code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
from scipy.stats import spearmanr import datasets lowercase__ : List[Any] = '''\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n''' lowercase__ : List[Any] = '''\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n''' lowercase__ : int = R'''\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'''] , ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ) ->Optional[int]: lowerCAmelCase = spearmanr(UpperCAmelCase__ , UpperCAmelCase__ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
338
"""simple docstring""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _a = _symbol_database.Default() _a = _descriptor_pool.Default().AddSerializedFile( b'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) _a = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: _a = None _a = b'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" _a = 45 _a = 15_81 _a = 15_17 _a = 15_70 _a = 15_84 _a = 17_93 _a = 17_95 _a = 19_16 _a = 18_64 _a = 19_05 _a = 19_19 _a = 24_29 _a = 22_08 _a = 24_18 _a = 23_23 _a = 24_07 # @@protoc_insertion_point(module_scope)
17
0
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case : """simple docstring""" def __init__( self : str , __A : Tuple , __A : List[str]=2 , __A : str=8 , __A : int=True , __A : str=True , __A : Optional[int]=True , __A : Any=True , __A : Tuple=9_9 , __A : Dict=1_6 , __A : Optional[int]=5 , __A : Any=2 , __A : int=3_6 , __A : List[Any]="gelu" , __A : str=0.0 , __A : Dict=0.0 , __A : List[str]=5_1_2 , __A : Optional[int]=1_6 , __A : Tuple=2 , __A : Tuple=0.02 , __A : int=3 , __A : Tuple=4 , __A : List[Any]=None , ): __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_token_type_ids __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = num_labels __UpperCamelCase = num_choices __UpperCamelCase = scope def _lowerCamelCase ( self : str ): __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = None if self.use_token_type_ids: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self : Optional[Any] ): return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self : Union[str, Any] ): __UpperCamelCase = self.get_config() __UpperCamelCase = 3_0_0 return config def _lowerCamelCase ( self : List[str] ): ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) = self.prepare_config_and_inputs() __UpperCamelCase = True __UpperCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _lowerCamelCase ( self : List[Any] , __A : Dict , __A : Optional[int] , __A : List[Any] , __A : Tuple , __A : Dict , __A : Dict , __A : Dict ): __UpperCamelCase = MraModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __UpperCamelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) __UpperCamelCase = model(UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) __UpperCamelCase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : Tuple , __A : Union[str, Any] , __A : Any , __A : List[Any] , __A : Union[str, Any] , __A : Optional[Any] , __A : Optional[Any] , __A : Tuple , __A : Tuple , __A : Optional[Any] , ): __UpperCamelCase = True __UpperCamelCase = MraModel(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __UpperCamelCase = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , ) __UpperCamelCase = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , ) __UpperCamelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : Dict , __A : Union[str, Any] , __A : str , __A : Dict , __A : int , __A : Dict , __A : str , __A : int ): __UpperCamelCase = MraForMaskedLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __UpperCamelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : str , __A : Dict , __A : Any , __A : Optional[Any] , __A : int , __A : Tuple , __A : str , __A : List[str] ): __UpperCamelCase = MraForQuestionAnswering(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __UpperCamelCase = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , start_positions=UpperCAmelCase__ , end_positions=UpperCAmelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self : str , __A : Optional[int] , __A : Any , __A : List[str] , __A : List[Any] , __A : Union[str, Any] , __A : Optional[int] , __A : Tuple ): __UpperCamelCase = self.num_labels __UpperCamelCase = MraForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __UpperCamelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self : Optional[int] , __A : int , __A : Tuple , __A : List[Any] , __A : List[Any] , __A : List[str] , __A : Optional[int] , __A : Optional[Any] ): __UpperCamelCase = self.num_labels __UpperCamelCase = MraForTokenClassification(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __UpperCamelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self : Optional[Any] , __A : Any , __A : int , __A : Dict , __A : int , __A : Union[str, Any] , __A : Tuple , __A : Tuple ): __UpperCamelCase = self.num_choices __UpperCamelCase = MraForMultipleChoice(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self : Union[str, Any] ): __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) = config_and_inputs __UpperCamelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class snake_case ( __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] =( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ : Any =False SCREAMING_SNAKE_CASE_ : List[Any] =False SCREAMING_SNAKE_CASE_ : Union[str, Any] =False SCREAMING_SNAKE_CASE_ : List[Any] =False SCREAMING_SNAKE_CASE_ : List[Any] =() def _lowerCamelCase ( self : List[Any] ): __UpperCamelCase = MraModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=3_7 ) def _lowerCamelCase ( self : Any ): self.config_tester.run_common_tests() def _lowerCamelCase ( self : Union[str, Any] ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def _lowerCamelCase ( self : int ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCamelCase = type self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def _lowerCamelCase ( self : Tuple ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ ) def _lowerCamelCase ( self : Tuple ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase__ ) def _lowerCamelCase ( self : Tuple ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase__ ) def _lowerCamelCase ( self : List[str] ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase__ ) def _lowerCamelCase ( self : int ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase__ ) @slow def _lowerCamelCase ( self : Any ): for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = MraModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @unittest.skip(reason='MRA does not output attentions' ) def _lowerCamelCase ( self : Union[str, Any] ): return @require_torch class snake_case ( unittest.TestCase ): """simple docstring""" @slow def _lowerCamelCase ( self : Tuple ): __UpperCamelCase = MraModel.from_pretrained('uw-madison/mra-base-512-4' ) __UpperCamelCase = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): __UpperCamelCase = model(UpperCAmelCase__ )[0] __UpperCamelCase = torch.Size((1, 2_5_6, 7_6_8) ) self.assertEqual(output.shape , UpperCAmelCase__ ) __UpperCamelCase = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase__ , atol=1e-4 ) ) @slow def _lowerCamelCase ( self : Union[str, Any] ): __UpperCamelCase = MraForMaskedLM.from_pretrained('uw-madison/mra-base-512-4' ) __UpperCamelCase = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): __UpperCamelCase = model(UpperCAmelCase__ )[0] __UpperCamelCase = 5_0_2_6_5 __UpperCamelCase = torch.Size((1, 2_5_6, vocab_size) ) self.assertEqual(output.shape , UpperCAmelCase__ ) __UpperCamelCase = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase__ , atol=1e-4 ) ) @slow def _lowerCamelCase ( self : Tuple ): __UpperCamelCase = MraForMaskedLM.from_pretrained('uw-madison/mra-base-4096-8-d3' ) __UpperCamelCase = torch.arange(4_0_9_6 ).unsqueeze(0 ) with torch.no_grad(): __UpperCamelCase = model(UpperCAmelCase__ )[0] __UpperCamelCase = 5_0_2_6_5 __UpperCamelCase = torch.Size((1, 4_0_9_6, vocab_size) ) self.assertEqual(output.shape , UpperCAmelCase__ ) __UpperCamelCase = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase__ , atol=1e-4 ) )
53
"""simple docstring""" import baseaa def _A ( UpperCamelCase_ : str) -> bytes: '''simple docstring''' return baseaa.baaencode(string.encode("utf-8")) def _A ( UpperCamelCase_ : bytes) -> str: '''simple docstring''' return baseaa.baadecode(UpperCamelCase_).decode("utf-8") if __name__ == "__main__": _a = 'Hello World!' _a = baseaa_encode(test) print(encoded) _a = baseaa_decode(encoded) print(decoded)
17
0
from math import factorial def UpperCamelCase ( __lowerCamelCase : int = 100 ): return sum(map(UpperCamelCase_ , str(factorial(UpperCamelCase_ ) ) ) ) if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
59
"""simple docstring""" def _A ( UpperCamelCase_ : Any) -> List[str]: '''simple docstring''' __lowercase ,__lowercase = [], [] while len(UpperCamelCase_) > 1: __lowercase ,__lowercase = min(UpperCamelCase_), max(UpperCamelCase_) start.append(UpperCamelCase_) end.append(UpperCamelCase_) collection.remove(UpperCamelCase_) collection.remove(UpperCamelCase_) end.reverse() return start + collection + end if __name__ == "__main__": _a = input('Enter numbers separated by a comma:\n').strip() _a = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
17
0
import math lowerCAmelCase : Union[str, Any] = 10 lowerCAmelCase : List[str] = 7 lowerCAmelCase : Dict = BALLS_PER_COLOUR * NUM_COLOURS def A_ ( _UpperCAmelCase = 20 ): SCREAMING_SNAKE_CASE_: Any = math.comb(UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE_: Union[str, Any] = math.comb(NUM_BALLS - BALLS_PER_COLOUR , UpperCamelCase_ ) SCREAMING_SNAKE_CASE_: Union[str, Any] = NUM_COLOURS * (1 - missing_colour / total) return f"{result:.9f}" if __name__ == "__main__": print(solution(20))
13
"""simple docstring""" def _A ( UpperCamelCase_ : list[int]) -> float: '''simple docstring''' if not nums: # Makes sure that the list is not empty raise ValueError("List is empty") __lowercase = sum(UpperCamelCase_) / len(UpperCamelCase_) # Calculate the average return sum(abs(x - average) for x in nums) / len(UpperCamelCase_) if __name__ == "__main__": import doctest doctest.testmod()
17
0
import baseaa def A ( a_ ) -> bytes: return baseaa.baaencode(string.encode('utf-8' ) ) def A ( a_ ) -> str: return baseaa.baadecode(UpperCamelCase_ ).decode('utf-8' ) if __name__ == "__main__": A_ :int = '''Hello World!''' A_ :Dict = baseaa_encode(test) print(encoded) A_ :List[Any] = baseaa_decode(encoded) print(decoded)
71
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : int=1_0_0, UpperCAmelCase__ : Any=1_3, UpperCAmelCase__ : List[Any]=3_0, UpperCAmelCase__ : Dict=2, UpperCAmelCase__ : Any=3, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[str]=True, UpperCAmelCase__ : Optional[Any]=3_2, UpperCAmelCase__ : Any=5, UpperCAmelCase__ : Any=4, UpperCAmelCase__ : Any=3_7, UpperCAmelCase__ : Optional[int]="gelu", UpperCAmelCase__ : Dict=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Dict=1_0, UpperCAmelCase__ : Tuple=0.02, UpperCAmelCase__ : List[Any]=3, ): __lowercase = parent __lowercase = vocab_size __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase = (image_size // patch_size) ** 2 __lowercase = num_patches + 1 def _lowercase ( self : int ): __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size], self.type_sequence_label_size ) __lowercase = BeitConfig( vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=UpperCAmelCase__, initializer_range=self.initializer_range, ) return config, pixel_values, labels def _lowercase ( self : Any, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[str], UpperCAmelCase__ : List[str] ): __lowercase = FlaxBeitModel(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : List[Any] ): __lowercase = FlaxBeitForMaskedImageModeling(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size) ) def _lowercase ( self : Dict, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : Union[str, Any] ): __lowercase = self.type_sequence_label_size __lowercase = FlaxBeitForImageClassification(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowercase = 1 __lowercase = FlaxBeitForImageClassification(UpperCAmelCase__ ) __lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase = model(UpperCAmelCase__ ) def _lowercase ( self : List[str] ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) ,( __lowercase ) ,( __lowercase ) , ) = config_and_inputs __lowercase = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class _lowerCAmelCase ( lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def _lowercase ( self : List[Any] ): __lowercase = FlaxBeitModelTester(self ) __lowercase = ConfigTester(self, config_class=UpperCAmelCase__, has_text_modality=UpperCAmelCase__, hidden_size=3_7 ) def _lowercase ( self : Union[str, Any] ): self.config_tester.run_common_tests() def _lowercase ( self : Optional[int] ): __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(UpperCAmelCase__ ) __lowercase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["pixel_values"] self.assertListEqual(arg_names[:1], UpperCAmelCase__ ) def _lowercase ( self : Tuple ): __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowercase = self._prepare_for_class(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = model_class(UpperCAmelCase__ ) @jax.jit def model_jitted(UpperCAmelCase__ : str, **UpperCAmelCase__ : Dict ): return model(pixel_values=UpperCAmelCase__, **UpperCAmelCase__ ) with self.subTest("JIT Enabled" ): __lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ), len(UpperCAmelCase__ ) ) for jitted_output, output in zip(UpperCAmelCase__, UpperCAmelCase__ ): self.assertEqual(jitted_output.shape, output.shape ) def _lowercase ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def _lowercase ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ ) def _lowercase ( self : Tuple ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ ) @slow def _lowercase ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: __lowercase = model_class_name.from_pretrained("microsoft/beit-base-patch16-224" ) __lowercase = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(UpperCAmelCase__ ) def _A ( ) -> str: '''simple docstring''' __lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_vision @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : Optional[int] ): return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def _lowercase ( self : Any ): __lowercase = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ).pixel_values # prepare bool_masked_pos __lowercase = np.ones((1, 1_9_6), dtype=UpperCAmelCase__ ) # forward pass __lowercase = model(pixel_values=UpperCAmelCase__, bool_masked_pos=UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 1_9_6, 8_1_9_2) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3], UpperCAmelCase__, atol=1E-2 ) ) @slow def _lowercase ( self : Any ): __lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ) # forward pass __lowercase = model(**UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 1_0_0_0) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array([-1.2_385, -1.0_987, -1.0_108] ) self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) ) __lowercase = 2_8_1 self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ ) @slow def _lowercase ( self : List[str] ): __lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ) # forward pass __lowercase = model(**UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 2_1_8_4_1) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array([1.6_881, -0.2_787, 0.5_901] ) self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) ) __lowercase = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ )
17
0
'''simple docstring''' import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = parent __UpperCAmelCase : List[Any] = batch_size __UpperCAmelCase : Tuple = seq_length __UpperCAmelCase : Any = is_training __UpperCAmelCase : Dict = use_input_mask __UpperCAmelCase : Any = use_token_type_ids __UpperCAmelCase : str = use_labels __UpperCAmelCase : Optional[int] = vocab_size __UpperCAmelCase : List[str] = hidden_size __UpperCAmelCase : List[str] = num_hidden_layers __UpperCAmelCase : Optional[int] = num_attention_heads __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : Any = hidden_act __UpperCAmelCase : List[str] = hidden_dropout_prob __UpperCAmelCase : List[str] = attention_probs_dropout_prob __UpperCAmelCase : str = max_position_embeddings __UpperCAmelCase : Tuple = type_vocab_size __UpperCAmelCase : Optional[int] = type_sequence_label_size __UpperCAmelCase : Tuple = initializer_range __UpperCAmelCase : Optional[Any] = num_labels __UpperCAmelCase : Optional[int] = num_choices __UpperCAmelCase : Optional[int] = scope def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : List[Any] = None if self.use_input_mask: __UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Optional[int] = None if self.use_token_type_ids: __UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : List[Any] = None __UpperCAmelCase : int = None __UpperCAmelCase : Optional[Any] = None if self.use_labels: __UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ) -> Optional[int]: '''simple docstring''' return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __UpperCAmelCase : Any = LlamaModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __UpperCAmelCase : Optional[Any] = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) __UpperCAmelCase : Union[str, Any] = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> int: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = True __UpperCAmelCase : str = LlamaModel(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __UpperCAmelCase : Any = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , ) __UpperCAmelCase : Optional[int] = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , ) __UpperCAmelCase : List[Any] = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Dict: '''simple docstring''' __UpperCAmelCase : List[str] = LlamaForCausalLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __UpperCAmelCase : Union[str, Any] = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = True __UpperCAmelCase : Any = True __UpperCAmelCase : List[str] = LlamaForCausalLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() # first forward pass __UpperCAmelCase : List[Any] = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , use_cache=UpperCAmelCase__ , ) __UpperCAmelCase : Optional[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCAmelCase : Dict = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __UpperCAmelCase : Optional[int] = torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCAmelCase : Optional[int] = torch.cat([input_mask, next_mask] , dim=-1 ) __UpperCAmelCase : Dict = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , )["""hidden_states"""][0] __UpperCAmelCase : List[Any] = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , )["""hidden_states"""][0] # select random slice __UpperCAmelCase : Dict = ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCAmelCase : Any = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Optional[Any] = config_and_inputs __UpperCAmelCase : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _SCREAMING_SNAKE_CASE : str = (LlamaForCausalLM,) if is_torch_available() else () _SCREAMING_SNAKE_CASE : Optional[Any] = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : List[Any] = False def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Any = LlamaModelTester(self ) __UpperCAmelCase : str = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=37 ) def __A ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : List[str] = type self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : str = 3 __UpperCAmelCase : Optional[int] = input_dict["""input_ids"""] __UpperCAmelCase : str = input_ids.ne(1 ).to(UpperCAmelCase__ ) __UpperCAmelCase : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCAmelCase : int = LlamaForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __UpperCAmelCase : Union[str, Any] = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Tuple = 3 __UpperCAmelCase : Optional[int] = """single_label_classification""" __UpperCAmelCase : Optional[int] = input_dict["""input_ids"""] __UpperCAmelCase : List[str] = input_ids.ne(1 ).to(UpperCAmelCase__ ) __UpperCAmelCase : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCAmelCase : List[str] = LlamaForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __UpperCAmelCase : Tuple = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Union[str, Any] = 3 __UpperCAmelCase : Union[str, Any] = """multi_label_classification""" __UpperCAmelCase : Dict = input_dict["""input_ids"""] __UpperCAmelCase : Tuple = input_ids.ne(1 ).to(UpperCAmelCase__ ) __UpperCAmelCase : Tuple = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __UpperCAmelCase : str = LlamaForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __UpperCAmelCase : int = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" ) def __A ( self ) -> str: '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def __A ( self , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Dict = ids_tensor([1, 10] , config.vocab_size ) __UpperCAmelCase : List[Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCAmelCase : Optional[Any] = LlamaModel(UpperCAmelCase__ ) original_model.to(UpperCAmelCase__ ) original_model.eval() __UpperCAmelCase : Dict = original_model(UpperCAmelCase__ ).last_hidden_state __UpperCAmelCase : List[str] = original_model(UpperCAmelCase__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCAmelCase : Tuple = {"""type""": scaling_type, """factor""": 10.0} __UpperCAmelCase : Dict = LlamaModel(UpperCAmelCase__ ) scaled_model.to(UpperCAmelCase__ ) scaled_model.eval() __UpperCAmelCase : str = scaled_model(UpperCAmelCase__ ).last_hidden_state __UpperCAmelCase : Optional[Any] = scaled_model(UpperCAmelCase__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-5 ) ) @require_torch class _A ( unittest.TestCase ): @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : str = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" , device_map="""auto""" ) __UpperCAmelCase : List[Any] = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 __UpperCAmelCase : List[Any] = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCAmelCase__ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : Any = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCAmelCase__ , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Dict = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : int = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" , device_map="""auto""" ) __UpperCAmelCase : Tuple = model(torch.tensor(UpperCAmelCase__ ) ) # Expected mean on dim = -1 __UpperCAmelCase : List[str] = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCAmelCase__ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : str = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCAmelCase__ , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : int = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : Dict = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" , device_map="""auto""" ) __UpperCAmelCase : Any = model(torch.tensor(UpperCAmelCase__ ) ) # Expected mean on dim = -1 __UpperCAmelCase : Union[str, Any] = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCAmelCase__ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : int = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , UpperCAmelCase__ , atol=1E-2 , rtol=1E-2 ) @unittest.skip( """Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" ) @slow def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : int = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : int = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" , device_map="""auto""" ) __UpperCAmelCase : str = model(torch.tensor(UpperCAmelCase__ ) ) __UpperCAmelCase : Optional[Any] = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , UpperCAmelCase__ , atol=1E-2 , rtol=1E-2 ) # fmt: off __UpperCAmelCase : Tuple = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCAmelCase__ , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Model is curently gated""" ) @slow def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Optional[int] = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi""" __UpperCAmelCase : Union[str, Any] = """Simply put, the theory of relativity states that """ __UpperCAmelCase : int = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" ) __UpperCAmelCase : int = tokenizer.encode(UpperCAmelCase__ , return_tensors="""pt""" ) __UpperCAmelCase : List[str] = LlamaForCausalLM.from_pretrained( """meta-llama/Llama-2-13b-chat-hf""" , device_map="""sequential""" , use_safetensors=UpperCAmelCase__ ) # greedy generation outputs __UpperCAmelCase : Union[str, Any] = model.generate(UpperCAmelCase__ , max_new_tokens=64 , top_p=UpperCAmelCase__ , temperature=1 , do_sample=UpperCAmelCase__ ) __UpperCAmelCase : List[Any] = tokenizer.decode(generated_ids[0] , skip_special_tokens=UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ )
254
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class _lowerCAmelCase ( unittest.TestCase ,lowercase ): """simple docstring""" def _lowercase ( self : List[Any] ): __lowercase = load_tool("text-classification" ) self.tool.setup() __lowercase = load_tool("text-classification", remote=UpperCAmelCase__ ) def _lowercase ( self : str ): __lowercase = self.tool("That's quite cool", ["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" ) def _lowercase ( self : str ): __lowercase = self.remote_tool("That's quite cool", ["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" ) def _lowercase ( self : List[str] ): __lowercase = self.tool(text="That's quite cool", labels=["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" ) def _lowercase ( self : Tuple ): __lowercase = self.remote_tool(text="That's quite cool", labels=["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" )
17
0
'''simple docstring''' import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib a : Tuple = threading.Lock() a : Any = None a : Union[str, Any] = { """debug""": logging.DEBUG, """info""": logging.INFO, """warning""": logging.WARNING, """error""": logging.ERROR, """critical""": logging.CRITICAL, } a : Union[str, Any] = logging.WARNING a : Optional[Any] = True def __lowerCamelCase ( ) -> List[str]: UpperCAmelCase : Optional[Any] = os.getenv("""TRANSFORMERS_VERBOSITY""" , UpperCamelCase_ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F'''Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, ''' F'''has to be one of: { ', '.join(log_levels.keys() ) }''' ) return _default_log_level def __lowerCamelCase ( ) -> str: return __name__.split(""".""" )[0] def __lowerCamelCase ( ) -> logging.Logger: return logging.getLogger(_get_library_name() ) def __lowerCamelCase ( ) -> None: global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return UpperCAmelCase : List[Any] = logging.StreamHandler() # Set sys.stderr as stream. UpperCAmelCase : List[Any] = sys.stderr.flush # Apply our default configuration to the library root logger. UpperCAmelCase : List[str] = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) UpperCAmelCase : Union[str, Any] = False def __lowerCamelCase ( ) -> None: global _default_handler with _lock: if not _default_handler: return UpperCAmelCase : int = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) UpperCAmelCase : Optional[int] = None def __lowerCamelCase ( ) -> int: return log_levels def __lowerCamelCase ( _lowercase = None ) -> logging.Logger: if name is None: UpperCAmelCase : int = _get_library_name() _configure_library_root_logger() return logging.getLogger(UpperCamelCase_ ) def __lowerCamelCase ( ) -> int: _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def __lowerCamelCase ( _lowercase ) -> None: _configure_library_root_logger() _get_library_root_logger().setLevel(UpperCamelCase_ ) def __lowerCamelCase ( ) -> Union[str, Any]: return set_verbosity(UpperCamelCase_ ) def __lowerCamelCase ( ) -> Optional[Any]: return set_verbosity(UpperCamelCase_ ) def __lowerCamelCase ( ) -> Dict: return set_verbosity(UpperCamelCase_ ) def __lowerCamelCase ( ) -> List[str]: return set_verbosity(UpperCamelCase_ ) def __lowerCamelCase ( ) -> None: _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def __lowerCamelCase ( ) -> None: _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def __lowerCamelCase ( _lowercase ) -> None: _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(UpperCamelCase_ ) def __lowerCamelCase ( _lowercase ) -> None: _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(UpperCamelCase_ ) def __lowerCamelCase ( ) -> None: _configure_library_root_logger() UpperCAmelCase : Optional[int] = False def __lowerCamelCase ( ) -> None: _configure_library_root_logger() UpperCAmelCase : Any = True def __lowerCamelCase ( ) -> None: UpperCAmelCase : int = _get_library_root_logger().handlers for handler in handlers: UpperCAmelCase : Tuple = logging.Formatter("""[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s""" ) handler.setFormatter(UpperCamelCase_ ) def __lowerCamelCase ( ) -> None: UpperCAmelCase : Dict = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(UpperCamelCase_ ) def __lowerCamelCase ( self , *_lowercase , **_lowercase ) -> Union[str, Any]: UpperCAmelCase : int = os.getenv("""TRANSFORMERS_NO_ADVISORY_WARNINGS""" , UpperCamelCase_ ) if no_advisory_warnings: return self.warning(*UpperCamelCase_ , **UpperCamelCase_ ) a : Union[str, Any] = warning_advice @functools.lru_cache(UpperCamelCase_ ) def __lowerCamelCase ( self , *_lowercase , **_lowercase ) -> Any: self.warning(*UpperCamelCase_ , **UpperCamelCase_ ) a : str = warning_once class UpperCamelCase_ : def __init__( self , *A , **A ) -> Tuple: # pylint: disable=unused-argument UpperCAmelCase : Tuple = args[0] if args else None def __iter__( self ) -> Any: return iter(self._iterator ) def __getattr__( self , A ) -> str: def empty_fn(*A , **A ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ) -> Optional[int]: return self def __exit__( self , A , A , A ) -> Optional[Any]: return class UpperCamelCase_ : def __call__( self , *A , **A ) -> Optional[Any]: if _tqdm_active: return tqdm_lib.tqdm(*UpperCAmelCase__ , **UpperCAmelCase__ ) else: return EmptyTqdm(*UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowercase( self , *A , **A ) -> Tuple: UpperCAmelCase : Optional[int] = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowercase( self ) -> Tuple: if _tqdm_active: return tqdm_lib.tqdm.get_lock() a : List[Any] = _tqdm_cls() def __lowerCamelCase ( ) -> bool: global _tqdm_active return bool(_tqdm_active ) def __lowerCamelCase ( ) -> Dict: global _tqdm_active UpperCAmelCase : List[Any] = True hf_hub_utils.enable_progress_bars() def __lowerCamelCase ( ) -> Tuple: global _tqdm_active UpperCAmelCase : Optional[Any] = False hf_hub_utils.disable_progress_bars()
265
"""simple docstring""" from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker _a = 'CompVis/stable-diffusion-v1-1' _a = 'CompVis/stable-diffusion-v1-2' _a = 'CompVis/stable-diffusion-v1-3' _a = 'CompVis/stable-diffusion-v1-4' class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : Dict, UpperCAmelCase__ : AutoencoderKL, UpperCAmelCase__ : CLIPTextModel, UpperCAmelCase__ : CLIPTokenizer, UpperCAmelCase__ : UNetaDConditionModel, UpperCAmelCase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], UpperCAmelCase__ : StableDiffusionSafetyChecker, UpperCAmelCase__ : CLIPImageProcessor, UpperCAmelCase__ : bool = True, ): super()._init_() __lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ ) __lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ ) __lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ ) __lowercase = StableDiffusionPipeline( vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, tokenizer=UpperCAmelCase__, unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, safety_checker=UpperCAmelCase__, feature_extractor=UpperCAmelCase__, requires_safety_checker=UpperCAmelCase__, ) self.register_modules(pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea ) @property def _lowercase ( self : List[str] ): return {k: getattr(self, UpperCAmelCase__ ) for k in self.config.keys() if not k.startswith("_" )} def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase__ ) def _lowercase ( self : List[str] ): self.enable_attention_slicing(UpperCAmelCase__ ) @torch.no_grad() def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Tuple, ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : Tuple, UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : str, ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : str, UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Any, ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Optional[int], ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : str, ): __lowercase = "cuda" if torch.cuda.is_available() else "cpu" self.to(UpperCAmelCase__ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" ) # Get first result from Stable Diffusion Checkpoint v1.1 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get first result from Stable Diffusion Checkpoint v1.2 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get first result from Stable Diffusion Checkpoint v1.3 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get first result from Stable Diffusion Checkpoint v1.4 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
17
0
"""simple docstring""" def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" if not all(char in '01' for char in bin_string ): raise ValueError('Non-binary value was passed to the function' ) if not bin_string: raise ValueError('Empty string was passed to the function' ) A__ = '' while len(UpperCamelCase_ ) % 3 != 0: A__ = '0' + bin_string A__ = [ bin_string[index : index + 3] for index in range(len(UpperCamelCase_ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: A__ = 0 for index, val in enumerate(UpperCamelCase_ ): oct_val += int(2 ** (2 - index) * int(UpperCamelCase_ ) ) oct_string += str(UpperCamelCase_ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
221
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowerCAmelCase ( lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = "ssube/stable-diffusion-x4-upscaler-onnx" def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : List[str]=0 ): __lowercase = floats_tensor((1, 3, 1_2_8, 1_2_8), rng=random.Random(UpperCAmelCase__ ) ) __lowercase = torch.manual_seed(UpperCAmelCase__ ) __lowercase = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def _lowercase ( self : Any ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def _lowercase ( self : Optional[Any] ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) __lowercase = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.6_898_892, 0.59_240_556, 0.52_499_527, 0.58_866_215, 0.52_258_235, 0.52_572_715, 0.62_414_473, 0.6_174_387, 0.6_214_964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _lowercase ( self : int ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.7_659_278, 0.76_437_664, 0.75_579_107, 0.7_691_116, 0.77_666_986, 0.7_727_672, 0.7_758_664, 0.7_812_226, 0.76_942_515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _lowercase ( self : str ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) __lowercase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _lowercase ( self : Any ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) __lowercase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.77_424_496, 0.773_601, 0.7_645_288, 0.7_769_598, 0.7_772_739, 0.7_738_688, 0.78_187_233, 0.77_879_584, 0.767_043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @property def _lowercase ( self : Tuple ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowercase ( self : Dict ): __lowercase = ort.SessionOptions() __lowercase = False return options def _lowercase ( self : Dict ): __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) __lowercase = init_image.resize((1_2_8, 1_2_8) ) # using the PNDM scheduler by default __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx", provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = "A fantasy landscape, trending on artstation" __lowercase = torch.manual_seed(0 ) __lowercase = pipe( prompt=UpperCAmelCase__, image=UpperCAmelCase__, guidance_scale=7.5, num_inference_steps=1_0, generator=UpperCAmelCase__, output_type="np", ) __lowercase = output.images __lowercase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array([0.4_883, 0.4_947, 0.4_980, 0.4_975, 0.4_982, 0.4_980, 0.5_000, 0.5_006, 0.4_972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def _lowercase ( self : str ): __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) __lowercase = init_image.resize((1_2_8, 1_2_8) ) __lowercase = LMSDiscreteScheduler.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx", subfolder="scheduler" ) __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx", scheduler=UpperCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = "A fantasy landscape, trending on artstation" __lowercase = torch.manual_seed(0 ) __lowercase = pipe( prompt=UpperCAmelCase__, image=UpperCAmelCase__, guidance_scale=7.5, num_inference_steps=2_0, generator=UpperCAmelCase__, output_type="np", ) __lowercase = output.images __lowercase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.50_173_753, 0.50_223_356, 0.502_039, 0.50_233_036, 0.5_023_725, 0.5_022_601, 0.5_018_758, 0.50_234_085, 0.50_241_566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
17
0
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights __snake_case : Optional[Any] = FlaxDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=UpperCAmelCase__ , cache_dir=UpperCAmelCase__ ) __snake_case : List[Any] = [t[-1] for t in os.walk(os.path.join(UpperCAmelCase__ , os.listdir(UpperCAmelCase__ )[0] , "snapshots" ) )] __snake_case : List[str] = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(".bin" ) for f in files ) @slow @require_flax class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case , __snake_case : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=UpperCAmelCase__ ) __snake_case : Union[str, Any] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) __snake_case : Dict = jax.random.PRNGKey(0 ) __snake_case : Union[str, Any] = 4 __snake_case : List[str] = jax.device_count() __snake_case : Dict = num_samples * [prompt] __snake_case : Optional[Any] = pipeline.prepare_inputs(UpperCAmelCase__ ) # shard inputs and rng __snake_case : int = replicate(UpperCAmelCase__ ) __snake_case : Optional[int] = jax.random.split(UpperCAmelCase__ , UpperCAmelCase__ ) __snake_case : Optional[int] = shard(UpperCAmelCase__ ) __snake_case : Dict = pipeline(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , jit=UpperCAmelCase__ ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_514_745 ) < 1E-3 assert np.abs(np.abs(UpperCAmelCase__ , dtype=np.floataa ).sum() - 49947.875 ) < 5E-1 __snake_case : Optional[Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(UpperCAmelCase__ ) == num_samples def UpperCAmelCase ( self ) -> str: '''simple docstring''' __snake_case , __snake_case : int = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="flax" , safety_checker=UpperCAmelCase__ ) __snake_case : str = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) __snake_case : int = jax.random.PRNGKey(0 ) __snake_case : Union[str, Any] = 50 __snake_case : Tuple = jax.device_count() __snake_case : List[Any] = num_samples * [prompt] __snake_case : Tuple = pipeline.prepare_inputs(UpperCAmelCase__ ) # shard inputs and rng __snake_case : Dict = replicate(UpperCAmelCase__ ) __snake_case : Optional[Any] = jax.random.split(UpperCAmelCase__ , UpperCAmelCase__ ) __snake_case : Any = shard(UpperCAmelCase__ ) __snake_case : Dict = pipeline(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , jit=UpperCAmelCase__ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_652_401) ) < 1E-3 assert np.abs((np.abs(UpperCAmelCase__ , dtype=np.floataa ).sum() - 2383808.2) ) < 5E-1 def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case , __snake_case : Dict = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=UpperCAmelCase__ ) __snake_case : str = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) __snake_case : str = jax.random.PRNGKey(0 ) __snake_case : Tuple = 50 __snake_case : str = jax.device_count() __snake_case : Union[str, Any] = num_samples * [prompt] __snake_case : int = pipeline.prepare_inputs(UpperCAmelCase__ ) # shard inputs and rng __snake_case : List[Any] = replicate(UpperCAmelCase__ ) __snake_case : Optional[int] = jax.random.split(UpperCAmelCase__ , UpperCAmelCase__ ) __snake_case : Dict = shard(UpperCAmelCase__ ) __snake_case : List[Any] = pipeline(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , jit=UpperCAmelCase__ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_003_906) ) < 1E-3 assert np.abs((np.abs(UpperCAmelCase__ , dtype=np.floataa ).sum() - 2373516.75) ) < 5E-1 def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case , __snake_case : List[str] = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa ) __snake_case : str = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) __snake_case : Dict = jax.random.PRNGKey(0 ) __snake_case : Any = 50 __snake_case : Any = jax.device_count() __snake_case : Optional[Any] = num_samples * [prompt] __snake_case : Dict = pipeline.prepare_inputs(UpperCAmelCase__ ) # shard inputs and rng __snake_case : int = replicate(UpperCAmelCase__ ) __snake_case : Optional[Any] = jax.random.split(UpperCAmelCase__ , UpperCAmelCase__ ) __snake_case : Dict = shard(UpperCAmelCase__ ) __snake_case : Union[str, Any] = pipeline(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , jit=UpperCAmelCase__ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_003_906) ) < 1E-3 assert np.abs((np.abs(UpperCAmelCase__ , dtype=np.floataa ).sum() - 2373516.75) ) < 5E-1 def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case : Any = FlaxDDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , set_alpha_to_one=UpperCAmelCase__ , steps_offset=1 , ) __snake_case , __snake_case : Optional[Any] = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , scheduler=UpperCAmelCase__ , safety_checker=UpperCAmelCase__ , ) __snake_case : Tuple = scheduler.create_state() __snake_case : List[Any] = scheduler_state __snake_case : List[str] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) __snake_case : Any = jax.random.PRNGKey(0 ) __snake_case : Any = 50 __snake_case : Tuple = jax.device_count() __snake_case : Tuple = num_samples * [prompt] __snake_case : Optional[Any] = pipeline.prepare_inputs(UpperCAmelCase__ ) # shard inputs and rng __snake_case : Tuple = replicate(UpperCAmelCase__ ) __snake_case : int = jax.random.split(UpperCAmelCase__ , UpperCAmelCase__ ) __snake_case : int = shard(UpperCAmelCase__ ) __snake_case : List[str] = pipeline(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , jit=UpperCAmelCase__ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.045_043_945) ) < 1E-3 assert np.abs((np.abs(UpperCAmelCase__ , dtype=np.floataa ).sum() - 2347693.5) ) < 5E-1 def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case : Optional[int] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) __snake_case : List[str] = jax.device_count() __snake_case : Optional[Any] = num_samples * [prompt] __snake_case : int = jax.random.split(jax.random.PRNGKey(0 ) , UpperCAmelCase__ ) __snake_case , __snake_case : Dict = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=UpperCAmelCase__ , ) __snake_case : int = replicate(UpperCAmelCase__ ) __snake_case : Optional[int] = pipeline.prepare_inputs(UpperCAmelCase__ ) __snake_case : Union[str, Any] = shard(UpperCAmelCase__ ) __snake_case : Optional[int] = pipeline(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , jit=UpperCAmelCase__ ).images assert images.shape == (num_samples, 1, 512, 512, 3) __snake_case : Optional[int] = images[2, 0, 256, 10:17, 1] # With memory efficient attention __snake_case , __snake_case : Tuple = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=UpperCAmelCase__ , use_memory_efficient_attention=UpperCAmelCase__ , ) __snake_case : str = replicate(UpperCAmelCase__ ) __snake_case : Tuple = pipeline.prepare_inputs(UpperCAmelCase__ ) __snake_case : Dict = shard(UpperCAmelCase__ ) __snake_case : Dict = pipeline(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , jit=UpperCAmelCase__ ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) __snake_case : List[str] = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
326
"""simple docstring""" import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal _a = datasets.utils.logging.get_logger(__name__) _a = ['names', 'prefix'] _a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] _a = ['encoding_errors', 'on_bad_lines'] _a = ['date_format'] @dataclass class _lowerCAmelCase ( datasets.BuilderConfig ): """simple docstring""" __UpperCAmelCase : str = "," __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[Union[int, List[int], str]] = "infer" __UpperCAmelCase : Optional[List[str]] = None __UpperCAmelCase : Optional[List[str]] = None __UpperCAmelCase : Optional[Union[int, str, List[int], List[str]]] = None __UpperCAmelCase : Optional[Union[List[int], List[str]]] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : bool = True __UpperCAmelCase : Optional[Literal["c", "python", "pyarrow"]] = None __UpperCAmelCase : Dict[Union[int, str], Callable[[Any], Any]] = None __UpperCAmelCase : Optional[list] = None __UpperCAmelCase : Optional[list] = None __UpperCAmelCase : bool = False __UpperCAmelCase : Optional[Union[int, List[int]]] = None __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Optional[Union[str, List[str]]] = None __UpperCAmelCase : bool = True __UpperCAmelCase : bool = True __UpperCAmelCase : bool = False __UpperCAmelCase : bool = True __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : str = "." __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : str = '"' __UpperCAmelCase : int = 0 __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : bool = True __UpperCAmelCase : bool = True __UpperCAmelCase : int = 0 __UpperCAmelCase : bool = True __UpperCAmelCase : bool = False __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : int = 1_0_0_0_0 __UpperCAmelCase : Optional[datasets.Features] = None __UpperCAmelCase : Optional[str] = "strict" __UpperCAmelCase : Literal["error", "warn", "skip"] = "error" __UpperCAmelCase : Optional[str] = None def _lowercase ( self : Tuple ): if self.delimiter is not None: __lowercase = self.delimiter if self.column_names is not None: __lowercase = self.column_names @property def _lowercase ( self : Union[str, Any] ): __lowercase = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig(), UpperCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class _lowerCAmelCase ( datasets.ArrowBasedBuilder ): """simple docstring""" __UpperCAmelCase : Tuple = CsvConfig def _lowercase ( self : List[str] ): return datasets.DatasetInfo(features=self.config.features ) def _lowercase ( self : List[Any], UpperCAmelCase__ : Dict ): if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) __lowercase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(UpperCAmelCase__, (str, list, tuple) ): __lowercase = data_files if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = [files] __lowercase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files} )] __lowercase = [] for split_name, files in data_files.items(): if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = [files] __lowercase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=UpperCAmelCase__, gen_kwargs={"files": files} ) ) return splits def _lowercase ( self : Dict, UpperCAmelCase__ : pa.Table ): if self.config.features is not None: __lowercase = self.config.features.arrow_schema if all(not require_storage_cast(UpperCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast __lowercase = pa.Table.from_arrays([pa_table[field.name] for field in schema], schema=UpperCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example __lowercase = table_cast(UpperCAmelCase__, UpperCAmelCase__ ) return pa_table def _lowercase ( self : Optional[Any], UpperCAmelCase__ : List[str] ): __lowercase = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str __lowercase = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(UpperCAmelCase__ ) else object for name, dtype, feature in zip(schema.names, schema.types, self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase__ ) ): __lowercase = pd.read_csv(UpperCAmelCase__, iterator=UpperCAmelCase__, dtype=UpperCAmelCase__, **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(UpperCAmelCase__ ): __lowercase = pa.Table.from_pandas(UpperCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase__ ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(UpperCAmelCase__ )}: {e}""" ) raise
17
0
from __future__ import annotations import math _snake_case = "2020.9.26" _snake_case = "xcodz-dot, cclaus, dhruvmanila" def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ): if not all(isinstance(UpperCamelCase_,(float, int) ) for val in locals().values() ): _A : Optional[Any] = f'''Input values must either be float or int: {list(locals().values() )}''' raise TypeError(UpperCamelCase_ ) _A : Dict = ((x * distance) / (z + distance)) * scale _A : Any = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ): if not isinstance(UpperCamelCase_,UpperCamelCase_ ): raise TypeError("""Axis must be a str""" ) _A : List[Any] = locals() del input_variables["axis"] if not all(isinstance(UpperCamelCase_,(float, int) ) for val in input_variables.values() ): _A : Any = ( """Input values except axis must either be float or int: """ f'''{list(input_variables.values() )}''' ) raise TypeError(UpperCamelCase_ ) _A : Optional[Any] = (angle % 360) / 450 * 180 / math.pi if axis == "z": _A : Union[str, Any] = x * math.cos(UpperCamelCase_ ) - y * math.sin(UpperCamelCase_ ) _A : Tuple = y * math.cos(UpperCamelCase_ ) + x * math.sin(UpperCamelCase_ ) _A : List[str] = z elif axis == "x": _A : int = y * math.cos(UpperCamelCase_ ) - z * math.sin(UpperCamelCase_ ) _A : Union[str, Any] = z * math.cos(UpperCamelCase_ ) + y * math.sin(UpperCamelCase_ ) _A : str = x elif axis == "y": _A : int = x * math.cos(UpperCamelCase_ ) - z * math.sin(UpperCamelCase_ ) _A : Union[str, Any] = z * math.cos(UpperCamelCase_ ) + x * math.sin(UpperCamelCase_ ) _A : List[str] = y else: raise ValueError("""not a valid axis, choose one of 'x', 'y', 'z'""" ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(f"""{convert_to_ad(1.0, 2.0, 3.0, 1_0.0, 1_0.0) = }""") print(f"""{rotate(1.0, 2.0, 3.0, "y", 9_0.0) = }""")
26
"""simple docstring""" from scipy.stats import spearmanr import datasets _a = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n' _a = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n' _a = r'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def _lowercase ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ), reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"], ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int]=False ): __lowercase = spearmanr(UpperCAmelCase__, UpperCAmelCase__ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
17
0
"""simple docstring""" import os import sys import unittest a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path a = os.path.join(git_repo_path, '''src''', '''transformers''') a = '''\n{0} = None\n''' a = '''\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n''' a = '''\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n''' class lowercase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Optional[int] ): _A = find_backend(' _import_structure[\"models.albert\"].append(\"AlbertTokenizerFast\")' ) self.assertIsNone(UpperCAmelCase__ ) _A = find_backend(' if not is_tokenizers_available():' ) self.assertEqual(UpperCAmelCase__ , 'tokenizers' ) _A = find_backend(' if not is_tensorflow_text_available():' ) self.assertEqual(UpperCAmelCase__ , 'tensorflow_text' ) _A = find_backend(' if not (is_sentencepiece_available() and is_tokenizers_available()):' ) self.assertEqual(UpperCAmelCase__ , 'sentencepiece_and_tokenizers' ) _A = find_backend( ' if not (is_sentencepiece_available() and is_tensorflow_text_available()):' ) self.assertEqual(UpperCAmelCase__ , 'sentencepiece_and_tensorflow_text' ) _A = find_backend( ' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):' ) self.assertEqual(UpperCAmelCase__ , 'sentencepiece_and_tokenizers_and_vision' ) def lowerCAmelCase_ ( self : Tuple ): _A = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , UpperCAmelCase__ ) self.assertIn('tensorflow_text' , UpperCAmelCase__ ) self.assertIn('sentencepiece_and_tokenizers' , UpperCAmelCase__ ) # Likewise, we can't assert on the exact content of a key self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertModel' , objects['tf'] ) self.assertIn('FlaxBertModel' , objects['flax'] ) self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertTokenizer' , objects['tensorflow_text'] ) self.assertIn('convert_slow_tokenizer' , objects['sentencepiece_and_tokenizers'] ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = create_dummy_object('CONSTANT' , '\'torch\'' ) self.assertEqual(UpperCAmelCase__ , '\nCONSTANT = None\n' ) _A = create_dummy_object('function' , '\'torch\'' ) self.assertEqual( UpperCAmelCase__ , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) _A = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n' _A = create_dummy_object('FakeClass' , '\'torch\'' ) self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCAmelCase_ ( self : List[Any] ): _A = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n' _A = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] , UpperCAmelCase__ )
315
"""simple docstring""" from collections.abc import Sequence def _A ( UpperCamelCase_ : Sequence[float], UpperCamelCase_ : float) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(UpperCamelCase_)) def _A ( UpperCamelCase_ : Sequence[float], UpperCamelCase_ : float) -> float: '''simple docstring''' __lowercase = 0.0 for coeff in reversed(UpperCamelCase_): __lowercase = result * x + coeff return result if __name__ == "__main__": _a = (0.0, 0.0, 5.0, 9.3, 7.0) _a = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
17
0
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase__ : List[str] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__=False ) -> Optional[int]: lowerCAmelCase = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith('''head''' ): lowerCAmelCase = '''segformer.encoder.''' + key if key.startswith('''backbone''' ): lowerCAmelCase = key.replace('''backbone''' , '''segformer.encoder''' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCAmelCase = key[key.find('''patch_embed''' ) + len('''patch_embed''' )] lowerCAmelCase = key.replace(f"patch_embed{idx}" , f"patch_embeddings.{int(UpperCamelCase_ )-1}" ) if "norm" in key: lowerCAmelCase = key.replace('''norm''' , '''layer_norm''' ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCAmelCase = key[key.find('''segformer.encoder.layer_norm''' ) + len('''segformer.encoder.layer_norm''' )] lowerCAmelCase = key.replace(f"layer_norm{idx}" , f"layer_norm.{int(UpperCamelCase_ )-1}" ) if "layer_norm1" in key: lowerCAmelCase = key.replace('''layer_norm1''' , '''layer_norm_1''' ) if "layer_norm2" in key: lowerCAmelCase = key.replace('''layer_norm2''' , '''layer_norm_2''' ) if "block" in key: # replace for example block1 by block.0 lowerCAmelCase = key[key.find('''block''' ) + len('''block''' )] lowerCAmelCase = key.replace(f"block{idx}" , f"block.{int(UpperCamelCase_ )-1}" ) if "attn.q" in key: lowerCAmelCase = key.replace('''attn.q''' , '''attention.self.query''' ) if "attn.proj" in key: lowerCAmelCase = key.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in key: lowerCAmelCase = key.replace('''attn''' , '''attention.self''' ) if "fc1" in key: lowerCAmelCase = key.replace('''fc1''' , '''dense1''' ) if "fc2" in key: lowerCAmelCase = key.replace('''fc2''' , '''dense2''' ) if "linear_pred" in key: lowerCAmelCase = key.replace('''linear_pred''' , '''classifier''' ) if "linear_fuse" in key: lowerCAmelCase = key.replace('''linear_fuse.conv''' , '''linear_fuse''' ) lowerCAmelCase = key.replace('''linear_fuse.bn''' , '''batch_norm''' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCAmelCase = key[key.find('''linear_c''' ) + len('''linear_c''' )] lowerCAmelCase = key.replace(f"linear_c{idx}" , f"linear_c.{int(UpperCamelCase_ )-1}" ) if key.startswith('''head''' ): lowerCAmelCase = key.replace('''head''' , '''classifier''' ) lowerCAmelCase = value return new_state_dict def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> Dict: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCAmelCase = state_dict.pop(f"segformer.encoder.block.{i}.{j}.attention.self.kv.weight" ) lowerCAmelCase = state_dict.pop(f"segformer.encoder.block.{i}.{j}.attention.self.kv.bias" ) # next, add keys and values (in that order) to the state dict lowerCAmelCase = kv_weight[ : config.hidden_sizes[i], : ] lowerCAmelCase = kv_bias[: config.hidden_sizes[i]] lowerCAmelCase = kv_weight[ config.hidden_sizes[i] :, : ] lowerCAmelCase = kv_bias[ config.hidden_sizes[i] : ] def SCREAMING_SNAKE_CASE_ ( ) -> List[Any]: lowerCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ) return image @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> List[Any]: lowerCAmelCase = SegformerConfig() lowerCAmelCase = False # set attributes based on model_name lowerCAmelCase = '''huggingface/label-files''' if "segformer" in model_name: lowerCAmelCase = model_name[len('''segformer.''' ) : len('''segformer.''' ) + 2] if "ade" in model_name: lowerCAmelCase = 1_5_0 lowerCAmelCase = '''ade20k-id2label.json''' lowerCAmelCase = (1, 1_5_0, 1_2_8, 1_2_8) elif "city" in model_name: lowerCAmelCase = 1_9 lowerCAmelCase = '''cityscapes-id2label.json''' lowerCAmelCase = (1, 1_9, 1_2_8, 1_2_8) else: raise ValueError(f"Model {model_name} not supported" ) elif "mit" in model_name: lowerCAmelCase = True lowerCAmelCase = model_name[4:6] lowerCAmelCase = 1_0_0_0 lowerCAmelCase = '''imagenet-1k-id2label.json''' lowerCAmelCase = (1, 1_0_0_0) else: raise ValueError(f"Model {model_name} not supported" ) # set config attributes lowerCAmelCase = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ , repo_type='''dataset''' ) , '''r''' ) ) lowerCAmelCase = {int(UpperCamelCase_ ): v for k, v in idalabel.items()} lowerCAmelCase = idalabel lowerCAmelCase = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": lowerCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2] lowerCAmelCase = 2_5_6 elif size == "b2": lowerCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2] lowerCAmelCase = 7_6_8 lowerCAmelCase = [3, 4, 6, 3] elif size == "b3": lowerCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2] lowerCAmelCase = 7_6_8 lowerCAmelCase = [3, 4, 1_8, 3] elif size == "b4": lowerCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2] lowerCAmelCase = 7_6_8 lowerCAmelCase = [3, 8, 2_7, 3] elif size == "b5": lowerCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2] lowerCAmelCase = 7_6_8 lowerCAmelCase = [3, 6, 4_0, 3] else: raise ValueError(f"Size {size} not supported" ) # load image processor (only resize + normalize) lowerCAmelCase = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2) , keep_ratio=UpperCamelCase_ , align=UpperCamelCase_ , do_random_crop=UpperCamelCase_ ) # prepare image lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=UpperCamelCase_ , return_tensors='''pt''' ).pixel_values logger.info(f"Converting model {model_name}..." ) # load original state dict if encoder_only: lowerCAmelCase = torch.load(UpperCamelCase_ , map_location=torch.device('''cpu''' ) ) else: lowerCAmelCase = torch.load(UpperCamelCase_ , map_location=torch.device('''cpu''' ) )['''state_dict'''] # rename keys lowerCAmelCase = rename_keys(UpperCamelCase_ , encoder_only=UpperCamelCase_ ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(UpperCamelCase_ , UpperCamelCase_ ) # create HuggingFace model and load state dict if encoder_only: lowerCAmelCase = False lowerCAmelCase = SegformerForImageClassification(UpperCamelCase_ ) else: lowerCAmelCase = SegformerForSemanticSegmentation(UpperCamelCase_ ) model.load_state_dict(UpperCamelCase_ ) model.eval() # forward pass lowerCAmelCase = model(UpperCamelCase_ ) lowerCAmelCase = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": lowerCAmelCase = torch.tensor( [ [[-4.63_10, -5.52_32, -6.23_56], [-5.19_21, -6.14_44, -6.59_96], [-5.44_24, -6.27_90, -6.75_74]], [[-12.13_91, -13.31_22, -13.95_54], [-12.87_32, -13.93_52, -14.35_63], [-12.94_38, -13.82_26, -14.25_13]], [[-12.51_34, -13.46_86, -14.49_15], [-12.86_69, -14.43_43, -14.77_58], [-13.25_23, -14.58_19, -15.06_94]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": lowerCAmelCase = torch.tensor( [ [[-7.58_20, -8.72_31, -8.32_15], [-8.06_00, -10.35_29, -10.03_04], [-7.52_08, -9.41_03, -9.62_39]], [[-12.69_18, -13.89_94, -13.71_37], [-13.31_96, -15.75_23, -15.47_89], [-12.93_43, -14.87_57, -14.96_89]], [[-11.19_11, -11.94_21, -11.32_43], [-11.33_42, -13.68_39, -13.35_81], [-10.39_09, -12.18_32, -12.48_58]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": lowerCAmelCase = torch.tensor( [ [[-11.81_73, -14.38_50, -16.31_28], [-14.56_48, -16.58_04, -18.65_68], [-14.72_23, -15.73_87, -18.42_18]], [[-15.72_90, -17.91_71, -19.44_23], [-18.31_05, -19.94_48, -21.46_61], [-17.92_96, -18.64_97, -20.79_10]], [[-15.07_83, -17.03_36, -18.27_89], [-16.87_71, -18.68_70, -20.16_12], [-16.24_54, -17.14_26, -19.50_55]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": lowerCAmelCase = torch.tensor( [ [[-9.08_78, -10.20_81, -10.18_91], [-9.31_44, -10.79_41, -10.98_43], [-9.22_94, -10.38_55, -10.57_04]], [[-12.23_16, -13.90_68, -13.61_02], [-12.91_61, -14.37_02, -14.32_35], [-12.52_33, -13.71_74, -13.79_32]], [[-14.62_75, -15.24_90, -14.97_27], [-14.34_00, -15.96_87, -16.28_27], [-14.14_84, -15.40_33, -15.89_37]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": lowerCAmelCase = torch.tensor( [ [[-12.31_44, -13.24_47, -14.08_02], [-13.36_14, -14.58_16, -15.61_17], [-13.33_40, -14.44_33, -16.22_19]], [[-19.27_81, -20.41_28, -20.75_06], [-20.61_53, -21.65_66, -22.09_98], [-19.98_00, -21.04_30, -22.14_94]], [[-18.87_39, -19.78_04, -21.18_34], [-20.12_33, -21.67_65, -23.29_44], [-20.03_15, -21.26_41, -23.69_44]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": lowerCAmelCase = torch.tensor( [ [[-9.55_24, -12.08_35, -11.73_48], [-10.52_29, -13.64_46, -14.56_62], [-9.58_42, -12.88_51, -13.94_14]], [[-15.34_32, -17.53_23, -17.08_18], [-16.33_30, -18.92_55, -19.21_01], [-15.13_40, -17.78_48, -18.39_71]], [[-12.60_72, -14.94_86, -14.66_31], [-13.76_29, -17.09_07, -17.77_45], [-12.78_99, -16.16_95, -17.16_71]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": lowerCAmelCase = torch.tensor( [ [[-11.92_95, -13.40_57, -14.81_06], [-13.34_31, -14.81_79, -15.37_81], [-14.28_36, -15.59_42, -16.15_88]], [[-11.49_06, -12.80_67, -13.65_64], [-13.11_89, -14.05_00, -14.15_43], [-13.87_48, -14.51_36, -14.87_89]], [[0.53_74, 0.10_67, -0.47_42], [0.11_41, -0.22_55, -0.70_99], [-0.30_00, -0.59_24, -1.31_05]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": lowerCAmelCase = torch.tensor( [ [[-7.82_17, -9.87_67, -10.17_17], [-9.44_38, -10.90_58, -11.40_47], [-9.79_39, -12.34_95, -12.10_79]], [[-7.15_14, -9.53_36, -10.08_60], [-9.77_76, -11.68_22, -11.84_39], [-10.14_11, -12.76_55, -12.89_72]], [[0.30_21, 0.08_05, -0.23_10], [-0.03_28, -0.16_05, -0.27_14], [-0.14_08, -0.54_77, -0.69_76]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": lowerCAmelCase = torch.tensor( [ [ [-1.13_72E01, -1.27_87E01, -1.34_77E01], [-1.25_36E01, -1.41_94E01, -1.44_09E01], [-1.32_17E01, -1.48_88E01, -1.53_27E01], ], [ [-1.47_91E01, -1.71_22E01, -1.82_77E01], [-1.71_63E01, -1.91_92E01, -1.95_33E01], [-1.78_97E01, -1.99_91E01, -2.03_15E01], ], [ [7.67_23E-01, 4.19_21E-01, -7.78_78E-02], [4.77_72E-01, 9.55_57E-03, -2.80_82E-01], [3.60_32E-01, -2.48_26E-01, -5.11_68E-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": lowerCAmelCase = torch.tensor( [ [[-9.49_59, -11.30_87, -11.74_79], [-11.00_25, -12.65_40, -12.33_19], [-11.40_64, -13.04_87, -12.99_05]], [[-9.89_05, -11.30_84, -12.08_54], [-11.17_26, -12.76_98, -12.95_83], [-11.59_85, -13.32_78, -14.17_74]], [[0.22_13, 0.01_92, -0.24_66], [-0.17_31, -0.42_13, -0.48_74], [-0.31_26, -0.65_41, -1.13_89]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": lowerCAmelCase = torch.tensor( [ [[-13.57_48, -13.91_11, -12.65_00], [-14.35_00, -15.36_83, -14.23_28], [-14.75_32, -16.04_24, -15.60_87]], [[-17.16_51, -15.87_25, -12.96_53], [-17.25_80, -17.37_18, -14.82_23], [-16.60_58, -16.87_83, -16.74_52]], [[-3.64_56, -3.02_09, -1.42_03], [-3.07_97, -3.19_59, -2.00_00], [-1.87_57, -1.92_17, -1.69_97]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": lowerCAmelCase = torch.tensor( [ [[-16.09_76, -16.48_56, -17.39_62], [-16.62_34, -19.03_42, -19.76_85], [-16.09_00, -18.06_61, -19.11_80]], [[-18.47_50, -18.84_88, -19.50_74], [-19.40_30, -22.15_70, -22.59_77], [-19.11_91, -20.84_86, -22.37_83]], [[-4.51_78, -5.50_37, -6.51_09], [-5.08_84, -7.21_74, -8.03_34], [-4.41_56, -5.81_17, -7.29_70]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": lowerCAmelCase = torch.tensor( [ [[-14.20_81, -14.47_32, -14.19_77], [-14.58_67, -16.44_23, -16.63_56], [-13.44_41, -14.96_85, -16.86_96]], [[-14.45_76, -14.70_73, -15.04_51], [-15.08_16, -17.62_37, -17.98_73], [-14.42_13, -16.01_99, -18.59_92]], [[-4.73_49, -4.95_88, -5.09_66], [-4.32_10, -6.93_25, -7.25_91], [-3.43_12, -4.74_84, -7.19_17]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": lowerCAmelCase = torch.tensor( [ [[-11.77_37, -11.95_26, -11.32_73], [-13.66_92, -14.45_74, -13.88_78], [-13.89_37, -14.69_24, -15.93_45]], [[-14.67_06, -14.53_30, -14.13_06], [-16.15_02, -16.81_80, -16.42_69], [-16.83_38, -17.89_39, -20.17_46]], [[1.04_91, 0.82_89, 1.03_10], [1.10_44, 0.52_19, 0.80_55], [1.08_99, 0.69_26, 0.55_90]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": lowerCAmelCase = torch.tensor( [ [[-12.56_41, -13.47_77, -13.06_84], [-13.95_87, -15.89_83, -16.65_57], [-13.31_09, -15.73_50, -16.31_41]], [[-14.70_74, -15.43_52, -14.59_44], [-16.63_53, -18.16_63, -18.61_20], [-15.17_02, -18.03_29, -18.15_47]], [[-1.79_90, -2.09_51, -1.77_84], [-2.63_97, -3.82_45, -3.96_86], [-1.52_64, -2.81_26, -2.93_16]], ] ) else: lowerCAmelCase = logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , UpperCamelCase_ , atol=1E-2 ) # finally, save model and image processor logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ ) model.save_pretrained(UpperCamelCase_ ) image_processor.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": lowercase__ : int = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''segformer.b0.512x512.ade.160k''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) lowercase__ : Optional[Any] = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
338
"""simple docstring""" import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class _lowerCAmelCase ( pl.LightningModule ): """simple docstring""" def __init__( self : Optional[Any], UpperCAmelCase__ : str ): super().__init__() __lowercase = model __lowercase = 2 __lowercase = nn.Linear(self.model.config.hidden_size, self.num_labels ) def _lowercase ( self : Optional[int] ): pass def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str, UpperCamelCase_ : str) -> str: '''simple docstring''' __lowercase = LongformerModel.from_pretrained(UpperCamelCase_) __lowercase = LightningModel(UpperCamelCase_) __lowercase = torch.load(UpperCamelCase_, map_location=torch.device("cpu")) lightning_model.load_state_dict(ckpt["state_dict"]) # init longformer question answering model __lowercase = LongformerForQuestionAnswering.from_pretrained(UpperCamelCase_) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict()) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict()) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(UpperCamelCase_) print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""") if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _a = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
17
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class snake_case : """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple =XGLMConfig SCREAMING_SNAKE_CASE_ : Optional[Any] ={} SCREAMING_SNAKE_CASE_ : Union[str, Any] ="gelu" def __init__( self : Optional[int] , __A : List[str] , __A : Optional[int]=1_4 , __A : str=7 , __A : Optional[Any]=True , __A : List[Any]=True , __A : int=True , __A : List[str]=9_9 , __A : Union[str, Any]=3_2 , __A : Union[str, Any]=2 , __A : Union[str, Any]=4 , __A : Tuple=3_7 , __A : List[Any]="gelu" , __A : List[str]=0.1 , __A : Optional[int]=0.1 , __A : Tuple=5_1_2 , __A : Optional[Any]=0.02 , ): __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = d_model __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = ffn_dim __UpperCamelCase = activation_function __UpperCamelCase = activation_dropout __UpperCamelCase = attention_dropout __UpperCamelCase = max_position_embeddings __UpperCamelCase = initializer_range __UpperCamelCase = None __UpperCamelCase = 0 __UpperCamelCase = 2 __UpperCamelCase = 1 def _lowerCamelCase ( self : Union[str, Any] ): return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def _lowerCamelCase ( self : Tuple ): __UpperCamelCase = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = self.get_config() __UpperCamelCase = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowerCamelCase ( self : List[Any] ): return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=UpperCAmelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=UpperCAmelCase__ , ) def _lowerCamelCase ( self : Dict ): __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) = config_and_inputs __UpperCamelCase = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class snake_case ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] =(TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () SCREAMING_SNAKE_CASE_ : List[str] =(TFXGLMForCausalLM,) if is_tf_available() else () SCREAMING_SNAKE_CASE_ : Any =( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ : Optional[Any] =False SCREAMING_SNAKE_CASE_ : List[str] =False SCREAMING_SNAKE_CASE_ : int =False def _lowerCamelCase ( self : Optional[Any] ): __UpperCamelCase = TFXGLMModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=UpperCAmelCase__ , n_embd=3_7 ) def _lowerCamelCase ( self : Any ): self.config_tester.run_common_tests() @slow def _lowerCamelCase ( self : List[str] ): for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = TFXGLMModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def _lowerCamelCase ( self : int ): super().test_resize_token_embeddings() @require_tf class snake_case ( unittest.TestCase ): """simple docstring""" @slow def _lowerCamelCase ( self : Dict , __A : Optional[int]=True ): __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __UpperCamelCase = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on __UpperCamelCase = model.generate(UpperCAmelCase__ , do_sample=UpperCAmelCase__ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , UpperCAmelCase__ ) @slow def _lowerCamelCase ( self : List[Any] ): __UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) __UpperCamelCase = tokenizer('Today is a nice day and' , return_tensors='tf' ) __UpperCamelCase = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): __UpperCamelCase = model.generate(UpperCAmelCase__ , do_sample=UpperCAmelCase__ , seed=[7, 0] ) __UpperCamelCase = tokenizer.decode(output_ids[0] , skip_special_tokens=UpperCAmelCase__ ) __UpperCamelCase = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def _lowerCamelCase ( self : Dict ): __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = 'left' # use different length sentences to test batching __UpperCamelCase = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] __UpperCamelCase = tokenizer(UpperCAmelCase__ , return_tensors='tf' , padding=UpperCAmelCase__ ) __UpperCamelCase = inputs['input_ids'] __UpperCamelCase = model.generate(input_ids=UpperCAmelCase__ , attention_mask=inputs['attention_mask'] , max_new_tokens=1_2 ) __UpperCamelCase = tokenizer(sentences[0] , return_tensors='tf' ).input_ids __UpperCamelCase = model.generate(input_ids=UpperCAmelCase__ , max_new_tokens=1_2 ) __UpperCamelCase = tokenizer(sentences[1] , return_tensors='tf' ).input_ids __UpperCamelCase = model.generate(input_ids=UpperCAmelCase__ , max_new_tokens=1_2 ) __UpperCamelCase = tokenizer.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ ) __UpperCamelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=UpperCAmelCase__ ) __UpperCamelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=UpperCAmelCase__ ) __UpperCamelCase = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , [non_padded_sentence, padded_sentence] )
53
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" ,"False" ) ) is not True ,reason="Skipping test because should only be run when releasing minor transformers version" ,) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Optional[int] ): if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split(), encoding="utf-8", check=UpperCAmelCase__, ) assert hasattr(self, "env" ) def _lowercase ( self : str, UpperCAmelCase__ : List[Any] ): # configuration for running training on smdistributed Model Parallel __lowercase = { "enabled": True, "processes_per_host": 8, } __lowercase = { "enabled": True, "parameters": { "microbatches": 4, "placement_strategy": "spread", "pipeline": "interleaved", "optimize": "speed", "partitions": 4, "ddp": True, }, } __lowercase = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options} __lowercase = "trainer" if self.script == "run_glue.py" else "smtrainer" # creates estimator return HuggingFace( entry_point=self.script, source_dir=self.env.test_path, role=self.env.role, image_uri=self.env.image_uri, base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""", instance_count=UpperCAmelCase__, instance_type=self.instance_type, debugger_hook_config=UpperCAmelCase__, hyperparameters={ **self.env.hyperparameters, "model_name_or_path": self.model_name_or_path, "max_steps": 5_0_0, }, metric_definitions=self.env.metric_definitions, distribution=UpperCAmelCase__, py_version="py36", ) def _lowercase ( self : Tuple, UpperCAmelCase__ : int ): TrainingJobAnalytics(UpperCAmelCase__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def _lowercase ( self : str, UpperCAmelCase__ : Union[str, Any] ): # create estimator __lowercase = self.create_estimator(UpperCAmelCase__ ) # run training estimator.fit() # result dataframe __lowercase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __lowercase = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) __lowercase = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __lowercase = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds", 9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""", "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss}, UpperCAmelCase__ )
17
0
import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def UpperCamelCase ( __lowerCamelCase : Tuple=None ): if subparsers is not None: snake_case : Tuple = subparsers.add_parser("env" ) else: snake_case : List[Any] = argparse.ArgumentParser("Accelerate env command" ) parser.add_argument( "--config_file" , default=UpperCamelCase_ , help="The config file to use for the default values in the launching script." ) if subparsers is not None: parser.set_defaults(func=UpperCamelCase_ ) return parser def UpperCamelCase ( __lowerCamelCase : Union[str, Any] ): snake_case : str = torch.__version__ snake_case : Union[str, Any] = torch.cuda.is_available() snake_case : Any = is_xpu_available() snake_case : int = is_npu_available() snake_case : str = "Not found" # Get the default from the config file. if args.config_file is not None or os.path.isfile(UpperCamelCase_ ): snake_case : Any = load_config_from_file(args.config_file ).to_dict() snake_case : Tuple = { "`Accelerate` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "Numpy version": np.__version__, "PyTorch version (GPU?)": f"""{pt_version} ({pt_cuda_available})""", "PyTorch XPU available": str(UpperCamelCase_ ), "PyTorch NPU available": str(UpperCamelCase_ ), "System RAM": f"""{psutil.virtual_memory().total / 1024 ** 3:.2f} GB""", } if pt_cuda_available: snake_case : int = torch.cuda.get_device_name() print("\nCopy-and-paste the text below in your GitHub issue\n" ) print("\n".join([f"""- {prop}: {val}""" for prop, val in info.items()] ) ) print("- `Accelerate` default config:" if args.config_file is None else "- `Accelerate` config passed:" ) snake_case : Tuple = ( "\n".join([f"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else f"""\t{accelerate_config}""" ) print(UpperCamelCase_ ) snake_case : Union[str, Any] = accelerate_config return info def UpperCamelCase ( ): snake_case : Tuple = env_command_parser() snake_case : List[Any] = parser.parse_args() env_command(UpperCamelCase_ ) return 0 if __name__ == "__main__": raise SystemExit(main())
59
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : Tuple = "openai/whisper-base" __UpperCAmelCase : Union[str, Any] = ( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) __UpperCAmelCase : List[str] = "transcriber" __UpperCAmelCase : Optional[Any] = WhisperProcessor __UpperCAmelCase : str = WhisperForConditionalGeneration __UpperCAmelCase : List[str] = ["audio"] __UpperCAmelCase : Tuple = ["text"] def _lowercase ( self : str, UpperCAmelCase__ : int ): return self.pre_processor(UpperCAmelCase__, return_tensors="pt" ).input_features def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Any] ): return self.model.generate(inputs=UpperCAmelCase__ ) def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[int] ): return self.pre_processor.batch_decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ )[0]
17
0
def A_ ( _UpperCAmelCase ): if not numbers: return 0 if not isinstance(UpperCamelCase_ , (list, tuple) ) or not all( isinstance(UpperCamelCase_ , UpperCamelCase_ ) for number in numbers ): raise ValueError("numbers must be an iterable of integers" ) SCREAMING_SNAKE_CASE_: int = numbers[0] for i in range(1 , len(UpperCamelCase_ ) ): # update the maximum and minimum subarray products SCREAMING_SNAKE_CASE_: Dict = numbers[i] if number < 0: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = min_till_now, max_till_now SCREAMING_SNAKE_CASE_: List[Any] = max(UpperCamelCase_ , max_till_now * number ) SCREAMING_SNAKE_CASE_: Optional[int] = min(UpperCamelCase_ , min_till_now * number ) # update the maximum product found till now SCREAMING_SNAKE_CASE_: List[str] = max(UpperCamelCase_ , UpperCamelCase_ ) return max_prod
13
"""simple docstring""" import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str]) -> Optional[int]: '''simple docstring''' if isinstance(UpperCamelCase_, torch.Tensor): return image elif isinstance(UpperCamelCase_, PIL.Image.Image): __lowercase = [image] if isinstance(image[0], PIL.Image.Image): __lowercase = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image] __lowercase = np.concatenate(UpperCamelCase_, axis=0) __lowercase = np.array(UpperCamelCase_).astype(np.floataa) / 255.0 __lowercase = image.transpose(0, 3, 1, 2) __lowercase = 2.0 * image - 1.0 __lowercase = torch.from_numpy(UpperCamelCase_) elif isinstance(image[0], torch.Tensor): __lowercase = torch.cat(UpperCamelCase_, dim=0) return image def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : str, UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[Any]=0.9_995) -> int: '''simple docstring''' if not isinstance(UpperCamelCase_, np.ndarray): __lowercase = True __lowercase = va.device __lowercase = va.cpu().numpy() __lowercase = va.cpu().numpy() __lowercase = np.sum(va * va / (np.linalg.norm(UpperCamelCase_) * np.linalg.norm(UpperCamelCase_))) if np.abs(UpperCamelCase_) > DOT_THRESHOLD: __lowercase = (1 - t) * va + t * va else: __lowercase = np.arccos(UpperCamelCase_) __lowercase = np.sin(UpperCamelCase_) __lowercase = theta_a * t __lowercase = np.sin(UpperCamelCase_) __lowercase = np.sin(theta_a - theta_t) / sin_theta_a __lowercase = sin_theta_t / sin_theta_a __lowercase = sa * va + sa * va if inputs_are_torch: __lowercase = torch.from_numpy(UpperCamelCase_).to(UpperCamelCase_) return va def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Union[str, Any]) -> int: '''simple docstring''' __lowercase = F.normalize(UpperCamelCase_, dim=-1) __lowercase = F.normalize(UpperCamelCase_, dim=-1) return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2) def _A ( UpperCamelCase_ : Optional[int], UpperCamelCase_ : str) -> Optional[int]: '''simple docstring''' for param in model.parameters(): __lowercase = value class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : Dict, UpperCAmelCase__ : AutoencoderKL, UpperCAmelCase__ : CLIPTextModel, UpperCAmelCase__ : CLIPModel, UpperCAmelCase__ : CLIPTokenizer, UpperCAmelCase__ : UNetaDConditionModel, UpperCAmelCase__ : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler], UpperCAmelCase__ : CLIPFeatureExtractor, UpperCAmelCase__ : Union[str, Any]=None, UpperCAmelCase__ : List[str]=None, UpperCAmelCase__ : Any=None, ): super().__init__() self.register_modules( vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, clip_model=UpperCAmelCase__, tokenizer=UpperCAmelCase__, unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, feature_extractor=UpperCAmelCase__, coca_model=UpperCAmelCase__, coca_tokenizer=UpperCAmelCase__, coca_transform=UpperCAmelCase__, ) __lowercase = ( feature_extractor.size if isinstance(feature_extractor.size, UpperCAmelCase__ ) else feature_extractor.size["shortest_edge"] ) __lowercase = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std ) set_requires_grad(self.text_encoder, UpperCAmelCase__ ) set_requires_grad(self.clip_model, UpperCAmelCase__ ) def _lowercase ( self : Tuple, UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase__ ) def _lowercase ( self : int ): self.enable_attention_slicing(UpperCAmelCase__ ) def _lowercase ( self : str ): set_requires_grad(self.vae, UpperCAmelCase__ ) def _lowercase ( self : Any ): set_requires_grad(self.vae, UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ): set_requires_grad(self.unet, UpperCAmelCase__ ) def _lowercase ( self : Any ): set_requires_grad(self.unet, UpperCAmelCase__ ) def _lowercase ( self : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : Optional[Any] ): # get the original timestep using init_timestep __lowercase = min(int(num_inference_steps * strength ), UpperCAmelCase__ ) __lowercase = max(num_inference_steps - init_timestep, 0 ) __lowercase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowercase ( self : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : int=None ): if not isinstance(UpperCAmelCase__, torch.Tensor ): raise ValueError(F"""`image` has to be of type `torch.Tensor` but is {type(UpperCAmelCase__ )}""" ) __lowercase = image.to(device=UpperCAmelCase__, dtype=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(UpperCAmelCase__ ) ] __lowercase = torch.cat(UpperCAmelCase__, dim=0 ) else: __lowercase = self.vae.encode(UpperCAmelCase__ ).latent_dist.sample(UpperCAmelCase__ ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowercase = 0.18_215 * init_latents __lowercase = init_latents.repeat_interleave(UpperCAmelCase__, dim=0 ) __lowercase = randn_tensor(init_latents.shape, generator=UpperCAmelCase__, device=UpperCAmelCase__, dtype=UpperCAmelCase__ ) # get latents __lowercase = self.scheduler.add_noise(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = init_latents return latents def _lowercase ( self : Optional[int], UpperCAmelCase__ : Dict ): __lowercase = self.coca_transform(UpperCAmelCase__ ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): __lowercase = self.coca_model.generate(transformed_image.to(device=self.device, dtype=self.coca_model.dtype ) ) __lowercase = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("<end_of_text>" )[0].replace("<start_of_text>", "" ).rstrip(" .," ) def _lowercase ( self : Tuple, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Tuple ): __lowercase = self.feature_extractor.preprocess(UpperCAmelCase__ ) __lowercase = torch.from_numpy(clip_image_input["pixel_values"][0] ).unsqueeze(0 ).to(self.device ).half() __lowercase = self.clip_model.get_image_features(UpperCAmelCase__ ) __lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=UpperCAmelCase__ ) __lowercase = image_embeddings_clip.repeat_interleave(UpperCAmelCase__, dim=0 ) return image_embeddings_clip @torch.enable_grad() def _lowercase ( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[int], ): __lowercase = latents.detach().requires_grad_() __lowercase = self.scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ ) # predict the noise residual __lowercase = self.unet(UpperCAmelCase__, UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__ ).sample if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): __lowercase = self.scheduler.alphas_cumprod[timestep] __lowercase = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowercase = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 __lowercase = torch.sqrt(UpperCAmelCase__ ) __lowercase = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler, UpperCAmelCase__ ): __lowercase = self.scheduler.sigmas[index] __lowercase = latents - sigma * noise_pred else: raise ValueError(F"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowercase = 1 / 0.18_215 * sample __lowercase = self.vae.decode(UpperCAmelCase__ ).sample __lowercase = (image / 2 + 0.5).clamp(0, 1 ) __lowercase = transforms.Resize(self.feature_extractor_size )(UpperCAmelCase__ ) __lowercase = self.normalize(UpperCAmelCase__ ).to(latents.dtype ) __lowercase = self.clip_model.get_image_features(UpperCAmelCase__ ) __lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=UpperCAmelCase__ ) __lowercase = spherical_dist_loss(UpperCAmelCase__, UpperCAmelCase__ ).mean() * clip_guidance_scale __lowercase = -torch.autograd.grad(UpperCAmelCase__, UpperCAmelCase__ )[0] if isinstance(self.scheduler, UpperCAmelCase__ ): __lowercase = latents.detach() + grads * (sigma**2) __lowercase = noise_pred_original else: __lowercase = noise_pred_original - torch.sqrt(UpperCAmelCase__ ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : str, UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image], UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image], UpperCAmelCase__ : Optional[str] = None, UpperCAmelCase__ : Optional[str] = None, UpperCAmelCase__ : Optional[int] = 5_1_2, UpperCAmelCase__ : Optional[int] = 5_1_2, UpperCAmelCase__ : float = 0.6, UpperCAmelCase__ : Optional[int] = 5_0, UpperCAmelCase__ : Optional[float] = 7.5, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[float] = 1_0_0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : float = 0.8, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, ): if isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and len(UpperCAmelCase__ ) != batch_size: raise ValueError(F"""You have passed {batch_size} batch_size, but only {len(UpperCAmelCase__ )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(UpperCAmelCase__, torch.Generator ) and batch_size > 1: __lowercase = [generator] + [None] * (batch_size - 1) __lowercase = [ ("model", self.coca_model is None), ("tokenizer", self.coca_tokenizer is None), ("transform", self.coca_transform is None), ] __lowercase = [x[0] for x in coca_is_none if x[1]] __lowercase = ", ".join(UpperCAmelCase__ ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(UpperCAmelCase__ ): raise ValueError( F"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" F"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) __lowercase = self.get_image_description(UpperCAmelCase__ ) if style_prompt is None: if len(UpperCAmelCase__ ): raise ValueError( F"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" F""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) __lowercase = self.get_image_description(UpperCAmelCase__ ) # get prompt text embeddings for content and style __lowercase = self.tokenizer( UpperCAmelCase__, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=UpperCAmelCase__, return_tensors="pt", ) __lowercase = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] __lowercase = self.tokenizer( UpperCAmelCase__, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=UpperCAmelCase__, return_tensors="pt", ) __lowercase = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] __lowercase = slerp(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # duplicate text embeddings for each generation per prompt __lowercase = text_embeddings.repeat_interleave(UpperCAmelCase__, dim=0 ) # set timesteps __lowercase = "offset" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) __lowercase = {} if accepts_offset: __lowercase = 1 self.scheduler.set_timesteps(UpperCAmelCase__, **UpperCAmelCase__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) __lowercase ,__lowercase = self.get_timesteps(UpperCAmelCase__, UpperCAmelCase__, self.device ) __lowercase = timesteps[:1].repeat(UpperCAmelCase__ ) # Preprocess image __lowercase = preprocess(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = self.prepare_latents( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, text_embeddings.dtype, self.device, UpperCAmelCase__ ) __lowercase = preprocess(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = self.prepare_latents( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, text_embeddings.dtype, self.device, UpperCAmelCase__ ) __lowercase = slerp(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) if clip_guidance_scale > 0: __lowercase = self.get_clip_image_embeddings(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = self.get_clip_image_embeddings(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = slerp( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __lowercase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __lowercase = content_text_input.input_ids.shape[-1] __lowercase = self.tokenizer([""], padding="max_length", max_length=UpperCAmelCase__, return_tensors="pt" ) __lowercase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt __lowercase = uncond_embeddings.repeat_interleave(UpperCAmelCase__, dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowercase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __lowercase = (batch_size, self.unet.config.in_channels, height // 8, width // 8) __lowercase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps __lowercase = torch.randn(UpperCAmelCase__, generator=UpperCAmelCase__, device="cpu", dtype=UpperCAmelCase__ ).to( self.device ) else: __lowercase = torch.randn(UpperCAmelCase__, generator=UpperCAmelCase__, device=self.device, dtype=UpperCAmelCase__ ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) __lowercase = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __lowercase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __lowercase = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __lowercase = {} if accepts_eta: __lowercase = eta # check if the scheduler accepts generator __lowercase = "generator" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: __lowercase = generator with self.progress_bar(total=UpperCAmelCase__ ): for i, t in enumerate(UpperCAmelCase__ ): # expand the latents if we are doing classifier free guidance __lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowercase = self.scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ ) # predict the noise residual __lowercase = self.unet(UpperCAmelCase__, UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__ ).sample # perform classifier free guidance if do_classifier_free_guidance: __lowercase ,__lowercase = noise_pred.chunk(2 ) __lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: __lowercase = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) __lowercase ,__lowercase = self.cond_fn( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) # compute the previous noisy sample x_t -> x_t-1 __lowercase = self.scheduler.step(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, **UpperCAmelCase__ ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowercase = 1 / 0.18_215 * latents __lowercase = self.vae.decode(UpperCAmelCase__ ).sample __lowercase = (image / 2 + 0.5).clamp(0, 1 ) __lowercase = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": __lowercase = self.numpy_to_pil(UpperCAmelCase__ ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=UpperCAmelCase__, nsfw_content_detected=UpperCAmelCase__ )
17
0
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class __A ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =logging.get_logger() # the current default level is logging.WARNING __UpperCamelCase : Optional[int] =logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(UpperCAmelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =logging.get_verbosity() __UpperCamelCase : Any =logging.get_logger('transformers.models.bart.tokenization_bart' ) __UpperCamelCase : Dict ='Testing 1, 2, 3' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(UpperCAmelCase__ ) as cl: logger.warning(UpperCAmelCase__ ) self.assertEqual(cl.out , msg + '\n' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(UpperCAmelCase__ ) as cl: logger.warning(UpperCAmelCase__ ) self.assertEqual(cl.out , '' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(UpperCAmelCase__ ) as cl: logger.warning(UpperCAmelCase__ ) self.assertEqual(cl.out , msg + '\n' ) # restore to the original level logging.set_verbosity(UpperCAmelCase__ ) @mockenv(TRANSFORMERS_VERBOSITY='error' ) def __lowercase ( self ): """simple docstring""" transformers.utils.logging._reset_library_root_logger() # this action activates the env var __UpperCamelCase : str =logging.get_logger('transformers.models.bart.tokenization_bart' ) __UpperCamelCase : Optional[int] =os.getenv('TRANSFORMERS_VERBOSITY' , UpperCAmelCase__ ) __UpperCamelCase : List[str] =logging.log_levels[env_level_str] __UpperCamelCase : Dict =logging.get_verbosity() self.assertEqual( UpperCAmelCase__ , UpperCAmelCase__ , f'TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}' , ) # restore to the original level __UpperCamelCase : Dict ='' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='super-error' ) def __lowercase ( self ): """simple docstring""" transformers.utils.logging._reset_library_root_logger() __UpperCamelCase : Tuple =logging.logging.getLogger() with CaptureLogger(UpperCAmelCase__ ) as cl: # this action activates the env var logging.get_logger('transformers.models.bart.tokenization_bart' ) self.assertIn('Unknown option TRANSFORMERS_VERBOSITY=super-error' , cl.out ) # no need to restore as nothing was changed def __lowercase ( self ): """simple docstring""" transformers.utils.logging._reset_library_root_logger() __UpperCamelCase : int =logging.get_logger('transformers.models.bart.tokenization_bart' ) __UpperCamelCase : int ='Testing 1, 2, 3' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='1' ): # nothing should be logged as env var disables this method with CaptureLogger(UpperCAmelCase__ ) as cl: logger.warning_advice(UpperCAmelCase__ ) self.assertEqual(cl.out , '' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(UpperCAmelCase__ ) as cl: logger.warning_advice(UpperCAmelCase__ ) self.assertEqual(cl.out , msg + '\n' ) def A ( ) -> int: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
71
"""simple docstring""" from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class _lowerCAmelCase : """simple docstring""" __UpperCAmelCase : Tuple = XGLMConfig __UpperCAmelCase : Optional[Any] = {} __UpperCAmelCase : Union[str, Any] = "gelu" def __init__( self : Optional[int], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int]=1_4, UpperCAmelCase__ : str=7, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[Any]=True, UpperCAmelCase__ : int=True, UpperCAmelCase__ : List[str]=9_9, UpperCAmelCase__ : Union[str, Any]=3_2, UpperCAmelCase__ : Union[str, Any]=2, UpperCAmelCase__ : Union[str, Any]=4, UpperCAmelCase__ : Tuple=3_7, UpperCAmelCase__ : List[Any]="gelu", UpperCAmelCase__ : List[str]=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Tuple=5_1_2, UpperCAmelCase__ : Optional[Any]=0.02, ): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_labels __lowercase = vocab_size __lowercase = d_model __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = ffn_dim __lowercase = activation_function __lowercase = activation_dropout __lowercase = attention_dropout __lowercase = max_position_embeddings __lowercase = initializer_range __lowercase = None __lowercase = 0 __lowercase = 2 __lowercase = 1 def _lowercase ( self : Union[str, Any] ): return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def _lowercase ( self : Tuple ): __lowercase = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length], self.vocab_size ), clip_value_min=0, clip_value_max=3 ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = self.get_config() __lowercase = floats_tensor([self.num_hidden_layers, self.num_attention_heads], 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowercase ( self : List[Any] ): return XGLMConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, num_layers=self.num_hidden_layers, attention_heads=self.num_attention_heads, ffn_dim=self.ffn_dim, activation_function=self.activation_function, activation_dropout=self.activation_dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, use_cache=UpperCAmelCase__, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, return_dict=UpperCAmelCase__, ) def _lowercase ( self : Dict ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) , ) = config_and_inputs __lowercase = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class _lowerCAmelCase ( lowercase ,lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () __UpperCAmelCase : List[str] = (TFXGLMForCausalLM,) if is_tf_available() else () __UpperCAmelCase : Any = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : List[str] = False __UpperCAmelCase : int = False def _lowercase ( self : Optional[Any] ): __lowercase = TFXGLMModelTester(self ) __lowercase = ConfigTester(self, config_class=UpperCAmelCase__, n_embd=3_7 ) def _lowercase ( self : Any ): self.config_tester.run_common_tests() @slow def _lowercase ( self : List[str] ): for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFXGLMModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def _lowercase ( self : int ): super().test_resize_token_embeddings() @require_tf class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[int]=True ): __lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) __lowercase = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]], dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __lowercase = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on __lowercase = model.generate(UpperCAmelCase__, do_sample=UpperCAmelCase__, num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist(), UpperCAmelCase__ ) @slow def _lowercase ( self : List[Any] ): __lowercase = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) __lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) __lowercase = tokenizer("Today is a nice day and", return_tensors="tf" ) __lowercase = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): __lowercase = model.generate(UpperCAmelCase__, do_sample=UpperCAmelCase__, seed=[7, 0] ) __lowercase = tokenizer.decode(output_ids[0], skip_special_tokens=UpperCAmelCase__ ) __lowercase = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(UpperCAmelCase__, UpperCAmelCase__ ) @slow def _lowercase ( self : Dict ): __lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) __lowercase = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) __lowercase = "left" # use different length sentences to test batching __lowercase = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] __lowercase = tokenizer(UpperCAmelCase__, return_tensors="tf", padding=UpperCAmelCase__ ) __lowercase = inputs["input_ids"] __lowercase = model.generate(input_ids=UpperCAmelCase__, attention_mask=inputs["attention_mask"], max_new_tokens=1_2 ) __lowercase = tokenizer(sentences[0], return_tensors="tf" ).input_ids __lowercase = model.generate(input_ids=UpperCAmelCase__, max_new_tokens=1_2 ) __lowercase = tokenizer(sentences[1], return_tensors="tf" ).input_ids __lowercase = model.generate(input_ids=UpperCAmelCase__, max_new_tokens=1_2 ) __lowercase = tokenizer.batch_decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ ) __lowercase = tokenizer.decode(output_non_padded[0], skip_special_tokens=UpperCAmelCase__ ) __lowercase = tokenizer.decode(output_padded[0], skip_special_tokens=UpperCAmelCase__ ) __lowercase = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(UpperCAmelCase__, UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__, [non_padded_sentence, padded_sentence] )
17
0
'''simple docstring''' def lowercase_ ( lowerCAmelCase__ : int ): """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('''Program to check whether a number is a Perfect number or not...''') _UpperCamelCase = int(input('''Enter number: ''').strip()) print(F'{number} is {"" if perfect(number) else "not "}a Perfect Number.')
254
"""simple docstring""" import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder _a = '__DUMMY_TRANSFORMERS_USER__' _a = 'Dummy User' _a = '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' _a = 'https://hub-ci.huggingface.co' _a = CI_HUB_ENDPOINT + '/datasets/{repo_id}/resolve/{revision}/{path}' _a = CI_HUB_ENDPOINT + '/{repo_id}/resolve/{revision}/{filename}' _a = Path('~/.huggingface/hub_ci_token').expanduser() @pytest.fixture def _A ( UpperCamelCase_ : List[Any]) -> Tuple: '''simple docstring''' monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE", UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : int) -> List[Any]: '''simple docstring''' monkeypatch.setattr("datasets.config.HF_ENDPOINT", UpperCamelCase_) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL", UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : str) -> Dict: '''simple docstring''' monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token", UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : Optional[Any], UpperCamelCase_ : List[Any]) -> List[str]: '''simple docstring''' HfFolder.save_token(UpperCamelCase_) yield HfFolder.delete_token() @pytest.fixture(scope="session") def _A ( ) -> List[Any]: '''simple docstring''' return HfApi(endpoint=UpperCamelCase_) @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi) -> List[Any]: '''simple docstring''' __lowercase = HfFolder.get_token() HfFolder.save_token(UpperCamelCase_) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : Dict) -> int: '''simple docstring''' def _cleanup_repo(UpperCamelCase_ : Optional[int]): hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") return _cleanup_repo @pytest.fixture def _A ( UpperCamelCase_ : str) -> Any: '''simple docstring''' @contextmanager def _temporary_repo(UpperCamelCase_ : Any): try: yield repo_id finally: cleanup_repo(UpperCamelCase_) return _temporary_repo @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : str, UpperCamelCase_ : Optional[int]) -> List[Any]: '''simple docstring''' __lowercase = F"""repo_txt_data-{int(time.time() * 10E3)}""" __lowercase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_) hf_api.upload_file( token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data/text_data.txt", repo_id=UpperCamelCase_, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : Any, UpperCamelCase_ : Dict) -> Optional[int]: '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : int, UpperCamelCase_ : Optional[int]) -> int: '''simple docstring''' __lowercase = F"""repo_zipped_txt_data-{int(time.time() * 10E3)}""" __lowercase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_) hf_api.upload_file( token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data.zip", repo_id=UpperCamelCase_, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Dict, UpperCamelCase_ : Any) -> int: '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : List[str], UpperCamelCase_ : List[str]) -> List[Any]: '''simple docstring''' __lowercase = F"""repo_zipped_img_data-{int(time.time() * 10E3)}""" __lowercase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_) hf_api.upload_file( token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data.zip", repo_id=UpperCamelCase_, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str], UpperCamelCase_ : List[str]) -> str: '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
17
0
'''simple docstring''' from math import factorial a : Tuple = {str(d): factorial(d) for d in range(1_0)} def __lowerCamelCase ( _lowercase ) -> int: return sum(DIGIT_FACTORIAL[d] for d in str(UpperCamelCase_ ) ) def __lowerCamelCase ( ) -> int: UpperCAmelCase : Optional[Any] = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , UpperCamelCase_ ) if sum_of_digit_factorial(UpperCamelCase_ ) == i ) if __name__ == "__main__": print(F'''{solution() = }''')
265
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : int = "time_series_transformer" __UpperCAmelCase : Any = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : int, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : str = "student_t", UpperCAmelCase__ : str = "nll", UpperCAmelCase__ : int = 1, UpperCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7], UpperCAmelCase__ : Optional[Union[str, bool]] = "mean", UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : int = 3_2, UpperCAmelCase__ : int = 3_2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : str = "gelu", UpperCAmelCase__ : int = 6_4, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : int = 1_0_0, UpperCAmelCase__ : float = 0.02, UpperCAmelCase__ : Any=True, **UpperCAmelCase__ : List[str], ): # time series specific configuration __lowercase = prediction_length __lowercase = context_length or prediction_length __lowercase = distribution_output __lowercase = loss __lowercase = input_size __lowercase = num_time_features __lowercase = lags_sequence __lowercase = scaling __lowercase = num_dynamic_real_features __lowercase = num_static_real_features __lowercase = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(UpperCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) __lowercase = cardinality else: __lowercase = [0] if embedding_dimension and num_static_categorical_features > 0: if len(UpperCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) __lowercase = embedding_dimension else: __lowercase = [min(5_0, (cat + 1) // 2 ) for cat in self.cardinality] __lowercase = num_parallel_samples # Transformer architecture configuration __lowercase = input_size * len(UpperCAmelCase__ ) + self._number_of_features __lowercase = d_model __lowercase = encoder_attention_heads __lowercase = decoder_attention_heads __lowercase = encoder_ffn_dim __lowercase = decoder_ffn_dim __lowercase = encoder_layers __lowercase = decoder_layers __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = activation_function __lowercase = init_std __lowercase = use_cache super().__init__(is_encoder_decoder=UpperCAmelCase__, **UpperCAmelCase__ ) @property def _lowercase ( self : Optional[Any] ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
17
0
"""simple docstring""" import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class UpperCamelCase__( __A ): lowerCAmelCase__ : str = (EulerDiscreteScheduler,) lowerCAmelCase__ : Optional[Any] = 10 def snake_case__ ( self ,**__UpperCAmelCase ) -> Optional[Any]: A__ = { 'num_train_timesteps': 11_00, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', } config.update(**UpperCAmelCase__ ) return config def snake_case__ ( self ) -> List[str]: for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=UpperCAmelCase__ ) def snake_case__ ( self ) -> Tuple: for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] ,[0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=UpperCAmelCase__ ,beta_end=UpperCAmelCase__ ) def snake_case__ ( self ) -> Tuple: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=UpperCAmelCase__ ) def snake_case__ ( self ) -> Tuple: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase__ ) def snake_case__ ( self ) -> Any: A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**UpperCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) A__ = torch.manual_seed(0 ) A__ = self.dummy_model() A__ = self.dummy_sample_deter * scheduler.init_noise_sigma A__ = sample.to(UpperCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): A__ = scheduler.scale_model_input(UpperCAmelCase__ ,UpperCAmelCase__ ) A__ = model(UpperCAmelCase__ ,UpperCAmelCase__ ) A__ = scheduler.step(UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,generator=UpperCAmelCase__ ) A__ = output.prev_sample A__ = torch.sum(torch.abs(UpperCAmelCase__ ) ) A__ = torch.mean(torch.abs(UpperCAmelCase__ ) ) assert abs(result_sum.item() - 1_0.0_8_0_7 ) < 1e-2 assert abs(result_mean.item() - 0.0_1_3_1 ) < 1e-3 def snake_case__ ( self ) -> Dict: A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(prediction_type='v_prediction' ) A__ = scheduler_class(**UpperCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) A__ = torch.manual_seed(0 ) A__ = self.dummy_model() A__ = self.dummy_sample_deter * scheduler.init_noise_sigma A__ = sample.to(UpperCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): A__ = scheduler.scale_model_input(UpperCAmelCase__ ,UpperCAmelCase__ ) A__ = model(UpperCAmelCase__ ,UpperCAmelCase__ ) A__ = scheduler.step(UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,generator=UpperCAmelCase__ ) A__ = output.prev_sample A__ = torch.sum(torch.abs(UpperCAmelCase__ ) ) A__ = torch.mean(torch.abs(UpperCAmelCase__ ) ) assert abs(result_sum.item() - 0.0_0_0_2 ) < 1e-2 assert abs(result_mean.item() - 2.2_676e-06 ) < 1e-3 def snake_case__ ( self ) -> Tuple: A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**UpperCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ,device=UpperCAmelCase__ ) A__ = torch.manual_seed(0 ) A__ = self.dummy_model() A__ = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() A__ = sample.to(UpperCAmelCase__ ) for t in scheduler.timesteps: A__ = scheduler.scale_model_input(UpperCAmelCase__ ,UpperCAmelCase__ ) A__ = model(UpperCAmelCase__ ,UpperCAmelCase__ ) A__ = scheduler.step(UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,generator=UpperCAmelCase__ ) A__ = output.prev_sample A__ = torch.sum(torch.abs(UpperCAmelCase__ ) ) A__ = torch.mean(torch.abs(UpperCAmelCase__ ) ) assert abs(result_sum.item() - 1_0.0_8_0_7 ) < 1e-2 assert abs(result_mean.item() - 0.0_1_3_1 ) < 1e-3 def snake_case__ ( self ) -> List[Any]: A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**UpperCAmelCase__ ,use_karras_sigmas=UpperCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ,device=UpperCAmelCase__ ) A__ = torch.manual_seed(0 ) A__ = self.dummy_model() A__ = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() A__ = sample.to(UpperCAmelCase__ ) for t in scheduler.timesteps: A__ = scheduler.scale_model_input(UpperCAmelCase__ ,UpperCAmelCase__ ) A__ = model(UpperCAmelCase__ ,UpperCAmelCase__ ) A__ = scheduler.step(UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,generator=UpperCAmelCase__ ) A__ = output.prev_sample A__ = torch.sum(torch.abs(UpperCAmelCase__ ) ) A__ = torch.mean(torch.abs(UpperCAmelCase__ ) ) assert abs(result_sum.item() - 1_2_4.5_2_2_9_9_4_9_9_5_1_1_7_1_9 ) < 1e-2 assert abs(result_mean.item() - 0.1_6_2_1_3_9_3_2_6_3_3_3_9_9_9_6_3 ) < 1e-3
221
"""simple docstring""" import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class _lowerCAmelCase : """simple docstring""" @staticmethod def _lowercase ( *UpperCAmelCase__ : Tuple, **UpperCAmelCase__ : List[Any] ): pass def _A ( UpperCamelCase_ : Union[str, Any]) -> Any: '''simple docstring''' return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. _a = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Tuple = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Optional[Any] ): __lowercase = pipeline( "document-question-answering", model=UpperCAmelCase__, tokenizer=UpperCAmelCase__, image_processor=UpperCAmelCase__ ) __lowercase = INVOICE_URL __lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) ) __lowercase = "What is the placebo?" __lowercase = [ { "image": load_image(UpperCAmelCase__ ), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def _lowercase ( self : int, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Any ): __lowercase = dqa_pipeline(UpperCAmelCase__, top_k=2 ) self.assertEqual( UpperCAmelCase__, [ [ {"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ ), "start": ANY(UpperCAmelCase__ ), "end": ANY(UpperCAmelCase__ )}, {"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ ), "start": ANY(UpperCAmelCase__ ), "end": ANY(UpperCAmelCase__ )}, ] ] * 3, ) @require_torch @require_detectrona @require_pytesseract def _lowercase ( self : Dict ): __lowercase = pipeline("document-question-answering", model="hf-internal-testing/tiny-random-layoutlmv2" ) __lowercase = INVOICE_URL __lowercase = "How many cats are there?" __lowercase = [ {"score": 0.0_001, "answer": "oy 2312/2019", "start": 3_8, "end": 3_9}, {"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 3_8, "end": 4_0}, ] __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), UpperCAmelCase__ ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), UpperCAmelCase__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably __lowercase = "./tests/fixtures/tests_samples/COCO/000000039769.png" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual(UpperCAmelCase__, [] ) # We can optionnally pass directly the words and bounding boxes __lowercase = "./tests/fixtures/tests_samples/COCO/000000039769.png" __lowercase = [] __lowercase = [] __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, words=UpperCAmelCase__, boxes=UpperCAmelCase__, top_k=2 ) self.assertEqual(UpperCAmelCase__, [] ) @slow @require_torch @require_detectrona @require_pytesseract def _lowercase ( self : List[str] ): __lowercase = pipeline( "document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ] * 2, ) @slow @require_torch @require_detectrona @require_pytesseract def _lowercase ( self : Dict ): __lowercase = pipeline( "document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", max_seq_len=5_0, ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3}, {"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3}, {"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3}, {"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6}, ] ] * 2, ) @slow @require_torch @require_pytesseract @require_vision def _lowercase ( self : Optional[Any] ): __lowercase = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=UpperCAmelCase__ ) __lowercase = pipeline( "document-question-answering", model="impira/layoutlm-document-qa", tokenizer=UpperCAmelCase__, revision="3dc6de3", ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ], ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ] ] * 2, ) __lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) ) # This model should also work if `image` is set to None __lowercase = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ], ) @slow @require_torch @require_pytesseract @require_vision def _lowercase ( self : Union[str, Any] ): __lowercase = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=UpperCAmelCase__ ) __lowercase = pipeline( "document-question-answering", model="impira/layoutlm-document-qa", tokenizer=UpperCAmelCase__, revision="3dc6de3", max_seq_len=5_0, ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6}, ] ] * 2, ) __lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) ) # This model should also work if `image` is set to None __lowercase = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) @slow @require_torch def _lowercase ( self : Dict ): __lowercase = pipeline( "document-question-answering", model="naver-clova-ix/donut-base-finetuned-docvqa", tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ), feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa", ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def _lowercase ( self : List[Any] ): pass
17
0
def lowerCAmelCase__( lowercase : float , lowercase : float ) -> float: if mass < 0: raise ValueError("The mass of a body cannot be negative" ) return 0.5 * mass * abs(UpperCamelCase_ ) * abs(UpperCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
326
"""simple docstring""" import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _a = 2 class _lowerCAmelCase : """simple docstring""" def __init__( self : Dict, *, # begin keyword-only arguments UpperCAmelCase__ : str="<s>", UpperCAmelCase__ : Tuple="<pad>", UpperCAmelCase__ : str="</s>", UpperCAmelCase__ : Optional[Any]="<unk>", UpperCAmelCase__ : List[Any]=None, ): __lowercase ,__lowercase ,__lowercase ,__lowercase = bos, unk, pad, eos __lowercase = [] __lowercase = [] __lowercase = {} __lowercase = self.add_symbol(UpperCAmelCase__ ) __lowercase = self.add_symbol(UpperCAmelCase__ ) __lowercase = self.add_symbol(UpperCAmelCase__ ) __lowercase = self.add_symbol(UpperCAmelCase__ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(UpperCAmelCase__ ) __lowercase = len(self.symbols ) def __eq__( self : List[str], UpperCAmelCase__ : Dict ): return self.indices == other.indices def __getitem__( self : Optional[int], UpperCAmelCase__ : List[str] ): if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : str ): return len(self.symbols ) def __contains__( self : Any, UpperCAmelCase__ : Optional[Any] ): return sym in self.indices @classmethod def _lowercase ( cls : List[Any], UpperCAmelCase__ : Optional[Any] ): __lowercase = cls() d.add_from_file(UpperCAmelCase__ ) return d def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[Any]=1, UpperCAmelCase__ : str=False ): if word in self.indices and not overwrite: __lowercase = self.indices[word] __lowercase = self.count[idx] + n return idx else: __lowercase = len(self.symbols ) __lowercase = idx self.symbols.append(UpperCAmelCase__ ) self.count.append(UpperCAmelCase__ ) return idx def _lowercase ( self : Any, UpperCAmelCase__ : str ): return 0 def _lowercase ( self : Tuple, UpperCAmelCase__ : List[Any] ): if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): try: with open(UpperCAmelCase__, "r", encoding="utf-8" ) as fd: self.add_from_file(UpperCAmelCase__ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("Incorrect encoding detected in {}, please rebuild the dataset".format(UpperCAmelCase__ ) ) return __lowercase = f.readlines() __lowercase = self._load_meta(UpperCAmelCase__ ) for line in lines[indices_start_line:]: try: __lowercase ,__lowercase = line.rstrip().rsplit(" ", 1 ) if field == "#fairseq:overwrite": __lowercase = True __lowercase ,__lowercase = line.rsplit(" ", 1 ) else: __lowercase = False __lowercase = int(UpperCAmelCase__ ) __lowercase = line if word in self and not overwrite: raise RuntimeError( "Duplicate word found when loading Dictionary: '{}'. " "Duplicate words can overwrite earlier ones by adding the " "#fairseq:overwrite flag at the end of the corresponding row " "in the dictionary file. If using the Camembert model, please " "download an updated copy of the model file.".format(UpperCAmelCase__ ) ) self.add_symbol(UpperCAmelCase__, n=UpperCAmelCase__, overwrite=UpperCAmelCase__ ) except ValueError: raise ValueError("Incorrect dictionary format, expected '<token> <cnt> [flags]'" ) def _A ( UpperCamelCase_ : int) -> str: '''simple docstring''' __lowercase = dict((re.sub(r"@@$", "", UpperCamelCase_), v) if k.endswith("@@") else (re.sub(r"$", "</w>", UpperCamelCase_), v) for k, v in d.items()) __lowercase = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] __lowercase = d[k] # restore return da def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str) -> List[Any]: '''simple docstring''' if not os.path.exists(UpperCamelCase_): raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""") os.makedirs(UpperCamelCase_, exist_ok=UpperCamelCase_) print(F"""Writing results to {pytorch_dump_folder_path}""") # handle various types of models __lowercase = os.path.join(UpperCamelCase_, "checkpoint.pt") if not os.path.isfile(UpperCamelCase_): raise ValueError(F"""path to the file {checkpoint_file} does not exist!""") __lowercase = torch.load(UpperCamelCase_, map_location="cpu") __lowercase = chkpt["cfg"]["model"] # dicts __lowercase = os.path.join(UpperCamelCase_, "dict.txt") if not os.path.isfile(UpperCamelCase_): raise ValueError(F"""path to the file {dict_file} does not exist!""") __lowercase = Dictionary.load(UpperCamelCase_) __lowercase = rewrite_dict_keys(src_dict.indices) __lowercase = len(UpperCamelCase_) __lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["vocab_file"]) print(F"""Generating {src_vocab_file} of {src_vocab_size} records""") with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_)) # merges_file (bpecodes) __lowercase = os.path.join(UpperCamelCase_, "bpecodes") if not os.path.isfile(UpperCamelCase_): raise ValueError(F"""path to the file {bpecodes_file} does not exist!""") __lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["merges_file"]) shutil.copyfile(UpperCamelCase_, UpperCamelCase_) # model config __lowercase = os.path.join(UpperCamelCase_, "config.json") __lowercase = { "activation_dropout": args["activation_dropout"], "architectures": ["BioGptForCausalLM"], "attention_probs_dropout_prob": args["attention_dropout"], "bos_token_id": 0, "eos_token_id": 2, "hidden_act": args["activation_fn"], "hidden_dropout_prob": args["dropout"], "hidden_size": args["decoder_embed_dim"], "initializer_range": 0.02, "intermediate_size": args["decoder_ffn_embed_dim"], "layer_norm_eps": 1E-12, "layerdrop": args["decoder_layerdrop"], "max_position_embeddings": args["max_target_positions"], "model_type": "biogpt", "num_attention_heads": args["decoder_attention_heads"], "num_hidden_layers": args["decoder_layers"], "pad_token_id": 1, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_decoder_input_output_embed"], "vocab_size": src_vocab_size, } # good hparam defaults to start with print(F"""Generating {biogpt_model_config_file}""") with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_)) # tokenizer config __lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_) __lowercase = { "bos_token": "<s>", "eos_token": "</s>", "model_max_length": 1024, "pad_token": "<pad>", "special_tokens_map_file": None, "tokenizer_class": "BioGptTokenizer", "unk_token": "<unk>", } print(F"""Generating {biogpt_tokenizer_config_file}""") with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_)) # model __lowercase = chkpt["model"] # remove unneeded keys __lowercase = [ "decoder.version", ] for k in ignore_keys: model_state_dict.pop(UpperCamelCase_, UpperCamelCase_) __lowercase = list(model_state_dict.keys()) for layer_name in layer_names: if layer_name.endswith("output_projection.weight"): __lowercase = model_state_dict.pop(UpperCamelCase_) else: __lowercase = model_state_dict.pop(UpperCamelCase_) __lowercase = BioGptConfig.from_pretrained(UpperCamelCase_) __lowercase = BioGptForCausalLM(UpperCamelCase_) # check that it loads ok model_new.load_state_dict(UpperCamelCase_) # save __lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_) print(F"""Generating {pytorch_weights_dump_path}""") torch.save(UpperCamelCase_, UpperCamelCase_) print("Conversion is done!") if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _a = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
17
0
import math def _snake_case ( lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = [True] * n SCREAMING_SNAKE_CASE_ : Dict = False SCREAMING_SNAKE_CASE_ : Any = False SCREAMING_SNAKE_CASE_ : str = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): SCREAMING_SNAKE_CASE_ : Any = i * 2 while index < n: SCREAMING_SNAKE_CASE_ : str = False SCREAMING_SNAKE_CASE_ : Any = index + i SCREAMING_SNAKE_CASE_ : Dict = [2] for i in range(3 , lowerCAmelCase , 2 ): if is_prime[i]: primes.append(lowerCAmelCase ) return primes def _snake_case ( lowerCAmelCase : int = 9_9_9_9_6_6_6_6_3_3_3_3 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = math.floor(math.sqrt(lowerCAmelCase ) ) + 1_0_0 SCREAMING_SNAKE_CASE_ : List[str] = prime_sieve(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = 0 SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 SCREAMING_SNAKE_CASE_ : Tuple = primes[prime_index] while (last_prime**2) <= limit: SCREAMING_SNAKE_CASE_ : Union[str, Any] = primes[prime_index + 1] SCREAMING_SNAKE_CASE_ : Dict = last_prime**2 SCREAMING_SNAKE_CASE_ : Dict = next_prime**2 # Get numbers divisible by lps(current) SCREAMING_SNAKE_CASE_ : str = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) SCREAMING_SNAKE_CASE_ : Optional[int] = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps SCREAMING_SNAKE_CASE_ : List[Any] = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair SCREAMING_SNAKE_CASE_ : List[str] = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
18
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase : Union[str, Any] = { '''configuration_chinese_clip''': [ '''CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ChineseCLIPConfig''', '''ChineseCLIPOnnxConfig''', '''ChineseCLIPTextConfig''', '''ChineseCLIPVisionConfig''', ], '''processing_chinese_clip''': ['''ChineseCLIPProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = ['''ChineseCLIPFeatureExtractor'''] __lowerCamelCase : Optional[int] = ['''ChineseCLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : int = [ '''CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ChineseCLIPModel''', '''ChineseCLIPPreTrainedModel''', '''ChineseCLIPTextModel''', '''ChineseCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys __lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
18
1
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class a__ ( unittest.TestCase ): def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = inspect.getfile(accelerate.test_utils ) SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["scripts", "external_deps", "test_metrics.py"] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 SCREAMING_SNAKE_CASE_ : Any = test_metrics @require_cpu def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" debug_launcher(self.test_metrics.main,num_processes=1 ) @require_cpu def __UpperCamelCase ( self : Any ): """simple docstring""" debug_launcher(self.test_metrics.main ) @require_single_gpu def __UpperCamelCase ( self : Any ): """simple docstring""" self.test_metrics.main() @require_multi_gpu def __UpperCamelCase ( self : Dict ): """simple docstring""" print(F'Found {torch.cuda.device_count()} devices.' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ["torchrun", F'--nproc_per_node={torch.cuda.device_count()}', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A,env=os.environ.copy() )
18
import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument __lowerCamelCase : Any = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def _snake_case ( lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = list(s_dict.keys() ) for key in keys: SCREAMING_SNAKE_CASE_ : int = R".*/layers_(\d+)" SCREAMING_SNAKE_CASE_ : List[Any] = key if re.match(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Any = re.sub(R"layers_(\d+)" , R"block/\1/layer" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = R"(encoder|decoder)\/" if re.match(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : str = re.match(lowerCAmelCase , lowerCAmelCase ).groups() if groups[0] == "encoder": SCREAMING_SNAKE_CASE_ : Any = re.sub(R"/mlp/" , R"/1/mlp/" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = re.sub(R"/pre_mlp_layer_norm/" , R"/1/layer_norm/" , lowerCAmelCase ) elif groups[0] == "decoder": SCREAMING_SNAKE_CASE_ : List[str] = re.sub(R"/mlp/" , R"/2/mlp/" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = re.sub(R"/pre_mlp_layer_norm/" , R"/2/layer_norm/" , lowerCAmelCase ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: SCREAMING_SNAKE_CASE_ : List[Any] = new_key.replace(lowerCAmelCase , lowerCAmelCase ) print(f'{key} -> {new_key}' ) SCREAMING_SNAKE_CASE_ : List[Any] = s_dict.pop(lowerCAmelCase ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: SCREAMING_SNAKE_CASE_ : str = s_dict[ "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: SCREAMING_SNAKE_CASE_ : Optional[int] = s_dict[ "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: SCREAMING_SNAKE_CASE_ : Union[str, Any] = s_dict[key].shape[0] SCREAMING_SNAKE_CASE_ : List[Any] = s_dict[key] for idx in range(lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Tuple = expert_weihts[idx] print(f'{key} -> {key.replace("expert/" , "nested fstring" )}' ) s_dict.pop(lowerCAmelCase ) return s_dict __lowerCamelCase : List[Any] = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def _snake_case ( lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any] ): """simple docstring""" import regex as re with open(lowerCAmelCase , "r" ) as f: SCREAMING_SNAKE_CASE_ : Optional[Any] = f.read() SCREAMING_SNAKE_CASE_ : List[str] = re.findall(R"(.*) = ([0-9.]*)" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": SCREAMING_SNAKE_CASE_ : int = float(lowerCAmelCase ) if "." in value else int(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = re.findall(R"(.*activations) = \(\'(.*)\',\)" , lowerCAmelCase )[0] SCREAMING_SNAKE_CASE_ : List[str] = str(activation[1] ) SCREAMING_SNAKE_CASE_ : str = num_experts SCREAMING_SNAKE_CASE_ : Tuple = SwitchTransformersConfig(**lowerCAmelCase ) return config def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : str=None , lowerCAmelCase : Optional[Any]="./" , lowerCAmelCase : Dict=8 ): """simple docstring""" print(f'Loading flax weights from : {flax_checkpoint_path}' ) SCREAMING_SNAKE_CASE_ : int = checkpoints.load_tax_checkpoint(lowerCAmelCase ) if gin_file is not None: SCREAMING_SNAKE_CASE_ : int = convert_gin_to_config(lowerCAmelCase , lowerCAmelCase ) else: SCREAMING_SNAKE_CASE_ : Dict = SwitchTransformersConfig.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : str = SwitchTransformersForConditionalGeneration(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = flax_params["target"] SCREAMING_SNAKE_CASE_ : List[str] = flatten_dict(lowerCAmelCase , sep="/" ) SCREAMING_SNAKE_CASE_ : List[str] = rename_keys(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = unflatten_dict(lowerCAmelCase , sep="/" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(lowerCAmelCase , lowerCAmelCase ) print(f'Save PyTorch model to {pytorch_dump_path}' ) pt_model.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": __lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') __lowerCamelCase : Any = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
18
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __lowerCamelCase : Optional[int] = { '''configuration_clip''': [ '''CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPConfig''', '''CLIPOnnxConfig''', '''CLIPTextConfig''', '''CLIPVisionConfig''', ], '''processing_clip''': ['''CLIPProcessor'''], '''tokenization_clip''': ['''CLIPTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[Any] = ['''CLIPTokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[str] = ['''CLIPFeatureExtractor'''] __lowerCamelCase : str = ['''CLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Tuple = [ '''CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPModel''', '''CLIPPreTrainedModel''', '''CLIPTextModel''', '''CLIPTextModelWithProjection''', '''CLIPVisionModel''', '''CLIPVisionModelWithProjection''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = [ '''TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCLIPModel''', '''TFCLIPPreTrainedModel''', '''TFCLIPTextModel''', '''TFCLIPVisionModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[str] = [ '''FlaxCLIPModel''', '''FlaxCLIPPreTrainedModel''', '''FlaxCLIPTextModel''', '''FlaxCLIPTextPreTrainedModel''', '''FlaxCLIPVisionModel''', '''FlaxCLIPVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys __lowerCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
18
from math import factorial, radians def _snake_case ( lowerCAmelCase : float , lowerCAmelCase : int = 1_8 , lowerCAmelCase : int = 1_0 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians SCREAMING_SNAKE_CASE_ : Tuple = radians(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = angle_in_radians SCREAMING_SNAKE_CASE_ : List[str] = 3 SCREAMING_SNAKE_CASE_ : str = -1 for _ in range(lowerCAmelCase ): result += (b * (angle_in_radians**a)) / factorial(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(lowerCAmelCase , lowerCAmelCase ) if __name__ == "__main__": __import__('''doctest''').testmod()
18
1
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class a__ ( unittest.TestCase ): def __UpperCamelCase ( self : List[Any] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = 1 SCREAMING_SNAKE_CASE_ : Optional[Any] = 3 SCREAMING_SNAKE_CASE_ : Union[str, Any] = (32, 32) SCREAMING_SNAKE_CASE_ : List[Any] = floats_tensor((batch_size, num_channels) + sizes,rng=random.Random(0 ) ).to(_A ) return image @property def __UpperCamelCase ( self : str ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Dict = UNetaDConditionModel( block_out_channels=(32, 64),layers_per_block=2,sample_size=32,in_channels=4,out_channels=4,down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),cross_attention_dim=32,) return model @property def __UpperCamelCase ( self : Any ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : List[Any] = AutoencoderKL( block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],latent_channels=4,) return model @property def __UpperCamelCase ( self : str ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : int = RobertaSeriesConfig( hidden_size=32,project_dim=32,intermediate_size=37,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=5006,) return RobertaSeriesModelWithTransformation(_A ) @property def __UpperCamelCase ( self : List[str] ): """simple docstring""" def extract(*_A : str,**_A : Dict ): class a__ : def __init__( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = torch.ones([0] ) def __UpperCamelCase ( self : Dict,_A : List[str] ): """simple docstring""" self.pixel_values.to(_A ) return self return Out() return extract def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ : Optional[int] = self.dummy_cond_unet SCREAMING_SNAKE_CASE_ : Optional[int] = PNDMScheduler(skip_prk_steps=_A ) SCREAMING_SNAKE_CASE_ : int = self.dummy_vae SCREAMING_SNAKE_CASE_ : Dict = self.dummy_text_encoder SCREAMING_SNAKE_CASE_ : str = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) SCREAMING_SNAKE_CASE_ : Dict = 77 SCREAMING_SNAKE_CASE_ : Optional[Any] = self.dummy_image.to(_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE_ : Any = AltDiffusionImgaImgPipeline( unet=_A,scheduler=_A,vae=_A,text_encoder=_A,tokenizer=_A,safety_checker=_A,feature_extractor=self.dummy_extractor,) SCREAMING_SNAKE_CASE_ : Optional[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor,do_normalize=_A ) SCREAMING_SNAKE_CASE_ : str = alt_pipe.to(_A ) alt_pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.Generator(device=_A ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = alt_pipe( [prompt],generator=_A,guidance_scale=6.0,num_inference_steps=2,output_type="np",image=_A,) SCREAMING_SNAKE_CASE_ : List[str] = output.images SCREAMING_SNAKE_CASE_ : int = torch.Generator(device=_A ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ : str = alt_pipe( [prompt],generator=_A,guidance_scale=6.0,num_inference_steps=2,output_type="np",image=_A,return_dict=_A,)[0] SCREAMING_SNAKE_CASE_ : List[str] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE_ : Dict = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != "cuda","This test requires a GPU" ) def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.dummy_cond_unet SCREAMING_SNAKE_CASE_ : Optional[int] = PNDMScheduler(skip_prk_steps=_A ) SCREAMING_SNAKE_CASE_ : List[Any] = self.dummy_vae SCREAMING_SNAKE_CASE_ : str = self.dummy_text_encoder SCREAMING_SNAKE_CASE_ : str = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) SCREAMING_SNAKE_CASE_ : Tuple = 77 SCREAMING_SNAKE_CASE_ : Tuple = self.dummy_image.to(_A ) # put models in fp16 SCREAMING_SNAKE_CASE_ : Dict = unet.half() SCREAMING_SNAKE_CASE_ : str = vae.half() SCREAMING_SNAKE_CASE_ : int = bert.half() # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE_ : int = AltDiffusionImgaImgPipeline( unet=_A,scheduler=_A,vae=_A,text_encoder=_A,tokenizer=_A,safety_checker=_A,feature_extractor=self.dummy_extractor,) SCREAMING_SNAKE_CASE_ : List[str] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor,do_normalize=_A ) SCREAMING_SNAKE_CASE_ : Any = alt_pipe.to(_A ) alt_pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ : Any = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE_ : Tuple = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : int = alt_pipe( [prompt],generator=_A,num_inference_steps=2,output_type="np",image=_A,).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda","This test requires a GPU" ) def __UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 SCREAMING_SNAKE_CASE_ : int = init_image.resize((760, 504) ) SCREAMING_SNAKE_CASE_ : Tuple = "BAAI/AltDiffusion" SCREAMING_SNAKE_CASE_ : Dict = AltDiffusionImgaImgPipeline.from_pretrained( _A,safety_checker=_A,) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ : int = "A fantasy landscape, trending on artstation" SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : str = pipe( prompt=_A,image=_A,strength=0.75,guidance_scale=7.5,generator=_A,output_type="np",) SCREAMING_SNAKE_CASE_ : List[str] = output.images[0] SCREAMING_SNAKE_CASE_ : List[Any] = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) SCREAMING_SNAKE_CASE_ : Optional[int] = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class a__ ( unittest.TestCase ): def __UpperCamelCase ( self : Any ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) SCREAMING_SNAKE_CASE_ : Optional[int] = init_image.resize((768, 512) ) SCREAMING_SNAKE_CASE_ : int = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) SCREAMING_SNAKE_CASE_ : List[Any] = "BAAI/AltDiffusion" SCREAMING_SNAKE_CASE_ : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained( _A,safety_checker=_A,) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ : Tuple = "A fantasy landscape, trending on artstation" SCREAMING_SNAKE_CASE_ : Optional[int] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Any = pipe( prompt=_A,image=_A,strength=0.75,guidance_scale=7.5,generator=_A,output_type="np",) SCREAMING_SNAKE_CASE_ : List[Any] = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
18
from functools import lru_cache @lru_cache def _snake_case ( lowerCAmelCase : int ): """simple docstring""" if num < 0: raise ValueError("Number should not be negative." ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
18
1
def _snake_case ( lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = int(lowerCAmelCase ) if decimal in (0, 1): # Exit cases for the recursion return str(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = divmod(lowerCAmelCase , 2 ) return binary_recursive(lowerCAmelCase ) + str(lowerCAmelCase ) def _snake_case ( lowerCAmelCase : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = str(lowerCAmelCase ).strip() if not number: raise ValueError("No input value was provided" ) SCREAMING_SNAKE_CASE_ : List[str] = "-" if number.startswith("-" ) else "" SCREAMING_SNAKE_CASE_ : Optional[Any] = number.lstrip("-" ) if not number.isnumeric(): raise ValueError("Input value is not an integer" ) return f'{negative}0b{binary_recursive(int(lowerCAmelCase ) )}' if __name__ == "__main__": from doctest import testmod testmod()
18
from collections import defaultdict def _snake_case ( lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = 1 SCREAMING_SNAKE_CASE_ : Tuple = True for v in tree[start]: if v not in visited: ret += dfs(lowerCAmelCase ) if ret % 2 == 0: cuts.append(lowerCAmelCase ) return ret def _snake_case ( ): """simple docstring""" dfs(1 ) if __name__ == "__main__": __lowerCamelCase , __lowerCamelCase : Union[str, Any] = 10, 9 __lowerCamelCase : Optional[int] = defaultdict(list) __lowerCamelCase : dict[int, bool] = {} __lowerCamelCase : list[int] = [] __lowerCamelCase : Optional[Any] = 0 __lowerCamelCase : Any = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
18
1
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class a__ ( A__ ): def __init__( self : Tuple,_A : Optional[int],_A : Any=13,_A : List[str]=7,_A : int=True,_A : Dict=True,_A : Dict=False,_A : List[Any]=True,_A : Any=99,_A : Optional[int]=32,_A : Any=5,_A : List[Any]=4,_A : Dict=64,_A : Optional[Any]="gelu",_A : Tuple=0.1,_A : Any=0.1,_A : List[Any]=512,_A : Dict=16,_A : Optional[Any]=2,_A : Union[str, Any]=0.02,_A : List[str]=3,_A : Optional[Any]=4,_A : Union[str, Any]=None,_A : Tuple=2,_A : List[str]=2,_A : str=2,_A : Dict=2,_A : Optional[Any]=4,_A : Union[str, Any]=1,): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = parent SCREAMING_SNAKE_CASE_ : Optional[int] = batch_size SCREAMING_SNAKE_CASE_ : Dict = seq_length SCREAMING_SNAKE_CASE_ : Dict = is_training SCREAMING_SNAKE_CASE_ : Optional[int] = use_input_mask SCREAMING_SNAKE_CASE_ : int = use_token_type_ids SCREAMING_SNAKE_CASE_ : Optional[int] = use_labels SCREAMING_SNAKE_CASE_ : Tuple = vocab_size SCREAMING_SNAKE_CASE_ : Any = hidden_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Tuple = num_attention_heads SCREAMING_SNAKE_CASE_ : List[Any] = intermediate_size SCREAMING_SNAKE_CASE_ : List[str] = hidden_act SCREAMING_SNAKE_CASE_ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : str = max_position_embeddings SCREAMING_SNAKE_CASE_ : str = type_vocab_size SCREAMING_SNAKE_CASE_ : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE_ : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE_ : Tuple = num_labels SCREAMING_SNAKE_CASE_ : List[Any] = num_choices SCREAMING_SNAKE_CASE_ : Dict = scope SCREAMING_SNAKE_CASE_ : int = q_groups SCREAMING_SNAKE_CASE_ : Tuple = k_groups SCREAMING_SNAKE_CASE_ : List[Any] = v_groups SCREAMING_SNAKE_CASE_ : Tuple = post_attention_groups SCREAMING_SNAKE_CASE_ : int = intermediate_groups SCREAMING_SNAKE_CASE_ : List[Any] = output_groups def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) SCREAMING_SNAKE_CASE_ : List[Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = None SCREAMING_SNAKE_CASE_ : Any = None SCREAMING_SNAKE_CASE_ : str = None if self.use_labels: SCREAMING_SNAKE_CASE_ : str = ids_tensor([self.batch_size],self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size],self.num_choices ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : str ): """simple docstring""" return SqueezeBertConfig( embedding_size=self.hidden_size,vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,attention_probs_dropout_prob=self.hidden_dropout_prob,attention_dropout=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,initializer_range=self.initializer_range,q_groups=self.q_groups,k_groups=self.k_groups,v_groups=self.v_groups,post_attention_groups=self.post_attention_groups,intermediate_groups=self.intermediate_groups,output_groups=self.output_groups,) def __UpperCamelCase ( self : Tuple,_A : Union[str, Any],_A : Union[str, Any],_A : int,_A : Optional[int],_A : Union[str, Any],_A : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = SqueezeBertModel(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Any = model(_A,_A ) SCREAMING_SNAKE_CASE_ : List[str] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Dict,_A : Any,_A : Tuple,_A : str,_A : Any,_A : Union[str, Any],_A : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = SqueezeBertForMaskedLM(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : List[str] = model(_A,attention_mask=_A,labels=_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : Optional[int],_A : Union[str, Any],_A : Union[str, Any],_A : Any,_A : Tuple,_A : int,_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = SqueezeBertForQuestionAnswering(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model( _A,attention_mask=_A,start_positions=_A,end_positions=_A ) self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : List[Any],_A : List[str],_A : Tuple,_A : List[Any],_A : List[str],_A : List[str],_A : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.num_labels SCREAMING_SNAKE_CASE_ : List[str] = SqueezeBertForSequenceClassification(_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model(_A,attention_mask=_A,labels=_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : str,_A : Optional[int],_A : str,_A : List[Any],_A : List[str],_A : str,_A : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.num_labels SCREAMING_SNAKE_CASE_ : Optional[int] = SqueezeBertForTokenClassification(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[int] = model(_A,attention_mask=_A,labels=_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : List[Any],_A : Tuple,_A : str,_A : Optional[Any],_A : int,_A : str,_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.num_choices SCREAMING_SNAKE_CASE_ : Union[str, Any] = SqueezeBertForMultipleChoice(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = input_ids.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() SCREAMING_SNAKE_CASE_ : str = input_mask.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() SCREAMING_SNAKE_CASE_ : Optional[int] = model( _A,attention_mask=_A,labels=_A,) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)) : Dict = config_and_inputs SCREAMING_SNAKE_CASE_ : Dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class a__ ( A__ , A__ , unittest.TestCase ): A = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) A = ( { 'feature-extraction': SqueezeBertModel, 'fill-mask': SqueezeBertForMaskedLM, 'question-answering': SqueezeBertForQuestionAnswering, 'text-classification': SqueezeBertForSequenceClassification, 'token-classification': SqueezeBertForTokenClassification, 'zero-shot': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) A = False A = True A = False def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = SqueezeBertModelTester(self ) SCREAMING_SNAKE_CASE_ : List[str] = ConfigTester(self,config_class=_A,dim=37 ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*_A ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*_A ) def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*_A ) def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*_A ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*_A ) def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*_A ) @slow def __UpperCamelCase ( self : Any ): """simple docstring""" for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : Tuple = SqueezeBertModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_sentencepiece @require_tokenizers @require_torch class a__ ( unittest.TestCase ): @slow def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = SqueezeBertForSequenceClassification.from_pretrained("squeezebert/squeezebert-mnli" ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor([[1, 2_9414, 232, 328, 740, 1140, 1_2695, 69, 13, 1588, 2]] ) SCREAMING_SNAKE_CASE_ : List[Any] = model(_A )[0] SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.Size((1, 3) ) self.assertEqual(output.shape,_A ) SCREAMING_SNAKE_CASE_ : int = torch.tensor([[0.6401, -0.0349, -0.6041]] ) self.assertTrue(torch.allclose(_A,_A,atol=1E-4 ) )
18
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=lowerCAmelCase ) env_command_parser(subparsers=lowerCAmelCase ) launch_command_parser(subparsers=lowerCAmelCase ) tpu_command_parser(subparsers=lowerCAmelCase ) test_command_parser(subparsers=lowerCAmelCase ) # Let's go SCREAMING_SNAKE_CASE_ : Dict = parser.parse_args() if not hasattr(lowerCAmelCase , "func" ): parser.print_help() exit(1 ) # Run args.func(lowerCAmelCase ) if __name__ == "__main__": main()
18
1
from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class a__ : pass
18
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer __lowerCamelCase : Optional[Any] = logging.get_logger(__name__) __lowerCamelCase : Dict = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __lowerCamelCase : int = { '''vocab_file''': { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt''' ), } } __lowerCamelCase : Any = { '''junnyu/roformer_chinese_small''': 15_36, '''junnyu/roformer_chinese_base''': 15_36, '''junnyu/roformer_chinese_char_small''': 5_12, '''junnyu/roformer_chinese_char_base''': 5_12, '''junnyu/roformer_small_discriminator''': 1_28, '''junnyu/roformer_small_generator''': 1_28, } __lowerCamelCase : Union[str, Any] = { '''junnyu/roformer_chinese_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_base''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_base''': {'''do_lower_case''': True}, '''junnyu/roformer_small_discriminator''': {'''do_lower_case''': True}, '''junnyu/roformer_small_generator''': {'''do_lower_case''': True}, } class a__ ( A__ ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = PRETRAINED_INIT_CONFIGURATION A = RoFormerTokenizer def __init__( self : List[str],_A : int=None,_A : int=None,_A : int=True,_A : List[Any]="[UNK]",_A : Tuple="[SEP]",_A : List[Any]="[PAD]",_A : Optional[int]="[CLS]",_A : Optional[Any]="[MASK]",_A : Optional[int]=True,_A : List[str]=None,**_A : List[Any],): """simple docstring""" super().__init__( _A,tokenizer_file=_A,do_lower_case=_A,unk_token=_A,sep_token=_A,pad_token=_A,cls_token=_A,mask_token=_A,tokenize_chinese_chars=_A,strip_accents=_A,**_A,) SCREAMING_SNAKE_CASE_ : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("lowercase",_A ) != do_lower_case or pre_tok_state.get("strip_accents",_A ) != strip_accents ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = getattr(_A,pre_tok_state.pop("type" ) ) SCREAMING_SNAKE_CASE_ : Any = do_lower_case SCREAMING_SNAKE_CASE_ : List[str] = strip_accents SCREAMING_SNAKE_CASE_ : str = pre_tok_class(**_A ) SCREAMING_SNAKE_CASE_ : List[str] = do_lower_case def __getstate__( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.__dict__.copy() SCREAMING_SNAKE_CASE_ : Optional[Any] = BertPreTokenizer() return state def __setstate__( self : List[Any],_A : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = d SCREAMING_SNAKE_CASE_ : List[str] = self.__dict__["_tokenizer"].get_vocab() SCREAMING_SNAKE_CASE_ : Any = PreTokenizer.custom(JiebaPreTokenizer(_A ) ) def __UpperCamelCase ( self : Union[str, Any],_A : List[Any],_A : str=None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCamelCase ( self : str,_A : List[int],_A : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCamelCase ( self : int,_A : str,_A : Optional[str] = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._tokenizer.model.save(_A,name=_A ) return tuple(_A ) def __UpperCamelCase ( self : int,_A : Optional[int],_A : List[Any]=None,_A : Tuple=None,_A : str=False,**_A : List[Any],): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = BertPreTokenizer() return super().save_pretrained(_A,_A,_A,_A,**_A )
18
1
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class a__ ( yaml.SafeLoader ): def __UpperCamelCase ( self : str,_A : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = [self.constructed_objects[key_node] for key_node, _ in node.value] SCREAMING_SNAKE_CASE_ : List[str] = [tuple(_A ) if isinstance(_A,_A ) else key for key in keys] SCREAMING_SNAKE_CASE_ : Optional[int] = Counter(_A ) SCREAMING_SNAKE_CASE_ : Tuple = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F'Got duplicate yaml keys: {duplicate_keys}' ) def __UpperCamelCase ( self : Tuple,_A : Dict,_A : List[Any]=False ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = super().construct_mapping(_A,deep=_A ) self._check_no_duplicates_on_constructed_node(_A ) return mapping def _snake_case ( lowerCAmelCase : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: SCREAMING_SNAKE_CASE_ : List[Any] = full_content[1:].index("---" ) + 1 SCREAMING_SNAKE_CASE_ : int = "\n".join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(lowerCAmelCase ) class a__ ( A__ ): # class attributes A = {'train_eval_index'} # train-eval-index in the YAML metadata @classmethod def __UpperCamelCase ( cls : Any,_A : Path ): """simple docstring""" with open(_A,encoding="utf-8" ) as readme_file: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(_A ) else: return cls() def __UpperCamelCase ( self : Dict,_A : Path ): """simple docstring""" if path.exists(): with open(_A,encoding="utf-8" ) as readme_file: SCREAMING_SNAKE_CASE_ : int = readme_file.read() else: SCREAMING_SNAKE_CASE_ : Any = None SCREAMING_SNAKE_CASE_ : int = self._to_readme(_A ) with open(_A,"w",encoding="utf-8" ) as readme_file: readme_file.write(_A ) def __UpperCamelCase ( self : Optional[int],_A : Optional[str] = None ): """simple docstring""" if readme_content is not None: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = _split_yaml_from_readme(_A ) SCREAMING_SNAKE_CASE_ : Tuple = "---\n" + self.to_yaml_string() + "---\n" + content else: SCREAMING_SNAKE_CASE_ : Dict = "---\n" + self.to_yaml_string() + "---\n" return full_content @classmethod def __UpperCamelCase ( cls : Dict,_A : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = yaml.load(_A,Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields SCREAMING_SNAKE_CASE_ : Any = { (key.replace("-","_" ) if key.replace("-","_" ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**_A ) def __UpperCamelCase ( self : Dict ): """simple docstring""" return yaml.safe_dump( { (key.replace("_","-" ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() },sort_keys=_A,allow_unicode=_A,encoding="utf-8",).decode("utf-8" ) __lowerCamelCase : List[Any] = { '''image-classification''': [], '''translation''': [], '''image-segmentation''': [], '''fill-mask''': [], '''automatic-speech-recognition''': [], '''token-classification''': [], '''sentence-similarity''': [], '''audio-classification''': [], '''question-answering''': [], '''summarization''': [], '''zero-shot-classification''': [], '''table-to-text''': [], '''feature-extraction''': [], '''other''': [], '''multiple-choice''': [], '''text-classification''': [], '''text-to-image''': [], '''text2text-generation''': [], '''zero-shot-image-classification''': [], '''tabular-classification''': [], '''tabular-regression''': [], '''image-to-image''': [], '''tabular-to-text''': [], '''unconditional-image-generation''': [], '''text-retrieval''': [], '''text-to-speech''': [], '''object-detection''': [], '''audio-to-audio''': [], '''text-generation''': [], '''conversational''': [], '''table-question-answering''': [], '''visual-question-answering''': [], '''image-to-text''': [], '''reinforcement-learning''': [], '''voice-activity-detection''': [], '''time-series-forecasting''': [], '''document-question-answering''': [], } if __name__ == "__main__": from argparse import ArgumentParser __lowerCamelCase : List[Any] = ArgumentParser(usage='''Validate the yaml metadata block of a README.md file.''') ap.add_argument('''readme_filepath''') __lowerCamelCase : Dict = ap.parse_args() __lowerCamelCase : List[Any] = Path(args.readme_filepath) __lowerCamelCase : Optional[int] = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
18
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class a__ ( A__ ): def __init__( self : Tuple,_A : Optional[int],_A : Any=13,_A : List[str]=7,_A : int=True,_A : Dict=True,_A : Dict=False,_A : List[Any]=True,_A : Any=99,_A : Optional[int]=32,_A : Any=5,_A : List[Any]=4,_A : Dict=64,_A : Optional[Any]="gelu",_A : Tuple=0.1,_A : Any=0.1,_A : List[Any]=512,_A : Dict=16,_A : Optional[Any]=2,_A : Union[str, Any]=0.02,_A : List[str]=3,_A : Optional[Any]=4,_A : Union[str, Any]=None,_A : Tuple=2,_A : List[str]=2,_A : str=2,_A : Dict=2,_A : Optional[Any]=4,_A : Union[str, Any]=1,): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = parent SCREAMING_SNAKE_CASE_ : Optional[int] = batch_size SCREAMING_SNAKE_CASE_ : Dict = seq_length SCREAMING_SNAKE_CASE_ : Dict = is_training SCREAMING_SNAKE_CASE_ : Optional[int] = use_input_mask SCREAMING_SNAKE_CASE_ : int = use_token_type_ids SCREAMING_SNAKE_CASE_ : Optional[int] = use_labels SCREAMING_SNAKE_CASE_ : Tuple = vocab_size SCREAMING_SNAKE_CASE_ : Any = hidden_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Tuple = num_attention_heads SCREAMING_SNAKE_CASE_ : List[Any] = intermediate_size SCREAMING_SNAKE_CASE_ : List[str] = hidden_act SCREAMING_SNAKE_CASE_ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : str = max_position_embeddings SCREAMING_SNAKE_CASE_ : str = type_vocab_size SCREAMING_SNAKE_CASE_ : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE_ : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE_ : Tuple = num_labels SCREAMING_SNAKE_CASE_ : List[Any] = num_choices SCREAMING_SNAKE_CASE_ : Dict = scope SCREAMING_SNAKE_CASE_ : int = q_groups SCREAMING_SNAKE_CASE_ : Tuple = k_groups SCREAMING_SNAKE_CASE_ : List[Any] = v_groups SCREAMING_SNAKE_CASE_ : Tuple = post_attention_groups SCREAMING_SNAKE_CASE_ : int = intermediate_groups SCREAMING_SNAKE_CASE_ : List[Any] = output_groups def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) SCREAMING_SNAKE_CASE_ : List[Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = None SCREAMING_SNAKE_CASE_ : Any = None SCREAMING_SNAKE_CASE_ : str = None if self.use_labels: SCREAMING_SNAKE_CASE_ : str = ids_tensor([self.batch_size],self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size],self.num_choices ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : str ): """simple docstring""" return SqueezeBertConfig( embedding_size=self.hidden_size,vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,attention_probs_dropout_prob=self.hidden_dropout_prob,attention_dropout=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,initializer_range=self.initializer_range,q_groups=self.q_groups,k_groups=self.k_groups,v_groups=self.v_groups,post_attention_groups=self.post_attention_groups,intermediate_groups=self.intermediate_groups,output_groups=self.output_groups,) def __UpperCamelCase ( self : Tuple,_A : Union[str, Any],_A : Union[str, Any],_A : int,_A : Optional[int],_A : Union[str, Any],_A : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = SqueezeBertModel(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Any = model(_A,_A ) SCREAMING_SNAKE_CASE_ : List[str] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Dict,_A : Any,_A : Tuple,_A : str,_A : Any,_A : Union[str, Any],_A : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = SqueezeBertForMaskedLM(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : List[str] = model(_A,attention_mask=_A,labels=_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : Optional[int],_A : Union[str, Any],_A : Union[str, Any],_A : Any,_A : Tuple,_A : int,_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = SqueezeBertForQuestionAnswering(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model( _A,attention_mask=_A,start_positions=_A,end_positions=_A ) self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : List[Any],_A : List[str],_A : Tuple,_A : List[Any],_A : List[str],_A : List[str],_A : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.num_labels SCREAMING_SNAKE_CASE_ : List[str] = SqueezeBertForSequenceClassification(_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model(_A,attention_mask=_A,labels=_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : str,_A : Optional[int],_A : str,_A : List[Any],_A : List[str],_A : str,_A : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.num_labels SCREAMING_SNAKE_CASE_ : Optional[int] = SqueezeBertForTokenClassification(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[int] = model(_A,attention_mask=_A,labels=_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : List[Any],_A : Tuple,_A : str,_A : Optional[Any],_A : int,_A : str,_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.num_choices SCREAMING_SNAKE_CASE_ : Union[str, Any] = SqueezeBertForMultipleChoice(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = input_ids.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() SCREAMING_SNAKE_CASE_ : str = input_mask.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() SCREAMING_SNAKE_CASE_ : Optional[int] = model( _A,attention_mask=_A,labels=_A,) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)) : Dict = config_and_inputs SCREAMING_SNAKE_CASE_ : Dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class a__ ( A__ , A__ , unittest.TestCase ): A = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) A = ( { 'feature-extraction': SqueezeBertModel, 'fill-mask': SqueezeBertForMaskedLM, 'question-answering': SqueezeBertForQuestionAnswering, 'text-classification': SqueezeBertForSequenceClassification, 'token-classification': SqueezeBertForTokenClassification, 'zero-shot': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) A = False A = True A = False def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = SqueezeBertModelTester(self ) SCREAMING_SNAKE_CASE_ : List[str] = ConfigTester(self,config_class=_A,dim=37 ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*_A ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*_A ) def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*_A ) def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*_A ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*_A ) def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*_A ) @slow def __UpperCamelCase ( self : Any ): """simple docstring""" for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : Tuple = SqueezeBertModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_sentencepiece @require_tokenizers @require_torch class a__ ( unittest.TestCase ): @slow def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = SqueezeBertForSequenceClassification.from_pretrained("squeezebert/squeezebert-mnli" ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor([[1, 2_9414, 232, 328, 740, 1140, 1_2695, 69, 13, 1588, 2]] ) SCREAMING_SNAKE_CASE_ : List[Any] = model(_A )[0] SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.Size((1, 3) ) self.assertEqual(output.shape,_A ) SCREAMING_SNAKE_CASE_ : int = torch.tensor([[0.6401, -0.0349, -0.6041]] ) self.assertTrue(torch.allclose(_A,_A,atol=1E-4 ) )
18
1
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np __lowerCamelCase : List[Any] = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 __lowerCamelCase : List[Any] = typing.Union[np.floataa, int, float] # noqa: UP007 def _snake_case ( lowerCAmelCase : Vector , lowerCAmelCase : Vector ): """simple docstring""" return np.sqrt(np.sum((np.asarray(lowerCAmelCase ) - np.asarray(lowerCAmelCase )) ** 2 ) ) def _snake_case ( lowerCAmelCase : Vector , lowerCAmelCase : Vector ): """simple docstring""" return sum((va - va) ** 2 for va, va in zip(lowerCAmelCase , lowerCAmelCase ) ) ** (1 / 2) if __name__ == "__main__": def _snake_case ( ): """simple docstring""" from timeit import timeit print("Without Numpy" ) print( timeit( "euclidean_distance_no_np([1, 2, 3], [4, 5, 6])" , number=1_0_0_0_0 , globals=globals() , ) ) print("With Numpy" ) print( timeit( "euclidean_distance([1, 2, 3], [4, 5, 6])" , number=1_0_0_0_0 , globals=globals() , ) ) benchmark()
18
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def _snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Union[str, Any] = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE_ : List[str] = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def _snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : Dict , lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Optional[Any] = {"text": "string"} SCREAMING_SNAKE_CASE_ : Any = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE_ : List[str] = ( Features({feature: Value(lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE_ : Optional[Any] = TextDatasetReader(lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def _snake_case ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : List[str] = {"text": "string"} SCREAMING_SNAKE_CASE_ : List[str] = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase , split=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : Optional[int] ): """simple docstring""" if issubclass(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = text_path elif issubclass(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [text_path] SCREAMING_SNAKE_CASE_ : int = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Optional[int] = {"text": "string"} SCREAMING_SNAKE_CASE_ : List[str] = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) def _snake_case ( lowerCAmelCase : Dict , lowerCAmelCase : Dict , lowerCAmelCase : List[str]=("train",) ): """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) for split in splits: SCREAMING_SNAKE_CASE_ : int = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def _snake_case ( lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Union[str, Any] = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE_ : List[Any] = TextDatasetReader({"train": text_path} , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase ).read() _check_text_datasetdict(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def _snake_case ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = tmp_path / "cache" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" SCREAMING_SNAKE_CASE_ : Tuple = {"text": "string"} SCREAMING_SNAKE_CASE_ : Any = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE_ : Dict = ( Features({feature: Value(lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE_ : str = TextDatasetReader({"train": text_path} , features=lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_datasetdict(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def _snake_case ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any , lowerCAmelCase : Dict ): """simple docstring""" if split: SCREAMING_SNAKE_CASE_ : Optional[int] = {split: text_path} else: SCREAMING_SNAKE_CASE_ : List[Any] = "train" SCREAMING_SNAKE_CASE_ : Tuple = {"train": text_path, "test": text_path} SCREAMING_SNAKE_CASE_ : Any = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : List[str] = {"text": "string"} SCREAMING_SNAKE_CASE_ : str = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_datasetdict(lowerCAmelCase , lowerCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
18
1
import random def _snake_case ( lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = num - 1 SCREAMING_SNAKE_CASE_ : List[str] = 0 while s % 2 == 0: SCREAMING_SNAKE_CASE_ : List[str] = s // 2 t += 1 for _ in range(5 ): SCREAMING_SNAKE_CASE_ : str = random.randrange(2 , num - 1 ) SCREAMING_SNAKE_CASE_ : List[str] = pow(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) if v != 1: SCREAMING_SNAKE_CASE_ : List[Any] = 0 while v != (num - 1): if i == t - 1: return False else: SCREAMING_SNAKE_CASE_ : Dict = i + 1 SCREAMING_SNAKE_CASE_ : List[str] = (v**2) % num return True def _snake_case ( lowerCAmelCase : int ): """simple docstring""" if num < 2: return False SCREAMING_SNAKE_CASE_ : Dict = [ 2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1, 4_3, 4_7, 5_3, 5_9, 6_1, 6_7, 7_1, 7_3, 7_9, 8_3, 8_9, 9_7, 1_0_1, 1_0_3, 1_0_7, 1_0_9, 1_1_3, 1_2_7, 1_3_1, 1_3_7, 1_3_9, 1_4_9, 1_5_1, 1_5_7, 1_6_3, 1_6_7, 1_7_3, 1_7_9, 1_8_1, 1_9_1, 1_9_3, 1_9_7, 1_9_9, 2_1_1, 2_2_3, 2_2_7, 2_2_9, 2_3_3, 2_3_9, 2_4_1, 2_5_1, 2_5_7, 2_6_3, 2_6_9, 2_7_1, 2_7_7, 2_8_1, 2_8_3, 2_9_3, 3_0_7, 3_1_1, 3_1_3, 3_1_7, 3_3_1, 3_3_7, 3_4_7, 3_4_9, 3_5_3, 3_5_9, 3_6_7, 3_7_3, 3_7_9, 3_8_3, 3_8_9, 3_9_7, 4_0_1, 4_0_9, 4_1_9, 4_2_1, 4_3_1, 4_3_3, 4_3_9, 4_4_3, 4_4_9, 4_5_7, 4_6_1, 4_6_3, 4_6_7, 4_7_9, 4_8_7, 4_9_1, 4_9_9, 5_0_3, 5_0_9, 5_2_1, 5_2_3, 5_4_1, 5_4_7, 5_5_7, 5_6_3, 5_6_9, 5_7_1, 5_7_7, 5_8_7, 5_9_3, 5_9_9, 6_0_1, 6_0_7, 6_1_3, 6_1_7, 6_1_9, 6_3_1, 6_4_1, 6_4_3, 6_4_7, 6_5_3, 6_5_9, 6_6_1, 6_7_3, 6_7_7, 6_8_3, 6_9_1, 7_0_1, 7_0_9, 7_1_9, 7_2_7, 7_3_3, 7_3_9, 7_4_3, 7_5_1, 7_5_7, 7_6_1, 7_6_9, 7_7_3, 7_8_7, 7_9_7, 8_0_9, 8_1_1, 8_2_1, 8_2_3, 8_2_7, 8_2_9, 8_3_9, 8_5_3, 8_5_7, 8_5_9, 8_6_3, 8_7_7, 8_8_1, 8_8_3, 8_8_7, 9_0_7, 9_1_1, 9_1_9, 9_2_9, 9_3_7, 9_4_1, 9_4_7, 9_5_3, 9_6_7, 9_7_1, 9_7_7, 9_8_3, 9_9_1, 9_9_7, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(lowerCAmelCase ) def _snake_case ( lowerCAmelCase : int = 1_0_2_4 ): """simple docstring""" while True: SCREAMING_SNAKE_CASE_ : Optional[Any] = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(lowerCAmelCase ): return num if __name__ == "__main__": __lowerCamelCase : Union[str, Any] = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
18
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def _snake_case ( lowerCAmelCase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class a__ ( A__ , A__ , A__ , unittest.TestCase ): A = StableDiffusionLatentUpscalePipeline A = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'height', 'width', 'cross_attention_kwargs', 'negative_prompt_embeds', 'prompt_embeds', } A = PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'} A = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A = frozenset([] ) A = True @property def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = 1 SCREAMING_SNAKE_CASE_ : Optional[int] = 4 SCREAMING_SNAKE_CASE_ : Optional[int] = (16, 16) SCREAMING_SNAKE_CASE_ : Dict = floats_tensor((batch_size, num_channels) + sizes,rng=random.Random(0 ) ).to(_A ) return image def __UpperCamelCase ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : str = UNetaDConditionModel( act_fn="gelu",attention_head_dim=8,norm_num_groups=_A,block_out_channels=[32, 32, 64, 64],time_cond_proj_dim=160,conv_in_kernel=1,conv_out_kernel=1,cross_attention_dim=32,down_block_types=( "KDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", ),in_channels=8,mid_block_type=_A,only_cross_attention=_A,out_channels=5,resnet_time_scale_shift="scale_shift",time_embedding_type="fourier",timestep_post_act="gelu",up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D"),) SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 32, 64, 64],in_channels=3,out_channels=3,down_block_types=[ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", ],up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],latent_channels=4,) SCREAMING_SNAKE_CASE_ : int = EulerDiscreteScheduler(prediction_type="sample" ) SCREAMING_SNAKE_CASE_ : List[Any] = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1000,hidden_act="quick_gelu",projection_dim=512,) SCREAMING_SNAKE_CASE_ : Tuple = CLIPTextModel(_A ) SCREAMING_SNAKE_CASE_ : int = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = { "unet": model.eval(), "vae": vae.eval(), "scheduler": scheduler, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def __UpperCamelCase ( self : List[Any],_A : int,_A : Tuple=0 ): """simple docstring""" if str(_A ).startswith("mps" ): SCREAMING_SNAKE_CASE_ : Optional[int] = torch.manual_seed(_A ) else: SCREAMING_SNAKE_CASE_ : Dict = torch.Generator(device=_A ).manual_seed(_A ) SCREAMING_SNAKE_CASE_ : Tuple = { "prompt": "A painting of a squirrel eating a burger", "image": self.dummy_image.cpu(), "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = "cpu" SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : List[str] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ : Tuple = self.get_dummy_inputs(_A ) SCREAMING_SNAKE_CASE_ : Dict = pipe(**_A ).images SCREAMING_SNAKE_CASE_ : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape,(1, 256, 256, 3) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) SCREAMING_SNAKE_CASE_ : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A,1E-3 ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def __UpperCamelCase ( self : int ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" super().test_save_load_local(expected_max_difference=3E-3 ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3E-3 ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = [ "DDIMScheduler", "DDPMScheduler", "PNDMScheduler", "HeunDiscreteScheduler", "EulerAncestralDiscreteScheduler", "KDPM2DiscreteScheduler", "KDPM2AncestralDiscreteScheduler", "DPMSolverSDEScheduler", ] SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : Any = self.pipeline_class(**_A ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ : Any = self.get_dummy_inputs(_A ) SCREAMING_SNAKE_CASE_ : Optional[Any] = 2 SCREAMING_SNAKE_CASE_ : Optional[int] = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue SCREAMING_SNAKE_CASE_ : Tuple = getattr(_A,scheduler_enum.name ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = scheduler_cls.from_config(pipe.scheduler.config ) SCREAMING_SNAKE_CASE_ : Optional[int] = pipe(**_A )[0] outputs.append(_A ) assert check_same_shape(_A ) @require_torch_gpu @slow class a__ ( unittest.TestCase ): def __UpperCamelCase ( self : Dict ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = torch.manual_seed(33 ) SCREAMING_SNAKE_CASE_ : Optional[int] = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4",torch_dtype=torch.floataa ) pipe.to("cuda" ) SCREAMING_SNAKE_CASE_ : List[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler",torch_dtype=torch.floataa ) upscaler.to("cuda" ) SCREAMING_SNAKE_CASE_ : Tuple = "a photo of an astronaut high resolution, unreal engine, ultra realistic" SCREAMING_SNAKE_CASE_ : str = pipe(_A,generator=_A,output_type="latent" ).images SCREAMING_SNAKE_CASE_ : Optional[Any] = upscaler( prompt=_A,image=_A,num_inference_steps=20,guidance_scale=0,generator=_A,output_type="np",).images[0] SCREAMING_SNAKE_CASE_ : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy" ) assert np.abs((expected_image - image).mean() ) < 5E-2 def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = torch.manual_seed(33 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler",torch_dtype=torch.floataa ) upscaler.to("cuda" ) SCREAMING_SNAKE_CASE_ : Any = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas" SCREAMING_SNAKE_CASE_ : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png" ) SCREAMING_SNAKE_CASE_ : str = upscaler( prompt=_A,image=_A,num_inference_steps=20,guidance_scale=0,generator=_A,output_type="np",).images[0] SCREAMING_SNAKE_CASE_ : Any = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy" ) assert np.abs((expected_image - image).max() ) < 5E-2
18
1
from collections.abc import Sequence from queue import Queue class a__ : def __init__( self : int,_A : List[Any],_A : Optional[Any],_A : Optional[int],_A : int=None,_A : List[str]=None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = start SCREAMING_SNAKE_CASE_ : List[str] = end SCREAMING_SNAKE_CASE_ : Tuple = val SCREAMING_SNAKE_CASE_ : List[str] = (start + end) // 2 SCREAMING_SNAKE_CASE_ : Optional[int] = left SCREAMING_SNAKE_CASE_ : str = right def __repr__( self : Tuple ): """simple docstring""" return F'SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})' class a__ : def __init__( self : Any,_A : Sequence,_A : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = collection SCREAMING_SNAKE_CASE_ : Optional[int] = function if self.collection: SCREAMING_SNAKE_CASE_ : List[str] = self._build_tree(0,len(_A ) - 1 ) def __UpperCamelCase ( self : int,_A : Any,_A : List[Any] ): """simple docstring""" self._update_tree(self.root,_A,_A ) def __UpperCamelCase ( self : str,_A : Any,_A : List[Any] ): """simple docstring""" return self._query_range(self.root,_A,_A ) def __UpperCamelCase ( self : Any,_A : Optional[int],_A : int ): """simple docstring""" if start == end: return SegmentTreeNode(_A,_A,self.collection[start] ) SCREAMING_SNAKE_CASE_ : List[Any] = (start + end) // 2 SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._build_tree(_A,_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = self._build_tree(mid + 1,_A ) return SegmentTreeNode(_A,_A,self.fn(left.val,right.val ),_A,_A ) def __UpperCamelCase ( self : int,_A : int,_A : Tuple,_A : Dict ): """simple docstring""" if node.start == i and node.end == i: SCREAMING_SNAKE_CASE_ : Union[str, Any] = val return if i <= node.mid: self._update_tree(node.left,_A,_A ) else: self._update_tree(node.right,_A,_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.fn(node.left.val,node.right.val ) def __UpperCamelCase ( self : str,_A : List[str],_A : Optional[int],_A : Optional[Any] ): """simple docstring""" if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left,_A,_A ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left,_A,node.mid ),self._query_range(node.right,node.mid + 1,_A ),) else: # range in right child tree return self._query_range(node.right,_A,_A ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" if self.root is not None: SCREAMING_SNAKE_CASE_ : int = Queue() queue.put(self.root ) while not queue.empty(): SCREAMING_SNAKE_CASE_ : Tuple = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('''*''' * 50) __lowerCamelCase : int = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
18
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging __lowerCamelCase : Optional[int] = logging.get_logger(__name__) __lowerCamelCase : Tuple = { '''deepmind/language-perceiver''': '''https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json''', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class a__ ( A__ ): A = 'perceiver' def __init__( self : List[Any],_A : Tuple=256,_A : str=1280,_A : List[Any]=768,_A : Union[str, Any]=1,_A : Union[str, Any]=26,_A : List[str]=8,_A : List[Any]=8,_A : List[Any]=None,_A : List[Any]=None,_A : Union[str, Any]="kv",_A : Any=1,_A : int=1,_A : Dict="gelu",_A : Any=0.1,_A : int=0.02,_A : int=1E-12,_A : Any=True,_A : Optional[Any]=262,_A : List[Any]=2048,_A : str=56,_A : Optional[int]=[368, 496],_A : Dict=16,_A : Tuple=1920,_A : List[Any]=16,_A : str=[1, 16, 224, 224],**_A : Optional[Any],): """simple docstring""" super().__init__(**_A ) SCREAMING_SNAKE_CASE_ : Dict = num_latents SCREAMING_SNAKE_CASE_ : List[Any] = d_latents SCREAMING_SNAKE_CASE_ : Union[str, Any] = d_model SCREAMING_SNAKE_CASE_ : Optional[int] = num_blocks SCREAMING_SNAKE_CASE_ : List[Any] = num_self_attends_per_block SCREAMING_SNAKE_CASE_ : Tuple = num_self_attention_heads SCREAMING_SNAKE_CASE_ : List[str] = num_cross_attention_heads SCREAMING_SNAKE_CASE_ : List[Any] = qk_channels SCREAMING_SNAKE_CASE_ : Any = v_channels SCREAMING_SNAKE_CASE_ : Any = cross_attention_shape_for_attention SCREAMING_SNAKE_CASE_ : List[str] = self_attention_widening_factor SCREAMING_SNAKE_CASE_ : Any = cross_attention_widening_factor SCREAMING_SNAKE_CASE_ : List[Any] = hidden_act SCREAMING_SNAKE_CASE_ : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Any = initializer_range SCREAMING_SNAKE_CASE_ : List[Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : Tuple = use_query_residual # masked language modeling attributes SCREAMING_SNAKE_CASE_ : List[str] = vocab_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = max_position_embeddings # image classification attributes SCREAMING_SNAKE_CASE_ : Dict = image_size # flow attributes SCREAMING_SNAKE_CASE_ : List[Any] = train_size # multimodal autoencoding attributes SCREAMING_SNAKE_CASE_ : str = num_frames SCREAMING_SNAKE_CASE_ : Any = audio_samples_per_frame SCREAMING_SNAKE_CASE_ : Tuple = samples_per_patch SCREAMING_SNAKE_CASE_ : Optional[Any] = output_shape class a__ ( A__ ): @property def __UpperCamelCase ( self : List[str] ): """simple docstring""" if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ : List[str] = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE_ : str = {0: "batch", 1: "sequence"} return OrderedDict( [ ("inputs", dynamic_axis), ("attention_mask", dynamic_axis), ] ) @property def __UpperCamelCase ( self : List[Any] ): """simple docstring""" return 1E-4 def __UpperCamelCase ( self : List[str],_A : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"],_A : int = -1,_A : int = -1,_A : int = -1,_A : bool = False,_A : Optional[TensorType] = None,_A : int = 3,_A : int = 40,_A : int = 40,): """simple docstring""" if isinstance(_A,_A ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ : Tuple = compute_effective_axis_dimension( _A,fixed_dimension=OnnxConfig.default_fixed_batch,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ : Tuple = preprocessor.num_special_tokens_to_add(_A ) SCREAMING_SNAKE_CASE_ : Any = compute_effective_axis_dimension( _A,fixed_dimension=OnnxConfig.default_fixed_sequence,num_token_to_add=_A ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE_ : Optional[Any] = [" ".join(["a"] ) * seq_length] * batch_size SCREAMING_SNAKE_CASE_ : str = dict(preprocessor(_A,return_tensors=_A ) ) SCREAMING_SNAKE_CASE_ : List[str] = inputs.pop("input_ids" ) return inputs elif isinstance(_A,_A ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ : Any = compute_effective_axis_dimension(_A,fixed_dimension=OnnxConfig.default_fixed_batch ) SCREAMING_SNAKE_CASE_ : Optional[int] = self._generate_dummy_images(_A,_A,_A,_A ) SCREAMING_SNAKE_CASE_ : Any = dict(preprocessor(images=_A,return_tensors=_A ) ) SCREAMING_SNAKE_CASE_ : Any = inputs.pop("pixel_values" ) return inputs else: raise ValueError( "Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor." )
18
1
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def _snake_case ( lowerCAmelCase : Features ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.inf def set_batch_size(lowerCAmelCase : FeatureType ) -> None: nonlocal batch_size if isinstance(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : int = min(lowerCAmelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = min(lowerCAmelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(lowerCAmelCase , lowerCAmelCase ) and feature.dtype == "binary": SCREAMING_SNAKE_CASE_ : Union[str, Any] = min(lowerCAmelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(lowerCAmelCase , lowerCAmelCase ) return None if batch_size is np.inf else batch_size class a__ ( A__ ): def __init__( self : List[str],_A : NestedDataStructureLike[PathLike],_A : Optional[NamedSplit] = None,_A : Optional[Features] = None,_A : str = None,_A : bool = False,_A : bool = False,_A : Optional[int] = None,**_A : int,): """simple docstring""" super().__init__( _A,split=_A,features=_A,cache_dir=_A,keep_in_memory=_A,streaming=_A,num_proc=_A,**_A,) SCREAMING_SNAKE_CASE_ : int = path_or_paths if isinstance(_A,_A ) else {self.split: path_or_paths} SCREAMING_SNAKE_CASE_ : Tuple = _PACKAGED_DATASETS_MODULES["parquet"][1] SCREAMING_SNAKE_CASE_ : Optional[Any] = Parquet( cache_dir=_A,data_files=_A,features=_A,hash=_A,**_A,) def __UpperCamelCase ( self : str ): """simple docstring""" if self.streaming: SCREAMING_SNAKE_CASE_ : str = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: SCREAMING_SNAKE_CASE_ : Optional[int] = None SCREAMING_SNAKE_CASE_ : int = None SCREAMING_SNAKE_CASE_ : List[Any] = None SCREAMING_SNAKE_CASE_ : Any = None self.builder.download_and_prepare( download_config=_A,download_mode=_A,verification_mode=_A,base_path=_A,num_proc=self.num_proc,) SCREAMING_SNAKE_CASE_ : List[Any] = self.builder.as_dataset( split=self.split,verification_mode=_A,in_memory=self.keep_in_memory ) return dataset class a__ : def __init__( self : int,_A : Dataset,_A : Union[PathLike, BinaryIO],_A : Optional[int] = None,**_A : str,): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = dataset SCREAMING_SNAKE_CASE_ : Union[str, Any] = path_or_buf SCREAMING_SNAKE_CASE_ : int = batch_size or get_writer_batch_size(dataset.features ) SCREAMING_SNAKE_CASE_ : List[Any] = parquet_writer_kwargs def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf,(str, bytes, os.PathLike) ): with open(self.path_or_buf,"wb+" ) as buffer: SCREAMING_SNAKE_CASE_ : Any = self._write(file_obj=_A,batch_size=_A,**self.parquet_writer_kwargs ) else: SCREAMING_SNAKE_CASE_ : Dict = self._write(file_obj=self.path_or_buf,batch_size=_A,**self.parquet_writer_kwargs ) return written def __UpperCamelCase ( self : str,_A : BinaryIO,_A : int,**_A : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = 0 SCREAMING_SNAKE_CASE_ : Any = parquet_writer_kwargs.pop("path_or_buf",_A ) SCREAMING_SNAKE_CASE_ : Tuple = self.dataset.features.arrow_schema SCREAMING_SNAKE_CASE_ : List[str] = pq.ParquetWriter(_A,schema=_A,**_A ) for offset in logging.tqdm( range(0,len(self.dataset ),_A ),unit="ba",disable=not logging.is_progress_bar_enabled(),desc="Creating parquet from Arrow format",): SCREAMING_SNAKE_CASE_ : Any = query_table( table=self.dataset._data,key=slice(_A,offset + batch_size ),indices=self.dataset._indices if self.dataset._indices is not None else None,) writer.write_table(_A ) written += batch.nbytes writer.close() return written
18
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class a__ ( yaml.SafeLoader ): def __UpperCamelCase ( self : str,_A : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = [self.constructed_objects[key_node] for key_node, _ in node.value] SCREAMING_SNAKE_CASE_ : List[str] = [tuple(_A ) if isinstance(_A,_A ) else key for key in keys] SCREAMING_SNAKE_CASE_ : Optional[int] = Counter(_A ) SCREAMING_SNAKE_CASE_ : Tuple = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F'Got duplicate yaml keys: {duplicate_keys}' ) def __UpperCamelCase ( self : Tuple,_A : Dict,_A : List[Any]=False ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = super().construct_mapping(_A,deep=_A ) self._check_no_duplicates_on_constructed_node(_A ) return mapping def _snake_case ( lowerCAmelCase : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: SCREAMING_SNAKE_CASE_ : List[Any] = full_content[1:].index("---" ) + 1 SCREAMING_SNAKE_CASE_ : int = "\n".join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(lowerCAmelCase ) class a__ ( A__ ): # class attributes A = {'train_eval_index'} # train-eval-index in the YAML metadata @classmethod def __UpperCamelCase ( cls : Any,_A : Path ): """simple docstring""" with open(_A,encoding="utf-8" ) as readme_file: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(_A ) else: return cls() def __UpperCamelCase ( self : Dict,_A : Path ): """simple docstring""" if path.exists(): with open(_A,encoding="utf-8" ) as readme_file: SCREAMING_SNAKE_CASE_ : int = readme_file.read() else: SCREAMING_SNAKE_CASE_ : Any = None SCREAMING_SNAKE_CASE_ : int = self._to_readme(_A ) with open(_A,"w",encoding="utf-8" ) as readme_file: readme_file.write(_A ) def __UpperCamelCase ( self : Optional[int],_A : Optional[str] = None ): """simple docstring""" if readme_content is not None: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = _split_yaml_from_readme(_A ) SCREAMING_SNAKE_CASE_ : Tuple = "---\n" + self.to_yaml_string() + "---\n" + content else: SCREAMING_SNAKE_CASE_ : Dict = "---\n" + self.to_yaml_string() + "---\n" return full_content @classmethod def __UpperCamelCase ( cls : Dict,_A : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = yaml.load(_A,Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields SCREAMING_SNAKE_CASE_ : Any = { (key.replace("-","_" ) if key.replace("-","_" ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**_A ) def __UpperCamelCase ( self : Dict ): """simple docstring""" return yaml.safe_dump( { (key.replace("_","-" ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() },sort_keys=_A,allow_unicode=_A,encoding="utf-8",).decode("utf-8" ) __lowerCamelCase : List[Any] = { '''image-classification''': [], '''translation''': [], '''image-segmentation''': [], '''fill-mask''': [], '''automatic-speech-recognition''': [], '''token-classification''': [], '''sentence-similarity''': [], '''audio-classification''': [], '''question-answering''': [], '''summarization''': [], '''zero-shot-classification''': [], '''table-to-text''': [], '''feature-extraction''': [], '''other''': [], '''multiple-choice''': [], '''text-classification''': [], '''text-to-image''': [], '''text2text-generation''': [], '''zero-shot-image-classification''': [], '''tabular-classification''': [], '''tabular-regression''': [], '''image-to-image''': [], '''tabular-to-text''': [], '''unconditional-image-generation''': [], '''text-retrieval''': [], '''text-to-speech''': [], '''object-detection''': [], '''audio-to-audio''': [], '''text-generation''': [], '''conversational''': [], '''table-question-answering''': [], '''visual-question-answering''': [], '''image-to-text''': [], '''reinforcement-learning''': [], '''voice-activity-detection''': [], '''time-series-forecasting''': [], '''document-question-answering''': [], } if __name__ == "__main__": from argparse import ArgumentParser __lowerCamelCase : List[Any] = ArgumentParser(usage='''Validate the yaml metadata block of a README.md file.''') ap.add_argument('''readme_filepath''') __lowerCamelCase : Dict = ap.parse_args() __lowerCamelCase : List[Any] = Path(args.readme_filepath) __lowerCamelCase : Optional[int] = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
18
1
from __future__ import annotations __lowerCamelCase : List[Any] = list[tuple[int, int]] __lowerCamelCase : List[Any] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __lowerCamelCase : Union[str, Any] = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class a__ : def __init__( self : List[Any],_A : int,_A : int,_A : int,_A : int,_A : float,_A : Node | None,): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = pos_x SCREAMING_SNAKE_CASE_ : Any = pos_y SCREAMING_SNAKE_CASE_ : str = (pos_y, pos_x) SCREAMING_SNAKE_CASE_ : Tuple = goal_x SCREAMING_SNAKE_CASE_ : Any = goal_y SCREAMING_SNAKE_CASE_ : str = g_cost SCREAMING_SNAKE_CASE_ : str = parent SCREAMING_SNAKE_CASE_ : Dict = self.calculate_heuristic() def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = abs(self.pos_x - self.goal_x ) SCREAMING_SNAKE_CASE_ : Optional[Any] = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self : Union[str, Any],_A : Tuple ): """simple docstring""" return self.f_cost < other.f_cost class a__ : def __init__( self : Optional[int],_A : tuple[int, int],_A : tuple[int, int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = Node(start[1],start[0],goal[1],goal[0],0,_A ) SCREAMING_SNAKE_CASE_ : List[str] = Node(goal[1],goal[0],goal[1],goal[0],9_9999,_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = [self.start] SCREAMING_SNAKE_CASE_ : list[Node] = [] SCREAMING_SNAKE_CASE_ : Dict = False def __UpperCamelCase ( self : str ): """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() SCREAMING_SNAKE_CASE_ : List[str] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: SCREAMING_SNAKE_CASE_ : Optional[int] = True return self.retrace_path(_A ) self.closed_nodes.append(_A ) SCREAMING_SNAKE_CASE_ : List[str] = self.get_successors(_A ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_A ) else: # retrieve the best current path SCREAMING_SNAKE_CASE_ : Tuple = self.open_nodes.pop(self.open_nodes.index(_A ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_A ) else: self.open_nodes.append(_A ) if not self.reached: return [self.start.pos] return None def __UpperCamelCase ( self : Union[str, Any],_A : Node ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = [] for action in delta: SCREAMING_SNAKE_CASE_ : Dict = parent.pos_x + action[1] SCREAMING_SNAKE_CASE_ : Dict = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _A,_A,self.target.pos_y,self.target.pos_x,parent.g_cost + 1,_A,) ) return successors def __UpperCamelCase ( self : List[Any],_A : Node | None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = node SCREAMING_SNAKE_CASE_ : Optional[int] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = current_node.parent path.reverse() return path if __name__ == "__main__": __lowerCamelCase : Tuple = (0, 0) __lowerCamelCase : List[Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('''------''') __lowerCamelCase : Tuple = GreedyBestFirst(init, goal) __lowerCamelCase : Optional[int] = greedy_bf.search() if path: for pos_x, pos_y in path: __lowerCamelCase : str = 2 for elem in grid: print(elem)
18
from __future__ import annotations from math import pi, sqrt def _snake_case ( lowerCAmelCase : float , lowerCAmelCase : float ): """simple docstring""" if inductance <= 0: raise ValueError("Inductance cannot be 0 or negative" ) elif capacitance <= 0: raise ValueError("Capacitance cannot be 0 or negative" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
18
1
import numpy # List of input, output pairs __lowerCamelCase : List[Any] = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) __lowerCamelCase : Dict = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50)) __lowerCamelCase : List[str] = [2, 4, 1, 5] __lowerCamelCase : int = len(train_data) __lowerCamelCase : str = 0.009 def _snake_case ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict="train" ): """simple docstring""" return calculate_hypothesis_value(lowerCAmelCase , lowerCAmelCase ) - output( lowerCAmelCase , lowerCAmelCase ) def _snake_case ( lowerCAmelCase : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = 0 for i in range(len(lowerCAmelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def _snake_case ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[str] ): """simple docstring""" if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def _snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : Tuple ): """simple docstring""" if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def _snake_case ( lowerCAmelCase : List[str] , lowerCAmelCase : str=m ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = 0 for i in range(lowerCAmelCase ): if index == -1: summation_value += _error(lowerCAmelCase ) else: summation_value += _error(lowerCAmelCase ) * train_data[i][0][index] return summation_value def _snake_case ( lowerCAmelCase : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = summation_of_cost_derivative(lowerCAmelCase , lowerCAmelCase ) / m return cost_derivative_value def _snake_case ( ): """simple docstring""" global parameter_vector # Tune these values to set a tolerance value for predicted output SCREAMING_SNAKE_CASE_ : List[str] = 0.000002 SCREAMING_SNAKE_CASE_ : Any = 0 SCREAMING_SNAKE_CASE_ : str = 0 while True: j += 1 SCREAMING_SNAKE_CASE_ : Optional[Any] = [0, 0, 0, 0] for i in range(0 , len(lowerCAmelCase ) ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_cost_derivative(i - 1 ) SCREAMING_SNAKE_CASE_ : Optional[int] = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( lowerCAmelCase , lowerCAmelCase , atol=lowerCAmelCase , rtol=lowerCAmelCase , ): break SCREAMING_SNAKE_CASE_ : Union[str, Any] = temp_parameter_vector print(("Number of iterations:", j) ) def _snake_case ( ): """simple docstring""" for i in range(len(lowerCAmelCase ) ): print(("Actual output value:", output(lowerCAmelCase , "test" )) ) print(("Hypothesis output:", calculate_hypothesis_value(lowerCAmelCase , "test" )) ) if __name__ == "__main__": run_gradient_descent() print('''\nTesting gradient descent for a linear hypothesis function.\n''') test_gradient_descent()
18
def _snake_case ( lowerCAmelCase : list ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = len(lowerCAmelCase ) for i in range(1 , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : int = collection[i] SCREAMING_SNAKE_CASE_ : Any = 0 SCREAMING_SNAKE_CASE_ : Tuple = i - 1 while low <= high: SCREAMING_SNAKE_CASE_ : int = (low + high) // 2 if val < collection[mid]: SCREAMING_SNAKE_CASE_ : Optional[Any] = mid - 1 else: SCREAMING_SNAKE_CASE_ : Tuple = mid + 1 for j in range(lowerCAmelCase , lowerCAmelCase , -1 ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = collection[j - 1] SCREAMING_SNAKE_CASE_ : int = val return collection if __name__ == "__main__": __lowerCamelCase : Dict = input('''Enter numbers separated by a comma:\n''').strip() __lowerCamelCase : List[str] = [int(item) for item in user_input.split(''',''')] print(binary_insertion_sort(unsorted))
18
1
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class a__ ( unittest.TestCase ): def __UpperCamelCase ( self : int,_A : List[Any] ): """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"],model_result["ss"] ): SCREAMING_SNAKE_CASE_ : Any = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(_A ) def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = "sshleifer/tiny-gpt2" SCREAMING_SNAKE_CASE_ : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID],training=_A,inference=_A,sequence_lengths=[8],batch_sizes=[1],eager_mode=_A,multi_process=_A,) SCREAMING_SNAKE_CASE_ : List[str] = TensorFlowBenchmark(_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = "sgugger/tiny-distilbert-classification" SCREAMING_SNAKE_CASE_ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID],training=_A,inference=_A,sequence_lengths=[8],batch_sizes=[1],multi_process=_A,only_pretrain_model=_A,) SCREAMING_SNAKE_CASE_ : Optional[Any] = TensorFlowBenchmark(_A ) SCREAMING_SNAKE_CASE_ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = "sshleifer/tiny-gpt2" SCREAMING_SNAKE_CASE_ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID],training=_A,inference=_A,sequence_lengths=[8],batch_sizes=[1],multi_process=_A,) SCREAMING_SNAKE_CASE_ : Any = TensorFlowBenchmark(_A ) SCREAMING_SNAKE_CASE_ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = "sshleifer/tiny-gpt2" SCREAMING_SNAKE_CASE_ : Optional[Any] = AutoConfig.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID],training=_A,inference=_A,sequence_lengths=[8],batch_sizes=[1],eager_mode=_A,multi_process=_A,) SCREAMING_SNAKE_CASE_ : Tuple = TensorFlowBenchmark(_A,[config] ) SCREAMING_SNAKE_CASE_ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = "sshleifer/tiny-gpt2" SCREAMING_SNAKE_CASE_ : List[Any] = AutoConfig.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID],training=_A,inference=_A,sequence_lengths=[8],batch_sizes=[1],multi_process=_A,) SCREAMING_SNAKE_CASE_ : Any = TensorFlowBenchmark(_A,[config] ) SCREAMING_SNAKE_CASE_ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = "sshleifer/tiny-gpt2" SCREAMING_SNAKE_CASE_ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID],training=_A,inference=_A,sequence_lengths=[8],batch_sizes=[1],multi_process=_A,) SCREAMING_SNAKE_CASE_ : Dict = TensorFlowBenchmark(_A ) SCREAMING_SNAKE_CASE_ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = "sshleifer/tiny-gpt2" SCREAMING_SNAKE_CASE_ : Any = AutoConfig.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID],training=_A,inference=_A,sequence_lengths=[8],batch_sizes=[1],multi_process=_A,) SCREAMING_SNAKE_CASE_ : Optional[Any] = TensorFlowBenchmark(_A,[config] ) SCREAMING_SNAKE_CASE_ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = "patrickvonplaten/t5-tiny-random" SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoConfig.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID],training=_A,inference=_A,sequence_lengths=[8],batch_sizes=[1],multi_process=_A,) SCREAMING_SNAKE_CASE_ : List[str] = TensorFlowBenchmark(_A,configs=[config] ) SCREAMING_SNAKE_CASE_ : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("GPU" ) ) == 0,"Cannot do xla on CPU." ) def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = "sshleifer/tiny-gpt2" SCREAMING_SNAKE_CASE_ : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID],training=_A,inference=_A,sequence_lengths=[8],batch_sizes=[1],use_xla=_A,multi_process=_A,) SCREAMING_SNAKE_CASE_ : Union[str, Any] = TensorFlowBenchmark(_A ) SCREAMING_SNAKE_CASE_ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_ : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID],inference=_A,save_to_csv=_A,sequence_lengths=[8],batch_sizes=[1],inference_time_csv_file=os.path.join(_A,"inf_time.csv" ),inference_memory_csv_file=os.path.join(_A,"inf_mem.csv" ),env_info_csv_file=os.path.join(_A,"env.csv" ),multi_process=_A,) SCREAMING_SNAKE_CASE_ : Dict = TensorFlowBenchmark(_A ) benchmark.run() self.assertTrue(Path(os.path.join(_A,"inf_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(_A,"inf_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(_A,"env.csv" ) ).exists() ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(_A : Optional[Any] ): self.assertTrue(hasattr(_A,"sequential" ) ) self.assertTrue(hasattr(_A,"cumulative" ) ) self.assertTrue(hasattr(_A,"current" ) ) self.assertTrue(hasattr(_A,"total" ) ) with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID],inference=_A,sequence_lengths=[8],batch_sizes=[1],log_filename=os.path.join(_A,"log.txt" ),log_print=_A,trace_memory_line_by_line=_A,eager_mode=_A,multi_process=_A,) SCREAMING_SNAKE_CASE_ : Tuple = TensorFlowBenchmark(_A ) SCREAMING_SNAKE_CASE_ : int = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(_A,"log.txt" ) ).exists() )
18
from collections.abc import Sequence from queue import Queue class a__ : def __init__( self : int,_A : List[Any],_A : Optional[Any],_A : Optional[int],_A : int=None,_A : List[str]=None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = start SCREAMING_SNAKE_CASE_ : List[str] = end SCREAMING_SNAKE_CASE_ : Tuple = val SCREAMING_SNAKE_CASE_ : List[str] = (start + end) // 2 SCREAMING_SNAKE_CASE_ : Optional[int] = left SCREAMING_SNAKE_CASE_ : str = right def __repr__( self : Tuple ): """simple docstring""" return F'SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})' class a__ : def __init__( self : Any,_A : Sequence,_A : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = collection SCREAMING_SNAKE_CASE_ : Optional[int] = function if self.collection: SCREAMING_SNAKE_CASE_ : List[str] = self._build_tree(0,len(_A ) - 1 ) def __UpperCamelCase ( self : int,_A : Any,_A : List[Any] ): """simple docstring""" self._update_tree(self.root,_A,_A ) def __UpperCamelCase ( self : str,_A : Any,_A : List[Any] ): """simple docstring""" return self._query_range(self.root,_A,_A ) def __UpperCamelCase ( self : Any,_A : Optional[int],_A : int ): """simple docstring""" if start == end: return SegmentTreeNode(_A,_A,self.collection[start] ) SCREAMING_SNAKE_CASE_ : List[Any] = (start + end) // 2 SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._build_tree(_A,_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = self._build_tree(mid + 1,_A ) return SegmentTreeNode(_A,_A,self.fn(left.val,right.val ),_A,_A ) def __UpperCamelCase ( self : int,_A : int,_A : Tuple,_A : Dict ): """simple docstring""" if node.start == i and node.end == i: SCREAMING_SNAKE_CASE_ : Union[str, Any] = val return if i <= node.mid: self._update_tree(node.left,_A,_A ) else: self._update_tree(node.right,_A,_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.fn(node.left.val,node.right.val ) def __UpperCamelCase ( self : str,_A : List[str],_A : Optional[int],_A : Optional[Any] ): """simple docstring""" if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left,_A,_A ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left,_A,node.mid ),self._query_range(node.right,node.mid + 1,_A ),) else: # range in right child tree return self._query_range(node.right,_A,_A ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" if self.root is not None: SCREAMING_SNAKE_CASE_ : int = Queue() queue.put(self.root ) while not queue.empty(): SCREAMING_SNAKE_CASE_ : Tuple = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('''*''' * 50) __lowerCamelCase : int = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
18
1
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a__ ( A__ , unittest.TestCase ): A = CodeGenTokenizer A = CodeGenTokenizerFast A = True A = {'add_prefix_space': True} A = False def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE_ : Optional[int] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] SCREAMING_SNAKE_CASE_ : Optional[int] = dict(zip(_A,range(len(_A ) ) ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] SCREAMING_SNAKE_CASE_ : List[str] = {"unk_token": "<unk>"} SCREAMING_SNAKE_CASE_ : Tuple = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE_ : Any = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file,"w",encoding="utf-8" ) as fp: fp.write(json.dumps(_A ) + "\n" ) with open(self.merges_file,"w",encoding="utf-8" ) as fp: fp.write("\n".join(_A ) ) def __UpperCamelCase ( self : Tuple,**_A : Optional[Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname,**_A ) def __UpperCamelCase ( self : Any,**_A : int ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname,**_A ) def __UpperCamelCase ( self : Optional[Any],_A : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = "lower newer" SCREAMING_SNAKE_CASE_ : Dict = "lower newer" return input_text, output_text def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = CodeGenTokenizer(self.vocab_file,self.merges_file,**self.special_tokens_map ) SCREAMING_SNAKE_CASE_ : int = "lower newer" SCREAMING_SNAKE_CASE_ : List[Any] = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] SCREAMING_SNAKE_CASE_ : Tuple = tokenizer.tokenize(_A,add_prefix_space=_A ) self.assertListEqual(_A,_A ) SCREAMING_SNAKE_CASE_ : int = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE_ : List[str] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ),_A ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE_ : Tuple = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Any = self.get_rust_tokenizer(add_prefix_space=_A ) SCREAMING_SNAKE_CASE_ : List[str] = "lower newer" # Testing tokenization SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer.tokenize(_A,add_prefix_space=_A ) SCREAMING_SNAKE_CASE_ : Any = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A,_A ) # Testing conversion to ids without special tokens SCREAMING_SNAKE_CASE_ : int = tokenizer.encode(_A,add_special_tokens=_A,add_prefix_space=_A ) SCREAMING_SNAKE_CASE_ : Optional[Any] = rust_tokenizer.encode(_A,add_special_tokens=_A ) self.assertListEqual(_A,_A ) # Testing conversion to ids with special tokens SCREAMING_SNAKE_CASE_ : int = self.get_rust_tokenizer(add_prefix_space=_A ) SCREAMING_SNAKE_CASE_ : int = tokenizer.encode(_A,add_prefix_space=_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = rust_tokenizer.encode(_A ) self.assertListEqual(_A,_A ) # Testing the unknown token SCREAMING_SNAKE_CASE_ : int = tokens + [rust_tokenizer.unk_token] SCREAMING_SNAKE_CASE_ : Any = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(_A ),_A ) def __UpperCamelCase ( self : Dict,*_A : Union[str, Any],**_A : Optional[int] ): """simple docstring""" pass def __UpperCamelCase ( self : Dict,_A : Any=15 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE_ : Tuple = self.rust_tokenizer_class.from_pretrained(_A,**_A ) # Simple input SCREAMING_SNAKE_CASE_ : Optional[int] = "This is a simple input" SCREAMING_SNAKE_CASE_ : Dict = ["This is a simple input 1", "This is a simple input 2"] SCREAMING_SNAKE_CASE_ : Optional[Any] = ("This is a simple input", "This is a pair") SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(_A,tokenizer_r.encode,_A,max_length=_A,padding="max_length" ) # Simple input self.assertRaises(_A,tokenizer_r.encode_plus,_A,max_length=_A,padding="max_length" ) # Simple input self.assertRaises( _A,tokenizer_r.batch_encode_plus,_A,max_length=_A,padding="max_length",) # Pair input self.assertRaises(_A,tokenizer_r.encode,_A,max_length=_A,padding="max_length" ) # Pair input self.assertRaises(_A,tokenizer_r.encode_plus,_A,max_length=_A,padding="max_length" ) # Pair input self.assertRaises( _A,tokenizer_r.batch_encode_plus,_A,max_length=_A,padding="max_length",) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = CodeGenTokenizer.from_pretrained(self.tmpdirname,pad_token="<pad>" ) # Simple input SCREAMING_SNAKE_CASE_ : Any = "This is a simple input" SCREAMING_SNAKE_CASE_ : str = ["This is a simple input looooooooong", "This is a simple input"] SCREAMING_SNAKE_CASE_ : int = ("This is a simple input", "This is a pair") SCREAMING_SNAKE_CASE_ : List[str] = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] SCREAMING_SNAKE_CASE_ : Dict = tokenizer.pad_token_id SCREAMING_SNAKE_CASE_ : str = tokenizer(_A,padding="max_length",max_length=30,return_tensors="np" ) SCREAMING_SNAKE_CASE_ : Tuple = tokenizer(_A,padding=_A,truncate=_A,return_tensors="np" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer(*_A,padding="max_length",max_length=60,return_tensors="np" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer(_A,padding=_A,truncate=_A,return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1],30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1],33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1],60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1],52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = "$$$" SCREAMING_SNAKE_CASE_ : str = CodeGenTokenizer.from_pretrained(self.tmpdirname,bos_token=_A,add_bos_token=_A ) SCREAMING_SNAKE_CASE_ : str = "This is a simple input" SCREAMING_SNAKE_CASE_ : Optional[Any] = ["This is a simple input 1", "This is a simple input 2"] SCREAMING_SNAKE_CASE_ : Tuple = tokenizer.bos_token_id SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer(_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer(_A ) self.assertEqual(out_s.input_ids[0],_A ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.decode(out_s.input_ids ) SCREAMING_SNAKE_CASE_ : int = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0],_A ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) SCREAMING_SNAKE_CASE_ : List[str] = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" SCREAMING_SNAKE_CASE_ : int = "\nif len_a > len_b: result = a\nelse: result = b" SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.encode(_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"] SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer.decode(_A,truncate_before_pattern=_A ) self.assertEqual(_A,_A ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" pass
18
def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : int ): """simple docstring""" while b: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = b, a % b return a def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : int ): """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(lowerCAmelCase , a % b ) def _snake_case ( ): """simple docstring""" print(f'euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}' ) print(f'euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}' ) print(f'euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}' ) print(f'euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}' ) print(f'euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}' ) print(f'euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}' ) print(f'euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}' ) print(f'euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}' ) if __name__ == "__main__": main()
18
1
from math import isqrt def _snake_case ( lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Optional[int] = False return [i for i in range(2 , lowerCAmelCase ) if is_prime[i]] def _snake_case ( lowerCAmelCase : int = 1_0**8 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = calculate_prime_numbers(max_number // 2 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 SCREAMING_SNAKE_CASE_ : List[Any] = len(lowerCAmelCase ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f'''{solution() = }''')
18
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCamelCase : Dict = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[Any] = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys __lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
18
1
def _snake_case ( lowerCAmelCase : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = [0 for i in range(len(lowerCAmelCase ) )] # initialize interval's left pointer and right pointer SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = 0, 0 for i in range(1 , len(lowerCAmelCase ) ): # case when current index is inside the interval if i <= right_pointer: SCREAMING_SNAKE_CASE_ : List[str] = min(right_pointer - i + 1 , z_result[i - left_pointer] ) SCREAMING_SNAKE_CASE_ : str = min_edge while go_next(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = i, i + z_result[i] - 1 return z_result def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : list[int] , lowerCAmelCase : str ): """simple docstring""" return i + z_result[i] < len(lowerCAmelCase ) and s[z_result[i]] == s[i + z_result[i]] def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string SCREAMING_SNAKE_CASE_ : str = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(lowerCAmelCase ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
18
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : Path , lowerCAmelCase : str = None , lowerCAmelCase : str = None , lowerCAmelCase : str = None , ): """simple docstring""" if config_name_or_path is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = "facebook/rag-token-base" if model_type == "rag_token" else "facebook/rag-sequence-base" if generator_tokenizer_name_or_path is None: SCREAMING_SNAKE_CASE_ : Dict = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = question_encoder_name_or_path SCREAMING_SNAKE_CASE_ : Union[str, Any] = RagTokenForGeneration if model_type == "rag_token" else RagSequenceForGeneration # Save model. SCREAMING_SNAKE_CASE_ : List[Any] = RagConfig.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = AutoConfig.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = AutoConfig.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = gen_config SCREAMING_SNAKE_CASE_ : Optional[Any] = question_encoder_config SCREAMING_SNAKE_CASE_ : Dict = model_class.from_pretrained_question_encoder_generator( lowerCAmelCase , lowerCAmelCase , config=lowerCAmelCase ) rag_model.save_pretrained(lowerCAmelCase ) # Sanity check. model_class.from_pretrained(lowerCAmelCase ) # Save tokenizers. SCREAMING_SNAKE_CASE_ : Optional[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase ) gen_tokenizer.save_pretrained(dest_dir / "generator_tokenizer/" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCAmelCase ) question_encoder_tokenizer.save_pretrained(dest_dir / "question_encoder_tokenizer/" ) if __name__ == "__main__": __lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( '''--model_type''', choices=['''rag_sequence''', '''rag_token'''], required=True, type=str, help='''RAG model type: rag_sequence, rag_token''', ) parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''') parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''') parser.add_argument( '''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier''' ) parser.add_argument( '''--generator_tokenizer_name_or_path''', type=str, help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''', ) parser.add_argument( '''--question_encoder_tokenizer_name_or_path''', type=str, help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''', ) parser.add_argument( '''--config_name_or_path''', type=str, help=( '''Identifier of the model config to use, if not provided, resolves to a base config for a given''' ''' ``model_type``''' ), ) __lowerCamelCase : str = parser.parse_args() __lowerCamelCase : int = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
18
1
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig __lowerCamelCase : Tuple = { '''susnato/ernie-m-base_pytorch''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json''', '''susnato/ernie-m-large_pytorch''': '''https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json''', } class a__ ( A__ ): A = 'ernie_m' A = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self : Tuple,_A : int = 25_0002,_A : int = 768,_A : int = 12,_A : int = 12,_A : int = 3072,_A : str = "gelu",_A : float = 0.1,_A : float = 0.1,_A : int = 514,_A : float = 0.02,_A : int = 1,_A : float = 1E-05,_A : Any=None,_A : str=False,_A : int=0.0,**_A : int,): """simple docstring""" super().__init__(pad_token_id=_A,**_A ) SCREAMING_SNAKE_CASE_ : Dict = vocab_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE_ : Any = num_hidden_layers SCREAMING_SNAKE_CASE_ : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE_ : Tuple = intermediate_size SCREAMING_SNAKE_CASE_ : List[Any] = hidden_act SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE_ : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE_ : List[str] = layer_norm_eps SCREAMING_SNAKE_CASE_ : Union[str, Any] = classifier_dropout SCREAMING_SNAKE_CASE_ : str = is_decoder SCREAMING_SNAKE_CASE_ : str = act_dropout
18
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class a__ ( unittest.TestCase ): def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = { "task_specific_params": { "summarization": {"length_penalty": 1.0, "max_length": 128, "min_length": 12, "num_beams": 4}, "summarization_cnn": {"length_penalty": 2.0, "max_length": 142, "min_length": 56, "num_beams": 4}, "summarization_xsum": {"length_penalty": 1.0, "max_length": 62, "min_length": 11, "num_beams": 6}, } } SCREAMING_SNAKE_CASE_ : Any = { "task_specific_params.summarization.length_penalty": 1.0, "task_specific_params.summarization.max_length": 128, "task_specific_params.summarization.min_length": 12, "task_specific_params.summarization.num_beams": 4, "task_specific_params.summarization_cnn.length_penalty": 2.0, "task_specific_params.summarization_cnn.max_length": 142, "task_specific_params.summarization_cnn.min_length": 56, "task_specific_params.summarization_cnn.num_beams": 4, "task_specific_params.summarization_xsum.length_penalty": 1.0, "task_specific_params.summarization_xsum.max_length": 62, "task_specific_params.summarization_xsum.min_length": 11, "task_specific_params.summarization_xsum.num_beams": 6, } self.assertEqual(flatten_dict(_A ),_A ) def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = np.random.randn(3,4 ) self.assertTrue(np.allclose(transpose(_A ),x.transpose() ) ) SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4,5 ) self.assertTrue(np.allclose(transpose(_A,axes=(1, 2, 0) ),x.transpose((1, 2, 0) ) ) ) @require_torch def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Any = torch.tensor(_A ) self.assertTrue(np.allclose(transpose(_A ),transpose(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ : Dict = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor(_A ) self.assertTrue(np.allclose(transpose(_A,axes=(1, 2, 0) ),transpose(_A,axes=(1, 2, 0) ).numpy() ) ) @require_tf def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tf.constant(_A ) self.assertTrue(np.allclose(transpose(_A ),transpose(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ : List[str] = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.constant(_A ) self.assertTrue(np.allclose(transpose(_A,axes=(1, 2, 0) ),transpose(_A,axes=(1, 2, 0) ).numpy() ) ) @require_flax def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Tuple = jnp.array(_A ) self.assertTrue(np.allclose(transpose(_A ),np.asarray(transpose(_A ) ) ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : List[Any] = jnp.array(_A ) self.assertTrue(np.allclose(transpose(_A,axes=(1, 2, 0) ),np.asarray(transpose(_A,axes=(1, 2, 0) ) ) ) ) def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4 ) self.assertTrue(np.allclose(reshape(_A,(4, 3) ),np.reshape(_A,(4, 3) ) ) ) SCREAMING_SNAKE_CASE_ : Any = np.random.randn(3,4,5 ) self.assertTrue(np.allclose(reshape(_A,(12, 5) ),np.reshape(_A,(12, 5) ) ) ) @require_torch def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor(_A ) self.assertTrue(np.allclose(reshape(_A,(4, 3) ),reshape(_A,(4, 3) ).numpy() ) ) SCREAMING_SNAKE_CASE_ : Dict = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : int = torch.tensor(_A ) self.assertTrue(np.allclose(reshape(_A,(12, 5) ),reshape(_A,(12, 5) ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tf.constant(_A ) self.assertTrue(np.allclose(reshape(_A,(4, 3) ),reshape(_A,(4, 3) ).numpy() ) ) SCREAMING_SNAKE_CASE_ : int = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : Any = tf.constant(_A ) self.assertTrue(np.allclose(reshape(_A,(12, 5) ),reshape(_A,(12, 5) ).numpy() ) ) @require_flax def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : int = jnp.array(_A ) self.assertTrue(np.allclose(reshape(_A,(4, 3) ),np.asarray(reshape(_A,(4, 3) ) ) ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : Tuple = jnp.array(_A ) self.assertTrue(np.allclose(reshape(_A,(12, 5) ),np.asarray(reshape(_A,(12, 5) ) ) ) ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = np.random.randn(1,3,4 ) self.assertTrue(np.allclose(squeeze(_A ),np.squeeze(_A ) ) ) SCREAMING_SNAKE_CASE_ : Any = np.random.randn(1,4,1,5 ) self.assertTrue(np.allclose(squeeze(_A,axis=2 ),np.squeeze(_A,axis=2 ) ) ) @require_torch def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = np.random.randn(1,3,4 ) SCREAMING_SNAKE_CASE_ : Any = torch.tensor(_A ) self.assertTrue(np.allclose(squeeze(_A ),squeeze(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ : Any = np.random.randn(1,4,1,5 ) SCREAMING_SNAKE_CASE_ : Dict = torch.tensor(_A ) self.assertTrue(np.allclose(squeeze(_A,axis=2 ),squeeze(_A,axis=2 ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = np.random.randn(1,3,4 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.constant(_A ) self.assertTrue(np.allclose(squeeze(_A ),squeeze(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ : Any = np.random.randn(1,4,1,5 ) SCREAMING_SNAKE_CASE_ : Optional[int] = tf.constant(_A ) self.assertTrue(np.allclose(squeeze(_A,axis=2 ),squeeze(_A,axis=2 ).numpy() ) ) @require_flax def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.random.randn(1,3,4 ) SCREAMING_SNAKE_CASE_ : List[str] = jnp.array(_A ) self.assertTrue(np.allclose(squeeze(_A ),np.asarray(squeeze(_A ) ) ) ) SCREAMING_SNAKE_CASE_ : str = np.random.randn(1,4,1,5 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = jnp.array(_A ) self.assertTrue(np.allclose(squeeze(_A,axis=2 ),np.asarray(squeeze(_A,axis=2 ) ) ) ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4 ) self.assertTrue(np.allclose(expand_dims(_A,axis=1 ),np.expand_dims(_A,axis=1 ) ) ) @require_torch def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor(_A ) self.assertTrue(np.allclose(expand_dims(_A,axis=1 ),expand_dims(_A,axis=1 ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Optional[int] = tf.constant(_A ) self.assertTrue(np.allclose(expand_dims(_A,axis=1 ),expand_dims(_A,axis=1 ).numpy() ) ) @require_flax def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = jnp.array(_A ) self.assertTrue(np.allclose(expand_dims(_A,axis=1 ),np.asarray(expand_dims(_A,axis=1 ) ) ) )
18
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : Optional[Any] = logging.get_logger(__name__) __lowerCamelCase : Optional[int] = { '''s-JoL/Open-Llama-V1''': '''https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json''', } class a__ ( A__ ): A = 'open-llama' def __init__( self : Union[str, Any],_A : Dict=10_0000,_A : List[Any]=4096,_A : List[Any]=1_1008,_A : List[Any]=32,_A : Dict=32,_A : List[Any]="silu",_A : Dict=2048,_A : Optional[Any]=0.02,_A : str=1E-6,_A : Union[str, Any]=True,_A : Optional[Any]=0,_A : List[str]=1,_A : Optional[Any]=2,_A : List[Any]=False,_A : Dict=True,_A : Dict=0.1,_A : Optional[int]=0.1,_A : List[Any]=True,_A : str=True,_A : str=None,**_A : Optional[Any],): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = vocab_size SCREAMING_SNAKE_CASE_ : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE_ : Any = hidden_size SCREAMING_SNAKE_CASE_ : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE_ : Any = num_hidden_layers SCREAMING_SNAKE_CASE_ : Tuple = num_attention_heads SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE_ : Any = initializer_range SCREAMING_SNAKE_CASE_ : List[Any] = rms_norm_eps SCREAMING_SNAKE_CASE_ : Any = use_cache SCREAMING_SNAKE_CASE_ : Dict = kwargs.pop( "use_memorry_efficient_attention",_A ) SCREAMING_SNAKE_CASE_ : str = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Union[str, Any] = attention_dropout_prob SCREAMING_SNAKE_CASE_ : List[Any] = use_stable_embedding SCREAMING_SNAKE_CASE_ : Tuple = shared_input_output_embedding SCREAMING_SNAKE_CASE_ : Tuple = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_A,bos_token_id=_A,eos_token_id=_A,tie_word_embeddings=_A,**_A,) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling,_A ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " F'got {self.rope_scaling}' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.rope_scaling.get("type",_A ) SCREAMING_SNAKE_CASE_ : Dict = self.rope_scaling.get("factor",_A ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(_A,_A ) or rope_scaling_factor <= 1.0: raise ValueError(F'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
18
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : Tuple = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} __lowerCamelCase : List[Any] = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } __lowerCamelCase : int = { '''allenai/longformer-base-4096''': 40_96, '''allenai/longformer-large-4096''': 40_96, '''allenai/longformer-large-4096-finetuned-triviaqa''': 40_96, '''allenai/longformer-base-4096-extra.pos.embd.only''': 40_96, '''allenai/longformer-large-4096-extra.pos.embd.only''': 40_96, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE_ : str = bs[:] SCREAMING_SNAKE_CASE_ : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCAmelCase ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE_ : List[str] = [chr(lowerCAmelCase ) for n in cs] return dict(zip(lowerCAmelCase , lowerCAmelCase ) ) def _snake_case ( lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = set() SCREAMING_SNAKE_CASE_ : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE_ : List[str] = char return pairs class a__ ( A__ ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = ['input_ids', 'attention_mask'] def __init__( self : Union[str, Any],_A : List[Any],_A : Tuple,_A : str="replace",_A : Optional[int]="<s>",_A : Dict="</s>",_A : Any="</s>",_A : Optional[Any]="<s>",_A : Union[str, Any]="<unk>",_A : int="<pad>",_A : Dict="<mask>",_A : int=False,**_A : Dict,): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else bos_token SCREAMING_SNAKE_CASE_ : Optional[int] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else eos_token SCREAMING_SNAKE_CASE_ : str = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else sep_token SCREAMING_SNAKE_CASE_ : Union[str, Any] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else cls_token SCREAMING_SNAKE_CASE_ : List[str] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else unk_token SCREAMING_SNAKE_CASE_ : Optional[Any] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_ : Dict = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else mask_token super().__init__( errors=_A,bos_token=_A,eos_token=_A,unk_token=_A,sep_token=_A,cls_token=_A,pad_token=_A,mask_token=_A,add_prefix_space=_A,**_A,) with open(_A,encoding="utf-8" ) as vocab_handle: SCREAMING_SNAKE_CASE_ : Tuple = json.load(_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE_ : Any = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE_ : Optional[Any] = bytes_to_unicode() SCREAMING_SNAKE_CASE_ : str = {v: k for k, v in self.byte_encoder.items()} with open(_A,encoding="utf-8" ) as merges_handle: SCREAMING_SNAKE_CASE_ : int = merges_handle.read().split("\n" )[1:-1] SCREAMING_SNAKE_CASE_ : List[str] = [tuple(merge.split() ) for merge in bpe_merges] SCREAMING_SNAKE_CASE_ : Optional[int] = dict(zip(_A,range(len(_A ) ) ) ) SCREAMING_SNAKE_CASE_ : Any = {} SCREAMING_SNAKE_CASE_ : List[str] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE_ : List[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def __UpperCamelCase ( self : List[str] ): """simple docstring""" return len(self.encoder ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" return dict(self.encoder,**self.added_tokens_encoder ) def __UpperCamelCase ( self : Any,_A : int ): """simple docstring""" if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE_ : Union[str, Any] = tuple(_A ) SCREAMING_SNAKE_CASE_ : str = get_pairs(_A ) if not pairs: return token while True: SCREAMING_SNAKE_CASE_ : Tuple = min(_A,key=lambda _A : self.bpe_ranks.get(_A,float("inf" ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = bigram SCREAMING_SNAKE_CASE_ : int = [] SCREAMING_SNAKE_CASE_ : Dict = 0 while i < len(_A ): try: SCREAMING_SNAKE_CASE_ : Tuple = word.index(_A,_A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE_ : str = j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE_ : Dict = tuple(_A ) SCREAMING_SNAKE_CASE_ : List[str] = new_word if len(_A ) == 1: break else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_pairs(_A ) SCREAMING_SNAKE_CASE_ : List[str] = " ".join(_A ) SCREAMING_SNAKE_CASE_ : Any = word return word def __UpperCamelCase ( self : Dict,_A : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = [] for token in re.findall(self.pat,_A ): SCREAMING_SNAKE_CASE_ : Any = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_A ).split(" " ) ) return bpe_tokens def __UpperCamelCase ( self : Optional[int],_A : str ): """simple docstring""" return self.encoder.get(_A,self.encoder.get(self.unk_token ) ) def __UpperCamelCase ( self : Tuple,_A : str ): """simple docstring""" return self.decoder.get(_A ) def __UpperCamelCase ( self : List[str],_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = "".join(_A ) SCREAMING_SNAKE_CASE_ : Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8",errors=self.errors ) return text def __UpperCamelCase ( self : List[Any],_A : str,_A : Optional[str] = None ): """simple docstring""" if not os.path.isdir(_A ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return SCREAMING_SNAKE_CASE_ : Tuple = os.path.join( _A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE_ : Any = os.path.join( _A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(_A,"w",encoding="utf-8" ) as f: f.write(json.dumps(self.encoder,indent=2,sort_keys=_A,ensure_ascii=_A ) + "\n" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 with open(_A,"w",encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items(),key=lambda _A : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' " Please check that the tokenizer is not corrupted!" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = token_index writer.write(" ".join(_A ) + "\n" ) index += 1 return vocab_file, merge_file def __UpperCamelCase ( self : Optional[Any],_A : List[int],_A : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_ : str = [self.cls_token_id] SCREAMING_SNAKE_CASE_ : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCamelCase ( self : str,_A : List[int],_A : Optional[List[int]] = None,_A : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A,token_ids_a=_A,already_has_special_tokens=_A ) if token_ids_a is None: return [1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) + [1] def __UpperCamelCase ( self : Any,_A : List[int],_A : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase ( self : Any,_A : Union[str, Any],_A : Any=False,**_A : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = kwargs.pop("add_prefix_space",self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_A ) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE_ : str = " " + text return (text, kwargs)
18
1
import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowerCamelCase : str = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class a__ ( A__ , unittest.TestCase ): A = ReformerTokenizer A = ReformerTokenizerFast A = True A = False A = True def __UpperCamelCase ( self : Dict ): """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE_ : int = ReformerTokenizer(_A,keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = "<s>" SCREAMING_SNAKE_CASE_ : Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ),_A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ),_A ) def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0],"<unk>" ) self.assertEqual(vocab_keys[1],"<s>" ) self.assertEqual(vocab_keys[-1],"j" ) self.assertEqual(len(_A ),1000 ) def __UpperCamelCase ( self : str ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size,1000 ) def __UpperCamelCase ( self : Dict ): """simple docstring""" if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE_ : Any = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ : int = "I was born in 92000, and this is falsé." SCREAMING_SNAKE_CASE_ : Dict = tokenizer.tokenize(_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A,_A ) SCREAMING_SNAKE_CASE_ : int = tokenizer.encode(_A,add_special_tokens=_A ) SCREAMING_SNAKE_CASE_ : Tuple = rust_tokenizer.encode(_A,add_special_tokens=_A ) self.assertListEqual(_A,_A ) SCREAMING_SNAKE_CASE_ : List[Any] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer.encode(_A ) SCREAMING_SNAKE_CASE_ : str = rust_tokenizer.encode(_A ) self.assertListEqual(_A,_A ) def __UpperCamelCase ( self : str,_A : List[str]=15 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE_ : List[str] = self.rust_tokenizer_class.from_pretrained(_A,**_A ) # Simple input SCREAMING_SNAKE_CASE_ : int = "This is a simple input" SCREAMING_SNAKE_CASE_ : Optional[Any] = ["This is a simple input 1", "This is a simple input 2"] SCREAMING_SNAKE_CASE_ : Optional[Any] = ("This is a simple input", "This is a pair") SCREAMING_SNAKE_CASE_ : List[Any] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(_A,tokenizer_r.encode,_A,max_length=_A,padding="max_length" ) # Simple input self.assertRaises(_A,tokenizer_r.encode_plus,_A,max_length=_A,padding="max_length" ) # Simple input self.assertRaises( _A,tokenizer_r.batch_encode_plus,_A,max_length=_A,padding="max_length",) # Pair input self.assertRaises(_A,tokenizer_r.encode,_A,max_length=_A,padding="max_length" ) # Pair input self.assertRaises(_A,tokenizer_r.encode_plus,_A,max_length=_A,padding="max_length" ) # Pair input self.assertRaises( _A,tokenizer_r.batch_encode_plus,_A,max_length=_A,padding="max_length",) def __UpperCamelCase ( self : int ): """simple docstring""" pass def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = ReformerTokenizer(_A,keep_accents=_A ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(_A,["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ),[285, 46, 10, 170, 382],) SCREAMING_SNAKE_CASE_ : str = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _A,[ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ],) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A,[8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4],) SCREAMING_SNAKE_CASE_ : int = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A,[ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ],) @cached_property def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" return ReformerTokenizer.from_pretrained("google/reformer-crime-and-punishment" ) @slow def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = "Hello World!" SCREAMING_SNAKE_CASE_ : Optional[int] = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(_A,self.big_tokenizer.encode(_A ) ) @slow def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) SCREAMING_SNAKE_CASE_ : str = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(_A,self.big_tokenizer.encode(_A ) ) @require_torch @slow def __UpperCamelCase ( self : List[str] ): """simple docstring""" import torch from transformers import ReformerConfig, ReformerModel # Build sequence SCREAMING_SNAKE_CASE_ : Any = list(self.big_tokenizer.get_vocab().keys() )[:10] SCREAMING_SNAKE_CASE_ : str = " ".join(_A ) SCREAMING_SNAKE_CASE_ : str = self.big_tokenizer.encode_plus(_A,return_tensors="pt" ) SCREAMING_SNAKE_CASE_ : Any = self.big_tokenizer.batch_encode_plus([sequence, sequence],return_tensors="pt" ) SCREAMING_SNAKE_CASE_ : List[str] = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) SCREAMING_SNAKE_CASE_ : int = encoded_sequence["input_ids"].shape SCREAMING_SNAKE_CASE_ : Any = ReformerModel(_A ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_A ) model(**_A ) @slow def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = {"input_ids": [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 SCREAMING_SNAKE_CASE_ : Optional[Any] = [ "This is a very simple sentence.", "The quick brown fox jumps over the lazy dog.", ] self.tokenizer_integration_test_util( expected_encoding=_A,model_name="google/reformer-crime-and-punishment",revision="0e6c3decb8211d49bf881013425dc8b0448b3f5a",padding=_A,sequences=_A,)
18
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class a__ : def __init__( self : Optional[int],_A : Dict,_A : List[str]=13,_A : List[str]=7,_A : int=True,_A : str=True,_A : Union[str, Any]=True,_A : Tuple=True,_A : Dict=99,_A : Tuple=32,_A : Tuple=2,_A : Tuple=4,_A : Optional[Any]=37,_A : str="gelu",_A : Dict=0.1,_A : List[Any]=0.1,_A : List[str]=512,_A : str=16,_A : int=2,_A : Dict=0.02,_A : List[Any]=3,_A : Optional[Any]=4,_A : Optional[int]=None,): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = parent SCREAMING_SNAKE_CASE_ : Any = 13 SCREAMING_SNAKE_CASE_ : List[str] = 7 SCREAMING_SNAKE_CASE_ : Dict = True SCREAMING_SNAKE_CASE_ : Optional[Any] = True SCREAMING_SNAKE_CASE_ : Tuple = True SCREAMING_SNAKE_CASE_ : List[str] = True SCREAMING_SNAKE_CASE_ : List[str] = 99 SCREAMING_SNAKE_CASE_ : Tuple = 384 SCREAMING_SNAKE_CASE_ : Optional[Any] = 2 SCREAMING_SNAKE_CASE_ : Any = 4 SCREAMING_SNAKE_CASE_ : str = 37 SCREAMING_SNAKE_CASE_ : Optional[Any] = "gelu" SCREAMING_SNAKE_CASE_ : List[Any] = 0.1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0.1 SCREAMING_SNAKE_CASE_ : Dict = 512 SCREAMING_SNAKE_CASE_ : int = 16 SCREAMING_SNAKE_CASE_ : Optional[int] = 2 SCREAMING_SNAKE_CASE_ : Any = 0.02 SCREAMING_SNAKE_CASE_ : str = 3 SCREAMING_SNAKE_CASE_ : int = 4 SCREAMING_SNAKE_CASE_ : Dict = 128 SCREAMING_SNAKE_CASE_ : Any = 2 SCREAMING_SNAKE_CASE_ : Tuple = 9 SCREAMING_SNAKE_CASE_ : List[Any] = 1 SCREAMING_SNAKE_CASE_ : Any = None def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) SCREAMING_SNAKE_CASE_ : Any = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : List[str] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) SCREAMING_SNAKE_CASE_ : Dict = None SCREAMING_SNAKE_CASE_ : Dict = None SCREAMING_SNAKE_CASE_ : str = None if self.use_labels: SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size],self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size],self.num_choices ) SCREAMING_SNAKE_CASE_ : Any = ConvBertConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,initializer_range=self.initializer_range,return_dict=_A,) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : Optional[int],_A : List[Any],_A : int,_A : Tuple,_A : Optional[int],_A : Union[str, Any],_A : Union[str, Any],_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = TFConvBertModel(config=_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} SCREAMING_SNAKE_CASE_ : str = [input_ids, input_mask] SCREAMING_SNAKE_CASE_ : List[str] = model(_A ) SCREAMING_SNAKE_CASE_ : Dict = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Dict,_A : Dict,_A : int,_A : Union[str, Any],_A : List[Any],_A : int,_A : str,_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = TFConvBertForMaskedLM(config=_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_ : List[Any] = model(_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : Any,_A : Optional[int],_A : List[Any],_A : Union[str, Any],_A : List[Any],_A : Union[str, Any],_A : Optional[int],_A : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.num_labels SCREAMING_SNAKE_CASE_ : Any = TFConvBertForSequenceClassification(config=_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_ : Optional[Any] = model(_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : int,_A : int,_A : Dict,_A : List[str],_A : Tuple,_A : Dict,_A : Optional[int],_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.num_choices SCREAMING_SNAKE_CASE_ : Optional[int] = TFConvBertForMultipleChoice(config=_A ) SCREAMING_SNAKE_CASE_ : Any = tf.tile(tf.expand_dims(_A,1 ),(1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ : Any = tf.tile(tf.expand_dims(_A,1 ),(1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.tile(tf.expand_dims(_A,1 ),(1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ : int = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE_ : int = model(_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : List[Any],_A : Union[str, Any],_A : int,_A : Optional[int],_A : str,_A : str,_A : Tuple,_A : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.num_labels SCREAMING_SNAKE_CASE_ : Union[str, Any] = TFConvBertForTokenClassification(config=_A ) SCREAMING_SNAKE_CASE_ : Tuple = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_ : str = model(_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : List[Any],_A : int,_A : List[str],_A : List[Any],_A : Any,_A : Optional[int],_A : List[str],_A : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = TFConvBertForQuestionAnswering(config=_A ) SCREAMING_SNAKE_CASE_ : Dict = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_ : Any = model(_A ) self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : List[Any] = config_and_inputs SCREAMING_SNAKE_CASE_ : Any = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class a__ ( A__ , A__ , unittest.TestCase ): A = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) A = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) A = False A = False A = False def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = TFConvBertModelTester(self ) SCREAMING_SNAKE_CASE_ : Tuple = ConfigTester(self,config_class=_A,hidden_size=37 ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_A ) def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) @slow def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : List[str] = True SCREAMING_SNAKE_CASE_ : Any = True if hasattr(_A,"use_cache" ): SCREAMING_SNAKE_CASE_ : List[Any] = True SCREAMING_SNAKE_CASE_ : int = getattr(self.model_tester,"encoder_seq_length",self.model_tester.seq_length ) SCREAMING_SNAKE_CASE_ : Optional[Any] = getattr(self.model_tester,"key_length",_A ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : List[str] = self._prepare_for_class(_A,_A ) SCREAMING_SNAKE_CASE_ : List[Any] = model_class(_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = len(model(_A ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A,saved_model=_A ) SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join(_A,"saved_model","1" ) SCREAMING_SNAKE_CASE_ : Tuple = tf.keras.models.load_model(_A ) SCREAMING_SNAKE_CASE_ : str = model(_A ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE_ : Optional[Any] = outputs["encoder_hidden_states"] SCREAMING_SNAKE_CASE_ : str = outputs["encoder_attentions"] else: SCREAMING_SNAKE_CASE_ : Any = outputs["hidden_states"] SCREAMING_SNAKE_CASE_ : List[str] = outputs["attentions"] self.assertEqual(len(_A ),_A ) SCREAMING_SNAKE_CASE_ : Any = getattr( self.model_tester,"expected_num_hidden_layers",self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_A ),_A ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ),[self.model_tester.seq_length, self.model_tester.hidden_size],) self.assertEqual(len(_A ),self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ),[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length],) @slow def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(_A ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : List[str] = True SCREAMING_SNAKE_CASE_ : List[str] = getattr(self.model_tester,"decoder_seq_length",self.model_tester.seq_length ) SCREAMING_SNAKE_CASE_ : Any = getattr(self.model_tester,"encoder_seq_length",self.model_tester.seq_length ) SCREAMING_SNAKE_CASE_ : Optional[int] = getattr(self.model_tester,"key_length",_A ) SCREAMING_SNAKE_CASE_ : int = getattr(self.model_tester,"key_length",_A ) def check_decoder_attentions_output(_A : Dict ): SCREAMING_SNAKE_CASE_ : int = len(_A ) self.assertEqual(out_len % 2,0 ) SCREAMING_SNAKE_CASE_ : Tuple = outputs.decoder_attentions self.assertEqual(len(_A ),self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ),[self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length],) def check_encoder_attentions_output(_A : Tuple ): SCREAMING_SNAKE_CASE_ : int = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_A ),self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ),[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length],) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Optional[Any] = True SCREAMING_SNAKE_CASE_ : Optional[Any] = False SCREAMING_SNAKE_CASE_ : Tuple = model_class(_A ) SCREAMING_SNAKE_CASE_ : Any = model(self._prepare_for_class(_A,_A ) ) SCREAMING_SNAKE_CASE_ : Tuple = len(_A ) self.assertEqual(config.output_hidden_states,_A ) check_encoder_attentions_output(_A ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE_ : Optional[Any] = model_class(_A ) SCREAMING_SNAKE_CASE_ : int = model(self._prepare_for_class(_A,_A ) ) self.assertEqual(config.output_hidden_states,_A ) check_decoder_attentions_output(_A ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE_ : str = True SCREAMING_SNAKE_CASE_ : int = model_class(_A ) SCREAMING_SNAKE_CASE_ : List[str] = model(self._prepare_for_class(_A,_A ) ) self.assertEqual(config.output_hidden_states,_A ) check_encoder_attentions_output(_A ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE_ : str = True SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Dict = model_class(_A ) SCREAMING_SNAKE_CASE_ : str = model(self._prepare_for_class(_A,_A ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1),len(_A ) ) self.assertEqual(model.config.output_hidden_states,_A ) check_encoder_attentions_output(_A ) @require_tf class a__ ( unittest.TestCase ): @slow def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) SCREAMING_SNAKE_CASE_ : int = tf.constant([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE_ : Tuple = model(_A )[0] SCREAMING_SNAKE_CASE_ : List[Any] = [1, 6, 768] self.assertEqual(output.shape,_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ] ) tf.debugging.assert_near(output[:, :3, :3],_A,atol=1E-4 )
18
1
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ArgumentParser("Transformers CLI tool" , usage="transformers-cli <command> [<args>]" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = parser.add_subparsers(help="transformers-cli command helpers" ) # Register commands ConvertCommand.register_subcommand(lowerCAmelCase ) DownloadCommand.register_subcommand(lowerCAmelCase ) EnvironmentCommand.register_subcommand(lowerCAmelCase ) RunCommand.register_subcommand(lowerCAmelCase ) ServeCommand.register_subcommand(lowerCAmelCase ) UserCommands.register_subcommand(lowerCAmelCase ) AddNewModelCommand.register_subcommand(lowerCAmelCase ) AddNewModelLikeCommand.register_subcommand(lowerCAmelCase ) LfsCommands.register_subcommand(lowerCAmelCase ) PTtoTFCommand.register_subcommand(lowerCAmelCase ) # Let's go SCREAMING_SNAKE_CASE_ : Any = parser.parse_args() if not hasattr(lowerCAmelCase , "func" ): parser.print_help() exit(1 ) # Run SCREAMING_SNAKE_CASE_ : int = args.func(lowerCAmelCase ) service.run() if __name__ == "__main__": main()
18
def _snake_case ( lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = int(lowerCAmelCase ) if decimal in (0, 1): # Exit cases for the recursion return str(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = divmod(lowerCAmelCase , 2 ) return binary_recursive(lowerCAmelCase ) + str(lowerCAmelCase ) def _snake_case ( lowerCAmelCase : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = str(lowerCAmelCase ).strip() if not number: raise ValueError("No input value was provided" ) SCREAMING_SNAKE_CASE_ : List[str] = "-" if number.startswith("-" ) else "" SCREAMING_SNAKE_CASE_ : Optional[Any] = number.lstrip("-" ) if not number.isnumeric(): raise ValueError("Input value is not an integer" ) return f'{negative}0b{binary_recursive(int(lowerCAmelCase ) )}' if __name__ == "__main__": from doctest import testmod testmod()
18
1
import math import random from typing import Any from .hill_climbing import SearchProblem def _snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : bool = True , lowerCAmelCase : float = math.inf , lowerCAmelCase : float = -math.inf , lowerCAmelCase : float = math.inf , lowerCAmelCase : float = -math.inf , lowerCAmelCase : bool = False , lowerCAmelCase : float = 1_0_0 , lowerCAmelCase : float = 0.01 , lowerCAmelCase : float = 1 , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = False SCREAMING_SNAKE_CASE_ : List[Any] = search_prob SCREAMING_SNAKE_CASE_ : Dict = start_temperate SCREAMING_SNAKE_CASE_ : int = [] SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 SCREAMING_SNAKE_CASE_ : Any = None while not search_end: SCREAMING_SNAKE_CASE_ : str = current_state.score() if best_state is None or current_score > best_state.score(): SCREAMING_SNAKE_CASE_ : str = current_state scores.append(lowerCAmelCase ) iterations += 1 SCREAMING_SNAKE_CASE_ : List[str] = None SCREAMING_SNAKE_CASE_ : Optional[Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to SCREAMING_SNAKE_CASE_ : Optional[Any] = random.randint(0 , len(lowerCAmelCase ) - 1 ) # picking a random neighbor SCREAMING_SNAKE_CASE_ : int = neighbors.pop(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: SCREAMING_SNAKE_CASE_ : Optional[Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution SCREAMING_SNAKE_CASE_ : Union[str, Any] = picked_neighbor else: SCREAMING_SNAKE_CASE_ : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability SCREAMING_SNAKE_CASE_ : Tuple = picked_neighbor SCREAMING_SNAKE_CASE_ : List[str] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor SCREAMING_SNAKE_CASE_ : List[Any] = True else: SCREAMING_SNAKE_CASE_ : str = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowerCAmelCase ) , lowerCAmelCase ) plt.xlabel("Iterations" ) plt.ylabel("Function values" ) plt.show() return best_state if __name__ == "__main__": def _snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : Any ): """simple docstring""" return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) __lowerCamelCase : List[str] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) __lowerCamelCase : List[Any] = simulated_annealing( prob, find_max=False, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' f'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) __lowerCamelCase : Any = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) __lowerCamelCase : int = simulated_annealing( prob, find_max=True, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' f'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] ): """simple docstring""" return (3 * x**2) - (6 * y) __lowerCamelCase : Any = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) __lowerCamelCase : str = simulated_annealing(prob, find_max=False, visualization=True) print( '''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' f'''{local_min.score()}''' ) __lowerCamelCase : List[str] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) __lowerCamelCase : List[Any] = simulated_annealing(prob, find_max=True, visualization=True) print( '''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' f'''{local_min.score()}''' )
18
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase : Union[str, Any] = { '''configuration_chinese_clip''': [ '''CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ChineseCLIPConfig''', '''ChineseCLIPOnnxConfig''', '''ChineseCLIPTextConfig''', '''ChineseCLIPVisionConfig''', ], '''processing_chinese_clip''': ['''ChineseCLIPProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = ['''ChineseCLIPFeatureExtractor'''] __lowerCamelCase : Optional[int] = ['''ChineseCLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : int = [ '''CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ChineseCLIPModel''', '''ChineseCLIPPreTrainedModel''', '''ChineseCLIPTextModel''', '''ChineseCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys __lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
18
1
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class a__ ( unittest.TestCase ): @property def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Optional[int] = UNetaDModel( block_out_channels=(32, 64),layers_per_block=2,sample_size=32,in_channels=3,out_channels=3,down_block_types=("DownBlock2D", "AttnDownBlock2D"),up_block_types=("AttnUpBlock2D", "UpBlock2D"),) return model @property def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : int = VQModel( block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],latent_channels=3,) return model @property def __UpperCamelCase ( self : List[str] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1000,) return CLIPTextModel(_A ) def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.dummy_uncond_unet SCREAMING_SNAKE_CASE_ : Optional[Any] = DDIMScheduler() SCREAMING_SNAKE_CASE_ : Optional[int] = self.dummy_vq_model SCREAMING_SNAKE_CASE_ : Optional[int] = LDMPipeline(unet=_A,vqvae=_A,scheduler=_A ) ldm.to(_A ) ldm.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ : Dict = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : str = ldm(generator=_A,num_inference_steps=2,output_type="numpy" ).images SCREAMING_SNAKE_CASE_ : int = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : List[Any] = ldm(generator=_A,num_inference_steps=2,output_type="numpy",return_dict=_A )[0] SCREAMING_SNAKE_CASE_ : Any = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE_ : Optional[Any] = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) SCREAMING_SNAKE_CASE_ : int = 1E-2 if torch_device != "mps" else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class a__ ( unittest.TestCase ): def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = LDMPipeline.from_pretrained("CompVis/ldm-celebahq-256" ) ldm.to(_A ) ldm.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : List[Any] = ldm(generator=_A,num_inference_steps=5,output_type="numpy" ).images SCREAMING_SNAKE_CASE_ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE_ : Optional[int] = np.array([0.4399, 0.44975, 0.46825, 0.474, 0.4359, 0.4581, 0.45095, 0.4341, 0.4447] ) SCREAMING_SNAKE_CASE_ : List[Any] = 1E-2 if torch_device != "mps" else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
18
import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument __lowerCamelCase : Any = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def _snake_case ( lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = list(s_dict.keys() ) for key in keys: SCREAMING_SNAKE_CASE_ : int = R".*/layers_(\d+)" SCREAMING_SNAKE_CASE_ : List[Any] = key if re.match(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Any = re.sub(R"layers_(\d+)" , R"block/\1/layer" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = R"(encoder|decoder)\/" if re.match(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : str = re.match(lowerCAmelCase , lowerCAmelCase ).groups() if groups[0] == "encoder": SCREAMING_SNAKE_CASE_ : Any = re.sub(R"/mlp/" , R"/1/mlp/" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = re.sub(R"/pre_mlp_layer_norm/" , R"/1/layer_norm/" , lowerCAmelCase ) elif groups[0] == "decoder": SCREAMING_SNAKE_CASE_ : List[str] = re.sub(R"/mlp/" , R"/2/mlp/" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = re.sub(R"/pre_mlp_layer_norm/" , R"/2/layer_norm/" , lowerCAmelCase ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: SCREAMING_SNAKE_CASE_ : List[Any] = new_key.replace(lowerCAmelCase , lowerCAmelCase ) print(f'{key} -> {new_key}' ) SCREAMING_SNAKE_CASE_ : List[Any] = s_dict.pop(lowerCAmelCase ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: SCREAMING_SNAKE_CASE_ : str = s_dict[ "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: SCREAMING_SNAKE_CASE_ : Optional[int] = s_dict[ "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: SCREAMING_SNAKE_CASE_ : Union[str, Any] = s_dict[key].shape[0] SCREAMING_SNAKE_CASE_ : List[Any] = s_dict[key] for idx in range(lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Tuple = expert_weihts[idx] print(f'{key} -> {key.replace("expert/" , "nested fstring" )}' ) s_dict.pop(lowerCAmelCase ) return s_dict __lowerCamelCase : List[Any] = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def _snake_case ( lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any] ): """simple docstring""" import regex as re with open(lowerCAmelCase , "r" ) as f: SCREAMING_SNAKE_CASE_ : Optional[Any] = f.read() SCREAMING_SNAKE_CASE_ : List[str] = re.findall(R"(.*) = ([0-9.]*)" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": SCREAMING_SNAKE_CASE_ : int = float(lowerCAmelCase ) if "." in value else int(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = re.findall(R"(.*activations) = \(\'(.*)\',\)" , lowerCAmelCase )[0] SCREAMING_SNAKE_CASE_ : List[str] = str(activation[1] ) SCREAMING_SNAKE_CASE_ : str = num_experts SCREAMING_SNAKE_CASE_ : Tuple = SwitchTransformersConfig(**lowerCAmelCase ) return config def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : str=None , lowerCAmelCase : Optional[Any]="./" , lowerCAmelCase : Dict=8 ): """simple docstring""" print(f'Loading flax weights from : {flax_checkpoint_path}' ) SCREAMING_SNAKE_CASE_ : int = checkpoints.load_tax_checkpoint(lowerCAmelCase ) if gin_file is not None: SCREAMING_SNAKE_CASE_ : int = convert_gin_to_config(lowerCAmelCase , lowerCAmelCase ) else: SCREAMING_SNAKE_CASE_ : Dict = SwitchTransformersConfig.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : str = SwitchTransformersForConditionalGeneration(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = flax_params["target"] SCREAMING_SNAKE_CASE_ : List[str] = flatten_dict(lowerCAmelCase , sep="/" ) SCREAMING_SNAKE_CASE_ : List[str] = rename_keys(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = unflatten_dict(lowerCAmelCase , sep="/" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(lowerCAmelCase , lowerCAmelCase ) print(f'Save PyTorch model to {pytorch_dump_path}' ) pt_model.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": __lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') __lowerCamelCase : Any = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
18
1
import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''') # TF training parameters __lowerCamelCase : int = False __lowerCamelCase : Any = False def _snake_case ( lowerCAmelCase : Namespace ): """simple docstring""" return TrainCommand(lowerCAmelCase ) class a__ ( A__ ): @staticmethod def __UpperCamelCase ( _A : ArgumentParser ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = parser.add_parser("train",help="CLI tool to train a model on a task." ) train_parser.add_argument( "--train_data",type=_A,required=_A,help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.",) train_parser.add_argument( "--column_label",type=_A,default=0,help="Column of the dataset csv file with example labels." ) train_parser.add_argument( "--column_text",type=_A,default=1,help="Column of the dataset csv file with example texts." ) train_parser.add_argument( "--column_id",type=_A,default=2,help="Column of the dataset csv file with example ids." ) train_parser.add_argument( "--skip_first_row",action="store_true",help="Skip the first row of the csv file (headers)." ) train_parser.add_argument("--validation_data",type=_A,default="",help="path to validation dataset." ) train_parser.add_argument( "--validation_split",type=_A,default=0.1,help="if validation dataset is not provided, fraction of train dataset to use as validation dataset.",) train_parser.add_argument("--output",type=_A,default="./",help="path to saved the trained model." ) train_parser.add_argument( "--task",type=_A,default="text_classification",help="Task to train the model on." ) train_parser.add_argument( "--model",type=_A,default="bert-base-uncased",help="Model's name or path to stored model." ) train_parser.add_argument("--train_batch_size",type=_A,default=32,help="Batch size for training." ) train_parser.add_argument("--valid_batch_size",type=_A,default=64,help="Batch size for validation." ) train_parser.add_argument("--learning_rate",type=_A,default=3E-5,help="Learning rate." ) train_parser.add_argument("--adam_epsilon",type=_A,default=1E-08,help="Epsilon for Adam optimizer." ) train_parser.set_defaults(func=_A ) def __init__( self : Optional[int],_A : Namespace ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = logging.get_logger("transformers-cli/training" ) SCREAMING_SNAKE_CASE_ : Any = "tf" if is_tf_available() else "torch" os.makedirs(args.output,exist_ok=_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = args.output SCREAMING_SNAKE_CASE_ : Optional[int] = args.column_label SCREAMING_SNAKE_CASE_ : Optional[int] = args.column_text SCREAMING_SNAKE_CASE_ : int = args.column_id self.logger.info(F'Loading {args.task} pipeline for {args.model}' ) if args.task == "text_classification": SCREAMING_SNAKE_CASE_ : str = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(F'Loading dataset from {args.train_data}' ) SCREAMING_SNAKE_CASE_ : Dict = Processor.create_from_csv( args.train_data,column_label=args.column_label,column_text=args.column_text,column_id=args.column_id,skip_first_row=args.skip_first_row,) SCREAMING_SNAKE_CASE_ : Tuple = None if args.validation_data: self.logger.info(F'Loading validation dataset from {args.validation_data}' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = Processor.create_from_csv( args.validation_data,column_label=args.column_label,column_text=args.column_text,column_id=args.column_id,skip_first_row=args.skip_first_row,) SCREAMING_SNAKE_CASE_ : str = args.validation_split SCREAMING_SNAKE_CASE_ : int = args.train_batch_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = args.valid_batch_size SCREAMING_SNAKE_CASE_ : Any = args.learning_rate SCREAMING_SNAKE_CASE_ : Union[str, Any] = args.adam_epsilon def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" if self.framework == "tf": return self.run_tf() return self.run_torch() def __UpperCamelCase ( self : List[Any] ): """simple docstring""" raise NotImplementedError def __UpperCamelCase ( self : Dict ): """simple docstring""" self.pipeline.fit( self.train_dataset,validation_data=self.valid_dataset,validation_split=self.validation_split,learning_rate=self.learning_rate,adam_epsilon=self.adam_epsilon,train_batch_size=self.train_batch_size,valid_batch_size=self.valid_batch_size,) # Save trained pipeline self.pipeline.save_pretrained(self.output )
18
from math import factorial, radians def _snake_case ( lowerCAmelCase : float , lowerCAmelCase : int = 1_8 , lowerCAmelCase : int = 1_0 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians SCREAMING_SNAKE_CASE_ : Tuple = radians(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = angle_in_radians SCREAMING_SNAKE_CASE_ : List[str] = 3 SCREAMING_SNAKE_CASE_ : str = -1 for _ in range(lowerCAmelCase ): result += (b * (angle_in_radians**a)) / factorial(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(lowerCAmelCase , lowerCAmelCase ) if __name__ == "__main__": __import__('''doctest''').testmod()
18
1
import random from typing import Any def _snake_case ( lowerCAmelCase : list ): """simple docstring""" for _ in range(len(lowerCAmelCase ) ): SCREAMING_SNAKE_CASE_ : Any = random.randint(0 , len(lowerCAmelCase ) - 1 ) SCREAMING_SNAKE_CASE_ : List[Any] = random.randint(0 , len(lowerCAmelCase ) - 1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = data[b], data[a] return data if __name__ == "__main__": __lowerCamelCase : Optional[int] = [0, 1, 2, 3, 4, 5, 6, 7] __lowerCamelCase : Union[str, Any] = ['''python''', '''says''', '''hello''', '''!'''] print('''Fisher-Yates Shuffle:''') print('''List''', integers, strings) print('''FY Shuffle''', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
18
from functools import lru_cache @lru_cache def _snake_case ( lowerCAmelCase : int ): """simple docstring""" if num < 0: raise ValueError("Number should not be negative." ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
18
1
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) __lowerCamelCase : int = logging.getLogger(__name__) def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = argparse.ArgumentParser( description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids)." ) parser.add_argument("--file_path" , type=lowerCAmelCase , default="data/dump.txt" , help="The path to the data." ) parser.add_argument("--tokenizer_type" , type=lowerCAmelCase , default="bert" , choices=["bert", "roberta", "gpt2"] ) parser.add_argument("--tokenizer_name" , type=lowerCAmelCase , default="bert-base-uncased" , help="The tokenizer to use." ) parser.add_argument("--dump_file" , type=lowerCAmelCase , default="data/dump" , help="The dump file prefix." ) SCREAMING_SNAKE_CASE_ : str = parser.parse_args() logger.info(f'Loading Tokenizer ({args.tokenizer_name})' ) if args.tokenizer_type == "bert": SCREAMING_SNAKE_CASE_ : Union[str, Any] = BertTokenizer.from_pretrained(args.tokenizer_name ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer.special_tokens_map["cls_token"] # `[CLS]` SCREAMING_SNAKE_CASE_ : str = tokenizer.special_tokens_map["sep_token"] # `[SEP]` elif args.tokenizer_type == "roberta": SCREAMING_SNAKE_CASE_ : Optional[Any] = RobertaTokenizer.from_pretrained(args.tokenizer_name ) SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.special_tokens_map["cls_token"] # `<s>` SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.special_tokens_map["sep_token"] # `</s>` elif args.tokenizer_type == "gpt2": SCREAMING_SNAKE_CASE_ : Dict = GPTaTokenizer.from_pretrained(args.tokenizer_name ) SCREAMING_SNAKE_CASE_ : Any = tokenizer.special_tokens_map["bos_token"] # `<|endoftext|>` SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer.special_tokens_map["eos_token"] # `<|endoftext|>` logger.info(f'Loading text from {args.file_path}' ) with open(args.file_path , "r" , encoding="utf8" ) as fp: SCREAMING_SNAKE_CASE_ : int = fp.readlines() logger.info("Start encoding" ) logger.info(f'{len(lowerCAmelCase )} examples to process.' ) SCREAMING_SNAKE_CASE_ : Any = [] SCREAMING_SNAKE_CASE_ : List[str] = 0 SCREAMING_SNAKE_CASE_ : Optional[int] = 1_0_0_0_0 SCREAMING_SNAKE_CASE_ : Optional[Any] = time.time() for text in data: SCREAMING_SNAKE_CASE_ : Tuple = f'{bos} {text.strip()} {sep}' SCREAMING_SNAKE_CASE_ : List[str] = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) rslt.append(lowerCAmelCase ) iter += 1 if iter % interval == 0: SCREAMING_SNAKE_CASE_ : List[Any] = time.time() logger.info(f'{iter} examples processed. - {(end-start):.2f}s/{interval}expl' ) SCREAMING_SNAKE_CASE_ : Dict = time.time() logger.info("Finished binarization" ) logger.info(f'{len(lowerCAmelCase )} examples processed.' ) SCREAMING_SNAKE_CASE_ : Optional[int] = f'{args.dump_file}.{args.tokenizer_name}.pickle' SCREAMING_SNAKE_CASE_ : Dict = tokenizer.vocab_size if vocab_size < (1 << 1_6): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [np.uintaa(lowerCAmelCase ) for d in rslt] else: SCREAMING_SNAKE_CASE_ : Dict = [np.intaa(lowerCAmelCase ) for d in rslt] random.shuffle(rslt_ ) logger.info(f'Dump to {dp_file}' ) with open(lowerCAmelCase , "wb" ) as handle: pickle.dump(rslt_ , lowerCAmelCase , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
18
from collections import defaultdict def _snake_case ( lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = 1 SCREAMING_SNAKE_CASE_ : Tuple = True for v in tree[start]: if v not in visited: ret += dfs(lowerCAmelCase ) if ret % 2 == 0: cuts.append(lowerCAmelCase ) return ret def _snake_case ( ): """simple docstring""" dfs(1 ) if __name__ == "__main__": __lowerCamelCase , __lowerCamelCase : Union[str, Any] = 10, 9 __lowerCamelCase : Optional[int] = defaultdict(list) __lowerCamelCase : dict[int, bool] = {} __lowerCamelCase : list[int] = [] __lowerCamelCase : Optional[Any] = 0 __lowerCamelCase : Any = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
18
1
import requests __lowerCamelCase : Dict = '''YOUR API KEY''' def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : str = giphy_api_key ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = "+".join(query.split() ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = f'https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}' SCREAMING_SNAKE_CASE_ : List[str] = requests.get(lowerCAmelCase ).json()["data"] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('''\n'''.join(get_gifs('''space ship''')))
18
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=lowerCAmelCase ) env_command_parser(subparsers=lowerCAmelCase ) launch_command_parser(subparsers=lowerCAmelCase ) tpu_command_parser(subparsers=lowerCAmelCase ) test_command_parser(subparsers=lowerCAmelCase ) # Let's go SCREAMING_SNAKE_CASE_ : Dict = parser.parse_args() if not hasattr(lowerCAmelCase , "func" ): parser.print_help() exit(1 ) # Run args.func(lowerCAmelCase ) if __name__ == "__main__": main()
18
1
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin __lowerCamelCase : Tuple = get_tests_dir('''fixtures/test_sentencepiece.model''') __lowerCamelCase : Optional[Any] = {'''target_lang''': '''fi''', '''source_lang''': '''en'''} __lowerCamelCase : Any = '''>>zh<<''' __lowerCamelCase : str = '''Helsinki-NLP/''' if is_torch_available(): __lowerCamelCase : List[Any] = '''pt''' elif is_tf_available(): __lowerCamelCase : List[str] = '''tf''' else: __lowerCamelCase : Dict = '''jax''' @require_sentencepiece class a__ ( A__ , unittest.TestCase ): A = MarianTokenizer A = False A = True def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE_ : Dict = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] SCREAMING_SNAKE_CASE_ : List[str] = dict(zip(_A,range(len(_A ) ) ) ) SCREAMING_SNAKE_CASE_ : str = Path(self.tmpdirname ) save_json(_A,save_dir / VOCAB_FILES_NAMES["vocab"] ) save_json(_A,save_dir / VOCAB_FILES_NAMES["tokenizer_config_file"] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(_A,save_dir / VOCAB_FILES_NAMES["source_spm"] ) copyfile(_A,save_dir / VOCAB_FILES_NAMES["target_spm"] ) SCREAMING_SNAKE_CASE_ : int = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase ( self : Union[str, Any],**_A : Optional[Any] ): """simple docstring""" return MarianTokenizer.from_pretrained(self.tmpdirname,**_A ) def __UpperCamelCase ( self : Union[str, Any],_A : List[str] ): """simple docstring""" return ( "This is a test", "This is a test", ) def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = "</s>" SCREAMING_SNAKE_CASE_ : str = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ),_A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ),_A ) def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0],"</s>" ) self.assertEqual(vocab_keys[1],"<unk>" ) self.assertEqual(vocab_keys[-1],"<pad>" ) self.assertEqual(len(_A ),9 ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size,9 ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = MarianTokenizer.from_pretrained(F'{ORG_NAME}opus-mt-en-de' ) SCREAMING_SNAKE_CASE_ : Dict = en_de_tokenizer(["I am a small frog"],return_tensors=_A ) self.assertIsInstance(_A,_A ) SCREAMING_SNAKE_CASE_ : str = [38, 121, 14, 697, 3_8848, 0] self.assertListEqual(_A,batch.input_ids[0] ) SCREAMING_SNAKE_CASE_ : str = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = [x.name for x in Path(_A ).glob("*" )] self.assertIn("source.spm",_A ) MarianTokenizer.from_pretrained(_A ) def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : str = tok( ["I am a small frog" * 1000, "I am a small frog"],padding=_A,truncation=_A,return_tensors=_A ) self.assertIsInstance(_A,_A ) self.assertEqual(batch.input_ids.shape,(2, 512) ) def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : str = tok(["I am a tiny frog", "I am a small frog"],padding=_A,return_tensors=_A ) self.assertIsInstance(_A,_A ) self.assertEqual(batch_smaller.input_ids.shape,(2, 10) ) @slow def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = {"input_ids": [[4_3495, 462, 20, 4_2164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 3_8999, 6, 8, 464, 132, 1703, 492, 13, 4669, 3_7867, 13, 7525, 27, 1593, 988, 13, 3_3972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 1_2338, 2, 1_3958, 387, 2, 3629, 6953, 188, 2900, 2, 1_3958, 8011, 1_1501, 23, 8460, 4073, 3_4009, 20, 435, 1_1439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 3_7867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 2_6453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 1_0767, 6, 316, 304, 4239, 3, 0], [148, 1_5722, 19, 1839, 12, 1350, 13, 2_2327, 5082, 5418, 4_7567, 3_5938, 59, 318, 1_9552, 108, 2183, 54, 1_4976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 1_9088, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100], [36, 6395, 1_2570, 3_9147, 1_1597, 6, 266, 4, 4_5405, 7296, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A,model_name="Helsinki-NLP/opus-mt-en-de",revision="1a8c2263da11e68e50938f97e10cd57820bd504c",decode_kwargs={"use_source_tokenizer": True},) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = MarianTokenizer.from_pretrained("hf-internal-testing/test-marian-two-vocabs" ) SCREAMING_SNAKE_CASE_ : Tuple = "Tämä on testi" SCREAMING_SNAKE_CASE_ : List[str] = "This is a test" SCREAMING_SNAKE_CASE_ : Union[str, Any] = [76, 7, 2047, 2] SCREAMING_SNAKE_CASE_ : str = [69, 12, 11, 940, 2] SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer(_A ).input_ids self.assertListEqual(_A,_A ) SCREAMING_SNAKE_CASE_ : Dict = tokenizer(text_target=_A ).input_ids self.assertListEqual(_A,_A ) SCREAMING_SNAKE_CASE_ : Any = tokenizer.decode(_A,skip_special_tokens=_A ) self.assertEqual(_A,_A )
18
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer __lowerCamelCase : Optional[Any] = logging.get_logger(__name__) __lowerCamelCase : Dict = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __lowerCamelCase : int = { '''vocab_file''': { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt''' ), } } __lowerCamelCase : Any = { '''junnyu/roformer_chinese_small''': 15_36, '''junnyu/roformer_chinese_base''': 15_36, '''junnyu/roformer_chinese_char_small''': 5_12, '''junnyu/roformer_chinese_char_base''': 5_12, '''junnyu/roformer_small_discriminator''': 1_28, '''junnyu/roformer_small_generator''': 1_28, } __lowerCamelCase : Union[str, Any] = { '''junnyu/roformer_chinese_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_base''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_base''': {'''do_lower_case''': True}, '''junnyu/roformer_small_discriminator''': {'''do_lower_case''': True}, '''junnyu/roformer_small_generator''': {'''do_lower_case''': True}, } class a__ ( A__ ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = PRETRAINED_INIT_CONFIGURATION A = RoFormerTokenizer def __init__( self : List[str],_A : int=None,_A : int=None,_A : int=True,_A : List[Any]="[UNK]",_A : Tuple="[SEP]",_A : List[Any]="[PAD]",_A : Optional[int]="[CLS]",_A : Optional[Any]="[MASK]",_A : Optional[int]=True,_A : List[str]=None,**_A : List[Any],): """simple docstring""" super().__init__( _A,tokenizer_file=_A,do_lower_case=_A,unk_token=_A,sep_token=_A,pad_token=_A,cls_token=_A,mask_token=_A,tokenize_chinese_chars=_A,strip_accents=_A,**_A,) SCREAMING_SNAKE_CASE_ : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("lowercase",_A ) != do_lower_case or pre_tok_state.get("strip_accents",_A ) != strip_accents ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = getattr(_A,pre_tok_state.pop("type" ) ) SCREAMING_SNAKE_CASE_ : Any = do_lower_case SCREAMING_SNAKE_CASE_ : List[str] = strip_accents SCREAMING_SNAKE_CASE_ : str = pre_tok_class(**_A ) SCREAMING_SNAKE_CASE_ : List[str] = do_lower_case def __getstate__( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.__dict__.copy() SCREAMING_SNAKE_CASE_ : Optional[Any] = BertPreTokenizer() return state def __setstate__( self : List[Any],_A : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = d SCREAMING_SNAKE_CASE_ : List[str] = self.__dict__["_tokenizer"].get_vocab() SCREAMING_SNAKE_CASE_ : Any = PreTokenizer.custom(JiebaPreTokenizer(_A ) ) def __UpperCamelCase ( self : Union[str, Any],_A : List[Any],_A : str=None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCamelCase ( self : str,_A : List[int],_A : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCamelCase ( self : int,_A : str,_A : Optional[str] = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._tokenizer.model.save(_A,name=_A ) return tuple(_A ) def __UpperCamelCase ( self : int,_A : Optional[int],_A : List[Any]=None,_A : Tuple=None,_A : str=False,**_A : List[Any],): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = BertPreTokenizer() return super().save_pretrained(_A,_A,_A,_A,**_A )
18
1
from __future__ import annotations def _snake_case ( lowerCAmelCase : int | str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = str(lowerCAmelCase ) return n == n[::-1] def _snake_case ( lowerCAmelCase : int = 1_0_0_0_0_0_0 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = 0 for i in range(1 , lowerCAmelCase ): if is_palindrome(lowerCAmelCase ) and is_palindrome(bin(lowerCAmelCase ).split("b" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
18
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class a__ ( A__ ): def __init__( self : Tuple,_A : Optional[int],_A : Any=13,_A : List[str]=7,_A : int=True,_A : Dict=True,_A : Dict=False,_A : List[Any]=True,_A : Any=99,_A : Optional[int]=32,_A : Any=5,_A : List[Any]=4,_A : Dict=64,_A : Optional[Any]="gelu",_A : Tuple=0.1,_A : Any=0.1,_A : List[Any]=512,_A : Dict=16,_A : Optional[Any]=2,_A : Union[str, Any]=0.02,_A : List[str]=3,_A : Optional[Any]=4,_A : Union[str, Any]=None,_A : Tuple=2,_A : List[str]=2,_A : str=2,_A : Dict=2,_A : Optional[Any]=4,_A : Union[str, Any]=1,): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = parent SCREAMING_SNAKE_CASE_ : Optional[int] = batch_size SCREAMING_SNAKE_CASE_ : Dict = seq_length SCREAMING_SNAKE_CASE_ : Dict = is_training SCREAMING_SNAKE_CASE_ : Optional[int] = use_input_mask SCREAMING_SNAKE_CASE_ : int = use_token_type_ids SCREAMING_SNAKE_CASE_ : Optional[int] = use_labels SCREAMING_SNAKE_CASE_ : Tuple = vocab_size SCREAMING_SNAKE_CASE_ : Any = hidden_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Tuple = num_attention_heads SCREAMING_SNAKE_CASE_ : List[Any] = intermediate_size SCREAMING_SNAKE_CASE_ : List[str] = hidden_act SCREAMING_SNAKE_CASE_ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : str = max_position_embeddings SCREAMING_SNAKE_CASE_ : str = type_vocab_size SCREAMING_SNAKE_CASE_ : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE_ : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE_ : Tuple = num_labels SCREAMING_SNAKE_CASE_ : List[Any] = num_choices SCREAMING_SNAKE_CASE_ : Dict = scope SCREAMING_SNAKE_CASE_ : int = q_groups SCREAMING_SNAKE_CASE_ : Tuple = k_groups SCREAMING_SNAKE_CASE_ : List[Any] = v_groups SCREAMING_SNAKE_CASE_ : Tuple = post_attention_groups SCREAMING_SNAKE_CASE_ : int = intermediate_groups SCREAMING_SNAKE_CASE_ : List[Any] = output_groups def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) SCREAMING_SNAKE_CASE_ : List[Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = None SCREAMING_SNAKE_CASE_ : Any = None SCREAMING_SNAKE_CASE_ : str = None if self.use_labels: SCREAMING_SNAKE_CASE_ : str = ids_tensor([self.batch_size],self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size],self.num_choices ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : str ): """simple docstring""" return SqueezeBertConfig( embedding_size=self.hidden_size,vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,attention_probs_dropout_prob=self.hidden_dropout_prob,attention_dropout=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,initializer_range=self.initializer_range,q_groups=self.q_groups,k_groups=self.k_groups,v_groups=self.v_groups,post_attention_groups=self.post_attention_groups,intermediate_groups=self.intermediate_groups,output_groups=self.output_groups,) def __UpperCamelCase ( self : Tuple,_A : Union[str, Any],_A : Union[str, Any],_A : int,_A : Optional[int],_A : Union[str, Any],_A : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = SqueezeBertModel(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Any = model(_A,_A ) SCREAMING_SNAKE_CASE_ : List[str] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Dict,_A : Any,_A : Tuple,_A : str,_A : Any,_A : Union[str, Any],_A : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = SqueezeBertForMaskedLM(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : List[str] = model(_A,attention_mask=_A,labels=_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : Optional[int],_A : Union[str, Any],_A : Union[str, Any],_A : Any,_A : Tuple,_A : int,_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = SqueezeBertForQuestionAnswering(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model( _A,attention_mask=_A,start_positions=_A,end_positions=_A ) self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : List[Any],_A : List[str],_A : Tuple,_A : List[Any],_A : List[str],_A : List[str],_A : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.num_labels SCREAMING_SNAKE_CASE_ : List[str] = SqueezeBertForSequenceClassification(_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model(_A,attention_mask=_A,labels=_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : str,_A : Optional[int],_A : str,_A : List[Any],_A : List[str],_A : str,_A : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.num_labels SCREAMING_SNAKE_CASE_ : Optional[int] = SqueezeBertForTokenClassification(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[int] = model(_A,attention_mask=_A,labels=_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : List[Any],_A : Tuple,_A : str,_A : Optional[Any],_A : int,_A : str,_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.num_choices SCREAMING_SNAKE_CASE_ : Union[str, Any] = SqueezeBertForMultipleChoice(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = input_ids.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() SCREAMING_SNAKE_CASE_ : str = input_mask.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() SCREAMING_SNAKE_CASE_ : Optional[int] = model( _A,attention_mask=_A,labels=_A,) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)) : Dict = config_and_inputs SCREAMING_SNAKE_CASE_ : Dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class a__ ( A__ , A__ , unittest.TestCase ): A = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) A = ( { 'feature-extraction': SqueezeBertModel, 'fill-mask': SqueezeBertForMaskedLM, 'question-answering': SqueezeBertForQuestionAnswering, 'text-classification': SqueezeBertForSequenceClassification, 'token-classification': SqueezeBertForTokenClassification, 'zero-shot': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) A = False A = True A = False def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = SqueezeBertModelTester(self ) SCREAMING_SNAKE_CASE_ : List[str] = ConfigTester(self,config_class=_A,dim=37 ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*_A ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*_A ) def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*_A ) def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*_A ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*_A ) def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*_A ) @slow def __UpperCamelCase ( self : Any ): """simple docstring""" for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : Tuple = SqueezeBertModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_sentencepiece @require_tokenizers @require_torch class a__ ( unittest.TestCase ): @slow def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = SqueezeBertForSequenceClassification.from_pretrained("squeezebert/squeezebert-mnli" ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor([[1, 2_9414, 232, 328, 740, 1140, 1_2695, 69, 13, 1588, 2]] ) SCREAMING_SNAKE_CASE_ : List[Any] = model(_A )[0] SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.Size((1, 3) ) self.assertEqual(output.shape,_A ) SCREAMING_SNAKE_CASE_ : int = torch.tensor([[0.6401, -0.0349, -0.6041]] ) self.assertTrue(torch.allclose(_A,_A,atol=1E-4 ) )
18
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : Dict = logging.get_logger(__name__) __lowerCamelCase : Union[str, Any] = { '''edbeeching/decision-transformer-gym-hopper-medium''': ( '''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json''' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class a__ ( A__ ): A = 'decision_transformer' A = ['past_key_values'] A = { 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : int,_A : Optional[int]=17,_A : List[str]=4,_A : Any=128,_A : Optional[Any]=4096,_A : Tuple=True,_A : Any=1,_A : str=1024,_A : int=3,_A : Optional[Any]=1,_A : int=None,_A : List[str]="relu",_A : List[str]=0.1,_A : Any=0.1,_A : Optional[Any]=0.1,_A : Union[str, Any]=1E-5,_A : Tuple=0.02,_A : int=True,_A : List[str]=True,_A : List[Any]=5_0256,_A : Any=5_0256,_A : Optional[Any]=False,_A : str=False,**_A : str,): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = state_dim SCREAMING_SNAKE_CASE_ : Union[str, Any] = act_dim SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_size SCREAMING_SNAKE_CASE_ : Optional[int] = max_ep_len SCREAMING_SNAKE_CASE_ : Optional[int] = action_tanh SCREAMING_SNAKE_CASE_ : Any = vocab_size SCREAMING_SNAKE_CASE_ : List[Any] = n_positions SCREAMING_SNAKE_CASE_ : Tuple = n_layer SCREAMING_SNAKE_CASE_ : Union[str, Any] = n_head SCREAMING_SNAKE_CASE_ : str = n_inner SCREAMING_SNAKE_CASE_ : List[Any] = activation_function SCREAMING_SNAKE_CASE_ : int = resid_pdrop SCREAMING_SNAKE_CASE_ : Dict = embd_pdrop SCREAMING_SNAKE_CASE_ : Union[str, Any] = attn_pdrop SCREAMING_SNAKE_CASE_ : Union[str, Any] = layer_norm_epsilon SCREAMING_SNAKE_CASE_ : List[Any] = initializer_range SCREAMING_SNAKE_CASE_ : Optional[Any] = scale_attn_weights SCREAMING_SNAKE_CASE_ : Optional[int] = use_cache SCREAMING_SNAKE_CASE_ : Optional[int] = scale_attn_by_inverse_layer_idx SCREAMING_SNAKE_CASE_ : int = reorder_and_upcast_attn SCREAMING_SNAKE_CASE_ : Any = bos_token_id SCREAMING_SNAKE_CASE_ : Tuple = eos_token_id super().__init__(bos_token_id=_A,eos_token_id=_A,**_A )
18
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def _snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Union[str, Any] = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE_ : List[str] = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def _snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : Dict , lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Optional[Any] = {"text": "string"} SCREAMING_SNAKE_CASE_ : Any = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE_ : List[str] = ( Features({feature: Value(lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE_ : Optional[Any] = TextDatasetReader(lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def _snake_case ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : List[str] = {"text": "string"} SCREAMING_SNAKE_CASE_ : List[str] = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase , split=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : Optional[int] ): """simple docstring""" if issubclass(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = text_path elif issubclass(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [text_path] SCREAMING_SNAKE_CASE_ : int = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Optional[int] = {"text": "string"} SCREAMING_SNAKE_CASE_ : List[str] = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) def _snake_case ( lowerCAmelCase : Dict , lowerCAmelCase : Dict , lowerCAmelCase : List[str]=("train",) ): """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) for split in splits: SCREAMING_SNAKE_CASE_ : int = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def _snake_case ( lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Union[str, Any] = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE_ : List[Any] = TextDatasetReader({"train": text_path} , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase ).read() _check_text_datasetdict(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def _snake_case ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = tmp_path / "cache" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" SCREAMING_SNAKE_CASE_ : Tuple = {"text": "string"} SCREAMING_SNAKE_CASE_ : Any = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE_ : Dict = ( Features({feature: Value(lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE_ : str = TextDatasetReader({"train": text_path} , features=lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_datasetdict(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def _snake_case ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any , lowerCAmelCase : Dict ): """simple docstring""" if split: SCREAMING_SNAKE_CASE_ : Optional[int] = {split: text_path} else: SCREAMING_SNAKE_CASE_ : List[Any] = "train" SCREAMING_SNAKE_CASE_ : Tuple = {"train": text_path, "test": text_path} SCREAMING_SNAKE_CASE_ : Any = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : List[str] = {"text": "string"} SCREAMING_SNAKE_CASE_ : str = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_datasetdict(lowerCAmelCase , lowerCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
18
1
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel __lowerCamelCase : int = '''0.12''' # assumed parallelism: 8 @require_flax @is_staging_test class a__ ( unittest.TestCase ): @classmethod def __UpperCamelCase ( cls : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = TOKEN HfFolder.save_token(_A ) @classmethod def __UpperCamelCase ( cls : Union[str, Any] ): """simple docstring""" try: delete_repo(token=cls._token,repo_id="test-model-flax" ) except HTTPError: pass try: delete_repo(token=cls._token,repo_id="valid_org/test-model-flax-org" ) except HTTPError: pass def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = BertConfig( vocab_size=99,hidden_size=32,num_hidden_layers=5,num_attention_heads=4,intermediate_size=37 ) SCREAMING_SNAKE_CASE_ : List[Any] = FlaxBertModel(_A ) model.push_to_hub("test-model-flax",use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ : List[Any] = FlaxBertModel.from_pretrained(F'{USER}/test-model-flax' ) SCREAMING_SNAKE_CASE_ : str = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE_ : List[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE_ : int = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A,1E-3,msg=F'{key} not identical' ) # Reset repo delete_repo(token=self._token,repo_id="test-model-flax" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A,repo_id="test-model-flax",push_to_hub=_A,use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ : Any = FlaxBertModel.from_pretrained(F'{USER}/test-model-flax' ) SCREAMING_SNAKE_CASE_ : str = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE_ : List[str] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE_ : str = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A,1E-3,msg=F'{key} not identical' ) def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = BertConfig( vocab_size=99,hidden_size=32,num_hidden_layers=5,num_attention_heads=4,intermediate_size=37 ) SCREAMING_SNAKE_CASE_ : List[Any] = FlaxBertModel(_A ) model.push_to_hub("valid_org/test-model-flax-org",use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ : Tuple = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org" ) SCREAMING_SNAKE_CASE_ : str = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE_ : List[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE_ : Optional[Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A,1E-3,msg=F'{key} not identical' ) # Reset repo delete_repo(token=self._token,repo_id="valid_org/test-model-flax-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _A,repo_id="valid_org/test-model-flax-org",push_to_hub=_A,use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ : int = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org" ) SCREAMING_SNAKE_CASE_ : Dict = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE_ : List[str] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE_ : List[Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_A,1E-3,msg=F'{key} not identical' ) def _snake_case ( lowerCAmelCase : List[str] , lowerCAmelCase : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = True SCREAMING_SNAKE_CASE_ : int = flatten_dict(modela.params ) SCREAMING_SNAKE_CASE_ : str = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: SCREAMING_SNAKE_CASE_ : Optional[Any] = False return models_are_equal @require_flax class a__ ( unittest.TestCase ): def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) SCREAMING_SNAKE_CASE_ : List[Any] = FlaxBertModel(_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = "bert" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_A,_A ) ) with self.assertRaises(_A ): SCREAMING_SNAKE_CASE_ : str = FlaxBertModel.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ : Tuple = FlaxBertModel.from_pretrained(_A,subfolder=_A ) self.assertTrue(check_models_equal(_A,_A ) ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) SCREAMING_SNAKE_CASE_ : Dict = FlaxBertModel(_A ) SCREAMING_SNAKE_CASE_ : str = "bert" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_A,_A ),max_shard_size="10KB" ) with self.assertRaises(_A ): SCREAMING_SNAKE_CASE_ : int = FlaxBertModel.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ : str = FlaxBertModel.from_pretrained(_A,subfolder=_A ) self.assertTrue(check_models_equal(_A,_A ) ) def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = "bert" SCREAMING_SNAKE_CASE_ : Any = "hf-internal-testing/tiny-random-bert-subfolder" with self.assertRaises(_A ): SCREAMING_SNAKE_CASE_ : Dict = FlaxBertModel.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ : List[str] = FlaxBertModel.from_pretrained(_A,subfolder=_A ) self.assertIsNotNone(_A ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = "bert" SCREAMING_SNAKE_CASE_ : Tuple = "hf-internal-testing/tiny-random-bert-sharded-subfolder" with self.assertRaises(_A ): SCREAMING_SNAKE_CASE_ : Dict = FlaxBertModel.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ : str = FlaxBertModel.from_pretrained(_A,subfolder=_A ) self.assertIsNotNone(_A )
18
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def _snake_case ( lowerCAmelCase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class a__ ( A__ , A__ , A__ , unittest.TestCase ): A = StableDiffusionLatentUpscalePipeline A = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'height', 'width', 'cross_attention_kwargs', 'negative_prompt_embeds', 'prompt_embeds', } A = PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'} A = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A = frozenset([] ) A = True @property def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = 1 SCREAMING_SNAKE_CASE_ : Optional[int] = 4 SCREAMING_SNAKE_CASE_ : Optional[int] = (16, 16) SCREAMING_SNAKE_CASE_ : Dict = floats_tensor((batch_size, num_channels) + sizes,rng=random.Random(0 ) ).to(_A ) return image def __UpperCamelCase ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : str = UNetaDConditionModel( act_fn="gelu",attention_head_dim=8,norm_num_groups=_A,block_out_channels=[32, 32, 64, 64],time_cond_proj_dim=160,conv_in_kernel=1,conv_out_kernel=1,cross_attention_dim=32,down_block_types=( "KDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", ),in_channels=8,mid_block_type=_A,only_cross_attention=_A,out_channels=5,resnet_time_scale_shift="scale_shift",time_embedding_type="fourier",timestep_post_act="gelu",up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D"),) SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 32, 64, 64],in_channels=3,out_channels=3,down_block_types=[ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", ],up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],latent_channels=4,) SCREAMING_SNAKE_CASE_ : int = EulerDiscreteScheduler(prediction_type="sample" ) SCREAMING_SNAKE_CASE_ : List[Any] = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1000,hidden_act="quick_gelu",projection_dim=512,) SCREAMING_SNAKE_CASE_ : Tuple = CLIPTextModel(_A ) SCREAMING_SNAKE_CASE_ : int = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = { "unet": model.eval(), "vae": vae.eval(), "scheduler": scheduler, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def __UpperCamelCase ( self : List[Any],_A : int,_A : Tuple=0 ): """simple docstring""" if str(_A ).startswith("mps" ): SCREAMING_SNAKE_CASE_ : Optional[int] = torch.manual_seed(_A ) else: SCREAMING_SNAKE_CASE_ : Dict = torch.Generator(device=_A ).manual_seed(_A ) SCREAMING_SNAKE_CASE_ : Tuple = { "prompt": "A painting of a squirrel eating a burger", "image": self.dummy_image.cpu(), "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = "cpu" SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : List[str] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ : Tuple = self.get_dummy_inputs(_A ) SCREAMING_SNAKE_CASE_ : Dict = pipe(**_A ).images SCREAMING_SNAKE_CASE_ : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape,(1, 256, 256, 3) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) SCREAMING_SNAKE_CASE_ : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A,1E-3 ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def __UpperCamelCase ( self : int ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" super().test_save_load_local(expected_max_difference=3E-3 ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3E-3 ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = [ "DDIMScheduler", "DDPMScheduler", "PNDMScheduler", "HeunDiscreteScheduler", "EulerAncestralDiscreteScheduler", "KDPM2DiscreteScheduler", "KDPM2AncestralDiscreteScheduler", "DPMSolverSDEScheduler", ] SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : Any = self.pipeline_class(**_A ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ : Any = self.get_dummy_inputs(_A ) SCREAMING_SNAKE_CASE_ : Optional[Any] = 2 SCREAMING_SNAKE_CASE_ : Optional[int] = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue SCREAMING_SNAKE_CASE_ : Tuple = getattr(_A,scheduler_enum.name ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = scheduler_cls.from_config(pipe.scheduler.config ) SCREAMING_SNAKE_CASE_ : Optional[int] = pipe(**_A )[0] outputs.append(_A ) assert check_same_shape(_A ) @require_torch_gpu @slow class a__ ( unittest.TestCase ): def __UpperCamelCase ( self : Dict ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = torch.manual_seed(33 ) SCREAMING_SNAKE_CASE_ : Optional[int] = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4",torch_dtype=torch.floataa ) pipe.to("cuda" ) SCREAMING_SNAKE_CASE_ : List[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler",torch_dtype=torch.floataa ) upscaler.to("cuda" ) SCREAMING_SNAKE_CASE_ : Tuple = "a photo of an astronaut high resolution, unreal engine, ultra realistic" SCREAMING_SNAKE_CASE_ : str = pipe(_A,generator=_A,output_type="latent" ).images SCREAMING_SNAKE_CASE_ : Optional[Any] = upscaler( prompt=_A,image=_A,num_inference_steps=20,guidance_scale=0,generator=_A,output_type="np",).images[0] SCREAMING_SNAKE_CASE_ : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy" ) assert np.abs((expected_image - image).mean() ) < 5E-2 def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = torch.manual_seed(33 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler",torch_dtype=torch.floataa ) upscaler.to("cuda" ) SCREAMING_SNAKE_CASE_ : Any = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas" SCREAMING_SNAKE_CASE_ : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png" ) SCREAMING_SNAKE_CASE_ : str = upscaler( prompt=_A,image=_A,num_inference_steps=20,guidance_scale=0,generator=_A,output_type="np",).images[0] SCREAMING_SNAKE_CASE_ : Any = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy" ) assert np.abs((expected_image - image).max() ) < 5E-2
18
1
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class a__ ( unittest.TestCase , A__ ): def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = load_tool("text-to-speech" ) self.tool.setup() def __UpperCamelCase ( self : Tuple ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Dict = self.tool("hey" ) SCREAMING_SNAKE_CASE_ : Optional[int] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3],torch.tensor([-0.0005966668832115829, -0.0003657640190795064, -0.00013439502799883485] ),) ) def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : List[Any] = self.tool("hey" ) SCREAMING_SNAKE_CASE_ : Any = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3],torch.tensor([-0.0005966668832115829, -0.0003657640190795064, -0.00013439502799883485] ),) )
18
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging __lowerCamelCase : Optional[int] = logging.get_logger(__name__) __lowerCamelCase : Tuple = { '''deepmind/language-perceiver''': '''https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json''', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class a__ ( A__ ): A = 'perceiver' def __init__( self : List[Any],_A : Tuple=256,_A : str=1280,_A : List[Any]=768,_A : Union[str, Any]=1,_A : Union[str, Any]=26,_A : List[str]=8,_A : List[Any]=8,_A : List[Any]=None,_A : List[Any]=None,_A : Union[str, Any]="kv",_A : Any=1,_A : int=1,_A : Dict="gelu",_A : Any=0.1,_A : int=0.02,_A : int=1E-12,_A : Any=True,_A : Optional[Any]=262,_A : List[Any]=2048,_A : str=56,_A : Optional[int]=[368, 496],_A : Dict=16,_A : Tuple=1920,_A : List[Any]=16,_A : str=[1, 16, 224, 224],**_A : Optional[Any],): """simple docstring""" super().__init__(**_A ) SCREAMING_SNAKE_CASE_ : Dict = num_latents SCREAMING_SNAKE_CASE_ : List[Any] = d_latents SCREAMING_SNAKE_CASE_ : Union[str, Any] = d_model SCREAMING_SNAKE_CASE_ : Optional[int] = num_blocks SCREAMING_SNAKE_CASE_ : List[Any] = num_self_attends_per_block SCREAMING_SNAKE_CASE_ : Tuple = num_self_attention_heads SCREAMING_SNAKE_CASE_ : List[str] = num_cross_attention_heads SCREAMING_SNAKE_CASE_ : List[Any] = qk_channels SCREAMING_SNAKE_CASE_ : Any = v_channels SCREAMING_SNAKE_CASE_ : Any = cross_attention_shape_for_attention SCREAMING_SNAKE_CASE_ : List[str] = self_attention_widening_factor SCREAMING_SNAKE_CASE_ : Any = cross_attention_widening_factor SCREAMING_SNAKE_CASE_ : List[Any] = hidden_act SCREAMING_SNAKE_CASE_ : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Any = initializer_range SCREAMING_SNAKE_CASE_ : List[Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : Tuple = use_query_residual # masked language modeling attributes SCREAMING_SNAKE_CASE_ : List[str] = vocab_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = max_position_embeddings # image classification attributes SCREAMING_SNAKE_CASE_ : Dict = image_size # flow attributes SCREAMING_SNAKE_CASE_ : List[Any] = train_size # multimodal autoencoding attributes SCREAMING_SNAKE_CASE_ : str = num_frames SCREAMING_SNAKE_CASE_ : Any = audio_samples_per_frame SCREAMING_SNAKE_CASE_ : Tuple = samples_per_patch SCREAMING_SNAKE_CASE_ : Optional[Any] = output_shape class a__ ( A__ ): @property def __UpperCamelCase ( self : List[str] ): """simple docstring""" if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ : List[str] = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE_ : str = {0: "batch", 1: "sequence"} return OrderedDict( [ ("inputs", dynamic_axis), ("attention_mask", dynamic_axis), ] ) @property def __UpperCamelCase ( self : List[Any] ): """simple docstring""" return 1E-4 def __UpperCamelCase ( self : List[str],_A : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"],_A : int = -1,_A : int = -1,_A : int = -1,_A : bool = False,_A : Optional[TensorType] = None,_A : int = 3,_A : int = 40,_A : int = 40,): """simple docstring""" if isinstance(_A,_A ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ : Tuple = compute_effective_axis_dimension( _A,fixed_dimension=OnnxConfig.default_fixed_batch,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ : Tuple = preprocessor.num_special_tokens_to_add(_A ) SCREAMING_SNAKE_CASE_ : Any = compute_effective_axis_dimension( _A,fixed_dimension=OnnxConfig.default_fixed_sequence,num_token_to_add=_A ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE_ : Optional[Any] = [" ".join(["a"] ) * seq_length] * batch_size SCREAMING_SNAKE_CASE_ : str = dict(preprocessor(_A,return_tensors=_A ) ) SCREAMING_SNAKE_CASE_ : List[str] = inputs.pop("input_ids" ) return inputs elif isinstance(_A,_A ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ : Any = compute_effective_axis_dimension(_A,fixed_dimension=OnnxConfig.default_fixed_batch ) SCREAMING_SNAKE_CASE_ : Optional[int] = self._generate_dummy_images(_A,_A,_A,_A ) SCREAMING_SNAKE_CASE_ : Any = dict(preprocessor(images=_A,return_tensors=_A ) ) SCREAMING_SNAKE_CASE_ : Any = inputs.pop("pixel_values" ) return inputs else: raise ValueError( "Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor." )
18
1
from __future__ import annotations __lowerCamelCase : Tuple = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] __lowerCamelCase : str = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def _snake_case ( lowerCAmelCase : list[float] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = [] SCREAMING_SNAKE_CASE_ : List[str] = len(lowerCAmelCase ) for i in range(lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : float = -1 for j in range(i + 1 , lowerCAmelCase ): if arr[i] < arr[j]: SCREAMING_SNAKE_CASE_ : Any = arr[j] break result.append(lowerCAmelCase ) return result def _snake_case ( lowerCAmelCase : list[float] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = [] for i, outer in enumerate(lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : float = -1 for inner in arr[i + 1 :]: if outer < inner: SCREAMING_SNAKE_CASE_ : List[str] = inner break result.append(lowerCAmelCase ) return result def _snake_case ( lowerCAmelCase : list[float] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = len(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : list[float] = [] SCREAMING_SNAKE_CASE_ : list[float] = [-1] * arr_size for index in reversed(range(lowerCAmelCase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: SCREAMING_SNAKE_CASE_ : Union[str, Any] = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) __lowerCamelCase : Dict = ( '''from __main__ import arr, next_greatest_element_slow, ''' '''next_greatest_element_fast, next_greatest_element''' ) print( '''next_greatest_element_slow():''', timeit('''next_greatest_element_slow(arr)''', setup=setup), ) print( '''next_greatest_element_fast():''', timeit('''next_greatest_element_fast(arr)''', setup=setup), ) print( ''' next_greatest_element():''', timeit('''next_greatest_element(arr)''', setup=setup), )
18
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class a__ ( yaml.SafeLoader ): def __UpperCamelCase ( self : str,_A : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = [self.constructed_objects[key_node] for key_node, _ in node.value] SCREAMING_SNAKE_CASE_ : List[str] = [tuple(_A ) if isinstance(_A,_A ) else key for key in keys] SCREAMING_SNAKE_CASE_ : Optional[int] = Counter(_A ) SCREAMING_SNAKE_CASE_ : Tuple = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F'Got duplicate yaml keys: {duplicate_keys}' ) def __UpperCamelCase ( self : Tuple,_A : Dict,_A : List[Any]=False ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = super().construct_mapping(_A,deep=_A ) self._check_no_duplicates_on_constructed_node(_A ) return mapping def _snake_case ( lowerCAmelCase : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: SCREAMING_SNAKE_CASE_ : List[Any] = full_content[1:].index("---" ) + 1 SCREAMING_SNAKE_CASE_ : int = "\n".join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(lowerCAmelCase ) class a__ ( A__ ): # class attributes A = {'train_eval_index'} # train-eval-index in the YAML metadata @classmethod def __UpperCamelCase ( cls : Any,_A : Path ): """simple docstring""" with open(_A,encoding="utf-8" ) as readme_file: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(_A ) else: return cls() def __UpperCamelCase ( self : Dict,_A : Path ): """simple docstring""" if path.exists(): with open(_A,encoding="utf-8" ) as readme_file: SCREAMING_SNAKE_CASE_ : int = readme_file.read() else: SCREAMING_SNAKE_CASE_ : Any = None SCREAMING_SNAKE_CASE_ : int = self._to_readme(_A ) with open(_A,"w",encoding="utf-8" ) as readme_file: readme_file.write(_A ) def __UpperCamelCase ( self : Optional[int],_A : Optional[str] = None ): """simple docstring""" if readme_content is not None: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = _split_yaml_from_readme(_A ) SCREAMING_SNAKE_CASE_ : Tuple = "---\n" + self.to_yaml_string() + "---\n" + content else: SCREAMING_SNAKE_CASE_ : Dict = "---\n" + self.to_yaml_string() + "---\n" return full_content @classmethod def __UpperCamelCase ( cls : Dict,_A : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = yaml.load(_A,Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields SCREAMING_SNAKE_CASE_ : Any = { (key.replace("-","_" ) if key.replace("-","_" ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**_A ) def __UpperCamelCase ( self : Dict ): """simple docstring""" return yaml.safe_dump( { (key.replace("_","-" ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() },sort_keys=_A,allow_unicode=_A,encoding="utf-8",).decode("utf-8" ) __lowerCamelCase : List[Any] = { '''image-classification''': [], '''translation''': [], '''image-segmentation''': [], '''fill-mask''': [], '''automatic-speech-recognition''': [], '''token-classification''': [], '''sentence-similarity''': [], '''audio-classification''': [], '''question-answering''': [], '''summarization''': [], '''zero-shot-classification''': [], '''table-to-text''': [], '''feature-extraction''': [], '''other''': [], '''multiple-choice''': [], '''text-classification''': [], '''text-to-image''': [], '''text2text-generation''': [], '''zero-shot-image-classification''': [], '''tabular-classification''': [], '''tabular-regression''': [], '''image-to-image''': [], '''tabular-to-text''': [], '''unconditional-image-generation''': [], '''text-retrieval''': [], '''text-to-speech''': [], '''object-detection''': [], '''audio-to-audio''': [], '''text-generation''': [], '''conversational''': [], '''table-question-answering''': [], '''visual-question-answering''': [], '''image-to-text''': [], '''reinforcement-learning''': [], '''voice-activity-detection''': [], '''time-series-forecasting''': [], '''document-question-answering''': [], } if __name__ == "__main__": from argparse import ArgumentParser __lowerCamelCase : List[Any] = ArgumentParser(usage='''Validate the yaml metadata block of a README.md file.''') ap.add_argument('''readme_filepath''') __lowerCamelCase : Dict = ap.parse_args() __lowerCamelCase : List[Any] = Path(args.readme_filepath) __lowerCamelCase : Optional[int] = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
18
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCamelCase : List[str] = { '''configuration_graphormer''': ['''GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GraphormerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[Any] = [ '''GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GraphormerForGraphClassification''', '''GraphormerModel''', '''GraphormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys __lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
18
from __future__ import annotations from math import pi, sqrt def _snake_case ( lowerCAmelCase : float , lowerCAmelCase : float ): """simple docstring""" if inductance <= 0: raise ValueError("Inductance cannot be 0 or negative" ) elif capacitance <= 0: raise ValueError("Capacitance cannot be 0 or negative" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
18
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class a__ ( A__ ): A = ['image_processor', 'tokenizer'] A = 'CLIPImageProcessor' A = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__( self : Optional[int],_A : Optional[int]=None,_A : str=None,**_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead.",_A,) SCREAMING_SNAKE_CASE_ : Any = kwargs.pop("feature_extractor" ) SCREAMING_SNAKE_CASE_ : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_A,_A ) def __call__( self : Optional[Any],_A : int=None,_A : str=None,_A : List[Any]=None,**_A : Optional[int] ): """simple docstring""" if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: SCREAMING_SNAKE_CASE_ : Dict = self.tokenizer(_A,return_tensors=_A,**_A ) if images is not None: SCREAMING_SNAKE_CASE_ : str = self.image_processor(_A,return_tensors=_A,**_A ) if text is not None and images is not None: SCREAMING_SNAKE_CASE_ : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_A ),tensor_type=_A ) def __UpperCamelCase ( self : Dict,*_A : int,**_A : Union[str, Any] ): """simple docstring""" return self.tokenizer.batch_decode(*_A,**_A ) def __UpperCamelCase ( self : Union[str, Any],*_A : str,**_A : Any ): """simple docstring""" return self.tokenizer.decode(*_A,**_A ) @property def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE_ : Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
18
def _snake_case ( lowerCAmelCase : list ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = len(lowerCAmelCase ) for i in range(1 , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : int = collection[i] SCREAMING_SNAKE_CASE_ : Any = 0 SCREAMING_SNAKE_CASE_ : Tuple = i - 1 while low <= high: SCREAMING_SNAKE_CASE_ : int = (low + high) // 2 if val < collection[mid]: SCREAMING_SNAKE_CASE_ : Optional[Any] = mid - 1 else: SCREAMING_SNAKE_CASE_ : Tuple = mid + 1 for j in range(lowerCAmelCase , lowerCAmelCase , -1 ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = collection[j - 1] SCREAMING_SNAKE_CASE_ : int = val return collection if __name__ == "__main__": __lowerCamelCase : Dict = input('''Enter numbers separated by a comma:\n''').strip() __lowerCamelCase : List[str] = [int(item) for item in user_input.split(''',''')] print(binary_insertion_sort(unsorted))
18
1
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class a__ ( unittest.TestCase ): @slow def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" ) SCREAMING_SNAKE_CASE_ : str = AutoTokenizer.from_pretrained("google/mt5-small" ) SCREAMING_SNAKE_CASE_ : List[str] = tokenizer("Hello there",return_tensors="np" ).input_ids SCREAMING_SNAKE_CASE_ : str = tokenizer("Hi I am",return_tensors="np" ).input_ids SCREAMING_SNAKE_CASE_ : List[str] = shift_tokens_right(_A,model.config.pad_token_id,model.config.decoder_start_token_id ) SCREAMING_SNAKE_CASE_ : str = model(_A,decoder_input_ids=_A ).logits SCREAMING_SNAKE_CASE_ : Dict = optax.softmax_cross_entropy(_A,onehot(_A,logits.shape[-1] ) ).mean() SCREAMING_SNAKE_CASE_ : Any = -(labels.shape[-1] * loss.item()) SCREAMING_SNAKE_CASE_ : List[str] = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
18
from collections.abc import Sequence from queue import Queue class a__ : def __init__( self : int,_A : List[Any],_A : Optional[Any],_A : Optional[int],_A : int=None,_A : List[str]=None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = start SCREAMING_SNAKE_CASE_ : List[str] = end SCREAMING_SNAKE_CASE_ : Tuple = val SCREAMING_SNAKE_CASE_ : List[str] = (start + end) // 2 SCREAMING_SNAKE_CASE_ : Optional[int] = left SCREAMING_SNAKE_CASE_ : str = right def __repr__( self : Tuple ): """simple docstring""" return F'SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})' class a__ : def __init__( self : Any,_A : Sequence,_A : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = collection SCREAMING_SNAKE_CASE_ : Optional[int] = function if self.collection: SCREAMING_SNAKE_CASE_ : List[str] = self._build_tree(0,len(_A ) - 1 ) def __UpperCamelCase ( self : int,_A : Any,_A : List[Any] ): """simple docstring""" self._update_tree(self.root,_A,_A ) def __UpperCamelCase ( self : str,_A : Any,_A : List[Any] ): """simple docstring""" return self._query_range(self.root,_A,_A ) def __UpperCamelCase ( self : Any,_A : Optional[int],_A : int ): """simple docstring""" if start == end: return SegmentTreeNode(_A,_A,self.collection[start] ) SCREAMING_SNAKE_CASE_ : List[Any] = (start + end) // 2 SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._build_tree(_A,_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = self._build_tree(mid + 1,_A ) return SegmentTreeNode(_A,_A,self.fn(left.val,right.val ),_A,_A ) def __UpperCamelCase ( self : int,_A : int,_A : Tuple,_A : Dict ): """simple docstring""" if node.start == i and node.end == i: SCREAMING_SNAKE_CASE_ : Union[str, Any] = val return if i <= node.mid: self._update_tree(node.left,_A,_A ) else: self._update_tree(node.right,_A,_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.fn(node.left.val,node.right.val ) def __UpperCamelCase ( self : str,_A : List[str],_A : Optional[int],_A : Optional[Any] ): """simple docstring""" if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left,_A,_A ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left,_A,node.mid ),self._query_range(node.right,node.mid + 1,_A ),) else: # range in right child tree return self._query_range(node.right,_A,_A ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" if self.root is not None: SCREAMING_SNAKE_CASE_ : int = Queue() queue.put(self.root ) while not queue.empty(): SCREAMING_SNAKE_CASE_ : Tuple = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('''*''' * 50) __lowerCamelCase : int = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
18
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : Optional[int] = logging.get_logger(__name__) __lowerCamelCase : List[Any] = { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json''', # See all REALM models at https://huggingface.co/models?filter=realm } class a__ ( A__ ): A = 'realm' def __init__( self : Optional[Any],_A : int=3_0522,_A : Union[str, Any]=768,_A : Dict=128,_A : Optional[int]=12,_A : List[str]=12,_A : Optional[int]=8,_A : Tuple=3072,_A : Optional[int]="gelu_new",_A : Tuple=0.1,_A : Optional[int]=0.1,_A : Optional[int]=512,_A : Optional[int]=2,_A : Any=0.02,_A : Tuple=1E-12,_A : Union[str, Any]=256,_A : int=10,_A : Tuple=1E-3,_A : Tuple=5,_A : List[str]=320,_A : List[Any]=1335_3718,_A : Optional[Any]=5000,_A : List[Any]=1,_A : int=0,_A : str=2,**_A : Optional[Any],): """simple docstring""" super().__init__(pad_token_id=_A,bos_token_id=_A,eos_token_id=_A,**_A ) # Common config SCREAMING_SNAKE_CASE_ : Any = vocab_size SCREAMING_SNAKE_CASE_ : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE_ : Any = hidden_size SCREAMING_SNAKE_CASE_ : Any = retriever_proj_size SCREAMING_SNAKE_CASE_ : Optional[Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Tuple = num_attention_heads SCREAMING_SNAKE_CASE_ : str = num_candidates SCREAMING_SNAKE_CASE_ : Tuple = intermediate_size SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_act SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Dict = initializer_range SCREAMING_SNAKE_CASE_ : Dict = type_vocab_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = layer_norm_eps # Reader config SCREAMING_SNAKE_CASE_ : Optional[Any] = span_hidden_size SCREAMING_SNAKE_CASE_ : Any = max_span_width SCREAMING_SNAKE_CASE_ : int = reader_layer_norm_eps SCREAMING_SNAKE_CASE_ : Dict = reader_beam_size SCREAMING_SNAKE_CASE_ : Any = reader_seq_len # Retrieval config SCREAMING_SNAKE_CASE_ : int = num_block_records SCREAMING_SNAKE_CASE_ : Tuple = searcher_beam_size
18
def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : int ): """simple docstring""" while b: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = b, a % b return a def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : int ): """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(lowerCAmelCase , a % b ) def _snake_case ( ): """simple docstring""" print(f'euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}' ) print(f'euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}' ) print(f'euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}' ) print(f'euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}' ) print(f'euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}' ) print(f'euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}' ) print(f'euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}' ) print(f'euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}' ) if __name__ == "__main__": main()
18
1
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class a__ ( A__ ): A = 'linear' A = 'cosine' A = 'cosine_with_restarts' A = 'polynomial' A = 'constant' A = 'constant_with_warmup' A = 'piecewise_constant' def _snake_case ( lowerCAmelCase : Optimizer , lowerCAmelCase : int = -1 ): """simple docstring""" return LambdaLR(lowerCAmelCase , lambda lowerCAmelCase : 1 , last_epoch=lowerCAmelCase ) def _snake_case ( lowerCAmelCase : Optimizer , lowerCAmelCase : int , lowerCAmelCase : int = -1 ): """simple docstring""" def lr_lambda(lowerCAmelCase : int ): if current_step < num_warmup_steps: return float(lowerCAmelCase ) / float(max(1.0 , lowerCAmelCase ) ) return 1.0 return LambdaLR(lowerCAmelCase , lowerCAmelCase , last_epoch=lowerCAmelCase ) def _snake_case ( lowerCAmelCase : Optimizer , lowerCAmelCase : str , lowerCAmelCase : int = -1 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = {} SCREAMING_SNAKE_CASE_ : Optional[int] = step_rules.split("," ) for rule_str in rule_list[:-1]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = rule_str.split(":" ) SCREAMING_SNAKE_CASE_ : Any = int(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : str = float(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = value SCREAMING_SNAKE_CASE_ : List[str] = float(rule_list[-1] ) def create_rules_function(lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] ): def rule_func(lowerCAmelCase : int ) -> float: SCREAMING_SNAKE_CASE_ : List[str] = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(lowerCAmelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func SCREAMING_SNAKE_CASE_ : Optional[Any] = create_rules_function(lowerCAmelCase , lowerCAmelCase ) return LambdaLR(lowerCAmelCase , lowerCAmelCase , last_epoch=lowerCAmelCase ) def _snake_case ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : List[str] , lowerCAmelCase : Any=-1 ): """simple docstring""" def lr_lambda(lowerCAmelCase : int ): if current_step < num_warmup_steps: return float(lowerCAmelCase ) / float(max(1 , lowerCAmelCase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def _snake_case ( lowerCAmelCase : Optimizer , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : float = 0.5 , lowerCAmelCase : int = -1 ): """simple docstring""" def lr_lambda(lowerCAmelCase : Dict ): if current_step < num_warmup_steps: return float(lowerCAmelCase ) / float(max(1 , lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ : Any = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(lowerCAmelCase ) * 2.0 * progress )) ) return LambdaLR(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def _snake_case ( lowerCAmelCase : Optimizer , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1 , lowerCAmelCase : int = -1 ): """simple docstring""" def lr_lambda(lowerCAmelCase : Tuple ): if current_step < num_warmup_steps: return float(lowerCAmelCase ) / float(max(1 , lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ : Dict = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(lowerCAmelCase ) * progress) % 1.0) )) ) return LambdaLR(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def _snake_case ( lowerCAmelCase : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : str=1E-7 , lowerCAmelCase : Union[str, Any]=1.0 , lowerCAmelCase : Any=-1 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = optimizer.defaults["lr"] if not (lr_init > lr_end): raise ValueError(f'lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})' ) def lr_lambda(lowerCAmelCase : int ): if current_step < num_warmup_steps: return float(lowerCAmelCase ) / float(max(1 , lowerCAmelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: SCREAMING_SNAKE_CASE_ : List[str] = lr_init - lr_end SCREAMING_SNAKE_CASE_ : Any = num_training_steps - num_warmup_steps SCREAMING_SNAKE_CASE_ : str = 1 - (current_step - num_warmup_steps) / decay_steps SCREAMING_SNAKE_CASE_ : List[str] = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) __lowerCamelCase : Tuple = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def _snake_case ( lowerCAmelCase : Union[str, SchedulerType] , lowerCAmelCase : Optimizer , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : int = 1 , lowerCAmelCase : float = 1.0 , lowerCAmelCase : int = -1 , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = SchedulerType(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(lowerCAmelCase , last_epoch=lowerCAmelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(lowerCAmelCase , step_rules=lowerCAmelCase , last_epoch=lowerCAmelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f'{name} requires `num_warmup_steps`, please provide that argument.' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(lowerCAmelCase , num_warmup_steps=lowerCAmelCase , last_epoch=lowerCAmelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f'{name} requires `num_training_steps`, please provide that argument.' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( lowerCAmelCase , num_warmup_steps=lowerCAmelCase , num_training_steps=lowerCAmelCase , num_cycles=lowerCAmelCase , last_epoch=lowerCAmelCase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( lowerCAmelCase , num_warmup_steps=lowerCAmelCase , num_training_steps=lowerCAmelCase , power=lowerCAmelCase , last_epoch=lowerCAmelCase , ) return schedule_func( lowerCAmelCase , num_warmup_steps=lowerCAmelCase , num_training_steps=lowerCAmelCase , last_epoch=lowerCAmelCase )
18
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCamelCase : Dict = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[Any] = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys __lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
18
1
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar __lowerCamelCase : Union[str, Any] = TypeVar('''T''') def _snake_case ( lowerCAmelCase : int ): """simple docstring""" return (position - 1) // 2 def _snake_case ( lowerCAmelCase : int ): """simple docstring""" return (2 * position) + 1 def _snake_case ( lowerCAmelCase : int ): """simple docstring""" return (2 * position) + 2 class a__ ( Generic[T] ): def __init__( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : list[tuple[T, int]] = [] SCREAMING_SNAKE_CASE_ : dict[T, int] = {} SCREAMING_SNAKE_CASE_ : int = 0 def __len__( self : List[str] ): """simple docstring""" return self.elements def __repr__( self : Dict ): """simple docstring""" return str(self.heap ) def __UpperCamelCase ( self : int ): """simple docstring""" return self.elements == 0 def __UpperCamelCase ( self : str,_A : T,_A : int ): """simple docstring""" self.heap.append((elem, weight) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.elements self.elements += 1 self._bubble_up(_A ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" if self.elements > 1: self._swap_nodes(0,self.elements - 1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = self.heap[0] self._bubble_down(_A ) return elem def __UpperCamelCase ( self : Union[str, Any],_A : T,_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.position_map[elem] SCREAMING_SNAKE_CASE_ : int = (elem, weight) if position > 0: SCREAMING_SNAKE_CASE_ : int = get_parent_position(_A ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_A ) else: self._bubble_down(_A ) else: self._bubble_down(_A ) def __UpperCamelCase ( self : List[Any],_A : T ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.position_map[elem] if curr_pos == 0: return None SCREAMING_SNAKE_CASE_ : Tuple = get_parent_position(_A ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = self.heap[curr_pos] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_A,_A ) return self._bubble_up(_A ) return None def __UpperCamelCase ( self : Optional[Any],_A : T ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.position_map[elem] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = self.heap[curr_pos] SCREAMING_SNAKE_CASE_ : Optional[int] = get_child_left_position(_A ) SCREAMING_SNAKE_CASE_ : int = get_child_right_position(_A ) if child_left_position < self.elements and child_right_position < self.elements: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = self.heap[child_left_position] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_A,_A ) return self._bubble_down(_A ) if child_left_position < self.elements: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_A,_A ) return self._bubble_down(_A ) else: return None if child_right_position < self.elements: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_A,_A ) return self._bubble_down(_A ) return None def __UpperCamelCase ( self : Optional[int],_A : int,_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = self.heap[nodea_pos][0] SCREAMING_SNAKE_CASE_ : List[Any] = self.heap[nodea_pos][0] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = ( self.heap[nodea_pos], self.heap[nodea_pos], ) SCREAMING_SNAKE_CASE_ : Tuple = nodea_pos SCREAMING_SNAKE_CASE_ : List[Any] = nodea_pos class a__ ( Generic[T] ): def __init__( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : dict[T, dict[T, int]] = {} SCREAMING_SNAKE_CASE_ : int = 0 def __repr__( self : Optional[Any] ): """simple docstring""" return str(self.connections ) def __len__( self : str ): """simple docstring""" return self.nodes def __UpperCamelCase ( self : Tuple,_A : T ): """simple docstring""" if node not in self.connections: SCREAMING_SNAKE_CASE_ : Optional[int] = {} self.nodes += 1 def __UpperCamelCase ( self : Tuple,_A : T,_A : T,_A : int ): """simple docstring""" self.add_node(_A ) self.add_node(_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = weight SCREAMING_SNAKE_CASE_ : Union[str, Any] = weight def _snake_case ( lowerCAmelCase : GraphUndirectedWeighted[T] , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : dict[T, int] = {node: maxsize for node in graph.connections} SCREAMING_SNAKE_CASE_ : dict[T, T | None] = {node: None for node in graph.connections} SCREAMING_SNAKE_CASE_ : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(lowerCAmelCase , lowerCAmelCase ) if priority_queue.is_empty(): return dist, parent # initialization SCREAMING_SNAKE_CASE_ : Optional[Any] = priority_queue.extract_min() SCREAMING_SNAKE_CASE_ : Dict = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: SCREAMING_SNAKE_CASE_ : int = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(lowerCAmelCase , dist[neighbour] ) SCREAMING_SNAKE_CASE_ : Optional[int] = node # running prim's algorithm while not priority_queue.is_empty(): SCREAMING_SNAKE_CASE_ : Any = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: SCREAMING_SNAKE_CASE_ : Dict = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(lowerCAmelCase , dist[neighbour] ) SCREAMING_SNAKE_CASE_ : int = node return dist, parent
18
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : Path , lowerCAmelCase : str = None , lowerCAmelCase : str = None , lowerCAmelCase : str = None , ): """simple docstring""" if config_name_or_path is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = "facebook/rag-token-base" if model_type == "rag_token" else "facebook/rag-sequence-base" if generator_tokenizer_name_or_path is None: SCREAMING_SNAKE_CASE_ : Dict = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = question_encoder_name_or_path SCREAMING_SNAKE_CASE_ : Union[str, Any] = RagTokenForGeneration if model_type == "rag_token" else RagSequenceForGeneration # Save model. SCREAMING_SNAKE_CASE_ : List[Any] = RagConfig.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = AutoConfig.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = AutoConfig.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = gen_config SCREAMING_SNAKE_CASE_ : Optional[Any] = question_encoder_config SCREAMING_SNAKE_CASE_ : Dict = model_class.from_pretrained_question_encoder_generator( lowerCAmelCase , lowerCAmelCase , config=lowerCAmelCase ) rag_model.save_pretrained(lowerCAmelCase ) # Sanity check. model_class.from_pretrained(lowerCAmelCase ) # Save tokenizers. SCREAMING_SNAKE_CASE_ : Optional[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase ) gen_tokenizer.save_pretrained(dest_dir / "generator_tokenizer/" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCAmelCase ) question_encoder_tokenizer.save_pretrained(dest_dir / "question_encoder_tokenizer/" ) if __name__ == "__main__": __lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( '''--model_type''', choices=['''rag_sequence''', '''rag_token'''], required=True, type=str, help='''RAG model type: rag_sequence, rag_token''', ) parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''') parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''') parser.add_argument( '''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier''' ) parser.add_argument( '''--generator_tokenizer_name_or_path''', type=str, help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''', ) parser.add_argument( '''--question_encoder_tokenizer_name_or_path''', type=str, help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''', ) parser.add_argument( '''--config_name_or_path''', type=str, help=( '''Identifier of the model config to use, if not provided, resolves to a base config for a given''' ''' ``model_type``''' ), ) __lowerCamelCase : str = parser.parse_args() __lowerCamelCase : int = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
18
1
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class a__ : def __init__( self : str,_A : str,_A : str=2,_A : List[str]=32,_A : List[Any]=16,_A : Any=3,_A : str=True,_A : Union[str, Any]=True,_A : Union[str, Any]=32,_A : Optional[Any]=4,_A : Any=[0, 1, 2, 3],_A : Any=4,_A : Tuple=37,_A : List[str]="gelu",_A : Optional[int]=0.1,_A : str=0.1,_A : int=0.02,_A : Optional[int]=3,_A : str=[1, 384, 24, 24],_A : str=True,_A : Tuple=None,): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = parent SCREAMING_SNAKE_CASE_ : Any = batch_size SCREAMING_SNAKE_CASE_ : Any = image_size SCREAMING_SNAKE_CASE_ : Optional[Any] = patch_size SCREAMING_SNAKE_CASE_ : List[str] = num_channels SCREAMING_SNAKE_CASE_ : List[str] = is_training SCREAMING_SNAKE_CASE_ : Any = use_labels SCREAMING_SNAKE_CASE_ : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE_ : Any = num_hidden_layers SCREAMING_SNAKE_CASE_ : Tuple = backbone_out_indices SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE_ : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = hidden_act SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Dict = initializer_range SCREAMING_SNAKE_CASE_ : int = num_labels SCREAMING_SNAKE_CASE_ : Optional[Any] = backbone_featmap_shape SCREAMING_SNAKE_CASE_ : str = scope SCREAMING_SNAKE_CASE_ : Any = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE_ : Union[str, Any] = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE_ : Optional[Any] = num_patches + 1 def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ : Dict = None if self.use_labels: SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size, self.image_size, self.image_size],self.num_labels ) SCREAMING_SNAKE_CASE_ : str = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [96, 192, 384, 768], "num_groups": 2, } return DPTConfig( image_size=self.image_size,patch_size=self.patch_size,num_channels=self.num_channels,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,backbone_out_indices=self.backbone_out_indices,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,is_decoder=_A,initializer_range=self.initializer_range,is_hybrid=self.is_hybrid,backbone_config=_A,backbone_featmap_shape=self.backbone_featmap_shape,) def __UpperCamelCase ( self : Union[str, Any],_A : Optional[int],_A : Union[str, Any],_A : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = DPTModel(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Any = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Dict,_A : List[Any],_A : str,_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.num_labels SCREAMING_SNAKE_CASE_ : Optional[Any] = DPTForDepthEstimation(_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Tuple = model(_A ) self.parent.assertEqual(result.predicted_depth.shape,(self.batch_size, self.image_size, self.image_size) ) def __UpperCamelCase ( self : List[str],_A : Tuple,_A : Tuple,_A : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.num_labels SCREAMING_SNAKE_CASE_ : Dict = DPTForSemanticSegmentation(_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Any = model(_A,labels=_A ) self.parent.assertEqual( result.logits.shape,(self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = config_and_inputs SCREAMING_SNAKE_CASE_ : int = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class a__ ( A__ , A__ , unittest.TestCase ): A = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () A = ( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) A = False A = False A = False def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = DPTModelTester(self ) SCREAMING_SNAKE_CASE_ : int = ConfigTester(self,config_class=_A,has_text_modality=_A,hidden_size=37 ) def __UpperCamelCase ( self : str ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="DPT does not use inputs_embeds" ) def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" pass def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Tuple = model_class(_A ) self.assertIsInstance(model.get_input_embeddings(),(nn.Module) ) SCREAMING_SNAKE_CASE_ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A,nn.Linear ) ) def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : List[str] = model_class(_A ) SCREAMING_SNAKE_CASE_ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ : Tuple = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1],_A ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*_A ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_A ) def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Optional[int] = True if model_class in get_values(_A ): continue SCREAMING_SNAKE_CASE_ : List[Any] = model_class(_A ) model.to(_A ) model.train() SCREAMING_SNAKE_CASE_ : List[Any] = self._prepare_for_class(_A,_A,return_labels=_A ) SCREAMING_SNAKE_CASE_ : Dict = model(**_A ).loss loss.backward() def __UpperCamelCase ( self : Any ): """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : List[str] = False SCREAMING_SNAKE_CASE_ : Optional[int] = True if model_class in get_values(_A ) or not model_class.supports_gradient_checkpointing: continue SCREAMING_SNAKE_CASE_ : Tuple = model_class(_A ) model.to(_A ) model.gradient_checkpointing_enable() model.train() SCREAMING_SNAKE_CASE_ : Tuple = self._prepare_for_class(_A,_A,return_labels=_A ) SCREAMING_SNAKE_CASE_ : Tuple = model(**_A ).loss loss.backward() def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Any = _config_zero_init(_A ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : List[str] = model_class(config=_A ) # Skip the check for the backbone SCREAMING_SNAKE_CASE_ : Any = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": SCREAMING_SNAKE_CASE_ : List[str] = [F'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(),[0.0, 1.0],msg=F'Parameter {name} of model {model_class} seems not properly initialized',) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" pass @slow def __UpperCamelCase ( self : List[str] ): """simple docstring""" for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: SCREAMING_SNAKE_CASE_ : Any = DPTModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Dict = "add" with self.assertRaises(_A ): SCREAMING_SNAKE_CASE_ : Any = DPTForDepthEstimation(_A ) def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision @slow class a__ ( unittest.TestCase ): def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas" ) SCREAMING_SNAKE_CASE_ : Dict = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas" ).to(_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = prepare_img() SCREAMING_SNAKE_CASE_ : Optional[Any] = image_processor(images=_A,return_tensors="pt" ).to(_A ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ : List[Any] = model(**_A ) SCREAMING_SNAKE_CASE_ : Tuple = outputs.predicted_depth # verify the predicted depth SCREAMING_SNAKE_CASE_ : int = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape,_A ) SCREAMING_SNAKE_CASE_ : Any = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(_A ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100,_A,atol=1E-4 ) )
18
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class a__ ( unittest.TestCase ): def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = { "task_specific_params": { "summarization": {"length_penalty": 1.0, "max_length": 128, "min_length": 12, "num_beams": 4}, "summarization_cnn": {"length_penalty": 2.0, "max_length": 142, "min_length": 56, "num_beams": 4}, "summarization_xsum": {"length_penalty": 1.0, "max_length": 62, "min_length": 11, "num_beams": 6}, } } SCREAMING_SNAKE_CASE_ : Any = { "task_specific_params.summarization.length_penalty": 1.0, "task_specific_params.summarization.max_length": 128, "task_specific_params.summarization.min_length": 12, "task_specific_params.summarization.num_beams": 4, "task_specific_params.summarization_cnn.length_penalty": 2.0, "task_specific_params.summarization_cnn.max_length": 142, "task_specific_params.summarization_cnn.min_length": 56, "task_specific_params.summarization_cnn.num_beams": 4, "task_specific_params.summarization_xsum.length_penalty": 1.0, "task_specific_params.summarization_xsum.max_length": 62, "task_specific_params.summarization_xsum.min_length": 11, "task_specific_params.summarization_xsum.num_beams": 6, } self.assertEqual(flatten_dict(_A ),_A ) def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = np.random.randn(3,4 ) self.assertTrue(np.allclose(transpose(_A ),x.transpose() ) ) SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4,5 ) self.assertTrue(np.allclose(transpose(_A,axes=(1, 2, 0) ),x.transpose((1, 2, 0) ) ) ) @require_torch def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Any = torch.tensor(_A ) self.assertTrue(np.allclose(transpose(_A ),transpose(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ : Dict = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor(_A ) self.assertTrue(np.allclose(transpose(_A,axes=(1, 2, 0) ),transpose(_A,axes=(1, 2, 0) ).numpy() ) ) @require_tf def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tf.constant(_A ) self.assertTrue(np.allclose(transpose(_A ),transpose(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ : List[str] = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.constant(_A ) self.assertTrue(np.allclose(transpose(_A,axes=(1, 2, 0) ),transpose(_A,axes=(1, 2, 0) ).numpy() ) ) @require_flax def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Tuple = jnp.array(_A ) self.assertTrue(np.allclose(transpose(_A ),np.asarray(transpose(_A ) ) ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : List[Any] = jnp.array(_A ) self.assertTrue(np.allclose(transpose(_A,axes=(1, 2, 0) ),np.asarray(transpose(_A,axes=(1, 2, 0) ) ) ) ) def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4 ) self.assertTrue(np.allclose(reshape(_A,(4, 3) ),np.reshape(_A,(4, 3) ) ) ) SCREAMING_SNAKE_CASE_ : Any = np.random.randn(3,4,5 ) self.assertTrue(np.allclose(reshape(_A,(12, 5) ),np.reshape(_A,(12, 5) ) ) ) @require_torch def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor(_A ) self.assertTrue(np.allclose(reshape(_A,(4, 3) ),reshape(_A,(4, 3) ).numpy() ) ) SCREAMING_SNAKE_CASE_ : Dict = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : int = torch.tensor(_A ) self.assertTrue(np.allclose(reshape(_A,(12, 5) ),reshape(_A,(12, 5) ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tf.constant(_A ) self.assertTrue(np.allclose(reshape(_A,(4, 3) ),reshape(_A,(4, 3) ).numpy() ) ) SCREAMING_SNAKE_CASE_ : int = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : Any = tf.constant(_A ) self.assertTrue(np.allclose(reshape(_A,(12, 5) ),reshape(_A,(12, 5) ).numpy() ) ) @require_flax def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : int = jnp.array(_A ) self.assertTrue(np.allclose(reshape(_A,(4, 3) ),np.asarray(reshape(_A,(4, 3) ) ) ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : Tuple = jnp.array(_A ) self.assertTrue(np.allclose(reshape(_A,(12, 5) ),np.asarray(reshape(_A,(12, 5) ) ) ) ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = np.random.randn(1,3,4 ) self.assertTrue(np.allclose(squeeze(_A ),np.squeeze(_A ) ) ) SCREAMING_SNAKE_CASE_ : Any = np.random.randn(1,4,1,5 ) self.assertTrue(np.allclose(squeeze(_A,axis=2 ),np.squeeze(_A,axis=2 ) ) ) @require_torch def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = np.random.randn(1,3,4 ) SCREAMING_SNAKE_CASE_ : Any = torch.tensor(_A ) self.assertTrue(np.allclose(squeeze(_A ),squeeze(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ : Any = np.random.randn(1,4,1,5 ) SCREAMING_SNAKE_CASE_ : Dict = torch.tensor(_A ) self.assertTrue(np.allclose(squeeze(_A,axis=2 ),squeeze(_A,axis=2 ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = np.random.randn(1,3,4 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.constant(_A ) self.assertTrue(np.allclose(squeeze(_A ),squeeze(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ : Any = np.random.randn(1,4,1,5 ) SCREAMING_SNAKE_CASE_ : Optional[int] = tf.constant(_A ) self.assertTrue(np.allclose(squeeze(_A,axis=2 ),squeeze(_A,axis=2 ).numpy() ) ) @require_flax def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.random.randn(1,3,4 ) SCREAMING_SNAKE_CASE_ : List[str] = jnp.array(_A ) self.assertTrue(np.allclose(squeeze(_A ),np.asarray(squeeze(_A ) ) ) ) SCREAMING_SNAKE_CASE_ : str = np.random.randn(1,4,1,5 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = jnp.array(_A ) self.assertTrue(np.allclose(squeeze(_A,axis=2 ),np.asarray(squeeze(_A,axis=2 ) ) ) ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4 ) self.assertTrue(np.allclose(expand_dims(_A,axis=1 ),np.expand_dims(_A,axis=1 ) ) ) @require_torch def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor(_A ) self.assertTrue(np.allclose(expand_dims(_A,axis=1 ),expand_dims(_A,axis=1 ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Optional[int] = tf.constant(_A ) self.assertTrue(np.allclose(expand_dims(_A,axis=1 ),expand_dims(_A,axis=1 ).numpy() ) ) @require_flax def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = jnp.array(_A ) self.assertTrue(np.allclose(expand_dims(_A,axis=1 ),np.asarray(expand_dims(_A,axis=1 ) ) ) )
18
1
from collections import defaultdict from math import ceil, sqrt def _snake_case ( lowerCAmelCase : int = 1_0_0_0_0_0_0 , lowerCAmelCase : int = 1_0 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : defaultdict = defaultdict(lowerCAmelCase ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: SCREAMING_SNAKE_CASE_ : str = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: SCREAMING_SNAKE_CASE_ : Optional[int] = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(lowerCAmelCase , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 1_0 ) if __name__ == "__main__": print(f'''{solution() = }''')
18
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : Tuple = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} __lowerCamelCase : List[Any] = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } __lowerCamelCase : int = { '''allenai/longformer-base-4096''': 40_96, '''allenai/longformer-large-4096''': 40_96, '''allenai/longformer-large-4096-finetuned-triviaqa''': 40_96, '''allenai/longformer-base-4096-extra.pos.embd.only''': 40_96, '''allenai/longformer-large-4096-extra.pos.embd.only''': 40_96, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE_ : str = bs[:] SCREAMING_SNAKE_CASE_ : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCAmelCase ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE_ : List[str] = [chr(lowerCAmelCase ) for n in cs] return dict(zip(lowerCAmelCase , lowerCAmelCase ) ) def _snake_case ( lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = set() SCREAMING_SNAKE_CASE_ : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE_ : List[str] = char return pairs class a__ ( A__ ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = ['input_ids', 'attention_mask'] def __init__( self : Union[str, Any],_A : List[Any],_A : Tuple,_A : str="replace",_A : Optional[int]="<s>",_A : Dict="</s>",_A : Any="</s>",_A : Optional[Any]="<s>",_A : Union[str, Any]="<unk>",_A : int="<pad>",_A : Dict="<mask>",_A : int=False,**_A : Dict,): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else bos_token SCREAMING_SNAKE_CASE_ : Optional[int] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else eos_token SCREAMING_SNAKE_CASE_ : str = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else sep_token SCREAMING_SNAKE_CASE_ : Union[str, Any] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else cls_token SCREAMING_SNAKE_CASE_ : List[str] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else unk_token SCREAMING_SNAKE_CASE_ : Optional[Any] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_ : Dict = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else mask_token super().__init__( errors=_A,bos_token=_A,eos_token=_A,unk_token=_A,sep_token=_A,cls_token=_A,pad_token=_A,mask_token=_A,add_prefix_space=_A,**_A,) with open(_A,encoding="utf-8" ) as vocab_handle: SCREAMING_SNAKE_CASE_ : Tuple = json.load(_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE_ : Any = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE_ : Optional[Any] = bytes_to_unicode() SCREAMING_SNAKE_CASE_ : str = {v: k for k, v in self.byte_encoder.items()} with open(_A,encoding="utf-8" ) as merges_handle: SCREAMING_SNAKE_CASE_ : int = merges_handle.read().split("\n" )[1:-1] SCREAMING_SNAKE_CASE_ : List[str] = [tuple(merge.split() ) for merge in bpe_merges] SCREAMING_SNAKE_CASE_ : Optional[int] = dict(zip(_A,range(len(_A ) ) ) ) SCREAMING_SNAKE_CASE_ : Any = {} SCREAMING_SNAKE_CASE_ : List[str] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE_ : List[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def __UpperCamelCase ( self : List[str] ): """simple docstring""" return len(self.encoder ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" return dict(self.encoder,**self.added_tokens_encoder ) def __UpperCamelCase ( self : Any,_A : int ): """simple docstring""" if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE_ : Union[str, Any] = tuple(_A ) SCREAMING_SNAKE_CASE_ : str = get_pairs(_A ) if not pairs: return token while True: SCREAMING_SNAKE_CASE_ : Tuple = min(_A,key=lambda _A : self.bpe_ranks.get(_A,float("inf" ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = bigram SCREAMING_SNAKE_CASE_ : int = [] SCREAMING_SNAKE_CASE_ : Dict = 0 while i < len(_A ): try: SCREAMING_SNAKE_CASE_ : Tuple = word.index(_A,_A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE_ : str = j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE_ : Dict = tuple(_A ) SCREAMING_SNAKE_CASE_ : List[str] = new_word if len(_A ) == 1: break else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_pairs(_A ) SCREAMING_SNAKE_CASE_ : List[str] = " ".join(_A ) SCREAMING_SNAKE_CASE_ : Any = word return word def __UpperCamelCase ( self : Dict,_A : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = [] for token in re.findall(self.pat,_A ): SCREAMING_SNAKE_CASE_ : Any = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_A ).split(" " ) ) return bpe_tokens def __UpperCamelCase ( self : Optional[int],_A : str ): """simple docstring""" return self.encoder.get(_A,self.encoder.get(self.unk_token ) ) def __UpperCamelCase ( self : Tuple,_A : str ): """simple docstring""" return self.decoder.get(_A ) def __UpperCamelCase ( self : List[str],_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = "".join(_A ) SCREAMING_SNAKE_CASE_ : Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8",errors=self.errors ) return text def __UpperCamelCase ( self : List[Any],_A : str,_A : Optional[str] = None ): """simple docstring""" if not os.path.isdir(_A ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return SCREAMING_SNAKE_CASE_ : Tuple = os.path.join( _A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE_ : Any = os.path.join( _A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(_A,"w",encoding="utf-8" ) as f: f.write(json.dumps(self.encoder,indent=2,sort_keys=_A,ensure_ascii=_A ) + "\n" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 with open(_A,"w",encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items(),key=lambda _A : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' " Please check that the tokenizer is not corrupted!" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = token_index writer.write(" ".join(_A ) + "\n" ) index += 1 return vocab_file, merge_file def __UpperCamelCase ( self : Optional[Any],_A : List[int],_A : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_ : str = [self.cls_token_id] SCREAMING_SNAKE_CASE_ : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCamelCase ( self : str,_A : List[int],_A : Optional[List[int]] = None,_A : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A,token_ids_a=_A,already_has_special_tokens=_A ) if token_ids_a is None: return [1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) + [1] def __UpperCamelCase ( self : Any,_A : List[int],_A : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase ( self : Any,_A : Union[str, Any],_A : Any=False,**_A : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = kwargs.pop("add_prefix_space",self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_A ) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE_ : str = " " + text return (text, kwargs)
18
1
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class a__ : def __init__( self : int,_A : Tuple,_A : Union[str, Any]=14,_A : int=7,_A : Tuple=True,_A : Tuple=True,_A : int=False,_A : Dict=True,_A : List[Any]=99,_A : List[Any]=32,_A : Union[str, Any]=4,_A : List[str]=4,_A : str=4,_A : List[Any]=37,_A : int="gelu",_A : str=0.1,_A : Tuple=0.1,_A : Tuple=512,_A : int=0.02,): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = parent SCREAMING_SNAKE_CASE_ : Any = batch_size SCREAMING_SNAKE_CASE_ : Optional[Any] = seq_length SCREAMING_SNAKE_CASE_ : Dict = is_training SCREAMING_SNAKE_CASE_ : str = use_input_mask SCREAMING_SNAKE_CASE_ : int = use_token_type_ids SCREAMING_SNAKE_CASE_ : Optional[Any] = use_labels SCREAMING_SNAKE_CASE_ : Any = vocab_size SCREAMING_SNAKE_CASE_ : int = hidden_size SCREAMING_SNAKE_CASE_ : Optional[int] = rotary_dim SCREAMING_SNAKE_CASE_ : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Tuple = num_attention_heads SCREAMING_SNAKE_CASE_ : Any = intermediate_size SCREAMING_SNAKE_CASE_ : Any = hidden_act SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : List[str] = max_position_embeddings SCREAMING_SNAKE_CASE_ : Optional[int] = initializer_range SCREAMING_SNAKE_CASE_ : Union[str, Any] = None SCREAMING_SNAKE_CASE_ : str = vocab_size - 1 SCREAMING_SNAKE_CASE_ : Optional[Any] = vocab_size - 1 SCREAMING_SNAKE_CASE_ : int = vocab_size - 1 def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) SCREAMING_SNAKE_CASE_ : Optional[Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : int = GPTJConfig( vocab_size=self.vocab_size,n_embd=self.hidden_size,n_layer=self.num_hidden_layers,n_head=self.num_attention_heads,n_positions=self.max_position_embeddings,use_cache=_A,bos_token_id=self.bos_token_id,eos_token_id=self.eos_token_id,pad_token_id=self.pad_token_id,rotary_dim=self.rotary_dim,) return (config, input_ids, input_mask) def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = config_and_inputs SCREAMING_SNAKE_CASE_ : Dict = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict def __UpperCamelCase ( self : int,_A : Tuple,_A : str,_A : Union[str, Any],_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = 20 SCREAMING_SNAKE_CASE_ : Any = model_class_name(_A ) SCREAMING_SNAKE_CASE_ : Dict = model.init_cache(input_ids.shape[0],_A ) SCREAMING_SNAKE_CASE_ : List[str] = jnp.ones((input_ids.shape[0], max_decoder_length),dtype="i4" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :],(input_ids.shape[0], input_ids.shape[-1] - 1) ) SCREAMING_SNAKE_CASE_ : str = model( input_ids[:, :-1],attention_mask=_A,past_key_values=_A,position_ids=_A,) SCREAMING_SNAKE_CASE_ : List[str] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]],dtype="i4" ) SCREAMING_SNAKE_CASE_ : Any = model( input_ids[:, -1:],attention_mask=_A,past_key_values=outputs_cache.past_key_values,position_ids=_A,) SCREAMING_SNAKE_CASE_ : Any = model(_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3,msg=F'Max diff is {diff}' ) def __UpperCamelCase ( self : Optional[Any],_A : int,_A : Union[str, Any],_A : int,_A : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = 20 SCREAMING_SNAKE_CASE_ : List[str] = model_class_name(_A ) SCREAMING_SNAKE_CASE_ : List[Any] = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )],axis=-1,) SCREAMING_SNAKE_CASE_ : Tuple = model.init_cache(input_ids.shape[0],_A ) SCREAMING_SNAKE_CASE_ : Optional[Any] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :],(input_ids.shape[0], input_ids.shape[-1] - 1) ) SCREAMING_SNAKE_CASE_ : List[str] = model( input_ids[:, :-1],attention_mask=_A,past_key_values=_A,position_ids=_A,) SCREAMING_SNAKE_CASE_ : Dict = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]],dtype="i4" ) SCREAMING_SNAKE_CASE_ : int = model( input_ids[:, -1:],past_key_values=outputs_cache.past_key_values,attention_mask=_A,position_ids=_A,) SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(_A,attention_mask=_A ) SCREAMING_SNAKE_CASE_ : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3,msg=F'Max diff is {diff}' ) @require_flax class a__ ( A__ , A__ , unittest.TestCase ): A = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () A = (FlaxGPTJForCausalLM,) if is_flax_available() else () def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = FlaxGPTJModelTester(self ) def __UpperCamelCase ( self : Dict ): """simple docstring""" for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(_A,_A,_A,_A ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( _A,_A,_A,_A ) @tooslow def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = GPTaTokenizer.from_pretrained("gpt2",pad_token="<|endoftext|>",padding_side="left" ) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer(["Hello this is a long string", "Hey"],return_tensors="np",padding=_A,truncation=_A ) SCREAMING_SNAKE_CASE_ : List[Any] = FlaxGPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B" ) SCREAMING_SNAKE_CASE_ : str = False SCREAMING_SNAKE_CASE_ : Any = model.config.eos_token_id SCREAMING_SNAKE_CASE_ : Dict = jax.jit(model.generate ) SCREAMING_SNAKE_CASE_ : str = jit_generate( inputs["input_ids"],attention_mask=inputs["attention_mask"],pad_token_id=tokenizer.pad_token_id ).sequences SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.batch_decode(_A,skip_special_tokens=_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = [ "Hello this is a long string of text.\n\nI'm trying to get the text of the", "Hey, I'm a little late to the party. I'm going to", ] self.assertListEqual(_A,_A ) @is_pt_flax_cross_test def __UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs SCREAMING_SNAKE_CASE_ : Tuple = self._prepare_for_class(_A,_A ) SCREAMING_SNAKE_CASE_ : Tuple = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class SCREAMING_SNAKE_CASE_ : str = model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE_ : str = getattr(_A,_A ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = pt_inputs["input_ids"].shape SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.random.randint(0,seq_length - 1,size=(batch_size,) ) for batch_idx, start_index in enumerate(_A ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 SCREAMING_SNAKE_CASE_ : Optional[Any] = 1 SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 SCREAMING_SNAKE_CASE_ : Any = 1 SCREAMING_SNAKE_CASE_ : List[Any] = pt_model_class(_A ).eval() SCREAMING_SNAKE_CASE_ : Dict = model_class(_A,dtype=jnp.floataa ) SCREAMING_SNAKE_CASE_ : Optional[Any] = convert_pytorch_state_dict_to_flax(pt_model.state_dict(),_A ) SCREAMING_SNAKE_CASE_ : Any = fx_state with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Optional[Any] = pt_model(**_A ).to_tuple() SCREAMING_SNAKE_CASE_ : Union[str, Any] = fx_model(**_A ).to_tuple() self.assertEqual(len(_A ),len(_A ),"Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(_A,_A ): self.assert_almost_equals(fx_output[:, -1],pt_output[:, -1].numpy(),4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ : int = model_class.from_pretrained(_A,from_pt=_A ) SCREAMING_SNAKE_CASE_ : str = fx_model_loaded(**_A ).to_tuple() self.assertEqual( len(_A ),len(_A ),"Output lengths differ between Flax and PyTorch" ) for fx_output_loaded, pt_output in zip(_A,_A ): self.assert_almost_equals(fx_output_loaded[:, -1],pt_output[:, -1].numpy(),4E-2 ) @is_pt_flax_cross_test def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs SCREAMING_SNAKE_CASE_ : str = self._prepare_for_class(_A,_A ) SCREAMING_SNAKE_CASE_ : Any = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class SCREAMING_SNAKE_CASE_ : Tuple = model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE_ : Optional[int] = getattr(_A,_A ) SCREAMING_SNAKE_CASE_ : List[str] = pt_model_class(_A ).eval() SCREAMING_SNAKE_CASE_ : Any = model_class(_A,dtype=jnp.floataa ) SCREAMING_SNAKE_CASE_ : Tuple = load_flax_weights_in_pytorch_model(_A,fx_model.params ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = pt_inputs["input_ids"].shape SCREAMING_SNAKE_CASE_ : Optional[int] = np.random.randint(0,seq_length - 1,size=(batch_size,) ) for batch_idx, start_index in enumerate(_A ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 SCREAMING_SNAKE_CASE_ : Tuple = 1 SCREAMING_SNAKE_CASE_ : int = 0 SCREAMING_SNAKE_CASE_ : int = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Any = pt_model(**_A ).to_tuple() SCREAMING_SNAKE_CASE_ : List[str] = fx_model(**_A ).to_tuple() self.assertEqual(len(_A ),len(_A ),"Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(_A,_A ): self.assert_almost_equals(fx_output[:, -1],pt_output[:, -1].numpy(),4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ : Tuple = pt_model_class.from_pretrained(_A,from_flax=_A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Optional[Any] = pt_model_loaded(**_A ).to_tuple() self.assertEqual( len(_A ),len(_A ),"Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(_A,_A ): self.assert_almost_equals(fx_output[:, -1],pt_output[:, -1].numpy(),4E-2 ) @tooslow def __UpperCamelCase ( self : str ): """simple docstring""" for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE_ : str = model_class_name.from_pretrained("EleutherAI/gpt-j-6B" ) SCREAMING_SNAKE_CASE_ : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_A )
18
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class a__ : def __init__( self : Optional[int],_A : Dict,_A : List[str]=13,_A : List[str]=7,_A : int=True,_A : str=True,_A : Union[str, Any]=True,_A : Tuple=True,_A : Dict=99,_A : Tuple=32,_A : Tuple=2,_A : Tuple=4,_A : Optional[Any]=37,_A : str="gelu",_A : Dict=0.1,_A : List[Any]=0.1,_A : List[str]=512,_A : str=16,_A : int=2,_A : Dict=0.02,_A : List[Any]=3,_A : Optional[Any]=4,_A : Optional[int]=None,): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = parent SCREAMING_SNAKE_CASE_ : Any = 13 SCREAMING_SNAKE_CASE_ : List[str] = 7 SCREAMING_SNAKE_CASE_ : Dict = True SCREAMING_SNAKE_CASE_ : Optional[Any] = True SCREAMING_SNAKE_CASE_ : Tuple = True SCREAMING_SNAKE_CASE_ : List[str] = True SCREAMING_SNAKE_CASE_ : List[str] = 99 SCREAMING_SNAKE_CASE_ : Tuple = 384 SCREAMING_SNAKE_CASE_ : Optional[Any] = 2 SCREAMING_SNAKE_CASE_ : Any = 4 SCREAMING_SNAKE_CASE_ : str = 37 SCREAMING_SNAKE_CASE_ : Optional[Any] = "gelu" SCREAMING_SNAKE_CASE_ : List[Any] = 0.1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0.1 SCREAMING_SNAKE_CASE_ : Dict = 512 SCREAMING_SNAKE_CASE_ : int = 16 SCREAMING_SNAKE_CASE_ : Optional[int] = 2 SCREAMING_SNAKE_CASE_ : Any = 0.02 SCREAMING_SNAKE_CASE_ : str = 3 SCREAMING_SNAKE_CASE_ : int = 4 SCREAMING_SNAKE_CASE_ : Dict = 128 SCREAMING_SNAKE_CASE_ : Any = 2 SCREAMING_SNAKE_CASE_ : Tuple = 9 SCREAMING_SNAKE_CASE_ : List[Any] = 1 SCREAMING_SNAKE_CASE_ : Any = None def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) SCREAMING_SNAKE_CASE_ : Any = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : List[str] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) SCREAMING_SNAKE_CASE_ : Dict = None SCREAMING_SNAKE_CASE_ : Dict = None SCREAMING_SNAKE_CASE_ : str = None if self.use_labels: SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size],self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size],self.num_choices ) SCREAMING_SNAKE_CASE_ : Any = ConvBertConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,initializer_range=self.initializer_range,return_dict=_A,) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : Optional[int],_A : List[Any],_A : int,_A : Tuple,_A : Optional[int],_A : Union[str, Any],_A : Union[str, Any],_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = TFConvBertModel(config=_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} SCREAMING_SNAKE_CASE_ : str = [input_ids, input_mask] SCREAMING_SNAKE_CASE_ : List[str] = model(_A ) SCREAMING_SNAKE_CASE_ : Dict = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Dict,_A : Dict,_A : int,_A : Union[str, Any],_A : List[Any],_A : int,_A : str,_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = TFConvBertForMaskedLM(config=_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_ : List[Any] = model(_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : Any,_A : Optional[int],_A : List[Any],_A : Union[str, Any],_A : List[Any],_A : Union[str, Any],_A : Optional[int],_A : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.num_labels SCREAMING_SNAKE_CASE_ : Any = TFConvBertForSequenceClassification(config=_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_ : Optional[Any] = model(_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : int,_A : int,_A : Dict,_A : List[str],_A : Tuple,_A : Dict,_A : Optional[int],_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.num_choices SCREAMING_SNAKE_CASE_ : Optional[int] = TFConvBertForMultipleChoice(config=_A ) SCREAMING_SNAKE_CASE_ : Any = tf.tile(tf.expand_dims(_A,1 ),(1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ : Any = tf.tile(tf.expand_dims(_A,1 ),(1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.tile(tf.expand_dims(_A,1 ),(1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ : int = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE_ : int = model(_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : List[Any],_A : Union[str, Any],_A : int,_A : Optional[int],_A : str,_A : str,_A : Tuple,_A : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.num_labels SCREAMING_SNAKE_CASE_ : Union[str, Any] = TFConvBertForTokenClassification(config=_A ) SCREAMING_SNAKE_CASE_ : Tuple = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_ : str = model(_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : List[Any],_A : int,_A : List[str],_A : List[Any],_A : Any,_A : Optional[int],_A : List[str],_A : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = TFConvBertForQuestionAnswering(config=_A ) SCREAMING_SNAKE_CASE_ : Dict = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_ : Any = model(_A ) self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : List[Any] = config_and_inputs SCREAMING_SNAKE_CASE_ : Any = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class a__ ( A__ , A__ , unittest.TestCase ): A = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) A = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) A = False A = False A = False def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = TFConvBertModelTester(self ) SCREAMING_SNAKE_CASE_ : Tuple = ConfigTester(self,config_class=_A,hidden_size=37 ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_A ) def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) @slow def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : List[str] = True SCREAMING_SNAKE_CASE_ : Any = True if hasattr(_A,"use_cache" ): SCREAMING_SNAKE_CASE_ : List[Any] = True SCREAMING_SNAKE_CASE_ : int = getattr(self.model_tester,"encoder_seq_length",self.model_tester.seq_length ) SCREAMING_SNAKE_CASE_ : Optional[Any] = getattr(self.model_tester,"key_length",_A ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : List[str] = self._prepare_for_class(_A,_A ) SCREAMING_SNAKE_CASE_ : List[Any] = model_class(_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = len(model(_A ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A,saved_model=_A ) SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join(_A,"saved_model","1" ) SCREAMING_SNAKE_CASE_ : Tuple = tf.keras.models.load_model(_A ) SCREAMING_SNAKE_CASE_ : str = model(_A ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE_ : Optional[Any] = outputs["encoder_hidden_states"] SCREAMING_SNAKE_CASE_ : str = outputs["encoder_attentions"] else: SCREAMING_SNAKE_CASE_ : Any = outputs["hidden_states"] SCREAMING_SNAKE_CASE_ : List[str] = outputs["attentions"] self.assertEqual(len(_A ),_A ) SCREAMING_SNAKE_CASE_ : Any = getattr( self.model_tester,"expected_num_hidden_layers",self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_A ),_A ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ),[self.model_tester.seq_length, self.model_tester.hidden_size],) self.assertEqual(len(_A ),self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ),[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length],) @slow def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(_A ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : List[str] = True SCREAMING_SNAKE_CASE_ : List[str] = getattr(self.model_tester,"decoder_seq_length",self.model_tester.seq_length ) SCREAMING_SNAKE_CASE_ : Any = getattr(self.model_tester,"encoder_seq_length",self.model_tester.seq_length ) SCREAMING_SNAKE_CASE_ : Optional[int] = getattr(self.model_tester,"key_length",_A ) SCREAMING_SNAKE_CASE_ : int = getattr(self.model_tester,"key_length",_A ) def check_decoder_attentions_output(_A : Dict ): SCREAMING_SNAKE_CASE_ : int = len(_A ) self.assertEqual(out_len % 2,0 ) SCREAMING_SNAKE_CASE_ : Tuple = outputs.decoder_attentions self.assertEqual(len(_A ),self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ),[self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length],) def check_encoder_attentions_output(_A : Tuple ): SCREAMING_SNAKE_CASE_ : int = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_A ),self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ),[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length],) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Optional[Any] = True SCREAMING_SNAKE_CASE_ : Optional[Any] = False SCREAMING_SNAKE_CASE_ : Tuple = model_class(_A ) SCREAMING_SNAKE_CASE_ : Any = model(self._prepare_for_class(_A,_A ) ) SCREAMING_SNAKE_CASE_ : Tuple = len(_A ) self.assertEqual(config.output_hidden_states,_A ) check_encoder_attentions_output(_A ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE_ : Optional[Any] = model_class(_A ) SCREAMING_SNAKE_CASE_ : int = model(self._prepare_for_class(_A,_A ) ) self.assertEqual(config.output_hidden_states,_A ) check_decoder_attentions_output(_A ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE_ : str = True SCREAMING_SNAKE_CASE_ : int = model_class(_A ) SCREAMING_SNAKE_CASE_ : List[str] = model(self._prepare_for_class(_A,_A ) ) self.assertEqual(config.output_hidden_states,_A ) check_encoder_attentions_output(_A ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE_ : str = True SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Dict = model_class(_A ) SCREAMING_SNAKE_CASE_ : str = model(self._prepare_for_class(_A,_A ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1),len(_A ) ) self.assertEqual(model.config.output_hidden_states,_A ) check_encoder_attentions_output(_A ) @require_tf class a__ ( unittest.TestCase ): @slow def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) SCREAMING_SNAKE_CASE_ : int = tf.constant([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE_ : Tuple = model(_A )[0] SCREAMING_SNAKE_CASE_ : List[Any] = [1, 6, 768] self.assertEqual(output.shape,_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ] ) tf.debugging.assert_near(output[:, :3, :3],_A,atol=1E-4 )
18
1
import sys __lowerCamelCase : List[Any] = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def _snake_case ( lowerCAmelCase : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = 1 for digit in s: product *= int(lowerCAmelCase ) return product def _snake_case ( lowerCAmelCase : str = N ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = -sys.maxsize - 1 SCREAMING_SNAKE_CASE_ : Optional[Any] = n[:1_3] SCREAMING_SNAKE_CASE_ : Dict = 1_3 while cur_index < len(lowerCAmelCase ) - 1_3: if int(n[cur_index] ) >= int(substr[0] ): SCREAMING_SNAKE_CASE_ : str = substr[1:] + n[cur_index] cur_index += 1 else: SCREAMING_SNAKE_CASE_ : Dict = max(lowerCAmelCase , str_eval(lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ : List[str] = n[cur_index : cur_index + 1_3] cur_index += 1_3 return largest_product if __name__ == "__main__": print(f'''{solution() = }''')
18
def _snake_case ( lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = int(lowerCAmelCase ) if decimal in (0, 1): # Exit cases for the recursion return str(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = divmod(lowerCAmelCase , 2 ) return binary_recursive(lowerCAmelCase ) + str(lowerCAmelCase ) def _snake_case ( lowerCAmelCase : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = str(lowerCAmelCase ).strip() if not number: raise ValueError("No input value was provided" ) SCREAMING_SNAKE_CASE_ : List[str] = "-" if number.startswith("-" ) else "" SCREAMING_SNAKE_CASE_ : Optional[Any] = number.lstrip("-" ) if not number.isnumeric(): raise ValueError("Input value is not an integer" ) return f'{negative}0b{binary_recursive(int(lowerCAmelCase ) )}' if __name__ == "__main__": from doctest import testmod testmod()
18
1
import csv import tweepy # Twitter API credentials __lowerCamelCase : Dict = '''''' __lowerCamelCase : Union[str, Any] = '''''' __lowerCamelCase : Dict = '''''' __lowerCamelCase : List[Any] = '''''' def _snake_case ( lowerCAmelCase : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = tweepy.OAuthHandler(lowerCAmelCase , lowerCAmelCase ) auth.set_access_token(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tweepy.API(lowerCAmelCase ) # initialize a list to hold all the tweepy Tweets SCREAMING_SNAKE_CASE_ : int = [] # make initial request for most recent tweets (200 is the maximum allowed count) SCREAMING_SNAKE_CASE_ : List[Any] = api.user_timeline(screen_name=lowerCAmelCase , count=2_0_0 ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # save the id of the oldest tweet less one SCREAMING_SNAKE_CASE_ : List[Any] = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowerCAmelCase ) > 0: print(f'getting tweets before {oldest}' ) # all subsequent requests use the max_id param to prevent duplicates SCREAMING_SNAKE_CASE_ : int = api.user_timeline( screen_name=lowerCAmelCase , count=2_0_0 , max_id=lowerCAmelCase ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # update the id of the oldest tweet less one SCREAMING_SNAKE_CASE_ : str = alltweets[-1].id - 1 print(f'...{len(lowerCAmelCase )} tweets downloaded so far' ) # transform the tweepy tweets into a 2D array that will populate the csv SCREAMING_SNAKE_CASE_ : Dict = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(f'new_{screen_name}_tweets.csv' , "w" ) as f: SCREAMING_SNAKE_CASE_ : Union[str, Any] = csv.writer(lowerCAmelCase ) writer.writerow(["id", "created_at", "text"] ) writer.writerows(lowerCAmelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('''FirePing32''')
18
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase : Union[str, Any] = { '''configuration_chinese_clip''': [ '''CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ChineseCLIPConfig''', '''ChineseCLIPOnnxConfig''', '''ChineseCLIPTextConfig''', '''ChineseCLIPVisionConfig''', ], '''processing_chinese_clip''': ['''ChineseCLIPProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = ['''ChineseCLIPFeatureExtractor'''] __lowerCamelCase : Optional[int] = ['''ChineseCLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : int = [ '''CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ChineseCLIPModel''', '''ChineseCLIPPreTrainedModel''', '''ChineseCLIPTextModel''', '''ChineseCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys __lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
18
1
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class a__ ( A__ ): A = 'ClapFeatureExtractor' A = ('RobertaTokenizer', 'RobertaTokenizerFast') def __init__( self : Union[str, Any],_A : Optional[int],_A : int ): """simple docstring""" super().__init__(_A,_A ) def __call__( self : int,_A : int=None,_A : List[Any]=None,_A : str=None,**_A : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = kwargs.pop("sampling_rate",_A ) if text is None and audios is None: raise ValueError("You have to specify either text or audios. Both cannot be none." ) if text is not None: SCREAMING_SNAKE_CASE_ : Dict = self.tokenizer(_A,return_tensors=_A,**_A ) if audios is not None: SCREAMING_SNAKE_CASE_ : List[Any] = self.feature_extractor( _A,sampling_rate=_A,return_tensors=_A,**_A ) if text is not None and audios is not None: SCREAMING_SNAKE_CASE_ : str = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_A ),tensor_type=_A ) def __UpperCamelCase ( self : Optional[Any],*_A : str,**_A : str ): """simple docstring""" return self.tokenizer.batch_decode(*_A,**_A ) def __UpperCamelCase ( self : str,*_A : Union[str, Any],**_A : List[str] ): """simple docstring""" return self.tokenizer.decode(*_A,**_A ) @property def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE_ : str = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
18
import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument __lowerCamelCase : Any = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def _snake_case ( lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = list(s_dict.keys() ) for key in keys: SCREAMING_SNAKE_CASE_ : int = R".*/layers_(\d+)" SCREAMING_SNAKE_CASE_ : List[Any] = key if re.match(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Any = re.sub(R"layers_(\d+)" , R"block/\1/layer" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = R"(encoder|decoder)\/" if re.match(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : str = re.match(lowerCAmelCase , lowerCAmelCase ).groups() if groups[0] == "encoder": SCREAMING_SNAKE_CASE_ : Any = re.sub(R"/mlp/" , R"/1/mlp/" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = re.sub(R"/pre_mlp_layer_norm/" , R"/1/layer_norm/" , lowerCAmelCase ) elif groups[0] == "decoder": SCREAMING_SNAKE_CASE_ : List[str] = re.sub(R"/mlp/" , R"/2/mlp/" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = re.sub(R"/pre_mlp_layer_norm/" , R"/2/layer_norm/" , lowerCAmelCase ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: SCREAMING_SNAKE_CASE_ : List[Any] = new_key.replace(lowerCAmelCase , lowerCAmelCase ) print(f'{key} -> {new_key}' ) SCREAMING_SNAKE_CASE_ : List[Any] = s_dict.pop(lowerCAmelCase ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: SCREAMING_SNAKE_CASE_ : str = s_dict[ "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: SCREAMING_SNAKE_CASE_ : Optional[int] = s_dict[ "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: SCREAMING_SNAKE_CASE_ : Union[str, Any] = s_dict[key].shape[0] SCREAMING_SNAKE_CASE_ : List[Any] = s_dict[key] for idx in range(lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Tuple = expert_weihts[idx] print(f'{key} -> {key.replace("expert/" , "nested fstring" )}' ) s_dict.pop(lowerCAmelCase ) return s_dict __lowerCamelCase : List[Any] = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def _snake_case ( lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any] ): """simple docstring""" import regex as re with open(lowerCAmelCase , "r" ) as f: SCREAMING_SNAKE_CASE_ : Optional[Any] = f.read() SCREAMING_SNAKE_CASE_ : List[str] = re.findall(R"(.*) = ([0-9.]*)" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": SCREAMING_SNAKE_CASE_ : int = float(lowerCAmelCase ) if "." in value else int(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = re.findall(R"(.*activations) = \(\'(.*)\',\)" , lowerCAmelCase )[0] SCREAMING_SNAKE_CASE_ : List[str] = str(activation[1] ) SCREAMING_SNAKE_CASE_ : str = num_experts SCREAMING_SNAKE_CASE_ : Tuple = SwitchTransformersConfig(**lowerCAmelCase ) return config def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : str=None , lowerCAmelCase : Optional[Any]="./" , lowerCAmelCase : Dict=8 ): """simple docstring""" print(f'Loading flax weights from : {flax_checkpoint_path}' ) SCREAMING_SNAKE_CASE_ : int = checkpoints.load_tax_checkpoint(lowerCAmelCase ) if gin_file is not None: SCREAMING_SNAKE_CASE_ : int = convert_gin_to_config(lowerCAmelCase , lowerCAmelCase ) else: SCREAMING_SNAKE_CASE_ : Dict = SwitchTransformersConfig.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : str = SwitchTransformersForConditionalGeneration(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = flax_params["target"] SCREAMING_SNAKE_CASE_ : List[str] = flatten_dict(lowerCAmelCase , sep="/" ) SCREAMING_SNAKE_CASE_ : List[str] = rename_keys(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = unflatten_dict(lowerCAmelCase , sep="/" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(lowerCAmelCase , lowerCAmelCase ) print(f'Save PyTorch model to {pytorch_dump_path}' ) pt_model.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": __lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') __lowerCamelCase : Any = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
18
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : Tuple = logging.get_logger(__name__) __lowerCamelCase : str = { '''microsoft/git-base''': '''https://huggingface.co/microsoft/git-base/resolve/main/config.json''', } class a__ ( A__ ): A = 'git_vision_model' def __init__( self : Any,_A : str=768,_A : Union[str, Any]=3072,_A : List[Any]=12,_A : Dict=12,_A : List[Any]=3,_A : Union[str, Any]=224,_A : Any=16,_A : Union[str, Any]="quick_gelu",_A : List[str]=1E-5,_A : str=0.0,_A : Tuple=0.02,**_A : Tuple,): """simple docstring""" super().__init__(**_A ) SCREAMING_SNAKE_CASE_ : List[Any] = hidden_size SCREAMING_SNAKE_CASE_ : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE_ : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE_ : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE_ : Optional[int] = num_channels SCREAMING_SNAKE_CASE_ : List[str] = patch_size SCREAMING_SNAKE_CASE_ : Tuple = image_size SCREAMING_SNAKE_CASE_ : Dict = initializer_range SCREAMING_SNAKE_CASE_ : Optional[Any] = attention_dropout SCREAMING_SNAKE_CASE_ : Dict = layer_norm_eps SCREAMING_SNAKE_CASE_ : str = hidden_act @classmethod def __UpperCamelCase ( cls : int,_A : Union[str, os.PathLike],**_A : str ): """simple docstring""" cls._set_token_in_kwargs(_A ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = cls.get_config_dict(_A,**_A ) # get the vision config dict if we are loading from GITConfig if config_dict.get("model_type" ) == "git": SCREAMING_SNAKE_CASE_ : Optional[int] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls,"model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_A,**_A ) class a__ ( A__ ): A = 'git' def __init__( self : Dict,_A : Optional[Any]=None,_A : int=3_0522,_A : Dict=768,_A : str=6,_A : str=12,_A : Optional[int]=3072,_A : List[str]="gelu",_A : Tuple=0.1,_A : Optional[int]=0.1,_A : Any=1024,_A : Optional[Any]=0.02,_A : Optional[int]=1E-12,_A : Any=0,_A : List[str]="absolute",_A : List[str]=True,_A : List[str]=False,_A : Optional[int]=101,_A : Optional[int]=102,_A : List[str]=None,**_A : str,): """simple docstring""" super().__init__(bos_token_id=_A,eos_token_id=_A,pad_token_id=_A,**_A ) if vision_config is None: SCREAMING_SNAKE_CASE_ : Optional[int] = {} logger.info("vision_config is None. initializing the GitVisionConfig with default values." ) SCREAMING_SNAKE_CASE_ : List[str] = GitVisionConfig(**_A ) SCREAMING_SNAKE_CASE_ : List[str] = vocab_size SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_size SCREAMING_SNAKE_CASE_ : List[str] = num_hidden_layers SCREAMING_SNAKE_CASE_ : str = num_attention_heads SCREAMING_SNAKE_CASE_ : List[Any] = hidden_act SCREAMING_SNAKE_CASE_ : Any = intermediate_size SCREAMING_SNAKE_CASE_ : int = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Dict = max_position_embeddings SCREAMING_SNAKE_CASE_ : List[Any] = initializer_range SCREAMING_SNAKE_CASE_ : str = layer_norm_eps SCREAMING_SNAKE_CASE_ : Tuple = position_embedding_type SCREAMING_SNAKE_CASE_ : Tuple = use_cache SCREAMING_SNAKE_CASE_ : List[Any] = tie_word_embeddings SCREAMING_SNAKE_CASE_ : Any = num_image_with_embedding SCREAMING_SNAKE_CASE_ : List[str] = bos_token_id SCREAMING_SNAKE_CASE_ : Dict = eos_token_id def __UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.vision_config.to_dict() SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.__class__.model_type return output
18
from math import factorial, radians def _snake_case ( lowerCAmelCase : float , lowerCAmelCase : int = 1_8 , lowerCAmelCase : int = 1_0 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians SCREAMING_SNAKE_CASE_ : Tuple = radians(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = angle_in_radians SCREAMING_SNAKE_CASE_ : List[str] = 3 SCREAMING_SNAKE_CASE_ : str = -1 for _ in range(lowerCAmelCase ): result += (b * (angle_in_radians**a)) / factorial(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(lowerCAmelCase , lowerCAmelCase ) if __name__ == "__main__": __import__('''doctest''').testmod()
18
1
import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py __lowerCamelCase : Tuple = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. __lowerCamelCase : Union[str, Any] = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. __lowerCamelCase : int = re.compile(R'''TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') __lowerCamelCase : List[str] = re.compile(R'''Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __lowerCamelCase : int = re.compile(R'''(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) __lowerCamelCase : Any = [ ('''pretraining''', '''MODEL_FOR_PRETRAINING_MAPPING_NAMES''', '''AutoModelForPreTraining'''), ('''feature-extraction''', '''MODEL_MAPPING_NAMES''', '''AutoModel'''), ('''audio-classification''', '''MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForAudioClassification'''), ('''text-generation''', '''MODEL_FOR_CAUSAL_LM_MAPPING_NAMES''', '''AutoModelForCausalLM'''), ('''automatic-speech-recognition''', '''MODEL_FOR_CTC_MAPPING_NAMES''', '''AutoModelForCTC'''), ('''image-classification''', '''MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForImageClassification'''), ('''image-segmentation''', '''MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES''', '''AutoModelForImageSegmentation'''), ('''fill-mask''', '''MODEL_FOR_MASKED_LM_MAPPING_NAMES''', '''AutoModelForMaskedLM'''), ('''object-detection''', '''MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES''', '''AutoModelForObjectDetection'''), ( '''zero-shot-object-detection''', '''MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES''', '''AutoModelForZeroShotObjectDetection''', ), ('''question-answering''', '''MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForQuestionAnswering'''), ('''text2text-generation''', '''MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES''', '''AutoModelForSeq2SeqLM'''), ('''text-classification''', '''MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForSequenceClassification'''), ('''automatic-speech-recognition''', '''MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES''', '''AutoModelForSpeechSeq2Seq'''), ( '''table-question-answering''', '''MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForTableQuestionAnswering''', ), ('''token-classification''', '''MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForTokenClassification'''), ('''multiple-choice''', '''MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES''', '''AutoModelForMultipleChoice'''), ( '''next-sentence-prediction''', '''MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES''', '''AutoModelForNextSentencePrediction''', ), ( '''audio-frame-classification''', '''MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForAudioFrameClassification''', ), ('''audio-xvector''', '''MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES''', '''AutoModelForAudioXVector'''), ( '''document-question-answering''', '''MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForDocumentQuestionAnswering''', ), ( '''visual-question-answering''', '''MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForVisualQuestionAnswering''', ), ('''image-to-text''', '''MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES''', '''AutoModelForVision2Seq'''), ( '''zero-shot-image-classification''', '''MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForZeroShotImageClassification''', ), ('''depth-estimation''', '''MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES''', '''AutoModelForDepthEstimation'''), ('''video-classification''', '''MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForVideoClassification'''), ('''mask-generation''', '''MODEL_FOR_MASK_GENERATION_MAPPING_NAMES''', '''AutoModelForMaskGeneration'''), ] def _snake_case ( lowerCAmelCase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)" , lowerCAmelCase ) return [m.group(0 ) for m in matches] def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES SCREAMING_SNAKE_CASE_ : List[str] = { config.replace("Config" , "" ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. SCREAMING_SNAKE_CASE_ : Any = collections.defaultdict(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = collections.defaultdict(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = collections.defaultdict(lowerCAmelCase ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : List[Any] = None if _re_tf_models.match(lowerCAmelCase ) is not None: SCREAMING_SNAKE_CASE_ : Optional[int] = tf_models SCREAMING_SNAKE_CASE_ : List[str] = _re_tf_models.match(lowerCAmelCase ).groups()[0] elif _re_flax_models.match(lowerCAmelCase ) is not None: SCREAMING_SNAKE_CASE_ : Tuple = flax_models SCREAMING_SNAKE_CASE_ : Tuple = _re_flax_models.match(lowerCAmelCase ).groups()[0] elif _re_pt_models.match(lowerCAmelCase ) is not None: SCREAMING_SNAKE_CASE_ : int = pt_models SCREAMING_SNAKE_CASE_ : Union[str, Any] = _re_pt_models.match(lowerCAmelCase ).groups()[0] if lookup_dict is not None: while len(lowerCAmelCase ) > 0: if attr_name in model_prefix_to_model_type: SCREAMING_SNAKE_CASE_ : Any = True break # Try again after removing the last word in the name SCREAMING_SNAKE_CASE_ : Union[str, Any] = "".join(camel_case_split(lowerCAmelCase )[:-1] ) SCREAMING_SNAKE_CASE_ : int = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) SCREAMING_SNAKE_CASE_ : List[Any] = list(lowerCAmelCase ) all_models.sort() SCREAMING_SNAKE_CASE_ : Dict = {"model_type": all_models} SCREAMING_SNAKE_CASE_ : str = [pt_models[t] for t in all_models] SCREAMING_SNAKE_CASE_ : Any = [tf_models[t] for t in all_models] SCREAMING_SNAKE_CASE_ : Tuple = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure SCREAMING_SNAKE_CASE_ : Tuple = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: SCREAMING_SNAKE_CASE_ : List[str] = "AutoProcessor" elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: SCREAMING_SNAKE_CASE_ : Dict = "AutoTokenizer" elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: SCREAMING_SNAKE_CASE_ : Optional[int] = "AutoFeatureExtractor" else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. SCREAMING_SNAKE_CASE_ : Dict = "AutoTokenizer" SCREAMING_SNAKE_CASE_ : int = [processors[t] for t in all_models] return pd.DataFrame(lowerCAmelCase ) def _snake_case ( lowerCAmelCase : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: SCREAMING_SNAKE_CASE_ : Any = [model_mapping, f'TF_{model_mapping}', f'FLAX_{model_mapping}'] SCREAMING_SNAKE_CASE_ : Optional[Any] = [auto_class, f'TF_{auto_class}', f'Flax_{auto_class}'] # Loop through all three frameworks for module, cls, mapping in zip(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): # The type of pipeline may not exist in this framework if not hasattr(lowerCAmelCase , lowerCAmelCase ): continue # First extract all model_names SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] for name in getattr(lowerCAmelCase , lowerCAmelCase ).values(): if isinstance(lowerCAmelCase , lowerCAmelCase ): model_names.append(lowerCAmelCase ) else: model_names.extend(list(lowerCAmelCase ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = get_frameworks_table() SCREAMING_SNAKE_CASE_ : Union[str, Any] = Dataset.from_pandas(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = hf_hub_download( "huggingface/transformers-metadata" , "pipeline_tags.json" , repo_type="dataset" , token=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = Dataset.from_json(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = { tags_dataset[i]["model_class"]: (tags_dataset[i]["pipeline_tag"], tags_dataset[i]["auto_class"]) for i in range(len(lowerCAmelCase ) ) } SCREAMING_SNAKE_CASE_ : Optional[int] = update_pipeline_and_auto_class_table(lowerCAmelCase ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. SCREAMING_SNAKE_CASE_ : List[str] = sorted(table.keys() ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = pd.DataFrame( { "model_class": model_classes, "pipeline_tag": [table[m][0] for m in model_classes], "auto_class": [table[m][1] for m in model_classes], } ) SCREAMING_SNAKE_CASE_ : Dict = Dataset.from_pandas(lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(lowerCAmelCase , "frameworks.json" ) ) tags_dataset.to_json(os.path.join(lowerCAmelCase , "pipeline_tags.json" ) ) if commit_sha is not None: SCREAMING_SNAKE_CASE_ : Tuple = ( f'Update with commit {commit_sha}\n\nSee: ' f'https://github.com/huggingface/transformers/commit/{commit_sha}' ) else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = "Update" upload_folder( repo_id="huggingface/transformers-metadata" , folder_path=lowerCAmelCase , repo_type="dataset" , token=lowerCAmelCase , commit_message=lowerCAmelCase , ) def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} SCREAMING_SNAKE_CASE_ : Union[str, Any] = transformers_module.pipelines.SUPPORTED_TASKS SCREAMING_SNAKE_CASE_ : List[Any] = [] for key in pipeline_tasks: if key not in in_table: SCREAMING_SNAKE_CASE_ : List[Any] = pipeline_tasks[key]["pt"] if isinstance(lowerCAmelCase , (list, tuple) ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = model[0] SCREAMING_SNAKE_CASE_ : List[Any] = model.__name__ if model not in in_table.values(): missing.append(lowerCAmelCase ) if len(lowerCAmelCase ) > 0: SCREAMING_SNAKE_CASE_ : List[str] = ", ".join(lowerCAmelCase ) raise ValueError( "The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside " f'`utils/update_metadata.py`: {msg}. Please add them!' ) if __name__ == "__main__": __lowerCamelCase : Any = argparse.ArgumentParser() parser.add_argument('''--token''', type=str, help='''The token to use to push to the transformers-metadata dataset.''') parser.add_argument('''--commit_sha''', type=str, help='''The sha of the commit going with this update.''') parser.add_argument('''--check-only''', action='''store_true''', help='''Activate to just check all pipelines are present.''') __lowerCamelCase : List[Any] = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
18
from functools import lru_cache @lru_cache def _snake_case ( lowerCAmelCase : int ): """simple docstring""" if num < 0: raise ValueError("Number should not be negative." ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
18
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class a__ ( unittest.TestCase ): def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ : Optional[Any] = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] SCREAMING_SNAKE_CASE_ : Tuple = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file,"w",encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) SCREAMING_SNAKE_CASE_ : str = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48145466, 0.4578275, 0.40821073], "image_std": [0.26862954, 0.26130258, 0.27577711], } SCREAMING_SNAKE_CASE_ : List[str] = os.path.join(self.tmpdirname,_A ) with open(self.image_processor_file,"w",encoding="utf-8" ) as fp: json.dump(_A,_A ) def __UpperCamelCase ( self : Optional[Any],**_A : Any ): """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname,**_A ) def __UpperCamelCase ( self : List[str],**_A : List[Any] ): """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname,**_A ) def __UpperCamelCase ( self : Optional[int],**_A : Dict ): """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname,**_A ) def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = [np.random.randint(255,size=(3, 30, 400),dtype=np.uinta )] SCREAMING_SNAKE_CASE_ : Optional[Any] = [Image.fromarray(np.moveaxis(_A,0,-1 ) ) for x in image_inputs] return image_inputs def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ : List[str] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Any = AlignProcessor(tokenizer=_A,image_processor=_A ) processor_slow.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ : Tuple = AlignProcessor.from_pretrained(self.tmpdirname,use_fast=_A ) SCREAMING_SNAKE_CASE_ : Optional[Any] = AlignProcessor(tokenizer=_A,image_processor=_A ) processor_fast.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ : Tuple = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab(),tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab(),tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab(),tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer,_A ) self.assertIsInstance(processor_fast.tokenizer,_A ) self.assertEqual(processor_slow.image_processor.to_json_string(),image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string(),image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor,_A ) self.assertIsInstance(processor_fast.image_processor,_A ) def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = AlignProcessor(tokenizer=self.get_tokenizer(),image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ : Any = self.get_tokenizer(bos_token="(BOS)",eos_token="(EOS)" ) SCREAMING_SNAKE_CASE_ : List[Any] = self.get_image_processor(do_normalize=_A,padding_value=1.0 ) SCREAMING_SNAKE_CASE_ : List[Any] = AlignProcessor.from_pretrained( self.tmpdirname,bos_token="(BOS)",eos_token="(EOS)",do_normalize=_A,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(),tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer,_A ) self.assertEqual(processor.image_processor.to_json_string(),image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor,_A ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Any = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Dict = AlignProcessor(tokenizer=_A,image_processor=_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : List[str] = image_processor(_A,return_tensors="np" ) SCREAMING_SNAKE_CASE_ : str = processor(images=_A,return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum(),input_processor[key].sum(),delta=1E-2 ) def __UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : int = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Optional[int] = AlignProcessor(tokenizer=_A,image_processor=_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = "lower newer" SCREAMING_SNAKE_CASE_ : List[str] = processor(text=_A ) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer(_A,padding="max_length",max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key],encoded_processor[key] ) def __UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Optional[Any] = AlignProcessor(tokenizer=_A,image_processor=_A ) SCREAMING_SNAKE_CASE_ : List[Any] = "lower newer" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : Union[str, Any] = processor(text=_A,images=_A ) self.assertListEqual(list(inputs.keys() ),["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Any = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Any = AlignProcessor(tokenizer=_A,image_processor=_A ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE_ : Any = processor.batch_decode(_A ) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer.batch_decode(_A ) self.assertListEqual(_A,_A ) def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Tuple = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Any = AlignProcessor(tokenizer=_A,image_processor=_A ) SCREAMING_SNAKE_CASE_ : str = "lower newer" SCREAMING_SNAKE_CASE_ : Optional[int] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : Optional[Any] = processor(text=_A,images=_A ) self.assertListEqual(list(inputs.keys() ),processor.model_input_names )
18
from collections import defaultdict def _snake_case ( lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = 1 SCREAMING_SNAKE_CASE_ : Tuple = True for v in tree[start]: if v not in visited: ret += dfs(lowerCAmelCase ) if ret % 2 == 0: cuts.append(lowerCAmelCase ) return ret def _snake_case ( ): """simple docstring""" dfs(1 ) if __name__ == "__main__": __lowerCamelCase , __lowerCamelCase : Union[str, Any] = 10, 9 __lowerCamelCase : Optional[int] = defaultdict(list) __lowerCamelCase : dict[int, bool] = {} __lowerCamelCase : list[int] = [] __lowerCamelCase : Optional[Any] = 0 __lowerCamelCase : Any = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
18
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class a__ ( A__ ): A = 'openai/whisper-base' A = ( 'This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the ' 'transcribed text.' ) A = 'transcriber' A = WhisperProcessor A = WhisperForConditionalGeneration A = ['audio'] A = ['text'] def __UpperCamelCase ( self : List[str],_A : Any ): """simple docstring""" return self.pre_processor(_A,return_tensors="pt" ).input_features def __UpperCamelCase ( self : Optional[int],_A : Optional[Any] ): """simple docstring""" return self.model.generate(inputs=_A ) def __UpperCamelCase ( self : Optional[int],_A : Optional[int] ): """simple docstring""" return self.pre_processor.batch_decode(_A,skip_special_tokens=_A )[0]
18
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=lowerCAmelCase ) env_command_parser(subparsers=lowerCAmelCase ) launch_command_parser(subparsers=lowerCAmelCase ) tpu_command_parser(subparsers=lowerCAmelCase ) test_command_parser(subparsers=lowerCAmelCase ) # Let's go SCREAMING_SNAKE_CASE_ : Dict = parser.parse_args() if not hasattr(lowerCAmelCase , "func" ): parser.print_help() exit(1 ) # Run args.func(lowerCAmelCase ) if __name__ == "__main__": main()
18
1
import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class a__ : def __init__( self : Union[str, Any],_A : Tuple,_A : int,_A : int ): """simple docstring""" if dst_width < 0 or dst_height < 0: raise ValueError("Destination width/height should be > 0" ) SCREAMING_SNAKE_CASE_ : Optional[Any] = img SCREAMING_SNAKE_CASE_ : Union[str, Any] = img.shape[1] SCREAMING_SNAKE_CASE_ : Tuple = img.shape[0] SCREAMING_SNAKE_CASE_ : Optional[Any] = dst_width SCREAMING_SNAKE_CASE_ : Optional[int] = dst_height SCREAMING_SNAKE_CASE_ : Dict = self.src_w / self.dst_w SCREAMING_SNAKE_CASE_ : str = self.src_h / self.dst_h SCREAMING_SNAKE_CASE_ : Dict = ( np.ones((self.dst_h, self.dst_w, 3),np.uinta ) * 255 ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" for i in range(self.dst_h ): for j in range(self.dst_w ): SCREAMING_SNAKE_CASE_ : List[str] = self.img[self.get_y(_A )][self.get_x(_A )] def __UpperCamelCase ( self : str,_A : int ): """simple docstring""" return int(self.ratio_x * x ) def __UpperCamelCase ( self : Tuple,_A : int ): """simple docstring""" return int(self.ratio_y * y ) if __name__ == "__main__": __lowerCamelCase , __lowerCamelCase : Dict = 8_00, 6_00 __lowerCamelCase : Dict = imread('''image_data/lena.jpg''', 1) __lowerCamelCase : Any = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( f'''Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}''', n.output ) waitKey(0) destroyAllWindows()
18
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer __lowerCamelCase : Optional[Any] = logging.get_logger(__name__) __lowerCamelCase : Dict = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __lowerCamelCase : int = { '''vocab_file''': { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt''' ), } } __lowerCamelCase : Any = { '''junnyu/roformer_chinese_small''': 15_36, '''junnyu/roformer_chinese_base''': 15_36, '''junnyu/roformer_chinese_char_small''': 5_12, '''junnyu/roformer_chinese_char_base''': 5_12, '''junnyu/roformer_small_discriminator''': 1_28, '''junnyu/roformer_small_generator''': 1_28, } __lowerCamelCase : Union[str, Any] = { '''junnyu/roformer_chinese_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_base''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_base''': {'''do_lower_case''': True}, '''junnyu/roformer_small_discriminator''': {'''do_lower_case''': True}, '''junnyu/roformer_small_generator''': {'''do_lower_case''': True}, } class a__ ( A__ ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = PRETRAINED_INIT_CONFIGURATION A = RoFormerTokenizer def __init__( self : List[str],_A : int=None,_A : int=None,_A : int=True,_A : List[Any]="[UNK]",_A : Tuple="[SEP]",_A : List[Any]="[PAD]",_A : Optional[int]="[CLS]",_A : Optional[Any]="[MASK]",_A : Optional[int]=True,_A : List[str]=None,**_A : List[Any],): """simple docstring""" super().__init__( _A,tokenizer_file=_A,do_lower_case=_A,unk_token=_A,sep_token=_A,pad_token=_A,cls_token=_A,mask_token=_A,tokenize_chinese_chars=_A,strip_accents=_A,**_A,) SCREAMING_SNAKE_CASE_ : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("lowercase",_A ) != do_lower_case or pre_tok_state.get("strip_accents",_A ) != strip_accents ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = getattr(_A,pre_tok_state.pop("type" ) ) SCREAMING_SNAKE_CASE_ : Any = do_lower_case SCREAMING_SNAKE_CASE_ : List[str] = strip_accents SCREAMING_SNAKE_CASE_ : str = pre_tok_class(**_A ) SCREAMING_SNAKE_CASE_ : List[str] = do_lower_case def __getstate__( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.__dict__.copy() SCREAMING_SNAKE_CASE_ : Optional[Any] = BertPreTokenizer() return state def __setstate__( self : List[Any],_A : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = d SCREAMING_SNAKE_CASE_ : List[str] = self.__dict__["_tokenizer"].get_vocab() SCREAMING_SNAKE_CASE_ : Any = PreTokenizer.custom(JiebaPreTokenizer(_A ) ) def __UpperCamelCase ( self : Union[str, Any],_A : List[Any],_A : str=None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCamelCase ( self : str,_A : List[int],_A : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCamelCase ( self : int,_A : str,_A : Optional[str] = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._tokenizer.model.save(_A,name=_A ) return tuple(_A ) def __UpperCamelCase ( self : int,_A : Optional[int],_A : List[Any]=None,_A : Tuple=None,_A : str=False,**_A : List[Any],): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = BertPreTokenizer() return super().save_pretrained(_A,_A,_A,_A,**_A )
18
1
def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : list[int] , lowerCAmelCase : int ): """simple docstring""" def count_of_possible_combinations(lowerCAmelCase : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(lowerCAmelCase ) def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : list[int] , lowerCAmelCase : int ): """simple docstring""" def count_of_possible_combinations_with_dp_array( lowerCAmelCase : int , lowerCAmelCase : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] SCREAMING_SNAKE_CASE_ : Union[str, Any] = sum( count_of_possible_combinations_with_dp_array(target - item , lowerCAmelCase ) for item in array ) SCREAMING_SNAKE_CASE_ : Optional[int] = answer return answer SCREAMING_SNAKE_CASE_ : str = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(lowerCAmelCase , lowerCAmelCase ) def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : list[int] , lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = [0] * (target + 1) SCREAMING_SNAKE_CASE_ : Tuple = 1 for i in range(1 , target + 1 ): for j in range(lowerCAmelCase ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() __lowerCamelCase : Dict = 3 __lowerCamelCase : Optional[int] = 5 __lowerCamelCase : Optional[int] = [1, 2, 5] print(combination_sum_iv(n, array, target))
18
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class a__ ( A__ ): def __init__( self : Tuple,_A : Optional[int],_A : Any=13,_A : List[str]=7,_A : int=True,_A : Dict=True,_A : Dict=False,_A : List[Any]=True,_A : Any=99,_A : Optional[int]=32,_A : Any=5,_A : List[Any]=4,_A : Dict=64,_A : Optional[Any]="gelu",_A : Tuple=0.1,_A : Any=0.1,_A : List[Any]=512,_A : Dict=16,_A : Optional[Any]=2,_A : Union[str, Any]=0.02,_A : List[str]=3,_A : Optional[Any]=4,_A : Union[str, Any]=None,_A : Tuple=2,_A : List[str]=2,_A : str=2,_A : Dict=2,_A : Optional[Any]=4,_A : Union[str, Any]=1,): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = parent SCREAMING_SNAKE_CASE_ : Optional[int] = batch_size SCREAMING_SNAKE_CASE_ : Dict = seq_length SCREAMING_SNAKE_CASE_ : Dict = is_training SCREAMING_SNAKE_CASE_ : Optional[int] = use_input_mask SCREAMING_SNAKE_CASE_ : int = use_token_type_ids SCREAMING_SNAKE_CASE_ : Optional[int] = use_labels SCREAMING_SNAKE_CASE_ : Tuple = vocab_size SCREAMING_SNAKE_CASE_ : Any = hidden_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Tuple = num_attention_heads SCREAMING_SNAKE_CASE_ : List[Any] = intermediate_size SCREAMING_SNAKE_CASE_ : List[str] = hidden_act SCREAMING_SNAKE_CASE_ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : str = max_position_embeddings SCREAMING_SNAKE_CASE_ : str = type_vocab_size SCREAMING_SNAKE_CASE_ : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE_ : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE_ : Tuple = num_labels SCREAMING_SNAKE_CASE_ : List[Any] = num_choices SCREAMING_SNAKE_CASE_ : Dict = scope SCREAMING_SNAKE_CASE_ : int = q_groups SCREAMING_SNAKE_CASE_ : Tuple = k_groups SCREAMING_SNAKE_CASE_ : List[Any] = v_groups SCREAMING_SNAKE_CASE_ : Tuple = post_attention_groups SCREAMING_SNAKE_CASE_ : int = intermediate_groups SCREAMING_SNAKE_CASE_ : List[Any] = output_groups def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) SCREAMING_SNAKE_CASE_ : List[Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = None SCREAMING_SNAKE_CASE_ : Any = None SCREAMING_SNAKE_CASE_ : str = None if self.use_labels: SCREAMING_SNAKE_CASE_ : str = ids_tensor([self.batch_size],self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size],self.num_choices ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : str ): """simple docstring""" return SqueezeBertConfig( embedding_size=self.hidden_size,vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,attention_probs_dropout_prob=self.hidden_dropout_prob,attention_dropout=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,initializer_range=self.initializer_range,q_groups=self.q_groups,k_groups=self.k_groups,v_groups=self.v_groups,post_attention_groups=self.post_attention_groups,intermediate_groups=self.intermediate_groups,output_groups=self.output_groups,) def __UpperCamelCase ( self : Tuple,_A : Union[str, Any],_A : Union[str, Any],_A : int,_A : Optional[int],_A : Union[str, Any],_A : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = SqueezeBertModel(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Any = model(_A,_A ) SCREAMING_SNAKE_CASE_ : List[str] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Dict,_A : Any,_A : Tuple,_A : str,_A : Any,_A : Union[str, Any],_A : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = SqueezeBertForMaskedLM(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : List[str] = model(_A,attention_mask=_A,labels=_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : Optional[int],_A : Union[str, Any],_A : Union[str, Any],_A : Any,_A : Tuple,_A : int,_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = SqueezeBertForQuestionAnswering(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model( _A,attention_mask=_A,start_positions=_A,end_positions=_A ) self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : List[Any],_A : List[str],_A : Tuple,_A : List[Any],_A : List[str],_A : List[str],_A : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.num_labels SCREAMING_SNAKE_CASE_ : List[str] = SqueezeBertForSequenceClassification(_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model(_A,attention_mask=_A,labels=_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : str,_A : Optional[int],_A : str,_A : List[Any],_A : List[str],_A : str,_A : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.num_labels SCREAMING_SNAKE_CASE_ : Optional[int] = SqueezeBertForTokenClassification(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[int] = model(_A,attention_mask=_A,labels=_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : List[Any],_A : Tuple,_A : str,_A : Optional[Any],_A : int,_A : str,_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.num_choices SCREAMING_SNAKE_CASE_ : Union[str, Any] = SqueezeBertForMultipleChoice(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = input_ids.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() SCREAMING_SNAKE_CASE_ : str = input_mask.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() SCREAMING_SNAKE_CASE_ : Optional[int] = model( _A,attention_mask=_A,labels=_A,) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)) : Dict = config_and_inputs SCREAMING_SNAKE_CASE_ : Dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class a__ ( A__ , A__ , unittest.TestCase ): A = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) A = ( { 'feature-extraction': SqueezeBertModel, 'fill-mask': SqueezeBertForMaskedLM, 'question-answering': SqueezeBertForQuestionAnswering, 'text-classification': SqueezeBertForSequenceClassification, 'token-classification': SqueezeBertForTokenClassification, 'zero-shot': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) A = False A = True A = False def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = SqueezeBertModelTester(self ) SCREAMING_SNAKE_CASE_ : List[str] = ConfigTester(self,config_class=_A,dim=37 ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*_A ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*_A ) def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*_A ) def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*_A ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*_A ) def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*_A ) @slow def __UpperCamelCase ( self : Any ): """simple docstring""" for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : Tuple = SqueezeBertModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_sentencepiece @require_tokenizers @require_torch class a__ ( unittest.TestCase ): @slow def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = SqueezeBertForSequenceClassification.from_pretrained("squeezebert/squeezebert-mnli" ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor([[1, 2_9414, 232, 328, 740, 1140, 1_2695, 69, 13, 1588, 2]] ) SCREAMING_SNAKE_CASE_ : List[Any] = model(_A )[0] SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.Size((1, 3) ) self.assertEqual(output.shape,_A ) SCREAMING_SNAKE_CASE_ : int = torch.tensor([[0.6401, -0.0349, -0.6041]] ) self.assertTrue(torch.allclose(_A,_A,atol=1E-4 ) )
18
1
__lowerCamelCase : Dict = { '''Pillow''': '''Pillow<10.0.0''', '''accelerate''': '''accelerate>=0.20.3''', '''av''': '''av==9.2.0''', '''beautifulsoup4''': '''beautifulsoup4''', '''black''': '''black~=23.1''', '''codecarbon''': '''codecarbon==1.2.0''', '''cookiecutter''': '''cookiecutter==1.7.3''', '''dataclasses''': '''dataclasses''', '''datasets''': '''datasets!=2.5.0''', '''decord''': '''decord==0.6.0''', '''deepspeed''': '''deepspeed>=0.9.3''', '''diffusers''': '''diffusers''', '''dill''': '''dill<0.3.5''', '''evaluate''': '''evaluate>=0.2.0''', '''fairscale''': '''fairscale>0.3''', '''faiss-cpu''': '''faiss-cpu''', '''fastapi''': '''fastapi''', '''filelock''': '''filelock''', '''flax''': '''flax>=0.4.1,<=0.7.0''', '''ftfy''': '''ftfy''', '''fugashi''': '''fugashi>=1.0''', '''GitPython''': '''GitPython<3.1.19''', '''hf-doc-builder''': '''hf-doc-builder>=0.3.0''', '''huggingface-hub''': '''huggingface-hub>=0.14.1,<1.0''', '''importlib_metadata''': '''importlib_metadata''', '''ipadic''': '''ipadic>=1.0.0,<2.0''', '''isort''': '''isort>=5.5.4''', '''jax''': '''jax>=0.2.8,!=0.3.2,<=0.4.13''', '''jaxlib''': '''jaxlib>=0.1.65,<=0.4.13''', '''jieba''': '''jieba''', '''kenlm''': '''kenlm''', '''keras-nlp''': '''keras-nlp>=0.3.1''', '''librosa''': '''librosa''', '''nltk''': '''nltk''', '''natten''': '''natten>=0.14.6''', '''numpy''': '''numpy>=1.17''', '''onnxconverter-common''': '''onnxconverter-common''', '''onnxruntime-tools''': '''onnxruntime-tools>=1.4.2''', '''onnxruntime''': '''onnxruntime>=1.4.0''', '''opencv-python''': '''opencv-python''', '''optuna''': '''optuna''', '''optax''': '''optax>=0.0.8,<=0.1.4''', '''packaging''': '''packaging>=20.0''', '''parameterized''': '''parameterized''', '''phonemizer''': '''phonemizer''', '''protobuf''': '''protobuf''', '''psutil''': '''psutil''', '''pyyaml''': '''pyyaml>=5.1''', '''pydantic''': '''pydantic<2''', '''pytest''': '''pytest>=7.2.0''', '''pytest-timeout''': '''pytest-timeout''', '''pytest-xdist''': '''pytest-xdist''', '''python''': '''python>=3.8.0''', '''ray[tune]''': '''ray[tune]''', '''regex''': '''regex!=2019.12.17''', '''requests''': '''requests''', '''rhoknp''': '''rhoknp>=1.1.0,<1.3.1''', '''rjieba''': '''rjieba''', '''rouge-score''': '''rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1''', '''ruff''': '''ruff>=0.0.241,<=0.0.259''', '''sacrebleu''': '''sacrebleu>=1.4.12,<2.0.0''', '''sacremoses''': '''sacremoses''', '''safetensors''': '''safetensors>=0.3.1''', '''sagemaker''': '''sagemaker>=2.31.0''', '''scikit-learn''': '''scikit-learn''', '''sentencepiece''': '''sentencepiece>=0.1.91,!=0.1.92''', '''sigopt''': '''sigopt''', '''starlette''': '''starlette''', '''sudachipy''': '''sudachipy>=0.6.6''', '''sudachidict_core''': '''sudachidict_core>=20220729''', '''tensorflow-cpu''': '''tensorflow-cpu>=2.6,<2.14''', '''tensorflow''': '''tensorflow>=2.6,<2.14''', '''tensorflow-text''': '''tensorflow-text<2.14''', '''tf2onnx''': '''tf2onnx''', '''timeout-decorator''': '''timeout-decorator''', '''timm''': '''timm''', '''tokenizers''': '''tokenizers>=0.11.1,!=0.11.3,<0.14''', '''torch''': '''torch>=1.9,!=1.12.0''', '''torchaudio''': '''torchaudio''', '''torchvision''': '''torchvision''', '''pyctcdecode''': '''pyctcdecode>=0.4.0''', '''tqdm''': '''tqdm>=4.27''', '''unidic''': '''unidic>=1.0.2''', '''unidic_lite''': '''unidic_lite>=1.0.7''', '''urllib3''': '''urllib3<2.0.0''', '''uvicorn''': '''uvicorn''', }
18
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def _snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Union[str, Any] = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE_ : List[str] = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def _snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : Dict , lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Optional[Any] = {"text": "string"} SCREAMING_SNAKE_CASE_ : Any = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE_ : List[str] = ( Features({feature: Value(lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE_ : Optional[Any] = TextDatasetReader(lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def _snake_case ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : List[str] = {"text": "string"} SCREAMING_SNAKE_CASE_ : List[str] = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase , split=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : Optional[int] ): """simple docstring""" if issubclass(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = text_path elif issubclass(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [text_path] SCREAMING_SNAKE_CASE_ : int = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Optional[int] = {"text": "string"} SCREAMING_SNAKE_CASE_ : List[str] = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) def _snake_case ( lowerCAmelCase : Dict , lowerCAmelCase : Dict , lowerCAmelCase : List[str]=("train",) ): """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) for split in splits: SCREAMING_SNAKE_CASE_ : int = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def _snake_case ( lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Union[str, Any] = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE_ : List[Any] = TextDatasetReader({"train": text_path} , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase ).read() _check_text_datasetdict(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def _snake_case ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = tmp_path / "cache" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" SCREAMING_SNAKE_CASE_ : Tuple = {"text": "string"} SCREAMING_SNAKE_CASE_ : Any = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE_ : Dict = ( Features({feature: Value(lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE_ : str = TextDatasetReader({"train": text_path} , features=lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_datasetdict(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def _snake_case ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any , lowerCAmelCase : Dict ): """simple docstring""" if split: SCREAMING_SNAKE_CASE_ : Optional[int] = {split: text_path} else: SCREAMING_SNAKE_CASE_ : List[Any] = "train" SCREAMING_SNAKE_CASE_ : Tuple = {"train": text_path, "test": text_path} SCREAMING_SNAKE_CASE_ : Any = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : List[str] = {"text": "string"} SCREAMING_SNAKE_CASE_ : str = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_datasetdict(lowerCAmelCase , lowerCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
18
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) __lowerCamelCase : Union[str, Any] = {'''configuration_beit''': ['''BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BeitConfig''', '''BeitOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[Any] = ['''BeitFeatureExtractor'''] __lowerCamelCase : Union[str, Any] = ['''BeitImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : int = [ '''BEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BeitForImageClassification''', '''BeitForMaskedImageModeling''', '''BeitForSemanticSegmentation''', '''BeitModel''', '''BeitPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[Any] = [ '''FlaxBeitForImageClassification''', '''FlaxBeitForMaskedImageModeling''', '''FlaxBeitModel''', '''FlaxBeitPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys __lowerCamelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
18
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def _snake_case ( lowerCAmelCase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class a__ ( A__ , A__ , A__ , unittest.TestCase ): A = StableDiffusionLatentUpscalePipeline A = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'height', 'width', 'cross_attention_kwargs', 'negative_prompt_embeds', 'prompt_embeds', } A = PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'} A = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A = frozenset([] ) A = True @property def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = 1 SCREAMING_SNAKE_CASE_ : Optional[int] = 4 SCREAMING_SNAKE_CASE_ : Optional[int] = (16, 16) SCREAMING_SNAKE_CASE_ : Dict = floats_tensor((batch_size, num_channels) + sizes,rng=random.Random(0 ) ).to(_A ) return image def __UpperCamelCase ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : str = UNetaDConditionModel( act_fn="gelu",attention_head_dim=8,norm_num_groups=_A,block_out_channels=[32, 32, 64, 64],time_cond_proj_dim=160,conv_in_kernel=1,conv_out_kernel=1,cross_attention_dim=32,down_block_types=( "KDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", ),in_channels=8,mid_block_type=_A,only_cross_attention=_A,out_channels=5,resnet_time_scale_shift="scale_shift",time_embedding_type="fourier",timestep_post_act="gelu",up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D"),) SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 32, 64, 64],in_channels=3,out_channels=3,down_block_types=[ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", ],up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],latent_channels=4,) SCREAMING_SNAKE_CASE_ : int = EulerDiscreteScheduler(prediction_type="sample" ) SCREAMING_SNAKE_CASE_ : List[Any] = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1000,hidden_act="quick_gelu",projection_dim=512,) SCREAMING_SNAKE_CASE_ : Tuple = CLIPTextModel(_A ) SCREAMING_SNAKE_CASE_ : int = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = { "unet": model.eval(), "vae": vae.eval(), "scheduler": scheduler, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def __UpperCamelCase ( self : List[Any],_A : int,_A : Tuple=0 ): """simple docstring""" if str(_A ).startswith("mps" ): SCREAMING_SNAKE_CASE_ : Optional[int] = torch.manual_seed(_A ) else: SCREAMING_SNAKE_CASE_ : Dict = torch.Generator(device=_A ).manual_seed(_A ) SCREAMING_SNAKE_CASE_ : Tuple = { "prompt": "A painting of a squirrel eating a burger", "image": self.dummy_image.cpu(), "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = "cpu" SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : List[str] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ : Tuple = self.get_dummy_inputs(_A ) SCREAMING_SNAKE_CASE_ : Dict = pipe(**_A ).images SCREAMING_SNAKE_CASE_ : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape,(1, 256, 256, 3) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) SCREAMING_SNAKE_CASE_ : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A,1E-3 ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def __UpperCamelCase ( self : int ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" super().test_save_load_local(expected_max_difference=3E-3 ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3E-3 ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = [ "DDIMScheduler", "DDPMScheduler", "PNDMScheduler", "HeunDiscreteScheduler", "EulerAncestralDiscreteScheduler", "KDPM2DiscreteScheduler", "KDPM2AncestralDiscreteScheduler", "DPMSolverSDEScheduler", ] SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : Any = self.pipeline_class(**_A ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ : Any = self.get_dummy_inputs(_A ) SCREAMING_SNAKE_CASE_ : Optional[Any] = 2 SCREAMING_SNAKE_CASE_ : Optional[int] = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue SCREAMING_SNAKE_CASE_ : Tuple = getattr(_A,scheduler_enum.name ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = scheduler_cls.from_config(pipe.scheduler.config ) SCREAMING_SNAKE_CASE_ : Optional[int] = pipe(**_A )[0] outputs.append(_A ) assert check_same_shape(_A ) @require_torch_gpu @slow class a__ ( unittest.TestCase ): def __UpperCamelCase ( self : Dict ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = torch.manual_seed(33 ) SCREAMING_SNAKE_CASE_ : Optional[int] = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4",torch_dtype=torch.floataa ) pipe.to("cuda" ) SCREAMING_SNAKE_CASE_ : List[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler",torch_dtype=torch.floataa ) upscaler.to("cuda" ) SCREAMING_SNAKE_CASE_ : Tuple = "a photo of an astronaut high resolution, unreal engine, ultra realistic" SCREAMING_SNAKE_CASE_ : str = pipe(_A,generator=_A,output_type="latent" ).images SCREAMING_SNAKE_CASE_ : Optional[Any] = upscaler( prompt=_A,image=_A,num_inference_steps=20,guidance_scale=0,generator=_A,output_type="np",).images[0] SCREAMING_SNAKE_CASE_ : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy" ) assert np.abs((expected_image - image).mean() ) < 5E-2 def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = torch.manual_seed(33 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler",torch_dtype=torch.floataa ) upscaler.to("cuda" ) SCREAMING_SNAKE_CASE_ : Any = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas" SCREAMING_SNAKE_CASE_ : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png" ) SCREAMING_SNAKE_CASE_ : str = upscaler( prompt=_A,image=_A,num_inference_steps=20,guidance_scale=0,generator=_A,output_type="np",).images[0] SCREAMING_SNAKE_CASE_ : Any = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy" ) assert np.abs((expected_image - image).max() ) < 5E-2
18
1
def _snake_case ( lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = len(lowerCAmelCase ) for i in range(length - 1 ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = i for k in range(i + 1 , lowerCAmelCase ): if collection[k] < collection[least]: SCREAMING_SNAKE_CASE_ : Optional[int] = k if least != i: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = (collection[i], collection[least]) return collection if __name__ == "__main__": __lowerCamelCase : Tuple = input('''Enter numbers separated by a comma:\n''').strip() __lowerCamelCase : Union[str, Any] = [int(item) for item in user_input.split(''',''')] print(selection_sort(unsorted))
18
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging __lowerCamelCase : Optional[int] = logging.get_logger(__name__) __lowerCamelCase : Tuple = { '''deepmind/language-perceiver''': '''https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json''', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class a__ ( A__ ): A = 'perceiver' def __init__( self : List[Any],_A : Tuple=256,_A : str=1280,_A : List[Any]=768,_A : Union[str, Any]=1,_A : Union[str, Any]=26,_A : List[str]=8,_A : List[Any]=8,_A : List[Any]=None,_A : List[Any]=None,_A : Union[str, Any]="kv",_A : Any=1,_A : int=1,_A : Dict="gelu",_A : Any=0.1,_A : int=0.02,_A : int=1E-12,_A : Any=True,_A : Optional[Any]=262,_A : List[Any]=2048,_A : str=56,_A : Optional[int]=[368, 496],_A : Dict=16,_A : Tuple=1920,_A : List[Any]=16,_A : str=[1, 16, 224, 224],**_A : Optional[Any],): """simple docstring""" super().__init__(**_A ) SCREAMING_SNAKE_CASE_ : Dict = num_latents SCREAMING_SNAKE_CASE_ : List[Any] = d_latents SCREAMING_SNAKE_CASE_ : Union[str, Any] = d_model SCREAMING_SNAKE_CASE_ : Optional[int] = num_blocks SCREAMING_SNAKE_CASE_ : List[Any] = num_self_attends_per_block SCREAMING_SNAKE_CASE_ : Tuple = num_self_attention_heads SCREAMING_SNAKE_CASE_ : List[str] = num_cross_attention_heads SCREAMING_SNAKE_CASE_ : List[Any] = qk_channels SCREAMING_SNAKE_CASE_ : Any = v_channels SCREAMING_SNAKE_CASE_ : Any = cross_attention_shape_for_attention SCREAMING_SNAKE_CASE_ : List[str] = self_attention_widening_factor SCREAMING_SNAKE_CASE_ : Any = cross_attention_widening_factor SCREAMING_SNAKE_CASE_ : List[Any] = hidden_act SCREAMING_SNAKE_CASE_ : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Any = initializer_range SCREAMING_SNAKE_CASE_ : List[Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : Tuple = use_query_residual # masked language modeling attributes SCREAMING_SNAKE_CASE_ : List[str] = vocab_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = max_position_embeddings # image classification attributes SCREAMING_SNAKE_CASE_ : Dict = image_size # flow attributes SCREAMING_SNAKE_CASE_ : List[Any] = train_size # multimodal autoencoding attributes SCREAMING_SNAKE_CASE_ : str = num_frames SCREAMING_SNAKE_CASE_ : Any = audio_samples_per_frame SCREAMING_SNAKE_CASE_ : Tuple = samples_per_patch SCREAMING_SNAKE_CASE_ : Optional[Any] = output_shape class a__ ( A__ ): @property def __UpperCamelCase ( self : List[str] ): """simple docstring""" if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ : List[str] = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE_ : str = {0: "batch", 1: "sequence"} return OrderedDict( [ ("inputs", dynamic_axis), ("attention_mask", dynamic_axis), ] ) @property def __UpperCamelCase ( self : List[Any] ): """simple docstring""" return 1E-4 def __UpperCamelCase ( self : List[str],_A : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"],_A : int = -1,_A : int = -1,_A : int = -1,_A : bool = False,_A : Optional[TensorType] = None,_A : int = 3,_A : int = 40,_A : int = 40,): """simple docstring""" if isinstance(_A,_A ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ : Tuple = compute_effective_axis_dimension( _A,fixed_dimension=OnnxConfig.default_fixed_batch,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ : Tuple = preprocessor.num_special_tokens_to_add(_A ) SCREAMING_SNAKE_CASE_ : Any = compute_effective_axis_dimension( _A,fixed_dimension=OnnxConfig.default_fixed_sequence,num_token_to_add=_A ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE_ : Optional[Any] = [" ".join(["a"] ) * seq_length] * batch_size SCREAMING_SNAKE_CASE_ : str = dict(preprocessor(_A,return_tensors=_A ) ) SCREAMING_SNAKE_CASE_ : List[str] = inputs.pop("input_ids" ) return inputs elif isinstance(_A,_A ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ : Any = compute_effective_axis_dimension(_A,fixed_dimension=OnnxConfig.default_fixed_batch ) SCREAMING_SNAKE_CASE_ : Optional[int] = self._generate_dummy_images(_A,_A,_A,_A ) SCREAMING_SNAKE_CASE_ : Any = dict(preprocessor(images=_A,return_tensors=_A ) ) SCREAMING_SNAKE_CASE_ : Any = inputs.pop("pixel_values" ) return inputs else: raise ValueError( "Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor." )
18
1
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _snake_case ( lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } # BLUE scores as follows: # "pair": [fairseq, transformers] SCREAMING_SNAKE_CASE_ : Optional[int] = { "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], } SCREAMING_SNAKE_CASE_ : List[str] = f'{src_lang}-{tgt_lang}' SCREAMING_SNAKE_CASE_ : List[Any] = f'\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "facebook/wmt19-{src_lang}-{tgt_lang}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR\'s WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n' os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = os.path.join(lowerCAmelCase , "README.md" ) print(f'Generating {path}' ) with open(lowerCAmelCase , "w" , encoding="utf-8" ) as f: f.write(lowerCAmelCase ) # make sure we are under the root of the project __lowerCamelCase : Any = Path(__file__).resolve().parent.parent.parent __lowerCamelCase : Optional[Any] = repo_dir / '''model_cards''' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : int = model_name.split('''-''') __lowerCamelCase : str = model_cards_dir / '''facebook''' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
18
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class a__ ( yaml.SafeLoader ): def __UpperCamelCase ( self : str,_A : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = [self.constructed_objects[key_node] for key_node, _ in node.value] SCREAMING_SNAKE_CASE_ : List[str] = [tuple(_A ) if isinstance(_A,_A ) else key for key in keys] SCREAMING_SNAKE_CASE_ : Optional[int] = Counter(_A ) SCREAMING_SNAKE_CASE_ : Tuple = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F'Got duplicate yaml keys: {duplicate_keys}' ) def __UpperCamelCase ( self : Tuple,_A : Dict,_A : List[Any]=False ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = super().construct_mapping(_A,deep=_A ) self._check_no_duplicates_on_constructed_node(_A ) return mapping def _snake_case ( lowerCAmelCase : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: SCREAMING_SNAKE_CASE_ : List[Any] = full_content[1:].index("---" ) + 1 SCREAMING_SNAKE_CASE_ : int = "\n".join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(lowerCAmelCase ) class a__ ( A__ ): # class attributes A = {'train_eval_index'} # train-eval-index in the YAML metadata @classmethod def __UpperCamelCase ( cls : Any,_A : Path ): """simple docstring""" with open(_A,encoding="utf-8" ) as readme_file: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(_A ) else: return cls() def __UpperCamelCase ( self : Dict,_A : Path ): """simple docstring""" if path.exists(): with open(_A,encoding="utf-8" ) as readme_file: SCREAMING_SNAKE_CASE_ : int = readme_file.read() else: SCREAMING_SNAKE_CASE_ : Any = None SCREAMING_SNAKE_CASE_ : int = self._to_readme(_A ) with open(_A,"w",encoding="utf-8" ) as readme_file: readme_file.write(_A ) def __UpperCamelCase ( self : Optional[int],_A : Optional[str] = None ): """simple docstring""" if readme_content is not None: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = _split_yaml_from_readme(_A ) SCREAMING_SNAKE_CASE_ : Tuple = "---\n" + self.to_yaml_string() + "---\n" + content else: SCREAMING_SNAKE_CASE_ : Dict = "---\n" + self.to_yaml_string() + "---\n" return full_content @classmethod def __UpperCamelCase ( cls : Dict,_A : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = yaml.load(_A,Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields SCREAMING_SNAKE_CASE_ : Any = { (key.replace("-","_" ) if key.replace("-","_" ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**_A ) def __UpperCamelCase ( self : Dict ): """simple docstring""" return yaml.safe_dump( { (key.replace("_","-" ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() },sort_keys=_A,allow_unicode=_A,encoding="utf-8",).decode("utf-8" ) __lowerCamelCase : List[Any] = { '''image-classification''': [], '''translation''': [], '''image-segmentation''': [], '''fill-mask''': [], '''automatic-speech-recognition''': [], '''token-classification''': [], '''sentence-similarity''': [], '''audio-classification''': [], '''question-answering''': [], '''summarization''': [], '''zero-shot-classification''': [], '''table-to-text''': [], '''feature-extraction''': [], '''other''': [], '''multiple-choice''': [], '''text-classification''': [], '''text-to-image''': [], '''text2text-generation''': [], '''zero-shot-image-classification''': [], '''tabular-classification''': [], '''tabular-regression''': [], '''image-to-image''': [], '''tabular-to-text''': [], '''unconditional-image-generation''': [], '''text-retrieval''': [], '''text-to-speech''': [], '''object-detection''': [], '''audio-to-audio''': [], '''text-generation''': [], '''conversational''': [], '''table-question-answering''': [], '''visual-question-answering''': [], '''image-to-text''': [], '''reinforcement-learning''': [], '''voice-activity-detection''': [], '''time-series-forecasting''': [], '''document-question-answering''': [], } if __name__ == "__main__": from argparse import ArgumentParser __lowerCamelCase : List[Any] = ArgumentParser(usage='''Validate the yaml metadata block of a README.md file.''') ap.add_argument('''readme_filepath''') __lowerCamelCase : Dict = ap.parse_args() __lowerCamelCase : List[Any] = Path(args.readme_filepath) __lowerCamelCase : Optional[int] = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
18
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : List[Any] = logging.get_logger(__name__) __lowerCamelCase : List[str] = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class a__ ( A__ ): A = 'rwkv' A = {'max_position_embeddings': 'context_length'} def __init__( self : List[Any],_A : int=5_0277,_A : Any=1024,_A : List[str]=4096,_A : Union[str, Any]=32,_A : List[str]=None,_A : List[str]=None,_A : Optional[int]=1E-5,_A : Any=0,_A : Any=0,_A : Any=6,_A : Any=False,_A : Any=True,**_A : Optional[Any],): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = vocab_size SCREAMING_SNAKE_CASE_ : List[Any] = context_length SCREAMING_SNAKE_CASE_ : int = hidden_size SCREAMING_SNAKE_CASE_ : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : str = attention_hidden_size if attention_hidden_size is not None else hidden_size SCREAMING_SNAKE_CASE_ : str = intermediate_size if intermediate_size is not None else 4 * hidden_size SCREAMING_SNAKE_CASE_ : Tuple = layer_norm_epsilon SCREAMING_SNAKE_CASE_ : Optional[Any] = rescale_every SCREAMING_SNAKE_CASE_ : str = use_cache SCREAMING_SNAKE_CASE_ : Any = bos_token_id SCREAMING_SNAKE_CASE_ : int = eos_token_id super().__init__( tie_word_embeddings=_A,bos_token_id=_A,eos_token_id=_A,**_A )
18
from __future__ import annotations from math import pi, sqrt def _snake_case ( lowerCAmelCase : float , lowerCAmelCase : float ): """simple docstring""" if inductance <= 0: raise ValueError("Inductance cannot be 0 or negative" ) elif capacitance <= 0: raise ValueError("Capacitance cannot be 0 or negative" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
18
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=A__ ) class a__ ( A__ ): A = field(default='image-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) A = Features({'image': Image()} ) A = Features({'labels': ClassLabel} ) A = "image" A = "labels" def __UpperCamelCase ( self : Any,_A : Optional[Any] ): """simple docstring""" if self.label_column not in features: raise ValueError(F'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column],_A ): raise ValueError(F'Column {self.label_column} is not a ClassLabel.' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = copy.deepcopy(self ) SCREAMING_SNAKE_CASE_ : Tuple = self.label_schema.copy() SCREAMING_SNAKE_CASE_ : int = features[self.label_column] SCREAMING_SNAKE_CASE_ : List[Any] = label_schema return task_template @property def __UpperCamelCase ( self : List[str] ): """simple docstring""" return { self.image_column: "image", self.label_column: "labels", }
18
def _snake_case ( lowerCAmelCase : list ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = len(lowerCAmelCase ) for i in range(1 , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : int = collection[i] SCREAMING_SNAKE_CASE_ : Any = 0 SCREAMING_SNAKE_CASE_ : Tuple = i - 1 while low <= high: SCREAMING_SNAKE_CASE_ : int = (low + high) // 2 if val < collection[mid]: SCREAMING_SNAKE_CASE_ : Optional[Any] = mid - 1 else: SCREAMING_SNAKE_CASE_ : Tuple = mid + 1 for j in range(lowerCAmelCase , lowerCAmelCase , -1 ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = collection[j - 1] SCREAMING_SNAKE_CASE_ : int = val return collection if __name__ == "__main__": __lowerCamelCase : Dict = input('''Enter numbers separated by a comma:\n''').strip() __lowerCamelCase : List[str] = [int(item) for item in user_input.split(''',''')] print(binary_insertion_sort(unsorted))
18
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=lowerCAmelCase ) env_command_parser(subparsers=lowerCAmelCase ) launch_command_parser(subparsers=lowerCAmelCase ) tpu_command_parser(subparsers=lowerCAmelCase ) test_command_parser(subparsers=lowerCAmelCase ) # Let's go SCREAMING_SNAKE_CASE_ : Dict = parser.parse_args() if not hasattr(lowerCAmelCase , "func" ): parser.print_help() exit(1 ) # Run args.func(lowerCAmelCase ) if __name__ == "__main__": main()
18
from collections.abc import Sequence from queue import Queue class a__ : def __init__( self : int,_A : List[Any],_A : Optional[Any],_A : Optional[int],_A : int=None,_A : List[str]=None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = start SCREAMING_SNAKE_CASE_ : List[str] = end SCREAMING_SNAKE_CASE_ : Tuple = val SCREAMING_SNAKE_CASE_ : List[str] = (start + end) // 2 SCREAMING_SNAKE_CASE_ : Optional[int] = left SCREAMING_SNAKE_CASE_ : str = right def __repr__( self : Tuple ): """simple docstring""" return F'SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})' class a__ : def __init__( self : Any,_A : Sequence,_A : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = collection SCREAMING_SNAKE_CASE_ : Optional[int] = function if self.collection: SCREAMING_SNAKE_CASE_ : List[str] = self._build_tree(0,len(_A ) - 1 ) def __UpperCamelCase ( self : int,_A : Any,_A : List[Any] ): """simple docstring""" self._update_tree(self.root,_A,_A ) def __UpperCamelCase ( self : str,_A : Any,_A : List[Any] ): """simple docstring""" return self._query_range(self.root,_A,_A ) def __UpperCamelCase ( self : Any,_A : Optional[int],_A : int ): """simple docstring""" if start == end: return SegmentTreeNode(_A,_A,self.collection[start] ) SCREAMING_SNAKE_CASE_ : List[Any] = (start + end) // 2 SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._build_tree(_A,_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = self._build_tree(mid + 1,_A ) return SegmentTreeNode(_A,_A,self.fn(left.val,right.val ),_A,_A ) def __UpperCamelCase ( self : int,_A : int,_A : Tuple,_A : Dict ): """simple docstring""" if node.start == i and node.end == i: SCREAMING_SNAKE_CASE_ : Union[str, Any] = val return if i <= node.mid: self._update_tree(node.left,_A,_A ) else: self._update_tree(node.right,_A,_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.fn(node.left.val,node.right.val ) def __UpperCamelCase ( self : str,_A : List[str],_A : Optional[int],_A : Optional[Any] ): """simple docstring""" if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left,_A,_A ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left,_A,node.mid ),self._query_range(node.right,node.mid + 1,_A ),) else: # range in right child tree return self._query_range(node.right,_A,_A ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" if self.root is not None: SCREAMING_SNAKE_CASE_ : int = Queue() queue.put(self.root ) while not queue.empty(): SCREAMING_SNAKE_CASE_ : Tuple = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('''*''' * 50) __lowerCamelCase : int = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
18
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class a__ ( unittest.TestCase ): def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ : Optional[int] = BlipImageProcessor() SCREAMING_SNAKE_CASE_ : Tuple = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = BlipProcessor(_A,_A ) processor.save_pretrained(self.tmpdirname ) def __UpperCamelCase ( self : Dict,**_A : str ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname,**_A ).tokenizer def __UpperCamelCase ( self : Any,**_A : int ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname,**_A ).image_processor def __UpperCamelCase ( self : int ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = [np.random.randint(255,size=(3, 30, 400),dtype=np.uinta )] SCREAMING_SNAKE_CASE_ : List[Any] = [Image.fromarray(np.moveaxis(_A,0,-1 ) ) for x in image_inputs] return image_inputs def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = BlipProcessor(tokenizer=self.get_tokenizer(),image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_tokenizer(bos_token="(BOS)",eos_token="(EOS)" ) SCREAMING_SNAKE_CASE_ : Dict = self.get_image_processor(do_normalize=_A,padding_value=1.0 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = BlipProcessor.from_pretrained( self.tmpdirname,bos_token="(BOS)",eos_token="(EOS)",do_normalize=_A,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(),tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer,_A ) self.assertEqual(processor.image_processor.to_json_string(),image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor,_A ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : List[str] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : List[Any] = BlipProcessor(tokenizer=_A,image_processor=_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : Union[str, Any] = image_processor(_A,return_tensors="np" ) SCREAMING_SNAKE_CASE_ : Tuple = processor(images=_A,return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(),input_processor[key].sum(),delta=1E-2 ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.get_image_processor() SCREAMING_SNAKE_CASE_ : str = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : List[str] = BlipProcessor(tokenizer=_A,image_processor=_A ) SCREAMING_SNAKE_CASE_ : List[str] = "lower newer" SCREAMING_SNAKE_CASE_ : int = processor(text=_A ) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer(_A,return_token_type_ids=_A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key],encoded_processor[key] ) def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : str = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : str = BlipProcessor(tokenizer=_A,image_processor=_A ) SCREAMING_SNAKE_CASE_ : Tuple = "lower newer" SCREAMING_SNAKE_CASE_ : Optional[int] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : Any = processor(text=_A,images=_A ) self.assertListEqual(list(inputs.keys() ),["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : str = BlipProcessor(tokenizer=_A,image_processor=_A ) SCREAMING_SNAKE_CASE_ : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE_ : List[str] = processor.batch_decode(_A ) SCREAMING_SNAKE_CASE_ : Tuple = tokenizer.batch_decode(_A ) self.assertListEqual(_A,_A ) def __UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : int = BlipProcessor(tokenizer=_A,image_processor=_A ) SCREAMING_SNAKE_CASE_ : str = "lower newer" SCREAMING_SNAKE_CASE_ : Tuple = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : Optional[int] = processor(text=_A,images=_A ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ),["pixel_values", "input_ids", "attention_mask"] )
18
def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : int ): """simple docstring""" while b: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = b, a % b return a def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : int ): """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(lowerCAmelCase , a % b ) def _snake_case ( ): """simple docstring""" print(f'euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}' ) print(f'euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}' ) print(f'euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}' ) print(f'euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}' ) print(f'euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}' ) print(f'euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}' ) print(f'euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}' ) print(f'euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}' ) if __name__ == "__main__": main()
18
1
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a__ : def __init__( self : Any,_A : Union[str, Any],_A : Tuple=13,_A : List[str]=30,_A : List[Any]=2,_A : Optional[int]=3,_A : str=True,_A : Optional[Any]=True,_A : Optional[int]=32,_A : int=2,_A : List[Any]=4,_A : str=37,_A : Optional[Any]="gelu",_A : List[str]=0.1,_A : Dict=0.1,_A : int=10,_A : List[Any]=0.02,_A : int=3,_A : Optional[Any]=None,): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = parent SCREAMING_SNAKE_CASE_ : str = batch_size SCREAMING_SNAKE_CASE_ : Any = image_size SCREAMING_SNAKE_CASE_ : Optional[int] = patch_size SCREAMING_SNAKE_CASE_ : Optional[int] = num_channels SCREAMING_SNAKE_CASE_ : Any = is_training SCREAMING_SNAKE_CASE_ : Optional[Any] = use_labels SCREAMING_SNAKE_CASE_ : str = hidden_size SCREAMING_SNAKE_CASE_ : Optional[Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Tuple = num_attention_heads SCREAMING_SNAKE_CASE_ : List[Any] = intermediate_size SCREAMING_SNAKE_CASE_ : Dict = hidden_act SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] = type_sequence_label_size SCREAMING_SNAKE_CASE_ : str = initializer_range SCREAMING_SNAKE_CASE_ : Optional[int] = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE_ : str = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE_ : int = num_patches + 1 def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ : Tuple = None if self.use_labels: SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size],self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : Tuple ): """simple docstring""" return ViTConfig( image_size=self.image_size,patch_size=self.patch_size,num_channels=self.num_channels,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,is_decoder=_A,initializer_range=self.initializer_range,) def __UpperCamelCase ( self : Union[str, Any],_A : Optional[int],_A : List[Any],_A : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = TFViTModel(config=_A ) SCREAMING_SNAKE_CASE_ : List[Any] = model(_A,training=_A ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. SCREAMING_SNAKE_CASE_ : List[Any] = self.image_size // 2 SCREAMING_SNAKE_CASE_ : Tuple = pixel_values[:, :, :image_size, :image_size] SCREAMING_SNAKE_CASE_ : Optional[int] = model(_A,interpolate_pos_encoding=_A,training=_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Optional[Any],_A : str,_A : Optional[int],_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = self.type_sequence_label_size SCREAMING_SNAKE_CASE_ : List[str] = TFViTForImageClassification(_A ) SCREAMING_SNAKE_CASE_ : List[str] = model(_A,labels=_A,training=_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. SCREAMING_SNAKE_CASE_ : List[str] = self.image_size // 2 SCREAMING_SNAKE_CASE_ : Tuple = pixel_values[:, :, :image_size, :image_size] SCREAMING_SNAKE_CASE_ : Optional[Any] = model(_A,interpolate_pos_encoding=_A,training=_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE_ : List[str] = 1 SCREAMING_SNAKE_CASE_ : List[Any] = TFViTForImageClassification(_A ) SCREAMING_SNAKE_CASE_ : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ : Any = model(_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = config_and_inputs SCREAMING_SNAKE_CASE_ : int = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class a__ ( A__ , A__ , unittest.TestCase ): A = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () A = ( {'feature-extraction': TFViTModel, 'image-classification': TFViTForImageClassification} if is_tf_available() else {} ) A = False A = False A = False def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = TFViTModelTester(self ) SCREAMING_SNAKE_CASE_ : Tuple = ConfigTester(self,config_class=_A,has_text_modality=_A,hidden_size=37 ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def __UpperCamelCase ( self : Dict ): """simple docstring""" pass @unittest.skip(reason="ViT does not use inputs_embeds" ) def __UpperCamelCase ( self : int ): """simple docstring""" pass def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Union[str, Any] = model_class(_A ) self.assertIsInstance(model.get_input_embeddings(),(tf.keras.layers.Layer) ) SCREAMING_SNAKE_CASE_ : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A,tf.keras.layers.Layer ) ) def __UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Tuple = model_class(_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ : Optional[Any] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1],_A ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = TFViTModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(_A ) def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class a__ ( unittest.TestCase ): @cached_property def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def __UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.default_image_processor SCREAMING_SNAKE_CASE_ : Tuple = prepare_img() SCREAMING_SNAKE_CASE_ : Dict = image_processor(images=_A,return_tensors="tf" ) # forward pass SCREAMING_SNAKE_CASE_ : Dict = model(**_A ) # verify the logits SCREAMING_SNAKE_CASE_ : int = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape,_A ) SCREAMING_SNAKE_CASE_ : int = tf.constant([-0.2744, 0.8215, -0.0836] ) tf.debugging.assert_near(outputs.logits[0, :3],_A,atol=1E-4 )
18
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCamelCase : Dict = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[Any] = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys __lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
18
1
import copy import random from transformers import CLIPTokenizer class a__ ( A__ ): def __init__( self : Tuple,*_A : int,**_A : str ): """simple docstring""" super().__init__(*_A,**_A ) SCREAMING_SNAKE_CASE_ : Any = {} def __UpperCamelCase ( self : int,_A : Tuple,*_A : Optional[int],**_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = super().add_tokens(_A,*_A,**_A ) if num_added_tokens == 0: raise ValueError( F'The tokenizer already contains the token {placeholder_token}. Please pass a different' " `placeholder_token` that is not already in the tokenizer." ) def __UpperCamelCase ( self : int,_A : Any,*_A : Union[str, Any],_A : Union[str, Any]=1,**_A : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = [] if num_vec_per_token == 1: self.try_adding_tokens(_A,*_A,**_A ) output.append(_A ) else: SCREAMING_SNAKE_CASE_ : int = [] for i in range(_A ): SCREAMING_SNAKE_CASE_ : Tuple = placeholder_token + F'_{i}' self.try_adding_tokens(_A,*_A,**_A ) output.append(_A ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F'The tokenizer already has placeholder token {token} that can get confused with' F' {placeholder_token}keep placeholder tokens independent' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = output def __UpperCamelCase ( self : Any,_A : List[Any],_A : str=False,_A : List[Any]=1.0 ): """simple docstring""" if isinstance(_A,_A ): SCREAMING_SNAKE_CASE_ : Dict = [] for i in range(len(_A ) ): output.append(self.replace_placeholder_tokens_in_text(text[i],vector_shuffle=_A ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: SCREAMING_SNAKE_CASE_ : str = self.token_map[placeholder_token] SCREAMING_SNAKE_CASE_ : Dict = tokens[: 1 + int(len(_A ) * prop_tokens_to_load )] if vector_shuffle: SCREAMING_SNAKE_CASE_ : List[str] = copy.copy(_A ) random.shuffle(_A ) SCREAMING_SNAKE_CASE_ : List[str] = text.replace(_A," ".join(_A ) ) return text def __call__( self : List[Any],_A : Any,*_A : List[str],_A : List[str]=False,_A : Dict=1.0,**_A : Dict ): """simple docstring""" return super().__call__( self.replace_placeholder_tokens_in_text( _A,vector_shuffle=_A,prop_tokens_to_load=_A ),*_A,**_A,) def __UpperCamelCase ( self : Any,_A : Tuple,*_A : Dict,_A : str=False,_A : List[str]=1.0,**_A : Union[str, Any] ): """simple docstring""" return super().encode( self.replace_placeholder_tokens_in_text( _A,vector_shuffle=_A,prop_tokens_to_load=_A ),*_A,**_A,)
18
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : Path , lowerCAmelCase : str = None , lowerCAmelCase : str = None , lowerCAmelCase : str = None , ): """simple docstring""" if config_name_or_path is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = "facebook/rag-token-base" if model_type == "rag_token" else "facebook/rag-sequence-base" if generator_tokenizer_name_or_path is None: SCREAMING_SNAKE_CASE_ : Dict = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = question_encoder_name_or_path SCREAMING_SNAKE_CASE_ : Union[str, Any] = RagTokenForGeneration if model_type == "rag_token" else RagSequenceForGeneration # Save model. SCREAMING_SNAKE_CASE_ : List[Any] = RagConfig.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = AutoConfig.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = AutoConfig.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = gen_config SCREAMING_SNAKE_CASE_ : Optional[Any] = question_encoder_config SCREAMING_SNAKE_CASE_ : Dict = model_class.from_pretrained_question_encoder_generator( lowerCAmelCase , lowerCAmelCase , config=lowerCAmelCase ) rag_model.save_pretrained(lowerCAmelCase ) # Sanity check. model_class.from_pretrained(lowerCAmelCase ) # Save tokenizers. SCREAMING_SNAKE_CASE_ : Optional[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase ) gen_tokenizer.save_pretrained(dest_dir / "generator_tokenizer/" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCAmelCase ) question_encoder_tokenizer.save_pretrained(dest_dir / "question_encoder_tokenizer/" ) if __name__ == "__main__": __lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( '''--model_type''', choices=['''rag_sequence''', '''rag_token'''], required=True, type=str, help='''RAG model type: rag_sequence, rag_token''', ) parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''') parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''') parser.add_argument( '''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier''' ) parser.add_argument( '''--generator_tokenizer_name_or_path''', type=str, help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''', ) parser.add_argument( '''--question_encoder_tokenizer_name_or_path''', type=str, help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''', ) parser.add_argument( '''--config_name_or_path''', type=str, help=( '''Identifier of the model config to use, if not provided, resolves to a base config for a given''' ''' ``model_type``''' ), ) __lowerCamelCase : str = parser.parse_args() __lowerCamelCase : int = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
18
1
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. __lowerCamelCase : Dict = 10 def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : list[int] , lowerCAmelCase : int ): """simple docstring""" for i in range(lowerCAmelCase , lowerCAmelCase ): if array[i] == target: return i return -1 def _snake_case ( lowerCAmelCase : list[int] , lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 SCREAMING_SNAKE_CASE_ : str = len(lowerCAmelCase ) while left <= right: if right - left < precision: return lin_search(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = (left + right) // 3 + 1 SCREAMING_SNAKE_CASE_ : Dict = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: SCREAMING_SNAKE_CASE_ : Dict = one_third - 1 elif array[two_third] < target: SCREAMING_SNAKE_CASE_ : Any = two_third + 1 else: SCREAMING_SNAKE_CASE_ : List[str] = one_third + 1 SCREAMING_SNAKE_CASE_ : int = two_third - 1 else: return -1 def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : list[int] , lowerCAmelCase : int ): """simple docstring""" if left < right: if right - left < precision: return lin_search(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : str = (left + right) // 3 + 1 SCREAMING_SNAKE_CASE_ : Dict = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(lowerCAmelCase , one_third - 1 , lowerCAmelCase , lowerCAmelCase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , lowerCAmelCase , lowerCAmelCase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() __lowerCamelCase : Optional[Any] = input('''Enter numbers separated by comma:\n''').strip() __lowerCamelCase : str = [int(item.strip()) for item in user_input.split(''',''')] assert collection == sorted(collection), f"List must be ordered.\n{collection}." __lowerCamelCase : str = int(input('''Enter the number to be found in the list:\n''').strip()) __lowerCamelCase : int = ite_ternary_search(collection, target) __lowerCamelCase : Tuple = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f'''Iterative search: {target} found at positions: {resulta}''') print(f'''Recursive search: {target} found at positions: {resulta}''') else: print('''Not found''')
18
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class a__ ( unittest.TestCase ): def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = { "task_specific_params": { "summarization": {"length_penalty": 1.0, "max_length": 128, "min_length": 12, "num_beams": 4}, "summarization_cnn": {"length_penalty": 2.0, "max_length": 142, "min_length": 56, "num_beams": 4}, "summarization_xsum": {"length_penalty": 1.0, "max_length": 62, "min_length": 11, "num_beams": 6}, } } SCREAMING_SNAKE_CASE_ : Any = { "task_specific_params.summarization.length_penalty": 1.0, "task_specific_params.summarization.max_length": 128, "task_specific_params.summarization.min_length": 12, "task_specific_params.summarization.num_beams": 4, "task_specific_params.summarization_cnn.length_penalty": 2.0, "task_specific_params.summarization_cnn.max_length": 142, "task_specific_params.summarization_cnn.min_length": 56, "task_specific_params.summarization_cnn.num_beams": 4, "task_specific_params.summarization_xsum.length_penalty": 1.0, "task_specific_params.summarization_xsum.max_length": 62, "task_specific_params.summarization_xsum.min_length": 11, "task_specific_params.summarization_xsum.num_beams": 6, } self.assertEqual(flatten_dict(_A ),_A ) def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = np.random.randn(3,4 ) self.assertTrue(np.allclose(transpose(_A ),x.transpose() ) ) SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4,5 ) self.assertTrue(np.allclose(transpose(_A,axes=(1, 2, 0) ),x.transpose((1, 2, 0) ) ) ) @require_torch def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Any = torch.tensor(_A ) self.assertTrue(np.allclose(transpose(_A ),transpose(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ : Dict = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor(_A ) self.assertTrue(np.allclose(transpose(_A,axes=(1, 2, 0) ),transpose(_A,axes=(1, 2, 0) ).numpy() ) ) @require_tf def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tf.constant(_A ) self.assertTrue(np.allclose(transpose(_A ),transpose(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ : List[str] = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.constant(_A ) self.assertTrue(np.allclose(transpose(_A,axes=(1, 2, 0) ),transpose(_A,axes=(1, 2, 0) ).numpy() ) ) @require_flax def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Tuple = jnp.array(_A ) self.assertTrue(np.allclose(transpose(_A ),np.asarray(transpose(_A ) ) ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : List[Any] = jnp.array(_A ) self.assertTrue(np.allclose(transpose(_A,axes=(1, 2, 0) ),np.asarray(transpose(_A,axes=(1, 2, 0) ) ) ) ) def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4 ) self.assertTrue(np.allclose(reshape(_A,(4, 3) ),np.reshape(_A,(4, 3) ) ) ) SCREAMING_SNAKE_CASE_ : Any = np.random.randn(3,4,5 ) self.assertTrue(np.allclose(reshape(_A,(12, 5) ),np.reshape(_A,(12, 5) ) ) ) @require_torch def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor(_A ) self.assertTrue(np.allclose(reshape(_A,(4, 3) ),reshape(_A,(4, 3) ).numpy() ) ) SCREAMING_SNAKE_CASE_ : Dict = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : int = torch.tensor(_A ) self.assertTrue(np.allclose(reshape(_A,(12, 5) ),reshape(_A,(12, 5) ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tf.constant(_A ) self.assertTrue(np.allclose(reshape(_A,(4, 3) ),reshape(_A,(4, 3) ).numpy() ) ) SCREAMING_SNAKE_CASE_ : int = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : Any = tf.constant(_A ) self.assertTrue(np.allclose(reshape(_A,(12, 5) ),reshape(_A,(12, 5) ).numpy() ) ) @require_flax def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : int = jnp.array(_A ) self.assertTrue(np.allclose(reshape(_A,(4, 3) ),np.asarray(reshape(_A,(4, 3) ) ) ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : Tuple = jnp.array(_A ) self.assertTrue(np.allclose(reshape(_A,(12, 5) ),np.asarray(reshape(_A,(12, 5) ) ) ) ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = np.random.randn(1,3,4 ) self.assertTrue(np.allclose(squeeze(_A ),np.squeeze(_A ) ) ) SCREAMING_SNAKE_CASE_ : Any = np.random.randn(1,4,1,5 ) self.assertTrue(np.allclose(squeeze(_A,axis=2 ),np.squeeze(_A,axis=2 ) ) ) @require_torch def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = np.random.randn(1,3,4 ) SCREAMING_SNAKE_CASE_ : Any = torch.tensor(_A ) self.assertTrue(np.allclose(squeeze(_A ),squeeze(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ : Any = np.random.randn(1,4,1,5 ) SCREAMING_SNAKE_CASE_ : Dict = torch.tensor(_A ) self.assertTrue(np.allclose(squeeze(_A,axis=2 ),squeeze(_A,axis=2 ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = np.random.randn(1,3,4 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.constant(_A ) self.assertTrue(np.allclose(squeeze(_A ),squeeze(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ : Any = np.random.randn(1,4,1,5 ) SCREAMING_SNAKE_CASE_ : Optional[int] = tf.constant(_A ) self.assertTrue(np.allclose(squeeze(_A,axis=2 ),squeeze(_A,axis=2 ).numpy() ) ) @require_flax def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.random.randn(1,3,4 ) SCREAMING_SNAKE_CASE_ : List[str] = jnp.array(_A ) self.assertTrue(np.allclose(squeeze(_A ),np.asarray(squeeze(_A ) ) ) ) SCREAMING_SNAKE_CASE_ : str = np.random.randn(1,4,1,5 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = jnp.array(_A ) self.assertTrue(np.allclose(squeeze(_A,axis=2 ),np.asarray(squeeze(_A,axis=2 ) ) ) ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4 ) self.assertTrue(np.allclose(expand_dims(_A,axis=1 ),np.expand_dims(_A,axis=1 ) ) ) @require_torch def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor(_A ) self.assertTrue(np.allclose(expand_dims(_A,axis=1 ),expand_dims(_A,axis=1 ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Optional[int] = tf.constant(_A ) self.assertTrue(np.allclose(expand_dims(_A,axis=1 ),expand_dims(_A,axis=1 ).numpy() ) ) @require_flax def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = jnp.array(_A ) self.assertTrue(np.allclose(expand_dims(_A,axis=1 ),np.asarray(expand_dims(_A,axis=1 ) ) ) )
18
1
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel __lowerCamelCase : int = { '''gwf-440k''': { '''url''': '''https://model-server.zqevans2.workers.dev/gwf-440k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 6_55_36, }, '''jmann-small-190k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 6_55_36, }, '''jmann-large-580k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 13_10_72, }, '''maestro-uncond-150k''': { '''url''': '''https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, '''unlocked-uncond-250k''': { '''url''': '''https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, '''honk-140k''': { '''url''': '''https://model-server.zqevans2.workers.dev/honk-140k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, } def _snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : str ): """simple docstring""" return torch.atana(lowerCAmelCase , lowerCAmelCase ) / math.pi * 2 def _snake_case ( lowerCAmelCase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = torch.sin(t * math.pi / 2 ) ** 2 SCREAMING_SNAKE_CASE_ : Optional[int] = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(lowerCAmelCase , lowerCAmelCase ) class a__ ( A__ ): pass class a__ ( nn.Module ): def __init__( self : Any,_A : List[Any] ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE_ : int = DiffusionAttnUnetaD(_A,n_attn_layers=4 ) SCREAMING_SNAKE_CASE_ : List[Any] = deepcopy(self.diffusion ) SCREAMING_SNAKE_CASE_ : int = torch.quasirandom.SobolEngine(1,scramble=_A ) def _snake_case ( lowerCAmelCase : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = MODELS_MAP[model_name]["url"] os.system(f'wget {url} ./' ) return f'./{model_name}.ckpt' __lowerCamelCase : List[Any] = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', } __lowerCamelCase : int = { '''8''': '''resnets.0''', '''9''': '''attentions.0''', '''10''': '''resnets.1''', '''11''': '''attentions.1''', '''12''': '''resnets.2''', '''13''': '''attentions.2''', } __lowerCamelCase : List[Any] = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', '''8''': '''resnets.3''', '''9''': '''attentions.3''', '''10''': '''resnets.4''', '''11''': '''attentions.4''', '''12''': '''resnets.5''', '''13''': '''attentions.5''', } __lowerCamelCase : Optional[int] = { '''0''': '''resnets.0''', '''1''': '''resnets.1''', '''2''': '''resnets.2''', '''4''': '''resnets.0''', '''5''': '''resnets.1''', '''6''': '''resnets.2''', } __lowerCamelCase : Tuple = { '''skip''': '''conv_skip''', '''main.0''': '''conv_1''', '''main.1''': '''group_norm_1''', '''main.3''': '''conv_2''', '''main.4''': '''group_norm_2''', } __lowerCamelCase : Any = { '''norm''': '''group_norm''', '''qkv_proj''': ['''query''', '''key''', '''value'''], '''out_proj''': ['''proj_attn'''], } def _snake_case ( lowerCAmelCase : Optional[Any] ): """simple docstring""" if name.startswith("skip" ): return name.replace("skip" , RES_CONV_MAP["skip"] ) # name has to be of format main.{digit} if not name.startswith("main." ): raise ValueError(f'ResConvBlock error with {name}' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def _snake_case ( lowerCAmelCase : Any ): """simple docstring""" for key, value in ATTN_MAP.items(): if name.startswith(lowerCAmelCase ) and not isinstance(lowerCAmelCase , lowerCAmelCase ): return name.replace(lowerCAmelCase , lowerCAmelCase ) elif name.startswith(lowerCAmelCase ): return [name.replace(lowerCAmelCase , lowerCAmelCase ) for v in value] raise ValueError(f'Attn error with {name}' ) def _snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : str=1_3 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = input_string if string.split("." )[0] == "timestep_embed": return string.replace("timestep_embed" , "time_proj" ) SCREAMING_SNAKE_CASE_ : Tuple = 0 if string.startswith("net.3." ): depth += 1 SCREAMING_SNAKE_CASE_ : Dict = string[6:] elif string.startswith("net." ): SCREAMING_SNAKE_CASE_ : Optional[Any] = string[4:] while string.startswith("main.7." ): depth += 1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = string[7:] if string.startswith("main." ): SCREAMING_SNAKE_CASE_ : Tuple = string[5:] # mid block if string[:2].isdigit(): SCREAMING_SNAKE_CASE_ : Any = string[:2] SCREAMING_SNAKE_CASE_ : Optional[int] = string[2:] else: SCREAMING_SNAKE_CASE_ : int = string[0] SCREAMING_SNAKE_CASE_ : Dict = string[1:] if depth == max_depth: SCREAMING_SNAKE_CASE_ : List[str] = MID_NUM_TO_LAYER[layer_num] SCREAMING_SNAKE_CASE_ : Tuple = "mid_block" elif depth > 0 and int(lowerCAmelCase ) < 7: SCREAMING_SNAKE_CASE_ : Dict = DOWN_NUM_TO_LAYER[layer_num] SCREAMING_SNAKE_CASE_ : Optional[Any] = f'down_blocks.{depth}' elif depth > 0 and int(lowerCAmelCase ) > 7: SCREAMING_SNAKE_CASE_ : List[Any] = UP_NUM_TO_LAYER[layer_num] SCREAMING_SNAKE_CASE_ : Union[str, Any] = f'up_blocks.{max_depth - depth - 1}' elif depth == 0: SCREAMING_SNAKE_CASE_ : Tuple = DEPTH_0_TO_LAYER[layer_num] SCREAMING_SNAKE_CASE_ : int = f'up_blocks.{max_depth - 1}' if int(lowerCAmelCase ) > 3 else "down_blocks.0" if not string_left.startswith("." ): raise ValueError(f'Naming error with {input_string} and string_left: {string_left}.' ) SCREAMING_SNAKE_CASE_ : List[str] = string_left[1:] if "resnets" in new_layer: SCREAMING_SNAKE_CASE_ : str = convert_resconv_naming(lowerCAmelCase ) elif "attentions" in new_layer: SCREAMING_SNAKE_CASE_ : str = convert_attn_naming(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = new_string_left if not isinstance(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : int = prefix + "." + new_layer + "." + string_left else: SCREAMING_SNAKE_CASE_ : List[str] = [prefix + "." + new_layer + "." + s for s in string_left] return new_string def _snake_case ( lowerCAmelCase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = {} for k, v in state_dict.items(): if k.endswith("kernel" ): # up- and downsample layers, don't have trainable weights continue SCREAMING_SNAKE_CASE_ : List[Any] = rename(lowerCAmelCase ) # check if we need to transform from Conv => Linear for attention if isinstance(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : List[str] = transform_conv_attns(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) else: SCREAMING_SNAKE_CASE_ : Dict = v return new_state_dict def _snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[int] ): """simple docstring""" if len(lowerCAmelCase ) == 1: if len(v.shape ) == 3: # weight SCREAMING_SNAKE_CASE_ : str = v[:, :, 0] else: # bias SCREAMING_SNAKE_CASE_ : Optional[int] = v else: # qkv matrices SCREAMING_SNAKE_CASE_ : List[Any] = v.shape[0] SCREAMING_SNAKE_CASE_ : Optional[Any] = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: SCREAMING_SNAKE_CASE_ : Union[str, Any] = v[i * single_shape : (i + 1) * single_shape, :, 0] else: SCREAMING_SNAKE_CASE_ : int = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def _snake_case ( lowerCAmelCase : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) SCREAMING_SNAKE_CASE_ : List[str] = args.model_path.split("/" )[-1].split("." )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), f'Make sure to provide one of the official model names {MODELS_MAP.keys()}' SCREAMING_SNAKE_CASE_ : str = download(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = MODELS_MAP[model_name]["sample_rate"] SCREAMING_SNAKE_CASE_ : List[Any] = MODELS_MAP[model_name]["sample_size"] SCREAMING_SNAKE_CASE_ : str = Object() SCREAMING_SNAKE_CASE_ : Any = sample_size SCREAMING_SNAKE_CASE_ : Dict = sample_rate SCREAMING_SNAKE_CASE_ : Any = 0 SCREAMING_SNAKE_CASE_ : Any = UNetaDModel(sample_size=lowerCAmelCase , sample_rate=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = diffusers_model.state_dict() SCREAMING_SNAKE_CASE_ : Optional[Any] = DiffusionUncond(lowerCAmelCase ) orig_model.load_state_dict(torch.load(args.model_path , map_location=lowerCAmelCase )["state_dict"] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = orig_model.diffusion_ema.eval() SCREAMING_SNAKE_CASE_ : Union[str, Any] = orig_model.state_dict() SCREAMING_SNAKE_CASE_ : int = rename_orig_weights(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) SCREAMING_SNAKE_CASE_ : Optional[int] = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(lowerCAmelCase ) == 0, f'Problem with {renamed_minus_diffusers}' assert all(k.endswith("kernel" ) for k in list(lowerCAmelCase ) ), f'Problem with {diffusers_minus_renamed}' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), f'Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}' if key == "time_proj.weight": SCREAMING_SNAKE_CASE_ : int = value.squeeze() SCREAMING_SNAKE_CASE_ : Optional[int] = value diffusers_model.load_state_dict(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = 1_0_0 SCREAMING_SNAKE_CASE_ : List[Any] = 3_3 SCREAMING_SNAKE_CASE_ : Union[str, Any] = IPNDMScheduler(num_train_timesteps=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.manual_seed(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = torch.randn([1, 2, config.sample_size] , generator=lowerCAmelCase ).to(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.linspace(1 , 0 , steps + 1 , device=lowerCAmelCase )[:-1] SCREAMING_SNAKE_CASE_ : Dict = get_crash_schedule(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = DanceDiffusionPipeline(unet=lowerCAmelCase , scheduler=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = torch.manual_seed(3_3 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = pipe(num_inference_steps=lowerCAmelCase , generator=lowerCAmelCase ).audios SCREAMING_SNAKE_CASE_ : Optional[int] = sampling.iplms_sample(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , {} ) SCREAMING_SNAKE_CASE_ : List[str] = generated.clamp(-1 , 1 ) SCREAMING_SNAKE_CASE_ : str = (generated - audio).abs().sum() SCREAMING_SNAKE_CASE_ : Dict = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print("Diff sum" , lowerCAmelCase ) print("Diff max" , lowerCAmelCase ) assert diff_max < 1E-3, f'Diff max: {diff_max} is too much :-/' print(f'Conversion for {model_name} successful!' ) if __name__ == "__main__": __lowerCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') __lowerCamelCase : Union[str, Any] = parser.parse_args() main(args)
18
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : Tuple = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} __lowerCamelCase : List[Any] = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } __lowerCamelCase : int = { '''allenai/longformer-base-4096''': 40_96, '''allenai/longformer-large-4096''': 40_96, '''allenai/longformer-large-4096-finetuned-triviaqa''': 40_96, '''allenai/longformer-base-4096-extra.pos.embd.only''': 40_96, '''allenai/longformer-large-4096-extra.pos.embd.only''': 40_96, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE_ : str = bs[:] SCREAMING_SNAKE_CASE_ : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCAmelCase ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE_ : List[str] = [chr(lowerCAmelCase ) for n in cs] return dict(zip(lowerCAmelCase , lowerCAmelCase ) ) def _snake_case ( lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = set() SCREAMING_SNAKE_CASE_ : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE_ : List[str] = char return pairs class a__ ( A__ ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = ['input_ids', 'attention_mask'] def __init__( self : Union[str, Any],_A : List[Any],_A : Tuple,_A : str="replace",_A : Optional[int]="<s>",_A : Dict="</s>",_A : Any="</s>",_A : Optional[Any]="<s>",_A : Union[str, Any]="<unk>",_A : int="<pad>",_A : Dict="<mask>",_A : int=False,**_A : Dict,): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else bos_token SCREAMING_SNAKE_CASE_ : Optional[int] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else eos_token SCREAMING_SNAKE_CASE_ : str = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else sep_token SCREAMING_SNAKE_CASE_ : Union[str, Any] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else cls_token SCREAMING_SNAKE_CASE_ : List[str] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else unk_token SCREAMING_SNAKE_CASE_ : Optional[Any] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_ : Dict = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else mask_token super().__init__( errors=_A,bos_token=_A,eos_token=_A,unk_token=_A,sep_token=_A,cls_token=_A,pad_token=_A,mask_token=_A,add_prefix_space=_A,**_A,) with open(_A,encoding="utf-8" ) as vocab_handle: SCREAMING_SNAKE_CASE_ : Tuple = json.load(_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE_ : Any = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE_ : Optional[Any] = bytes_to_unicode() SCREAMING_SNAKE_CASE_ : str = {v: k for k, v in self.byte_encoder.items()} with open(_A,encoding="utf-8" ) as merges_handle: SCREAMING_SNAKE_CASE_ : int = merges_handle.read().split("\n" )[1:-1] SCREAMING_SNAKE_CASE_ : List[str] = [tuple(merge.split() ) for merge in bpe_merges] SCREAMING_SNAKE_CASE_ : Optional[int] = dict(zip(_A,range(len(_A ) ) ) ) SCREAMING_SNAKE_CASE_ : Any = {} SCREAMING_SNAKE_CASE_ : List[str] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE_ : List[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def __UpperCamelCase ( self : List[str] ): """simple docstring""" return len(self.encoder ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" return dict(self.encoder,**self.added_tokens_encoder ) def __UpperCamelCase ( self : Any,_A : int ): """simple docstring""" if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE_ : Union[str, Any] = tuple(_A ) SCREAMING_SNAKE_CASE_ : str = get_pairs(_A ) if not pairs: return token while True: SCREAMING_SNAKE_CASE_ : Tuple = min(_A,key=lambda _A : self.bpe_ranks.get(_A,float("inf" ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = bigram SCREAMING_SNAKE_CASE_ : int = [] SCREAMING_SNAKE_CASE_ : Dict = 0 while i < len(_A ): try: SCREAMING_SNAKE_CASE_ : Tuple = word.index(_A,_A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE_ : str = j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE_ : Dict = tuple(_A ) SCREAMING_SNAKE_CASE_ : List[str] = new_word if len(_A ) == 1: break else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_pairs(_A ) SCREAMING_SNAKE_CASE_ : List[str] = " ".join(_A ) SCREAMING_SNAKE_CASE_ : Any = word return word def __UpperCamelCase ( self : Dict,_A : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = [] for token in re.findall(self.pat,_A ): SCREAMING_SNAKE_CASE_ : Any = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_A ).split(" " ) ) return bpe_tokens def __UpperCamelCase ( self : Optional[int],_A : str ): """simple docstring""" return self.encoder.get(_A,self.encoder.get(self.unk_token ) ) def __UpperCamelCase ( self : Tuple,_A : str ): """simple docstring""" return self.decoder.get(_A ) def __UpperCamelCase ( self : List[str],_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = "".join(_A ) SCREAMING_SNAKE_CASE_ : Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8",errors=self.errors ) return text def __UpperCamelCase ( self : List[Any],_A : str,_A : Optional[str] = None ): """simple docstring""" if not os.path.isdir(_A ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return SCREAMING_SNAKE_CASE_ : Tuple = os.path.join( _A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE_ : Any = os.path.join( _A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(_A,"w",encoding="utf-8" ) as f: f.write(json.dumps(self.encoder,indent=2,sort_keys=_A,ensure_ascii=_A ) + "\n" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 with open(_A,"w",encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items(),key=lambda _A : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' " Please check that the tokenizer is not corrupted!" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = token_index writer.write(" ".join(_A ) + "\n" ) index += 1 return vocab_file, merge_file def __UpperCamelCase ( self : Optional[Any],_A : List[int],_A : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_ : str = [self.cls_token_id] SCREAMING_SNAKE_CASE_ : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCamelCase ( self : str,_A : List[int],_A : Optional[List[int]] = None,_A : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A,token_ids_a=_A,already_has_special_tokens=_A ) if token_ids_a is None: return [1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) + [1] def __UpperCamelCase ( self : Any,_A : List[int],_A : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase ( self : Any,_A : Union[str, Any],_A : Any=False,**_A : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = kwargs.pop("add_prefix_space",self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_A ) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE_ : str = " " + text return (text, kwargs)
18
1
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __lowerCamelCase : Optional[int] = '''platform''' import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def _snake_case ( lowerCAmelCase : Any , lowerCAmelCase : str , lowerCAmelCase : int=None , lowerCAmelCase : str=None , lowerCAmelCase : Tuple=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Any=None , lowerCAmelCase : Union[str, Any]=None , ): """simple docstring""" if attention_mask is None: SCREAMING_SNAKE_CASE_ : int = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE_ : Optional[int] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: SCREAMING_SNAKE_CASE_ : List[str] = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE_ : List[str] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE_ : Tuple = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class a__ : def __init__( self : Optional[int],_A : str,_A : int=13,_A : Union[str, Any]=7,_A : List[Any]=True,_A : Optional[int]=False,_A : Tuple=99,_A : Optional[int]=16,_A : List[str]=2,_A : int=4,_A : Any=4,_A : Any="gelu",_A : Union[str, Any]=0.1,_A : List[Any]=0.1,_A : Union[str, Any]=32,_A : List[str]=2,_A : Tuple=1,_A : Optional[int]=0,_A : List[Any]=0.02,): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = parent SCREAMING_SNAKE_CASE_ : List[str] = batch_size SCREAMING_SNAKE_CASE_ : List[Any] = seq_length SCREAMING_SNAKE_CASE_ : Optional[Any] = is_training SCREAMING_SNAKE_CASE_ : int = use_labels SCREAMING_SNAKE_CASE_ : Optional[int] = vocab_size SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_size SCREAMING_SNAKE_CASE_ : Optional[Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : int = num_attention_heads SCREAMING_SNAKE_CASE_ : List[str] = intermediate_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = hidden_act SCREAMING_SNAKE_CASE_ : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE_ : Tuple = eos_token_id SCREAMING_SNAKE_CASE_ : int = pad_token_id SCREAMING_SNAKE_CASE_ : Any = bos_token_id SCREAMING_SNAKE_CASE_ : Union[str, Any] = initializer_range def __UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = np.clip(ids_tensor([self.batch_size, self.seq_length - 1],self.vocab_size ),3,self.vocab_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1),dtype=np.intaa )),-1 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = shift_tokens_right(_A,1,2 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = BlenderbotSmallConfig( vocab_size=self.vocab_size,d_model=self.hidden_size,encoder_layers=self.num_hidden_layers,decoder_layers=self.num_hidden_layers,encoder_attention_heads=self.num_attention_heads,decoder_attention_heads=self.num_attention_heads,encoder_ffn_dim=self.intermediate_size,decoder_ffn_dim=self.intermediate_size,dropout=self.hidden_dropout_prob,attention_dropout=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,eos_token_id=self.eos_token_id,bos_token_id=self.bos_token_id,pad_token_id=self.pad_token_id,initializer_range=self.initializer_range,use_cache=_A,) SCREAMING_SNAKE_CASE_ : List[Any] = prepare_blenderbot_inputs_dict(_A,_A,_A ) return config, inputs_dict def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = self.prepare_config_and_inputs() return config, inputs_dict def __UpperCamelCase ( self : List[Any],_A : Tuple,_A : Tuple,_A : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = 20 SCREAMING_SNAKE_CASE_ : Any = model_class_name(_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = model.encode(inputs_dict["input_ids"] ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) SCREAMING_SNAKE_CASE_ : int = model.init_cache(decoder_input_ids.shape[0],_A,_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length),dtype="i4" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :],(decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1),) SCREAMING_SNAKE_CASE_ : Dict = model.decode( decoder_input_ids[:, :-1],_A,decoder_attention_mask=_A,past_key_values=_A,decoder_position_ids=_A,) SCREAMING_SNAKE_CASE_ : Dict = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]],dtype="i4" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = model.decode( decoder_input_ids[:, -1:],_A,decoder_attention_mask=_A,past_key_values=outputs_cache.past_key_values,decoder_position_ids=_A,) SCREAMING_SNAKE_CASE_ : Optional[int] = model.decode(_A,_A ) SCREAMING_SNAKE_CASE_ : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3,msg=F'Max diff is {diff}' ) def __UpperCamelCase ( self : Union[str, Any],_A : int,_A : Tuple,_A : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = 20 SCREAMING_SNAKE_CASE_ : int = model_class_name(_A ) SCREAMING_SNAKE_CASE_ : List[str] = model.encode(inputs_dict["input_ids"] ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) SCREAMING_SNAKE_CASE_ : Dict = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ],axis=-1,) SCREAMING_SNAKE_CASE_ : Optional[int] = model.init_cache(decoder_input_ids.shape[0],_A,_A ) SCREAMING_SNAKE_CASE_ : Any = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :],(decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1),) SCREAMING_SNAKE_CASE_ : Dict = model.decode( decoder_input_ids[:, :-1],_A,decoder_attention_mask=_A,past_key_values=_A,decoder_position_ids=_A,) SCREAMING_SNAKE_CASE_ : str = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]],dtype="i4" ) SCREAMING_SNAKE_CASE_ : int = model.decode( decoder_input_ids[:, -1:],_A,past_key_values=outputs_cache.past_key_values,decoder_attention_mask=_A,decoder_position_ids=_A,) SCREAMING_SNAKE_CASE_ : Tuple = model.decode(_A,_A,decoder_attention_mask=_A ) SCREAMING_SNAKE_CASE_ : Optional[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3,msg=F'Max diff is {diff}' ) @require_flax class a__ ( unittest.TestCase ): A = 99 def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ],dtype=np.intaa,) SCREAMING_SNAKE_CASE_ : Any = input_ids.shape[0] SCREAMING_SNAKE_CASE_ : Dict = BlenderbotSmallConfig( vocab_size=self.vocab_size,d_model=24,encoder_layers=2,decoder_layers=2,encoder_attention_heads=2,decoder_attention_heads=2,encoder_ffn_dim=32,decoder_ffn_dim=32,max_position_embeddings=48,eos_token_id=2,pad_token_id=1,bos_token_id=0,) return config, input_ids, batch_size def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = self._get_config_and_data() SCREAMING_SNAKE_CASE_ : Dict = FlaxBlenderbotSmallForConditionalGeneration(_A ) SCREAMING_SNAKE_CASE_ : Dict = lm_model(input_ids=_A ) SCREAMING_SNAKE_CASE_ : List[Any] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape,_A ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = BlenderbotSmallConfig( vocab_size=self.vocab_size,d_model=14,encoder_layers=2,decoder_layers=2,encoder_attention_heads=2,decoder_attention_heads=2,encoder_ffn_dim=8,decoder_ffn_dim=8,max_position_embeddings=48,) SCREAMING_SNAKE_CASE_ : Dict = FlaxBlenderbotSmallForConditionalGeneration(_A ) SCREAMING_SNAKE_CASE_ : int = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]],dtype=np.intaa ) SCREAMING_SNAKE_CASE_ : Tuple = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]],dtype=np.intaa ) SCREAMING_SNAKE_CASE_ : Any = lm_model(input_ids=_A,decoder_input_ids=_A ) SCREAMING_SNAKE_CASE_ : Tuple = (*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape,_A ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]],dtype=np.intaa ) SCREAMING_SNAKE_CASE_ : Optional[int] = shift_tokens_right(_A,1,2 ) SCREAMING_SNAKE_CASE_ : int = np.equal(_A,1 ).astype(np.floataa ).sum() SCREAMING_SNAKE_CASE_ : Optional[int] = np.equal(_A,1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape,input_ids.shape ) self.assertEqual(_A,n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0],2 ).all() ) @require_flax class a__ ( A__ , unittest.TestCase , A__ ): A = True A = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) A = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = FlaxBlenderbotSmallModelTester(self ) def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_A,_A,_A ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_A,_A,_A ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = self._prepare_for_class(_A,_A ) SCREAMING_SNAKE_CASE_ : List[str] = model_class(_A ) @jax.jit def encode_jitted(_A : Dict,_A : Optional[int]=None,**_A : int ): return model.encode(input_ids=_A,attention_mask=_A ) with self.subTest("JIT Enabled" ): SCREAMING_SNAKE_CASE_ : Tuple = encode_jitted(**_A ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): SCREAMING_SNAKE_CASE_ : Dict = encode_jitted(**_A ).to_tuple() self.assertEqual(len(_A ),len(_A ) ) for jitted_output, output in zip(_A,_A ): self.assertEqual(jitted_output.shape,output.shape ) def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE_ : str = model_class(_A ) SCREAMING_SNAKE_CASE_ : int = model.encode(inputs_dict["input_ids"],inputs_dict["attention_mask"] ) SCREAMING_SNAKE_CASE_ : Dict = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(_A : str,_A : Any,_A : int ): return model.decode( decoder_input_ids=_A,decoder_attention_mask=_A,encoder_outputs=_A,) with self.subTest("JIT Enabled" ): SCREAMING_SNAKE_CASE_ : Tuple = decode_jitted(**_A ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): SCREAMING_SNAKE_CASE_ : Optional[Any] = decode_jitted(**_A ).to_tuple() self.assertEqual(len(_A ),len(_A ) ) for jitted_output, output in zip(_A,_A ): self.assertEqual(jitted_output.shape,output.shape ) @slow def __UpperCamelCase ( self : List[Any] ): """simple docstring""" for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Dict = model_class_name.from_pretrained("facebook/blenderbot_small-90M" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids SCREAMING_SNAKE_CASE_ : str = np.ones((1, 1) ) * model.config.eos_token_id SCREAMING_SNAKE_CASE_ : Any = model(_A ) self.assertIsNotNone(_A )
18
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class a__ : def __init__( self : Optional[int],_A : Dict,_A : List[str]=13,_A : List[str]=7,_A : int=True,_A : str=True,_A : Union[str, Any]=True,_A : Tuple=True,_A : Dict=99,_A : Tuple=32,_A : Tuple=2,_A : Tuple=4,_A : Optional[Any]=37,_A : str="gelu",_A : Dict=0.1,_A : List[Any]=0.1,_A : List[str]=512,_A : str=16,_A : int=2,_A : Dict=0.02,_A : List[Any]=3,_A : Optional[Any]=4,_A : Optional[int]=None,): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = parent SCREAMING_SNAKE_CASE_ : Any = 13 SCREAMING_SNAKE_CASE_ : List[str] = 7 SCREAMING_SNAKE_CASE_ : Dict = True SCREAMING_SNAKE_CASE_ : Optional[Any] = True SCREAMING_SNAKE_CASE_ : Tuple = True SCREAMING_SNAKE_CASE_ : List[str] = True SCREAMING_SNAKE_CASE_ : List[str] = 99 SCREAMING_SNAKE_CASE_ : Tuple = 384 SCREAMING_SNAKE_CASE_ : Optional[Any] = 2 SCREAMING_SNAKE_CASE_ : Any = 4 SCREAMING_SNAKE_CASE_ : str = 37 SCREAMING_SNAKE_CASE_ : Optional[Any] = "gelu" SCREAMING_SNAKE_CASE_ : List[Any] = 0.1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0.1 SCREAMING_SNAKE_CASE_ : Dict = 512 SCREAMING_SNAKE_CASE_ : int = 16 SCREAMING_SNAKE_CASE_ : Optional[int] = 2 SCREAMING_SNAKE_CASE_ : Any = 0.02 SCREAMING_SNAKE_CASE_ : str = 3 SCREAMING_SNAKE_CASE_ : int = 4 SCREAMING_SNAKE_CASE_ : Dict = 128 SCREAMING_SNAKE_CASE_ : Any = 2 SCREAMING_SNAKE_CASE_ : Tuple = 9 SCREAMING_SNAKE_CASE_ : List[Any] = 1 SCREAMING_SNAKE_CASE_ : Any = None def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) SCREAMING_SNAKE_CASE_ : Any = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : List[str] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) SCREAMING_SNAKE_CASE_ : Dict = None SCREAMING_SNAKE_CASE_ : Dict = None SCREAMING_SNAKE_CASE_ : str = None if self.use_labels: SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size],self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size],self.num_choices ) SCREAMING_SNAKE_CASE_ : Any = ConvBertConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,initializer_range=self.initializer_range,return_dict=_A,) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : Optional[int],_A : List[Any],_A : int,_A : Tuple,_A : Optional[int],_A : Union[str, Any],_A : Union[str, Any],_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = TFConvBertModel(config=_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} SCREAMING_SNAKE_CASE_ : str = [input_ids, input_mask] SCREAMING_SNAKE_CASE_ : List[str] = model(_A ) SCREAMING_SNAKE_CASE_ : Dict = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Dict,_A : Dict,_A : int,_A : Union[str, Any],_A : List[Any],_A : int,_A : str,_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = TFConvBertForMaskedLM(config=_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_ : List[Any] = model(_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : Any,_A : Optional[int],_A : List[Any],_A : Union[str, Any],_A : List[Any],_A : Union[str, Any],_A : Optional[int],_A : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.num_labels SCREAMING_SNAKE_CASE_ : Any = TFConvBertForSequenceClassification(config=_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_ : Optional[Any] = model(_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : int,_A : int,_A : Dict,_A : List[str],_A : Tuple,_A : Dict,_A : Optional[int],_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.num_choices SCREAMING_SNAKE_CASE_ : Optional[int] = TFConvBertForMultipleChoice(config=_A ) SCREAMING_SNAKE_CASE_ : Any = tf.tile(tf.expand_dims(_A,1 ),(1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ : Any = tf.tile(tf.expand_dims(_A,1 ),(1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.tile(tf.expand_dims(_A,1 ),(1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ : int = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE_ : int = model(_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : List[Any],_A : Union[str, Any],_A : int,_A : Optional[int],_A : str,_A : str,_A : Tuple,_A : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.num_labels SCREAMING_SNAKE_CASE_ : Union[str, Any] = TFConvBertForTokenClassification(config=_A ) SCREAMING_SNAKE_CASE_ : Tuple = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_ : str = model(_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : List[Any],_A : int,_A : List[str],_A : List[Any],_A : Any,_A : Optional[int],_A : List[str],_A : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = TFConvBertForQuestionAnswering(config=_A ) SCREAMING_SNAKE_CASE_ : Dict = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE_ : Any = model(_A ) self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : List[Any] = config_and_inputs SCREAMING_SNAKE_CASE_ : Any = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class a__ ( A__ , A__ , unittest.TestCase ): A = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) A = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) A = False A = False A = False def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = TFConvBertModelTester(self ) SCREAMING_SNAKE_CASE_ : Tuple = ConfigTester(self,config_class=_A,hidden_size=37 ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_A ) def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) @slow def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : List[str] = True SCREAMING_SNAKE_CASE_ : Any = True if hasattr(_A,"use_cache" ): SCREAMING_SNAKE_CASE_ : List[Any] = True SCREAMING_SNAKE_CASE_ : int = getattr(self.model_tester,"encoder_seq_length",self.model_tester.seq_length ) SCREAMING_SNAKE_CASE_ : Optional[Any] = getattr(self.model_tester,"key_length",_A ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : List[str] = self._prepare_for_class(_A,_A ) SCREAMING_SNAKE_CASE_ : List[Any] = model_class(_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = len(model(_A ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A,saved_model=_A ) SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join(_A,"saved_model","1" ) SCREAMING_SNAKE_CASE_ : Tuple = tf.keras.models.load_model(_A ) SCREAMING_SNAKE_CASE_ : str = model(_A ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE_ : Optional[Any] = outputs["encoder_hidden_states"] SCREAMING_SNAKE_CASE_ : str = outputs["encoder_attentions"] else: SCREAMING_SNAKE_CASE_ : Any = outputs["hidden_states"] SCREAMING_SNAKE_CASE_ : List[str] = outputs["attentions"] self.assertEqual(len(_A ),_A ) SCREAMING_SNAKE_CASE_ : Any = getattr( self.model_tester,"expected_num_hidden_layers",self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_A ),_A ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ),[self.model_tester.seq_length, self.model_tester.hidden_size],) self.assertEqual(len(_A ),self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ),[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length],) @slow def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(_A ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : List[str] = True SCREAMING_SNAKE_CASE_ : List[str] = getattr(self.model_tester,"decoder_seq_length",self.model_tester.seq_length ) SCREAMING_SNAKE_CASE_ : Any = getattr(self.model_tester,"encoder_seq_length",self.model_tester.seq_length ) SCREAMING_SNAKE_CASE_ : Optional[int] = getattr(self.model_tester,"key_length",_A ) SCREAMING_SNAKE_CASE_ : int = getattr(self.model_tester,"key_length",_A ) def check_decoder_attentions_output(_A : Dict ): SCREAMING_SNAKE_CASE_ : int = len(_A ) self.assertEqual(out_len % 2,0 ) SCREAMING_SNAKE_CASE_ : Tuple = outputs.decoder_attentions self.assertEqual(len(_A ),self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ),[self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length],) def check_encoder_attentions_output(_A : Tuple ): SCREAMING_SNAKE_CASE_ : int = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_A ),self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ),[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length],) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Optional[Any] = True SCREAMING_SNAKE_CASE_ : Optional[Any] = False SCREAMING_SNAKE_CASE_ : Tuple = model_class(_A ) SCREAMING_SNAKE_CASE_ : Any = model(self._prepare_for_class(_A,_A ) ) SCREAMING_SNAKE_CASE_ : Tuple = len(_A ) self.assertEqual(config.output_hidden_states,_A ) check_encoder_attentions_output(_A ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE_ : Optional[Any] = model_class(_A ) SCREAMING_SNAKE_CASE_ : int = model(self._prepare_for_class(_A,_A ) ) self.assertEqual(config.output_hidden_states,_A ) check_decoder_attentions_output(_A ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE_ : str = True SCREAMING_SNAKE_CASE_ : int = model_class(_A ) SCREAMING_SNAKE_CASE_ : List[str] = model(self._prepare_for_class(_A,_A ) ) self.assertEqual(config.output_hidden_states,_A ) check_encoder_attentions_output(_A ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE_ : str = True SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Dict = model_class(_A ) SCREAMING_SNAKE_CASE_ : str = model(self._prepare_for_class(_A,_A ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1),len(_A ) ) self.assertEqual(model.config.output_hidden_states,_A ) check_encoder_attentions_output(_A ) @require_tf class a__ ( unittest.TestCase ): @slow def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) SCREAMING_SNAKE_CASE_ : int = tf.constant([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE_ : Tuple = model(_A )[0] SCREAMING_SNAKE_CASE_ : List[Any] = [1, 6, 768] self.assertEqual(output.shape,_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ] ) tf.debugging.assert_near(output[:, :3, :3],_A,atol=1E-4 )
18
1
import os def _snake_case ( lowerCAmelCase : str = "matrix.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(lowerCAmelCase ) , lowerCAmelCase ) ) as in_file: SCREAMING_SNAKE_CASE_ : Dict = in_file.read() SCREAMING_SNAKE_CASE_ : int = [[int(lowerCAmelCase ) for cell in row.split("," )] for row in data.strip().splitlines()] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [[0 for cell in row] for row in grid] SCREAMING_SNAKE_CASE_ : Optional[int] = len(grid[0] ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = [[0 for i in range(lowerCAmelCase )] for j in range(lowerCAmelCase )] SCREAMING_SNAKE_CASE_ : Dict = grid[0][0] for i in range(1 , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = grid[0][i] + dp[0][i - 1] for i in range(1 , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : int = grid[i][0] + dp[i - 1][0] for i in range(1 , lowerCAmelCase ): for j in range(1 , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Optional[int] = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(f'''{solution() = }''')
18
def _snake_case ( lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = int(lowerCAmelCase ) if decimal in (0, 1): # Exit cases for the recursion return str(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = divmod(lowerCAmelCase , 2 ) return binary_recursive(lowerCAmelCase ) + str(lowerCAmelCase ) def _snake_case ( lowerCAmelCase : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = str(lowerCAmelCase ).strip() if not number: raise ValueError("No input value was provided" ) SCREAMING_SNAKE_CASE_ : List[str] = "-" if number.startswith("-" ) else "" SCREAMING_SNAKE_CASE_ : Optional[Any] = number.lstrip("-" ) if not number.isnumeric(): raise ValueError("Input value is not an integer" ) return f'{negative}0b{binary_recursive(int(lowerCAmelCase ) )}' if __name__ == "__main__": from doctest import testmod testmod()
18
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer __lowerCamelCase : Optional[Any] = logging.get_logger(__name__) __lowerCamelCase : Dict = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __lowerCamelCase : int = { '''vocab_file''': { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt''' ), } } __lowerCamelCase : Any = { '''junnyu/roformer_chinese_small''': 15_36, '''junnyu/roformer_chinese_base''': 15_36, '''junnyu/roformer_chinese_char_small''': 5_12, '''junnyu/roformer_chinese_char_base''': 5_12, '''junnyu/roformer_small_discriminator''': 1_28, '''junnyu/roformer_small_generator''': 1_28, } __lowerCamelCase : Union[str, Any] = { '''junnyu/roformer_chinese_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_base''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_base''': {'''do_lower_case''': True}, '''junnyu/roformer_small_discriminator''': {'''do_lower_case''': True}, '''junnyu/roformer_small_generator''': {'''do_lower_case''': True}, } class a__ ( A__ ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = PRETRAINED_INIT_CONFIGURATION A = RoFormerTokenizer def __init__( self : List[str],_A : int=None,_A : int=None,_A : int=True,_A : List[Any]="[UNK]",_A : Tuple="[SEP]",_A : List[Any]="[PAD]",_A : Optional[int]="[CLS]",_A : Optional[Any]="[MASK]",_A : Optional[int]=True,_A : List[str]=None,**_A : List[Any],): """simple docstring""" super().__init__( _A,tokenizer_file=_A,do_lower_case=_A,unk_token=_A,sep_token=_A,pad_token=_A,cls_token=_A,mask_token=_A,tokenize_chinese_chars=_A,strip_accents=_A,**_A,) SCREAMING_SNAKE_CASE_ : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("lowercase",_A ) != do_lower_case or pre_tok_state.get("strip_accents",_A ) != strip_accents ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = getattr(_A,pre_tok_state.pop("type" ) ) SCREAMING_SNAKE_CASE_ : Any = do_lower_case SCREAMING_SNAKE_CASE_ : List[str] = strip_accents SCREAMING_SNAKE_CASE_ : str = pre_tok_class(**_A ) SCREAMING_SNAKE_CASE_ : List[str] = do_lower_case def __getstate__( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.__dict__.copy() SCREAMING_SNAKE_CASE_ : Optional[Any] = BertPreTokenizer() return state def __setstate__( self : List[Any],_A : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = d SCREAMING_SNAKE_CASE_ : List[str] = self.__dict__["_tokenizer"].get_vocab() SCREAMING_SNAKE_CASE_ : Any = PreTokenizer.custom(JiebaPreTokenizer(_A ) ) def __UpperCamelCase ( self : Union[str, Any],_A : List[Any],_A : str=None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCamelCase ( self : str,_A : List[int],_A : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCamelCase ( self : int,_A : str,_A : Optional[str] = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._tokenizer.model.save(_A,name=_A ) return tuple(_A ) def __UpperCamelCase ( self : int,_A : Optional[int],_A : List[Any]=None,_A : Tuple=None,_A : str=False,**_A : List[Any],): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = BertPreTokenizer() return super().save_pretrained(_A,_A,_A,_A,**_A )
18
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase : Union[str, Any] = { '''configuration_chinese_clip''': [ '''CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ChineseCLIPConfig''', '''ChineseCLIPOnnxConfig''', '''ChineseCLIPTextConfig''', '''ChineseCLIPVisionConfig''', ], '''processing_chinese_clip''': ['''ChineseCLIPProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = ['''ChineseCLIPFeatureExtractor'''] __lowerCamelCase : Optional[int] = ['''ChineseCLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : int = [ '''CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ChineseCLIPModel''', '''ChineseCLIPPreTrainedModel''', '''ChineseCLIPTextModel''', '''ChineseCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys __lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
18
1
def _snake_case ( lowerCAmelCase : int = 1_0_0_0 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = 3 SCREAMING_SNAKE_CASE_ : List[str] = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 1_5 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f'''{solution() = }''')
18
import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument __lowerCamelCase : Any = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def _snake_case ( lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = list(s_dict.keys() ) for key in keys: SCREAMING_SNAKE_CASE_ : int = R".*/layers_(\d+)" SCREAMING_SNAKE_CASE_ : List[Any] = key if re.match(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Any = re.sub(R"layers_(\d+)" , R"block/\1/layer" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = R"(encoder|decoder)\/" if re.match(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : str = re.match(lowerCAmelCase , lowerCAmelCase ).groups() if groups[0] == "encoder": SCREAMING_SNAKE_CASE_ : Any = re.sub(R"/mlp/" , R"/1/mlp/" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = re.sub(R"/pre_mlp_layer_norm/" , R"/1/layer_norm/" , lowerCAmelCase ) elif groups[0] == "decoder": SCREAMING_SNAKE_CASE_ : List[str] = re.sub(R"/mlp/" , R"/2/mlp/" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = re.sub(R"/pre_mlp_layer_norm/" , R"/2/layer_norm/" , lowerCAmelCase ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: SCREAMING_SNAKE_CASE_ : List[Any] = new_key.replace(lowerCAmelCase , lowerCAmelCase ) print(f'{key} -> {new_key}' ) SCREAMING_SNAKE_CASE_ : List[Any] = s_dict.pop(lowerCAmelCase ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: SCREAMING_SNAKE_CASE_ : str = s_dict[ "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: SCREAMING_SNAKE_CASE_ : Optional[int] = s_dict[ "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: SCREAMING_SNAKE_CASE_ : Union[str, Any] = s_dict[key].shape[0] SCREAMING_SNAKE_CASE_ : List[Any] = s_dict[key] for idx in range(lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Tuple = expert_weihts[idx] print(f'{key} -> {key.replace("expert/" , "nested fstring" )}' ) s_dict.pop(lowerCAmelCase ) return s_dict __lowerCamelCase : List[Any] = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def _snake_case ( lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any] ): """simple docstring""" import regex as re with open(lowerCAmelCase , "r" ) as f: SCREAMING_SNAKE_CASE_ : Optional[Any] = f.read() SCREAMING_SNAKE_CASE_ : List[str] = re.findall(R"(.*) = ([0-9.]*)" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": SCREAMING_SNAKE_CASE_ : int = float(lowerCAmelCase ) if "." in value else int(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = re.findall(R"(.*activations) = \(\'(.*)\',\)" , lowerCAmelCase )[0] SCREAMING_SNAKE_CASE_ : List[str] = str(activation[1] ) SCREAMING_SNAKE_CASE_ : str = num_experts SCREAMING_SNAKE_CASE_ : Tuple = SwitchTransformersConfig(**lowerCAmelCase ) return config def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : str=None , lowerCAmelCase : Optional[Any]="./" , lowerCAmelCase : Dict=8 ): """simple docstring""" print(f'Loading flax weights from : {flax_checkpoint_path}' ) SCREAMING_SNAKE_CASE_ : int = checkpoints.load_tax_checkpoint(lowerCAmelCase ) if gin_file is not None: SCREAMING_SNAKE_CASE_ : int = convert_gin_to_config(lowerCAmelCase , lowerCAmelCase ) else: SCREAMING_SNAKE_CASE_ : Dict = SwitchTransformersConfig.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : str = SwitchTransformersForConditionalGeneration(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = flax_params["target"] SCREAMING_SNAKE_CASE_ : List[str] = flatten_dict(lowerCAmelCase , sep="/" ) SCREAMING_SNAKE_CASE_ : List[str] = rename_keys(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = unflatten_dict(lowerCAmelCase , sep="/" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(lowerCAmelCase , lowerCAmelCase ) print(f'Save PyTorch model to {pytorch_dump_path}' ) pt_model.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": __lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') __lowerCamelCase : Any = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
18
1
import os def _snake_case ( ): """simple docstring""" with open(os.path.dirname(lowerCAmelCase ) + "/p022_names.txt" ) as file: SCREAMING_SNAKE_CASE_ : List[str] = str(file.readlines()[0] ) SCREAMING_SNAKE_CASE_ : Any = names.replace("\"" , "" ).split("," ) names.sort() SCREAMING_SNAKE_CASE_ : Optional[int] = 0 SCREAMING_SNAKE_CASE_ : Optional[int] = 0 for i, name in enumerate(lowerCAmelCase ): for letter in name: name_score += ord(lowerCAmelCase ) - 6_4 total_score += (i + 1) * name_score SCREAMING_SNAKE_CASE_ : Tuple = 0 return total_score if __name__ == "__main__": print(solution())
18
from math import factorial, radians def _snake_case ( lowerCAmelCase : float , lowerCAmelCase : int = 1_8 , lowerCAmelCase : int = 1_0 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians SCREAMING_SNAKE_CASE_ : Tuple = radians(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = angle_in_radians SCREAMING_SNAKE_CASE_ : List[str] = 3 SCREAMING_SNAKE_CASE_ : str = -1 for _ in range(lowerCAmelCase ): result += (b * (angle_in_radians**a)) / factorial(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(lowerCAmelCase , lowerCAmelCase ) if __name__ == "__main__": __import__('''doctest''').testmod()
18
1
class a__ : def __init__( self : Optional[Any],_A : str,_A : List[str],_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = None SCREAMING_SNAKE_CASE_ : Any = None SCREAMING_SNAKE_CASE_ : Any = graph self._normalize_graph(_A,_A ) SCREAMING_SNAKE_CASE_ : str = len(_A ) SCREAMING_SNAKE_CASE_ : Optional[Any] = None def __UpperCamelCase ( self : List[Any],_A : int,_A : Any ): """simple docstring""" if sources is int: SCREAMING_SNAKE_CASE_ : Union[str, Any] = [sources] if sinks is int: SCREAMING_SNAKE_CASE_ : List[str] = [sinks] if len(_A ) == 0 or len(_A ) == 0: return SCREAMING_SNAKE_CASE_ : List[str] = sources[0] SCREAMING_SNAKE_CASE_ : Optional[Any] = sinks[0] # make fake vertex if there are more # than one source or sink if len(_A ) > 1 or len(_A ) > 1: SCREAMING_SNAKE_CASE_ : List[str] = 0 for i in sources: max_input_flow += sum(self.graph[i] ) SCREAMING_SNAKE_CASE_ : Optional[int] = len(self.graph ) + 1 for room in self.graph: room.insert(0,0 ) self.graph.insert(0,[0] * size ) for i in sources: SCREAMING_SNAKE_CASE_ : int = max_input_flow SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 SCREAMING_SNAKE_CASE_ : Dict = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: SCREAMING_SNAKE_CASE_ : str = max_input_flow SCREAMING_SNAKE_CASE_ : Dict = size - 1 def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" if self.maximum_flow_algorithm is None: raise Exception("You need to set maximum flow algorithm before." ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def __UpperCamelCase ( self : List[str],_A : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = algorithm(self ) class a__ : def __init__( self : Union[str, Any],_A : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = flow_network SCREAMING_SNAKE_CASE_ : str = flow_network.verticesCount SCREAMING_SNAKE_CASE_ : Dict = flow_network.sourceIndex SCREAMING_SNAKE_CASE_ : List[str] = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that SCREAMING_SNAKE_CASE_ : Optional[int] = flow_network.graph SCREAMING_SNAKE_CASE_ : List[Any] = False def __UpperCamelCase ( self : Any ): """simple docstring""" if not self.executed: self._algorithm() SCREAMING_SNAKE_CASE_ : Union[str, Any] = True def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" pass class a__ ( A__ ): def __init__( self : int,_A : Union[str, Any] ): """simple docstring""" super().__init__(_A ) # use this to save your result SCREAMING_SNAKE_CASE_ : Union[str, Any] = -1 def __UpperCamelCase ( self : Tuple ): """simple docstring""" if not self.executed: raise Exception("You should execute algorithm before using its result!" ) return self.maximum_flow class a__ ( A__ ): def __init__( self : List[str],_A : int ): """simple docstring""" super().__init__(_A ) SCREAMING_SNAKE_CASE_ : int = [[0] * self.verticies_count for i in range(self.verticies_count )] SCREAMING_SNAKE_CASE_ : Optional[Any] = [0] * self.verticies_count SCREAMING_SNAKE_CASE_ : Tuple = [0] * self.verticies_count def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule SCREAMING_SNAKE_CASE_ : List[str] = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list SCREAMING_SNAKE_CASE_ : Optional[int] = 0 while i < len(_A ): SCREAMING_SNAKE_CASE_ : Optional[Any] = vertices_list[i] SCREAMING_SNAKE_CASE_ : Dict = self.heights[vertex_index] self.process_vertex(_A ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0,vertices_list.pop(_A ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 else: i += 1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = sum(self.preflow[self.source_index] ) def __UpperCamelCase ( self : Union[str, Any],_A : Optional[int] ): """simple docstring""" while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(_A,_A ) self.relabel(_A ) def __UpperCamelCase ( self : str,_A : Union[str, Any],_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = min( self.excesses[from_index],self.graph[from_index][to_index] - self.preflow[from_index][to_index],) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def __UpperCamelCase ( self : Tuple,_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): SCREAMING_SNAKE_CASE_ : Any = self.heights[to_index] if min_height is not None: SCREAMING_SNAKE_CASE_ : Optional[Any] = min_height + 1 if __name__ == "__main__": __lowerCamelCase : int = [0] __lowerCamelCase : str = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] __lowerCamelCase : Any = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network __lowerCamelCase : List[str] = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate __lowerCamelCase : str = flow_network.find_maximum_flow() print(f'''maximum flow is {maximum_flow}''')
18
from functools import lru_cache @lru_cache def _snake_case ( lowerCAmelCase : int ): """simple docstring""" if num < 0: raise ValueError("Number should not be negative." ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
18
1
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def _snake_case ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = 1.5 SCREAMING_SNAKE_CASE_ : Union[str, Any] = int(factor * num_class_images ) SCREAMING_SNAKE_CASE_ : Dict = ClipClient( url="https://knn.laion.ai/knn-service" , indice_name="laion_400m" , num_images=lowerCAmelCase , aesthetic_weight=0.1 ) os.makedirs(f'{class_data_dir}/images' , exist_ok=lowerCAmelCase ) if len(list(Path(f'{class_data_dir}/images' ).iterdir() ) ) >= num_class_images: return while True: SCREAMING_SNAKE_CASE_ : Optional[Any] = client.query(text=lowerCAmelCase ) if len(lowerCAmelCase ) >= factor * num_class_images or num_images > 1E4: break else: SCREAMING_SNAKE_CASE_ : Tuple = int(factor * num_images ) SCREAMING_SNAKE_CASE_ : Dict = ClipClient( url="https://knn.laion.ai/knn-service" , indice_name="laion_400m" , num_images=lowerCAmelCase , aesthetic_weight=0.1 , ) SCREAMING_SNAKE_CASE_ : int = 0 SCREAMING_SNAKE_CASE_ : Dict = 0 SCREAMING_SNAKE_CASE_ : Tuple = tqdm(desc="downloading real regularization images" , total=lowerCAmelCase ) with open(f'{class_data_dir}/caption.txt' , "w" ) as fa, open(f'{class_data_dir}/urls.txt' , "w" ) as fa, open( f'{class_data_dir}/images.txt' , "w" ) as fa: while total < num_class_images: SCREAMING_SNAKE_CASE_ : List[str] = class_images[count] count += 1 try: SCREAMING_SNAKE_CASE_ : Any = requests.get(images["url"] ) if img.status_code == 2_0_0: SCREAMING_SNAKE_CASE_ : str = Image.open(BytesIO(img.content ) ) with open(f'{class_data_dir}/images/{total}.jpg' , "wb" ) as f: f.write(img.content ) fa.write(images["caption"] + "\n" ) fa.write(images["url"] + "\n" ) fa.write(f'{class_data_dir}/images/{total}.jpg' + "\n" ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = argparse.ArgumentParser("" , add_help=lowerCAmelCase ) parser.add_argument("--class_prompt" , help="text prompt to retrieve images" , required=lowerCAmelCase , type=lowerCAmelCase ) parser.add_argument("--class_data_dir" , help="path to save images" , required=lowerCAmelCase , type=lowerCAmelCase ) parser.add_argument("--num_class_images" , help="number of images to download" , default=2_0_0 , type=lowerCAmelCase ) return parser.parse_args() if __name__ == "__main__": __lowerCamelCase : List[Any] = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
18
from collections import defaultdict def _snake_case ( lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = 1 SCREAMING_SNAKE_CASE_ : Tuple = True for v in tree[start]: if v not in visited: ret += dfs(lowerCAmelCase ) if ret % 2 == 0: cuts.append(lowerCAmelCase ) return ret def _snake_case ( ): """simple docstring""" dfs(1 ) if __name__ == "__main__": __lowerCamelCase , __lowerCamelCase : Union[str, Any] = 10, 9 __lowerCamelCase : Optional[int] = defaultdict(list) __lowerCamelCase : dict[int, bool] = {} __lowerCamelCase : list[int] = [] __lowerCamelCase : Optional[Any] = 0 __lowerCamelCase : Any = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
18
1
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration __lowerCamelCase : int = { '''tiny.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt''', '''tiny''': '''https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt''', '''base.en''': '''https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt''', '''base''': '''https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt''', '''small.en''': '''https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt''', '''small''': '''https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt''', '''medium.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt''', '''medium''': '''https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt''', '''large''': '''https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt''', '''large-v2''': '''https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt''', } def _snake_case ( lowerCAmelCase : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ["layers", "blocks"] for k in ignore_keys: state_dict.pop(lowerCAmelCase , lowerCAmelCase ) __lowerCamelCase : List[Any] = { '''blocks''': '''layers''', '''mlp.0''': '''fc1''', '''mlp.2''': '''fc2''', '''mlp_ln''': '''final_layer_norm''', '''.attn.query''': '''.self_attn.q_proj''', '''.attn.key''': '''.self_attn.k_proj''', '''.attn.value''': '''.self_attn.v_proj''', '''.attn_ln''': '''.self_attn_layer_norm''', '''.attn.out''': '''.self_attn.out_proj''', '''.cross_attn.query''': '''.encoder_attn.q_proj''', '''.cross_attn.key''': '''.encoder_attn.k_proj''', '''.cross_attn.value''': '''.encoder_attn.v_proj''', '''.cross_attn_ln''': '''.encoder_attn_layer_norm''', '''.cross_attn.out''': '''.encoder_attn.out_proj''', '''decoder.ln.''': '''decoder.layer_norm.''', '''encoder.ln.''': '''encoder.layer_norm.''', '''token_embedding''': '''embed_tokens''', '''encoder.positional_embedding''': '''encoder.embed_positions.weight''', '''decoder.positional_embedding''': '''decoder.embed_positions.weight''', '''ln_post''': '''layer_norm''', } def _snake_case ( lowerCAmelCase : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = list(s_dict.keys() ) for key in keys: SCREAMING_SNAKE_CASE_ : str = key for k, v in WHISPER_MAPPING.items(): if k in key: SCREAMING_SNAKE_CASE_ : List[Any] = new_key.replace(lowerCAmelCase , lowerCAmelCase ) print(f'{key} -> {new_key}' ) SCREAMING_SNAKE_CASE_ : List[str] = s_dict.pop(lowerCAmelCase ) return s_dict def _snake_case ( lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = emb.weight.shape SCREAMING_SNAKE_CASE_ : Optional[Any] = nn.Linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = emb.weight.data return lin_layer def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : str ): """simple docstring""" os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = os.path.basename(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = url.split("/" )[-2] SCREAMING_SNAKE_CASE_ : str = os.path.join(lowerCAmelCase , lowerCAmelCase ) if os.path.exists(lowerCAmelCase ) and not os.path.isfile(lowerCAmelCase ): raise RuntimeError(f'{download_target} exists and is not a regular file' ) if os.path.isfile(lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Dict = open(lowerCAmelCase , "rb" ).read() if hashlib.shaaaa(lowerCAmelCase ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(f'{download_target} exists, but the SHA256 checksum does not match; re-downloading the file' ) with urllib.request.urlopen(lowerCAmelCase ) as source, open(lowerCAmelCase , "wb" ) as output: with tqdm( total=int(source.info().get("Content-Length" ) ) , ncols=8_0 , unit="iB" , unit_scale=lowerCAmelCase , unit_divisor=1_0_2_4 ) as loop: while True: SCREAMING_SNAKE_CASE_ : int = source.read(8_1_9_2 ) if not buffer: break output.write(lowerCAmelCase ) loop.update(len(lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ : Any = open(lowerCAmelCase , "rb" ).read() if hashlib.shaaaa(lowerCAmelCase ).hexdigest() != expected_shaaaa: raise RuntimeError( "Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model." ) return model_bytes def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : Optional[int] ): """simple docstring""" if ".pt" not in checkpoint_path: SCREAMING_SNAKE_CASE_ : Dict = _download(_MODELS[checkpoint_path] ) else: SCREAMING_SNAKE_CASE_ : Any = torch.load(lowerCAmelCase , map_location="cpu" ) SCREAMING_SNAKE_CASE_ : List[str] = original_checkpoint["dims"] SCREAMING_SNAKE_CASE_ : Any = original_checkpoint["model_state_dict"] SCREAMING_SNAKE_CASE_ : Optional[Any] = state_dict["decoder.token_embedding.weight"] remove_ignore_keys_(lowerCAmelCase ) rename_keys(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Union[str, Any] = state_dict["decoder.layers.0.fc1.weight"].shape[0] SCREAMING_SNAKE_CASE_ : Optional[int] = WhisperConfig( vocab_size=dimensions["n_vocab"] , encoder_ffn_dim=lowerCAmelCase , decoder_ffn_dim=lowerCAmelCase , num_mel_bins=dimensions["n_mels"] , d_model=dimensions["n_audio_state"] , max_target_positions=dimensions["n_text_ctx"] , encoder_layers=dimensions["n_audio_layer"] , encoder_attention_heads=dimensions["n_audio_head"] , decoder_layers=dimensions["n_text_layer"] , decoder_attention_heads=dimensions["n_text_state"] , max_source_positions=dimensions["n_audio_ctx"] , ) SCREAMING_SNAKE_CASE_ : Tuple = WhisperForConditionalGeneration(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = model.model.load_state_dict(lowerCAmelCase , strict=lowerCAmelCase ) if len(lowerCAmelCase ) > 0 and not set(lowerCAmelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( "Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing," f' but all the following weights are missing {missing}' ) if tie_embeds: SCREAMING_SNAKE_CASE_ : List[Any] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: SCREAMING_SNAKE_CASE_ : Optional[int] = proj_out_weights model.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": __lowerCamelCase : Optional[int] = argparse.ArgumentParser() # # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Patht to the downloaded checkpoints''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') __lowerCamelCase : str = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
18
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=lowerCAmelCase ) env_command_parser(subparsers=lowerCAmelCase ) launch_command_parser(subparsers=lowerCAmelCase ) tpu_command_parser(subparsers=lowerCAmelCase ) test_command_parser(subparsers=lowerCAmelCase ) # Let's go SCREAMING_SNAKE_CASE_ : Dict = parser.parse_args() if not hasattr(lowerCAmelCase , "func" ): parser.print_help() exit(1 ) # Run args.func(lowerCAmelCase ) if __name__ == "__main__": main()
18
1
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def _snake_case ( lowerCAmelCase : List[str] ): """simple docstring""" return 1 / (1 + np.exp(-z )) def _snake_case ( lowerCAmelCase : List[Any] , lowerCAmelCase : Dict ): """simple docstring""" return (-y * np.log(lowerCAmelCase ) - (1 - y) * np.log(1 - h )).mean() def _snake_case ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = np.dot(lowerCAmelCase , lowerCAmelCase ) return np.sum(y * scores - np.log(1 + np.exp(lowerCAmelCase ) ) ) def _snake_case ( lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Tuple , lowerCAmelCase : Dict=7_0_0_0_0 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.zeros(x.shape[1] ) for iterations in range(lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Any = np.dot(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = sigmoid_function(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = np.dot(x.T , h - y ) / y.size SCREAMING_SNAKE_CASE_ : Optional[Any] = theta - alpha * gradient # updating the weights SCREAMING_SNAKE_CASE_ : List[str] = np.dot(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = sigmoid_function(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = cost_function(lowerCAmelCase , lowerCAmelCase ) if iterations % 1_0_0 == 0: print(f'loss: {j} \t' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": __lowerCamelCase : Optional[Any] = datasets.load_iris() __lowerCamelCase : List[Any] = iris.data[:, :2] __lowerCamelCase : List[str] = (iris.target != 0) * 1 __lowerCamelCase : Tuple = 0.1 __lowerCamelCase : str = logistic_reg(alpha, x, y, max_iterations=7_00_00) print('''theta: ''', theta) # printing the theta i.e our weights vector def _snake_case ( lowerCAmelCase : Any ): """simple docstring""" return sigmoid_function( np.dot(lowerCAmelCase , lowerCAmelCase ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') ((__lowerCamelCase) , (__lowerCamelCase)) : List[Any] = (x[:, 0].min(), x[:, 0].max()) ((__lowerCamelCase) , (__lowerCamelCase)) : Any = (x[:, 1].min(), x[:, 1].max()) ((__lowerCamelCase) , (__lowerCamelCase)) : Optional[Any] = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) __lowerCamelCase : Optional[int] = np.c_[xxa.ravel(), xxa.ravel()] __lowerCamelCase : Union[str, Any] = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
18
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer __lowerCamelCase : Optional[Any] = logging.get_logger(__name__) __lowerCamelCase : Dict = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __lowerCamelCase : int = { '''vocab_file''': { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt''' ), } } __lowerCamelCase : Any = { '''junnyu/roformer_chinese_small''': 15_36, '''junnyu/roformer_chinese_base''': 15_36, '''junnyu/roformer_chinese_char_small''': 5_12, '''junnyu/roformer_chinese_char_base''': 5_12, '''junnyu/roformer_small_discriminator''': 1_28, '''junnyu/roformer_small_generator''': 1_28, } __lowerCamelCase : Union[str, Any] = { '''junnyu/roformer_chinese_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_base''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_base''': {'''do_lower_case''': True}, '''junnyu/roformer_small_discriminator''': {'''do_lower_case''': True}, '''junnyu/roformer_small_generator''': {'''do_lower_case''': True}, } class a__ ( A__ ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = PRETRAINED_INIT_CONFIGURATION A = RoFormerTokenizer def __init__( self : List[str],_A : int=None,_A : int=None,_A : int=True,_A : List[Any]="[UNK]",_A : Tuple="[SEP]",_A : List[Any]="[PAD]",_A : Optional[int]="[CLS]",_A : Optional[Any]="[MASK]",_A : Optional[int]=True,_A : List[str]=None,**_A : List[Any],): """simple docstring""" super().__init__( _A,tokenizer_file=_A,do_lower_case=_A,unk_token=_A,sep_token=_A,pad_token=_A,cls_token=_A,mask_token=_A,tokenize_chinese_chars=_A,strip_accents=_A,**_A,) SCREAMING_SNAKE_CASE_ : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("lowercase",_A ) != do_lower_case or pre_tok_state.get("strip_accents",_A ) != strip_accents ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = getattr(_A,pre_tok_state.pop("type" ) ) SCREAMING_SNAKE_CASE_ : Any = do_lower_case SCREAMING_SNAKE_CASE_ : List[str] = strip_accents SCREAMING_SNAKE_CASE_ : str = pre_tok_class(**_A ) SCREAMING_SNAKE_CASE_ : List[str] = do_lower_case def __getstate__( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.__dict__.copy() SCREAMING_SNAKE_CASE_ : Optional[Any] = BertPreTokenizer() return state def __setstate__( self : List[Any],_A : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = d SCREAMING_SNAKE_CASE_ : List[str] = self.__dict__["_tokenizer"].get_vocab() SCREAMING_SNAKE_CASE_ : Any = PreTokenizer.custom(JiebaPreTokenizer(_A ) ) def __UpperCamelCase ( self : Union[str, Any],_A : List[Any],_A : str=None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCamelCase ( self : str,_A : List[int],_A : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCamelCase ( self : int,_A : str,_A : Optional[str] = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._tokenizer.model.save(_A,name=_A ) return tuple(_A ) def __UpperCamelCase ( self : int,_A : Optional[int],_A : List[Any]=None,_A : Tuple=None,_A : str=False,**_A : List[Any],): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = BertPreTokenizer() return super().save_pretrained(_A,_A,_A,_A,**_A )
18
1
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging __lowerCamelCase : Optional[Any] = logging.get_logger(__name__) def _snake_case ( lowerCAmelCase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = R"\w+[.]\d+" SCREAMING_SNAKE_CASE_ : List[str] = re.findall(lowerCAmelCase , lowerCAmelCase ) for pat in pats: SCREAMING_SNAKE_CASE_ : int = key.replace(lowerCAmelCase , "_".join(pat.split("." ) ) ) return key def _snake_case ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: SCREAMING_SNAKE_CASE_ : int = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: SCREAMING_SNAKE_CASE_ : Tuple = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer SCREAMING_SNAKE_CASE_ : int = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: SCREAMING_SNAKE_CASE_ : Optional[Any] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer SCREAMING_SNAKE_CASE_ : Dict = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": SCREAMING_SNAKE_CASE_ : str = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight SCREAMING_SNAKE_CASE_ : Tuple = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias SCREAMING_SNAKE_CASE_ : Optional[Any] = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def _snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[Any]=4_2 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params SCREAMING_SNAKE_CASE_ : int = flax_model.init_weights(PRNGKey(lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ : int = flatten_dict(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): SCREAMING_SNAKE_CASE_ : Optional[Any] = rename_key(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = rename_key_and_reshape_tensor(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' f'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # also add unexpected weight so that warning is thrown SCREAMING_SNAKE_CASE_ : int = jnp.asarray(lowerCAmelCase ) return unflatten_dict(lowerCAmelCase )
18
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class a__ ( A__ ): def __init__( self : Tuple,_A : Optional[int],_A : Any=13,_A : List[str]=7,_A : int=True,_A : Dict=True,_A : Dict=False,_A : List[Any]=True,_A : Any=99,_A : Optional[int]=32,_A : Any=5,_A : List[Any]=4,_A : Dict=64,_A : Optional[Any]="gelu",_A : Tuple=0.1,_A : Any=0.1,_A : List[Any]=512,_A : Dict=16,_A : Optional[Any]=2,_A : Union[str, Any]=0.02,_A : List[str]=3,_A : Optional[Any]=4,_A : Union[str, Any]=None,_A : Tuple=2,_A : List[str]=2,_A : str=2,_A : Dict=2,_A : Optional[Any]=4,_A : Union[str, Any]=1,): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = parent SCREAMING_SNAKE_CASE_ : Optional[int] = batch_size SCREAMING_SNAKE_CASE_ : Dict = seq_length SCREAMING_SNAKE_CASE_ : Dict = is_training SCREAMING_SNAKE_CASE_ : Optional[int] = use_input_mask SCREAMING_SNAKE_CASE_ : int = use_token_type_ids SCREAMING_SNAKE_CASE_ : Optional[int] = use_labels SCREAMING_SNAKE_CASE_ : Tuple = vocab_size SCREAMING_SNAKE_CASE_ : Any = hidden_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Tuple = num_attention_heads SCREAMING_SNAKE_CASE_ : List[Any] = intermediate_size SCREAMING_SNAKE_CASE_ : List[str] = hidden_act SCREAMING_SNAKE_CASE_ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : str = max_position_embeddings SCREAMING_SNAKE_CASE_ : str = type_vocab_size SCREAMING_SNAKE_CASE_ : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE_ : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE_ : Tuple = num_labels SCREAMING_SNAKE_CASE_ : List[Any] = num_choices SCREAMING_SNAKE_CASE_ : Dict = scope SCREAMING_SNAKE_CASE_ : int = q_groups SCREAMING_SNAKE_CASE_ : Tuple = k_groups SCREAMING_SNAKE_CASE_ : List[Any] = v_groups SCREAMING_SNAKE_CASE_ : Tuple = post_attention_groups SCREAMING_SNAKE_CASE_ : int = intermediate_groups SCREAMING_SNAKE_CASE_ : List[Any] = output_groups def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) SCREAMING_SNAKE_CASE_ : List[Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = None SCREAMING_SNAKE_CASE_ : Any = None SCREAMING_SNAKE_CASE_ : str = None if self.use_labels: SCREAMING_SNAKE_CASE_ : str = ids_tensor([self.batch_size],self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size],self.num_choices ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : str ): """simple docstring""" return SqueezeBertConfig( embedding_size=self.hidden_size,vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,attention_probs_dropout_prob=self.hidden_dropout_prob,attention_dropout=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,initializer_range=self.initializer_range,q_groups=self.q_groups,k_groups=self.k_groups,v_groups=self.v_groups,post_attention_groups=self.post_attention_groups,intermediate_groups=self.intermediate_groups,output_groups=self.output_groups,) def __UpperCamelCase ( self : Tuple,_A : Union[str, Any],_A : Union[str, Any],_A : int,_A : Optional[int],_A : Union[str, Any],_A : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = SqueezeBertModel(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Any = model(_A,_A ) SCREAMING_SNAKE_CASE_ : List[str] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Dict,_A : Any,_A : Tuple,_A : str,_A : Any,_A : Union[str, Any],_A : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = SqueezeBertForMaskedLM(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : List[str] = model(_A,attention_mask=_A,labels=_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : Optional[int],_A : Union[str, Any],_A : Union[str, Any],_A : Any,_A : Tuple,_A : int,_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = SqueezeBertForQuestionAnswering(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model( _A,attention_mask=_A,start_positions=_A,end_positions=_A ) self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : List[Any],_A : List[str],_A : Tuple,_A : List[Any],_A : List[str],_A : List[str],_A : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.num_labels SCREAMING_SNAKE_CASE_ : List[str] = SqueezeBertForSequenceClassification(_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model(_A,attention_mask=_A,labels=_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : str,_A : Optional[int],_A : str,_A : List[Any],_A : List[str],_A : str,_A : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.num_labels SCREAMING_SNAKE_CASE_ : Optional[int] = SqueezeBertForTokenClassification(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[int] = model(_A,attention_mask=_A,labels=_A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : List[Any],_A : Tuple,_A : str,_A : Optional[Any],_A : int,_A : str,_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.num_choices SCREAMING_SNAKE_CASE_ : Union[str, Any] = SqueezeBertForMultipleChoice(config=_A ) model.to(_A ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = input_ids.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() SCREAMING_SNAKE_CASE_ : str = input_mask.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() SCREAMING_SNAKE_CASE_ : Optional[int] = model( _A,attention_mask=_A,labels=_A,) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)) : Dict = config_and_inputs SCREAMING_SNAKE_CASE_ : Dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class a__ ( A__ , A__ , unittest.TestCase ): A = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) A = ( { 'feature-extraction': SqueezeBertModel, 'fill-mask': SqueezeBertForMaskedLM, 'question-answering': SqueezeBertForQuestionAnswering, 'text-classification': SqueezeBertForSequenceClassification, 'token-classification': SqueezeBertForTokenClassification, 'zero-shot': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) A = False A = True A = False def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = SqueezeBertModelTester(self ) SCREAMING_SNAKE_CASE_ : List[str] = ConfigTester(self,config_class=_A,dim=37 ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*_A ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*_A ) def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*_A ) def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*_A ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*_A ) def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*_A ) @slow def __UpperCamelCase ( self : Any ): """simple docstring""" for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : Tuple = SqueezeBertModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_sentencepiece @require_tokenizers @require_torch class a__ ( unittest.TestCase ): @slow def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = SqueezeBertForSequenceClassification.from_pretrained("squeezebert/squeezebert-mnli" ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor([[1, 2_9414, 232, 328, 740, 1140, 1_2695, 69, 13, 1588, 2]] ) SCREAMING_SNAKE_CASE_ : List[Any] = model(_A )[0] SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.Size((1, 3) ) self.assertEqual(output.shape,_A ) SCREAMING_SNAKE_CASE_ : int = torch.tensor([[0.6401, -0.0349, -0.6041]] ) self.assertTrue(torch.allclose(_A,_A,atol=1E-4 ) )
18
1
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class a__ ( A__ , A__ , A__ , unittest.TestCase ): A = StableUnCLIPPipeline A = TEXT_TO_IMAGE_PARAMS A = TEXT_TO_IMAGE_BATCH_PARAMS A = TEXT_TO_IMAGE_IMAGE_PARAMS A = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false A = False def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = 32 SCREAMING_SNAKE_CASE_ : str = embedder_hidden_size # prior components torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : List[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Dict = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=_A,projection_dim=_A,intermediate_size=37,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1000,) ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : List[Any] = PriorTransformer( num_attention_heads=2,attention_head_dim=12,embedding_dim=_A,num_layers=1,) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Optional[int] = DDPMScheduler( variance_type="fixed_small_log",prediction_type="sample",num_train_timesteps=1000,clip_sample=_A,clip_sample_range=5.0,beta_schedule="squaredcos_cap_v2",) # regular denoising components torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : List[Any] = StableUnCLIPImageNormalizer(embedding_dim=_A ) SCREAMING_SNAKE_CASE_ : str = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Any = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = CLIPTextModel( CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=_A,projection_dim=32,intermediate_size=37,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1000,) ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Dict = UNetaDConditionModel( sample_size=32,in_channels=4,out_channels=4,down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"),up_block_types=("UpBlock2D", "CrossAttnUpBlock2D"),block_out_channels=(32, 64),attention_head_dim=(2, 4),class_embed_type="projection",projection_class_embeddings_input_dim=embedder_projection_dim * 2,cross_attention_dim=_A,layers_per_block=1,upcast_attention=_A,use_linear_projection=_A,) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Any = DDIMScheduler( beta_schedule="scaled_linear",beta_start=0.00085,beta_end=0.012,prediction_type="v_prediction",set_alpha_to_one=_A,steps_offset=1,) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Optional[int] = AutoencoderKL() SCREAMING_SNAKE_CASE_ : List[str] = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def __UpperCamelCase ( self : Optional[int],_A : int,_A : Optional[Any]=0 ): """simple docstring""" if str(_A ).startswith("mps" ): SCREAMING_SNAKE_CASE_ : int = torch.manual_seed(_A ) else: SCREAMING_SNAKE_CASE_ : Any = torch.Generator(device=_A ).manual_seed(_A ) SCREAMING_SNAKE_CASE_ : Any = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=_A ) def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=_A ) @slow @require_torch_gpu class a__ ( unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" ) SCREAMING_SNAKE_CASE_ : Any = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l",torch_dtype=torch.floataa ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE_ : int = torch.Generator(device="cpu" ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = pipe("anime turle",generator=_A,output_type="np" ) SCREAMING_SNAKE_CASE_ : Optional[Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_A,_A ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE_ : Union[str, Any] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l",torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE_ : int = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE_ : List[Any] = pipe( "anime turtle",prior_num_inference_steps=2,num_inference_steps=2,output_type="np",) SCREAMING_SNAKE_CASE_ : Dict = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
18
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def _snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Union[str, Any] = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE_ : List[str] = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def _snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : Dict , lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Optional[Any] = {"text": "string"} SCREAMING_SNAKE_CASE_ : Any = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE_ : List[str] = ( Features({feature: Value(lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE_ : Optional[Any] = TextDatasetReader(lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def _snake_case ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : List[str] = {"text": "string"} SCREAMING_SNAKE_CASE_ : List[str] = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase , split=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : Optional[int] ): """simple docstring""" if issubclass(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = text_path elif issubclass(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [text_path] SCREAMING_SNAKE_CASE_ : int = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Optional[int] = {"text": "string"} SCREAMING_SNAKE_CASE_ : List[str] = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) def _snake_case ( lowerCAmelCase : Dict , lowerCAmelCase : Dict , lowerCAmelCase : List[str]=("train",) ): """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) for split in splits: SCREAMING_SNAKE_CASE_ : int = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def _snake_case ( lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Union[str, Any] = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE_ : List[Any] = TextDatasetReader({"train": text_path} , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase ).read() _check_text_datasetdict(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def _snake_case ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = tmp_path / "cache" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" SCREAMING_SNAKE_CASE_ : Tuple = {"text": "string"} SCREAMING_SNAKE_CASE_ : Any = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE_ : Dict = ( Features({feature: Value(lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE_ : str = TextDatasetReader({"train": text_path} , features=lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_datasetdict(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def _snake_case ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any , lowerCAmelCase : Dict ): """simple docstring""" if split: SCREAMING_SNAKE_CASE_ : Optional[int] = {split: text_path} else: SCREAMING_SNAKE_CASE_ : List[Any] = "train" SCREAMING_SNAKE_CASE_ : Tuple = {"train": text_path, "test": text_path} SCREAMING_SNAKE_CASE_ : Any = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : List[str] = {"text": "string"} SCREAMING_SNAKE_CASE_ : str = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_datasetdict(lowerCAmelCase , lowerCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
18
1
import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def _snake_case ( lowerCAmelCase : int ): """simple docstring""" random.seed(lowerCAmelCase ) np.random.seed(lowerCAmelCase ) torch.manual_seed(lowerCAmelCase ) torch.cuda.manual_seed_all(lowerCAmelCase ) # ^^ safe to call this function even if cuda is not available class a__ : def __init__( self : Tuple,_A : Iterable[torch.nn.Parameter],_A : float = 0.9999,_A : float = 0.0,_A : int = 0,_A : bool = False,_A : Union[float, int] = 1.0,_A : Union[float, int] = 2 / 3,_A : Optional[Any] = None,_A : Dict[str, Any] = None,**_A : str,): """simple docstring""" if isinstance(_A,torch.nn.Module ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage`","1.0.0",_A,standard_warn=_A,) SCREAMING_SNAKE_CASE_ : str = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility SCREAMING_SNAKE_CASE_ : str = True if kwargs.get("max_value",_A ) is not None: SCREAMING_SNAKE_CASE_ : str = "The `max_value` argument is deprecated. Please use `decay` instead." deprecate("max_value","1.0.0",_A,standard_warn=_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = kwargs["max_value"] if kwargs.get("min_value",_A ) is not None: SCREAMING_SNAKE_CASE_ : Optional[int] = "The `min_value` argument is deprecated. Please use `min_decay` instead." deprecate("min_value","1.0.0",_A,standard_warn=_A ) SCREAMING_SNAKE_CASE_ : int = kwargs["min_value"] SCREAMING_SNAKE_CASE_ : Dict = list(_A ) SCREAMING_SNAKE_CASE_ : List[str] = [p.clone().detach() for p in parameters] if kwargs.get("device",_A ) is not None: SCREAMING_SNAKE_CASE_ : str = "The `device` argument is deprecated. Please use `to` instead." deprecate("device","1.0.0",_A,standard_warn=_A ) self.to(device=kwargs["device"] ) SCREAMING_SNAKE_CASE_ : Dict = None SCREAMING_SNAKE_CASE_ : Any = decay SCREAMING_SNAKE_CASE_ : List[str] = min_decay SCREAMING_SNAKE_CASE_ : Tuple = update_after_step SCREAMING_SNAKE_CASE_ : List[str] = use_ema_warmup SCREAMING_SNAKE_CASE_ : List[Any] = inv_gamma SCREAMING_SNAKE_CASE_ : List[Any] = power SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 SCREAMING_SNAKE_CASE_ : Union[str, Any] = None # set in `step()` SCREAMING_SNAKE_CASE_ : Dict = model_cls SCREAMING_SNAKE_CASE_ : Any = model_config @classmethod def __UpperCamelCase ( cls : Dict,_A : Tuple,_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = model_cls.load_config(_A,return_unused_kwargs=_A ) SCREAMING_SNAKE_CASE_ : Tuple = model_cls.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ : Optional[Any] = cls(model.parameters(),model_cls=_A,model_config=model.config ) ema_model.load_state_dict(_A ) return ema_model def __UpperCamelCase ( self : Optional[Any],_A : int ): """simple docstring""" if self.model_cls is None: raise ValueError("`save_pretrained` can only be used if `model_cls` was defined at __init__." ) if self.model_config is None: raise ValueError("`save_pretrained` can only be used if `model_config` was defined at __init__." ) SCREAMING_SNAKE_CASE_ : str = self.model_cls.from_config(self.model_config ) SCREAMING_SNAKE_CASE_ : Dict = self.state_dict() state_dict.pop("shadow_params",_A ) model.register_to_config(**_A ) self.copy_to(model.parameters() ) model.save_pretrained(_A ) def __UpperCamelCase ( self : str,_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = max(0,optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: SCREAMING_SNAKE_CASE_ : Optional[int] = 1 - (1 + step / self.inv_gamma) ** -self.power else: SCREAMING_SNAKE_CASE_ : List[str] = (1 + step) / (10 + step) SCREAMING_SNAKE_CASE_ : Union[str, Any] = min(_A,self.decay ) # make sure decay is not smaller than min_decay SCREAMING_SNAKE_CASE_ : Any = max(_A,self.min_decay ) return cur_decay_value @torch.no_grad() def __UpperCamelCase ( self : str,_A : Iterable[torch.nn.Parameter] ): """simple docstring""" if isinstance(_A,torch.nn.Module ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage.step`","1.0.0",_A,standard_warn=_A,) SCREAMING_SNAKE_CASE_ : Tuple = parameters.parameters() SCREAMING_SNAKE_CASE_ : int = list(_A ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. SCREAMING_SNAKE_CASE_ : Any = self.get_decay(self.optimization_step ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = decay SCREAMING_SNAKE_CASE_ : Tuple = 1 - decay SCREAMING_SNAKE_CASE_ : str = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params,_A ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): SCREAMING_SNAKE_CASE_ : Union[str, Any] = deepspeed.zero.GatheredParameters(_A,modifier_rank=_A ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(_A ) def __UpperCamelCase ( self : int,_A : Iterable[torch.nn.Parameter] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = list(_A ) for s_param, param in zip(self.shadow_params,_A ): param.data.copy_(s_param.to(param.device ).data ) def __UpperCamelCase ( self : Dict,_A : Any=None,_A : Union[str, Any]=None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ p.to(device=_A,dtype=_A ) if p.is_floating_point() else p.to(device=_A ) for p in self.shadow_params ] def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def __UpperCamelCase ( self : Optional[Any],_A : Iterable[torch.nn.Parameter] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = [param.detach().cpu().clone() for param in parameters] def __UpperCamelCase ( self : int,_A : Iterable[torch.nn.Parameter] ): """simple docstring""" if self.temp_stored_params is None: raise RuntimeError("This ExponentialMovingAverage has no `store()`ed weights " "to `restore()`" ) for c_param, param in zip(self.temp_stored_params,_A ): param.data.copy_(c_param.data ) # Better memory-wise. SCREAMING_SNAKE_CASE_ : Dict = None def __UpperCamelCase ( self : Union[str, Any],_A : dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = copy.deepcopy(_A ) SCREAMING_SNAKE_CASE_ : str = state_dict.get("decay",self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("Decay must be between 0 and 1" ) SCREAMING_SNAKE_CASE_ : Dict = state_dict.get("min_decay",self.min_decay ) if not isinstance(self.min_decay,_A ): raise ValueError("Invalid min_decay" ) SCREAMING_SNAKE_CASE_ : Any = state_dict.get("optimization_step",self.optimization_step ) if not isinstance(self.optimization_step,_A ): raise ValueError("Invalid optimization_step" ) SCREAMING_SNAKE_CASE_ : Any = state_dict.get("update_after_step",self.update_after_step ) if not isinstance(self.update_after_step,_A ): raise ValueError("Invalid update_after_step" ) SCREAMING_SNAKE_CASE_ : Optional[Any] = state_dict.get("use_ema_warmup",self.use_ema_warmup ) if not isinstance(self.use_ema_warmup,_A ): raise ValueError("Invalid use_ema_warmup" ) SCREAMING_SNAKE_CASE_ : Optional[Any] = state_dict.get("inv_gamma",self.inv_gamma ) if not isinstance(self.inv_gamma,(float, int) ): raise ValueError("Invalid inv_gamma" ) SCREAMING_SNAKE_CASE_ : int = state_dict.get("power",self.power ) if not isinstance(self.power,(float, int) ): raise ValueError("Invalid power" ) SCREAMING_SNAKE_CASE_ : str = state_dict.get("shadow_params",_A ) if shadow_params is not None: SCREAMING_SNAKE_CASE_ : int = shadow_params if not isinstance(self.shadow_params,_A ): raise ValueError("shadow_params must be a list" ) if not all(isinstance(_A,torch.Tensor ) for p in self.shadow_params ): raise ValueError("shadow_params must all be Tensors" )
18
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def _snake_case ( lowerCAmelCase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class a__ ( A__ , A__ , A__ , unittest.TestCase ): A = StableDiffusionLatentUpscalePipeline A = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'height', 'width', 'cross_attention_kwargs', 'negative_prompt_embeds', 'prompt_embeds', } A = PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'} A = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A = frozenset([] ) A = True @property def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = 1 SCREAMING_SNAKE_CASE_ : Optional[int] = 4 SCREAMING_SNAKE_CASE_ : Optional[int] = (16, 16) SCREAMING_SNAKE_CASE_ : Dict = floats_tensor((batch_size, num_channels) + sizes,rng=random.Random(0 ) ).to(_A ) return image def __UpperCamelCase ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : str = UNetaDConditionModel( act_fn="gelu",attention_head_dim=8,norm_num_groups=_A,block_out_channels=[32, 32, 64, 64],time_cond_proj_dim=160,conv_in_kernel=1,conv_out_kernel=1,cross_attention_dim=32,down_block_types=( "KDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", ),in_channels=8,mid_block_type=_A,only_cross_attention=_A,out_channels=5,resnet_time_scale_shift="scale_shift",time_embedding_type="fourier",timestep_post_act="gelu",up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D"),) SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 32, 64, 64],in_channels=3,out_channels=3,down_block_types=[ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", ],up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],latent_channels=4,) SCREAMING_SNAKE_CASE_ : int = EulerDiscreteScheduler(prediction_type="sample" ) SCREAMING_SNAKE_CASE_ : List[Any] = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1000,hidden_act="quick_gelu",projection_dim=512,) SCREAMING_SNAKE_CASE_ : Tuple = CLIPTextModel(_A ) SCREAMING_SNAKE_CASE_ : int = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = { "unet": model.eval(), "vae": vae.eval(), "scheduler": scheduler, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def __UpperCamelCase ( self : List[Any],_A : int,_A : Tuple=0 ): """simple docstring""" if str(_A ).startswith("mps" ): SCREAMING_SNAKE_CASE_ : Optional[int] = torch.manual_seed(_A ) else: SCREAMING_SNAKE_CASE_ : Dict = torch.Generator(device=_A ).manual_seed(_A ) SCREAMING_SNAKE_CASE_ : Tuple = { "prompt": "A painting of a squirrel eating a burger", "image": self.dummy_image.cpu(), "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = "cpu" SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : List[str] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ : Tuple = self.get_dummy_inputs(_A ) SCREAMING_SNAKE_CASE_ : Dict = pipe(**_A ).images SCREAMING_SNAKE_CASE_ : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape,(1, 256, 256, 3) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) SCREAMING_SNAKE_CASE_ : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A,1E-3 ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def __UpperCamelCase ( self : int ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" super().test_save_load_local(expected_max_difference=3E-3 ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3E-3 ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = [ "DDIMScheduler", "DDPMScheduler", "PNDMScheduler", "HeunDiscreteScheduler", "EulerAncestralDiscreteScheduler", "KDPM2DiscreteScheduler", "KDPM2AncestralDiscreteScheduler", "DPMSolverSDEScheduler", ] SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : Any = self.pipeline_class(**_A ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ : Any = self.get_dummy_inputs(_A ) SCREAMING_SNAKE_CASE_ : Optional[Any] = 2 SCREAMING_SNAKE_CASE_ : Optional[int] = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue SCREAMING_SNAKE_CASE_ : Tuple = getattr(_A,scheduler_enum.name ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = scheduler_cls.from_config(pipe.scheduler.config ) SCREAMING_SNAKE_CASE_ : Optional[int] = pipe(**_A )[0] outputs.append(_A ) assert check_same_shape(_A ) @require_torch_gpu @slow class a__ ( unittest.TestCase ): def __UpperCamelCase ( self : Dict ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = torch.manual_seed(33 ) SCREAMING_SNAKE_CASE_ : Optional[int] = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4",torch_dtype=torch.floataa ) pipe.to("cuda" ) SCREAMING_SNAKE_CASE_ : List[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler",torch_dtype=torch.floataa ) upscaler.to("cuda" ) SCREAMING_SNAKE_CASE_ : Tuple = "a photo of an astronaut high resolution, unreal engine, ultra realistic" SCREAMING_SNAKE_CASE_ : str = pipe(_A,generator=_A,output_type="latent" ).images SCREAMING_SNAKE_CASE_ : Optional[Any] = upscaler( prompt=_A,image=_A,num_inference_steps=20,guidance_scale=0,generator=_A,output_type="np",).images[0] SCREAMING_SNAKE_CASE_ : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy" ) assert np.abs((expected_image - image).mean() ) < 5E-2 def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = torch.manual_seed(33 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler",torch_dtype=torch.floataa ) upscaler.to("cuda" ) SCREAMING_SNAKE_CASE_ : Any = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas" SCREAMING_SNAKE_CASE_ : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png" ) SCREAMING_SNAKE_CASE_ : str = upscaler( prompt=_A,image=_A,num_inference_steps=20,guidance_scale=0,generator=_A,output_type="np",).images[0] SCREAMING_SNAKE_CASE_ : Any = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy" ) assert np.abs((expected_image - image).max() ) < 5E-2
18
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : List[Any] = logging.get_logger(__name__) __lowerCamelCase : List[Any] = { '''MIT/ast-finetuned-audioset-10-10-0.4593''': ( '''https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json''' ), } class a__ ( A__ ): A = 'audio-spectrogram-transformer' def __init__( self : Tuple,_A : Tuple=768,_A : str=12,_A : List[Any]=12,_A : Any=3072,_A : Optional[int]="gelu",_A : Optional[int]=0.0,_A : Optional[int]=0.0,_A : int=0.02,_A : Optional[int]=1E-12,_A : Tuple=16,_A : List[str]=True,_A : Union[str, Any]=10,_A : Tuple=10,_A : Optional[Any]=1024,_A : Tuple=128,**_A : str,): """simple docstring""" super().__init__(**_A ) SCREAMING_SNAKE_CASE_ : Any = hidden_size SCREAMING_SNAKE_CASE_ : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : str = num_attention_heads SCREAMING_SNAKE_CASE_ : Dict = intermediate_size SCREAMING_SNAKE_CASE_ : List[Any] = hidden_act SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] = initializer_range SCREAMING_SNAKE_CASE_ : Any = layer_norm_eps SCREAMING_SNAKE_CASE_ : Optional[int] = patch_size SCREAMING_SNAKE_CASE_ : Tuple = qkv_bias SCREAMING_SNAKE_CASE_ : str = frequency_stride SCREAMING_SNAKE_CASE_ : int = time_stride SCREAMING_SNAKE_CASE_ : Any = max_length SCREAMING_SNAKE_CASE_ : Optional[int] = num_mel_bins
18
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging __lowerCamelCase : Optional[int] = logging.get_logger(__name__) __lowerCamelCase : Tuple = { '''deepmind/language-perceiver''': '''https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json''', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class a__ ( A__ ): A = 'perceiver' def __init__( self : List[Any],_A : Tuple=256,_A : str=1280,_A : List[Any]=768,_A : Union[str, Any]=1,_A : Union[str, Any]=26,_A : List[str]=8,_A : List[Any]=8,_A : List[Any]=None,_A : List[Any]=None,_A : Union[str, Any]="kv",_A : Any=1,_A : int=1,_A : Dict="gelu",_A : Any=0.1,_A : int=0.02,_A : int=1E-12,_A : Any=True,_A : Optional[Any]=262,_A : List[Any]=2048,_A : str=56,_A : Optional[int]=[368, 496],_A : Dict=16,_A : Tuple=1920,_A : List[Any]=16,_A : str=[1, 16, 224, 224],**_A : Optional[Any],): """simple docstring""" super().__init__(**_A ) SCREAMING_SNAKE_CASE_ : Dict = num_latents SCREAMING_SNAKE_CASE_ : List[Any] = d_latents SCREAMING_SNAKE_CASE_ : Union[str, Any] = d_model SCREAMING_SNAKE_CASE_ : Optional[int] = num_blocks SCREAMING_SNAKE_CASE_ : List[Any] = num_self_attends_per_block SCREAMING_SNAKE_CASE_ : Tuple = num_self_attention_heads SCREAMING_SNAKE_CASE_ : List[str] = num_cross_attention_heads SCREAMING_SNAKE_CASE_ : List[Any] = qk_channels SCREAMING_SNAKE_CASE_ : Any = v_channels SCREAMING_SNAKE_CASE_ : Any = cross_attention_shape_for_attention SCREAMING_SNAKE_CASE_ : List[str] = self_attention_widening_factor SCREAMING_SNAKE_CASE_ : Any = cross_attention_widening_factor SCREAMING_SNAKE_CASE_ : List[Any] = hidden_act SCREAMING_SNAKE_CASE_ : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Any = initializer_range SCREAMING_SNAKE_CASE_ : List[Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : Tuple = use_query_residual # masked language modeling attributes SCREAMING_SNAKE_CASE_ : List[str] = vocab_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = max_position_embeddings # image classification attributes SCREAMING_SNAKE_CASE_ : Dict = image_size # flow attributes SCREAMING_SNAKE_CASE_ : List[Any] = train_size # multimodal autoencoding attributes SCREAMING_SNAKE_CASE_ : str = num_frames SCREAMING_SNAKE_CASE_ : Any = audio_samples_per_frame SCREAMING_SNAKE_CASE_ : Tuple = samples_per_patch SCREAMING_SNAKE_CASE_ : Optional[Any] = output_shape class a__ ( A__ ): @property def __UpperCamelCase ( self : List[str] ): """simple docstring""" if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ : List[str] = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE_ : str = {0: "batch", 1: "sequence"} return OrderedDict( [ ("inputs", dynamic_axis), ("attention_mask", dynamic_axis), ] ) @property def __UpperCamelCase ( self : List[Any] ): """simple docstring""" return 1E-4 def __UpperCamelCase ( self : List[str],_A : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"],_A : int = -1,_A : int = -1,_A : int = -1,_A : bool = False,_A : Optional[TensorType] = None,_A : int = 3,_A : int = 40,_A : int = 40,): """simple docstring""" if isinstance(_A,_A ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ : Tuple = compute_effective_axis_dimension( _A,fixed_dimension=OnnxConfig.default_fixed_batch,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ : Tuple = preprocessor.num_special_tokens_to_add(_A ) SCREAMING_SNAKE_CASE_ : Any = compute_effective_axis_dimension( _A,fixed_dimension=OnnxConfig.default_fixed_sequence,num_token_to_add=_A ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE_ : Optional[Any] = [" ".join(["a"] ) * seq_length] * batch_size SCREAMING_SNAKE_CASE_ : str = dict(preprocessor(_A,return_tensors=_A ) ) SCREAMING_SNAKE_CASE_ : List[str] = inputs.pop("input_ids" ) return inputs elif isinstance(_A,_A ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ : Any = compute_effective_axis_dimension(_A,fixed_dimension=OnnxConfig.default_fixed_batch ) SCREAMING_SNAKE_CASE_ : Optional[int] = self._generate_dummy_images(_A,_A,_A,_A ) SCREAMING_SNAKE_CASE_ : Any = dict(preprocessor(images=_A,return_tensors=_A ) ) SCREAMING_SNAKE_CASE_ : Any = inputs.pop("pixel_values" ) return inputs else: raise ValueError( "Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor." )
18
1
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def _snake_case ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : int=() , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Optional[Any]="no" , lowerCAmelCase : Optional[int]="29500" ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = False SCREAMING_SNAKE_CASE_ : Tuple = False if any(key.startswith("KAGGLE" ) for key in os.environ.keys() ): SCREAMING_SNAKE_CASE_ : int = True elif "IPython" in sys.modules: SCREAMING_SNAKE_CASE_ : Any = "google.colab" in str(sys.modules["IPython"].get_ipython() ) try: SCREAMING_SNAKE_CASE_ : Tuple = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f'Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.' ) if (in_colab or in_kaggle) and (os.environ.get("TPU_NAME" , lowerCAmelCase ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside " "your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if num_processes is None: SCREAMING_SNAKE_CASE_ : str = 8 SCREAMING_SNAKE_CASE_ : Optional[int] = PrepareForLaunch(lowerCAmelCase , distributed_type="TPU" ) print(f'Launching a training on {num_processes} TPU cores.' ) xmp.spawn(lowerCAmelCase , args=lowerCAmelCase , nprocs=lowerCAmelCase , start_method="fork" ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on one CPU." ) function(*lowerCAmelCase ) else: if num_processes is None: raise ValueError( "You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call." ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized " "inside your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if torch.cuda.is_initialized(): raise ValueError( "To launch a multi-GPU training from your notebook, you need to avoid running any instruction " "using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA " "function." ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=lowerCAmelCase , master_addr="127.0.01" , master_port=lowerCAmelCase , mixed_precision=lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : str = PrepareForLaunch(lowerCAmelCase , distributed_type="MULTI_GPU" ) print(f'Launching training on {num_processes} GPUs.' ) try: start_processes(lowerCAmelCase , args=lowerCAmelCase , nprocs=lowerCAmelCase , start_method="fork" ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( "CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. " "This likely stems from an outside import causing issues once the `notebook_launcher()` is called. " "Please review your imports and test them when running the `notebook_launcher()` to identify " "which one is problematic." ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): SCREAMING_SNAKE_CASE_ : List[Any] = "1" print("Launching training on MPS." ) elif torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on CPU." ) function(*lowerCAmelCase ) def _snake_case ( lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any]=() , lowerCAmelCase : Any=2 ): """simple docstring""" from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=lowerCAmelCase , master_addr="127.0.01" , master_port="29500" , accelerate_mixed_precision="no" , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu="yes" , ): SCREAMING_SNAKE_CASE_ : Any = PrepareForLaunch(lowerCAmelCase , debug=lowerCAmelCase ) start_processes(lowerCAmelCase , args=lowerCAmelCase , nprocs=lowerCAmelCase , start_method="fork" )
18
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class a__ ( yaml.SafeLoader ): def __UpperCamelCase ( self : str,_A : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = [self.constructed_objects[key_node] for key_node, _ in node.value] SCREAMING_SNAKE_CASE_ : List[str] = [tuple(_A ) if isinstance(_A,_A ) else key for key in keys] SCREAMING_SNAKE_CASE_ : Optional[int] = Counter(_A ) SCREAMING_SNAKE_CASE_ : Tuple = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F'Got duplicate yaml keys: {duplicate_keys}' ) def __UpperCamelCase ( self : Tuple,_A : Dict,_A : List[Any]=False ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = super().construct_mapping(_A,deep=_A ) self._check_no_duplicates_on_constructed_node(_A ) return mapping def _snake_case ( lowerCAmelCase : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: SCREAMING_SNAKE_CASE_ : List[Any] = full_content[1:].index("---" ) + 1 SCREAMING_SNAKE_CASE_ : int = "\n".join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(lowerCAmelCase ) class a__ ( A__ ): # class attributes A = {'train_eval_index'} # train-eval-index in the YAML metadata @classmethod def __UpperCamelCase ( cls : Any,_A : Path ): """simple docstring""" with open(_A,encoding="utf-8" ) as readme_file: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(_A ) else: return cls() def __UpperCamelCase ( self : Dict,_A : Path ): """simple docstring""" if path.exists(): with open(_A,encoding="utf-8" ) as readme_file: SCREAMING_SNAKE_CASE_ : int = readme_file.read() else: SCREAMING_SNAKE_CASE_ : Any = None SCREAMING_SNAKE_CASE_ : int = self._to_readme(_A ) with open(_A,"w",encoding="utf-8" ) as readme_file: readme_file.write(_A ) def __UpperCamelCase ( self : Optional[int],_A : Optional[str] = None ): """simple docstring""" if readme_content is not None: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = _split_yaml_from_readme(_A ) SCREAMING_SNAKE_CASE_ : Tuple = "---\n" + self.to_yaml_string() + "---\n" + content else: SCREAMING_SNAKE_CASE_ : Dict = "---\n" + self.to_yaml_string() + "---\n" return full_content @classmethod def __UpperCamelCase ( cls : Dict,_A : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = yaml.load(_A,Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields SCREAMING_SNAKE_CASE_ : Any = { (key.replace("-","_" ) if key.replace("-","_" ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**_A ) def __UpperCamelCase ( self : Dict ): """simple docstring""" return yaml.safe_dump( { (key.replace("_","-" ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() },sort_keys=_A,allow_unicode=_A,encoding="utf-8",).decode("utf-8" ) __lowerCamelCase : List[Any] = { '''image-classification''': [], '''translation''': [], '''image-segmentation''': [], '''fill-mask''': [], '''automatic-speech-recognition''': [], '''token-classification''': [], '''sentence-similarity''': [], '''audio-classification''': [], '''question-answering''': [], '''summarization''': [], '''zero-shot-classification''': [], '''table-to-text''': [], '''feature-extraction''': [], '''other''': [], '''multiple-choice''': [], '''text-classification''': [], '''text-to-image''': [], '''text2text-generation''': [], '''zero-shot-image-classification''': [], '''tabular-classification''': [], '''tabular-regression''': [], '''image-to-image''': [], '''tabular-to-text''': [], '''unconditional-image-generation''': [], '''text-retrieval''': [], '''text-to-speech''': [], '''object-detection''': [], '''audio-to-audio''': [], '''text-generation''': [], '''conversational''': [], '''table-question-answering''': [], '''visual-question-answering''': [], '''image-to-text''': [], '''reinforcement-learning''': [], '''voice-activity-detection''': [], '''time-series-forecasting''': [], '''document-question-answering''': [], } if __name__ == "__main__": from argparse import ArgumentParser __lowerCamelCase : List[Any] = ArgumentParser(usage='''Validate the yaml metadata block of a README.md file.''') ap.add_argument('''readme_filepath''') __lowerCamelCase : Dict = ap.parse_args() __lowerCamelCase : List[Any] = Path(args.readme_filepath) __lowerCamelCase : Optional[int] = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
18
1
__lowerCamelCase : List[Any] = 8.3144598 def _snake_case ( lowerCAmelCase : float , lowerCAmelCase : float ): """simple docstring""" if temperature < 0: raise Exception("Temperature cannot be less than 0 K" ) if molar_mass <= 0: raise Exception("Molar mass cannot be less than or equal to 0 kg/mol" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example __lowerCamelCase : Dict = 3_00 __lowerCamelCase : str = 28 __lowerCamelCase : Optional[Any] = rms_speed_of_molecule(temperature, molar_mass) print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
18
from __future__ import annotations from math import pi, sqrt def _snake_case ( lowerCAmelCase : float , lowerCAmelCase : float ): """simple docstring""" if inductance <= 0: raise ValueError("Inductance cannot be 0 or negative" ) elif capacitance <= 0: raise ValueError("Capacitance cannot be 0 or negative" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
18
1
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase : List[Any] = logging.get_logger(__name__) def _snake_case ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = os.path.abspath(lowerCAmelCase ) logger.info(f'Converting TensorFlow checkpoint from {tf_path}' ) # Load weights from TF model SCREAMING_SNAKE_CASE_ : Any = tf.train.list_variables(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = [] SCREAMING_SNAKE_CASE_ : Tuple = [] SCREAMING_SNAKE_CASE_ : Optional[Any] = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") SCREAMING_SNAKE_CASE_ : List[Any] = full_name.split("/" ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f'Skipping non-model layer {full_name}' ) continue if "optimizer" in full_name: logger.info(f'Skipping optimization layer {full_name}' ) continue if name[0] == "model": # ignore initial 'model' SCREAMING_SNAKE_CASE_ : List[Any] = name[1:] # figure out how many levels deep the name is SCREAMING_SNAKE_CASE_ : List[Any] = 0 for _name in name: if _name.startswith("layer_with_weights" ): depth += 1 else: break layer_depth.append(lowerCAmelCase ) # read data SCREAMING_SNAKE_CASE_ : Tuple = tf.train.load_variable(lowerCAmelCase , lowerCAmelCase ) names.append("/".join(lowerCAmelCase ) ) arrays.append(lowerCAmelCase ) logger.info(f'Read a total of {len(lowerCAmelCase ):,} layers' ) # Sanity check if len(set(lowerCAmelCase ) ) != 1: raise ValueError(f'Found layer names with different depths (layer depth {list(set(lowerCAmelCase ) )})' ) SCREAMING_SNAKE_CASE_ : List[Any] = list(set(lowerCAmelCase ) )[0] if layer_depth != 1: raise ValueError( "The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP" " heads." ) # convert layers logger.info("Converting weights..." ) for full_name, array in zip(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : int = full_name.split("/" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = model SCREAMING_SNAKE_CASE_ : int = [] for i, m_name in enumerate(lowerCAmelCase ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith("layer_with_weights" ): SCREAMING_SNAKE_CASE_ : int = int(m_name.split("-" )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(["embeddings", "LayerNorm"] ) SCREAMING_SNAKE_CASE_ : List[str] = getattr(lowerCAmelCase , "embeddings" ) SCREAMING_SNAKE_CASE_ : str = getattr(lowerCAmelCase , "LayerNorm" ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(["encoder", "layer", str(layer_num - 4 )] ) SCREAMING_SNAKE_CASE_ : Optional[int] = getattr(lowerCAmelCase , "encoder" ) SCREAMING_SNAKE_CASE_ : Tuple = getattr(lowerCAmelCase , "layer" ) SCREAMING_SNAKE_CASE_ : Dict = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(["pooler", "dense"] ) SCREAMING_SNAKE_CASE_ : Optional[int] = getattr(lowerCAmelCase , "pooler" ) SCREAMING_SNAKE_CASE_ : str = getattr(lowerCAmelCase , "dense" ) elif m_name == "embeddings": trace.append("embeddings" ) SCREAMING_SNAKE_CASE_ : Optional[Any] = getattr(lowerCAmelCase , "embeddings" ) if layer_num == 0: trace.append("word_embeddings" ) SCREAMING_SNAKE_CASE_ : List[str] = getattr(lowerCAmelCase , "word_embeddings" ) elif layer_num == 1: trace.append("position_embeddings" ) SCREAMING_SNAKE_CASE_ : str = getattr(lowerCAmelCase , "position_embeddings" ) elif layer_num == 2: trace.append("token_type_embeddings" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = getattr(lowerCAmelCase , "token_type_embeddings" ) else: raise ValueError(f'Unknown embedding layer with name {full_name}' ) trace.append("weight" ) SCREAMING_SNAKE_CASE_ : str = getattr(lowerCAmelCase , "weight" ) elif m_name == "_attention_layer": # self-attention layer trace.extend(["attention", "self"] ) SCREAMING_SNAKE_CASE_ : Optional[int] = getattr(lowerCAmelCase , "attention" ) SCREAMING_SNAKE_CASE_ : Dict = getattr(lowerCAmelCase , "self" ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(["attention", "output", "LayerNorm"] ) SCREAMING_SNAKE_CASE_ : List[str] = getattr(lowerCAmelCase , "attention" ) SCREAMING_SNAKE_CASE_ : int = getattr(lowerCAmelCase , "output" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = getattr(lowerCAmelCase , "LayerNorm" ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(["attention", "output", "dense"] ) SCREAMING_SNAKE_CASE_ : Tuple = getattr(lowerCAmelCase , "attention" ) SCREAMING_SNAKE_CASE_ : List[Any] = getattr(lowerCAmelCase , "output" ) SCREAMING_SNAKE_CASE_ : Optional[Any] = getattr(lowerCAmelCase , "dense" ) elif m_name == "_output_dense": # output dense trace.extend(["output", "dense"] ) SCREAMING_SNAKE_CASE_ : str = getattr(lowerCAmelCase , "output" ) SCREAMING_SNAKE_CASE_ : str = getattr(lowerCAmelCase , "dense" ) elif m_name == "_output_layer_norm": # output dense trace.extend(["output", "LayerNorm"] ) SCREAMING_SNAKE_CASE_ : Tuple = getattr(lowerCAmelCase , "output" ) SCREAMING_SNAKE_CASE_ : List[str] = getattr(lowerCAmelCase , "LayerNorm" ) elif m_name == "_key_dense": # attention key trace.append("key" ) SCREAMING_SNAKE_CASE_ : Optional[int] = getattr(lowerCAmelCase , "key" ) elif m_name == "_query_dense": # attention query trace.append("query" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = getattr(lowerCAmelCase , "query" ) elif m_name == "_value_dense": # attention value trace.append("value" ) SCREAMING_SNAKE_CASE_ : Any = getattr(lowerCAmelCase , "value" ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(["intermediate", "dense"] ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = getattr(lowerCAmelCase , "intermediate" ) SCREAMING_SNAKE_CASE_ : Dict = getattr(lowerCAmelCase , "dense" ) elif m_name == "_output_layer_norm": # output layer norm trace.append("output" ) SCREAMING_SNAKE_CASE_ : Tuple = getattr(lowerCAmelCase , "output" ) # weights & biases elif m_name in ["bias", "beta"]: trace.append("bias" ) SCREAMING_SNAKE_CASE_ : int = getattr(lowerCAmelCase , "bias" ) elif m_name in ["kernel", "gamma"]: trace.append("weight" ) SCREAMING_SNAKE_CASE_ : Any = getattr(lowerCAmelCase , "weight" ) else: logger.warning(f'Ignored {m_name}' ) # for certain layers reshape is necessary SCREAMING_SNAKE_CASE_ : Tuple = ".".join(lowerCAmelCase ) if re.match(R"(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)" , lowerCAmelCase ) or re.match( R"(\S+)\.attention\.output\.dense\.weight" , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : List[Any] = array.reshape(pointer.data.shape ) if "kernel" in full_name: SCREAMING_SNAKE_CASE_ : Tuple = array.transpose() if pointer.shape == array.shape: SCREAMING_SNAKE_CASE_ : List[Any] = torch.from_numpy(lowerCAmelCase ) else: raise ValueError( f'Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:' f' {array.shape}' ) logger.info(f'Successfully set variable {full_name} to PyTorch layer {trace}' ) return model def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : List[str] , lowerCAmelCase : int ): """simple docstring""" logger.info(f'Loading model based on config from {config_path}...' ) SCREAMING_SNAKE_CASE_ : int = BertConfig.from_json_file(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = BertModel(lowerCAmelCase ) # Load weights from checkpoint logger.info(f'Loading weights from checkpoint {tf_checkpoint_path}...' ) load_tfa_weights_in_bert(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Save pytorch-model logger.info(f'Saving PyTorch model to {pytorch_dump_path}...' ) torch.save(model.state_dict() , lowerCAmelCase ) if __name__ == "__main__": __lowerCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--tf_checkpoint_path''', type=str, required=True, help='''Path to the TensorFlow 2.x checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', type=str, required=True, help='''The config json file corresponding to the BERT model. This specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', type=str, required=True, help='''Path to the output PyTorch model (must include filename).''', ) __lowerCamelCase : List[Any] = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
18
def _snake_case ( lowerCAmelCase : list ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = len(lowerCAmelCase ) for i in range(1 , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : int = collection[i] SCREAMING_SNAKE_CASE_ : Any = 0 SCREAMING_SNAKE_CASE_ : Tuple = i - 1 while low <= high: SCREAMING_SNAKE_CASE_ : int = (low + high) // 2 if val < collection[mid]: SCREAMING_SNAKE_CASE_ : Optional[Any] = mid - 1 else: SCREAMING_SNAKE_CASE_ : Tuple = mid + 1 for j in range(lowerCAmelCase , lowerCAmelCase , -1 ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = collection[j - 1] SCREAMING_SNAKE_CASE_ : int = val return collection if __name__ == "__main__": __lowerCamelCase : Dict = input('''Enter numbers separated by a comma:\n''').strip() __lowerCamelCase : List[str] = [int(item) for item in user_input.split(''',''')] print(binary_insertion_sort(unsorted))
18
1