CASE_ : Tuple = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_ : str = model(_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : List[Any],_A : int,_A : List[str],_A : List[Any],_A : Any,_A : Optional[int],_A : List[str],_A : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = TFConvBertForQuestionAnswering(config=_A ) SCREAMING_SNAKE_CASE_ : Dict = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_ : Any = model(_A ) self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : List[Any] = config_and_inputs SCREAMING_SNAKE_CASE_ : Any = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class a__ ( A__ , A__ , unittest.TestCase ): A = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) A = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) A = False A = False A = False def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = TFConvBertModelTester(self ) SCREAMING_SNAKE_CASE_ : Tuple = ConfigTester(self,config_class=_A,hidden_size=37 ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_A ) def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) @slow def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : List[str] = True SCREAMING_SNAKE_CASE_ : Any = True if hasattr(_A,"use_cache" ): SCREAMING_SNAKE_CASE_ : List[Any] = True SCREAMING_SNAKE_CASE_ : int = getattr(self.model_tester,"encoder_seq_length",self.model_tester.seq_length ) SCREAMING_SNAKE_CASE_ : Optional[Any] = getattr(self.model_tester,"key_length",_A ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : List[str] = self._prepare_for_class(_A,_A ) SCREAMING_SNAKE_CASE_ : List[Any] = model_class(_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = len(model(_A ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A,saved_model=_A ) SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join(_A,"saved_model","1" ) SCREAMING_SNAKE_CASE_ : Tuple = tf.keras.models.load_model(_A ) SCREAMING_SNAKE_CASE_ : str = model(_A ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE_ : Optional[Any] = outputs["encoder_hidden_states"] SCREAMING_SNAKE_CASE_ : str = outputs["encoder_attentions"] else: SCREAMING_SNAKE_CASE_ : Any = outputs["hidden_states"] SCREAMING_SNAKE_CASE_ : List[str] = outputs["attentions"] self.assertEqual(len(_A ),_A ) SCREAMING_SNAKE_CASE_ : Any = getattr( self.model_tester,"expected_num_hidden_layers",self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_A ),_A ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ),[self.model_tester.seq_length, self.model_tester.hidden_size],) self.assertEqual(len(_A ),self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ),[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length],) @slow def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(_A ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : List[str] = True SCREAMING_SNAKE_CASE_ : List[str] = getattr(self.model_tester,"decoder_seq_length",self.model_tester.seq_length ) SCREAMING_SNAKE_CASE_ : Any = getattr(self.model_tester,"encoder_seq_length",self.model_tester.seq_length ) SCREAMING_SNAKE_CASE_ : Optional[int] = getattr(self.model_tester,"key_length",_A ) SCREAMING_SNAKE_CASE_ : int = getattr(self.model_tester,"key_length",_A ) def check_decoder_attentions_output(_A : Dict ): SCREAMING_SNAKE_CASE_ : int = len(_A ) self.assertEqual(out_len % 2,0 ) SCREAMING_SNAKE_CASE_ : Tuple = outputs.decoder_attentions self.assertEqual(len(_A ),self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ),[self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length],) def check_encoder_attentions_output(_A : Tuple ): SCREAMING_SNAKE_CASE_ : int = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_A ),self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ),[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length],) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Optional[Any] = True SCREAMING_SNAKE_CASE_ : Optional[Any] = False SCREAMING_SNAKE_CASE_ : Tuple = model_class(_A ) SCREAMING_SNAKE_CASE_ : Any = model(self._prepare_for_class(_A,_A ) ) SCREAMING_SNAKE_CASE_ : Tuple = len(_A ) self.assertEqual(config.output_hidden_states,_A ) check_encoder_attentions_output(_A ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE_ : Optional[Any] = model_class(_A ) SCREAMING_SNAKE_CASE_ : int = model(self._prepare_for_class(_A,_A ) ) self.assertEqual(config.output_hidden_states,_A ) check_decoder_attentions_output(_A ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE_ : str = True SCREAMING_SNAKE_CASE_ : int = model_class(_A ) SCREAMING_SNAKE_CASE_ : List[str] = model(self._prepare_for_class(_A,_A ) ) self.assertEqual(config.output_hidden_states,_A ) check_encoder_attentions_output(_A ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE_ : str = True SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Dict = model_class(_A ) SCREAMING_SNAKE_CASE_ : str = model(self._prepare_for_class(_A,_A ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1),len(_A ) ) self.assertEqual(model.config.output_hidden_states,_A ) check_encoder_attentions_output(_A ) @require_tf class a__ ( unittest.TestCase ): @slow def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) SCREAMING_SNAKE_CASE_ : int = tf.constant([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE_ : Tuple = model(_A )[0] SCREAMING_SNAKE_CASE_ : List[Any] = [1, 6, 768] self.assertEqual(output.shape,_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ] ) tf.debugging.assert_near(output[:, :3, :3],_A,atol=1E-4 )
18
0
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] ,_lowerCamelCase : Union[str, Any]=0.9_99 ,_lowerCamelCase : Optional[int]="cosine" ,) -> Optional[Any]: if alpha_transform_type == "cosine": def alpha_bar_fn(_lowerCamelCase : List[Any] ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_lowerCamelCase : List[str] ): return math.exp(t * -12.0 ) else: raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}" ) _lowerCAmelCase : str = [] for i in range(_lowerCamelCase ): _lowerCAmelCase : Optional[Any] = i / num_diffusion_timesteps _lowerCAmelCase : str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_lowerCamelCase ) / alpha_bar_fn(_lowerCamelCase ) ,_lowerCamelCase ) ) return torch.tensor(_lowerCamelCase ,dtype=torch.floataa ) class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Union[str, Any] = [e.name for e in KarrasDiffusionSchedulers] _UpperCamelCase : Dict = 2 @register_to_config def __init__( self , a__ = 1000 , a__ = 0.0_0_0_8_5 , a__ = 0.0_1_2 , a__ = "linear" , a__ = None , a__ = "epsilon" , a__ = "linspace" , a__ = 0 , ): if trained_betas is not None: _lowerCAmelCase : str = torch.tensor(a__ , dtype=torch.floataa ) elif beta_schedule == "linear": _lowerCAmelCase : Optional[Any] = torch.linspace(a__ , a__ , a__ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _lowerCAmelCase : int = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , a__ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _lowerCAmelCase : Optional[Any] = betas_for_alpha_bar(a__ ) else: raise NotImplementedError(F"{beta_schedule} does is not implemented for {self.__class__}" ) _lowerCAmelCase : List[str] = 1.0 - self.betas _lowerCAmelCase : Optional[int] = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(a__ , a__ , a__ ) def __A ( self , a__ , a__=None ): if schedule_timesteps is None: _lowerCAmelCase : Dict = self.timesteps _lowerCAmelCase : int = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _lowerCAmelCase : List[str] = 1 if len(a__ ) > 1 else 0 else: _lowerCAmelCase : Optional[int] = timestep.cpu().item() if torch.is_tensor(a__ ) else timestep _lowerCAmelCase : Optional[int] = self._index_counter[timestep_int] return indices[pos].item() @property def __A ( self ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __A ( self , a__ , a__ , ): _lowerCAmelCase : Union[str, Any] = self.index_for_timestep(a__ ) if self.state_in_first_order: _lowerCAmelCase : Optional[int] = self.sigmas[step_index] else: _lowerCAmelCase : Optional[Any] = self.sigmas_interpol[step_index] _lowerCAmelCase : List[str] = sample / ((sigma**2 + 1) ** 0.5) return sample def __A ( self , a__ , a__ = None , a__ = None , ): _lowerCAmelCase : List[Any] = num_inference_steps _lowerCAmelCase : Tuple = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _lowerCAmelCase : List[str] = np.linspace(0 , num_train_timesteps - 1 , a__ , dtype=a__ )[::-1].copy() elif self.config.timestep_spacing == "leading": _lowerCAmelCase : Union[str, Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowerCAmelCase : List[str] = (np.arange(0 , a__ ) * step_ratio).round()[::-1].copy().astype(a__ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _lowerCAmelCase : Union[str, Any] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowerCAmelCase : str = (np.arange(a__ , 0 , -step_ratio )).round().copy().astype(a__ ) timesteps -= 1 else: raise ValueError( F"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." ) _lowerCAmelCase : Dict = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _lowerCAmelCase : List[str] = torch.from_numpy(np.log(a__ ) ).to(a__ ) _lowerCAmelCase : List[str] = np.interp(a__ , np.arange(0 , len(a__ ) ) , a__ ) _lowerCAmelCase : Dict = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _lowerCAmelCase : Any = torch.from_numpy(a__ ).to(device=a__ ) # interpolate sigmas _lowerCAmelCase : List[str] = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() _lowerCAmelCase : Dict = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) _lowerCAmelCase : Union[str, Any] = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(a__ ).startswith("""mps""" ): # mps does not support float64 _lowerCAmelCase : List[Any] = torch.from_numpy(a__ ).to(a__ , dtype=torch.floataa ) else: _lowerCAmelCase : List[str] = torch.from_numpy(a__ ).to(a__ ) # interpolate timesteps _lowerCAmelCase : List[Any] = self.sigma_to_t(a__ ).to(a__ , dtype=timesteps.dtype ) _lowerCAmelCase : Optional[Any] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() _lowerCAmelCase : str = torch.cat([timesteps[:1], interleaved_timesteps] ) _lowerCAmelCase : Optional[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _lowerCAmelCase : Tuple = defaultdict(a__ ) def __A ( self , a__ ): # get log sigma _lowerCAmelCase : str = sigma.log() # get distribution _lowerCAmelCase : List[str] = log_sigma - self.log_sigmas[:, None] # get sigmas range _lowerCAmelCase : Optional[Any] = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) _lowerCAmelCase : List[str] = low_idx + 1 _lowerCAmelCase : str = self.log_sigmas[low_idx] _lowerCAmelCase : Union[str, Any] = self.log_sigmas[high_idx] # interpolate sigmas _lowerCAmelCase : List[Any] = (low - log_sigma) / (low - high) _lowerCAmelCase : List[str] = w.clamp(0 , 1 ) # transform interpolation to time range _lowerCAmelCase : Optional[Any] = (1 - w) * low_idx + w * high_idx _lowerCAmelCase : Optional[int] = t.view(sigma.shape ) return t @property def __A ( self ): return self.sample is None def __A ( self , a__ , a__ , a__ , a__ = True , ): _lowerCAmelCase : List[str] = self.index_for_timestep(a__ ) # advance index counter by 1 _lowerCAmelCase : str = timestep.cpu().item() if torch.is_tensor(a__ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _lowerCAmelCase : Tuple = self.sigmas[step_index] _lowerCAmelCase : Optional[int] = self.sigmas_interpol[step_index + 1] _lowerCAmelCase : Any = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _lowerCAmelCase : int = self.sigmas[step_index - 1] _lowerCAmelCase : Any = self.sigmas_interpol[step_index] _lowerCAmelCase : List[str] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _lowerCAmelCase : int = 0 _lowerCAmelCase : Union[str, Any] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _lowerCAmelCase : List[str] = sigma_hat if self.state_in_first_order else sigma_interpol _lowerCAmelCase : int = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _lowerCAmelCase : List[str] = sigma_hat if self.state_in_first_order else sigma_interpol _lowerCAmelCase : List[str] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("""prediction_type not implemented yet: sample""" ) else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _lowerCAmelCase : Optional[int] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _lowerCAmelCase : Optional[Any] = sigma_interpol - sigma_hat # store for 2nd order step _lowerCAmelCase : Tuple = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _lowerCAmelCase : List[Any] = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep _lowerCAmelCase : Union[str, Any] = sigma_next - sigma_hat _lowerCAmelCase : int = self.sample _lowerCAmelCase : List[Any] = None _lowerCAmelCase : Tuple = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=a__ ) def __A ( self , a__ , a__ , a__ , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples _lowerCAmelCase : Optional[Any] = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(a__ ): # mps does not support float64 _lowerCAmelCase : str = self.timesteps.to(original_samples.device , dtype=torch.floataa ) _lowerCAmelCase : List[Any] = timesteps.to(original_samples.device , dtype=torch.floataa ) else: _lowerCAmelCase : Any = self.timesteps.to(original_samples.device ) _lowerCAmelCase : int = timesteps.to(original_samples.device ) _lowerCAmelCase : str = [self.index_for_timestep(a__ , a__ ) for t in timesteps] _lowerCAmelCase : Union[str, Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _lowerCAmelCase : str = sigma.unsqueeze(-1 ) _lowerCAmelCase : Tuple = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
44
def _snake_case ( lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = int(lowerCAmelCase ) if decimal in (0, 1): # Exit cases for the recursion return str(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = divmod(lowerCAmelCase , 2 ) return binary_recursive(lowerCAmelCase ) + str(lowerCAmelCase ) def _snake_case ( lowerCAmelCase : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = str(lowerCAmelCase ).strip() if not number: raise ValueError("No input value was provided" ) SCREAMING_SNAKE_CASE_ : List[str] = "-" if number.startswith("-" ) else "" SCREAMING_SNAKE_CASE_ : Optional[Any] = number.lstrip("-" ) if not number.isnumeric(): raise ValueError("Input value is not an integer" ) return f'{negative}0b{binary_recursive(int(lowerCAmelCase ) )}' if __name__ == "__main__": from doctest import testmod testmod()
18
0
"""simple docstring""" from importlib import import_module from .logging import get_logger lowercase_ = get_logger(__name__) class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a=None ): __a = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('''__''' ): setattr(self , _a , getattr(_a , _a ) ) __a = module._original_module if isinstance(_a , _PatchedModuleObj ) else module class __lowerCAmelCase : '''simple docstring''' __UpperCAmelCase : int = [] def __init__( self , _a , _a , _a , _a=None ): __a = obj __a = target __a = new __a = target.split('''.''' )[0] __a = {} __a = attrs or [] def __enter__( self ): *__a , __a = self.target.split('''.''' ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(_a ) ): try: __a = import_module('''.'''.join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): __a = getattr(self.obj , _a ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(_a , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): __a = obj_attr # patch at top level setattr(self.obj , _a , _PatchedModuleObj(_a , attrs=self.attrs ) ) __a = getattr(self.obj , _a ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(_a , _a , _PatchedModuleObj(getattr(_a , _a , _a ) , attrs=self.attrs ) ) __a = getattr(_a , _a ) # finally set the target attribute setattr(_a , _a , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: __a = getattr(import_module('''.'''.join(_a ) ) , _a ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , _a ) is attr_value: __a = getattr(self.obj , _a ) setattr(self.obj , _a , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" __a = globals()['''__builtins__'''][target_attr] setattr(self.obj , _a , self.new ) else: raise RuntimeError(f'''Tried to patch attribute {target_attr} instead of a submodule.''' ) def __exit__( self , *_a ): for attr in list(self.original ): setattr(self.obj , _a , self.original.pop(_a ) ) def __UpperCAmelCase ( self ): self.__enter__() self._active_patches.append(self ) def __UpperCAmelCase ( self ): try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
45
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase : Union[str, Any] = { '''configuration_chinese_clip''': [ '''CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ChineseCLIPConfig''', '''ChineseCLIPOnnxConfig''', '''ChineseCLIPTextConfig''', '''ChineseCLIPVisionConfig''', ], '''processing_chinese_clip''': ['''ChineseCLIPProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = ['''ChineseCLIPFeatureExtractor'''] __lowerCamelCase : Optional[int] = ['''ChineseCLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : int = [ '''CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ChineseCLIPModel''', '''ChineseCLIPPreTrainedModel''', '''ChineseCLIPTextModel''', '''ChineseCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys __lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
18
0
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class lowercase : @staticmethod def _snake_case ( *lowercase , **lowercase ) -> Union[str, Any]: pass def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Image ): '''simple docstring''' lowerCAmelCase = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Image ): '''simple docstring''' lowerCAmelCase = np.array(SCREAMING_SNAKE_CASE ) lowerCAmelCase = npimg.shape return {"hash": hashimage(SCREAMING_SNAKE_CASE ), "shape": shape} @is_pipeline_test @require_vision @require_torch class lowercase ( unittest.TestCase ): _SCREAMING_SNAKE_CASE = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) _SCREAMING_SNAKE_CASE = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def _snake_case ( self , lowercase , lowercase , lowercase ) -> Optional[Any]: lowerCAmelCase = MaskGenerationPipeline(model=lowercase , image_processor=lowercase ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _snake_case ( self , lowercase , lowercase ) -> List[Any]: pass @require_tf @unittest.skip("""Image segmentation not implemented in TF""" ) def _snake_case ( self ) -> Dict: pass @slow @require_torch def _snake_case ( self ) -> str: lowerCAmelCase = pipeline("""mask-generation""" , model="""facebook/sam-vit-huge""" ) lowerCAmelCase = image_segmenter("""http://images.cocodataset.org/val2017/000000039769.jpg""" , points_per_batch=256 ) # Shortening by hashing lowerCAmelCase = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(lowercase ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0_444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.021}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0_167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0_132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0_053}, {"""mask""": {"""hash""": """e2d0b7a0b7""", """shape""": (480, 640)}, """scores""": 0.9_967}, {"""mask""": {"""hash""": """453c7844bd""", """shape""": (480, 640)}, """scores""": 0.993}, {"""mask""": {"""hash""": """3d44f2926d""", """shape""": (480, 640)}, """scores""": 0.9_909}, {"""mask""": {"""hash""": """64033ddc3f""", """shape""": (480, 640)}, """scores""": 0.9_879}, {"""mask""": {"""hash""": """801064ff79""", """shape""": (480, 640)}, """scores""": 0.9_834}, {"""mask""": {"""hash""": """6172f276ef""", """shape""": (480, 640)}, """scores""": 0.9_716}, {"""mask""": {"""hash""": """b49e60e084""", """shape""": (480, 640)}, """scores""": 0.9_612}, {"""mask""": {"""hash""": """a811e775fd""", """shape""": (480, 640)}, """scores""": 0.9_599}, {"""mask""": {"""hash""": """a6a8ebcf4b""", """shape""": (480, 640)}, """scores""": 0.9_552}, {"""mask""": {"""hash""": """9d8257e080""", """shape""": (480, 640)}, """scores""": 0.9_532}, {"""mask""": {"""hash""": """32de6454a8""", """shape""": (480, 640)}, """scores""": 0.9_516}, {"""mask""": {"""hash""": """af3d4af2c8""", """shape""": (480, 640)}, """scores""": 0.9_499}, {"""mask""": {"""hash""": """3c6db475fb""", """shape""": (480, 640)}, """scores""": 0.9_483}, {"""mask""": {"""hash""": """c290813fb9""", """shape""": (480, 640)}, """scores""": 0.9_464}, {"""mask""": {"""hash""": """b6f0b8f606""", """shape""": (480, 640)}, """scores""": 0.943}, {"""mask""": {"""hash""": """92ce16bfdf""", """shape""": (480, 640)}, """scores""": 0.943}, {"""mask""": {"""hash""": """c749b25868""", """shape""": (480, 640)}, """scores""": 0.9_408}, {"""mask""": {"""hash""": """efb6cab859""", """shape""": (480, 640)}, """scores""": 0.9_335}, {"""mask""": {"""hash""": """1ff2eafb30""", """shape""": (480, 640)}, """scores""": 0.9_326}, {"""mask""": {"""hash""": """788b798e24""", """shape""": (480, 640)}, """scores""": 0.9_262}, {"""mask""": {"""hash""": """abea804f0e""", """shape""": (480, 640)}, """scores""": 0.8_999}, {"""mask""": {"""hash""": """7b9e8ddb73""", """shape""": (480, 640)}, """scores""": 0.8_986}, {"""mask""": {"""hash""": """cd24047c8a""", """shape""": (480, 640)}, """scores""": 0.8_984}, {"""mask""": {"""hash""": """6943e6bcbd""", """shape""": (480, 640)}, """scores""": 0.8_873}, {"""mask""": {"""hash""": """b5f47c9191""", """shape""": (480, 640)}, """scores""": 0.8_871} ] , ) # fmt: on @require_torch @slow def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = """facebook/sam-vit-huge""" lowerCAmelCase = pipeline("""mask-generation""" , model=lowercase ) lowerCAmelCase = image_segmenter( """http://images.cocodataset.org/val2017/000000039769.jpg""" , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing lowerCAmelCase = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(lowercase ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0_444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.0_210}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0_167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0_132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0_053}, ] , )
46
import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument __lowerCamelCase : Any = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def _snake_case ( lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = list(s_dict.keys() ) for key in keys: SCREAMING_SNAKE_CASE_ : int = R".*/layers_(\d+)" SCREAMING_SNAKE_CASE_ : List[Any] = key if re.match(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Any = re.sub(R"layers_(\d+)" , R"block/\1/layer" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = R"(encoder|decoder)\/" if re.match(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : str = re.match(lowerCAmelCase , lowerCAmelCase ).groups() if groups[0] == "encoder": SCREAMING_SNAKE_CASE_ : Any = re.sub(R"/mlp/" , R"/1/mlp/" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = re.sub(R"/pre_mlp_layer_norm/" , R"/1/layer_norm/" , lowerCAmelCase ) elif groups[0] == "decoder": SCREAMING_SNAKE_CASE_ : List[str] = re.sub(R"/mlp/" , R"/2/mlp/" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = re.sub(R"/pre_mlp_layer_norm/" , R"/2/layer_norm/" , lowerCAmelCase ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: SCREAMING_SNAKE_CASE_ : List[Any] = new_key.replace(lowerCAmelCase , lowerCAmelCase ) print(f'{key} -> {new_key}' ) SCREAMING_SNAKE_CASE_ : List[Any] = s_dict.pop(lowerCAmelCase ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: SCREAMING_SNAKE_CASE_ : str = s_dict[ "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: SCREAMING_SNAKE_CASE_ : Optional[int] = s_dict[ "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: SCREAMING_SNAKE_CASE_ : Union[str, Any] = s_dict[key].shape[0] SCREAMING_SNAKE_CASE_ : List[Any] = s_dict[key] for idx in range(lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Tuple = expert_weihts[idx] print(f'{key} -> {key.replace("expert/" , "nested fstring" )}' ) s_dict.pop(lowerCAmelCase ) return s_dict __lowerCamelCase : List[Any] = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def _snake_case ( lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any] ): """simple docstring""" import regex as re with open(lowerCAmelCase , "r" ) as f: SCREAMING_SNAKE_CASE_ : Optional[Any] = f.read() SCREAMING_SNAKE_CASE_ : List[str] = re.findall(R"(.*) = ([0-9.]*)" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": SCREAMING_SNAKE_CASE_ : int = float(lowerCAmelCase ) if "." in value else int(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = re.findall(R"(.*activations) = \(\'(.*)\',\)" , lowerCAmelCase )[0] SCREAMING_SNAKE_CASE_ : List[str] = str(activation[1] ) SCREAMING_SNAKE_CASE_ : str = num_experts SCREAMING_SNAKE_CASE_ : Tuple = SwitchTransformersConfig(**lowerCAmelCase ) return config def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : str=None , lowerCAmelCase : Optional[Any]="./" , lowerCAmelCase : Dict=8 ): """simple docstring""" print(f'Loading flax weights from : {flax_checkpoint_path}' ) SCREAMING_SNAKE_CASE_ : int = checkpoints.load_tax_checkpoint(lowerCAmelCase ) if gin_file is not None: SCREAMING_SNAKE_CASE_ : int = convert_gin_to_config(lowerCAmelCase , lowerCAmelCase ) else: SCREAMING_SNAKE_CASE_ : Dict = SwitchTransformersConfig.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : str = SwitchTransformersForConditionalGeneration(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = flax_params["target"] SCREAMING_SNAKE_CASE_ : List[str] = flatten_dict(lowerCAmelCase , sep="/" ) SCREAMING_SNAKE_CASE_ : List[str] = rename_keys(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = unflatten_dict(lowerCAmelCase , sep="/" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(lowerCAmelCase , lowerCAmelCase ) print(f'Save PyTorch model to {pytorch_dump_path}' ) pt_model.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": __lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') __lowerCamelCase : Any = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
18
0
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf lowerCamelCase : Optional[Any] = logging.get_logger(__name__) @dataclass class A__ ( A__ ): A__ = [ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__( self : List[Any] , **_a : Any ) -> Tuple: '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: _SCREAMING_SNAKE_CASE =deprecated_arg[3:] _SCREAMING_SNAKE_CASE =not kwargs.pop(_a ) logger.warning( f"{deprecated_arg} is depreciated. Please use --no-{positive_arg} or" f" {positive_arg}={kwargs[positive_arg]}" ) _SCREAMING_SNAKE_CASE =kwargs.pop('tpu_name' , self.tpu_name ) _SCREAMING_SNAKE_CASE =kwargs.pop('device_idx' , self.device_idx ) _SCREAMING_SNAKE_CASE =kwargs.pop('eager_mode' , self.eager_mode ) _SCREAMING_SNAKE_CASE =kwargs.pop('use_xla' , self.use_xla ) super().__init__(**_a ) A__ = field( default=A__ , metadata={'help': 'Name of TPU'} , ) A__ = field( default=0 , metadata={'help': 'CPU / GPU device index. Defaults to 0.'} , ) A__ = field(default=A__ , metadata={'help': 'Benchmark models in eager model.'} ) A__ = field( default=A__ , metadata={ 'help': 'Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.' } , ) @cached_property def A ( self : int ) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]: '''simple docstring''' requires_backends(self , ['tf'] ) _SCREAMING_SNAKE_CASE =None if self.tpu: try: if self.tpu_name: _SCREAMING_SNAKE_CASE =tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: _SCREAMING_SNAKE_CASE =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: _SCREAMING_SNAKE_CASE =None return tpu @cached_property def A ( self : Union[str, Any] ) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]: '''simple docstring''' requires_backends(self , ['tf'] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) _SCREAMING_SNAKE_CASE =tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , 'GPU' ) _SCREAMING_SNAKE_CASE =tf.distribute.OneDeviceStrategy(device=f"/gpu:{self.device_idx}" ) else: tf.config.set_visible_devices([] , 'GPU' ) # disable GPU _SCREAMING_SNAKE_CASE =tf.distribute.OneDeviceStrategy(device=f"/cpu:{self.device_idx}" ) return strategy @property def A ( self : List[str] ) -> bool: '''simple docstring''' requires_backends(self , ['tf'] ) return self._setup_tpu is not None @property def A ( self : str ) -> "tf.distribute.Strategy": '''simple docstring''' requires_backends(self , ['tf'] ) return self._setup_strategy @property def A ( self : Optional[int] ) -> Tuple: '''simple docstring''' requires_backends(self , ['tf'] ) return tf.config.list_physical_devices('GPU' ) @property def A ( self : str ) -> int: '''simple docstring''' requires_backends(self , ['tf'] ) if self.cuda: return len(self.gpu_list ) return 0 @property def A ( self : Union[str, Any] ) -> bool: '''simple docstring''' return self.n_gpu > 0
47
from math import factorial, radians def _snake_case ( lowerCAmelCase : float , lowerCAmelCase : int = 1_8 , lowerCAmelCase : int = 1_0 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians SCREAMING_SNAKE_CASE_ : Tuple = radians(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = angle_in_radians SCREAMING_SNAKE_CASE_ : List[str] = 3 SCREAMING_SNAKE_CASE_ : str = -1 for _ in range(lowerCAmelCase ): result += (b * (angle_in_radians**a)) / factorial(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(lowerCAmelCase , lowerCAmelCase ) if __name__ == "__main__": __import__('''doctest''').testmod()
18
0
import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCamelCase__ (lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ : Union[str, Any] = """hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline""" def _lowercase ( self , UpperCamelCase__=0 ) -> Dict: lowerCamelCase : List[Any] = np.random.RandomState(UpperCamelCase__ ) lowerCamelCase : Optional[Any] = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def _lowercase ( self ) -> Union[str, Any]: lowerCamelCase : List[str] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCamelCase : Dict = self.get_dummy_inputs() lowerCamelCase : Optional[Any] = pipe(**UpperCamelCase__ ).images lowerCamelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase : str = np.array([0.65072, 0.58492, 0.48219, 0.55521, 0.53180, 0.55939, 0.50697, 0.39800, 0.46455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase ( self ) -> Optional[int]: lowerCamelCase : Union[str, Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCamelCase : Any = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCamelCase : Any = self.get_dummy_inputs() lowerCamelCase : int = pipe(**UpperCamelCase__ ).images lowerCamelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase : Any = np.array([0.65863, 0.59425, 0.49326, 0.56313, 0.53875, 0.56627, 0.51065, 0.39777, 0.46330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase ( self ) -> List[Any]: lowerCamelCase : Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCamelCase : Union[str, Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCamelCase : Dict = self.get_dummy_inputs() lowerCamelCase : Any = pipe(**UpperCamelCase__ ).images lowerCamelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase : List[Any] = np.array([0.53755, 0.60786, 0.47402, 0.49488, 0.51869, 0.49819, 0.47985, 0.38957, 0.44279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase ( self ) -> int: lowerCamelCase : Union[str, Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCamelCase : List[str] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCamelCase : List[str] = self.get_dummy_inputs() lowerCamelCase : str = pipe(**UpperCamelCase__ ).images lowerCamelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase : Optional[Any] = np.array([0.53755, 0.60786, 0.47402, 0.49488, 0.51869, 0.49819, 0.47985, 0.38957, 0.44279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase ( self ) -> int: lowerCamelCase : Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCamelCase : Union[str, Any] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCamelCase : List[str] = self.get_dummy_inputs() lowerCamelCase : str = pipe(**UpperCamelCase__ ).images lowerCamelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase : Optional[Any] = np.array([0.53817, 0.60812, 0.47384, 0.49530, 0.51894, 0.49814, 0.47984, 0.38958, 0.44271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase ( self ) -> Union[str, Any]: lowerCamelCase : Dict = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCamelCase : List[str] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCamelCase : int = self.get_dummy_inputs() lowerCamelCase : Union[str, Any] = pipe(**UpperCamelCase__ ).images lowerCamelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase : str = np.array([0.53895, 0.60808, 0.47933, 0.49608, 0.51886, 0.49950, 0.48053, 0.38957, 0.44200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase ( self ) -> List[Any]: lowerCamelCase : List[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCamelCase : Any = self.get_dummy_inputs() lowerCamelCase : Optional[int] = 3 * [inputs["prompt"]] # forward lowerCamelCase : str = pipe(**UpperCamelCase__ ) lowerCamelCase : Optional[Any] = output.images[0, -3:, -3:, -1] lowerCamelCase : Optional[Any] = self.get_dummy_inputs() lowerCamelCase : Optional[Any] = 3 * [inputs.pop("prompt" )] lowerCamelCase : Any = pipe.tokenizer( UpperCamelCase__ , padding="max_length" , max_length=pipe.tokenizer.model_max_length , truncation=UpperCamelCase__ , return_tensors="np" , ) lowerCamelCase : Optional[int] = text_inputs["input_ids"] lowerCamelCase : Dict = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] lowerCamelCase : str = prompt_embeds # forward lowerCamelCase : Tuple = pipe(**UpperCamelCase__ ) lowerCamelCase : Tuple = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 def _lowercase ( self ) -> Tuple: lowerCamelCase : List[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCamelCase : Optional[int] = self.get_dummy_inputs() lowerCamelCase : Any = 3 * ["this is a negative prompt"] lowerCamelCase : str = negative_prompt lowerCamelCase : Tuple = 3 * [inputs["prompt"]] # forward lowerCamelCase : Dict = pipe(**UpperCamelCase__ ) lowerCamelCase : int = output.images[0, -3:, -3:, -1] lowerCamelCase : List[Any] = self.get_dummy_inputs() lowerCamelCase : Tuple = 3 * [inputs.pop("prompt" )] lowerCamelCase : Tuple = [] for p in [prompt, negative_prompt]: lowerCamelCase : int = pipe.tokenizer( UpperCamelCase__ , padding="max_length" , max_length=pipe.tokenizer.model_max_length , truncation=UpperCamelCase__ , return_tensors="np" , ) lowerCamelCase : Optional[int] = text_inputs["input_ids"] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) lowerCamelCase , lowerCamelCase : List[str] = embeds # forward lowerCamelCase : Optional[int] = pipe(**UpperCamelCase__ ) lowerCamelCase : Optional[Any] = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @nightly @require_onnxruntime @require_torch_gpu class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' @property def _lowercase ( self ) -> int: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowercase ( self ) -> Optional[int]: lowerCamelCase : str = ort.SessionOptions() lowerCamelCase : str = False return options def _lowercase ( self ) -> Optional[Any]: # using the PNDM scheduler by default lowerCamelCase : Optional[int] = OnnxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCamelCase : Any = "A painting of a squirrel eating a burger" np.random.seed(0 ) lowerCamelCase : Tuple = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="np" ) lowerCamelCase : str = output.images lowerCamelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase : Tuple = np.array([0.0452, 0.0390, 0.0087, 0.0350, 0.0617, 0.0364, 0.0544, 0.0523, 0.0720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowercase ( self ) -> Optional[int]: lowerCamelCase : List[Any] = DDIMScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" ) lowerCamelCase : Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=UpperCamelCase__ , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCamelCase : Union[str, Any] = "open neural network exchange" lowerCamelCase : Tuple = np.random.RandomState(0 ) lowerCamelCase : str = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=UpperCamelCase__ , output_type="np" ) lowerCamelCase : Tuple = output.images lowerCamelCase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase : Dict = np.array([0.2867, 0.1974, 0.1481, 0.7294, 0.7251, 0.6667, 0.4194, 0.5642, 0.6486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowercase ( self ) -> Any: lowerCamelCase : Any = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" ) lowerCamelCase : Any = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=UpperCamelCase__ , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCamelCase : int = "open neural network exchange" lowerCamelCase : Optional[Any] = np.random.RandomState(0 ) lowerCamelCase : int = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=UpperCamelCase__ , output_type="np" ) lowerCamelCase : Optional[Any] = output.images lowerCamelCase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase : List[Any] = np.array([0.2306, 0.1959, 0.1593, 0.6549, 0.6394, 0.5408, 0.5065, 0.6010, 0.6161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowercase ( self ) -> int: lowerCamelCase : List[str] = 0 def test_callback_fn(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> None: lowerCamelCase : Dict = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) lowerCamelCase : int = latents[0, -3:, -3:, -1] lowerCamelCase : Optional[int] = np.array( [-0.6772, -0.3835, -1.2456, 0.1905, -1.0974, 0.6967, -1.9353, 0.0178, 1.0167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) lowerCamelCase : Union[str, Any] = latents[0, -3:, -3:, -1] lowerCamelCase : List[str] = np.array( [-0.3351, 0.2241, -0.1837, -0.2325, -0.6577, 0.3393, -0.0241, 0.5899, 1.3875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 lowerCamelCase : List[str] = False lowerCamelCase : str = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCamelCase : Union[str, Any] = "Andromeda galaxy in a bottle" lowerCamelCase : List[str] = np.random.RandomState(0 ) pipe( prompt=UpperCamelCase__ , num_inference_steps=5 , guidance_scale=7.5 , generator=UpperCamelCase__ , callback=UpperCamelCase__ , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def _lowercase ( self ) -> str: lowerCamelCase : int = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert pipe.safety_checker is None lowerCamelCase : Optional[int] = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCamelCase__ ) lowerCamelCase : int = OnnxStableDiffusionPipeline.from_pretrained(UpperCamelCase__ ) # sanity check that the pipeline still works assert pipe.safety_checker is None lowerCamelCase : Tuple = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None
48
from functools import lru_cache @lru_cache def _snake_case ( lowerCAmelCase : int ): """simple docstring""" if num < 0: raise ValueError("Number should not be negative." ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
18
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __snake_case :Optional[int] = logging.get_logger(__name__) __snake_case :Optional[Any] = { '''microsoft/table-transformer-detection''': ( '''https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json''' ), } class _A ( __UpperCAmelCase ): UpperCamelCase__ : Optional[int] = '''table-transformer''' UpperCamelCase__ : Tuple = ['''past_key_values'''] UpperCamelCase__ : List[str] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : Optional[int]=None , __SCREAMING_SNAKE_CASE : Tuple=3 , __SCREAMING_SNAKE_CASE : Optional[Any]=100 , __SCREAMING_SNAKE_CASE : Tuple=6 , __SCREAMING_SNAKE_CASE : Optional[int]=2_048 , __SCREAMING_SNAKE_CASE : Any=8 , __SCREAMING_SNAKE_CASE : Union[str, Any]=6 , __SCREAMING_SNAKE_CASE : str=2_048 , __SCREAMING_SNAKE_CASE : Tuple=8 , __SCREAMING_SNAKE_CASE : List[str]=0.0 , __SCREAMING_SNAKE_CASE : Optional[int]=0.0 , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : Dict="relu" , __SCREAMING_SNAKE_CASE : int=256 , __SCREAMING_SNAKE_CASE : Tuple=0.1 , __SCREAMING_SNAKE_CASE : Dict=0.0 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.0 , __SCREAMING_SNAKE_CASE : List[str]=0.02 , __SCREAMING_SNAKE_CASE : Any=1.0 , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : Dict="sine" , __SCREAMING_SNAKE_CASE : str="resnet50" , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : str=1 , __SCREAMING_SNAKE_CASE : Dict=5 , __SCREAMING_SNAKE_CASE : str=2 , __SCREAMING_SNAKE_CASE : List[Any]=1 , __SCREAMING_SNAKE_CASE : List[Any]=1 , __SCREAMING_SNAKE_CASE : Optional[int]=5 , __SCREAMING_SNAKE_CASE : List[Any]=2 , __SCREAMING_SNAKE_CASE : List[Any]=0.1 , **__SCREAMING_SNAKE_CASE : str , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''') if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''') __a = CONFIG_MAPPING['''resnet'''](out_features=['''stage4''']) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): __a = backbone_config.get('''model_type''') __a = CONFIG_MAPPING[backbone_model_type] __a = config_class.from_dict(__SCREAMING_SNAKE_CASE) # set timm attributes to None __a , __a , __a = None, None, None __a = use_timm_backbone __a = backbone_config __a = num_channels __a = num_queries __a = d_model __a = encoder_ffn_dim __a = encoder_layers __a = encoder_attention_heads __a = decoder_ffn_dim __a = decoder_layers __a = decoder_attention_heads __a = dropout __a = attention_dropout __a = activation_dropout __a = activation_function __a = init_std __a = init_xavier_std __a = encoder_layerdrop __a = decoder_layerdrop __a = encoder_layers __a = auxiliary_loss __a = position_embedding_type __a = backbone __a = use_pretrained_backbone __a = dilation # Hungarian matcher __a = class_cost __a = bbox_cost __a = giou_cost # Loss coefficients __a = mask_loss_coefficient __a = dice_loss_coefficient __a = bbox_loss_coefficient __a = giou_loss_coefficient __a = eos_coefficient super().__init__(is_encoder_decoder=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) @property def _lowerCamelCase ( self : int): '''simple docstring''' return self.encoder_attention_heads @property def _lowerCamelCase ( self : int): '''simple docstring''' return self.d_model class _A ( __UpperCAmelCase ): UpperCamelCase__ : Union[str, Any] = version.parse('''1.11''' ) @property def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ]) @property def _lowerCamelCase ( self : List[str]): '''simple docstring''' return 1E-5 @property def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' return 12
49
from collections import defaultdict def _snake_case ( lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = 1 SCREAMING_SNAKE_CASE_ : Tuple = True for v in tree[start]: if v not in visited: ret += dfs(lowerCAmelCase ) if ret % 2 == 0: cuts.append(lowerCAmelCase ) return ret def _snake_case ( ): """simple docstring""" dfs(1 ) if __name__ == "__main__": __lowerCamelCase , __lowerCamelCase : Union[str, Any] = 10, 9 __lowerCamelCase : Optional[int] = defaultdict(list) __lowerCamelCase : dict[int, bool] = {} __lowerCamelCase : list[int] = [] __lowerCamelCase : Optional[Any] = 0 __lowerCamelCase : Any = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
18
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: _UpperCAmelCase : str = None _UpperCAmelCase : List[Any] = logging.get_logger(__name__) _UpperCAmelCase : List[str] = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase : Optional[int] = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", }, """tokenizer_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json""", }, } _UpperCAmelCase : Optional[Any] = { """albert-base-v1""": 5_12, """albert-large-v1""": 5_12, """albert-xlarge-v1""": 5_12, """albert-xxlarge-v1""": 5_12, """albert-base-v2""": 5_12, """albert-large-v2""": 5_12, """albert-xlarge-v2""": 5_12, """albert-xxlarge-v2""": 5_12, } _UpperCAmelCase : Optional[int] = """▁""" class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = AlbertTokenizer def __init__( self : Optional[Any] , UpperCAmelCase : Tuple=None , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : List[Any]=False , UpperCAmelCase : Tuple="[CLS]" , UpperCAmelCase : str="[SEP]" , UpperCAmelCase : Any="<unk>" , UpperCAmelCase : Any="[SEP]" , UpperCAmelCase : List[Any]="<pad>" , UpperCAmelCase : List[str]="[CLS]" , UpperCAmelCase : Optional[int]="[MASK]" , **UpperCAmelCase : int , ) -> Dict: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. lowerCamelCase__ : Any = ( AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase , normalized=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token ) super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , remove_space=UpperCAmelCase , keep_accents=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , **UpperCAmelCase , ) lowerCamelCase__ : Union[str, Any] = do_lower_case lowerCamelCase__ : List[Any] = remove_space lowerCamelCase__ : Optional[Any] = keep_accents lowerCamelCase__ : Tuple = vocab_file lowerCamelCase__ : Tuple = False if not self.vocab_file else True def A_ ( self : List[str] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: lowerCamelCase__ : Optional[Any] = [self.sep_token_id] lowerCamelCase__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def A_ ( self : List[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: lowerCamelCase__ : List[str] = [self.sep_token_id] lowerCamelCase__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A_ ( self : Any , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase__ : List[str] = os.path.join( UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ): copyfile(self.vocab_file , UpperCAmelCase ) return (out_vocab_file,)
50
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=lowerCAmelCase ) env_command_parser(subparsers=lowerCAmelCase ) launch_command_parser(subparsers=lowerCAmelCase ) tpu_command_parser(subparsers=lowerCAmelCase ) test_command_parser(subparsers=lowerCAmelCase ) # Let's go SCREAMING_SNAKE_CASE_ : Dict = parser.parse_args() if not hasattr(lowerCAmelCase , "func" ): parser.print_help() exit(1 ) # Run args.func(lowerCAmelCase ) if __name__ == "__main__": main()
18
0
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split snake_case_ : Optional[Any] = datasets.load_iris() snake_case_ : str = np.array(data["data"]) snake_case_ : Any = np.array(data["target"]) snake_case_ : Optional[int] = data["target_names"] snake_case_ , snake_case_ , snake_case_ , snake_case_ : int = train_test_split(X, y) def A (__A : Tuple , __A : str ) -> Any: """simple docstring""" return np.linalg.norm(np.array(__A ) - np.array(__A ) ) def A (__A : str , __A : Any , __A : int , __A : int , __A : List[str]=5 ) -> Any: """simple docstring""" UpperCAmelCase_ = zip(__A , __A ) # List of distances of all points from the point to be classified UpperCAmelCase_ = [] for data_point in data: UpperCAmelCase_ = euclidean_distance(data_point[0] , __A ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. UpperCAmelCase_ = [i[1] for i in sorted(__A )[:k]] # Most commonly occurring class among them # is the class into which the point is classified UpperCAmelCase_ = Counter(__A ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
51
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer __lowerCamelCase : Optional[Any] = logging.get_logger(__name__) __lowerCamelCase : Dict = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __lowerCamelCase : int = { '''vocab_file''': { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt''' ), } } __lowerCamelCase : Any = { '''junnyu/roformer_chinese_small''': 15_36, '''junnyu/roformer_chinese_base''': 15_36, '''junnyu/roformer_chinese_char_small''': 5_12, '''junnyu/roformer_chinese_char_base''': 5_12, '''junnyu/roformer_small_discriminator''': 1_28, '''junnyu/roformer_small_generator''': 1_28, } __lowerCamelCase : Union[str, Any] = { '''junnyu/roformer_chinese_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_base''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_base''': {'''do_lower_case''': True}, '''junnyu/roformer_small_discriminator''': {'''do_lower_case''': True}, '''junnyu/roformer_small_generator''': {'''do_lower_case''': True}, } class a__ ( A__ ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = PRETRAINED_INIT_CONFIGURATION A = RoFormerTokenizer def __init__( self : List[str],_A : int=None,_A : int=None,_A : int=True,_A : List[Any]="[UNK]",_A : Tuple="[SEP]",_A : List[Any]="[PAD]",_A : Optional[int]="[CLS]",_A : Optional[Any]="[MASK]",_A : Optional[int]=True,_A : List[str]=None,**_A : List[Any],): """simple docstring""" super().__init__( _A,tokenizer_file=_A,do_lower_case=_A,unk_token=_A,sep_token=_A,pad_token=_A,cls_token=_A,mask_token=_A,tokenize_chinese_chars=_A,strip_accents=_A,**_A,) SCREAMING_SNAKE_CASE_ : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("lowercase",_A ) != do_lower_case or pre_tok_state.get("strip_accents",_A ) != strip_accents ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = getattr(_A,pre_tok_state.pop("type" ) ) SCREAMING_SNAKE_CASE_ : Any = do_lower_case SCREAMING_SNAKE_CASE_ : List[str] = strip_accents SCREAMING_SNAKE_CASE_ : str = pre_tok_class(**_A ) SCREAMING_SNAKE_CASE_ : List[str] = do_lower_case def __getstate__( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.__dict__.copy() SCREAMING_SNAKE_CASE_ : Optional[Any] = BertPreTokenizer() return state def __setstate__( self : List[Any],_A : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = d SCREAMING_SNAKE_CASE_ : List[str] = self.__dict__["_tokenizer"].get_vocab() SCREAMING_SNAKE_CASE_ : Any = PreTokenizer.custom(JiebaPreTokenizer(_A ) ) def __UpperCamelCase ( self : Union[str, Any],_A : List[Any],_A : str=None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCamelCase ( self : str,_A : List[int],_A : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCamelCase ( self : int,_A : str,_A : Optional[str] = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._tokenizer.model.save(_A,name=_A ) return tuple(_A ) def __UpperCamelCase ( self : int,_A : Optional[int],_A : List[Any]=None,_A : Tuple=None,_A : str=False,**_A : List[Any],): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = BertPreTokenizer() return super().save_pretrained(_A,_A,_A,_A,**_A )
18
0
def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) UpperCamelCase : Any = (boundary[1] - boundary[0]) / steps UpperCamelCase : List[Any] = boundary[0] UpperCamelCase : List[str] = boundary[1] UpperCamelCase : Tuple = make_points(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) UpperCamelCase : Optional[Any] = 0.0 y += (h / 2.0) * f(_lowerCAmelCase ) for i in x_i: # print(i) y += h * f(_lowerCAmelCase ) y += (h / 2.0) * f(_lowerCAmelCase ) return y def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: UpperCamelCase : int = a + h while x < (b - h): yield x UpperCamelCase : Any = x + h def A_ ( _lowerCAmelCase ) -> Optional[Any]: # enter your function here UpperCamelCase : Union[str, Any] = (x - 0) * (x - 0) return y def A_ ( ) -> Dict: UpperCamelCase : Optional[int] = 0.0 # Lower bound of integration UpperCamelCase : Dict = 1.0 # Upper bound of integration UpperCamelCase : Optional[int] = 10.0 # define number of steps or resolution UpperCamelCase : Optional[int] = [a, b] # define boundary of integration UpperCamelCase : int = method_a(_lowerCAmelCase , _lowerCAmelCase ) print(F"""y = {y}""" ) if __name__ == "__main__": main()
52
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class a__ ( A__ ): def __init__( self : Tuple,_A : Optional[int],_A : Any=13,_A : List[str]=7,_A : int=True,_A : Dict=True,_A : Dict=False,_A : List[Any]=True,_A : Any=99,_A : Optional[int]=32,_A : Any=5,_A : List[Any]=4,_A : Dict=64,_A : Optional[Any]="gelu",_A : Tuple=0.1,_A : Any=0.1,_A : List[Any]=512,_A : Dict=16,_A : Optional[Any]=2,_A : Union[str, Any]=0.02,_A : List[str]=3,_A : Optional[Any]=4,_A : Union[str, Any]=None,_A : Tuple=2,_A : List[str]=2,_A : str=2,_A : Dict=2,_A : Optional[Any]=4,_A : Union[str, Any]=1,): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = parent SCREAMING_SNAKE_CASE_ : Optional[int] = batch_size SCREAMING_SNAKE_CASE_ : Dict = seq_length SCREAMING_SNAKE_CASE_ : Dict = is_training SCREAMING_SNAKE_CASE_ : Optional[int] = use_input_mask SCREAMING_SNAKE_CASE_ : int = use_token_type_ids SCREAMING_SNAKE_CASE_ : Optional[int] = use_labels SCREAMING_SNAKE_CASE_ : Tuple = vocab_size SCREAMING_SNAKE_CASE_ : Any = hidden_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Tuple = num_attention_heads SCREAMING_SNAKE_CASE_ : List[Any] = intermediate_size SCREAMING_SNAKE_CASE_ : List[str] = hidden_act SCREAMING_SNAKE_CASE_ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : str = max_position_embeddings SCREAMING_SNAKE_CASE_ : str = type_vocab_size SCREAMING_SNAKE_CASE_ : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE_ : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE_ : Tuple = num_labels SCREAMING_SNAKE_CASE_ : List[Any] = num_choices SCREAMING_SNAKE_CASE_ : Dict = scope SCREAMING_SNAKE_CASE_ : int = q_groups SCREAMING_SNAKE_CASE_ : Tuple = k_groups SCREAMING_SNAKE_CASE_ : List[Any] = v_groups SCREAMING_SNAKE_CASE_ : Tuple = post_attention_groups SCREAMING_SNAKE_CASE_ : int = intermediate_groups SCREAMING_SNAKE_CASE_ : List[Any] = output_groups def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) SCREAMING_SNAKE_CASE_ : List[Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = None SCREAMING_SNAKE_CASE_ : Any = None SCREAMING_SNAKE_CASE_ : str = None if self.use_labels: SCREAMING_SNAKE_CASE_ : str = ids_tensor([self.batch_size],self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size],self.num_choices ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : str ): """simple docstring""" return SqueezeBertConfig( embedding_size=self.hidden_size,vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,attention_probs_dropout_prob=self.hidden_dropout_prob,attention_dropout=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,initializer_range=self.initializer_range,q_groups=self.q_groups,k_groups=self.k_groups,v_groups=self.v_groups,post_attention_groups=self.post_attention_groups,intermediate_groups=self.intermediate_groups,output_groups=self.output_groups,) def __UpperCamelCase ( self : Tuple,_A : Union[str, Any],_A : Union[str, Any],_A : int,_A : Optional[int],_A : Union[str, Any],_A : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = SqueezeBertModel(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Any = model(_A,_A ) SCREAMING_SNAKE_CASE_ : List[str] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Dict,_A : Any,_A : Tuple,_A : str,_A : Any,_A : Union[str, Any],_A : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = SqueezeBertForMaskedLM(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : List[str] = model(_A,attention_mask=_A,labels=_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : Optional[int],_A : Union[str, Any],_A : Union[str, Any],_A : Any,_A : Tuple,_A : int,_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = SqueezeBertForQuestionAnswering(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model( _A,attention_mask=_A,start_positions=_A,end_positions=_A ) self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : List[Any],_A : List[str],_A : Tuple,_A : List[Any],_A : List[str],_A : List[str],_A : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.num_labels SCREAMING_SNAKE_CASE_ : List[str] = SqueezeBertForSequenceClassification(_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model(_A,attention_mask=_A,labels=_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : str,_A : Optional[int],_A : str,_A : List[Any],_A : List[str],_A : str,_A : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.num_labels SCREAMING_SNAKE_CASE_ : Optional[int] = SqueezeBertForTokenClassification(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[int] = model(_A,attention_mask=_A,labels=_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : List[Any],_A : Tuple,_A : str,_A : Optional[Any],_A : int,_A : str,_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.num_choices SCREAMING_SNAKE_CASE_ : Union[str, Any] = SqueezeBertForMultipleChoice(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = input_ids.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() SCREAMING_SNAKE_CASE_ : str = input_mask.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() SCREAMING_SNAKE_CASE_ : Optional[int] = model( _A,attention_mask=_A,labels=_A,) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)) : Dict = config_and_inputs SCREAMING_SNAKE_CASE_ : Dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class a__ ( A__ , A__ , unittest.TestCase ): A = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) A = ( { 'feature-extraction': SqueezeBertModel, 'fill-mask': SqueezeBertForMaskedLM, 'question-answering': SqueezeBertForQuestionAnswering, 'text-classification': SqueezeBertForSequenceClassification, 'token-classification': SqueezeBertForTokenClassification, 'zero-shot': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) A = False A = True A = False def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = SqueezeBertModelTester(self ) SCREAMING_SNAKE_CASE_ : List[str] = ConfigTester(self,config_class=_A,dim=37 ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*_A ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*_A ) def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*_A ) def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*_A ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*_A ) def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*_A ) @slow def __UpperCamelCase ( self : Any ): """simple docstring""" for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : Tuple = SqueezeBertModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_sentencepiece @require_tokenizers @require_torch class a__ ( unittest.TestCase ): @slow def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = SqueezeBertForSequenceClassification.from_pretrained("squeezebert/squeezebert-mnli" ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor([[1, 2_9414, 232, 328, 740, 1140, 1_2695, 69, 13, 1588, 2]] ) SCREAMING_SNAKE_CASE_ : List[Any] = model(_A )[0] SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.Size((1, 3) ) self.assertEqual(output.shape,_A ) SCREAMING_SNAKE_CASE_ : int = torch.tensor([[0.6401, -0.0349, -0.6041]] ) self.assertTrue(torch.allclose(_A,_A,atol=1E-4 ) )
18
0
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class snake_case ( __lowerCamelCase , __lowerCamelCase ): """simple docstring""" @register_to_config def __init__( self : Any , __A : int = 7_6_8 , ): super().__init__() __UpperCamelCase = nn.Parameter(torch.zeros(1 , __A ) ) __UpperCamelCase = nn.Parameter(torch.ones(1 , __A ) ) def _lowerCamelCase ( self : Optional[Any] , __A : Optional[Union[str, torch.device]] = None , __A : Optional[torch.dtype] = None , ): __UpperCamelCase = nn.Parameter(self.mean.to(__A ).to(__A ) ) __UpperCamelCase = nn.Parameter(self.std.to(__A ).to(__A ) ) return self def _lowerCamelCase ( self : Optional[int] , __A : Optional[int] ): __UpperCamelCase = (embeds - self.mean) * 1.0 / self.std return embeds def _lowerCamelCase ( self : Optional[int] , __A : Tuple ): __UpperCamelCase = (embeds * self.std) + self.mean return embeds
53
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def _snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Union[str, Any] = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE_ : List[str] = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def _snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : Dict , lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Optional[Any] = {"text": "string"} SCREAMING_SNAKE_CASE_ : Any = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE_ : List[str] = ( Features({feature: Value(lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE_ : Optional[Any] = TextDatasetReader(lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def _snake_case ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : List[str] = {"text": "string"} SCREAMING_SNAKE_CASE_ : List[str] = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase , split=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : Optional[int] ): """simple docstring""" if issubclass(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = text_path elif issubclass(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [text_path] SCREAMING_SNAKE_CASE_ : int = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Optional[int] = {"text": "string"} SCREAMING_SNAKE_CASE_ : List[str] = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) def _snake_case ( lowerCAmelCase : Dict , lowerCAmelCase : Dict , lowerCAmelCase : List[str]=("train",) ): """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) for split in splits: SCREAMING_SNAKE_CASE_ : int = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def _snake_case ( lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Union[str, Any] = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE_ : List[Any] = TextDatasetReader({"train": text_path} , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase ).read() _check_text_datasetdict(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def _snake_case ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = tmp_path / "cache" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" SCREAMING_SNAKE_CASE_ : Tuple = {"text": "string"} SCREAMING_SNAKE_CASE_ : Any = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE_ : Dict = ( Features({feature: Value(lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE_ : str = TextDatasetReader({"train": text_path} , features=lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_datasetdict(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def _snake_case ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any , lowerCAmelCase : Dict ): """simple docstring""" if split: SCREAMING_SNAKE_CASE_ : Optional[int] = {split: text_path} else: SCREAMING_SNAKE_CASE_ : List[Any] = "train" SCREAMING_SNAKE_CASE_ : Tuple = {"train": text_path, "test": text_path} SCREAMING_SNAKE_CASE_ : Any = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : List[str] = {"text": "string"} SCREAMING_SNAKE_CASE_ : str = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_datasetdict(lowerCAmelCase , lowerCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
18
0
"""simple docstring""" import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py a__ : Dict = '''src/transformers''' a__ : Union[str, Any] = '''docs/source/en/tasks''' def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' with open(lowerCAmelCase_ , "r" , encoding="utf-8" , newline="\n" ) as f: __SCREAMING_SNAKE_CASE = f.readlines() # Find the start prompt. __SCREAMING_SNAKE_CASE = 0 while not lines[start_index].startswith(lowerCAmelCase_ ): start_index += 1 start_index += 1 __SCREAMING_SNAKE_CASE = start_index while not lines[end_index].startswith(lowerCAmelCase_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. a__ : Optional[Any] = direct_transformers_import(TRANSFORMERS_PATH) a__ : int = { '''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, '''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, '''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, '''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, '''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, '''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, '''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, '''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, '''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, '''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, '''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, '''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, '''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, '''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). a__ : Optional[Any] = { '''summarization.md''': ('''nllb''',), '''translation.md''': ('''nllb''',), } def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = TASK_GUIDE_TO_MODELS[task_guide] __SCREAMING_SNAKE_CASE = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(lowerCAmelCase_ , set() ) __SCREAMING_SNAKE_CASE = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([f"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n" def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_=False ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = _find_text_in_file( filename=os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) , start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" , end_prompt="<!--End of the generated tip-->" , ) __SCREAMING_SNAKE_CASE = get_model_list_for_task(lowerCAmelCase_ ) if current_list != new_list: if overwrite: with open(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( f"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`""" " to fix this." ) if __name__ == "__main__": a__ : List[Any] = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') a__ : Optional[Any] = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
54
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def _snake_case ( lowerCAmelCase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class a__ ( A__ , A__ , A__ , unittest.TestCase ): A = StableDiffusionLatentUpscalePipeline A = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'height', 'width', 'cross_attention_kwargs', 'negative_prompt_embeds', 'prompt_embeds', } A = PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'} A = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A = frozenset([] ) A = True @property def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = 1 SCREAMING_SNAKE_CASE_ : Optional[int] = 4 SCREAMING_SNAKE_CASE_ : Optional[int] = (16, 16) SCREAMING_SNAKE_CASE_ : Dict = floats_tensor((batch_size, num_channels) + sizes,rng=random.Random(0 ) ).to(_A ) return image def __UpperCamelCase ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : str = UNetaDConditionModel( act_fn="gelu",attention_head_dim=8,norm_num_groups=_A,block_out_channels=[32, 32, 64, 64],time_cond_proj_dim=160,conv_in_kernel=1,conv_out_kernel=1,cross_attention_dim=32,down_block_types=( "KDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", ),in_channels=8,mid_block_type=_A,only_cross_attention=_A,out_channels=5,resnet_time_scale_shift="scale_shift",time_embedding_type="fourier",timestep_post_act="gelu",up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D"),) SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 32, 64, 64],in_channels=3,out_channels=3,down_block_types=[ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", ],up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],latent_channels=4,) SCREAMING_SNAKE_CASE_ : int = EulerDiscreteScheduler(prediction_type="sample" ) SCREAMING_SNAKE_CASE_ : List[Any] = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1000,hidden_act="quick_gelu",projection_dim=512,) SCREAMING_SNAKE_CASE_ : Tuple = CLIPTextModel(_A ) SCREAMING_SNAKE_CASE_ : int = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = { "unet": model.eval(), "vae": vae.eval(), "scheduler": scheduler, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def __UpperCamelCase ( self : List[Any],_A : int,_A : Tuple=0 ): """simple docstring""" if str(_A ).startswith("mps" ): SCREAMING_SNAKE_CASE_ : Optional[int] = torch.manual_seed(_A ) else: SCREAMING_SNAKE_CASE_ : Dict = torch.Generator(device=_A ).manual_seed(_A ) SCREAMING_SNAKE_CASE_ : Tuple = { "prompt": "A painting of a squirrel eating a burger", "image": self.dummy_image.cpu(), "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = "cpu" SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : List[str] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ : Tuple = self.get_dummy_inputs(_A ) SCREAMING_SNAKE_CASE_ : Dict = pipe(**_A ).images SCREAMING_SNAKE_CASE_ : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape,(1, 256, 256, 3) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) SCREAMING_SNAKE_CASE_ : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A,1E-3 ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def __UpperCamelCase ( self : int ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" super().test_save_load_local(expected_max_difference=3E-3 ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3E-3 ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = [ "DDIMScheduler", "DDPMScheduler", "PNDMScheduler", "HeunDiscreteScheduler", "EulerAncestralDiscreteScheduler", "KDPM2DiscreteScheduler", "KDPM2AncestralDiscreteScheduler", "DPMSolverSDEScheduler", ] SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : Any = self.pipeline_class(**_A ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ : Any = self.get_dummy_inputs(_A ) SCREAMING_SNAKE_CASE_ : Optional[Any] = 2 SCREAMING_SNAKE_CASE_ : Optional[int] = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue SCREAMING_SNAKE_CASE_ : Tuple = getattr(_A,scheduler_enum.name ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = scheduler_cls.from_config(pipe.scheduler.config ) SCREAMING_SNAKE_CASE_ : Optional[int] = pipe(**_A )[0] outputs.append(_A ) assert check_same_shape(_A ) @require_torch_gpu @slow class a__ ( unittest.TestCase ): def __UpperCamelCase ( self : Dict ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = torch.manual_seed(33 ) SCREAMING_SNAKE_CASE_ : Optional[int] = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4",torch_dtype=torch.floataa ) pipe.to("cuda" ) SCREAMING_SNAKE_CASE_ : List[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler",torch_dtype=torch.floataa ) upscaler.to("cuda" ) SCREAMING_SNAKE_CASE_ : Tuple = "a photo of an astronaut high resolution, unreal engine, ultra realistic" SCREAMING_SNAKE_CASE_ : str = pipe(_A,generator=_A,output_type="latent" ).images SCREAMING_SNAKE_CASE_ : Optional[Any] = upscaler( prompt=_A,image=_A,num_inference_steps=20,guidance_scale=0,generator=_A,output_type="np",).images[0] SCREAMING_SNAKE_CASE_ : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy" ) assert np.abs((expected_image - image).mean() ) < 5E-2 def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = torch.manual_seed(33 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler",torch_dtype=torch.floataa ) upscaler.to("cuda" ) SCREAMING_SNAKE_CASE_ : Any = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas" SCREAMING_SNAKE_CASE_ : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png" ) SCREAMING_SNAKE_CASE_ : str = upscaler( prompt=_A,image=_A,num_inference_steps=20,guidance_scale=0,generator=_A,output_type="np",).images[0] SCREAMING_SNAKE_CASE_ : Any = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy" ) assert np.abs((expected_image - image).max() ) < 5E-2
18
0
'''simple docstring''' import os import sys import unittest a_ : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) a_ : List[str] = os.path.join("""tests""", """models""", """bert""", """test_modeling_bert.py""") a_ : Tuple = os.path.join("""tests""", """models""", """blip""", """test_modeling_blip.py""") class snake_case ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): """simple docstring""" lowerCamelCase_ = get_test_to_tester_mapping(UpperCamelCase ) lowerCamelCase_ = get_test_to_tester_mapping(UpperCamelCase ) lowerCamelCase_ = {"BertModelTest": "BertModelTester"} lowerCamelCase_ = { "BlipModelTest": "BlipModelTester", "BlipTextImageModelTest": "BlipTextImageModelsModelTester", "BlipTextModelTest": "BlipTextModelTester", "BlipTextRetrievalModelTest": "BlipTextRetrievalModelTester", "BlipVQAModelTest": "BlipVQAModelTester", "BlipVisionModelTest": "BlipVisionModelTester", } self.assertEqual(get_test_info.to_json(UpperCamelCase ) , UpperCamelCase ) self.assertEqual(get_test_info.to_json(UpperCamelCase ) , UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = get_model_to_test_mapping(UpperCamelCase ) lowerCamelCase_ = get_model_to_test_mapping(UpperCamelCase ) lowerCamelCase_ = { "BertForMaskedLM": ["BertModelTest"], "BertForMultipleChoice": ["BertModelTest"], "BertForNextSentencePrediction": ["BertModelTest"], "BertForPreTraining": ["BertModelTest"], "BertForQuestionAnswering": ["BertModelTest"], "BertForSequenceClassification": ["BertModelTest"], "BertForTokenClassification": ["BertModelTest"], "BertLMHeadModel": ["BertModelTest"], "BertModel": ["BertModelTest"], } lowerCamelCase_ = { "BlipForConditionalGeneration": ["BlipTextImageModelTest"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTest"], "BlipForQuestionAnswering": ["BlipVQAModelTest"], "BlipModel": ["BlipModelTest"], "BlipTextModel": ["BlipTextModelTest"], "BlipVisionModel": ["BlipVisionModelTest"], } self.assertEqual(get_test_info.to_json(UpperCamelCase ) , UpperCamelCase ) self.assertEqual(get_test_info.to_json(UpperCamelCase ) , UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = get_model_to_tester_mapping(UpperCamelCase ) lowerCamelCase_ = get_model_to_tester_mapping(UpperCamelCase ) lowerCamelCase_ = { "BertForMaskedLM": ["BertModelTester"], "BertForMultipleChoice": ["BertModelTester"], "BertForNextSentencePrediction": ["BertModelTester"], "BertForPreTraining": ["BertModelTester"], "BertForQuestionAnswering": ["BertModelTester"], "BertForSequenceClassification": ["BertModelTester"], "BertForTokenClassification": ["BertModelTester"], "BertLMHeadModel": ["BertModelTester"], "BertModel": ["BertModelTester"], } lowerCamelCase_ = { "BlipForConditionalGeneration": ["BlipTextImageModelsModelTester"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTester"], "BlipForQuestionAnswering": ["BlipVQAModelTester"], "BlipModel": ["BlipModelTester"], "BlipTextModel": ["BlipTextModelTester"], "BlipVisionModel": ["BlipVisionModelTester"], } self.assertEqual(get_test_info.to_json(UpperCamelCase ) , UpperCamelCase ) self.assertEqual(get_test_info.to_json(UpperCamelCase ) , UpperCamelCase )
55
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging __lowerCamelCase : Optional[int] = logging.get_logger(__name__) __lowerCamelCase : Tuple = { '''deepmind/language-perceiver''': '''https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json''', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class a__ ( A__ ): A = 'perceiver' def __init__( self : List[Any],_A : Tuple=256,_A : str=1280,_A : List[Any]=768,_A : Union[str, Any]=1,_A : Union[str, Any]=26,_A : List[str]=8,_A : List[Any]=8,_A : List[Any]=None,_A : List[Any]=None,_A : Union[str, Any]="kv",_A : Any=1,_A : int=1,_A : Dict="gelu",_A : Any=0.1,_A : int=0.02,_A : int=1E-12,_A : Any=True,_A : Optional[Any]=262,_A : List[Any]=2048,_A : str=56,_A : Optional[int]=[368, 496],_A : Dict=16,_A : Tuple=1920,_A : List[Any]=16,_A : str=[1, 16, 224, 224],**_A : Optional[Any],): """simple docstring""" super().__init__(**_A ) SCREAMING_SNAKE_CASE_ : Dict = num_latents SCREAMING_SNAKE_CASE_ : List[Any] = d_latents SCREAMING_SNAKE_CASE_ : Union[str, Any] = d_model SCREAMING_SNAKE_CASE_ : Optional[int] = num_blocks SCREAMING_SNAKE_CASE_ : List[Any] = num_self_attends_per_block SCREAMING_SNAKE_CASE_ : Tuple = num_self_attention_heads SCREAMING_SNAKE_CASE_ : List[str] = num_cross_attention_heads SCREAMING_SNAKE_CASE_ : List[Any] = qk_channels SCREAMING_SNAKE_CASE_ : Any = v_channels SCREAMING_SNAKE_CASE_ : Any = cross_attention_shape_for_attention SCREAMING_SNAKE_CASE_ : List[str] = self_attention_widening_factor SCREAMING_SNAKE_CASE_ : Any = cross_attention_widening_factor SCREAMING_SNAKE_CASE_ : List[Any] = hidden_act SCREAMING_SNAKE_CASE_ : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Any = initializer_range SCREAMING_SNAKE_CASE_ : List[Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : Tuple = use_query_residual # masked language modeling attributes SCREAMING_SNAKE_CASE_ : List[str] = vocab_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = max_position_embeddings # image classification attributes SCREAMING_SNAKE_CASE_ : Dict = image_size # flow attributes SCREAMING_SNAKE_CASE_ : List[Any] = train_size # multimodal autoencoding attributes SCREAMING_SNAKE_CASE_ : str = num_frames SCREAMING_SNAKE_CASE_ : Any = audio_samples_per_frame SCREAMING_SNAKE_CASE_ : Tuple = samples_per_patch SCREAMING_SNAKE_CASE_ : Optional[Any] = output_shape class a__ ( A__ ): @property def __UpperCamelCase ( self : List[str] ): """simple docstring""" if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ : List[str] = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE_ : str = {0: "batch", 1: "sequence"} return OrderedDict( [ ("inputs", dynamic_axis), ("attention_mask", dynamic_axis), ] ) @property def __UpperCamelCase ( self : List[Any] ): """simple docstring""" return 1E-4 def __UpperCamelCase ( self : List[str],_A : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"],_A : int = -1,_A : int = -1,_A : int = -1,_A : bool = False,_A : Optional[TensorType] = None,_A : int = 3,_A : int = 40,_A : int = 40,): """simple docstring""" if isinstance(_A,_A ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ : Tuple = compute_effective_axis_dimension( _A,fixed_dimension=OnnxConfig.default_fixed_batch,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ : Tuple = preprocessor.num_special_tokens_to_add(_A ) SCREAMING_SNAKE_CASE_ : Any = compute_effective_axis_dimension( _A,fixed_dimension=OnnxConfig.default_fixed_sequence,num_token_to_add=_A ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE_ : Optional[Any] = [" ".join(["a"] ) * seq_length] * batch_size SCREAMING_SNAKE_CASE_ : str = dict(preprocessor(_A,return_tensors=_A ) ) SCREAMING_SNAKE_CASE_ : List[str] = inputs.pop("input_ids" ) return inputs elif isinstance(_A,_A ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ : Any = compute_effective_axis_dimension(_A,fixed_dimension=OnnxConfig.default_fixed_batch ) SCREAMING_SNAKE_CASE_ : Optional[int] = self._generate_dummy_images(_A,_A,_A,_A ) SCREAMING_SNAKE_CASE_ : Any = dict(preprocessor(images=_A,return_tensors=_A ) ) SCREAMING_SNAKE_CASE_ : Any = inputs.pop("pixel_values" ) return inputs else: raise ValueError( "Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor." )
18
0
'''simple docstring''' import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class a ( _lowerCamelCase ): snake_case_ = (PNDMScheduler,) snake_case_ = (("num_inference_steps", 50),) def A_ ( self : Tuple , **lowercase_ : Tuple ): snake_case_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**lowercase_ ) return config def A_ ( self : Any , lowercase_ : Optional[int]=0 , **lowercase_ : int ): snake_case_ = dict(self.forward_default_kwargs ) snake_case_ = kwargs.pop('''num_inference_steps''' , lowercase_ ) snake_case_ = self.dummy_sample snake_case_ = 0.1 * sample snake_case_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: snake_case_ = self.get_scheduler_config(**lowercase_ ) snake_case_ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals snake_case_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) snake_case_ = scheduler_class.from_pretrained(lowercase_ ) new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals snake_case_ = dummy_past_residuals[:] snake_case_ = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample snake_case_ = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" snake_case_ = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample snake_case_ = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def A_ ( self : Any ): pass def A_ ( self : Any , lowercase_ : Dict=0 , **lowercase_ : Optional[int] ): snake_case_ = dict(self.forward_default_kwargs ) snake_case_ = kwargs.pop('''num_inference_steps''' , lowercase_ ) snake_case_ = self.dummy_sample snake_case_ = 0.1 * sample snake_case_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals (must be after setting timesteps) snake_case_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) snake_case_ = scheduler_class.from_pretrained(lowercase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residual (must be after setting timesteps) snake_case_ = dummy_past_residuals[:] snake_case_ = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample snake_case_ = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" snake_case_ = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample snake_case_ = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def A_ ( self : Dict , **lowercase_ : str ): snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config(**lowercase_ ) snake_case_ = scheduler_class(**lowercase_ ) snake_case_ = 10 snake_case_ = self.dummy_model() snake_case_ = self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.prk_timesteps ): snake_case_ = model(lowercase_ , lowercase_ ) snake_case_ = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): snake_case_ = model(lowercase_ , lowercase_ ) snake_case_ = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ ).prev_sample return sample def A_ ( self : Dict ): snake_case_ = dict(self.forward_default_kwargs ) snake_case_ = kwargs.pop('''num_inference_steps''' , lowercase_ ) for scheduler_class in self.scheduler_classes: snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**lowercase_ ) snake_case_ = self.dummy_sample snake_case_ = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase_ , '''set_timesteps''' ): scheduler.set_timesteps(lowercase_ ) elif num_inference_steps is not None and not hasattr(lowercase_ , '''set_timesteps''' ): snake_case_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) snake_case_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] snake_case_ = dummy_past_residuals[:] snake_case_ = scheduler.step_prk(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample snake_case_ = scheduler.step_prk(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) snake_case_ = scheduler.step_plms(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample snake_case_ = scheduler.step_plms(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def A_ ( self : List[Any] ): for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=lowercase_ ) def A_ ( self : List[str] ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowercase_ ) snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config(steps_offset=1 ) snake_case_ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def A_ ( self : Any ): for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ ) def A_ ( self : List[str] ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase_ ) def A_ ( self : str ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def A_ ( self : str ): for t in [1, 5, 10]: self.check_over_forward(time_step=lowercase_ ) def A_ ( self : str ): for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowercase_ ) def A_ ( self : Any ): # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 snake_case_ = 27 for scheduler_class in self.scheduler_classes: snake_case_ = self.dummy_sample snake_case_ = 0.1 * sample snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): snake_case_ = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample def A_ ( self : Tuple ): with self.assertRaises(lowercase_ ): snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**lowercase_ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def A_ ( self : str ): snake_case_ = self.full_loop() snake_case_ = torch.sum(torch.abs(lowercase_ ) ) snake_case_ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 198.1318 ) < 1e-2 assert abs(result_mean.item() - 0.2580 ) < 1e-3 def A_ ( self : Any ): snake_case_ = self.full_loop(prediction_type='''v_prediction''' ) snake_case_ = torch.sum(torch.abs(lowercase_ ) ) snake_case_ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 67.3986 ) < 1e-2 assert abs(result_mean.item() - 0.0878 ) < 1e-3 def A_ ( self : Optional[Any] ): # We specify different beta, so that the first alpha is 0.99 snake_case_ = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) snake_case_ = torch.sum(torch.abs(lowercase_ ) ) snake_case_ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 230.0399 ) < 1e-2 assert abs(result_mean.item() - 0.2995 ) < 1e-3 def A_ ( self : str ): # We specify different beta, so that the first alpha is 0.99 snake_case_ = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) snake_case_ = torch.sum(torch.abs(lowercase_ ) ) snake_case_ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 186.9482 ) < 1e-2 assert abs(result_mean.item() - 0.2434 ) < 1e-3
56
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class a__ ( yaml.SafeLoader ): def __UpperCamelCase ( self : str,_A : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = [self.constructed_objects[key_node] for key_node, _ in node.value] SCREAMING_SNAKE_CASE_ : List[str] = [tuple(_A ) if isinstance(_A,_A ) else key for key in keys] SCREAMING_SNAKE_CASE_ : Optional[int] = Counter(_A ) SCREAMING_SNAKE_CASE_ : Tuple = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F'Got duplicate yaml keys: {duplicate_keys}' ) def __UpperCamelCase ( self : Tuple,_A : Dict,_A : List[Any]=False ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = super().construct_mapping(_A,deep=_A ) self._check_no_duplicates_on_constructed_node(_A ) return mapping def _snake_case ( lowerCAmelCase : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: SCREAMING_SNAKE_CASE_ : List[Any] = full_content[1:].index("---" ) + 1 SCREAMING_SNAKE_CASE_ : int = "\n".join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(lowerCAmelCase ) class a__ ( A__ ): # class attributes A = {'train_eval_index'} # train-eval-index in the YAML metadata @classmethod def __UpperCamelCase ( cls : Any,_A : Path ): """simple docstring""" with open(_A,encoding="utf-8" ) as readme_file: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(_A ) else: return cls() def __UpperCamelCase ( self : Dict,_A : Path ): """simple docstring""" if path.exists(): with open(_A,encoding="utf-8" ) as readme_file: SCREAMING_SNAKE_CASE_ : int = readme_file.read() else: SCREAMING_SNAKE_CASE_ : Any = None SCREAMING_SNAKE_CASE_ : int = self._to_readme(_A ) with open(_A,"w",encoding="utf-8" ) as readme_file: readme_file.write(_A ) def __UpperCamelCase ( self : Optional[int],_A : Optional[str] = None ): """simple docstring""" if readme_content is not None: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = _split_yaml_from_readme(_A ) SCREAMING_SNAKE_CASE_ : Tuple = "---\n" + self.to_yaml_string() + "---\n" + content else: SCREAMING_SNAKE_CASE_ : Dict = "---\n" + self.to_yaml_string() + "---\n" return full_content @classmethod def __UpperCamelCase ( cls : Dict,_A : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = yaml.load(_A,Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields SCREAMING_SNAKE_CASE_ : Any = { (key.replace("-","_" ) if key.replace("-","_" ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**_A ) def __UpperCamelCase ( self : Dict ): """simple docstring""" return yaml.safe_dump( { (key.replace("_","-" ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() },sort_keys=_A,allow_unicode=_A,encoding="utf-8",).decode("utf-8" ) __lowerCamelCase : List[Any] = { '''image-classification''': [], '''translation''': [], '''image-segmentation''': [], '''fill-mask''': [], '''automatic-speech-recognition''': [], '''token-classification''': [], '''sentence-similarity''': [], '''audio-classification''': [], '''question-answering''': [], '''summarization''': [], '''zero-shot-classification''': [], '''table-to-text''': [], '''feature-extraction''': [], '''other''': [], '''multiple-choice''': [], '''text-classification''': [], '''text-to-image''': [], '''text2text-generation''': [], '''zero-shot-image-classification''': [], '''tabular-classification''': [], '''tabular-regression''': [], '''image-to-image''': [], '''tabular-to-text''': [], '''unconditional-image-generation''': [], '''text-retrieval''': [], '''text-to-speech''': [], '''object-detection''': [], '''audio-to-audio''': [], '''text-generation''': [], '''conversational''': [], '''table-question-answering''': [], '''visual-question-answering''': [], '''image-to-text''': [], '''reinforcement-learning''': [], '''voice-activity-detection''': [], '''time-series-forecasting''': [], '''document-question-answering''': [], } if __name__ == "__main__": from argparse import ArgumentParser __lowerCamelCase : List[Any] = ArgumentParser(usage='''Validate the yaml metadata block of a README.md file.''') ap.add_argument('''readme_filepath''') __lowerCamelCase : Dict = ap.parse_args() __lowerCamelCase : List[Any] = Path(args.readme_filepath) __lowerCamelCase : Optional[int] = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
18
0
"""simple docstring""" import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed A : str = logging.getLogger(__name__) def _lowerCamelCase ( _UpperCamelCase=2 , _UpperCamelCase=3 , _UpperCamelCase=16 , _UpperCamelCase = 10 , _UpperCamelCase = 2 ): '''simple docstring''' def get_dataset(_UpperCamelCase ): __lowerCAmelCase = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(_UpperCamelCase , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) __lowerCAmelCase = get_dataset(_UpperCamelCase ) __lowerCAmelCase = get_dataset(_UpperCamelCase ) __lowerCAmelCase = DataLoader(_UpperCamelCase , shuffle=_UpperCamelCase , batch_size=_UpperCamelCase , num_workers=4 ) __lowerCAmelCase = DataLoader(_UpperCamelCase , shuffle=_UpperCamelCase , batch_size=_UpperCamelCase , num_workers=4 ) return (train_dataloader, valid_dataloader) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ): '''simple docstring''' __lowerCAmelCase = [] for epoch in range(_UpperCamelCase ): # Train quickly model.train() for batch in dataloader: __lowerCAmelCase , __lowerCAmelCase = batch __lowerCAmelCase = model(_UpperCamelCase ) __lowerCAmelCase = torch.nn.functional.mse_loss(_UpperCamelCase , _UpperCamelCase ) accelerator.backward(_UpperCamelCase ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class _UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self ): super().__init__() __lowerCAmelCase = nn.Parameter(torch.randn(1 ) ) __lowerCAmelCase = nn.Parameter(torch.randn(1 ) ) def snake_case ( self , __a ): return x * self.a + self.b class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __lowerCAmelCase = DummyModel() __lowerCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __lowerCAmelCase , __lowerCAmelCase = dummy_dataloaders() __lowerCAmelCase = ProjectConfiguration(total_limit=1 , project_dir=__a , automatic_checkpoint_naming=__a ) # Train baseline __lowerCAmelCase = Accelerator(project_config=__a ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare( __a , __a , __a , __a ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __lowerCAmelCase = DummyModel() __lowerCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __lowerCAmelCase , __lowerCAmelCase = dummy_dataloaders() # Train baseline __lowerCAmelCase = Accelerator() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare( __a , __a , __a , __a ) # Save initial __lowerCAmelCase = os.path.join(__a , "initial" ) accelerator.save_state(__a ) ((__lowerCAmelCase) , (__lowerCAmelCase)) = model.a.item(), model.b.item() __lowerCAmelCase = optimizer.state_dict() __lowerCAmelCase = train(3 , __a , __a , __a , __a ) ((__lowerCAmelCase) , (__lowerCAmelCase)) = model.a.item(), model.b.item() __lowerCAmelCase = optimizer.state_dict() # Train partially set_seed(42 ) __lowerCAmelCase = DummyModel() __lowerCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __lowerCAmelCase , __lowerCAmelCase = dummy_dataloaders() __lowerCAmelCase = Accelerator() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare( __a , __a , __a , __a ) accelerator.load_state(__a ) ((__lowerCAmelCase) , (__lowerCAmelCase)) = model.a.item(), model.b.item() __lowerCAmelCase = optimizer.state_dict() self.assertEqual(__a , __a ) self.assertEqual(__a , __a ) self.assertEqual(__a , __a ) __lowerCAmelCase = train(2 , __a , __a , __a , __a ) # Save everything __lowerCAmelCase = os.path.join(__a , "checkpoint" ) accelerator.save_state(__a ) # Load everything back in and make sure all states work accelerator.load_state(__a ) test_rands += train(1 , __a , __a , __a , __a ) ((__lowerCAmelCase) , (__lowerCAmelCase)) = model.a.item(), model.b.item() __lowerCAmelCase = optimizer.state_dict() self.assertEqual(__a , __a ) self.assertEqual(__a , __a ) self.assertEqual(__a , __a ) self.assertEqual(__a , __a ) def snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __lowerCAmelCase = DummyModel() __lowerCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __lowerCAmelCase , __lowerCAmelCase = dummy_dataloaders() __lowerCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=__a ) # Train baseline __lowerCAmelCase = Accelerator(project_dir=__a , project_config=__a ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare( __a , __a , __a , __a ) # Save initial accelerator.save_state() ((__lowerCAmelCase) , (__lowerCAmelCase)) = model.a.item(), model.b.item() __lowerCAmelCase = optimizer.state_dict() __lowerCAmelCase = train(3 , __a , __a , __a , __a ) ((__lowerCAmelCase) , (__lowerCAmelCase)) = model.a.item(), model.b.item() __lowerCAmelCase = optimizer.state_dict() # Train partially set_seed(42 ) __lowerCAmelCase = DummyModel() __lowerCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __lowerCAmelCase , __lowerCAmelCase = dummy_dataloaders() __lowerCAmelCase = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=__a ) __lowerCAmelCase = Accelerator(project_dir=__a , project_config=__a ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare( __a , __a , __a , __a ) accelerator.load_state(os.path.join(__a , "checkpoints" , "checkpoint_0" ) ) ((__lowerCAmelCase) , (__lowerCAmelCase)) = model.a.item(), model.b.item() __lowerCAmelCase = optimizer.state_dict() self.assertEqual(__a , __a ) self.assertEqual(__a , __a ) self.assertEqual(__a , __a ) __lowerCAmelCase = train(2 , __a , __a , __a , __a ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(__a , "checkpoints" , "checkpoint_1" ) ) test_rands += train(1 , __a , __a , __a , __a ) ((__lowerCAmelCase) , (__lowerCAmelCase)) = model.a.item(), model.b.item() __lowerCAmelCase = optimizer.state_dict() self.assertEqual(__a , __a ) self.assertEqual(__a , __a ) self.assertEqual(__a , __a ) self.assertEqual(__a , __a ) def snake_case ( self ): __lowerCAmelCase = torch.tensor([1, 2, 3] ) __lowerCAmelCase = torch.tensor([2, 3, 4] ) __lowerCAmelCase = DummyModel() __lowerCAmelCase = torch.optim.Adam(net.parameters() ) __lowerCAmelCase = Accelerator() with self.assertRaises(__a ) as ve: accelerator.register_for_checkpointing(__a , __a , __a , __a ) __lowerCAmelCase = str(ve.exception ) self.assertTrue("Item at index 0" in message ) self.assertTrue("Item at index 1" in message ) self.assertFalse("Item at index 2" in message ) self.assertFalse("Item at index 3" in message ) def snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __lowerCAmelCase = DummyModel() __lowerCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __lowerCAmelCase = torch.optim.lr_scheduler.StepLR(__a , step_size=1 , gamma=0.9_9 ) __lowerCAmelCase , __lowerCAmelCase = dummy_dataloaders() __lowerCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=__a ) # Train baseline __lowerCAmelCase = Accelerator(project_dir=__a , project_config=__a ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare( __a , __a , __a , __a , __a ) # Save initial accelerator.save_state() __lowerCAmelCase = scheduler.state_dict() train(3 , __a , __a , __a , __a , __a ) self.assertNotEqual(__a , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(__a , "checkpoints" , "checkpoint_0" ) ) self.assertEqual(__a , scheduler.state_dict() ) def snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __lowerCAmelCase = DummyModel() __lowerCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=__a , total_limit=2 ) # Train baseline __lowerCAmelCase = Accelerator(project_dir=__a , project_config=__a ) __lowerCAmelCase = accelerator.prepare(__a ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(__a , "checkpoints" , "checkpoint_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(__a , "checkpoints" , "checkpoint_9" ) ) ) self.assertTrue(os.path.exists(os.path.join(__a , "checkpoints" , "checkpoint_10" ) ) ) @require_cuda def snake_case ( self ): __lowerCAmelCase = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(__a , env=os.environ.copy() ) if __name__ == "__main__": A : Optional[Any] = "/tmp/accelerate/state_checkpointing" A : Tuple = DummyModel() A : List[str] = torch.optim.Adam(params=model.parameters(), lr=1e-3) A : Optional[Any] = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) A , A : Dict = dummy_dataloaders() A : Dict = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline A : Dict = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) A , A , A , A , A : Optional[Any] = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) A , A : Any = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: A : Union[str, Any] = group["params"][0].device break assert param_device.type == accelerator.device.type A : Dict = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu") for group in optimizer.param_groups: A : Union[str, Any] = group["params"][0].device break assert ( param_device.type == torch.device("cpu").type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device") for group in optimizer.param_groups: A : Optional[int] = group["params"][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="Unsupported optimizer map location passed"): accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
57
from __future__ import annotations from math import pi, sqrt def _snake_case ( lowerCAmelCase : float , lowerCAmelCase : float ): """simple docstring""" if inductance <= 0: raise ValueError("Inductance cannot be 0 or negative" ) elif capacitance <= 0: raise ValueError("Capacitance cannot be 0 or negative" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
18
0
'''simple docstring''' from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError("""To use the rich extension, install rich with `pip install rich`""")
58
def _snake_case ( lowerCAmelCase : list ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = len(lowerCAmelCase ) for i in range(1 , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : int = collection[i] SCREAMING_SNAKE_CASE_ : Any = 0 SCREAMING_SNAKE_CASE_ : Tuple = i - 1 while low <= high: SCREAMING_SNAKE_CASE_ : int = (low + high) // 2 if val < collection[mid]: SCREAMING_SNAKE_CASE_ : Optional[Any] = mid - 1 else: SCREAMING_SNAKE_CASE_ : Tuple = mid + 1 for j in range(lowerCAmelCase , lowerCAmelCase , -1 ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = collection[j - 1] SCREAMING_SNAKE_CASE_ : int = val return collection if __name__ == "__main__": __lowerCamelCase : Dict = input('''Enter numbers separated by a comma:\n''').strip() __lowerCamelCase : List[str] = [int(item) for item in user_input.split(''',''')] print(binary_insertion_sort(unsorted))
18
0
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType __lowerCamelCase = logging.get_logger(__name__) class UpperCAmelCase ( A_ ): A__ : int = "vision-encoder-decoder" A__ : Tuple = True def __init__(self : Optional[Any] , **snake_case__ : Optional[int] ) -> List[Any]: '''simple docstring''' super().__init__(**snake_case__ ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f"""A configuraton of type {self.model_type} cannot be instantiated because """ f"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" ) snake_case : int = kwargs.pop("encoder" ) snake_case : Tuple = encoder_config.pop("model_type" ) snake_case : int = kwargs.pop("decoder" ) snake_case : Optional[Any] = decoder_config.pop("model_type" ) snake_case : Tuple = AutoConfig.for_model(snake_case__ , **snake_case__ ) snake_case : List[Any] = AutoConfig.for_model(snake_case__ , **snake_case__ ) snake_case : List[Any] = True @classmethod def _SCREAMING_SNAKE_CASE (cls : Optional[Any] , snake_case__ : PretrainedConfig , snake_case__ : PretrainedConfig , **snake_case__ : int ) -> PretrainedConfig: '''simple docstring''' logger.info("Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config" ) snake_case : List[str] = True snake_case : Optional[Any] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **snake_case__ ) def _SCREAMING_SNAKE_CASE (self : str ) -> Dict: '''simple docstring''' snake_case : Any = copy.deepcopy(self.__dict__ ) snake_case : List[Any] = self.encoder.to_dict() snake_case : Tuple = self.decoder.to_dict() snake_case : Union[str, Any] = self.__class__.model_type return output class UpperCAmelCase ( A_ ): A__ : str = version.parse("1.11" ) @property def _SCREAMING_SNAKE_CASE (self : Dict ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _SCREAMING_SNAKE_CASE (self : Any ) -> float: '''simple docstring''' return 1e-4 @property def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict({"last_hidden_state": {0: "batch", 1: "encoder_sequence"}} ) class UpperCAmelCase ( A_ ): @property def _SCREAMING_SNAKE_CASE (self : Any ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' snake_case : Dict = OrderedDict() snake_case : Optional[Any] = {0: "batch", 1: "past_decoder_sequence + sequence"} snake_case : Tuple = {0: "batch", 1: "past_decoder_sequence + sequence"} snake_case : List[Any] = {0: "batch", 1: "encoder_sequence"} return common_inputs def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : "PreTrainedTokenizerBase" , snake_case__ : int = -1 , snake_case__ : int = -1 , snake_case__ : bool = False , snake_case__ : Optional["TensorType"] = None , ) -> Mapping[str, Any]: '''simple docstring''' import torch snake_case : str = OrderedDict() snake_case : Dict = super().generate_dummy_inputs( snake_case__ , batch_size=snake_case__ , seq_length=snake_case__ , is_pair=snake_case__ , framework=snake_case__ ) snake_case , snake_case : Dict = dummy_input["input_ids"].shape snake_case : Dict = (batch, encoder_sequence, self._config.encoder_hidden_size) snake_case : List[str] = dummy_input.pop("input_ids" ) snake_case : Optional[int] = dummy_input.pop("attention_mask" ) snake_case : Union[str, Any] = torch.zeros(snake_case__ ) return common_inputs class UpperCAmelCase ( A_ ): @property def _SCREAMING_SNAKE_CASE (self : int ) -> None: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : PretrainedConfig ) -> OnnxConfig: '''simple docstring''' return VisionEncoderDecoderEncoderOnnxConfig(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : PretrainedConfig , snake_case__ : PretrainedConfig , snake_case__ : str = "default" ) -> OnnxConfig: '''simple docstring''' snake_case : Union[str, Any] = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(snake_case__ , snake_case__ )
59
from collections.abc import Sequence from queue import Queue class a__ : def __init__( self : int,_A : List[Any],_A : Optional[Any],_A : Optional[int],_A : int=None,_A : List[str]=None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = start SCREAMING_SNAKE_CASE_ : List[str] = end SCREAMING_SNAKE_CASE_ : Tuple = val SCREAMING_SNAKE_CASE_ : List[str] = (start + end) // 2 SCREAMING_SNAKE_CASE_ : Optional[int] = left SCREAMING_SNAKE_CASE_ : str = right def __repr__( self : Tuple ): """simple docstring""" return F'SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})' class a__ : def __init__( self : Any,_A : Sequence,_A : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = collection SCREAMING_SNAKE_CASE_ : Optional[int] = function if self.collection: SCREAMING_SNAKE_CASE_ : List[str] = self._build_tree(0,len(_A ) - 1 ) def __UpperCamelCase ( self : int,_A : Any,_A : List[Any] ): """simple docstring""" self._update_tree(self.root,_A,_A ) def __UpperCamelCase ( self : str,_A : Any,_A : List[Any] ): """simple docstring""" return self._query_range(self.root,_A,_A ) def __UpperCamelCase ( self : Any,_A : Optional[int],_A : int ): """simple docstring""" if start == end: return SegmentTreeNode(_A,_A,self.collection[start] ) SCREAMING_SNAKE_CASE_ : List[Any] = (start + end) // 2 SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._build_tree(_A,_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = self._build_tree(mid + 1,_A ) return SegmentTreeNode(_A,_A,self.fn(left.val,right.val ),_A,_A ) def __UpperCamelCase ( self : int,_A : int,_A : Tuple,_A : Dict ): """simple docstring""" if node.start == i and node.end == i: SCREAMING_SNAKE_CASE_ : Union[str, Any] = val return if i <= node.mid: self._update_tree(node.left,_A,_A ) else: self._update_tree(node.right,_A,_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.fn(node.left.val,node.right.val ) def __UpperCamelCase ( self : str,_A : List[str],_A : Optional[int],_A : Optional[Any] ): """simple docstring""" if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left,_A,_A ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left,_A,node.mid ),self._query_range(node.right,node.mid + 1,_A ),) else: # range in right child tree return self._query_range(node.right,_A,_A ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" if self.root is not None: SCREAMING_SNAKE_CASE_ : int = Queue() queue.put(self.root ) while not queue.empty(): SCREAMING_SNAKE_CASE_ : Tuple = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('''*''' * 50) __lowerCamelCase : int = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
18
0
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class snake_case_( a__ ): def __init__( self : str , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple ): super().__init__() # make sure scheduler can always be converted to DDIM lowerCAmelCase : Tuple = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) @torch.no_grad() def __call__( self : List[str] , UpperCamelCase_ : int = 1 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : int = 5_0 , UpperCamelCase_ : Optional[bool] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , ): # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , UpperCamelCase_ ): lowerCAmelCase : Optional[int] = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: lowerCAmelCase : List[str] = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCAmelCase : Any = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(UpperCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCAmelCase : Optional[int] = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowerCAmelCase : Optional[int] = self.scheduler.step( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , eta=UpperCamelCase_ , use_clipped_model_output=UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample lowerCAmelCase : Union[str, Any] = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase : int = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase : List[str] = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
60
def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : int ): """simple docstring""" while b: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = b, a % b return a def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : int ): """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(lowerCAmelCase , a % b ) def _snake_case ( ): """simple docstring""" print(f'euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}' ) print(f'euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}' ) print(f'euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}' ) print(f'euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}' ) print(f'euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}' ) print(f'euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}' ) print(f'euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}' ) print(f'euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}' ) if __name__ == "__main__": main()
18
0