code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
def UpperCamelCase ( lowerCAmelCase__ = 100_0000 ):
'''simple docstring'''
lowercase = set(range(3 , lowerCAmelCase__ , 2 ) )
primes.add(2 )
for p in range(3 , lowerCAmelCase__ , 2 ):
if p not in primes:
continue
primes.difference_update(set(range(p * p , lowerCAmelCase__ , lowerCAmelCase__ ) ) )
lowercase = [float(lowerCAmelCase__ ) for n in range(limit + 1 )]
for p in primes:
for n in range(lowerCAmelCase__ , limit + 1 , lowerCAmelCase__ ):
phi[n] *= 1 - 1 / p
return int(sum(phi[2:] ) )
if __name__ == "__main__":
print(F'{solution() = }')
| 101 |
"""simple docstring"""
from collections.abc import Sequence
def _A ( UpperCamelCase_ : Sequence[float], UpperCamelCase_ : float) -> float:
'''simple docstring'''
return sum(c * (x**i) for i, c in enumerate(UpperCamelCase_))
def _A ( UpperCamelCase_ : Sequence[float], UpperCamelCase_ : float) -> float:
'''simple docstring'''
__lowercase = 0.0
for coeff in reversed(UpperCamelCase_):
__lowercase = result * x + coeff
return result
if __name__ == "__main__":
_a = (0.0, 0.0, 5.0, 9.3, 7.0)
_a = 10.0
print(evaluate_poly(poly, x))
print(horner(poly, x))
| 17 | 0 |
"""simple docstring"""
from ...utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_torch_available,
is_transformers_available,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .multicontrolnet import MultiControlNetModel
from .pipeline_controlnet import StableDiffusionControlNetPipeline
from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline
from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline
if is_transformers_available() and is_flax_available():
from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
| 102 |
"""simple docstring"""
import argparse
import pytorch_lightning as pl
import torch
from torch import nn
from transformers import LongformerForQuestionAnswering, LongformerModel
class _lowerCAmelCase ( pl.LightningModule ):
"""simple docstring"""
def __init__( self : Optional[Any], UpperCAmelCase__ : str ):
super().__init__()
__lowercase = model
__lowercase = 2
__lowercase = nn.Linear(self.model.config.hidden_size, self.num_labels )
def _lowercase ( self : Optional[int] ):
pass
def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str, UpperCamelCase_ : str) -> str:
'''simple docstring'''
__lowercase = LongformerModel.from_pretrained(UpperCamelCase_)
__lowercase = LightningModel(UpperCamelCase_)
__lowercase = torch.load(UpperCamelCase_, map_location=torch.device("cpu"))
lightning_model.load_state_dict(ckpt["state_dict"])
# init longformer question answering model
__lowercase = LongformerForQuestionAnswering.from_pretrained(UpperCamelCase_)
# transfer weights
longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict())
longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict())
longformer_for_qa.eval()
# save model
longformer_for_qa.save_pretrained(UpperCamelCase_)
print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""")
if __name__ == "__main__":
_a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--longformer_model',
default=None,
type=str,
required=True,
help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.',
)
parser.add_argument(
'--longformer_question_answering_ckpt_path',
default=None,
type=str,
required=True,
help='Path the official PyTorch Lightning Checkpoint.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
_a = parser.parse_args()
convert_longformer_qa_checkpoint_to_pytorch(
args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path
)
| 17 | 0 |
from datetime import datetime as dt
import os
from github import Github
A__ : List[str] = [
'''good first issue''',
'''good second issue''',
'''good difficult issue''',
'''feature request''',
'''new model''',
'''wip''',
]
def UpperCamelCase( ):
lowerCAmelCase_ : Union[str, Any] = Github(os.environ['''GITHUB_TOKEN'''] )
lowerCAmelCase_ : Tuple = g.get_repo('''huggingface/transformers''' )
lowerCAmelCase_ : int = repo.get_issues(state='''open''' )
for issue in open_issues:
lowerCAmelCase_ : Optional[Any] = sorted([comment for comment in issue.get_comments()] ,key=lambda __UpperCamelCase : i.created_at ,reverse=__UpperCamelCase )
lowerCAmelCase_ : Tuple = comments[0] if len(__UpperCamelCase ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.")
issue.edit(state='''closed''' )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would add stale comment to {issue.number}")
issue.create_comment(
'''This issue has been automatically marked as stale because it has not had '''
'''recent activity. If you think this still needs to be addressed '''
'''please comment on this thread.\n\nPlease note that issues that do not follow the '''
'''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) '''
'''are likely to be ignored.''' )
if __name__ == "__main__":
main()
| 103 |
"""simple docstring"""
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("TEST_SAGEMAKER" ,"False" ) ) is not True ,reason="Skipping test because should only be run when releasing minor transformers version" ,)
@pytest.mark.usefixtures("sm_env" )
@parameterized_class(
[
{
"framework": "pytorch",
"script": "run_glue_model_parallelism.py",
"model_name_or_path": "roberta-large",
"instance_type": "ml.p3dn.24xlarge",
"results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2},
},
{
"framework": "pytorch",
"script": "run_glue.py",
"model_name_or_path": "roberta-large",
"instance_type": "ml.p3dn.24xlarge",
"results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2},
},
] )
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def _lowercase ( self : Optional[int] ):
if self.framework == "pytorch":
subprocess.run(
F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split(), encoding="utf-8", check=UpperCAmelCase__, )
assert hasattr(self, "env" )
def _lowercase ( self : str, UpperCAmelCase__ : List[Any] ):
# configuration for running training on smdistributed Model Parallel
__lowercase = {
"enabled": True,
"processes_per_host": 8,
}
__lowercase = {
"enabled": True,
"parameters": {
"microbatches": 4,
"placement_strategy": "spread",
"pipeline": "interleaved",
"optimize": "speed",
"partitions": 4,
"ddp": True,
},
}
__lowercase = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options}
__lowercase = "trainer" if self.script == "run_glue.py" else "smtrainer"
# creates estimator
return HuggingFace(
entry_point=self.script, source_dir=self.env.test_path, role=self.env.role, image_uri=self.env.image_uri, base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""", instance_count=UpperCAmelCase__, instance_type=self.instance_type, debugger_hook_config=UpperCAmelCase__, hyperparameters={
**self.env.hyperparameters,
"model_name_or_path": self.model_name_or_path,
"max_steps": 5_0_0,
}, metric_definitions=self.env.metric_definitions, distribution=UpperCAmelCase__, py_version="py36", )
def _lowercase ( self : Tuple, UpperCAmelCase__ : int ):
TrainingJobAnalytics(UpperCAmelCase__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" )
@parameterized.expand([(1,)] )
def _lowercase ( self : str, UpperCAmelCase__ : Union[str, Any] ):
# create estimator
__lowercase = self.create_estimator(UpperCAmelCase__ )
# run training
estimator.fit()
# result dataframe
__lowercase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
__lowercase = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] )
__lowercase = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
__lowercase = (
Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds", 9_9_9_9_9_9 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy )
assert all(t <= self.results["eval_loss"] for t in eval_loss )
# dump tests result into json file to share in PR
with open(F"""{estimator.latest_training_job.name}.json""", "w" ) as outfile:
json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss}, UpperCAmelCase__ )
| 17 | 0 |
'''simple docstring'''
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowercase_ (lowerCamelCase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = ['image_processor', 'tokenizer']
SCREAMING_SNAKE_CASE : List[Any] = 'AutoImageProcessor'
SCREAMING_SNAKE_CASE : Union[str, Any] = 'AutoTokenizer'
def __init__( self : Dict ,lowercase__ : int ,lowercase__ : List[Any] ):
super().__init__(lowercase__ ,lowercase__ )
__lowercase = self.image_processor
def __call__( self : int ,lowercase__ : Dict=None ,lowercase__ : int=None ,lowercase__ : str=None ,**lowercase__ : str ):
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
__lowercase = self.tokenizer(lowercase__ ,return_tensors=lowercase__ ,**lowercase__ )
if images is not None:
__lowercase = self.image_processor(lowercase__ ,return_tensors=lowercase__ ,**lowercase__ )
if text is not None and images is not None:
__lowercase = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**lowercase__ ) ,tensor_type=lowercase__ )
def SCREAMING_SNAKE_CASE ( self : str ,*lowercase__ : Union[str, Any] ,**lowercase__ : Optional[Any] ):
return self.tokenizer.batch_decode(*lowercase__ ,**lowercase__ )
def SCREAMING_SNAKE_CASE ( self : Any ,*lowercase__ : Optional[int] ,**lowercase__ : Tuple ):
return self.tokenizer.decode(*lowercase__ ,**lowercase__ )
@property
def SCREAMING_SNAKE_CASE ( self : List[str] ):
return ["input_ids", "attention_mask", "pixel_values"]
| 104 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor
from .base import PipelineTool
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
__UpperCAmelCase : Tuple = "openai/whisper-base"
__UpperCAmelCase : Union[str, Any] = (
"This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the "
"transcribed text."
)
__UpperCAmelCase : List[str] = "transcriber"
__UpperCAmelCase : Optional[Any] = WhisperProcessor
__UpperCAmelCase : str = WhisperForConditionalGeneration
__UpperCAmelCase : List[str] = ["audio"]
__UpperCAmelCase : Tuple = ["text"]
def _lowercase ( self : str, UpperCAmelCase__ : int ):
return self.pre_processor(UpperCAmelCase__, return_tensors="pt" ).input_features
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Any] ):
return self.model.generate(inputs=UpperCAmelCase__ )
def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[int] ):
return self.pre_processor.batch_decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ )[0]
| 17 | 0 |
"""simple docstring"""
import unittest
from dataclasses import dataclass
import pytest
from accelerate.commands.config.config_args import SageMakerConfig
from accelerate.utils import ComputeEnvironment
from accelerate.utils.launch import _convert_nargs_to_dict
@dataclass
class __UpperCamelCase ( a__ ):
lowerCamelCase : List[str] =ComputeEnvironment.AMAZON_SAGEMAKER
lowerCamelCase : str =True
lowerCamelCase : Union[str, Any] ="""ml.p3.2xlarge"""
lowerCamelCase : str ="""accelerate_sagemaker_execution_role"""
lowerCamelCase : int ="""hf-sm"""
lowerCamelCase : int ="""us-east-1"""
lowerCamelCase : Tuple =1
lowerCamelCase : Any ="""accelerate-sagemaker-1"""
lowerCamelCase : str ="""1.6"""
lowerCamelCase : Tuple ="""4.4"""
lowerCamelCase : Optional[int] ="""train.py"""
lowerCamelCase : Optional[Any] =[
"""--model_name_or_path""",
"""bert""",
"""--do_train""",
"""False""",
"""--epochs""",
"""3""",
"""--learning_rate""",
"""5e-5""",
"""--max_steps""",
"""50.5""",
]
lowerCamelCase : Union[str, Any] =[
"""--model_name_or_path""",
"""bert""",
"""--do_train""",
"""--do_test""",
"""False""",
"""--do_predict""",
"""--epochs""",
"""3""",
"""--learning_rate""",
"""5e-5""",
"""--max_steps""",
"""50.5""",
]
class __UpperCamelCase ( unittest.TestCase ):
def __a ( self ) -> List[str]:
# If no defaults are changed, `to_kwargs` returns an empty dict.
a : str = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args )
assert isinstance(converted_args["model_name_or_path"] , lowerCAmelCase__ )
assert isinstance(converted_args["do_train"] , lowerCAmelCase__ )
assert isinstance(converted_args["epochs"] , lowerCAmelCase__ )
assert isinstance(converted_args["learning_rate"] , lowerCAmelCase__ )
assert isinstance(converted_args["max_steps"] , lowerCAmelCase__ )
with pytest.raises(lowerCAmelCase__ ):
_convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
| 105 |
"""simple docstring"""
import inspect
from typing import Optional, Union
import numpy as np
import PIL
import torch
from torch.nn import functional as F
from torchvision import transforms
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
DPMSolverMultistepScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.utils import (
PIL_INTERPOLATION,
randn_tensor,
)
def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str]) -> Optional[int]:
'''simple docstring'''
if isinstance(UpperCamelCase_, torch.Tensor):
return image
elif isinstance(UpperCamelCase_, PIL.Image.Image):
__lowercase = [image]
if isinstance(image[0], PIL.Image.Image):
__lowercase = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image]
__lowercase = np.concatenate(UpperCamelCase_, axis=0)
__lowercase = np.array(UpperCamelCase_).astype(np.floataa) / 255.0
__lowercase = image.transpose(0, 3, 1, 2)
__lowercase = 2.0 * image - 1.0
__lowercase = torch.from_numpy(UpperCamelCase_)
elif isinstance(image[0], torch.Tensor):
__lowercase = torch.cat(UpperCamelCase_, dim=0)
return image
def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : str, UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[Any]=0.9_995) -> int:
'''simple docstring'''
if not isinstance(UpperCamelCase_, np.ndarray):
__lowercase = True
__lowercase = va.device
__lowercase = va.cpu().numpy()
__lowercase = va.cpu().numpy()
__lowercase = np.sum(va * va / (np.linalg.norm(UpperCamelCase_) * np.linalg.norm(UpperCamelCase_)))
if np.abs(UpperCamelCase_) > DOT_THRESHOLD:
__lowercase = (1 - t) * va + t * va
else:
__lowercase = np.arccos(UpperCamelCase_)
__lowercase = np.sin(UpperCamelCase_)
__lowercase = theta_a * t
__lowercase = np.sin(UpperCamelCase_)
__lowercase = np.sin(theta_a - theta_t) / sin_theta_a
__lowercase = sin_theta_t / sin_theta_a
__lowercase = sa * va + sa * va
if inputs_are_torch:
__lowercase = torch.from_numpy(UpperCamelCase_).to(UpperCamelCase_)
return va
def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Union[str, Any]) -> int:
'''simple docstring'''
__lowercase = F.normalize(UpperCamelCase_, dim=-1)
__lowercase = F.normalize(UpperCamelCase_, dim=-1)
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)
def _A ( UpperCamelCase_ : Optional[int], UpperCamelCase_ : str) -> Optional[int]:
'''simple docstring'''
for param in model.parameters():
__lowercase = value
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
def __init__( self : Dict, UpperCAmelCase__ : AutoencoderKL, UpperCAmelCase__ : CLIPTextModel, UpperCAmelCase__ : CLIPModel, UpperCAmelCase__ : CLIPTokenizer, UpperCAmelCase__ : UNetaDConditionModel, UpperCAmelCase__ : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler], UpperCAmelCase__ : CLIPFeatureExtractor, UpperCAmelCase__ : Union[str, Any]=None, UpperCAmelCase__ : List[str]=None, UpperCAmelCase__ : Any=None, ):
super().__init__()
self.register_modules(
vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, clip_model=UpperCAmelCase__, tokenizer=UpperCAmelCase__, unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, feature_extractor=UpperCAmelCase__, coca_model=UpperCAmelCase__, coca_tokenizer=UpperCAmelCase__, coca_transform=UpperCAmelCase__, )
__lowercase = (
feature_extractor.size
if isinstance(feature_extractor.size, UpperCAmelCase__ )
else feature_extractor.size["shortest_edge"]
)
__lowercase = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std )
set_requires_grad(self.text_encoder, UpperCAmelCase__ )
set_requires_grad(self.clip_model, UpperCAmelCase__ )
def _lowercase ( self : Tuple, UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ):
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
__lowercase = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(UpperCAmelCase__ )
def _lowercase ( self : int ):
self.enable_attention_slicing(UpperCAmelCase__ )
def _lowercase ( self : str ):
set_requires_grad(self.vae, UpperCAmelCase__ )
def _lowercase ( self : Any ):
set_requires_grad(self.vae, UpperCAmelCase__ )
def _lowercase ( self : Union[str, Any] ):
set_requires_grad(self.unet, UpperCAmelCase__ )
def _lowercase ( self : Any ):
set_requires_grad(self.unet, UpperCAmelCase__ )
def _lowercase ( self : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : Optional[Any] ):
# get the original timestep using init_timestep
__lowercase = min(int(num_inference_steps * strength ), UpperCAmelCase__ )
__lowercase = max(num_inference_steps - init_timestep, 0 )
__lowercase = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def _lowercase ( self : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : int=None ):
if not isinstance(UpperCAmelCase__, torch.Tensor ):
raise ValueError(F"""`image` has to be of type `torch.Tensor` but is {type(UpperCAmelCase__ )}""" )
__lowercase = image.to(device=UpperCAmelCase__, dtype=UpperCAmelCase__ )
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
__lowercase = [
self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(UpperCAmelCase__ )
]
__lowercase = torch.cat(UpperCAmelCase__, dim=0 )
else:
__lowercase = self.vae.encode(UpperCAmelCase__ ).latent_dist.sample(UpperCAmelCase__ )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
__lowercase = 0.18_215 * init_latents
__lowercase = init_latents.repeat_interleave(UpperCAmelCase__, dim=0 )
__lowercase = randn_tensor(init_latents.shape, generator=UpperCAmelCase__, device=UpperCAmelCase__, dtype=UpperCAmelCase__ )
# get latents
__lowercase = self.scheduler.add_noise(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = init_latents
return latents
def _lowercase ( self : Optional[int], UpperCAmelCase__ : Dict ):
__lowercase = self.coca_transform(UpperCAmelCase__ ).unsqueeze(0 )
with torch.no_grad(), torch.cuda.amp.autocast():
__lowercase = self.coca_model.generate(transformed_image.to(device=self.device, dtype=self.coca_model.dtype ) )
__lowercase = self.coca_tokenizer.decode(generated[0].cpu().numpy() )
return generated.split("<end_of_text>" )[0].replace("<start_of_text>", "" ).rstrip(" .," )
def _lowercase ( self : Tuple, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Tuple ):
__lowercase = self.feature_extractor.preprocess(UpperCAmelCase__ )
__lowercase = torch.from_numpy(clip_image_input["pixel_values"][0] ).unsqueeze(0 ).to(self.device ).half()
__lowercase = self.clip_model.get_image_features(UpperCAmelCase__ )
__lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=UpperCAmelCase__ )
__lowercase = image_embeddings_clip.repeat_interleave(UpperCAmelCase__, dim=0 )
return image_embeddings_clip
@torch.enable_grad()
def _lowercase ( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[int], ):
__lowercase = latents.detach().requires_grad_()
__lowercase = self.scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ )
# predict the noise residual
__lowercase = self.unet(UpperCAmelCase__, UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__ ).sample
if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ):
__lowercase = self.scheduler.alphas_cumprod[timestep]
__lowercase = 1 - alpha_prod_t
# compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
__lowercase = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5
__lowercase = torch.sqrt(UpperCAmelCase__ )
__lowercase = pred_original_sample * (fac) + latents * (1 - fac)
elif isinstance(self.scheduler, UpperCAmelCase__ ):
__lowercase = self.scheduler.sigmas[index]
__lowercase = latents - sigma * noise_pred
else:
raise ValueError(F"""scheduler type {type(self.scheduler )} not supported""" )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
__lowercase = 1 / 0.18_215 * sample
__lowercase = self.vae.decode(UpperCAmelCase__ ).sample
__lowercase = (image / 2 + 0.5).clamp(0, 1 )
__lowercase = transforms.Resize(self.feature_extractor_size )(UpperCAmelCase__ )
__lowercase = self.normalize(UpperCAmelCase__ ).to(latents.dtype )
__lowercase = self.clip_model.get_image_features(UpperCAmelCase__ )
__lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=UpperCAmelCase__ )
__lowercase = spherical_dist_loss(UpperCAmelCase__, UpperCAmelCase__ ).mean() * clip_guidance_scale
__lowercase = -torch.autograd.grad(UpperCAmelCase__, UpperCAmelCase__ )[0]
if isinstance(self.scheduler, UpperCAmelCase__ ):
__lowercase = latents.detach() + grads * (sigma**2)
__lowercase = noise_pred_original
else:
__lowercase = noise_pred_original - torch.sqrt(UpperCAmelCase__ ) * grads
return noise_pred, latents
@torch.no_grad()
def __call__( self : str, UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image], UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image], UpperCAmelCase__ : Optional[str] = None, UpperCAmelCase__ : Optional[str] = None, UpperCAmelCase__ : Optional[int] = 5_1_2, UpperCAmelCase__ : Optional[int] = 5_1_2, UpperCAmelCase__ : float = 0.6, UpperCAmelCase__ : Optional[int] = 5_0, UpperCAmelCase__ : Optional[float] = 7.5, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[float] = 1_0_0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : float = 0.8, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, ):
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and len(UpperCAmelCase__ ) != batch_size:
raise ValueError(F"""You have passed {batch_size} batch_size, but only {len(UpperCAmelCase__ )} generators.""" )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" )
if isinstance(UpperCAmelCase__, torch.Generator ) and batch_size > 1:
__lowercase = [generator] + [None] * (batch_size - 1)
__lowercase = [
("model", self.coca_model is None),
("tokenizer", self.coca_tokenizer is None),
("transform", self.coca_transform is None),
]
__lowercase = [x[0] for x in coca_is_none if x[1]]
__lowercase = ", ".join(UpperCAmelCase__ )
# generate prompts with coca model if prompt is None
if content_prompt is None:
if len(UpperCAmelCase__ ):
raise ValueError(
F"""Content prompt is None and CoCa [{coca_is_none_str}] is None."""
F"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" )
__lowercase = self.get_image_description(UpperCAmelCase__ )
if style_prompt is None:
if len(UpperCAmelCase__ ):
raise ValueError(
F"""Style prompt is None and CoCa [{coca_is_none_str}] is None."""
F""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" )
__lowercase = self.get_image_description(UpperCAmelCase__ )
# get prompt text embeddings for content and style
__lowercase = self.tokenizer(
UpperCAmelCase__, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=UpperCAmelCase__, return_tensors="pt", )
__lowercase = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0]
__lowercase = self.tokenizer(
UpperCAmelCase__, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=UpperCAmelCase__, return_tensors="pt", )
__lowercase = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0]
__lowercase = slerp(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
# duplicate text embeddings for each generation per prompt
__lowercase = text_embeddings.repeat_interleave(UpperCAmelCase__, dim=0 )
# set timesteps
__lowercase = "offset" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() )
__lowercase = {}
if accepts_offset:
__lowercase = 1
self.scheduler.set_timesteps(UpperCAmelCase__, **UpperCAmelCase__ )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
self.scheduler.timesteps.to(self.device )
__lowercase ,__lowercase = self.get_timesteps(UpperCAmelCase__, UpperCAmelCase__, self.device )
__lowercase = timesteps[:1].repeat(UpperCAmelCase__ )
# Preprocess image
__lowercase = preprocess(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = self.prepare_latents(
UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, text_embeddings.dtype, self.device, UpperCAmelCase__ )
__lowercase = preprocess(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = self.prepare_latents(
UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, text_embeddings.dtype, self.device, UpperCAmelCase__ )
__lowercase = slerp(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
if clip_guidance_scale > 0:
__lowercase = self.get_clip_image_embeddings(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = self.get_clip_image_embeddings(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = slerp(
UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
__lowercase = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
__lowercase = content_text_input.input_ids.shape[-1]
__lowercase = self.tokenizer([""], padding="max_length", max_length=UpperCAmelCase__, return_tensors="pt" )
__lowercase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt
__lowercase = uncond_embeddings.repeat_interleave(UpperCAmelCase__, dim=0 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
__lowercase = torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
__lowercase = (batch_size, self.unet.config.in_channels, height // 8, width // 8)
__lowercase = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not work reproducibly on mps
__lowercase = torch.randn(UpperCAmelCase__, generator=UpperCAmelCase__, device="cpu", dtype=UpperCAmelCase__ ).to(
self.device )
else:
__lowercase = torch.randn(UpperCAmelCase__, generator=UpperCAmelCase__, device=self.device, dtype=UpperCAmelCase__ )
else:
if latents.shape != latents_shape:
raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" )
__lowercase = latents.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
__lowercase = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
__lowercase = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
__lowercase = {}
if accepts_eta:
__lowercase = eta
# check if the scheduler accepts generator
__lowercase = "generator" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
if accepts_generator:
__lowercase = generator
with self.progress_bar(total=UpperCAmelCase__ ):
for i, t in enumerate(UpperCAmelCase__ ):
# expand the latents if we are doing classifier free guidance
__lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
__lowercase = self.scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ )
# predict the noise residual
__lowercase = self.unet(UpperCAmelCase__, UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__ ).sample
# perform classifier free guidance
if do_classifier_free_guidance:
__lowercase ,__lowercase = noise_pred.chunk(2 )
__lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# perform clip guidance
if clip_guidance_scale > 0:
__lowercase = (
text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings
)
__lowercase ,__lowercase = self.cond_fn(
UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, )
# compute the previous noisy sample x_t -> x_t-1
__lowercase = self.scheduler.step(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, **UpperCAmelCase__ ).prev_sample
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
__lowercase = 1 / 0.18_215 * latents
__lowercase = self.vae.decode(UpperCAmelCase__ ).sample
__lowercase = (image / 2 + 0.5).clamp(0, 1 )
__lowercase = image.cpu().permute(0, 2, 3, 1 ).numpy()
if output_type == "pil":
__lowercase = self.numpy_to_pil(UpperCAmelCase__ )
if not return_dict:
return (image, None)
return StableDiffusionPipelineOutput(images=UpperCAmelCase__, nsfw_content_detected=UpperCAmelCase__ )
| 17 | 0 |
"""simple docstring"""
from typing import List, Optional, TypeVar
from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .info import DatasetInfo
from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets
from .splits import NamedSplit
from .utils import logging
from .utils.py_utils import Literal
__UpperCamelCase : int = logging.get_logger(__name__)
__UpperCamelCase : int = TypeVar('''DatasetType''', Dataset, IterableDataset)
def __SCREAMING_SNAKE_CASE ( A_ , A_ = None , A_ = None , A_ = None , A_ = None , A_ = "first_exhausted" , ):
from .arrow_dataset import Dataset
from .iterable_dataset import IterableDataset
if not datasets:
raise ValueError('''Unable to interleave an empty list of datasets.''' )
for i, dataset in enumerate(A_ ):
if not isinstance(A_ , (Dataset, IterableDataset) ):
if isinstance(A_ , (DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} '
'''is an empty dataset dictionary.''' )
raise ValueError(
f'Dataset at position {i} has at least one split: {list(A_ )}\n'
f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(A_ ) )}\']' )
raise ValueError(
f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(A_ ).__name__}.' )
if i == 0:
lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = (
(Dataset, IterableDataset) if isinstance(A_ , A_ ) else (IterableDataset, Dataset)
)
elif not isinstance(A_ , A_ ):
raise ValueError(
f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' )
if stopping_strategy not in ["first_exhausted", "all_exhausted"]:
raise ValueError(f'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' )
if dataset_type is Dataset:
return _interleave_map_style_datasets(
A_ , A_ , A_ , info=A_ , split=A_ , stopping_strategy=A_ )
else:
return _interleave_iterable_datasets(
A_ , A_ , A_ , info=A_ , split=A_ , stopping_strategy=A_ )
def __SCREAMING_SNAKE_CASE ( A_ , A_ = None , A_ = None , A_ = 0 , ):
if not dsets:
raise ValueError('''Unable to concatenate an empty list of datasets.''' )
for i, dataset in enumerate(A_ ):
if not isinstance(A_ , (Dataset, IterableDataset) ):
if isinstance(A_ , (DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} '
'''is an empty dataset dictionary.''' )
raise ValueError(
f'Dataset at position {i} has at least one split: {list(A_ )}\n'
f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(A_ ) )}\']' )
raise ValueError(
f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(A_ ).__name__}.' )
if i == 0:
lowerCAmelCase__ ,lowerCAmelCase__ : Optional[Any] = (
(Dataset, IterableDataset) if isinstance(A_ , A_ ) else (IterableDataset, Dataset)
)
elif not isinstance(A_ , A_ ):
raise ValueError(
f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' )
if dataset_type is Dataset:
return _concatenate_map_style_datasets(A_ , info=A_ , split=A_ , axis=A_ )
else:
return _concatenate_iterable_datasets(A_ , info=A_ , split=A_ , axis=A_ )
| 106 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class _lowerCAmelCase :
"""simple docstring"""
__UpperCAmelCase : Tuple = XGLMConfig
__UpperCAmelCase : Optional[Any] = {}
__UpperCAmelCase : Union[str, Any] = "gelu"
def __init__( self : Optional[int], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int]=1_4, UpperCAmelCase__ : str=7, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[Any]=True, UpperCAmelCase__ : int=True, UpperCAmelCase__ : List[str]=9_9, UpperCAmelCase__ : Union[str, Any]=3_2, UpperCAmelCase__ : Union[str, Any]=2, UpperCAmelCase__ : Union[str, Any]=4, UpperCAmelCase__ : Tuple=3_7, UpperCAmelCase__ : List[Any]="gelu", UpperCAmelCase__ : List[str]=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Tuple=5_1_2, UpperCAmelCase__ : Optional[Any]=0.02, ):
__lowercase = parent
__lowercase = batch_size
__lowercase = seq_length
__lowercase = is_training
__lowercase = use_input_mask
__lowercase = use_labels
__lowercase = vocab_size
__lowercase = d_model
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = ffn_dim
__lowercase = activation_function
__lowercase = activation_dropout
__lowercase = attention_dropout
__lowercase = max_position_embeddings
__lowercase = initializer_range
__lowercase = None
__lowercase = 0
__lowercase = 2
__lowercase = 1
def _lowercase ( self : Union[str, Any] ):
return XGLMConfig.from_pretrained("facebook/xglm-564M" )
def _lowercase ( self : Tuple ):
__lowercase = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length], self.vocab_size ), clip_value_min=0, clip_value_max=3 )
__lowercase = None
if self.use_input_mask:
__lowercase = random_attention_mask([self.batch_size, self.seq_length] )
__lowercase = self.get_config()
__lowercase = floats_tensor([self.num_hidden_layers, self.num_attention_heads], 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def _lowercase ( self : List[Any] ):
return XGLMConfig(
vocab_size=self.vocab_size, d_model=self.hidden_size, num_layers=self.num_hidden_layers, attention_heads=self.num_attention_heads, ffn_dim=self.ffn_dim, activation_function=self.activation_function, activation_dropout=self.activation_dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, use_cache=UpperCAmelCase__, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, return_dict=UpperCAmelCase__, )
def _lowercase ( self : Dict ):
__lowercase = self.prepare_config_and_inputs()
(
(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,
) = config_and_inputs
__lowercase = {
"input_ids": input_ids,
"head_mask": head_mask,
}
return config, inputs_dict
@require_tf
class _lowerCAmelCase ( lowercase ,lowercase ,unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
__UpperCAmelCase : List[str] = (TFXGLMForCausalLM,) if is_tf_available() else ()
__UpperCAmelCase : Any = (
{"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {}
)
__UpperCAmelCase : Optional[Any] = False
__UpperCAmelCase : List[str] = False
__UpperCAmelCase : int = False
def _lowercase ( self : Optional[Any] ):
__lowercase = TFXGLMModelTester(self )
__lowercase = ConfigTester(self, config_class=UpperCAmelCase__, n_embd=3_7 )
def _lowercase ( self : Any ):
self.config_tester.run_common_tests()
@slow
def _lowercase ( self : List[str] ):
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowercase = TFXGLMModel.from_pretrained(UpperCAmelCase__ )
self.assertIsNotNone(UpperCAmelCase__ )
@unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." )
def _lowercase ( self : int ):
super().test_resize_token_embeddings()
@require_tf
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[int]=True ):
__lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
__lowercase = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]], dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
__lowercase = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1]
# fmt: on
__lowercase = model.generate(UpperCAmelCase__, do_sample=UpperCAmelCase__, num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist(), UpperCAmelCase__ )
@slow
def _lowercase ( self : List[Any] ):
__lowercase = XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
__lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
tf.random.set_seed(0 )
__lowercase = tokenizer("Today is a nice day and", return_tensors="tf" )
__lowercase = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(":/CPU:0" ):
__lowercase = model.generate(UpperCAmelCase__, do_sample=UpperCAmelCase__, seed=[7, 0] )
__lowercase = tokenizer.decode(output_ids[0], skip_special_tokens=UpperCAmelCase__ )
__lowercase = (
"Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due"
)
self.assertEqual(UpperCAmelCase__, UpperCAmelCase__ )
@slow
def _lowercase ( self : Dict ):
__lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
__lowercase = XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
__lowercase = "left"
# use different length sentences to test batching
__lowercase = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When",
"Hello, my dog is a little",
]
__lowercase = tokenizer(UpperCAmelCase__, return_tensors="tf", padding=UpperCAmelCase__ )
__lowercase = inputs["input_ids"]
__lowercase = model.generate(input_ids=UpperCAmelCase__, attention_mask=inputs["attention_mask"], max_new_tokens=1_2 )
__lowercase = tokenizer(sentences[0], return_tensors="tf" ).input_ids
__lowercase = model.generate(input_ids=UpperCAmelCase__, max_new_tokens=1_2 )
__lowercase = tokenizer(sentences[1], return_tensors="tf" ).input_ids
__lowercase = model.generate(input_ids=UpperCAmelCase__, max_new_tokens=1_2 )
__lowercase = tokenizer.batch_decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ )
__lowercase = tokenizer.decode(output_non_padded[0], skip_special_tokens=UpperCAmelCase__ )
__lowercase = tokenizer.decode(output_padded[0], skip_special_tokens=UpperCAmelCase__ )
__lowercase = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When left padding is applied, the sequence will be "
"a single",
"Hello, my dog is a little bit of a shy one, but he is very friendly",
]
self.assertListEqual(UpperCAmelCase__, UpperCAmelCase__ )
self.assertListEqual(UpperCAmelCase__, [non_padded_sentence, padded_sentence] )
| 17 | 0 |
from __future__ import annotations
from scipy.special import comb # type: ignore
class snake_case__ :
"""simple docstring"""
def __init__( self : Any , __lowerCamelCase : list[tuple[float, float]] ) -> Tuple:
a = list_of_points
# Degree determines the flexibility of the curve.
# Degree = 1 will produce a straight line.
a = len(__lowerCamelCase ) - 1
def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : float ) -> list[float]:
assert 0 <= t <= 1, "Time t must be between 0 and 1."
a = []
for i in range(len(self.list_of_points ) ):
# basis function for each i
output_values.append(
comb(self.degree , __lowerCamelCase ) * ((1 - t) ** (self.degree - i)) * (t**i) )
# the basis must sum up to 1 for it to produce a valid Bezier curve.
assert round(sum(__lowerCamelCase ) , 5 ) == 1
return output_values
def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : float ) -> tuple[float, float]:
assert 0 <= t <= 1, "Time t must be between 0 and 1."
a = self.basis_function(__lowerCamelCase )
a = 0.0
a = 0.0
for i in range(len(self.list_of_points ) ):
# For all points, sum up the product of i-th basis function and i-th point.
x += basis_function[i] * self.list_of_points[i][0]
y += basis_function[i] * self.list_of_points[i][1]
return (x, y)
def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : float = 0.01 ) -> List[str]:
from matplotlib import pyplot as plt # type: ignore
a = [] # x coordinates of points to plot
a = [] # y coordinates of points to plot
a = 0.0
while t <= 1:
a = self.bezier_curve_function(__lowerCamelCase )
to_plot_x.append(value[0] )
to_plot_y.append(value[1] )
t += step_size
a = [i[0] for i in self.list_of_points]
a = [i[1] for i in self.list_of_points]
plt.plot(
__lowerCamelCase , __lowerCamelCase , color="blue" , label="Curve of Degree " + str(self.degree ) , )
plt.scatter(__lowerCamelCase , __lowerCamelCase , color="red" , label="Control Points" )
plt.legend()
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1
BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2
BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
| 107 |
"""simple docstring"""
import time
from contextlib import contextmanager
from pathlib import Path
import pytest
import requests
from huggingface_hub.hf_api import HfApi, HfFolder
_a = '__DUMMY_TRANSFORMERS_USER__'
_a = 'Dummy User'
_a = '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'
_a = 'https://hub-ci.huggingface.co'
_a = CI_HUB_ENDPOINT + '/datasets/{repo_id}/resolve/{revision}/{path}'
_a = CI_HUB_ENDPOINT + '/{repo_id}/resolve/{revision}/{filename}'
_a = Path('~/.huggingface/hub_ci_token').expanduser()
@pytest.fixture
def _A ( UpperCamelCase_ : List[Any]) -> Tuple:
'''simple docstring'''
monkeypatch.setattr(
"huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE", UpperCamelCase_)
@pytest.fixture
def _A ( UpperCamelCase_ : int) -> List[Any]:
'''simple docstring'''
monkeypatch.setattr("datasets.config.HF_ENDPOINT", UpperCamelCase_)
monkeypatch.setattr("datasets.config.HUB_DATASETS_URL", UpperCamelCase_)
@pytest.fixture
def _A ( UpperCamelCase_ : str) -> Dict:
'''simple docstring'''
monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token", UpperCamelCase_)
@pytest.fixture
def _A ( UpperCamelCase_ : Optional[Any], UpperCamelCase_ : List[Any]) -> List[str]:
'''simple docstring'''
HfFolder.save_token(UpperCamelCase_)
yield
HfFolder.delete_token()
@pytest.fixture(scope="session")
def _A ( ) -> List[Any]:
'''simple docstring'''
return HfApi(endpoint=UpperCamelCase_)
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : HfApi) -> List[Any]:
'''simple docstring'''
__lowercase = HfFolder.get_token()
HfFolder.save_token(UpperCamelCase_)
yield CI_HUB_USER_TOKEN
if previous_token is not None:
HfFolder.save_token(UpperCamelCase_)
@pytest.fixture
def _A ( UpperCamelCase_ : Dict) -> int:
'''simple docstring'''
def _cleanup_repo(UpperCamelCase_ : Optional[int]):
hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset")
return _cleanup_repo
@pytest.fixture
def _A ( UpperCamelCase_ : str) -> Any:
'''simple docstring'''
@contextmanager
def _temporary_repo(UpperCamelCase_ : Any):
try:
yield repo_id
finally:
cleanup_repo(UpperCamelCase_)
return _temporary_repo
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : str, UpperCamelCase_ : Optional[int]) -> List[Any]:
'''simple docstring'''
__lowercase = F"""repo_txt_data-{int(time.time() * 10E3)}"""
__lowercase = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_)
hf_api.upload_file(
token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data/text_data.txt", repo_id=UpperCamelCase_, repo_type="dataset", )
yield repo_id
try:
hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset")
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : Any, UpperCamelCase_ : Dict) -> Optional[int]:
'''simple docstring'''
return hf_private_dataset_repo_txt_data_
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : int, UpperCamelCase_ : Optional[int]) -> int:
'''simple docstring'''
__lowercase = F"""repo_zipped_txt_data-{int(time.time() * 10E3)}"""
__lowercase = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_)
hf_api.upload_file(
token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data.zip", repo_id=UpperCamelCase_, repo_type="dataset", )
yield repo_id
try:
hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset")
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Dict, UpperCamelCase_ : Any) -> int:
'''simple docstring'''
return hf_private_dataset_repo_zipped_txt_data_
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : List[str], UpperCamelCase_ : List[str]) -> List[Any]:
'''simple docstring'''
__lowercase = F"""repo_zipped_img_data-{int(time.time() * 10E3)}"""
__lowercase = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_)
hf_api.upload_file(
token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data.zip", repo_id=UpperCamelCase_, repo_type="dataset", )
yield repo_id
try:
hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset")
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str], UpperCamelCase_ : List[str]) -> str:
'''simple docstring'''
return hf_private_dataset_repo_zipped_img_data_
| 17 | 0 |
"""simple docstring"""
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
'''EleutherAI/gpt-j-6B''': '''https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json''',
# See all GPT-J models at https://huggingface.co/models?filter=gpt_j
}
class SCREAMING_SNAKE_CASE__ ( lowercase ):
"""simple docstring"""
a : Any ="gptj"
a : Any ={
"max_position_embeddings": "n_positions",
"hidden_size": "n_embd",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self , snake_case__=50_400 , snake_case__=2_048 , snake_case__=4_096 , snake_case__=28 , snake_case__=16 , snake_case__=64 , snake_case__=None , snake_case__="gelu_new" , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=1e-5 , snake_case__=0.02 , snake_case__=True , snake_case__=50_256 , snake_case__=50_256 , snake_case__=False , **snake_case__ , ):
"""simple docstring"""
lowerCAmelCase : Any = vocab_size
lowerCAmelCase : Tuple = n_positions
lowerCAmelCase : List[Any] = n_embd
lowerCAmelCase : Any = n_layer
lowerCAmelCase : List[Any] = n_head
lowerCAmelCase : Optional[int] = n_inner
lowerCAmelCase : List[str] = rotary_dim
lowerCAmelCase : Dict = activation_function
lowerCAmelCase : Dict = resid_pdrop
lowerCAmelCase : List[Any] = embd_pdrop
lowerCAmelCase : List[str] = attn_pdrop
lowerCAmelCase : Optional[int] = layer_norm_epsilon
lowerCAmelCase : Optional[int] = initializer_range
lowerCAmelCase : int = use_cache
lowerCAmelCase : Dict = bos_token_id
lowerCAmelCase : List[str] = eos_token_id
super().__init__(
bos_token_id=snake_case__ , eos_token_id=snake_case__ , tie_word_embeddings=snake_case__ , **snake_case__ )
class SCREAMING_SNAKE_CASE__ ( lowercase ):
"""simple docstring"""
def __init__( self , snake_case__ , snake_case__ = "default" , snake_case__ = None , snake_case__ = False , ):
"""simple docstring"""
super().__init__(snake_case__ , task=snake_case__ , patching_specs=snake_case__ , use_past=snake_case__ )
if not getattr(self._config , "pad_token_id" , snake_case__ ):
# TODO: how to do that better?
lowerCAmelCase : Any = 0
@property
def lowercase__ ( self ):
"""simple docstring"""
lowerCAmelCase : Dict = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} )
if self.use_past:
self.fill_with_past_key_values_(snake_case__ , direction="inputs" )
lowerCAmelCase : int = {0: "batch", 1: "past_sequence + sequence"}
else:
lowerCAmelCase : Optional[int] = {0: "batch", 1: "sequence"}
return common_inputs
@property
def lowercase__ ( self ):
"""simple docstring"""
return self._config.n_layer
@property
def lowercase__ ( self ):
"""simple docstring"""
return self._config.n_head
def lowercase__ ( self , snake_case__ , snake_case__ = -1 , snake_case__ = -1 , snake_case__ = False , snake_case__ = None , ):
"""simple docstring"""
lowerCAmelCase : Tuple = super(snake_case__ , self ).generate_dummy_inputs(
snake_case__ , batch_size=snake_case__ , seq_length=snake_case__ , is_pair=snake_case__ , framework=snake_case__ )
# We need to order the input in the way they appears in the forward()
lowerCAmelCase : List[str] = OrderedDict({"input_ids": common_inputs["input_ids"]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
lowerCAmelCase , lowerCAmelCase : Dict = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
lowerCAmelCase : Dict = seqlen + 2
lowerCAmelCase : Dict = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
lowerCAmelCase : Union[str, Any] = [
(torch.zeros(snake_case__ ), torch.zeros(snake_case__ )) for _ in range(self.num_layers )
]
lowerCAmelCase : Optional[Any] = common_inputs["attention_mask"]
if self.use_past:
lowerCAmelCase : Optional[Any] = ordered_inputs["attention_mask"].dtype
lowerCAmelCase : Union[str, Any] = torch.cat(
[ordered_inputs["attention_mask"], torch.ones(snake_case__ , snake_case__ , dtype=snake_case__ )] , dim=1 )
return ordered_inputs
@property
def lowercase__ ( self ):
"""simple docstring"""
return 13
| 108 |
"""simple docstring"""
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_a = logging.get_logger(__name__)
_a = {
'huggingface/time-series-transformer-tourism-monthly': (
'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json'
),
# See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer
}
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
__UpperCAmelCase : int = "time_series_transformer"
__UpperCAmelCase : Any = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
"num_hidden_layers": "encoder_layers",
}
def __init__( self : int, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : str = "student_t", UpperCAmelCase__ : str = "nll", UpperCAmelCase__ : int = 1, UpperCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7], UpperCAmelCase__ : Optional[Union[str, bool]] = "mean", UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : int = 3_2, UpperCAmelCase__ : int = 3_2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : str = "gelu", UpperCAmelCase__ : int = 6_4, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : int = 1_0_0, UpperCAmelCase__ : float = 0.02, UpperCAmelCase__ : Any=True, **UpperCAmelCase__ : List[str], ):
# time series specific configuration
__lowercase = prediction_length
__lowercase = context_length or prediction_length
__lowercase = distribution_output
__lowercase = loss
__lowercase = input_size
__lowercase = num_time_features
__lowercase = lags_sequence
__lowercase = scaling
__lowercase = num_dynamic_real_features
__lowercase = num_static_real_features
__lowercase = num_static_categorical_features
if cardinality and num_static_categorical_features > 0:
if len(UpperCAmelCase__ ) != num_static_categorical_features:
raise ValueError(
"The cardinality should be a list of the same length as `num_static_categorical_features`" )
__lowercase = cardinality
else:
__lowercase = [0]
if embedding_dimension and num_static_categorical_features > 0:
if len(UpperCAmelCase__ ) != num_static_categorical_features:
raise ValueError(
"The embedding dimension should be a list of the same length as `num_static_categorical_features`" )
__lowercase = embedding_dimension
else:
__lowercase = [min(5_0, (cat + 1) // 2 ) for cat in self.cardinality]
__lowercase = num_parallel_samples
# Transformer architecture configuration
__lowercase = input_size * len(UpperCAmelCase__ ) + self._number_of_features
__lowercase = d_model
__lowercase = encoder_attention_heads
__lowercase = decoder_attention_heads
__lowercase = encoder_ffn_dim
__lowercase = decoder_ffn_dim
__lowercase = encoder_layers
__lowercase = decoder_layers
__lowercase = dropout
__lowercase = attention_dropout
__lowercase = activation_dropout
__lowercase = encoder_layerdrop
__lowercase = decoder_layerdrop
__lowercase = activation_function
__lowercase = init_std
__lowercase = use_cache
super().__init__(is_encoder_decoder=UpperCAmelCase__, **UpperCAmelCase__ )
@property
def _lowercase ( self : Optional[Any] ):
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 17 | 0 |
"""simple docstring"""
A: Dict = 8.314_4598
def _snake_case ( UpperCamelCase : float , UpperCamelCase : float ):
if temperature < 0:
raise Exception("""Temperature cannot be less than 0 K""" )
if molar_mass <= 0:
raise Exception("""Molar mass cannot be less than or equal to 0 kg/mol""" )
else:
return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
# example
A: Dict = 3_0_0
A: Dict = 2_8
A: str = rms_speed_of_molecule(temperature, molar_mass)
print(f"""Vrms of Nitrogen gas at 300 K is {vrms} m/s""")
| 109 |
"""simple docstring"""
import unittest
from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available
from transformers.pipelines import pipeline
from transformers.pipelines.document_question_answering import apply_tesseract
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_detectrona,
require_pytesseract,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
from transformers.image_utils import load_image
else:
class _lowerCAmelCase :
"""simple docstring"""
@staticmethod
def _lowercase ( *UpperCAmelCase__ : Tuple, **UpperCAmelCase__ : List[Any] ):
pass
def _A ( UpperCamelCase_ : Union[str, Any]) -> Any:
'''simple docstring'''
return None
# This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace,
# so we can expect it to be available.
_a = (
'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png'
)
@is_pipeline_test
@require_torch
@require_vision
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : Tuple = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING
@require_pytesseract
@require_vision
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Optional[Any] ):
__lowercase = pipeline(
"document-question-answering", model=UpperCAmelCase__, tokenizer=UpperCAmelCase__, image_processor=UpperCAmelCase__ )
__lowercase = INVOICE_URL
__lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) )
__lowercase = "What is the placebo?"
__lowercase = [
{
"image": load_image(UpperCAmelCase__ ),
"question": question,
},
{
"image": image,
"question": question,
},
{
"image": image,
"question": question,
"word_boxes": word_boxes,
},
]
return dqa_pipeline, examples
def _lowercase ( self : int, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Any ):
__lowercase = dqa_pipeline(UpperCAmelCase__, top_k=2 )
self.assertEqual(
UpperCAmelCase__, [
[
{"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ ), "start": ANY(UpperCAmelCase__ ), "end": ANY(UpperCAmelCase__ )},
{"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ ), "start": ANY(UpperCAmelCase__ ), "end": ANY(UpperCAmelCase__ )},
]
]
* 3, )
@require_torch
@require_detectrona
@require_pytesseract
def _lowercase ( self : Dict ):
__lowercase = pipeline("document-question-answering", model="hf-internal-testing/tiny-random-layoutlmv2" )
__lowercase = INVOICE_URL
__lowercase = "How many cats are there?"
__lowercase = [
{"score": 0.0_001, "answer": "oy 2312/2019", "start": 3_8, "end": 3_9},
{"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 3_8, "end": 4_0},
]
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), UpperCAmelCase__ )
__lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), UpperCAmelCase__ )
# This image does not detect ANY text in it, meaning layoutlmv2 should fail.
# Empty answer probably
__lowercase = "./tests/fixtures/tests_samples/COCO/000000039769.png"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(UpperCAmelCase__, [] )
# We can optionnally pass directly the words and bounding boxes
__lowercase = "./tests/fixtures/tests_samples/COCO/000000039769.png"
__lowercase = []
__lowercase = []
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, words=UpperCAmelCase__, boxes=UpperCAmelCase__, top_k=2 )
self.assertEqual(UpperCAmelCase__, [] )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def _lowercase ( self : List[str] ):
__lowercase = pipeline(
"document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
[
{"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6},
],
]
* 2, )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def _lowercase ( self : Dict ):
__lowercase = pipeline(
"document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", max_seq_len=5_0, )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3},
{"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3},
{"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
[
{"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3},
{"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6},
]
]
* 2, )
@slow
@require_torch
@require_pytesseract
@require_vision
def _lowercase ( self : Optional[Any] ):
__lowercase = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=UpperCAmelCase__ )
__lowercase = pipeline(
"document-question-answering", model="impira/layoutlm-document-qa", tokenizer=UpperCAmelCase__, revision="3dc6de3", )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3},
], )
__lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3},
], )
__lowercase = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
[
{"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3},
]
]
* 2, )
__lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) )
# This model should also work if `image` is set to None
__lowercase = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3},
], )
@slow
@require_torch
@require_pytesseract
@require_vision
def _lowercase ( self : Union[str, Any] ):
__lowercase = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=UpperCAmelCase__ )
__lowercase = pipeline(
"document-question-answering", model="impira/layoutlm-document-qa", tokenizer=UpperCAmelCase__, revision="3dc6de3", max_seq_len=5_0, )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
[
{"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6},
]
]
* 2, )
__lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) )
# This model should also work if `image` is set to None
__lowercase = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
@slow
@require_torch
def _lowercase ( self : Dict ):
__lowercase = pipeline(
"document-question-answering", model="naver-clova-ix/donut-base-finetuned-docvqa", tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ), feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa", )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), [{"answer": "us-001"}] )
@require_tf
@unittest.skip("Document question answering not implemented in TF" )
def _lowercase ( self : List[Any] ):
pass
| 17 | 0 |
def _a ( SCREAMING_SNAKE_CASE ):
"""simple docstring"""
lowercase__ = generate_pascal_triangle(SCREAMING_SNAKE_CASE )
for row_idx in range(SCREAMING_SNAKE_CASE ):
# Print left spaces
for _ in range(num_rows - row_idx - 1 ):
print(end=''' ''' )
# Print row values
for col_idx in range(row_idx + 1 ):
if col_idx != row_idx:
print(triangle[row_idx][col_idx] , end=''' ''' )
else:
print(triangle[row_idx][col_idx] , end='''''' )
print()
def _a ( SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
raise TypeError('''The input value of \'num_rows\' should be \'int\'''' )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
'''The input value of \'num_rows\' should be greater than or equal to 0''' )
lowercase__ = []
for current_row_idx in range(SCREAMING_SNAKE_CASE ):
lowercase__ = populate_current_row(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
triangle.append(SCREAMING_SNAKE_CASE )
return triangle
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
"""simple docstring"""
lowercase__ = [-1] * (current_row_idx + 1)
# first and last elements of current row are equal to 1
lowercase__ , lowercase__ = 1, 1
for current_col_idx in range(1 , SCREAMING_SNAKE_CASE ):
calculate_current_element(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
return current_row
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ):
"""simple docstring"""
lowercase__ = triangle[current_row_idx - 1][current_col_idx - 1]
lowercase__ = triangle[current_row_idx - 1][current_col_idx]
lowercase__ = above_to_left_elt + above_to_right_elt
def _a ( SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
raise TypeError('''The input value of \'num_rows\' should be \'int\'''' )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
'''The input value of \'num_rows\' should be greater than or equal to 0''' )
lowercase__ = [[1]]
for row_index in range(1 , SCREAMING_SNAKE_CASE ):
lowercase__ = [0] + result[-1] + [0]
lowercase__ = row_index + 1
# Calculate the number of distinct elements in a row
lowercase__ = sum(divmod(SCREAMING_SNAKE_CASE , 2 ) )
lowercase__ = [
temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 )
]
lowercase__ = row_first_half[: (row_index + 1) // 2]
row_second_half.reverse()
lowercase__ = row_first_half + row_second_half
result.append(SCREAMING_SNAKE_CASE )
return result
def _a ( ):
"""simple docstring"""
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None:
lowercase__ = f'{func.__name__}({value})'
lowercase__ = timeit(f'__main__.{call}' , setup='''import __main__''' )
# print(f"{call:38} = {func(value)} -- {timing:.4f} seconds")
print(f'{call:38} -- {timing:.4f} seconds' )
for value in range(15 ): # (1, 7, 14):
for func in (generate_pascal_triangle, generate_pascal_triangle_optimized):
benchmark_a_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 110 |
"""simple docstring"""
import argparse
import json
import os
import re
import shutil
import torch
from transformers import BioGptConfig, BioGptForCausalLM
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
from transformers.utils import WEIGHTS_NAME, logging
logging.set_verbosity_warning()
_a = 2
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Dict, *, # begin keyword-only arguments
UpperCAmelCase__ : str="<s>", UpperCAmelCase__ : Tuple="<pad>", UpperCAmelCase__ : str="</s>", UpperCAmelCase__ : Optional[Any]="<unk>", UpperCAmelCase__ : List[Any]=None, ):
__lowercase ,__lowercase ,__lowercase ,__lowercase = bos, unk, pad, eos
__lowercase = []
__lowercase = []
__lowercase = {}
__lowercase = self.add_symbol(UpperCAmelCase__ )
__lowercase = self.add_symbol(UpperCAmelCase__ )
__lowercase = self.add_symbol(UpperCAmelCase__ )
__lowercase = self.add_symbol(UpperCAmelCase__ )
if extra_special_symbols:
for s in extra_special_symbols:
self.add_symbol(UpperCAmelCase__ )
__lowercase = len(self.symbols )
def __eq__( self : List[str], UpperCAmelCase__ : Dict ):
return self.indices == other.indices
def __getitem__( self : Optional[int], UpperCAmelCase__ : List[str] ):
if idx < len(self.symbols ):
return self.symbols[idx]
return self.unk_word
def __len__( self : str ):
return len(self.symbols )
def __contains__( self : Any, UpperCAmelCase__ : Optional[Any] ):
return sym in self.indices
@classmethod
def _lowercase ( cls : List[Any], UpperCAmelCase__ : Optional[Any] ):
__lowercase = cls()
d.add_from_file(UpperCAmelCase__ )
return d
def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[Any]=1, UpperCAmelCase__ : str=False ):
if word in self.indices and not overwrite:
__lowercase = self.indices[word]
__lowercase = self.count[idx] + n
return idx
else:
__lowercase = len(self.symbols )
__lowercase = idx
self.symbols.append(UpperCAmelCase__ )
self.count.append(UpperCAmelCase__ )
return idx
def _lowercase ( self : Any, UpperCAmelCase__ : str ):
return 0
def _lowercase ( self : Tuple, UpperCAmelCase__ : List[Any] ):
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
try:
with open(UpperCAmelCase__, "r", encoding="utf-8" ) as fd:
self.add_from_file(UpperCAmelCase__ )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception("Incorrect encoding detected in {}, please rebuild the dataset".format(UpperCAmelCase__ ) )
return
__lowercase = f.readlines()
__lowercase = self._load_meta(UpperCAmelCase__ )
for line in lines[indices_start_line:]:
try:
__lowercase ,__lowercase = line.rstrip().rsplit(" ", 1 )
if field == "#fairseq:overwrite":
__lowercase = True
__lowercase ,__lowercase = line.rsplit(" ", 1 )
else:
__lowercase = False
__lowercase = int(UpperCAmelCase__ )
__lowercase = line
if word in self and not overwrite:
raise RuntimeError(
"Duplicate word found when loading Dictionary: '{}'. "
"Duplicate words can overwrite earlier ones by adding the "
"#fairseq:overwrite flag at the end of the corresponding row "
"in the dictionary file. If using the Camembert model, please "
"download an updated copy of the model file.".format(UpperCAmelCase__ ) )
self.add_symbol(UpperCAmelCase__, n=UpperCAmelCase__, overwrite=UpperCAmelCase__ )
except ValueError:
raise ValueError("Incorrect dictionary format, expected '<token> <cnt> [flags]'" )
def _A ( UpperCamelCase_ : int) -> str:
'''simple docstring'''
__lowercase = dict((re.sub(r"@@$", "", UpperCamelCase_), v) if k.endswith("@@") else (re.sub(r"$", "</w>", UpperCamelCase_), v) for k, v in d.items())
__lowercase = "<s> <pad> </s> <unk>".split()
# restore the special tokens
for k in keep_keys:
del da[F"""{k}</w>"""]
__lowercase = d[k] # restore
return da
def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str) -> List[Any]:
'''simple docstring'''
if not os.path.exists(UpperCamelCase_):
raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""")
os.makedirs(UpperCamelCase_, exist_ok=UpperCamelCase_)
print(F"""Writing results to {pytorch_dump_folder_path}""")
# handle various types of models
__lowercase = os.path.join(UpperCamelCase_, "checkpoint.pt")
if not os.path.isfile(UpperCamelCase_):
raise ValueError(F"""path to the file {checkpoint_file} does not exist!""")
__lowercase = torch.load(UpperCamelCase_, map_location="cpu")
__lowercase = chkpt["cfg"]["model"]
# dicts
__lowercase = os.path.join(UpperCamelCase_, "dict.txt")
if not os.path.isfile(UpperCamelCase_):
raise ValueError(F"""path to the file {dict_file} does not exist!""")
__lowercase = Dictionary.load(UpperCamelCase_)
__lowercase = rewrite_dict_keys(src_dict.indices)
__lowercase = len(UpperCamelCase_)
__lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["vocab_file"])
print(F"""Generating {src_vocab_file} of {src_vocab_size} records""")
with open(UpperCamelCase_, "w", encoding="utf-8") as f:
f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_))
# merges_file (bpecodes)
__lowercase = os.path.join(UpperCamelCase_, "bpecodes")
if not os.path.isfile(UpperCamelCase_):
raise ValueError(F"""path to the file {bpecodes_file} does not exist!""")
__lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["merges_file"])
shutil.copyfile(UpperCamelCase_, UpperCamelCase_)
# model config
__lowercase = os.path.join(UpperCamelCase_, "config.json")
__lowercase = {
"activation_dropout": args["activation_dropout"],
"architectures": ["BioGptForCausalLM"],
"attention_probs_dropout_prob": args["attention_dropout"],
"bos_token_id": 0,
"eos_token_id": 2,
"hidden_act": args["activation_fn"],
"hidden_dropout_prob": args["dropout"],
"hidden_size": args["decoder_embed_dim"],
"initializer_range": 0.02,
"intermediate_size": args["decoder_ffn_embed_dim"],
"layer_norm_eps": 1E-12,
"layerdrop": args["decoder_layerdrop"],
"max_position_embeddings": args["max_target_positions"],
"model_type": "biogpt",
"num_attention_heads": args["decoder_attention_heads"],
"num_hidden_layers": args["decoder_layers"],
"pad_token_id": 1,
"scale_embedding": not args["no_scale_embedding"],
"tie_word_embeddings": args["share_decoder_input_output_embed"],
"vocab_size": src_vocab_size,
}
# good hparam defaults to start with
print(F"""Generating {biogpt_model_config_file}""")
with open(UpperCamelCase_, "w", encoding="utf-8") as f:
f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_))
# tokenizer config
__lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_)
__lowercase = {
"bos_token": "<s>",
"eos_token": "</s>",
"model_max_length": 1024,
"pad_token": "<pad>",
"special_tokens_map_file": None,
"tokenizer_class": "BioGptTokenizer",
"unk_token": "<unk>",
}
print(F"""Generating {biogpt_tokenizer_config_file}""")
with open(UpperCamelCase_, "w", encoding="utf-8") as f:
f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_))
# model
__lowercase = chkpt["model"]
# remove unneeded keys
__lowercase = [
"decoder.version",
]
for k in ignore_keys:
model_state_dict.pop(UpperCamelCase_, UpperCamelCase_)
__lowercase = list(model_state_dict.keys())
for layer_name in layer_names:
if layer_name.endswith("output_projection.weight"):
__lowercase = model_state_dict.pop(UpperCamelCase_)
else:
__lowercase = model_state_dict.pop(UpperCamelCase_)
__lowercase = BioGptConfig.from_pretrained(UpperCamelCase_)
__lowercase = BioGptForCausalLM(UpperCamelCase_)
# check that it loads ok
model_new.load_state_dict(UpperCamelCase_)
# save
__lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_)
print(F"""Generating {pytorch_weights_dump_path}""")
torch.save(UpperCamelCase_, UpperCamelCase_)
print("Conversion is done!")
if __name__ == "__main__":
_a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--biogpt_checkpoint_path',
default=None,
type=str,
required=True,
help=(
'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,'
' bpecodes, etc.'
),
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
_a = parser.parse_args()
convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
| 17 | 0 |
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class lowercase ( unittest.TestCase ):
@slow
def a__ ( self ) -> Union[str, Any]:
_A : List[Any] = FlaxMTaForConditionalGeneration.from_pretrained("""google/mt5-small""" )
_A : Optional[int] = AutoTokenizer.from_pretrained("""google/mt5-small""" )
_A : Optional[Any] = tokenizer("""Hello there""" , return_tensors="""np""" ).input_ids
_A : Optional[int] = tokenizer("""Hi I am""" , return_tensors="""np""" ).input_ids
_A : Union[str, Any] = shift_tokens_right(UpperCAmelCase__ , model.config.pad_token_id , model.config.decoder_start_token_id )
_A : Optional[Any] = model(UpperCAmelCase__ , decoder_input_ids=UpperCAmelCase__ ).logits
_A : Optional[Any] = optax.softmax_cross_entropy(UpperCAmelCase__ , onehot(UpperCAmelCase__ , logits.shape[-1] ) ).mean()
_A : Tuple = -(labels.shape[-1] * loss.item())
_A : int = -84.9127
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
| 26 |
"""simple docstring"""
from __future__ import annotations
from typing import Any
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Any, UpperCAmelCase__ : int ):
__lowercase = num_of_nodes
__lowercase = []
__lowercase = {}
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : int, UpperCAmelCase__ : int ):
self.m_edges.append([u_node, v_node, weight] )
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : int ):
if self.m_component[u_node] == u_node:
return u_node
return self.find_component(self.m_component[u_node] )
def _lowercase ( self : List[Any], UpperCAmelCase__ : int ):
if self.m_component[u_node] != u_node:
for k in self.m_component:
__lowercase = self.find_component(UpperCAmelCase__ )
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : list[int], UpperCAmelCase__ : int, UpperCAmelCase__ : int ):
if component_size[u_node] <= component_size[v_node]:
__lowercase = v_node
component_size[v_node] += component_size[u_node]
self.set_component(UpperCAmelCase__ )
elif component_size[u_node] >= component_size[v_node]:
__lowercase = self.find_component(UpperCAmelCase__ )
component_size[u_node] += component_size[v_node]
self.set_component(UpperCAmelCase__ )
def _lowercase ( self : Any ):
__lowercase = []
__lowercase = 0
__lowercase = [-1] * self.m_num_of_nodes
# A list of components (initialized to all of the nodes)
for node in range(self.m_num_of_nodes ):
self.m_component.update({node: node} )
component_size.append(1 )
__lowercase = self.m_num_of_nodes
while num_of_components > 1:
for edge in self.m_edges:
__lowercase ,__lowercase ,__lowercase = edge
__lowercase = self.m_component[u]
__lowercase = self.m_component[v]
if u_component != v_component:
for component in (u_component, v_component):
if (
minimum_weight_edge[component] == -1
or minimum_weight_edge[component][2] > w
):
__lowercase = [u, v, w]
for edge in minimum_weight_edge:
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
__lowercase ,__lowercase ,__lowercase = edge
__lowercase = self.m_component[u]
__lowercase = self.m_component[v]
if u_component != v_component:
mst_weight += w
self.union(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" )
num_of_components -= 1
__lowercase = [-1] * self.m_num_of_nodes
print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" )
def _A ( ) -> None:
'''simple docstring'''
if __name__ == "__main__":
import doctest
doctest.testmod()
| 17 | 0 |
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class lowercase_ ( metaclass=__lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : int = ["keras_nlp"]
def __init__( self : str , *_UpperCAmelCase : Dict , **_UpperCAmelCase : Union[str, Any] ):
requires_backends(self , ['keras_nlp'] )
| 315 |
"""simple docstring"""
from math import sqrt
def _A ( UpperCamelCase_ : int) -> int:
'''simple docstring'''
__lowercase = 0
for i in range(1, int(sqrt(UpperCamelCase_) + 1)):
if n % i == 0 and i != sqrt(UpperCamelCase_):
total += i + n // i
elif i == sqrt(UpperCamelCase_):
total += i
return total - n
def _A ( UpperCamelCase_ : int = 10000) -> int:
'''simple docstring'''
__lowercase = sum(
i
for i in range(1, UpperCamelCase_)
if sum_of_divisors(sum_of_divisors(UpperCamelCase_)) == i and sum_of_divisors(UpperCamelCase_) != i)
return total
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 17 | 0 |
from __future__ import annotations
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> float:
if not nums:
raise ValueError('''List is empty''' )
return sum(UpperCamelCase_ ) / len(UpperCamelCase_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 338 |
"""simple docstring"""
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
_a = _symbol_database.Default()
_a = _descriptor_pool.Default().AddSerializedFile(
b'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03'
)
_a = globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals)
if _descriptor._USE_C_DESCRIPTORS is False:
_a = None
_a = b'H\003'
# (generated by protobuf compiler, but `_TRAINERSPEC` is not defined)
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001"
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001"
_a = 45
_a = 15_81
_a = 15_17
_a = 15_70
_a = 15_84
_a = 17_93
_a = 17_95
_a = 19_16
_a = 18_64
_a = 19_05
_a = 19_19
_a = 24_29
_a = 22_08
_a = 24_18
_a = 23_23
_a = 24_07
# @@protoc_insertion_point(module_scope)
| 17 | 0 |
'''simple docstring'''
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
a__ : Optional[int] =16
a__ : List[str] =32
def lowercase__ ( __lowercase : Accelerator , __lowercase : int = 16 , __lowercase : str = "bert-base-cased" ) -> List[str]:
"""simple docstring"""
__UpperCamelCase = AutoTokenizer.from_pretrained(UpperCamelCase_ )
__UpperCamelCase = load_dataset('glue' , 'mrpc' )
def tokenize_function(__lowercase : Optional[Any] ):
# max_length=None => use the model max length (it's actually the default)
__UpperCamelCase = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
__UpperCamelCase = datasets.map(
UpperCamelCase_ , batched=UpperCamelCase_ , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=UpperCamelCase_ )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
__UpperCamelCase = tokenized_datasets.rename_column('label' , 'labels' )
def collate_fn(__lowercase : Tuple ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(UpperCamelCase_ , padding='max_length' , max_length=128 , return_tensors='pt' )
return tokenizer.pad(UpperCamelCase_ , padding='longest' , return_tensors='pt' )
# Instantiate dataloaders.
__UpperCamelCase = DataLoader(
tokenized_datasets['train'] , shuffle=UpperCamelCase_ , collate_fn=UpperCamelCase_ , batch_size=UpperCamelCase_ )
__UpperCamelCase = DataLoader(
tokenized_datasets['validation'] , shuffle=UpperCamelCase_ , collate_fn=UpperCamelCase_ , batch_size=UpperCamelCase_ )
return train_dataloader, eval_dataloader
def lowercase__ ( __lowercase : Tuple , __lowercase : Tuple ) -> Tuple:
"""simple docstring"""
__UpperCamelCase = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__UpperCamelCase = config['lr']
__UpperCamelCase = int(config['num_epochs'] )
__UpperCamelCase = int(config['seed'] )
__UpperCamelCase = int(config['batch_size'] )
__UpperCamelCase = args.model_name_or_path
set_seed(UpperCamelCase_ )
__UpperCamelCase , __UpperCamelCase = get_dataloaders(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__UpperCamelCase = AutoModelForSequenceClassification.from_pretrained(UpperCamelCase_ , return_dict=UpperCamelCase_ )
# Instantiate optimizer
__UpperCamelCase = (
AdamW
if accelerator.state.deepspeed_plugin is None
or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
__UpperCamelCase = optimizer_cls(params=model.parameters() , lr=UpperCamelCase_ )
if accelerator.state.deepspeed_plugin is not None:
__UpperCamelCase = accelerator.state.deepspeed_plugin.deepspeed_config[
'gradient_accumulation_steps'
]
else:
__UpperCamelCase = 1
__UpperCamelCase = (len(UpperCamelCase_ ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
__UpperCamelCase = get_linear_schedule_with_warmup(
optimizer=UpperCamelCase_ , num_warmup_steps=0 , num_training_steps=UpperCamelCase_ , )
else:
__UpperCamelCase = DummyScheduler(UpperCamelCase_ , total_num_steps=UpperCamelCase_ , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
# We need to keep track of how many total steps we have iterated over
__UpperCamelCase = 0
# We also need to keep track of the stating epoch so files are named properly
__UpperCamelCase = 0
# Now we train the model
__UpperCamelCase = evaluate.load('glue' , 'mrpc' )
__UpperCamelCase = 0
__UpperCamelCase = {}
for epoch in range(UpperCamelCase_ , UpperCamelCase_ ):
model.train()
for step, batch in enumerate(UpperCamelCase_ ):
__UpperCamelCase = model(**UpperCamelCase_ )
__UpperCamelCase = outputs.loss
__UpperCamelCase = loss / gradient_accumulation_steps
accelerator.backward(UpperCamelCase_ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
model.eval()
__UpperCamelCase = 0
for step, batch in enumerate(UpperCamelCase_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
__UpperCamelCase = model(**UpperCamelCase_ )
__UpperCamelCase = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
__UpperCamelCase , __UpperCamelCase = accelerator.gather(
(predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(UpperCamelCase_ ) - 1:
__UpperCamelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen]
__UpperCamelCase = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=UpperCamelCase_ , references=UpperCamelCase_ , )
__UpperCamelCase = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F'''epoch {epoch}:''' , UpperCamelCase_ )
__UpperCamelCase = eval_metric['accuracy']
if best_performance < eval_metric["accuracy"]:
__UpperCamelCase = eval_metric['accuracy']
if args.performance_lower_bound is not None:
assert (
args.performance_lower_bound <= best_performance
), F'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}'''
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , 'all_results.json' ) , 'w' ) as f:
json.dump(UpperCamelCase_ , UpperCamelCase_ )
def lowercase__ ( ) -> List[str]:
"""simple docstring"""
__UpperCamelCase = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' )
parser.add_argument(
'--model_name_or_path' , type=UpperCamelCase_ , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=UpperCamelCase_ , )
parser.add_argument(
'--output_dir' , type=UpperCamelCase_ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , )
parser.add_argument(
'--performance_lower_bound' , type=UpperCamelCase_ , default=UpperCamelCase_ , help='Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.' , )
parser.add_argument(
'--num_epochs' , type=UpperCamelCase_ , default=3 , help='Number of train epochs.' , )
__UpperCamelCase = parser.parse_args()
__UpperCamelCase = {'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16}
training_function(UpperCamelCase_ , UpperCamelCase_ )
if __name__ == "__main__":
main()
| 53 |
"""simple docstring"""
import baseaa
def _A ( UpperCamelCase_ : str) -> bytes:
'''simple docstring'''
return baseaa.baaencode(string.encode("utf-8"))
def _A ( UpperCamelCase_ : bytes) -> str:
'''simple docstring'''
return baseaa.baadecode(UpperCamelCase_).decode("utf-8")
if __name__ == "__main__":
_a = 'Hello World!'
_a = baseaa_encode(test)
print(encoded)
_a = baseaa_decode(encoded)
print(decoded)
| 17 | 0 |
class UpperCAmelCase :
def __init__(self : int ) -> List[str]:
'''simple docstring'''
snake_case : Union[str, Any] = {}
def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Dict:
'''simple docstring'''
print(self.vertex )
for i in self.vertex:
print(UpperCAmelCase__ , " -> " , " -> ".join([str(UpperCAmelCase__ ) for j in self.vertex[i]] ) )
def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : int , snake_case__ : int ) -> List[Any]:
'''simple docstring'''
if from_vertex in self.vertex:
self.vertex[from_vertex].append(UpperCAmelCase__ )
else:
# else make a new vertex
snake_case : List[Any] = [to_vertex]
def _SCREAMING_SNAKE_CASE (self : Dict ) -> Optional[Any]:
'''simple docstring'''
snake_case : Union[str, Any] = [False] * len(self.vertex )
# call the recursive helper function
for i in range(len(self.vertex ) ):
if not visited[i]:
self.dfs_recursive(UpperCAmelCase__ , UpperCAmelCase__ )
def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : int , snake_case__ : list ) -> int:
'''simple docstring'''
snake_case : List[str] = True
print(UpperCAmelCase__ , end=" " )
# Recur for all the vertices that are adjacent to this node
for i in self.vertex:
if not visited[i]:
self.dfs_recursive(UpperCAmelCase__ , UpperCAmelCase__ )
if __name__ == "__main__":
__lowerCamelCase = Graph()
g.add_edge(0, 1)
g.add_edge(0, 2)
g.add_edge(1, 2)
g.add_edge(2, 0)
g.add_edge(2, 3)
g.add_edge(3, 3)
g.print_graph()
print("""DFS:""")
g.dfs()
# OUTPUT:
# 0 -> 1 -> 2
# 1 -> 2
# 2 -> 0 -> 3
# 3 -> 3
# DFS:
# 0 1 2 3
| 59 |
"""simple docstring"""
def _A ( UpperCamelCase_ : Any) -> List[str]:
'''simple docstring'''
__lowercase ,__lowercase = [], []
while len(UpperCamelCase_) > 1:
__lowercase ,__lowercase = min(UpperCamelCase_), max(UpperCamelCase_)
start.append(UpperCamelCase_)
end.append(UpperCamelCase_)
collection.remove(UpperCamelCase_)
collection.remove(UpperCamelCase_)
end.reverse()
return start + collection + end
if __name__ == "__main__":
_a = input('Enter numbers separated by a comma:\n').strip()
_a = [int(item) for item in user_input.split(',')]
print(*merge_sort(unsorted), sep=',')
| 17 | 0 |
from ..utils import DummyObject, requires_backends
class __lowercase ( metaclass=UpperCAmelCase_ ):
"""simple docstring"""
_UpperCAmelCase : Tuple = ["torch", "scipy"]
def __init__( self : Any , *lowerCAmelCase__ : Optional[Any] , **lowerCAmelCase__ : Dict):
requires_backends(self , ["torch", "scipy"])
@classmethod
def _SCREAMING_SNAKE_CASE ( cls : str , *lowerCAmelCase__ : str , **lowerCAmelCase__ : List[str]):
requires_backends(cls , ["torch", "scipy"])
@classmethod
def _SCREAMING_SNAKE_CASE ( cls : Tuple , *lowerCAmelCase__ : Dict , **lowerCAmelCase__ : Optional[Any]):
requires_backends(cls , ["torch", "scipy"])
| 13 |
"""simple docstring"""
def _A ( UpperCamelCase_ : list[int]) -> float:
'''simple docstring'''
if not nums: # Makes sure that the list is not empty
raise ValueError("List is empty")
__lowercase = sum(UpperCamelCase_) / len(UpperCamelCase_) # Calculate the average
return sum(abs(x - average) for x in nums) / len(UpperCamelCase_)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 17 | 0 |
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
A_ :str = datasets.utils.logging.get_logger(__name__)
A_ :List[Any] = ['''names''', '''prefix''']
A_ :int = ['''warn_bad_lines''', '''error_bad_lines''', '''mangle_dupe_cols''']
A_ :Any = ['''encoding_errors''', '''on_bad_lines''']
A_ :Any = ['''date_format''']
@dataclass
class __A ( datasets.BuilderConfig ):
"""simple docstring"""
UpperCamelCase__ : str =","
UpperCamelCase__ : Optional[str] =None
UpperCamelCase__ : Optional[Union[int, List[int], str]] ="infer"
UpperCamelCase__ : Optional[List[str]] =None
UpperCamelCase__ : Optional[List[str]] =None
UpperCamelCase__ : Optional[Union[int, str, List[int], List[str]]] =None
UpperCamelCase__ : Optional[Union[List[int], List[str]]] =None
UpperCamelCase__ : Optional[str] =None
UpperCamelCase__ : bool =True
UpperCamelCase__ : Optional[Literal["c", "python", "pyarrow"]] =None
UpperCamelCase__ : Dict[Union[int, str], Callable[[Any], Any]] =None
UpperCamelCase__ : Optional[list] =None
UpperCamelCase__ : Optional[list] =None
UpperCamelCase__ : bool =False
UpperCamelCase__ : Optional[Union[int, List[int]]] =None
UpperCamelCase__ : Optional[int] =None
UpperCamelCase__ : Optional[Union[str, List[str]]] =None
UpperCamelCase__ : bool =True
UpperCamelCase__ : bool =True
UpperCamelCase__ : bool =False
UpperCamelCase__ : bool =True
UpperCamelCase__ : Optional[str] =None
UpperCamelCase__ : str ="."
UpperCamelCase__ : Optional[str] =None
UpperCamelCase__ : str ='"'
UpperCamelCase__ : int =0
UpperCamelCase__ : Optional[str] =None
UpperCamelCase__ : Optional[str] =None
UpperCamelCase__ : Optional[str] =None
UpperCamelCase__ : Optional[str] =None
UpperCamelCase__ : bool =True
UpperCamelCase__ : bool =True
UpperCamelCase__ : int =0
UpperCamelCase__ : bool =True
UpperCamelCase__ : bool =False
UpperCamelCase__ : Optional[str] =None
UpperCamelCase__ : int =1_0_0_0_0
UpperCamelCase__ : Optional[datasets.Features] =None
UpperCamelCase__ : Optional[str] ="strict"
UpperCamelCase__ : Literal["error", "warn", "skip"] ="error"
UpperCamelCase__ : Optional[str] =None
def __lowercase ( self ):
"""simple docstring"""
if self.delimiter is not None:
__UpperCamelCase : Optional[Any] =self.delimiter
if self.column_names is not None:
__UpperCamelCase : List[str] =self.column_names
@property
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : Optional[Any] ={
'sep': self.sep,
'header': self.header,
'names': self.names,
'index_col': self.index_col,
'usecols': self.usecols,
'prefix': self.prefix,
'mangle_dupe_cols': self.mangle_dupe_cols,
'engine': self.engine,
'converters': self.converters,
'true_values': self.true_values,
'false_values': self.false_values,
'skipinitialspace': self.skipinitialspace,
'skiprows': self.skiprows,
'nrows': self.nrows,
'na_values': self.na_values,
'keep_default_na': self.keep_default_na,
'na_filter': self.na_filter,
'verbose': self.verbose,
'skip_blank_lines': self.skip_blank_lines,
'thousands': self.thousands,
'decimal': self.decimal,
'lineterminator': self.lineterminator,
'quotechar': self.quotechar,
'quoting': self.quoting,
'escapechar': self.escapechar,
'comment': self.comment,
'encoding': self.encoding,
'dialect': self.dialect,
'error_bad_lines': self.error_bad_lines,
'warn_bad_lines': self.warn_bad_lines,
'skipfooter': self.skipfooter,
'doublequote': self.doublequote,
'memory_map': self.memory_map,
'float_precision': self.float_precision,
'chunksize': self.chunksize,
'encoding_errors': self.encoding_errors,
'on_bad_lines': self.on_bad_lines,
'date_format': self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , UpperCAmelCase__ ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class __A ( datasets.ArrowBasedBuilder ):
"""simple docstring"""
UpperCamelCase__ : Tuple =CsvConfig
def __lowercase ( self ):
"""simple docstring"""
return datasets.DatasetInfo(features=self.config.features )
def __lowercase ( self , lowerCamelCase__ ):
"""simple docstring"""
if not self.config.data_files:
raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' )
__UpperCamelCase : Tuple =dl_manager.download_and_extract(self.config.data_files )
if isinstance(UpperCAmelCase__ , (str, list, tuple) ):
__UpperCamelCase : int =data_files
if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
__UpperCamelCase : int =[files]
__UpperCamelCase : str =[dl_manager.iter_files(UpperCAmelCase__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )]
__UpperCamelCase : Optional[Any] =[]
for split_name, files in data_files.items():
if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
__UpperCamelCase : Tuple =[files]
__UpperCamelCase : Dict =[dl_manager.iter_files(UpperCAmelCase__ ) for file in files]
splits.append(datasets.SplitGenerator(name=UpperCAmelCase__ , gen_kwargs={'files': files} ) )
return splits
def __lowercase ( self , lowerCamelCase__ ):
"""simple docstring"""
if self.config.features is not None:
__UpperCamelCase : Any =self.config.features.arrow_schema
if all(not require_storage_cast(UpperCAmelCase__ ) for feature in self.config.features.values() ):
# cheaper cast
__UpperCamelCase : Dict =pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=UpperCAmelCase__ )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
__UpperCamelCase : str =table_cast(UpperCAmelCase__ , UpperCAmelCase__ )
return pa_table
def __lowercase ( self , lowerCamelCase__ ):
"""simple docstring"""
__UpperCamelCase : List[Any] =self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
__UpperCamelCase : List[str] =(
{
name: dtype.to_pandas_dtype() if not require_storage_cast(UpperCAmelCase__ ) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase__ ) ):
__UpperCamelCase : Tuple =pd.read_csv(UpperCAmelCase__ , iterator=UpperCAmelCase__ , dtype=UpperCAmelCase__ , **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(UpperCAmelCase__ ):
__UpperCamelCase : int =pa.Table.from_pandas(UpperCAmelCase__ )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase__ )
except ValueError as e:
logger.error(f'Failed to read file \'{file}\' with error {type(UpperCAmelCase__ )}: {e}' )
raise
| 71 |
"""simple docstring"""
import inspect
import unittest
import numpy as np
from transformers import BeitConfig
from transformers.testing_utils import require_flax, require_vision, slow
from transformers.utils import cached_property, is_flax_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor
if is_flax_available():
import jax
from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : int=1_0_0, UpperCAmelCase__ : Any=1_3, UpperCAmelCase__ : List[Any]=3_0, UpperCAmelCase__ : Dict=2, UpperCAmelCase__ : Any=3, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[str]=True, UpperCAmelCase__ : Optional[Any]=3_2, UpperCAmelCase__ : Any=5, UpperCAmelCase__ : Any=4, UpperCAmelCase__ : Any=3_7, UpperCAmelCase__ : Optional[int]="gelu", UpperCAmelCase__ : Dict=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Dict=1_0, UpperCAmelCase__ : Tuple=0.02, UpperCAmelCase__ : List[Any]=3, ):
__lowercase = parent
__lowercase = vocab_size
__lowercase = batch_size
__lowercase = image_size
__lowercase = patch_size
__lowercase = num_channels
__lowercase = is_training
__lowercase = use_labels
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = type_sequence_label_size
__lowercase = initializer_range
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
__lowercase = (image_size // patch_size) ** 2
__lowercase = num_patches + 1
def _lowercase ( self : int ):
__lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size], self.type_sequence_label_size )
__lowercase = BeitConfig(
vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=UpperCAmelCase__, initializer_range=self.initializer_range, )
return config, pixel_values, labels
def _lowercase ( self : Any, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[str], UpperCAmelCase__ : List[str] ):
__lowercase = FlaxBeitModel(config=UpperCAmelCase__ )
__lowercase = model(UpperCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : List[Any] ):
__lowercase = FlaxBeitForMaskedImageModeling(config=UpperCAmelCase__ )
__lowercase = model(UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size) )
def _lowercase ( self : Dict, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : Union[str, Any] ):
__lowercase = self.type_sequence_label_size
__lowercase = FlaxBeitForImageClassification(config=UpperCAmelCase__ )
__lowercase = model(UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__lowercase = 1
__lowercase = FlaxBeitForImageClassification(UpperCAmelCase__ )
__lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__lowercase = model(UpperCAmelCase__ )
def _lowercase ( self : List[str] ):
__lowercase = self.prepare_config_and_inputs()
(
(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,
) = config_and_inputs
__lowercase = {"pixel_values": pixel_values}
return config, inputs_dict
@require_flax
class _lowerCAmelCase ( lowercase ,unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : str = (
(FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else ()
)
def _lowercase ( self : List[Any] ):
__lowercase = FlaxBeitModelTester(self )
__lowercase = ConfigTester(self, config_class=UpperCAmelCase__, has_text_modality=UpperCAmelCase__, hidden_size=3_7 )
def _lowercase ( self : Union[str, Any] ):
self.config_tester.run_common_tests()
def _lowercase ( self : Optional[int] ):
__lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowercase = model_class(UpperCAmelCase__ )
__lowercase = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowercase = [*signature.parameters.keys()]
__lowercase = ["pixel_values"]
self.assertListEqual(arg_names[:1], UpperCAmelCase__ )
def _lowercase ( self : Tuple ):
__lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__lowercase = self._prepare_for_class(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = model_class(UpperCAmelCase__ )
@jax.jit
def model_jitted(UpperCAmelCase__ : str, **UpperCAmelCase__ : Dict ):
return model(pixel_values=UpperCAmelCase__, **UpperCAmelCase__ )
with self.subTest("JIT Enabled" ):
__lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
__lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple()
self.assertEqual(len(UpperCAmelCase__ ), len(UpperCAmelCase__ ) )
for jitted_output, output in zip(UpperCAmelCase__, UpperCAmelCase__ ):
self.assertEqual(jitted_output.shape, output.shape )
def _lowercase ( self : List[str] ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase__ )
def _lowercase ( self : int ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ )
def _lowercase ( self : Tuple ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ )
@slow
def _lowercase ( self : Union[str, Any] ):
for model_class_name in self.all_model_classes:
__lowercase = model_class_name.from_pretrained("microsoft/beit-base-patch16-224" )
__lowercase = model(np.ones((1, 3, 2_2_4, 2_2_4) ) )
self.assertIsNotNone(UpperCAmelCase__ )
def _A ( ) -> str:
'''simple docstring'''
__lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_vision
@require_flax
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _lowercase ( self : Optional[int] ):
return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None
@slow
def _lowercase ( self : Any ):
__lowercase = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" )
__lowercase = self.default_image_processor
__lowercase = prepare_img()
__lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ).pixel_values
# prepare bool_masked_pos
__lowercase = np.ones((1, 1_9_6), dtype=UpperCAmelCase__ )
# forward pass
__lowercase = model(pixel_values=UpperCAmelCase__, bool_masked_pos=UpperCAmelCase__ )
__lowercase = outputs.logits
# verify the logits
__lowercase = (1, 1_9_6, 8_1_9_2)
self.assertEqual(logits.shape, UpperCAmelCase__ )
__lowercase = np.array(
[[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] )
self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3], UpperCAmelCase__, atol=1E-2 ) )
@slow
def _lowercase ( self : Any ):
__lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" )
__lowercase = self.default_image_processor
__lowercase = prepare_img()
__lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" )
# forward pass
__lowercase = model(**UpperCAmelCase__ )
__lowercase = outputs.logits
# verify the logits
__lowercase = (1, 1_0_0_0)
self.assertEqual(logits.shape, UpperCAmelCase__ )
__lowercase = np.array([-1.2_385, -1.0_987, -1.0_108] )
self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) )
__lowercase = 2_8_1
self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ )
@slow
def _lowercase ( self : List[str] ):
__lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" )
__lowercase = self.default_image_processor
__lowercase = prepare_img()
__lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" )
# forward pass
__lowercase = model(**UpperCAmelCase__ )
__lowercase = outputs.logits
# verify the logits
__lowercase = (1, 2_1_8_4_1)
self.assertEqual(logits.shape, UpperCAmelCase__ )
__lowercase = np.array([1.6_881, -0.2_787, 0.5_901] )
self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) )
__lowercase = 2_3_9_6
self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ )
| 17 | 0 |
'''simple docstring'''
from abc import ABC, abstractmethod
from typing import Optional, Union
from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit
from ..utils.typing import NestedDataStructureLike, PathLike
class _A ( __SCREAMING_SNAKE_CASE ):
def __init__( self , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = path_or_paths
__UpperCAmelCase : Optional[Any] = split if split or isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else """train"""
__UpperCAmelCase : Union[str, Any] = features
__UpperCAmelCase : List[str] = cache_dir
__UpperCAmelCase : Optional[int] = keep_in_memory
__UpperCAmelCase : Optional[int] = streaming
__UpperCAmelCase : Tuple = num_proc
__UpperCAmelCase : str = kwargs
@abstractmethod
def __A ( self ) -> Optional[int]:
'''simple docstring'''
pass
class _A ( __SCREAMING_SNAKE_CASE ):
def __init__( self , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = features
__UpperCAmelCase : Any = cache_dir
__UpperCAmelCase : Union[str, Any] = keep_in_memory
__UpperCAmelCase : Dict = streaming
__UpperCAmelCase : Optional[int] = num_proc
__UpperCAmelCase : Any = kwargs
@abstractmethod
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
pass
| 254 |
"""simple docstring"""
import unittest
from transformers import load_tool
from .test_tools_common import ToolTesterMixin
class _lowerCAmelCase ( unittest.TestCase ,lowercase ):
"""simple docstring"""
def _lowercase ( self : List[Any] ):
__lowercase = load_tool("text-classification" )
self.tool.setup()
__lowercase = load_tool("text-classification", remote=UpperCAmelCase__ )
def _lowercase ( self : str ):
__lowercase = self.tool("That's quite cool", ["positive", "negative"] )
self.assertEqual(UpperCAmelCase__, "positive" )
def _lowercase ( self : str ):
__lowercase = self.remote_tool("That's quite cool", ["positive", "negative"] )
self.assertEqual(UpperCAmelCase__, "positive" )
def _lowercase ( self : List[str] ):
__lowercase = self.tool(text="That's quite cool", labels=["positive", "negative"] )
self.assertEqual(UpperCAmelCase__, "positive" )
def _lowercase ( self : Tuple ):
__lowercase = self.remote_tool(text="That's quite cool", labels=["positive", "negative"] )
self.assertEqual(UpperCAmelCase__, "positive" )
| 17 | 0 |
'''simple docstring'''
from collections.abc import Generator
from math import sin
def __lowerCamelCase ( _lowercase ) -> bytes:
if len(UpperCamelCase_ ) != 3_2:
raise ValueError("""Input must be of length 32""" )
UpperCAmelCase : List[Any] = B""""""
for i in [3, 2, 1, 0]:
little_endian += string_aa[8 * i : 8 * i + 8]
return little_endian
def __lowerCamelCase ( _lowercase ) -> bytes:
if i < 0:
raise ValueError("""Input must be non-negative""" )
UpperCAmelCase : Union[str, Any] = format(UpperCamelCase_ , """08x""" )[-8:]
UpperCAmelCase : Optional[Any] = B""""""
for i in [3, 2, 1, 0]:
little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("""utf-8""" )
return little_endian_hex
def __lowerCamelCase ( _lowercase ) -> bytes:
UpperCAmelCase : str = B""""""
for char in message:
bit_string += format(UpperCamelCase_ , """08b""" ).encode("""utf-8""" )
UpperCAmelCase : int = format(len(UpperCamelCase_ ) , """064b""" ).encode("""utf-8""" )
# Pad bit_string to a multiple of 512 chars
bit_string += b"1"
while len(UpperCamelCase_ ) % 5_1_2 != 4_4_8:
bit_string += b"0"
bit_string += to_little_endian(start_len[3_2:] ) + to_little_endian(start_len[:3_2] )
return bit_string
def __lowerCamelCase ( _lowercase ) -> Generator[list[int], None, None]:
if len(UpperCamelCase_ ) % 5_1_2 != 0:
raise ValueError("""Input must have length that's a multiple of 512""" )
for pos in range(0 , len(UpperCamelCase_ ) , 5_1_2 ):
UpperCAmelCase : Union[str, Any] = bit_string[pos : pos + 5_1_2]
UpperCAmelCase : Tuple = []
for i in range(0 , 5_1_2 , 3_2 ):
block_words.append(int(to_little_endian(block[i : i + 3_2] ) , 2 ) )
yield block_words
def __lowerCamelCase ( _lowercase ) -> int:
if i < 0:
raise ValueError("""Input must be non-negative""" )
UpperCAmelCase : List[Any] = format(UpperCamelCase_ , """032b""" )
UpperCAmelCase : Any = """"""
for c in i_str:
new_str += "1" if c == "0" else "0"
return int(UpperCamelCase_ , 2 )
def __lowerCamelCase ( _lowercase , _lowercase ) -> int:
return (a + b) % 2**3_2
def __lowerCamelCase ( _lowercase , _lowercase ) -> int:
if i < 0:
raise ValueError("""Input must be non-negative""" )
if shift < 0:
raise ValueError("""Shift must be non-negative""" )
return ((i << shift) ^ (i >> (3_2 - shift))) % 2**3_2
def __lowerCamelCase ( _lowercase ) -> bytes:
UpperCAmelCase : int = preprocess(UpperCamelCase_ )
UpperCAmelCase : Any = [int(2**3_2 * abs(sin(i + 1 ) ) ) for i in range(6_4 )]
# Starting states
UpperCAmelCase : Dict = 0x67_452_301
UpperCAmelCase : Optional[int] = 0xEF_CDA_B89
UpperCAmelCase : str = 0x98_BAD_CFE
UpperCAmelCase : Optional[Any] = 0x10_325_476
UpperCAmelCase : int = [
7,
1_2,
1_7,
2_2,
7,
1_2,
1_7,
2_2,
7,
1_2,
1_7,
2_2,
7,
1_2,
1_7,
2_2,
5,
9,
1_4,
2_0,
5,
9,
1_4,
2_0,
5,
9,
1_4,
2_0,
5,
9,
1_4,
2_0,
4,
1_1,
1_6,
2_3,
4,
1_1,
1_6,
2_3,
4,
1_1,
1_6,
2_3,
4,
1_1,
1_6,
2_3,
6,
1_0,
1_5,
2_1,
6,
1_0,
1_5,
2_1,
6,
1_0,
1_5,
2_1,
6,
1_0,
1_5,
2_1,
]
# Process bit string in chunks, each with 16 32-char words
for block_words in get_block_words(UpperCamelCase_ ):
UpperCAmelCase : Optional[Any] = aa
UpperCAmelCase : str = ba
UpperCAmelCase : str = ca
UpperCAmelCase : List[Any] = da
# Hash current chunk
for i in range(6_4 ):
if i <= 1_5:
# f = (b & c) | (not_32(b) & d) # Alternate definition for f
UpperCAmelCase : Tuple = d ^ (b & (c ^ d))
UpperCAmelCase : Optional[Any] = i
elif i <= 3_1:
# f = (d & b) | (not_32(d) & c) # Alternate definition for f
UpperCAmelCase : Union[str, Any] = c ^ (d & (b ^ c))
UpperCAmelCase : Tuple = (5 * i + 1) % 1_6
elif i <= 4_7:
UpperCAmelCase : Any = b ^ c ^ d
UpperCAmelCase : Tuple = (3 * i + 5) % 1_6
else:
UpperCAmelCase : Union[str, Any] = c ^ (b | not_aa(UpperCamelCase_ ))
UpperCAmelCase : Dict = (7 * i) % 1_6
UpperCAmelCase : Dict = (f + a + added_consts[i] + block_words[g]) % 2**3_2
UpperCAmelCase : Tuple = d
UpperCAmelCase : Tuple = c
UpperCAmelCase : Optional[int] = b
UpperCAmelCase : Optional[Any] = sum_aa(UpperCamelCase_ , left_rotate_aa(UpperCamelCase_ , shift_amounts[i] ) )
# Add hashed chunk to running total
UpperCAmelCase : Optional[Any] = sum_aa(UpperCamelCase_ , UpperCamelCase_ )
UpperCAmelCase : Tuple = sum_aa(UpperCamelCase_ , UpperCamelCase_ )
UpperCAmelCase : Optional[Any] = sum_aa(UpperCamelCase_ , UpperCamelCase_ )
UpperCAmelCase : int = sum_aa(UpperCamelCase_ , UpperCamelCase_ )
UpperCAmelCase : Any = reformat_hex(UpperCamelCase_ ) + reformat_hex(UpperCamelCase_ ) + reformat_hex(UpperCamelCase_ ) + reformat_hex(UpperCamelCase_ )
return digest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 265 |
"""simple docstring"""
from typing import Any, Callable, Dict, List, Optional, Union
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
_a = 'CompVis/stable-diffusion-v1-1'
_a = 'CompVis/stable-diffusion-v1-2'
_a = 'CompVis/stable-diffusion-v1-3'
_a = 'CompVis/stable-diffusion-v1-4'
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
def __init__( self : Dict, UpperCAmelCase__ : AutoencoderKL, UpperCAmelCase__ : CLIPTextModel, UpperCAmelCase__ : CLIPTokenizer, UpperCAmelCase__ : UNetaDConditionModel, UpperCAmelCase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], UpperCAmelCase__ : StableDiffusionSafetyChecker, UpperCAmelCase__ : CLIPImageProcessor, UpperCAmelCase__ : bool = True, ):
super()._init_()
__lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ )
__lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ )
__lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ )
__lowercase = StableDiffusionPipeline(
vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, tokenizer=UpperCAmelCase__, unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, safety_checker=UpperCAmelCase__, feature_extractor=UpperCAmelCase__, requires_safety_checker=UpperCAmelCase__, )
self.register_modules(pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea )
@property
def _lowercase ( self : List[str] ):
return {k: getattr(self, UpperCAmelCase__ ) for k in self.config.keys() if not k.startswith("_" )}
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ):
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
__lowercase = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(UpperCAmelCase__ )
def _lowercase ( self : List[str] ):
self.enable_attention_slicing(UpperCAmelCase__ )
@torch.no_grad()
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Tuple, ):
return self.pipea(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
@torch.no_grad()
def _lowercase ( self : Tuple, UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : str, ):
return self.pipea(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
@torch.no_grad()
def _lowercase ( self : str, UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Any, ):
return self.pipea(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
@torch.no_grad()
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Optional[int], ):
return self.pipea(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
@torch.no_grad()
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : str, ):
__lowercase = "cuda" if torch.cuda.is_available() else "cpu"
self.to(UpperCAmelCase__ )
# Checks if the height and width are divisible by 8 or not
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" )
# Get first result from Stable Diffusion Checkpoint v1.1
__lowercase = self.textaimg_sda_a(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
# Get first result from Stable Diffusion Checkpoint v1.2
__lowercase = self.textaimg_sda_a(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
# Get first result from Stable Diffusion Checkpoint v1.3
__lowercase = self.textaimg_sda_a(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
# Get first result from Stable Diffusion Checkpoint v1.4
__lowercase = self.textaimg_sda_a(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
# Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result
return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
| 17 | 0 |
"""simple docstring"""
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import (
ImageTextPipelineOutput,
UniDiffuserPipeline,
)
else:
from .modeling_text_decoder import UniDiffuserTextDecoder
from .modeling_uvit import UniDiffuserModel, UTransformeraDModel
from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
| 221 |
"""simple docstring"""
import random
import unittest
import numpy as np
import torch
from diffusers import (
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionUpscalePipeline,
PNDMScheduler,
)
from diffusers.utils import floats_tensor
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class _lowerCAmelCase ( lowercase ,unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : str = "ssube/stable-diffusion-x4-upscaler-onnx"
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : List[str]=0 ):
__lowercase = floats_tensor((1, 3, 1_2_8, 1_2_8), rng=random.Random(UpperCAmelCase__ ) )
__lowercase = torch.manual_seed(UpperCAmelCase__ )
__lowercase = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 7.5,
"output_type": "numpy",
}
return inputs
def _lowercase ( self : Any ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1].flatten()
# started as 128, should now be 512
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] )
assert np.abs(image_slice - expected_slice ).max() < 1E-1
def _lowercase ( self : Optional[Any] ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
__lowercase = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.6_898_892, 0.59_240_556, 0.52_499_527, 0.58_866_215, 0.52_258_235, 0.52_572_715, 0.62_414_473, 0.6_174_387, 0.6_214_964] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def _lowercase ( self : int ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
__lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.7_659_278, 0.76_437_664, 0.75_579_107, 0.7_691_116, 0.77_666_986, 0.7_727_672, 0.7_758_664, 0.7_812_226, 0.76_942_515] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def _lowercase ( self : str ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
__lowercase = EulerDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def _lowercase ( self : Any ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
__lowercase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.77_424_496, 0.773_601, 0.7_645_288, 0.7_769_598, 0.7_772_739, 0.7_738_688, 0.78_187_233, 0.77_879_584, 0.767_043] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
@nightly
@require_onnxruntime
@require_torch_gpu
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@property
def _lowercase ( self : Tuple ):
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def _lowercase ( self : Dict ):
__lowercase = ort.SessionOptions()
__lowercase = False
return options
def _lowercase ( self : Dict ):
__lowercase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg" )
__lowercase = init_image.resize((1_2_8, 1_2_8) )
# using the PNDM scheduler by default
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(
"ssube/stable-diffusion-x4-upscaler-onnx", provider=self.gpu_provider, sess_options=self.gpu_options, )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = "A fantasy landscape, trending on artstation"
__lowercase = torch.manual_seed(0 )
__lowercase = pipe(
prompt=UpperCAmelCase__, image=UpperCAmelCase__, guidance_scale=7.5, num_inference_steps=1_0, generator=UpperCAmelCase__, output_type="np", )
__lowercase = output.images
__lowercase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert images.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array([0.4_883, 0.4_947, 0.4_980, 0.4_975, 0.4_982, 0.4_980, 0.5_000, 0.5_006, 0.4_972] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
def _lowercase ( self : str ):
__lowercase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg" )
__lowercase = init_image.resize((1_2_8, 1_2_8) )
__lowercase = LMSDiscreteScheduler.from_pretrained(
"ssube/stable-diffusion-x4-upscaler-onnx", subfolder="scheduler" )
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(
"ssube/stable-diffusion-x4-upscaler-onnx", scheduler=UpperCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = "A fantasy landscape, trending on artstation"
__lowercase = torch.manual_seed(0 )
__lowercase = pipe(
prompt=UpperCAmelCase__, image=UpperCAmelCase__, guidance_scale=7.5, num_inference_steps=2_0, generator=UpperCAmelCase__, output_type="np", )
__lowercase = output.images
__lowercase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert images.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.50_173_753, 0.50_223_356, 0.502_039, 0.50_233_036, 0.5_023_725, 0.5_022_601, 0.5_018_758, 0.50_234_085, 0.50_241_566] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
| 17 | 0 |
from collections.abc import Callable
from math import pi, sqrt
from random import uniform
from statistics import mean
def lowerCAmelCase__( lowercase : int ) -> Optional[int]:
def is_in_circle(lowercase : float , lowercase : float ) -> bool:
__snake_case : Union[str, Any] = sqrt((x**2) + (y**2) )
# Our circle has a radius of 1, so a distance
# greater than 1 would land outside the circle.
return distance_from_centre <= 1
# The proportion of guesses that landed in the circle
__snake_case : List[Any] = mean(
int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) )
for _ in range(UpperCamelCase_ ) )
# The ratio of the area for circle to square is pi/4.
__snake_case : str = proportion * 4
print(f"""The estimated value of pi is {pi_estimate}""" )
print(f"""The numpy value of pi is {pi}""" )
print(f"""The total error is {abs(pi - pi_estimate )}""" )
def lowerCAmelCase__( lowercase : int , lowercase : Callable[[float], float] , lowercase : float = 0.0 , lowercase : float = 1.0 , ) -> float:
return mean(
function_to_integrate(uniform(UpperCamelCase_ , UpperCamelCase_ ) ) for _ in range(UpperCamelCase_ ) ) * (max_value - min_value)
def lowerCAmelCase__( lowercase : int , lowercase : float = 0.0 , lowercase : float = 1.0 ) -> None:
def identity_function(lowercase : float ) -> float:
return x
__snake_case : Union[str, Any] = area_under_curve_estimator(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
__snake_case : List[str] = (max_value * max_value - min_value * min_value) / 2
print("******************" )
print(f"""Estimating area under y=x where x varies from {min_value} to {max_value}""" )
print(f"""Estimated value is {estimated_value}""" )
print(f"""Expected value is {expected_value}""" )
print(f"""Total error is {abs(estimated_value - expected_value )}""" )
print("******************" )
def lowerCAmelCase__( lowercase : int ) -> None:
def function_to_integrate(lowercase : float ) -> float:
return sqrt(4.0 - x * x )
__snake_case : Tuple = area_under_curve_estimator(
UpperCamelCase_ , UpperCamelCase_ , 0.0 , 2.0 )
print("******************" )
print("Estimating pi using area_under_curve_estimator" )
print(f"""Estimated value is {estimated_value}""" )
print(f"""Expected value is {pi}""" )
print(f"""Total error is {abs(estimated_value - pi )}""" )
print("******************" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326 |
"""simple docstring"""
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
_a = datasets.utils.logging.get_logger(__name__)
_a = ['names', 'prefix']
_a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols']
_a = ['encoding_errors', 'on_bad_lines']
_a = ['date_format']
@dataclass
class _lowerCAmelCase ( datasets.BuilderConfig ):
"""simple docstring"""
__UpperCAmelCase : str = ","
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : Optional[Union[int, List[int], str]] = "infer"
__UpperCAmelCase : Optional[List[str]] = None
__UpperCAmelCase : Optional[List[str]] = None
__UpperCAmelCase : Optional[Union[int, str, List[int], List[str]]] = None
__UpperCAmelCase : Optional[Union[List[int], List[str]]] = None
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : bool = True
__UpperCAmelCase : Optional[Literal["c", "python", "pyarrow"]] = None
__UpperCAmelCase : Dict[Union[int, str], Callable[[Any], Any]] = None
__UpperCAmelCase : Optional[list] = None
__UpperCAmelCase : Optional[list] = None
__UpperCAmelCase : bool = False
__UpperCAmelCase : Optional[Union[int, List[int]]] = None
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : Optional[Union[str, List[str]]] = None
__UpperCAmelCase : bool = True
__UpperCAmelCase : bool = True
__UpperCAmelCase : bool = False
__UpperCAmelCase : bool = True
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : str = "."
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : str = '"'
__UpperCAmelCase : int = 0
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : bool = True
__UpperCAmelCase : bool = True
__UpperCAmelCase : int = 0
__UpperCAmelCase : bool = True
__UpperCAmelCase : bool = False
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : int = 1_0_0_0_0
__UpperCAmelCase : Optional[datasets.Features] = None
__UpperCAmelCase : Optional[str] = "strict"
__UpperCAmelCase : Literal["error", "warn", "skip"] = "error"
__UpperCAmelCase : Optional[str] = None
def _lowercase ( self : Tuple ):
if self.delimiter is not None:
__lowercase = self.delimiter
if self.column_names is not None:
__lowercase = self.column_names
@property
def _lowercase ( self : Union[str, Any] ):
__lowercase = {
"sep": self.sep,
"header": self.header,
"names": self.names,
"index_col": self.index_col,
"usecols": self.usecols,
"prefix": self.prefix,
"mangle_dupe_cols": self.mangle_dupe_cols,
"engine": self.engine,
"converters": self.converters,
"true_values": self.true_values,
"false_values": self.false_values,
"skipinitialspace": self.skipinitialspace,
"skiprows": self.skiprows,
"nrows": self.nrows,
"na_values": self.na_values,
"keep_default_na": self.keep_default_na,
"na_filter": self.na_filter,
"verbose": self.verbose,
"skip_blank_lines": self.skip_blank_lines,
"thousands": self.thousands,
"decimal": self.decimal,
"lineterminator": self.lineterminator,
"quotechar": self.quotechar,
"quoting": self.quoting,
"escapechar": self.escapechar,
"comment": self.comment,
"encoding": self.encoding,
"dialect": self.dialect,
"error_bad_lines": self.error_bad_lines,
"warn_bad_lines": self.warn_bad_lines,
"skipfooter": self.skipfooter,
"doublequote": self.doublequote,
"memory_map": self.memory_map,
"float_precision": self.float_precision,
"chunksize": self.chunksize,
"encoding_errors": self.encoding_errors,
"on_bad_lines": self.on_bad_lines,
"date_format": self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig(), UpperCAmelCase__ ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class _lowerCAmelCase ( datasets.ArrowBasedBuilder ):
"""simple docstring"""
__UpperCAmelCase : Tuple = CsvConfig
def _lowercase ( self : List[str] ):
return datasets.DatasetInfo(features=self.config.features )
def _lowercase ( self : List[Any], UpperCAmelCase__ : Dict ):
if not self.config.data_files:
raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" )
__lowercase = dl_manager.download_and_extract(self.config.data_files )
if isinstance(UpperCAmelCase__, (str, list, tuple) ):
__lowercase = data_files
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
__lowercase = [files]
__lowercase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files} )]
__lowercase = []
for split_name, files in data_files.items():
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
__lowercase = [files]
__lowercase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files]
splits.append(datasets.SplitGenerator(name=UpperCAmelCase__, gen_kwargs={"files": files} ) )
return splits
def _lowercase ( self : Dict, UpperCAmelCase__ : pa.Table ):
if self.config.features is not None:
__lowercase = self.config.features.arrow_schema
if all(not require_storage_cast(UpperCAmelCase__ ) for feature in self.config.features.values() ):
# cheaper cast
__lowercase = pa.Table.from_arrays([pa_table[field.name] for field in schema], schema=UpperCAmelCase__ )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
__lowercase = table_cast(UpperCAmelCase__, UpperCAmelCase__ )
return pa_table
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : List[str] ):
__lowercase = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
__lowercase = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(UpperCAmelCase__ ) else object
for name, dtype, feature in zip(schema.names, schema.types, self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase__ ) ):
__lowercase = pd.read_csv(UpperCAmelCase__, iterator=UpperCAmelCase__, dtype=UpperCAmelCase__, **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(UpperCAmelCase__ ):
__lowercase = pa.Table.from_pandas(UpperCAmelCase__ )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase__ )
except ValueError as e:
logger.error(F"""Failed to read file '{file}' with error {type(UpperCAmelCase__ )}: {e}""" )
raise
| 17 | 0 |
import math
import time
from typing import Dict, List, Optional
from torch.utils.data import Dataset
from transformers import SeqaSeqTrainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class lowercase ( UpperCamelCase__ ):
def __init__( self , *_a , _a=None , _a=None , **_a ) -> Union[str, Any]:
super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ )
_A : Union[str, Any] = eval_examples
_A : List[str] = post_process_function
def a__ ( self , _a = None , _a=None , _a = None , _a = "eval" , **_a , ) -> str:
_A : Any = gen_kwargs.copy()
_A : Tuple = (
gen_kwargs["""max_length"""] if gen_kwargs.get("""max_length""" ) is not None else self.args.generation_max_length
)
_A : int = (
gen_kwargs["""num_beams"""] if gen_kwargs.get("""num_beams""" ) is not None else self.args.generation_num_beams
)
_A : List[str] = gen_kwargs
_A : List[str] = self.eval_dataset if eval_dataset is None else eval_dataset
_A : List[str] = self.get_eval_dataloader(UpperCAmelCase__ )
_A : List[Any] = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
_A : Dict = self.compute_metrics
_A : List[str] = None
_A : List[Any] = time.time()
_A : Any = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
_A : Any = eval_loop(
UpperCAmelCase__ , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCAmelCase__ , metric_key_prefix=UpperCAmelCase__ , )
finally:
_A : Optional[int] = compute_metrics
_A : Any = self.args.eval_batch_size * self.args.world_size
if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics:
start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time''']
output.metrics.update(
speed_metrics(
UpperCAmelCase__ , UpperCAmelCase__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
_A : Tuple = self.post_process_function(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
_A : Tuple = self.compute_metrics(UpperCAmelCase__ )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F'''{metric_key_prefix}_''' ):
_A : Any = metrics.pop(UpperCAmelCase__ )
metrics.update(output.metrics )
else:
_A : str = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(UpperCAmelCase__ )
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
_A : List[Any] = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCAmelCase__ )
return metrics
def a__ ( self , _a , _a , _a=None , _a = "test" , **_a ) -> Optional[Any]:
_A : int = gen_kwargs.copy()
_A : int = self.get_test_dataloader(UpperCAmelCase__ )
# Temporarily disable metric computation, we will do it in the loop here.
_A : Optional[Any] = self.compute_metrics
_A : Optional[Any] = None
_A : List[str] = time.time()
_A : str = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
_A : Optional[int] = eval_loop(
UpperCAmelCase__ , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCAmelCase__ , metric_key_prefix=UpperCAmelCase__ , )
finally:
_A : Union[str, Any] = compute_metrics
_A : Optional[int] = self.args.eval_batch_size * self.args.world_size
if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics:
start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time''']
output.metrics.update(
speed_metrics(
UpperCAmelCase__ , UpperCAmelCase__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is None or self.compute_metrics is None:
return output
_A : Optional[int] = self.post_process_function(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , """predict""" )
_A : Union[str, Any] = self.compute_metrics(UpperCAmelCase__ )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F'''{metric_key_prefix}_''' ):
_A : Optional[int] = metrics.pop(UpperCAmelCase__ )
metrics.update(output.metrics )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCAmelCase__ )
| 26 |
"""simple docstring"""
from scipy.stats import spearmanr
import datasets
_a = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n'
_a = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n'
_a = r'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class _lowerCAmelCase ( datasets.Metric ):
"""simple docstring"""
def _lowercase ( self : Dict ):
return datasets.MetricInfo(
description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features(
{
"predictions": datasets.Value("float" ),
"references": datasets.Value("float" ),
} ), reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"], )
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int]=False ):
__lowercase = spearmanr(UpperCAmelCase__, UpperCAmelCase__ )
if return_pvalue:
return {"spearmanr": results[0], "spearmanr_pvalue": results[1]}
else:
return {"spearmanr": results[0]}
| 17 | 0 |
"""simple docstring"""
a = {
0: '''0''',
1: '''1''',
2: '''2''',
3: '''3''',
4: '''4''',
5: '''5''',
6: '''6''',
7: '''7''',
8: '''8''',
9: '''9''',
10: '''a''',
11: '''b''',
12: '''c''',
13: '''d''',
14: '''e''',
15: '''f''',
}
def _snake_case ( _snake_case : float ) -> str:
'''simple docstring'''
assert type(UpperCamelCase_ ) in (int, float) and decimal == int(UpperCamelCase_ )
_A = int(UpperCamelCase_ )
_A = ''
_A = False
if decimal < 0:
_A = True
decimal *= -1
while decimal > 0:
_A , _A = divmod(UpperCamelCase_ , 16 )
_A = values[remainder] + hexadecimal
_A = '0x' + hexadecimal
if negative:
_A = '-' + hexadecimal
return hexadecimal
if __name__ == "__main__":
import doctest
doctest.testmod()
| 315 |
"""simple docstring"""
from collections.abc import Sequence
def _A ( UpperCamelCase_ : Sequence[float], UpperCamelCase_ : float) -> float:
'''simple docstring'''
return sum(c * (x**i) for i, c in enumerate(UpperCamelCase_))
def _A ( UpperCamelCase_ : Sequence[float], UpperCamelCase_ : float) -> float:
'''simple docstring'''
__lowercase = 0.0
for coeff in reversed(UpperCamelCase_):
__lowercase = result * x + coeff
return result
if __name__ == "__main__":
_a = (0.0, 0.0, 5.0, 9.3, 7.0)
_a = 10.0
print(evaluate_poly(poly, x))
print(horner(poly, x))
| 17 | 0 |
lowercase__ : Dict = '''\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n'''
lowercase__ : Optional[Any] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}]
lowercase__ : Optional[Any] = {
'''{processor_class}''': '''FakeProcessorClass''',
'''{model_class}''': '''FakeModelClass''',
'''{object_class}''': '''FakeObjectClass''',
}
| 338 |
"""simple docstring"""
import argparse
import pytorch_lightning as pl
import torch
from torch import nn
from transformers import LongformerForQuestionAnswering, LongformerModel
class _lowerCAmelCase ( pl.LightningModule ):
"""simple docstring"""
def __init__( self : Optional[Any], UpperCAmelCase__ : str ):
super().__init__()
__lowercase = model
__lowercase = 2
__lowercase = nn.Linear(self.model.config.hidden_size, self.num_labels )
def _lowercase ( self : Optional[int] ):
pass
def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str, UpperCamelCase_ : str) -> str:
'''simple docstring'''
__lowercase = LongformerModel.from_pretrained(UpperCamelCase_)
__lowercase = LightningModel(UpperCamelCase_)
__lowercase = torch.load(UpperCamelCase_, map_location=torch.device("cpu"))
lightning_model.load_state_dict(ckpt["state_dict"])
# init longformer question answering model
__lowercase = LongformerForQuestionAnswering.from_pretrained(UpperCamelCase_)
# transfer weights
longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict())
longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict())
longformer_for_qa.eval()
# save model
longformer_for_qa.save_pretrained(UpperCamelCase_)
print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""")
if __name__ == "__main__":
_a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--longformer_model',
default=None,
type=str,
required=True,
help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.',
)
parser.add_argument(
'--longformer_question_answering_ckpt_path',
default=None,
type=str,
required=True,
help='Path the official PyTorch Lightning Checkpoint.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
_a = parser.parse_args()
convert_longformer_qa_checkpoint_to_pytorch(
args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path
)
| 17 | 0 |
'''simple docstring'''
from __future__ import annotations
from pprint import pformat
from typing import Generic, TypeVar
a__ : Dict =TypeVar('''T''')
class snake_case ( Generic[T] ):
"""simple docstring"""
def __init__( self : Any , __A : bool = True ):
__UpperCamelCase = {} # dictionary of lists
__UpperCamelCase = directed
def _lowerCamelCase ( self : Dict , __A : T , __A : T ):
if not self.directed: # For undirected graphs
# if both source vertex and destination vertex are both present in the
# adjacency list, add destination vertex to source vertex list of adjacent
# vertices and add source vertex to destination vertex list of adjacent
# vertices.
if source_vertex in self.adj_list and destination_vertex in self.adj_list:
self.adj_list[source_vertex].append(UpperCAmelCase__ )
self.adj_list[destination_vertex].append(UpperCAmelCase__ )
# if only source vertex is present in adjacency list, add destination vertex
# to source vertex list of adjacent vertices, then create a new vertex with
# destination vertex as key and assign a list containing the source vertex
# as it's first adjacent vertex.
elif source_vertex in self.adj_list:
self.adj_list[source_vertex].append(UpperCAmelCase__ )
__UpperCamelCase = [source_vertex]
# if only destination vertex is present in adjacency list, add source vertex
# to destination vertex list of adjacent vertices, then create a new vertex
# with source vertex as key and assign a list containing the source vertex
# as it's first adjacent vertex.
elif destination_vertex in self.adj_list:
self.adj_list[destination_vertex].append(UpperCAmelCase__ )
__UpperCamelCase = [destination_vertex]
# if both source vertex and destination vertex are not present in adjacency
# list, create a new vertex with source vertex as key and assign a list
# containing the destination vertex as it's first adjacent vertex also
# create a new vertex with destination vertex as key and assign a list
# containing the source vertex as it's first adjacent vertex.
else:
__UpperCamelCase = [destination_vertex]
__UpperCamelCase = [source_vertex]
else: # For directed graphs
# if both source vertex and destination vertex are present in adjacency
# list, add destination vertex to source vertex list of adjacent vertices.
if source_vertex in self.adj_list and destination_vertex in self.adj_list:
self.adj_list[source_vertex].append(UpperCAmelCase__ )
# if only source vertex is present in adjacency list, add destination
# vertex to source vertex list of adjacent vertices and create a new vertex
# with destination vertex as key, which has no adjacent vertex
elif source_vertex in self.adj_list:
self.adj_list[source_vertex].append(UpperCAmelCase__ )
__UpperCamelCase = []
# if only destination vertex is present in adjacency list, create a new
# vertex with source vertex as key and assign a list containing destination
# vertex as first adjacent vertex
elif destination_vertex in self.adj_list:
__UpperCamelCase = [destination_vertex]
# if both source vertex and destination vertex are not present in adjacency
# list, create a new vertex with source vertex as key and a list containing
# destination vertex as it's first adjacent vertex. Then create a new vertex
# with destination vertex as key, which has no adjacent vertex
else:
__UpperCamelCase = [destination_vertex]
__UpperCamelCase = []
return self
def __repr__( self : Any ):
return pformat(self.adj_list )
| 53 |
"""simple docstring"""
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("TEST_SAGEMAKER" ,"False" ) ) is not True ,reason="Skipping test because should only be run when releasing minor transformers version" ,)
@pytest.mark.usefixtures("sm_env" )
@parameterized_class(
[
{
"framework": "pytorch",
"script": "run_glue_model_parallelism.py",
"model_name_or_path": "roberta-large",
"instance_type": "ml.p3dn.24xlarge",
"results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2},
},
{
"framework": "pytorch",
"script": "run_glue.py",
"model_name_or_path": "roberta-large",
"instance_type": "ml.p3dn.24xlarge",
"results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2},
},
] )
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def _lowercase ( self : Optional[int] ):
if self.framework == "pytorch":
subprocess.run(
F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split(), encoding="utf-8", check=UpperCAmelCase__, )
assert hasattr(self, "env" )
def _lowercase ( self : str, UpperCAmelCase__ : List[Any] ):
# configuration for running training on smdistributed Model Parallel
__lowercase = {
"enabled": True,
"processes_per_host": 8,
}
__lowercase = {
"enabled": True,
"parameters": {
"microbatches": 4,
"placement_strategy": "spread",
"pipeline": "interleaved",
"optimize": "speed",
"partitions": 4,
"ddp": True,
},
}
__lowercase = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options}
__lowercase = "trainer" if self.script == "run_glue.py" else "smtrainer"
# creates estimator
return HuggingFace(
entry_point=self.script, source_dir=self.env.test_path, role=self.env.role, image_uri=self.env.image_uri, base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""", instance_count=UpperCAmelCase__, instance_type=self.instance_type, debugger_hook_config=UpperCAmelCase__, hyperparameters={
**self.env.hyperparameters,
"model_name_or_path": self.model_name_or_path,
"max_steps": 5_0_0,
}, metric_definitions=self.env.metric_definitions, distribution=UpperCAmelCase__, py_version="py36", )
def _lowercase ( self : Tuple, UpperCAmelCase__ : int ):
TrainingJobAnalytics(UpperCAmelCase__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" )
@parameterized.expand([(1,)] )
def _lowercase ( self : str, UpperCAmelCase__ : Union[str, Any] ):
# create estimator
__lowercase = self.create_estimator(UpperCAmelCase__ )
# run training
estimator.fit()
# result dataframe
__lowercase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
__lowercase = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] )
__lowercase = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
__lowercase = (
Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds", 9_9_9_9_9_9 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy )
assert all(t <= self.results["eval_loss"] for t in eval_loss )
# dump tests result into json file to share in PR
with open(F"""{estimator.latest_training_job.name}.json""", "w" ) as outfile:
json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss}, UpperCAmelCase__ )
| 17 | 0 |
import importlib
import inspect
import json
import os
import re
import shutil
import sys
from pathlib import Path
from typing import Dict, Optional, Union
from urllib import request
from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info
from packaging import version
from .. import __version__
from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging
__lowerCamelCase = (
"""https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py"""
)
__lowerCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name
def UpperCamelCase ( ):
snake_case : Optional[Any] = "https://pypi.org/pypi/diffusers/json"
snake_case : Optional[int] = json.loads(request.urlopen(UpperCamelCase_ ).read() )["releases"].keys()
return sorted(UpperCamelCase_ , key=lambda __lowerCamelCase : version.Version(UpperCamelCase_ ) )
def UpperCamelCase ( ):
if HF_MODULES_CACHE in sys.path:
return
sys.path.append(UpperCamelCase_ )
os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ )
snake_case : Union[str, Any] = Path(UpperCamelCase_ ) / "__init__.py"
if not init_path.exists():
init_path.touch()
def UpperCamelCase ( __lowerCamelCase : Union[str, os.PathLike] ):
init_hf_modules()
snake_case : List[Any] = Path(UpperCamelCase_ ) / name
# If the parent module does not exist yet, recursively create it.
if not dynamic_module_path.parent.exists():
create_dynamic_module(dynamic_module_path.parent )
os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ )
snake_case : Any = dynamic_module_path / "__init__.py"
if not init_path.exists():
init_path.touch()
def UpperCamelCase ( __lowerCamelCase : Dict ):
with open(UpperCamelCase_ , "r" , encoding="utf-8" ) as f:
snake_case : Union[str, Any] = f.read()
# Imports of the form `import .xxx`
snake_case : Union[str, Any] = re.findall("^\s*import\s+\.(\S+)\s*$" , UpperCamelCase_ , flags=re.MULTILINE )
# Imports of the form `from .xxx import yyy`
relative_imports += re.findall("^\s*from\s+\.(\S+)\s+import" , UpperCamelCase_ , flags=re.MULTILINE )
# Unique-ify
return list(set(UpperCamelCase_ ) )
def UpperCamelCase ( __lowerCamelCase : List[str] ):
snake_case : List[Any] = False
snake_case : str = [module_file]
snake_case : str = []
# Let's recurse through all relative imports
while not no_change:
snake_case : str = []
for f in files_to_check:
new_imports.extend(get_relative_imports(UpperCamelCase_ ) )
snake_case : str = Path(UpperCamelCase_ ).parent
snake_case : List[str] = [str(module_path / m ) for m in new_imports]
snake_case : int = [f for f in new_import_files if f not in all_relative_imports]
snake_case : Dict = [f"""{f}.py""" for f in new_import_files]
snake_case : int = len(UpperCamelCase_ ) == 0
all_relative_imports.extend(UpperCamelCase_ )
return all_relative_imports
def UpperCamelCase ( __lowerCamelCase : Optional[int] ):
with open(UpperCamelCase_ , "r" , encoding="utf-8" ) as f:
snake_case : List[Any] = f.read()
# Imports of the form `import xxx`
snake_case : Any = re.findall("^\s*import\s+(\S+)\s*$" , UpperCamelCase_ , flags=re.MULTILINE )
# Imports of the form `from xxx import yyy`
imports += re.findall("^\s*from\s+(\S+)\s+import" , UpperCamelCase_ , flags=re.MULTILINE )
# Only keep the top-level module
snake_case : Tuple = [imp.split("." )[0] for imp in imports if not imp.startswith("." )]
# Unique-ify and test we got them all
snake_case : Optional[Any] = list(set(UpperCamelCase_ ) )
snake_case : Any = []
for imp in imports:
try:
importlib.import_module(UpperCamelCase_ )
except ImportError:
missing_packages.append(UpperCamelCase_ )
if len(UpperCamelCase_ ) > 0:
raise ImportError(
"This modeling file requires the following packages that were not found in your environment: "
f"""{', '.join(UpperCamelCase_ )}. Run `pip install {' '.join(UpperCamelCase_ )}`""" )
return get_relative_imports(UpperCamelCase_ )
def UpperCamelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : int ):
snake_case : Tuple = module_path.replace(os.path.sep , "." )
snake_case : int = importlib.import_module(UpperCamelCase_ )
if class_name is None:
return find_pipeline_class(UpperCamelCase_ )
return getattr(UpperCamelCase_ , UpperCamelCase_ )
def UpperCamelCase ( __lowerCamelCase : int ):
from ..pipelines import DiffusionPipeline
snake_case : Tuple = dict(inspect.getmembers(UpperCamelCase_ , inspect.isclass ) )
snake_case : List[str] = None
for cls_name, cls in cls_members.items():
if (
cls_name != DiffusionPipeline.__name__
and issubclass(cls , UpperCamelCase_ )
and cls.__module__.split("." )[0] != "diffusers"
):
if pipeline_class is not None:
raise ValueError(
f"""Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:"""
f""" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in"""
f""" {loaded_module}.""" )
snake_case : List[str] = cls
return pipeline_class
def UpperCamelCase ( __lowerCamelCase : Union[str, os.PathLike] , __lowerCamelCase : str , __lowerCamelCase : Optional[Union[str, os.PathLike]] = None , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[Dict[str, str]] = None , __lowerCamelCase : Optional[Union[bool, str]] = None , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : bool = False , ):
snake_case : Optional[int] = str(UpperCamelCase_ )
snake_case : Any = os.path.join(UpperCamelCase_ , UpperCamelCase_ )
if os.path.isfile(UpperCamelCase_ ):
snake_case : List[str] = module_file_or_url
snake_case : str = "local"
elif pretrained_model_name_or_path.count("/" ) == 0:
snake_case : Optional[int] = get_diffusers_versions()
# cut ".dev0"
snake_case : Tuple = "v" + ".".join(__version__.split("." )[:3] )
# retrieve github version that matches
if revision is None:
snake_case : Union[str, Any] = latest_version if latest_version[1:] in available_versions else "main"
logger.info(f"""Defaulting to latest_version: {revision}.""" )
elif revision in available_versions:
snake_case : Union[str, Any] = f"""v{revision}"""
elif revision == "main":
snake_case : int = revision
else:
raise ValueError(
f"""`custom_revision`: {revision} does not exist. Please make sure to choose one of"""
f""" {', '.join(available_versions + ['main'] )}.""" )
# community pipeline on GitHub
snake_case : Optional[int] = COMMUNITY_PIPELINES_URL.format(revision=UpperCamelCase_ , pipeline=UpperCamelCase_ )
try:
snake_case : Any = cached_download(
UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , proxies=UpperCamelCase_ , resume_download=UpperCamelCase_ , local_files_only=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , )
snake_case : str = "git"
snake_case : Optional[Any] = pretrained_model_name_or_path + ".py"
except EnvironmentError:
logger.error(f"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" )
raise
else:
try:
# Load from URL or cache if already cached
snake_case : List[str] = hf_hub_download(
UpperCamelCase_ , UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , proxies=UpperCamelCase_ , resume_download=UpperCamelCase_ , local_files_only=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , )
snake_case : str = os.path.join("local" , "--".join(pretrained_model_name_or_path.split("/" ) ) )
except EnvironmentError:
logger.error(f"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" )
raise
# Check we have all the requirements in our environment
snake_case : List[str] = check_imports(UpperCamelCase_ )
# Now we move the module inside our cached dynamic modules.
snake_case : str = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule
create_dynamic_module(UpperCamelCase_ )
snake_case : Any = Path(UpperCamelCase_ ) / full_submodule
if submodule == "local" or submodule == "git":
# We always copy local files (we could hash the file to see if there was a change, and give them the name of
# that hash, to only copy when there is a modification but it seems overkill for now).
# The only reason we do the copy is to avoid putting too many folders in sys.path.
shutil.copy(UpperCamelCase_ , submodule_path / module_file )
for module_needed in modules_needed:
snake_case : Optional[int] = f"""{module_needed}.py"""
shutil.copy(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , submodule_path / module_needed )
else:
# Get the commit hash
# TODO: we will get this info in the etag soon, so retrieve it from there and not here.
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
snake_case : List[str] = use_auth_token
elif use_auth_token is True:
snake_case : Union[str, Any] = HfFolder.get_token()
else:
snake_case : List[Any] = None
snake_case : Optional[Any] = model_info(UpperCamelCase_ , revision=UpperCamelCase_ , token=UpperCamelCase_ ).sha
# The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the
# benefit of versioning.
snake_case : int = submodule_path / commit_hash
snake_case : Optional[Any] = full_submodule + os.path.sep + commit_hash
create_dynamic_module(UpperCamelCase_ )
if not (submodule_path / module_file).exists():
shutil.copy(UpperCamelCase_ , submodule_path / module_file )
# Make sure we also have every file with relative
for module_needed in modules_needed:
if not (submodule_path / module_needed).exists():
get_cached_module_file(
UpperCamelCase_ , f"""{module_needed}.py""" , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , resume_download=UpperCamelCase_ , proxies=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , revision=UpperCamelCase_ , local_files_only=UpperCamelCase_ , )
return os.path.join(UpperCamelCase_ , UpperCamelCase_ )
def UpperCamelCase ( __lowerCamelCase : Union[str, os.PathLike] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[Union[str, os.PathLike]] = None , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[Dict[str, str]] = None , __lowerCamelCase : Optional[Union[bool, str]] = None , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : bool = False , **__lowerCamelCase : List[str] , ):
snake_case : List[str] = get_cached_module_file(
UpperCamelCase_ , UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , resume_download=UpperCamelCase_ , proxies=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , revision=UpperCamelCase_ , local_files_only=UpperCamelCase_ , )
return get_class_in_module(UpperCamelCase_ , final_module.replace(".py" , "" ) )
| 59 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor
from .base import PipelineTool
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
__UpperCAmelCase : Tuple = "openai/whisper-base"
__UpperCAmelCase : Union[str, Any] = (
"This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the "
"transcribed text."
)
__UpperCAmelCase : List[str] = "transcriber"
__UpperCAmelCase : Optional[Any] = WhisperProcessor
__UpperCAmelCase : str = WhisperForConditionalGeneration
__UpperCAmelCase : List[str] = ["audio"]
__UpperCAmelCase : Tuple = ["text"]
def _lowercase ( self : str, UpperCAmelCase__ : int ):
return self.pre_processor(UpperCAmelCase__, return_tensors="pt" ).input_features
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Any] ):
return self.model.generate(inputs=UpperCAmelCase__ )
def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[int] ):
return self.pre_processor.batch_decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ )[0]
| 17 | 0 |
from numpy import exp, pi, sqrt
def A_ ( _UpperCAmelCase , _UpperCAmelCase = 0.0 , _UpperCAmelCase = 1.0 ):
return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 |
"""simple docstring"""
import inspect
from typing import Optional, Union
import numpy as np
import PIL
import torch
from torch.nn import functional as F
from torchvision import transforms
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
DPMSolverMultistepScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.utils import (
PIL_INTERPOLATION,
randn_tensor,
)
def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str]) -> Optional[int]:
'''simple docstring'''
if isinstance(UpperCamelCase_, torch.Tensor):
return image
elif isinstance(UpperCamelCase_, PIL.Image.Image):
__lowercase = [image]
if isinstance(image[0], PIL.Image.Image):
__lowercase = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image]
__lowercase = np.concatenate(UpperCamelCase_, axis=0)
__lowercase = np.array(UpperCamelCase_).astype(np.floataa) / 255.0
__lowercase = image.transpose(0, 3, 1, 2)
__lowercase = 2.0 * image - 1.0
__lowercase = torch.from_numpy(UpperCamelCase_)
elif isinstance(image[0], torch.Tensor):
__lowercase = torch.cat(UpperCamelCase_, dim=0)
return image
def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : str, UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[Any]=0.9_995) -> int:
'''simple docstring'''
if not isinstance(UpperCamelCase_, np.ndarray):
__lowercase = True
__lowercase = va.device
__lowercase = va.cpu().numpy()
__lowercase = va.cpu().numpy()
__lowercase = np.sum(va * va / (np.linalg.norm(UpperCamelCase_) * np.linalg.norm(UpperCamelCase_)))
if np.abs(UpperCamelCase_) > DOT_THRESHOLD:
__lowercase = (1 - t) * va + t * va
else:
__lowercase = np.arccos(UpperCamelCase_)
__lowercase = np.sin(UpperCamelCase_)
__lowercase = theta_a * t
__lowercase = np.sin(UpperCamelCase_)
__lowercase = np.sin(theta_a - theta_t) / sin_theta_a
__lowercase = sin_theta_t / sin_theta_a
__lowercase = sa * va + sa * va
if inputs_are_torch:
__lowercase = torch.from_numpy(UpperCamelCase_).to(UpperCamelCase_)
return va
def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Union[str, Any]) -> int:
'''simple docstring'''
__lowercase = F.normalize(UpperCamelCase_, dim=-1)
__lowercase = F.normalize(UpperCamelCase_, dim=-1)
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)
def _A ( UpperCamelCase_ : Optional[int], UpperCamelCase_ : str) -> Optional[int]:
'''simple docstring'''
for param in model.parameters():
__lowercase = value
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
def __init__( self : Dict, UpperCAmelCase__ : AutoencoderKL, UpperCAmelCase__ : CLIPTextModel, UpperCAmelCase__ : CLIPModel, UpperCAmelCase__ : CLIPTokenizer, UpperCAmelCase__ : UNetaDConditionModel, UpperCAmelCase__ : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler], UpperCAmelCase__ : CLIPFeatureExtractor, UpperCAmelCase__ : Union[str, Any]=None, UpperCAmelCase__ : List[str]=None, UpperCAmelCase__ : Any=None, ):
super().__init__()
self.register_modules(
vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, clip_model=UpperCAmelCase__, tokenizer=UpperCAmelCase__, unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, feature_extractor=UpperCAmelCase__, coca_model=UpperCAmelCase__, coca_tokenizer=UpperCAmelCase__, coca_transform=UpperCAmelCase__, )
__lowercase = (
feature_extractor.size
if isinstance(feature_extractor.size, UpperCAmelCase__ )
else feature_extractor.size["shortest_edge"]
)
__lowercase = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std )
set_requires_grad(self.text_encoder, UpperCAmelCase__ )
set_requires_grad(self.clip_model, UpperCAmelCase__ )
def _lowercase ( self : Tuple, UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ):
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
__lowercase = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(UpperCAmelCase__ )
def _lowercase ( self : int ):
self.enable_attention_slicing(UpperCAmelCase__ )
def _lowercase ( self : str ):
set_requires_grad(self.vae, UpperCAmelCase__ )
def _lowercase ( self : Any ):
set_requires_grad(self.vae, UpperCAmelCase__ )
def _lowercase ( self : Union[str, Any] ):
set_requires_grad(self.unet, UpperCAmelCase__ )
def _lowercase ( self : Any ):
set_requires_grad(self.unet, UpperCAmelCase__ )
def _lowercase ( self : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : Optional[Any] ):
# get the original timestep using init_timestep
__lowercase = min(int(num_inference_steps * strength ), UpperCAmelCase__ )
__lowercase = max(num_inference_steps - init_timestep, 0 )
__lowercase = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def _lowercase ( self : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : int=None ):
if not isinstance(UpperCAmelCase__, torch.Tensor ):
raise ValueError(F"""`image` has to be of type `torch.Tensor` but is {type(UpperCAmelCase__ )}""" )
__lowercase = image.to(device=UpperCAmelCase__, dtype=UpperCAmelCase__ )
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
__lowercase = [
self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(UpperCAmelCase__ )
]
__lowercase = torch.cat(UpperCAmelCase__, dim=0 )
else:
__lowercase = self.vae.encode(UpperCAmelCase__ ).latent_dist.sample(UpperCAmelCase__ )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
__lowercase = 0.18_215 * init_latents
__lowercase = init_latents.repeat_interleave(UpperCAmelCase__, dim=0 )
__lowercase = randn_tensor(init_latents.shape, generator=UpperCAmelCase__, device=UpperCAmelCase__, dtype=UpperCAmelCase__ )
# get latents
__lowercase = self.scheduler.add_noise(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = init_latents
return latents
def _lowercase ( self : Optional[int], UpperCAmelCase__ : Dict ):
__lowercase = self.coca_transform(UpperCAmelCase__ ).unsqueeze(0 )
with torch.no_grad(), torch.cuda.amp.autocast():
__lowercase = self.coca_model.generate(transformed_image.to(device=self.device, dtype=self.coca_model.dtype ) )
__lowercase = self.coca_tokenizer.decode(generated[0].cpu().numpy() )
return generated.split("<end_of_text>" )[0].replace("<start_of_text>", "" ).rstrip(" .," )
def _lowercase ( self : Tuple, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Tuple ):
__lowercase = self.feature_extractor.preprocess(UpperCAmelCase__ )
__lowercase = torch.from_numpy(clip_image_input["pixel_values"][0] ).unsqueeze(0 ).to(self.device ).half()
__lowercase = self.clip_model.get_image_features(UpperCAmelCase__ )
__lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=UpperCAmelCase__ )
__lowercase = image_embeddings_clip.repeat_interleave(UpperCAmelCase__, dim=0 )
return image_embeddings_clip
@torch.enable_grad()
def _lowercase ( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[int], ):
__lowercase = latents.detach().requires_grad_()
__lowercase = self.scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ )
# predict the noise residual
__lowercase = self.unet(UpperCAmelCase__, UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__ ).sample
if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ):
__lowercase = self.scheduler.alphas_cumprod[timestep]
__lowercase = 1 - alpha_prod_t
# compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
__lowercase = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5
__lowercase = torch.sqrt(UpperCAmelCase__ )
__lowercase = pred_original_sample * (fac) + latents * (1 - fac)
elif isinstance(self.scheduler, UpperCAmelCase__ ):
__lowercase = self.scheduler.sigmas[index]
__lowercase = latents - sigma * noise_pred
else:
raise ValueError(F"""scheduler type {type(self.scheduler )} not supported""" )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
__lowercase = 1 / 0.18_215 * sample
__lowercase = self.vae.decode(UpperCAmelCase__ ).sample
__lowercase = (image / 2 + 0.5).clamp(0, 1 )
__lowercase = transforms.Resize(self.feature_extractor_size )(UpperCAmelCase__ )
__lowercase = self.normalize(UpperCAmelCase__ ).to(latents.dtype )
__lowercase = self.clip_model.get_image_features(UpperCAmelCase__ )
__lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=UpperCAmelCase__ )
__lowercase = spherical_dist_loss(UpperCAmelCase__, UpperCAmelCase__ ).mean() * clip_guidance_scale
__lowercase = -torch.autograd.grad(UpperCAmelCase__, UpperCAmelCase__ )[0]
if isinstance(self.scheduler, UpperCAmelCase__ ):
__lowercase = latents.detach() + grads * (sigma**2)
__lowercase = noise_pred_original
else:
__lowercase = noise_pred_original - torch.sqrt(UpperCAmelCase__ ) * grads
return noise_pred, latents
@torch.no_grad()
def __call__( self : str, UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image], UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image], UpperCAmelCase__ : Optional[str] = None, UpperCAmelCase__ : Optional[str] = None, UpperCAmelCase__ : Optional[int] = 5_1_2, UpperCAmelCase__ : Optional[int] = 5_1_2, UpperCAmelCase__ : float = 0.6, UpperCAmelCase__ : Optional[int] = 5_0, UpperCAmelCase__ : Optional[float] = 7.5, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[float] = 1_0_0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : float = 0.8, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, ):
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and len(UpperCAmelCase__ ) != batch_size:
raise ValueError(F"""You have passed {batch_size} batch_size, but only {len(UpperCAmelCase__ )} generators.""" )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" )
if isinstance(UpperCAmelCase__, torch.Generator ) and batch_size > 1:
__lowercase = [generator] + [None] * (batch_size - 1)
__lowercase = [
("model", self.coca_model is None),
("tokenizer", self.coca_tokenizer is None),
("transform", self.coca_transform is None),
]
__lowercase = [x[0] for x in coca_is_none if x[1]]
__lowercase = ", ".join(UpperCAmelCase__ )
# generate prompts with coca model if prompt is None
if content_prompt is None:
if len(UpperCAmelCase__ ):
raise ValueError(
F"""Content prompt is None and CoCa [{coca_is_none_str}] is None."""
F"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" )
__lowercase = self.get_image_description(UpperCAmelCase__ )
if style_prompt is None:
if len(UpperCAmelCase__ ):
raise ValueError(
F"""Style prompt is None and CoCa [{coca_is_none_str}] is None."""
F""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" )
__lowercase = self.get_image_description(UpperCAmelCase__ )
# get prompt text embeddings for content and style
__lowercase = self.tokenizer(
UpperCAmelCase__, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=UpperCAmelCase__, return_tensors="pt", )
__lowercase = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0]
__lowercase = self.tokenizer(
UpperCAmelCase__, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=UpperCAmelCase__, return_tensors="pt", )
__lowercase = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0]
__lowercase = slerp(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
# duplicate text embeddings for each generation per prompt
__lowercase = text_embeddings.repeat_interleave(UpperCAmelCase__, dim=0 )
# set timesteps
__lowercase = "offset" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() )
__lowercase = {}
if accepts_offset:
__lowercase = 1
self.scheduler.set_timesteps(UpperCAmelCase__, **UpperCAmelCase__ )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
self.scheduler.timesteps.to(self.device )
__lowercase ,__lowercase = self.get_timesteps(UpperCAmelCase__, UpperCAmelCase__, self.device )
__lowercase = timesteps[:1].repeat(UpperCAmelCase__ )
# Preprocess image
__lowercase = preprocess(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = self.prepare_latents(
UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, text_embeddings.dtype, self.device, UpperCAmelCase__ )
__lowercase = preprocess(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = self.prepare_latents(
UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, text_embeddings.dtype, self.device, UpperCAmelCase__ )
__lowercase = slerp(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
if clip_guidance_scale > 0:
__lowercase = self.get_clip_image_embeddings(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = self.get_clip_image_embeddings(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = slerp(
UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
__lowercase = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
__lowercase = content_text_input.input_ids.shape[-1]
__lowercase = self.tokenizer([""], padding="max_length", max_length=UpperCAmelCase__, return_tensors="pt" )
__lowercase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt
__lowercase = uncond_embeddings.repeat_interleave(UpperCAmelCase__, dim=0 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
__lowercase = torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
__lowercase = (batch_size, self.unet.config.in_channels, height // 8, width // 8)
__lowercase = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not work reproducibly on mps
__lowercase = torch.randn(UpperCAmelCase__, generator=UpperCAmelCase__, device="cpu", dtype=UpperCAmelCase__ ).to(
self.device )
else:
__lowercase = torch.randn(UpperCAmelCase__, generator=UpperCAmelCase__, device=self.device, dtype=UpperCAmelCase__ )
else:
if latents.shape != latents_shape:
raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" )
__lowercase = latents.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
__lowercase = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
__lowercase = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
__lowercase = {}
if accepts_eta:
__lowercase = eta
# check if the scheduler accepts generator
__lowercase = "generator" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
if accepts_generator:
__lowercase = generator
with self.progress_bar(total=UpperCAmelCase__ ):
for i, t in enumerate(UpperCAmelCase__ ):
# expand the latents if we are doing classifier free guidance
__lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
__lowercase = self.scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ )
# predict the noise residual
__lowercase = self.unet(UpperCAmelCase__, UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__ ).sample
# perform classifier free guidance
if do_classifier_free_guidance:
__lowercase ,__lowercase = noise_pred.chunk(2 )
__lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# perform clip guidance
if clip_guidance_scale > 0:
__lowercase = (
text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings
)
__lowercase ,__lowercase = self.cond_fn(
UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, )
# compute the previous noisy sample x_t -> x_t-1
__lowercase = self.scheduler.step(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, **UpperCAmelCase__ ).prev_sample
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
__lowercase = 1 / 0.18_215 * latents
__lowercase = self.vae.decode(UpperCAmelCase__ ).sample
__lowercase = (image / 2 + 0.5).clamp(0, 1 )
__lowercase = image.cpu().permute(0, 2, 3, 1 ).numpy()
if output_type == "pil":
__lowercase = self.numpy_to_pil(UpperCAmelCase__ )
if not return_dict:
return (image, None)
return StableDiffusionPipelineOutput(images=UpperCAmelCase__, nsfw_content_detected=UpperCAmelCase__ )
| 17 | 0 |
import logging
import os
import sys
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional, Union
import datasets
import numpy as np
import torch
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('''4.31.0''')
A_ :Union[str, Any] = logging.getLogger(__name__)
@dataclass
class __A :
"""simple docstring"""
UpperCamelCase__ : str =field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
UpperCamelCase__ : Optional[str] =field(
default=a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
UpperCamelCase__ : Optional[str] =field(
default=a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
UpperCamelCase__ : Optional[str] =field(
default=a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
UpperCamelCase__ : bool =field(
default=a , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , )
UpperCamelCase__ : str =field(
default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , )
UpperCamelCase__ : bool =field(
default=a , metadata={
"""help""": (
"""Will use the token generated when running `huggingface-cli login` (necessary to use this script """
"""with private models)."""
)
} , )
@dataclass
class __A :
"""simple docstring"""
UpperCamelCase__ : Optional[str] =field(default=a , metadata={"""help""": """The input training data file (a text file)."""} )
UpperCamelCase__ : Optional[str] =field(
default=a , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , )
UpperCamelCase__ : bool =field(
default=a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
UpperCamelCase__ : Optional[int] =field(
default=a , metadata={"""help""": """The number of processes to use for the preprocessing."""} , )
UpperCamelCase__ : Optional[int] =field(
default=a , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. If passed, sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
UpperCamelCase__ : bool =field(
default=a , metadata={
"""help""": (
"""Whether to pad all samples to the maximum sentence length. """
"""If False, will pad the samples dynamically when batching to the maximum length in the batch. More """
"""efficient on GPU but very bad for TPU."""
)
} , )
UpperCamelCase__ : Optional[int] =field(
default=a , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of training examples to this """
"""value if set."""
)
} , )
UpperCamelCase__ : Optional[int] =field(
default=a , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of evaluation examples to this """
"""value if set."""
)
} , )
def __lowercase ( self ):
"""simple docstring"""
if self.train_file is not None:
__UpperCamelCase : Any =self.train_file.split('.' )[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
__UpperCamelCase : int =self.validation_file.split('.' )[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
@dataclass
class __A :
"""simple docstring"""
UpperCamelCase__ : PreTrainedTokenizerBase
UpperCamelCase__ : Union[bool, str, PaddingStrategy] =True
UpperCamelCase__ : Optional[int] =None
UpperCamelCase__ : Optional[int] =None
def __call__( self , lowerCamelCase__ ):
"""simple docstring"""
__UpperCamelCase : Any ='label' if 'label' in features[0].keys() else 'labels'
__UpperCamelCase : List[str] =[feature.pop(UpperCAmelCase__ ) for feature in features]
__UpperCamelCase : Optional[Any] =len(UpperCAmelCase__ )
__UpperCamelCase : Dict =len(features[0]['input_ids'] )
__UpperCamelCase : int =[
[{k: v[i] for k, v in feature.items()} for i in range(UpperCAmelCase__ )] for feature in features
]
__UpperCamelCase : List[str] =list(chain(*UpperCAmelCase__ ) )
__UpperCamelCase : Dict =self.tokenizer.pad(
UpperCAmelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , )
# Un-flatten
__UpperCamelCase : Optional[int] ={k: v.view(UpperCAmelCase__ , UpperCAmelCase__ , -1 ) for k, v in batch.items()}
# Add back labels
__UpperCamelCase : int =torch.tensor(UpperCAmelCase__ , dtype=torch.intaa )
return batch
def A ( ) -> int:
__UpperCamelCase : Optional[Any] =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase : int =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Optional[Any] =parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('run_swag' ,UpperCamelCase_ ,UpperCamelCase_ )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' ,datefmt='%m/%d/%Y %H:%M:%S' ,handlers=[logging.StreamHandler(sys.stdout )] ,)
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
__UpperCamelCase : int =training_args.get_process_log_level()
logger.setLevel(UpperCamelCase_ )
datasets.utils.logging.set_verbosity(UpperCamelCase_ )
transformers.utils.logging.set_verbosity(UpperCamelCase_ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'
+ F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' )
logger.info(F'Training/evaluation parameters {training_args}' )
# Detecting last checkpoint.
__UpperCamelCase : Optional[int] =None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
__UpperCamelCase : int =get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F'Output directory ({training_args.output_dir}) already exists and is not empty. '
'Use --overwrite_output_dir to overcome.' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '
'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.train_file is not None or data_args.validation_file is not None:
__UpperCamelCase : Any ={}
if data_args.train_file is not None:
__UpperCamelCase : int =data_args.train_file
if data_args.validation_file is not None:
__UpperCamelCase : Dict =data_args.validation_file
__UpperCamelCase : Union[str, Any] =data_args.train_file.split('.' )[-1]
__UpperCamelCase : Dict =load_dataset(
UpperCamelCase_ ,data_files=UpperCamelCase_ ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,)
else:
# Downloading and loading the swag dataset from the hub.
__UpperCamelCase : int =load_dataset(
'swag' ,'regular' ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__UpperCamelCase : str =AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,)
__UpperCamelCase : Tuple =AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,use_fast=model_args.use_fast_tokenizer ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,)
__UpperCamelCase : List[str] =AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path ,from_tf=bool('.ckpt' in model_args.model_name_or_path ) ,config=UpperCamelCase_ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,)
# When using your own dataset or a different dataset from swag, you will probably need to change this.
__UpperCamelCase : Optional[int] =[F'ending{i}' for i in range(4 )]
__UpperCamelCase : str ='sent1'
__UpperCamelCase : Tuple ='sent2'
if data_args.max_seq_length is None:
__UpperCamelCase : List[str] =tokenizer.model_max_length
if max_seq_length > 1_024:
logger.warning(
'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value'
' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can'
' override this default with `--block_size xxx`.' )
__UpperCamelCase : Any =1_024
else:
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
F'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the'
F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' )
__UpperCamelCase : Optional[Any] =min(data_args.max_seq_length ,tokenizer.model_max_length )
# Preprocessing the datasets.
def preprocess_function(a_ ):
__UpperCamelCase : Dict =[[context] * 4 for context in examples[context_name]]
__UpperCamelCase : int =examples[question_header_name]
__UpperCamelCase : Tuple =[
[F'{header} {examples[end][i]}' for end in ending_names] for i, header in enumerate(UpperCamelCase_ )
]
# Flatten out
__UpperCamelCase : int =list(chain(*UpperCamelCase_ ) )
__UpperCamelCase : List[Any] =list(chain(*UpperCamelCase_ ) )
# Tokenize
__UpperCamelCase : Optional[int] =tokenizer(
UpperCamelCase_ ,UpperCamelCase_ ,truncation=UpperCamelCase_ ,max_length=UpperCamelCase_ ,padding='max_length' if data_args.pad_to_max_length else False ,)
# Un-flatten
return {k: [v[i : i + 4] for i in range(0 ,len(UpperCamelCase_ ) ,4 )] for k, v in tokenized_examples.items()}
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError('--do_train requires a train dataset' )
__UpperCamelCase : List[Any] =raw_datasets['train']
if data_args.max_train_samples is not None:
__UpperCamelCase : Any =min(len(UpperCamelCase_ ) ,data_args.max_train_samples )
__UpperCamelCase : Union[str, Any] =train_dataset.select(range(UpperCamelCase_ ) )
with training_args.main_process_first(desc='train dataset map pre-processing' ):
__UpperCamelCase : Tuple =train_dataset.map(
UpperCamelCase_ ,batched=UpperCamelCase_ ,num_proc=data_args.preprocessing_num_workers ,load_from_cache_file=not data_args.overwrite_cache ,)
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError('--do_eval requires a validation dataset' )
__UpperCamelCase : str =raw_datasets['validation']
if data_args.max_eval_samples is not None:
__UpperCamelCase : Optional[Any] =min(len(UpperCamelCase_ ) ,data_args.max_eval_samples )
__UpperCamelCase : Any =eval_dataset.select(range(UpperCamelCase_ ) )
with training_args.main_process_first(desc='validation dataset map pre-processing' ):
__UpperCamelCase : Tuple =eval_dataset.map(
UpperCamelCase_ ,batched=UpperCamelCase_ ,num_proc=data_args.preprocessing_num_workers ,load_from_cache_file=not data_args.overwrite_cache ,)
# Data collator
__UpperCamelCase : Union[str, Any] =(
default_data_collator
if data_args.pad_to_max_length
else DataCollatorForMultipleChoice(tokenizer=UpperCamelCase_ ,pad_to_multiple_of=8 if training_args.fpaa else None )
)
# Metric
def compute_metrics(a_ ):
__UpperCamelCase , __UpperCamelCase : Union[str, Any] =eval_predictions
__UpperCamelCase : Optional[int] =np.argmax(UpperCamelCase_ ,axis=1 )
return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()}
# Initialize our Trainer
__UpperCamelCase : Any =Trainer(
model=UpperCamelCase_ ,args=UpperCamelCase_ ,train_dataset=train_dataset if training_args.do_train else None ,eval_dataset=eval_dataset if training_args.do_eval else None ,tokenizer=UpperCamelCase_ ,data_collator=UpperCamelCase_ ,compute_metrics=UpperCamelCase_ ,)
# Training
if training_args.do_train:
__UpperCamelCase : List[str] =None
if training_args.resume_from_checkpoint is not None:
__UpperCamelCase : str =training_args.resume_from_checkpoint
elif last_checkpoint is not None:
__UpperCamelCase : Tuple =last_checkpoint
__UpperCamelCase : Union[str, Any] =trainer.train(resume_from_checkpoint=UpperCamelCase_ )
trainer.save_model() # Saves the tokenizer too for easy upload
__UpperCamelCase : Union[str, Any] =train_result.metrics
__UpperCamelCase : str =(
data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCamelCase_ )
)
__UpperCamelCase : Tuple =min(UpperCamelCase_ ,len(UpperCamelCase_ ) )
trainer.log_metrics('train' ,UpperCamelCase_ )
trainer.save_metrics('train' ,UpperCamelCase_ )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info('*** Evaluate ***' )
__UpperCamelCase : Optional[int] =trainer.evaluate()
__UpperCamelCase : Dict =data_args.max_eval_samples if data_args.max_eval_samples is not None else len(UpperCamelCase_ )
__UpperCamelCase : int =min(UpperCamelCase_ ,len(UpperCamelCase_ ) )
trainer.log_metrics('eval' ,UpperCamelCase_ )
trainer.save_metrics('eval' ,UpperCamelCase_ )
__UpperCamelCase : List[str] ={
'finetuned_from': model_args.model_name_or_path,
'tasks': 'multiple-choice',
'dataset_tags': 'swag',
'dataset_args': 'regular',
'dataset': 'SWAG',
'language': 'en',
}
if training_args.push_to_hub:
trainer.push_to_hub(**UpperCamelCase_ )
else:
trainer.create_model_card(**UpperCamelCase_ )
def A ( a_ ) -> Optional[int]:
main()
if __name__ == "__main__":
main()
| 71 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class _lowerCAmelCase :
"""simple docstring"""
__UpperCAmelCase : Tuple = XGLMConfig
__UpperCAmelCase : Optional[Any] = {}
__UpperCAmelCase : Union[str, Any] = "gelu"
def __init__( self : Optional[int], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int]=1_4, UpperCAmelCase__ : str=7, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[Any]=True, UpperCAmelCase__ : int=True, UpperCAmelCase__ : List[str]=9_9, UpperCAmelCase__ : Union[str, Any]=3_2, UpperCAmelCase__ : Union[str, Any]=2, UpperCAmelCase__ : Union[str, Any]=4, UpperCAmelCase__ : Tuple=3_7, UpperCAmelCase__ : List[Any]="gelu", UpperCAmelCase__ : List[str]=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Tuple=5_1_2, UpperCAmelCase__ : Optional[Any]=0.02, ):
__lowercase = parent
__lowercase = batch_size
__lowercase = seq_length
__lowercase = is_training
__lowercase = use_input_mask
__lowercase = use_labels
__lowercase = vocab_size
__lowercase = d_model
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = ffn_dim
__lowercase = activation_function
__lowercase = activation_dropout
__lowercase = attention_dropout
__lowercase = max_position_embeddings
__lowercase = initializer_range
__lowercase = None
__lowercase = 0
__lowercase = 2
__lowercase = 1
def _lowercase ( self : Union[str, Any] ):
return XGLMConfig.from_pretrained("facebook/xglm-564M" )
def _lowercase ( self : Tuple ):
__lowercase = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length], self.vocab_size ), clip_value_min=0, clip_value_max=3 )
__lowercase = None
if self.use_input_mask:
__lowercase = random_attention_mask([self.batch_size, self.seq_length] )
__lowercase = self.get_config()
__lowercase = floats_tensor([self.num_hidden_layers, self.num_attention_heads], 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def _lowercase ( self : List[Any] ):
return XGLMConfig(
vocab_size=self.vocab_size, d_model=self.hidden_size, num_layers=self.num_hidden_layers, attention_heads=self.num_attention_heads, ffn_dim=self.ffn_dim, activation_function=self.activation_function, activation_dropout=self.activation_dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, use_cache=UpperCAmelCase__, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, return_dict=UpperCAmelCase__, )
def _lowercase ( self : Dict ):
__lowercase = self.prepare_config_and_inputs()
(
(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,
) = config_and_inputs
__lowercase = {
"input_ids": input_ids,
"head_mask": head_mask,
}
return config, inputs_dict
@require_tf
class _lowerCAmelCase ( lowercase ,lowercase ,unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
__UpperCAmelCase : List[str] = (TFXGLMForCausalLM,) if is_tf_available() else ()
__UpperCAmelCase : Any = (
{"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {}
)
__UpperCAmelCase : Optional[Any] = False
__UpperCAmelCase : List[str] = False
__UpperCAmelCase : int = False
def _lowercase ( self : Optional[Any] ):
__lowercase = TFXGLMModelTester(self )
__lowercase = ConfigTester(self, config_class=UpperCAmelCase__, n_embd=3_7 )
def _lowercase ( self : Any ):
self.config_tester.run_common_tests()
@slow
def _lowercase ( self : List[str] ):
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowercase = TFXGLMModel.from_pretrained(UpperCAmelCase__ )
self.assertIsNotNone(UpperCAmelCase__ )
@unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." )
def _lowercase ( self : int ):
super().test_resize_token_embeddings()
@require_tf
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[int]=True ):
__lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
__lowercase = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]], dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
__lowercase = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1]
# fmt: on
__lowercase = model.generate(UpperCAmelCase__, do_sample=UpperCAmelCase__, num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist(), UpperCAmelCase__ )
@slow
def _lowercase ( self : List[Any] ):
__lowercase = XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
__lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
tf.random.set_seed(0 )
__lowercase = tokenizer("Today is a nice day and", return_tensors="tf" )
__lowercase = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(":/CPU:0" ):
__lowercase = model.generate(UpperCAmelCase__, do_sample=UpperCAmelCase__, seed=[7, 0] )
__lowercase = tokenizer.decode(output_ids[0], skip_special_tokens=UpperCAmelCase__ )
__lowercase = (
"Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due"
)
self.assertEqual(UpperCAmelCase__, UpperCAmelCase__ )
@slow
def _lowercase ( self : Dict ):
__lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
__lowercase = XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
__lowercase = "left"
# use different length sentences to test batching
__lowercase = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When",
"Hello, my dog is a little",
]
__lowercase = tokenizer(UpperCAmelCase__, return_tensors="tf", padding=UpperCAmelCase__ )
__lowercase = inputs["input_ids"]
__lowercase = model.generate(input_ids=UpperCAmelCase__, attention_mask=inputs["attention_mask"], max_new_tokens=1_2 )
__lowercase = tokenizer(sentences[0], return_tensors="tf" ).input_ids
__lowercase = model.generate(input_ids=UpperCAmelCase__, max_new_tokens=1_2 )
__lowercase = tokenizer(sentences[1], return_tensors="tf" ).input_ids
__lowercase = model.generate(input_ids=UpperCAmelCase__, max_new_tokens=1_2 )
__lowercase = tokenizer.batch_decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ )
__lowercase = tokenizer.decode(output_non_padded[0], skip_special_tokens=UpperCAmelCase__ )
__lowercase = tokenizer.decode(output_padded[0], skip_special_tokens=UpperCAmelCase__ )
__lowercase = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When left padding is applied, the sequence will be "
"a single",
"Hello, my dog is a little bit of a shy one, but he is very friendly",
]
self.assertListEqual(UpperCAmelCase__, UpperCAmelCase__ )
self.assertListEqual(UpperCAmelCase__, [non_padded_sentence, padded_sentence] )
| 17 | 0 |
'''simple docstring'''
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
@require_vision
class _A ( unittest.TestCase ):
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = tempfile.mkdtemp()
__UpperCAmelCase : Tuple = BlipImageProcessor()
__UpperCAmelCase : Any = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-BertModel""" )
__UpperCAmelCase : Optional[int] = BlipProcessor(UpperCAmelCase__ , UpperCAmelCase__ )
processor.save_pretrained(self.tmpdirname )
def __A ( self , **__UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ).tokenizer
def __A ( self , **__UpperCAmelCase ) -> Any:
'''simple docstring'''
return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ).image_processor
def __A ( self ) -> Any:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Dict = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
__UpperCAmelCase : Dict = [Image.fromarray(np.moveaxis(UpperCAmelCase__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : int = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__UpperCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
__UpperCAmelCase : Dict = self.get_image_processor(do_normalize=UpperCAmelCase__ , padding_value=1.0 )
__UpperCAmelCase : Union[str, Any] = BlipProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=UpperCAmelCase__ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , UpperCAmelCase__ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCAmelCase__ )
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : Tuple = self.get_image_processor()
__UpperCAmelCase : List[Any] = self.get_tokenizer()
__UpperCAmelCase : Union[str, Any] = BlipProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ )
__UpperCAmelCase : Optional[int] = self.prepare_image_inputs()
__UpperCAmelCase : Dict = image_processor(UpperCAmelCase__ , return_tensors="""np""" )
__UpperCAmelCase : Any = processor(images=UpperCAmelCase__ , return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : int = self.get_image_processor()
__UpperCAmelCase : Dict = self.get_tokenizer()
__UpperCAmelCase : str = BlipProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ )
__UpperCAmelCase : Any = """lower newer"""
__UpperCAmelCase : Optional[int] = processor(text=UpperCAmelCase__ )
__UpperCAmelCase : Any = tokenizer(UpperCAmelCase__ , return_token_type_ids=UpperCAmelCase__ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = self.get_image_processor()
__UpperCAmelCase : Any = self.get_tokenizer()
__UpperCAmelCase : Any = BlipProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ )
__UpperCAmelCase : Optional[int] = """lower newer"""
__UpperCAmelCase : int = self.prepare_image_inputs()
__UpperCAmelCase : List[str] = processor(text=UpperCAmelCase__ , images=UpperCAmelCase__ )
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
# test if it raises when no input is passed
with pytest.raises(UpperCAmelCase__ ):
processor()
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : str = self.get_image_processor()
__UpperCAmelCase : List[Any] = self.get_tokenizer()
__UpperCAmelCase : Any = BlipProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ )
__UpperCAmelCase : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__UpperCAmelCase : List[Any] = processor.batch_decode(UpperCAmelCase__ )
__UpperCAmelCase : str = tokenizer.batch_decode(UpperCAmelCase__ )
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.get_image_processor()
__UpperCAmelCase : Union[str, Any] = self.get_tokenizer()
__UpperCAmelCase : List[str] = BlipProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ )
__UpperCAmelCase : Tuple = """lower newer"""
__UpperCAmelCase : Optional[int] = self.prepare_image_inputs()
__UpperCAmelCase : str = processor(text=UpperCAmelCase__ , images=UpperCAmelCase__ )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
| 254 |
"""simple docstring"""
import time
from contextlib import contextmanager
from pathlib import Path
import pytest
import requests
from huggingface_hub.hf_api import HfApi, HfFolder
_a = '__DUMMY_TRANSFORMERS_USER__'
_a = 'Dummy User'
_a = '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'
_a = 'https://hub-ci.huggingface.co'
_a = CI_HUB_ENDPOINT + '/datasets/{repo_id}/resolve/{revision}/{path}'
_a = CI_HUB_ENDPOINT + '/{repo_id}/resolve/{revision}/{filename}'
_a = Path('~/.huggingface/hub_ci_token').expanduser()
@pytest.fixture
def _A ( UpperCamelCase_ : List[Any]) -> Tuple:
'''simple docstring'''
monkeypatch.setattr(
"huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE", UpperCamelCase_)
@pytest.fixture
def _A ( UpperCamelCase_ : int) -> List[Any]:
'''simple docstring'''
monkeypatch.setattr("datasets.config.HF_ENDPOINT", UpperCamelCase_)
monkeypatch.setattr("datasets.config.HUB_DATASETS_URL", UpperCamelCase_)
@pytest.fixture
def _A ( UpperCamelCase_ : str) -> Dict:
'''simple docstring'''
monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token", UpperCamelCase_)
@pytest.fixture
def _A ( UpperCamelCase_ : Optional[Any], UpperCamelCase_ : List[Any]) -> List[str]:
'''simple docstring'''
HfFolder.save_token(UpperCamelCase_)
yield
HfFolder.delete_token()
@pytest.fixture(scope="session")
def _A ( ) -> List[Any]:
'''simple docstring'''
return HfApi(endpoint=UpperCamelCase_)
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : HfApi) -> List[Any]:
'''simple docstring'''
__lowercase = HfFolder.get_token()
HfFolder.save_token(UpperCamelCase_)
yield CI_HUB_USER_TOKEN
if previous_token is not None:
HfFolder.save_token(UpperCamelCase_)
@pytest.fixture
def _A ( UpperCamelCase_ : Dict) -> int:
'''simple docstring'''
def _cleanup_repo(UpperCamelCase_ : Optional[int]):
hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset")
return _cleanup_repo
@pytest.fixture
def _A ( UpperCamelCase_ : str) -> Any:
'''simple docstring'''
@contextmanager
def _temporary_repo(UpperCamelCase_ : Any):
try:
yield repo_id
finally:
cleanup_repo(UpperCamelCase_)
return _temporary_repo
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : str, UpperCamelCase_ : Optional[int]) -> List[Any]:
'''simple docstring'''
__lowercase = F"""repo_txt_data-{int(time.time() * 10E3)}"""
__lowercase = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_)
hf_api.upload_file(
token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data/text_data.txt", repo_id=UpperCamelCase_, repo_type="dataset", )
yield repo_id
try:
hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset")
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : Any, UpperCamelCase_ : Dict) -> Optional[int]:
'''simple docstring'''
return hf_private_dataset_repo_txt_data_
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : int, UpperCamelCase_ : Optional[int]) -> int:
'''simple docstring'''
__lowercase = F"""repo_zipped_txt_data-{int(time.time() * 10E3)}"""
__lowercase = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_)
hf_api.upload_file(
token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data.zip", repo_id=UpperCamelCase_, repo_type="dataset", )
yield repo_id
try:
hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset")
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Dict, UpperCamelCase_ : Any) -> int:
'''simple docstring'''
return hf_private_dataset_repo_zipped_txt_data_
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : List[str], UpperCamelCase_ : List[str]) -> List[Any]:
'''simple docstring'''
__lowercase = F"""repo_zipped_img_data-{int(time.time() * 10E3)}"""
__lowercase = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_)
hf_api.upload_file(
token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data.zip", repo_id=UpperCamelCase_, repo_type="dataset", )
yield repo_id
try:
hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset")
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str], UpperCamelCase_ : List[str]) -> str:
'''simple docstring'''
return hf_private_dataset_repo_zipped_img_data_
| 17 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a : Tuple = logging.get_logger(__name__)
a : List[str] = {
"""facebook/nllb-moe-54B""": """https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json""",
}
class UpperCamelCase_ ( __magic_name__ ):
lowercase = "nllb-moe"
lowercase = ["past_key_values"]
lowercase = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self , A=128112 , A=1024 , A=12 , A=4096 , A=16 , A=12 , A=4096 , A=16 , A=0.0_5 , A=0.0_5 , A=True , A=True , A="relu" , A=1024 , A=0.1 , A=0.1 , A=0.0 , A=0.0_2 , A=2 , A=True , A=False , A="float32" , A=False , A=128 , A=64 , A=4 , A=4 , A=0.0_0_1 , A=0.0_0_1 , A="all" , A=False , A=False , A=1.0 , A=0.2 , A=1 , A=0 , A=2 , A=False , **A , ) -> List[str]:
UpperCAmelCase : Union[str, Any] = vocab_size
UpperCAmelCase : Union[str, Any] = max_position_embeddings
UpperCAmelCase : int = d_model
UpperCAmelCase : int = encoder_ffn_dim
UpperCAmelCase : int = encoder_layers
UpperCAmelCase : int = encoder_attention_heads
UpperCAmelCase : int = decoder_ffn_dim
UpperCAmelCase : Tuple = decoder_layers
UpperCAmelCase : Union[str, Any] = decoder_attention_heads
UpperCAmelCase : Optional[int] = dropout
UpperCAmelCase : Any = attention_dropout
UpperCAmelCase : List[str] = activation_dropout
UpperCAmelCase : Union[str, Any] = activation_function
UpperCAmelCase : Dict = init_std
UpperCAmelCase : List[str] = encoder_layerdrop
UpperCAmelCase : Optional[Any] = decoder_layerdrop
UpperCAmelCase : str = use_cache
UpperCAmelCase : Dict = encoder_layers
UpperCAmelCase : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True
UpperCAmelCase : List[Any] = router_z_loss_coef
UpperCAmelCase : str = router_aux_loss_coef
UpperCAmelCase : List[str] = decoder_sparse_step
UpperCAmelCase : Optional[int] = encoder_sparse_step
UpperCAmelCase : List[str] = num_experts
UpperCAmelCase : Dict = expert_capacity
UpperCAmelCase : int = router_bias
if router_dtype not in ["float32", "float16", "bfloat16"]:
raise ValueError(f'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' )
UpperCAmelCase : Optional[Any] = router_dtype
UpperCAmelCase : Union[str, Any] = router_ignore_padding_tokens
UpperCAmelCase : Tuple = batch_prioritized_routing
UpperCAmelCase : Optional[Any] = second_expert_policy
UpperCAmelCase : Optional[int] = normalize_router_prob_before_dropping
UpperCAmelCase : str = moe_eval_capacity_token_fraction
UpperCAmelCase : Any = moe_token_dropout
UpperCAmelCase : Optional[Any] = output_router_logits
super().__init__(
pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , is_encoder_decoder=UpperCAmelCase__ , decoder_start_token_id=UpperCAmelCase__ , **UpperCAmelCase__ , )
| 265 |
"""simple docstring"""
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_a = logging.get_logger(__name__)
_a = {
'huggingface/time-series-transformer-tourism-monthly': (
'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json'
),
# See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer
}
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
__UpperCAmelCase : int = "time_series_transformer"
__UpperCAmelCase : Any = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
"num_hidden_layers": "encoder_layers",
}
def __init__( self : int, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : str = "student_t", UpperCAmelCase__ : str = "nll", UpperCAmelCase__ : int = 1, UpperCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7], UpperCAmelCase__ : Optional[Union[str, bool]] = "mean", UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : int = 3_2, UpperCAmelCase__ : int = 3_2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : str = "gelu", UpperCAmelCase__ : int = 6_4, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : int = 1_0_0, UpperCAmelCase__ : float = 0.02, UpperCAmelCase__ : Any=True, **UpperCAmelCase__ : List[str], ):
# time series specific configuration
__lowercase = prediction_length
__lowercase = context_length or prediction_length
__lowercase = distribution_output
__lowercase = loss
__lowercase = input_size
__lowercase = num_time_features
__lowercase = lags_sequence
__lowercase = scaling
__lowercase = num_dynamic_real_features
__lowercase = num_static_real_features
__lowercase = num_static_categorical_features
if cardinality and num_static_categorical_features > 0:
if len(UpperCAmelCase__ ) != num_static_categorical_features:
raise ValueError(
"The cardinality should be a list of the same length as `num_static_categorical_features`" )
__lowercase = cardinality
else:
__lowercase = [0]
if embedding_dimension and num_static_categorical_features > 0:
if len(UpperCAmelCase__ ) != num_static_categorical_features:
raise ValueError(
"The embedding dimension should be a list of the same length as `num_static_categorical_features`" )
__lowercase = embedding_dimension
else:
__lowercase = [min(5_0, (cat + 1) // 2 ) for cat in self.cardinality]
__lowercase = num_parallel_samples
# Transformer architecture configuration
__lowercase = input_size * len(UpperCAmelCase__ ) + self._number_of_features
__lowercase = d_model
__lowercase = encoder_attention_heads
__lowercase = decoder_attention_heads
__lowercase = encoder_ffn_dim
__lowercase = decoder_ffn_dim
__lowercase = encoder_layers
__lowercase = decoder_layers
__lowercase = dropout
__lowercase = attention_dropout
__lowercase = activation_dropout
__lowercase = encoder_layerdrop
__lowercase = decoder_layerdrop
__lowercase = activation_function
__lowercase = init_std
__lowercase = use_cache
super().__init__(is_encoder_decoder=UpperCAmelCase__, **UpperCAmelCase__ )
@property
def _lowercase ( self : Optional[Any] ):
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 17 | 0 |
"""simple docstring"""
from copy import deepcopy
from typing import Optional, Union
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, is_tf_available, is_torch_available
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
class UpperCamelCase__( __A ):
lowerCAmelCase__ : Union[str, Any] = ["image_processor"]
lowerCAmelCase__ : Optional[Any] = "SamImageProcessor"
def __init__( self ,__UpperCAmelCase ) -> Dict:
super().__init__(UpperCAmelCase__ )
A__ = self.image_processor
A__ = -10
A__ = self.image_processor.size['longest_edge']
def __call__( self ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase = None ,**__UpperCAmelCase ,) -> str:
A__ = self.image_processor(
UpperCAmelCase__ ,return_tensors=UpperCAmelCase__ ,**UpperCAmelCase__ ,)
# pop arguments that are not used in the foward but used nevertheless
A__ = encoding_image_processor['original_sizes']
if hasattr(UpperCAmelCase__ ,'numpy' ): # Checks if Torch or TF tensor
A__ = original_sizes.numpy()
A__ , A__ , A__ = self._check_and_preprocess_points(
input_points=UpperCAmelCase__ ,input_labels=UpperCAmelCase__ ,input_boxes=UpperCAmelCase__ ,)
A__ = self._normalize_and_convert(
UpperCAmelCase__ ,UpperCAmelCase__ ,input_points=UpperCAmelCase__ ,input_labels=UpperCAmelCase__ ,input_boxes=UpperCAmelCase__ ,return_tensors=UpperCAmelCase__ ,)
return encoding_image_processor
def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase="pt" ,) -> List[str]:
if input_points is not None:
if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ):
A__ = [
self._normalize_coordinates(self.target_size ,UpperCAmelCase__ ,original_sizes[0] ) for point in input_points
]
else:
A__ = [
self._normalize_coordinates(self.target_size ,UpperCAmelCase__ ,UpperCAmelCase__ )
for point, original_size in zip(UpperCAmelCase__ ,UpperCAmelCase__ )
]
# check that all arrays have the same shape
if not all(point.shape == input_points[0].shape for point in input_points ):
if input_labels is not None:
A__ , A__ = self._pad_points_and_labels(UpperCAmelCase__ ,UpperCAmelCase__ )
A__ = np.array(UpperCAmelCase__ )
if input_labels is not None:
A__ = np.array(UpperCAmelCase__ )
if input_boxes is not None:
if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ):
A__ = [
self._normalize_coordinates(self.target_size ,UpperCAmelCase__ ,original_sizes[0] ,is_bounding_box=UpperCAmelCase__ )
for box in input_boxes
]
else:
A__ = [
self._normalize_coordinates(self.target_size ,UpperCAmelCase__ ,UpperCAmelCase__ ,is_bounding_box=UpperCAmelCase__ )
for box, original_size in zip(UpperCAmelCase__ ,UpperCAmelCase__ )
]
A__ = np.array(UpperCAmelCase__ )
if input_boxes is not None:
if return_tensors == "pt":
A__ = torch.from_numpy(UpperCAmelCase__ )
# boxes batch size of 1 by default
A__ = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes
elif return_tensors == "tf":
A__ = tf.convert_to_tensor(UpperCAmelCase__ )
# boxes batch size of 1 by default
A__ = tf.expand_dims(UpperCAmelCase__ ,1 ) if len(input_boxes.shape ) != 3 else input_boxes
encoding_image_processor.update({'input_boxes': input_boxes} )
if input_points is not None:
if return_tensors == "pt":
A__ = torch.from_numpy(UpperCAmelCase__ )
# point batch size of 1 by default
A__ = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points
elif return_tensors == "tf":
A__ = tf.convert_to_tensor(UpperCAmelCase__ )
# point batch size of 1 by default
A__ = tf.expand_dims(UpperCAmelCase__ ,1 ) if len(input_points.shape ) != 4 else input_points
encoding_image_processor.update({'input_points': input_points} )
if input_labels is not None:
if return_tensors == "pt":
A__ = torch.from_numpy(UpperCAmelCase__ )
# point batch size of 1 by default
A__ = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels
elif return_tensors == "tf":
A__ = tf.convert_to_tensor(UpperCAmelCase__ )
# point batch size of 1 by default
A__ = tf.expand_dims(UpperCAmelCase__ ,1 ) if len(input_labels.shape ) != 3 else input_labels
encoding_image_processor.update({'input_labels': input_labels} )
return encoding_image_processor
def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> Optional[int]:
A__ = max([point.shape[0] for point in input_points] )
A__ = []
for i, point in enumerate(UpperCAmelCase__ ):
if point.shape[0] != expected_nb_points:
A__ = np.concatenate(
[point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] ,axis=0 )
A__ = np.append(input_labels[i] ,[self.point_pad_value] )
processed_input_points.append(UpperCAmelCase__ )
A__ = processed_input_points
return input_points, input_labels
def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase=False ) -> Union[str, Any]:
A__ , A__ = original_size
A__ , A__ = self.image_processor._get_preprocess_shape(UpperCAmelCase__ ,longest_edge=UpperCAmelCase__ )
A__ = deepcopy(UpperCAmelCase__ ).astype(UpperCAmelCase__ )
if is_bounding_box:
A__ = coords.reshape(-1 ,2 ,2 )
A__ = coords[..., 0] * (new_w / old_w)
A__ = coords[..., 1] * (new_h / old_h)
if is_bounding_box:
A__ = coords.reshape(-1 ,4 )
return coords
def snake_case__ ( self ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,) -> List[Any]:
if input_points is not None:
if hasattr(UpperCAmelCase__ ,'numpy' ): # Checks for TF or Torch tensor
A__ = input_points.numpy().tolist()
if not isinstance(UpperCAmelCase__ ,UpperCAmelCase__ ) or not isinstance(input_points[0] ,UpperCAmelCase__ ):
raise ValueError('Input points must be a list of list of floating points.' )
A__ = [np.array(UpperCAmelCase__ ) for input_point in input_points]
else:
A__ = None
if input_labels is not None:
if hasattr(UpperCAmelCase__ ,'numpy' ):
A__ = input_labels.numpy().tolist()
if not isinstance(UpperCAmelCase__ ,UpperCAmelCase__ ) or not isinstance(input_labels[0] ,UpperCAmelCase__ ):
raise ValueError('Input labels must be a list of list integers.' )
A__ = [np.array(UpperCAmelCase__ ) for label in input_labels]
else:
A__ = None
if input_boxes is not None:
if hasattr(UpperCAmelCase__ ,'numpy' ):
A__ = input_boxes.numpy().tolist()
if (
not isinstance(UpperCAmelCase__ ,UpperCAmelCase__ )
or not isinstance(input_boxes[0] ,UpperCAmelCase__ )
or not isinstance(input_boxes[0][0] ,UpperCAmelCase__ )
):
raise ValueError('Input boxes must be a list of list of list of floating points.' )
A__ = [np.array(UpperCAmelCase__ ).astype(np.floataa ) for box in input_boxes]
else:
A__ = None
return input_points, input_labels, input_boxes
@property
def snake_case__ ( self ) -> Union[str, Any]:
A__ = self.image_processor.model_input_names
return list(dict.fromkeys(UpperCAmelCase__ ) )
def snake_case__ ( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple:
return self.image_processor.post_process_masks(*UpperCAmelCase__ ,**UpperCAmelCase__ )
| 221 |
"""simple docstring"""
import unittest
from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available
from transformers.pipelines import pipeline
from transformers.pipelines.document_question_answering import apply_tesseract
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_detectrona,
require_pytesseract,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
from transformers.image_utils import load_image
else:
class _lowerCAmelCase :
"""simple docstring"""
@staticmethod
def _lowercase ( *UpperCAmelCase__ : Tuple, **UpperCAmelCase__ : List[Any] ):
pass
def _A ( UpperCamelCase_ : Union[str, Any]) -> Any:
'''simple docstring'''
return None
# This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace,
# so we can expect it to be available.
_a = (
'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png'
)
@is_pipeline_test
@require_torch
@require_vision
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : Tuple = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING
@require_pytesseract
@require_vision
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Optional[Any] ):
__lowercase = pipeline(
"document-question-answering", model=UpperCAmelCase__, tokenizer=UpperCAmelCase__, image_processor=UpperCAmelCase__ )
__lowercase = INVOICE_URL
__lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) )
__lowercase = "What is the placebo?"
__lowercase = [
{
"image": load_image(UpperCAmelCase__ ),
"question": question,
},
{
"image": image,
"question": question,
},
{
"image": image,
"question": question,
"word_boxes": word_boxes,
},
]
return dqa_pipeline, examples
def _lowercase ( self : int, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Any ):
__lowercase = dqa_pipeline(UpperCAmelCase__, top_k=2 )
self.assertEqual(
UpperCAmelCase__, [
[
{"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ ), "start": ANY(UpperCAmelCase__ ), "end": ANY(UpperCAmelCase__ )},
{"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ ), "start": ANY(UpperCAmelCase__ ), "end": ANY(UpperCAmelCase__ )},
]
]
* 3, )
@require_torch
@require_detectrona
@require_pytesseract
def _lowercase ( self : Dict ):
__lowercase = pipeline("document-question-answering", model="hf-internal-testing/tiny-random-layoutlmv2" )
__lowercase = INVOICE_URL
__lowercase = "How many cats are there?"
__lowercase = [
{"score": 0.0_001, "answer": "oy 2312/2019", "start": 3_8, "end": 3_9},
{"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 3_8, "end": 4_0},
]
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), UpperCAmelCase__ )
__lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), UpperCAmelCase__ )
# This image does not detect ANY text in it, meaning layoutlmv2 should fail.
# Empty answer probably
__lowercase = "./tests/fixtures/tests_samples/COCO/000000039769.png"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(UpperCAmelCase__, [] )
# We can optionnally pass directly the words and bounding boxes
__lowercase = "./tests/fixtures/tests_samples/COCO/000000039769.png"
__lowercase = []
__lowercase = []
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, words=UpperCAmelCase__, boxes=UpperCAmelCase__, top_k=2 )
self.assertEqual(UpperCAmelCase__, [] )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def _lowercase ( self : List[str] ):
__lowercase = pipeline(
"document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
[
{"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6},
],
]
* 2, )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def _lowercase ( self : Dict ):
__lowercase = pipeline(
"document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", max_seq_len=5_0, )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3},
{"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3},
{"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
[
{"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3},
{"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6},
]
]
* 2, )
@slow
@require_torch
@require_pytesseract
@require_vision
def _lowercase ( self : Optional[Any] ):
__lowercase = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=UpperCAmelCase__ )
__lowercase = pipeline(
"document-question-answering", model="impira/layoutlm-document-qa", tokenizer=UpperCAmelCase__, revision="3dc6de3", )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3},
], )
__lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3},
], )
__lowercase = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
[
{"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3},
]
]
* 2, )
__lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) )
# This model should also work if `image` is set to None
__lowercase = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3},
], )
@slow
@require_torch
@require_pytesseract
@require_vision
def _lowercase ( self : Union[str, Any] ):
__lowercase = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=UpperCAmelCase__ )
__lowercase = pipeline(
"document-question-answering", model="impira/layoutlm-document-qa", tokenizer=UpperCAmelCase__, revision="3dc6de3", max_seq_len=5_0, )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
[
{"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6},
]
]
* 2, )
__lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) )
# This model should also work if `image` is set to None
__lowercase = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
@slow
@require_torch
def _lowercase ( self : Dict ):
__lowercase = pipeline(
"document-question-answering", model="naver-clova-ix/donut-base-finetuned-docvqa", tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ), feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa", )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), [{"answer": "us-001"}] )
@require_tf
@unittest.skip("Document question answering not implemented in TF" )
def _lowercase ( self : List[Any] ):
pass
| 17 | 0 |
import functools
import gc
import inspect
import torch
from .imports import is_npu_available, is_xpu_available
def lowerCAmelCase__( *lowercase : List[Any] ) -> List[str]:
if not isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__snake_case : Dict = list(UpperCamelCase_ )
for i in range(len(UpperCamelCase_ ) ):
__snake_case : int = None
gc.collect()
if is_xpu_available():
torch.xpu.empty_cache()
elif is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
return objects
def lowerCAmelCase__( lowercase : Exception ) -> bool:
__snake_case : Optional[int] = [
"CUDA out of memory.", # CUDA OOM
"cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.", # CUDNN SNAFU
"DefaultCPUAllocator: can't allocate memory", # CPU OOM
]
if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(exception.args ) == 1:
return any(err in exception.args[0] for err in _statements )
return False
def lowerCAmelCase__( lowercase : callable = None , lowercase : int = 128 ) -> int:
if function is None:
return functools.partial(UpperCamelCase_ , starting_batch_size=UpperCamelCase_ )
__snake_case : Any = starting_batch_size
def decorator(*lowercase : List[str] , **lowercase : Optional[Any] ):
nonlocal batch_size
gc.collect()
if is_xpu_available():
torch.xpu.empty_cache()
elif is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
__snake_case : Union[str, Any] = list(inspect.signature(UpperCamelCase_ ).parameters.keys() )
# Guard against user error
if len(UpperCamelCase_ ) < (len(UpperCamelCase_ ) + 1):
__snake_case : Dict = ", ".join([f"""{arg}={value}""" for arg, value in zip(params[1:] , args[1:] )] )
raise TypeError(
f"""Batch size was passed into `{function.__name__}` as the first argument when called."""
f"""Remove this as the decorator already does so: `{function.__name__}({arg_str})`""" )
while True:
if batch_size == 0:
raise RuntimeError("No executable batch size found, reached zero." )
try:
return function(UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ )
except Exception as e:
if should_reduce_batch_size(UpperCamelCase_ ):
gc.collect()
if is_xpu_available():
torch.xpu.empty_cache()
elif is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
batch_size //= 2
else:
raise
return decorator
| 326 |
"""simple docstring"""
import argparse
import json
import os
import re
import shutil
import torch
from transformers import BioGptConfig, BioGptForCausalLM
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
from transformers.utils import WEIGHTS_NAME, logging
logging.set_verbosity_warning()
_a = 2
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Dict, *, # begin keyword-only arguments
UpperCAmelCase__ : str="<s>", UpperCAmelCase__ : Tuple="<pad>", UpperCAmelCase__ : str="</s>", UpperCAmelCase__ : Optional[Any]="<unk>", UpperCAmelCase__ : List[Any]=None, ):
__lowercase ,__lowercase ,__lowercase ,__lowercase = bos, unk, pad, eos
__lowercase = []
__lowercase = []
__lowercase = {}
__lowercase = self.add_symbol(UpperCAmelCase__ )
__lowercase = self.add_symbol(UpperCAmelCase__ )
__lowercase = self.add_symbol(UpperCAmelCase__ )
__lowercase = self.add_symbol(UpperCAmelCase__ )
if extra_special_symbols:
for s in extra_special_symbols:
self.add_symbol(UpperCAmelCase__ )
__lowercase = len(self.symbols )
def __eq__( self : List[str], UpperCAmelCase__ : Dict ):
return self.indices == other.indices
def __getitem__( self : Optional[int], UpperCAmelCase__ : List[str] ):
if idx < len(self.symbols ):
return self.symbols[idx]
return self.unk_word
def __len__( self : str ):
return len(self.symbols )
def __contains__( self : Any, UpperCAmelCase__ : Optional[Any] ):
return sym in self.indices
@classmethod
def _lowercase ( cls : List[Any], UpperCAmelCase__ : Optional[Any] ):
__lowercase = cls()
d.add_from_file(UpperCAmelCase__ )
return d
def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[Any]=1, UpperCAmelCase__ : str=False ):
if word in self.indices and not overwrite:
__lowercase = self.indices[word]
__lowercase = self.count[idx] + n
return idx
else:
__lowercase = len(self.symbols )
__lowercase = idx
self.symbols.append(UpperCAmelCase__ )
self.count.append(UpperCAmelCase__ )
return idx
def _lowercase ( self : Any, UpperCAmelCase__ : str ):
return 0
def _lowercase ( self : Tuple, UpperCAmelCase__ : List[Any] ):
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
try:
with open(UpperCAmelCase__, "r", encoding="utf-8" ) as fd:
self.add_from_file(UpperCAmelCase__ )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception("Incorrect encoding detected in {}, please rebuild the dataset".format(UpperCAmelCase__ ) )
return
__lowercase = f.readlines()
__lowercase = self._load_meta(UpperCAmelCase__ )
for line in lines[indices_start_line:]:
try:
__lowercase ,__lowercase = line.rstrip().rsplit(" ", 1 )
if field == "#fairseq:overwrite":
__lowercase = True
__lowercase ,__lowercase = line.rsplit(" ", 1 )
else:
__lowercase = False
__lowercase = int(UpperCAmelCase__ )
__lowercase = line
if word in self and not overwrite:
raise RuntimeError(
"Duplicate word found when loading Dictionary: '{}'. "
"Duplicate words can overwrite earlier ones by adding the "
"#fairseq:overwrite flag at the end of the corresponding row "
"in the dictionary file. If using the Camembert model, please "
"download an updated copy of the model file.".format(UpperCAmelCase__ ) )
self.add_symbol(UpperCAmelCase__, n=UpperCAmelCase__, overwrite=UpperCAmelCase__ )
except ValueError:
raise ValueError("Incorrect dictionary format, expected '<token> <cnt> [flags]'" )
def _A ( UpperCamelCase_ : int) -> str:
'''simple docstring'''
__lowercase = dict((re.sub(r"@@$", "", UpperCamelCase_), v) if k.endswith("@@") else (re.sub(r"$", "</w>", UpperCamelCase_), v) for k, v in d.items())
__lowercase = "<s> <pad> </s> <unk>".split()
# restore the special tokens
for k in keep_keys:
del da[F"""{k}</w>"""]
__lowercase = d[k] # restore
return da
def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str) -> List[Any]:
'''simple docstring'''
if not os.path.exists(UpperCamelCase_):
raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""")
os.makedirs(UpperCamelCase_, exist_ok=UpperCamelCase_)
print(F"""Writing results to {pytorch_dump_folder_path}""")
# handle various types of models
__lowercase = os.path.join(UpperCamelCase_, "checkpoint.pt")
if not os.path.isfile(UpperCamelCase_):
raise ValueError(F"""path to the file {checkpoint_file} does not exist!""")
__lowercase = torch.load(UpperCamelCase_, map_location="cpu")
__lowercase = chkpt["cfg"]["model"]
# dicts
__lowercase = os.path.join(UpperCamelCase_, "dict.txt")
if not os.path.isfile(UpperCamelCase_):
raise ValueError(F"""path to the file {dict_file} does not exist!""")
__lowercase = Dictionary.load(UpperCamelCase_)
__lowercase = rewrite_dict_keys(src_dict.indices)
__lowercase = len(UpperCamelCase_)
__lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["vocab_file"])
print(F"""Generating {src_vocab_file} of {src_vocab_size} records""")
with open(UpperCamelCase_, "w", encoding="utf-8") as f:
f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_))
# merges_file (bpecodes)
__lowercase = os.path.join(UpperCamelCase_, "bpecodes")
if not os.path.isfile(UpperCamelCase_):
raise ValueError(F"""path to the file {bpecodes_file} does not exist!""")
__lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["merges_file"])
shutil.copyfile(UpperCamelCase_, UpperCamelCase_)
# model config
__lowercase = os.path.join(UpperCamelCase_, "config.json")
__lowercase = {
"activation_dropout": args["activation_dropout"],
"architectures": ["BioGptForCausalLM"],
"attention_probs_dropout_prob": args["attention_dropout"],
"bos_token_id": 0,
"eos_token_id": 2,
"hidden_act": args["activation_fn"],
"hidden_dropout_prob": args["dropout"],
"hidden_size": args["decoder_embed_dim"],
"initializer_range": 0.02,
"intermediate_size": args["decoder_ffn_embed_dim"],
"layer_norm_eps": 1E-12,
"layerdrop": args["decoder_layerdrop"],
"max_position_embeddings": args["max_target_positions"],
"model_type": "biogpt",
"num_attention_heads": args["decoder_attention_heads"],
"num_hidden_layers": args["decoder_layers"],
"pad_token_id": 1,
"scale_embedding": not args["no_scale_embedding"],
"tie_word_embeddings": args["share_decoder_input_output_embed"],
"vocab_size": src_vocab_size,
}
# good hparam defaults to start with
print(F"""Generating {biogpt_model_config_file}""")
with open(UpperCamelCase_, "w", encoding="utf-8") as f:
f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_))
# tokenizer config
__lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_)
__lowercase = {
"bos_token": "<s>",
"eos_token": "</s>",
"model_max_length": 1024,
"pad_token": "<pad>",
"special_tokens_map_file": None,
"tokenizer_class": "BioGptTokenizer",
"unk_token": "<unk>",
}
print(F"""Generating {biogpt_tokenizer_config_file}""")
with open(UpperCamelCase_, "w", encoding="utf-8") as f:
f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_))
# model
__lowercase = chkpt["model"]
# remove unneeded keys
__lowercase = [
"decoder.version",
]
for k in ignore_keys:
model_state_dict.pop(UpperCamelCase_, UpperCamelCase_)
__lowercase = list(model_state_dict.keys())
for layer_name in layer_names:
if layer_name.endswith("output_projection.weight"):
__lowercase = model_state_dict.pop(UpperCamelCase_)
else:
__lowercase = model_state_dict.pop(UpperCamelCase_)
__lowercase = BioGptConfig.from_pretrained(UpperCamelCase_)
__lowercase = BioGptForCausalLM(UpperCamelCase_)
# check that it loads ok
model_new.load_state_dict(UpperCamelCase_)
# save
__lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_)
print(F"""Generating {pytorch_weights_dump_path}""")
torch.save(UpperCamelCase_, UpperCamelCase_)
print("Conversion is done!")
if __name__ == "__main__":
_a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--biogpt_checkpoint_path',
default=None,
type=str,
required=True,
help=(
'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,'
' bpecodes, etc.'
),
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
_a = parser.parse_args()
convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
| 17 | 0 |
import unittest
import numpy as np
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ = None,):
_A : Tuple = np.shape(UpperCamelCase_ )
_A : List[Any] = np.shape(UpperCamelCase_ )
_A : int = np.shape(UpperCamelCase_ )
if shape_a[0] != shape_b[0]:
_A : List[str] = (
"""Expected the same number of rows for A and B. """
f'''Instead found A of size {shape_a} and B of size {shape_b}'''
)
raise ValueError(UpperCamelCase_ )
if shape_b[1] != shape_c[1]:
_A : int = (
"""Expected the same number of columns for B and C. """
f'''Instead found B of size {shape_b} and C of size {shape_c}'''
)
raise ValueError(UpperCamelCase_ )
_A : int = pseudo_inv
if a_inv is None:
try:
_A : List[Any] = np.linalg.inv(UpperCamelCase_ )
except np.linalg.LinAlgError:
raise ValueError(
"""Input matrix A is not invertible. Cannot compute Schur complement.""" )
return mat_c - mat_b.T @ a_inv @ mat_b
class lowercase ( unittest.TestCase ):
def a__ ( self ) -> Any:
_A : Optional[int] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
_A : int = np.array([[0, 3], [3, 0], [2, 3]] )
_A : Union[str, Any] = np.array([[2, 1], [6, 3]] )
_A : Optional[Any] = schur_complement(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
_A : Optional[int] = np.block([[a, b], [b.T, c]] )
_A : List[str] = np.linalg.det(UpperCAmelCase__ )
_A : Optional[Any] = np.linalg.det(UpperCAmelCase__ )
_A : int = np.linalg.det(UpperCAmelCase__ )
self.assertAlmostEqual(UpperCAmelCase__ , det_a * det_s )
def a__ ( self ) -> Any:
_A : Optional[int] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
_A : List[str] = np.array([[0, 3], [3, 0], [2, 3]] )
_A : Any = np.array([[2, 1], [6, 3]] )
with self.assertRaises(UpperCAmelCase__ ):
schur_complement(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
def a__ ( self ) -> str:
_A : Optional[Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
_A : Any = np.array([[0, 3], [3, 0], [2, 3]] )
_A : Optional[Any] = np.array([[2, 1, 3], [6, 3, 5]] )
with self.assertRaises(UpperCAmelCase__ ):
schur_complement(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
unittest.main()
| 26 |
"""simple docstring"""
from __future__ import annotations
from typing import Any
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Any, UpperCAmelCase__ : int ):
__lowercase = num_of_nodes
__lowercase = []
__lowercase = {}
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : int, UpperCAmelCase__ : int ):
self.m_edges.append([u_node, v_node, weight] )
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : int ):
if self.m_component[u_node] == u_node:
return u_node
return self.find_component(self.m_component[u_node] )
def _lowercase ( self : List[Any], UpperCAmelCase__ : int ):
if self.m_component[u_node] != u_node:
for k in self.m_component:
__lowercase = self.find_component(UpperCAmelCase__ )
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : list[int], UpperCAmelCase__ : int, UpperCAmelCase__ : int ):
if component_size[u_node] <= component_size[v_node]:
__lowercase = v_node
component_size[v_node] += component_size[u_node]
self.set_component(UpperCAmelCase__ )
elif component_size[u_node] >= component_size[v_node]:
__lowercase = self.find_component(UpperCAmelCase__ )
component_size[u_node] += component_size[v_node]
self.set_component(UpperCAmelCase__ )
def _lowercase ( self : Any ):
__lowercase = []
__lowercase = 0
__lowercase = [-1] * self.m_num_of_nodes
# A list of components (initialized to all of the nodes)
for node in range(self.m_num_of_nodes ):
self.m_component.update({node: node} )
component_size.append(1 )
__lowercase = self.m_num_of_nodes
while num_of_components > 1:
for edge in self.m_edges:
__lowercase ,__lowercase ,__lowercase = edge
__lowercase = self.m_component[u]
__lowercase = self.m_component[v]
if u_component != v_component:
for component in (u_component, v_component):
if (
minimum_weight_edge[component] == -1
or minimum_weight_edge[component][2] > w
):
__lowercase = [u, v, w]
for edge in minimum_weight_edge:
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
__lowercase ,__lowercase ,__lowercase = edge
__lowercase = self.m_component[u]
__lowercase = self.m_component[v]
if u_component != v_component:
mst_weight += w
self.union(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" )
num_of_components -= 1
__lowercase = [-1] * self.m_num_of_nodes
print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" )
def _A ( ) -> None:
'''simple docstring'''
if __name__ == "__main__":
import doctest
doctest.testmod()
| 17 | 0 |
"""simple docstring"""
import unittest
from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
@require_sentencepiece
@slow # see https://github.com/huggingface/transformers/issues/11457
class lowercase_ ( __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : List[Any] = BarthezTokenizer
UpperCAmelCase : Optional[Any] = BarthezTokenizerFast
UpperCAmelCase : str = True
UpperCAmelCase : Optional[int] = True
def lowerCAmelCase_ ( self : Union[str, Any] ):
super().setUp()
_A = BarthezTokenizerFast.from_pretrained('moussaKam/mbarthez' )
tokenizer.save_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname , legacy_format=UpperCAmelCase__ )
_A = tokenizer
def lowerCAmelCase_ ( self : int ):
_A = '<pad>'
_A = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__ ) , UpperCAmelCase__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__ ) , UpperCAmelCase__ )
def lowerCAmelCase_ ( self : str ):
_A = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-1] , '<mask>' )
self.assertEqual(len(UpperCAmelCase__ ) , 101_122 )
def lowerCAmelCase_ ( self : Optional[Any] ):
self.assertEqual(self.get_tokenizer().vocab_size , 101_122 )
@require_torch
def lowerCAmelCase_ ( self : int ):
_A = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
_A = [0, 57, 3_018, 70_307, 91, 2]
_A = self.tokenizer(
UpperCAmelCase__ , max_length=len(UpperCAmelCase__ ) , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , return_tensors='pt' )
self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ )
self.assertEqual((2, 6) , batch.input_ids.shape )
self.assertEqual((2, 6) , batch.attention_mask.shape )
_A = batch.input_ids.tolist()[0]
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
def lowerCAmelCase_ ( self : Optional[Any] ):
if not self.test_rust_tokenizer:
return
_A = self.get_tokenizer()
_A = self.get_rust_tokenizer()
_A = 'I was born in 92000, and this is falsé.'
_A = tokenizer.tokenize(UpperCAmelCase__ )
_A = rust_tokenizer.tokenize(UpperCAmelCase__ )
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
_A = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ )
_A = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ )
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
_A = self.get_rust_tokenizer()
_A = tokenizer.encode(UpperCAmelCase__ )
_A = rust_tokenizer.encode(UpperCAmelCase__ )
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
@slow
def lowerCAmelCase_ ( self : Union[str, Any] ):
# fmt: off
_A = {'input_ids': [[0, 490, 14_328, 4_507, 354, 47, 43_669, 95, 25, 78_117, 20_215, 19_779, 190, 22, 400, 4, 35_343, 80_310, 603, 86, 24_937, 105, 33_438, 94_762, 196, 39_642, 7, 15, 15_933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10_534, 87, 25, 66, 3_358, 196, 55_289, 8, 82_961, 81, 2_204, 75_203, 7, 15, 763, 12_956, 216, 178, 14_328, 9_595, 1_377, 69_693, 7, 448, 71_021, 196, 18_106, 1_437, 13_974, 108, 9_083, 4, 49_315, 7, 39, 86, 1_326, 2_793, 46_333, 4, 448, 196, 74_588, 7, 49_315, 7, 39, 21, 822, 38_470, 74, 21, 66_723, 62_480, 8, 22_050, 5, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# moussaKam/mbarthez is a french model. So we also use french texts.
_A = [
'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, '
'utilisé principalement dans le domaine du traitement automatique des langues (TAL).',
'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus '
'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches '
'telles que la traduction et la synthèse de texte.',
]
self.tokenizer_integration_test_util(
expected_encoding=UpperCAmelCase__ , model_name='moussaKam/mbarthez' , revision='c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6' , sequences=UpperCAmelCase__ , )
| 315 |
"""simple docstring"""
from math import sqrt
def _A ( UpperCamelCase_ : int) -> int:
'''simple docstring'''
__lowercase = 0
for i in range(1, int(sqrt(UpperCamelCase_) + 1)):
if n % i == 0 and i != sqrt(UpperCamelCase_):
total += i + n // i
elif i == sqrt(UpperCamelCase_):
total += i
return total - n
def _A ( UpperCamelCase_ : int = 10000) -> int:
'''simple docstring'''
__lowercase = sum(
i
for i in range(1, UpperCamelCase_)
if sum_of_divisors(sum_of_divisors(UpperCamelCase_)) == i and sum_of_divisors(UpperCamelCase_) != i)
return total
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 17 | 0 |
import pickle
import numpy as np
from matplotlib import pyplot as plt
class lowercase_ :
"""simple docstring"""
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0.2 , __SCREAMING_SNAKE_CASE=0.2 ) ->int:
lowerCAmelCase = bp_numa
lowerCAmelCase = bp_numa
lowerCAmelCase = bp_numa
lowerCAmelCase = conva_get[:2]
lowerCAmelCase = conva_get[2]
lowerCAmelCase = size_pa
lowerCAmelCase = rate_w
lowerCAmelCase = rate_t
lowerCAmelCase = [
np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 )
for i in range(self.conva[1] )
]
lowerCAmelCase = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 )
lowerCAmelCase = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 )
lowerCAmelCase = -2 * np.random.rand(self.conva[1] ) + 1
lowerCAmelCase = -2 * np.random.rand(self.num_bpa ) + 1
lowerCAmelCase = -2 * np.random.rand(self.num_bpa ) + 1
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->List[str]:
# save model dict with pickle
lowerCAmelCase = {
'''num_bp1''': self.num_bpa,
'''num_bp2''': self.num_bpa,
'''num_bp3''': self.num_bpa,
'''conv1''': self.conva,
'''step_conv1''': self.step_conva,
'''size_pooling1''': self.size_poolinga,
'''rate_weight''': self.rate_weight,
'''rate_thre''': self.rate_thre,
'''w_conv1''': self.w_conva,
'''wkj''': self.wkj,
'''vji''': self.vji,
'''thre_conv1''': self.thre_conva,
'''thre_bp2''': self.thre_bpa,
'''thre_bp3''': self.thre_bpa,
}
with open(UpperCAmelCase__ , '''wb''' ) as f:
pickle.dump(UpperCAmelCase__ , UpperCAmelCase__ )
print(F"Model saved: {save_path}" )
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls , __SCREAMING_SNAKE_CASE ) ->List[str]:
# read saved model
with open(UpperCAmelCase__ , '''rb''' ) as f:
lowerCAmelCase = pickle.load(UpperCAmelCase__ ) # noqa: S301
lowerCAmelCase = model_dic.get('''conv1''' )
conv_get.append(model_dic.get('''step_conv1''' ) )
lowerCAmelCase = model_dic.get('''size_pooling1''' )
lowerCAmelCase = model_dic.get('''num_bp1''' )
lowerCAmelCase = model_dic.get('''num_bp2''' )
lowerCAmelCase = model_dic.get('''num_bp3''' )
lowerCAmelCase = model_dic.get('''rate_weight''' )
lowerCAmelCase = model_dic.get('''rate_thre''' )
# create model instance
lowerCAmelCase = CNN(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
# modify model parameter
lowerCAmelCase = model_dic.get('''w_conv1''' )
lowerCAmelCase = model_dic.get('''wkj''' )
lowerCAmelCase = model_dic.get('''vji''' )
lowerCAmelCase = model_dic.get('''thre_conv1''' )
lowerCAmelCase = model_dic.get('''thre_bp2''' )
lowerCAmelCase = model_dic.get('''thre_bp3''' )
return conv_ins
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Tuple:
return 1 / (1 + np.exp(-1 * x ))
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->List[str]:
return round(UpperCAmelCase__ , 3 )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Optional[Any]:
# convolution process
lowerCAmelCase = convs[0]
lowerCAmelCase = convs[1]
lowerCAmelCase = np.shape(UpperCAmelCase__ )[0]
# get the data slice of original image data, data_focus
lowerCAmelCase = []
for i_focus in range(0 , size_data - size_conv + 1 , UpperCAmelCase__ ):
for j_focus in range(0 , size_data - size_conv + 1 , UpperCAmelCase__ ):
lowerCAmelCase = data[
i_focus : i_focus + size_conv, j_focus : j_focus + size_conv
]
data_focus.append(UpperCAmelCase__ )
# calculate the feature map of every single kernel, and saved as list of matrix
lowerCAmelCase = []
lowerCAmelCase = int((size_data - size_conv) / conv_step + 1 )
for i_map in range(UpperCAmelCase__ ):
lowerCAmelCase = []
for i_focus in range(len(UpperCAmelCase__ ) ):
lowerCAmelCase = (
np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) )
- thre_convs[i_map]
)
featuremap.append(self.sig(UpperCAmelCase__ ) )
lowerCAmelCase = np.asmatrix(UpperCAmelCase__ ).reshape(
UpperCAmelCase__ , UpperCAmelCase__ )
data_featuremap.append(UpperCAmelCase__ )
# expanding the data slice to One dimenssion
lowerCAmelCase = []
for each_focus in data_focus:
focusa_list.extend(self.Expand_Mat(UpperCAmelCase__ ) )
lowerCAmelCase = np.asarray(UpperCAmelCase__ )
return focus_list, data_featuremap
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="average_pool" ) ->Union[str, Any]:
# pooling process
lowerCAmelCase = len(featuremaps[0] )
lowerCAmelCase = int(size_map / size_pooling )
lowerCAmelCase = []
for i_map in range(len(UpperCAmelCase__ ) ):
lowerCAmelCase = featuremaps[i_map]
lowerCAmelCase = []
for i_focus in range(0 , UpperCAmelCase__ , UpperCAmelCase__ ):
for j_focus in range(0 , UpperCAmelCase__ , UpperCAmelCase__ ):
lowerCAmelCase = feature_map[
i_focus : i_focus + size_pooling,
j_focus : j_focus + size_pooling,
]
if pooling_type == "average_pool":
# average pooling
map_pooled.append(np.average(UpperCAmelCase__ ) )
elif pooling_type == "max_pooling":
# max pooling
map_pooled.append(np.max(UpperCAmelCase__ ) )
lowerCAmelCase = np.asmatrix(UpperCAmelCase__ ).reshape(UpperCAmelCase__ , UpperCAmelCase__ )
featuremap_pooled.append(UpperCAmelCase__ )
return featuremap_pooled
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Optional[int]:
# expanding three dimension data to one dimension list
lowerCAmelCase = []
for i in range(len(UpperCAmelCase__ ) ):
lowerCAmelCase = np.shape(data[i] )
lowerCAmelCase = data[i].reshape(1 , shapes[0] * shapes[1] )
lowerCAmelCase = data_listed.getA().tolist()[0]
data_expanded.extend(UpperCAmelCase__ )
lowerCAmelCase = np.asarray(UpperCAmelCase__ )
return data_expanded
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->List[Any]:
# expanding matrix to one dimension list
lowerCAmelCase = np.asarray(UpperCAmelCase__ )
lowerCAmelCase = np.shape(UpperCAmelCase__ )
lowerCAmelCase = data_mat.reshape(1 , shapes[0] * shapes[1] )
return data_expanded
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Optional[Any]:
lowerCAmelCase = []
lowerCAmelCase = 0
for i_map in range(UpperCAmelCase__ ):
lowerCAmelCase = np.ones((size_map, size_map) )
for i in range(0 , UpperCAmelCase__ , UpperCAmelCase__ ):
for j in range(0 , UpperCAmelCase__ , UpperCAmelCase__ ):
lowerCAmelCase = pd_pool[
i_pool
]
lowerCAmelCase = i_pool + 1
lowerCAmelCase = np.multiply(
UpperCAmelCase__ , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) )
pd_all.append(UpperCAmelCase__ )
return pd_all
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=bool ) ->List[str]:
# model traning
print('''----------------------Start Training-------------------------''' )
print((''' - - Shape: Train_Data ''', np.shape(UpperCAmelCase__ )) )
print((''' - - Shape: Teach_Data ''', np.shape(UpperCAmelCase__ )) )
lowerCAmelCase = 0
lowerCAmelCase = []
lowerCAmelCase = 10000
while rp < n_repeat and mse >= error_accuracy:
lowerCAmelCase = 0
print(F"-------------Learning Time {rp}--------------" )
for p in range(len(UpperCAmelCase__ ) ):
# print('------------Learning Image: %d--------------'%p)
lowerCAmelCase = np.asmatrix(datas_train[p] )
lowerCAmelCase = np.asarray(datas_teach[p] )
lowerCAmelCase , lowerCAmelCase = self.convolute(
UpperCAmelCase__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , )
lowerCAmelCase = self.pooling(UpperCAmelCase__ , self.size_poolinga )
lowerCAmelCase = np.shape(UpperCAmelCase__ )
lowerCAmelCase = self._expand(UpperCAmelCase__ )
lowerCAmelCase = data_bp_input
lowerCAmelCase = np.dot(UpperCAmelCase__ , self.vji.T ) - self.thre_bpa
lowerCAmelCase = self.sig(UpperCAmelCase__ )
lowerCAmelCase = np.dot(UpperCAmelCase__ , self.wkj.T ) - self.thre_bpa
lowerCAmelCase = self.sig(UpperCAmelCase__ )
# --------------Model Leaning ------------------------
# calculate error and gradient---------------
lowerCAmelCase = np.multiply(
(data_teach - bp_outa) , np.multiply(UpperCAmelCase__ , (1 - bp_outa) ) )
lowerCAmelCase = np.multiply(
np.dot(UpperCAmelCase__ , self.wkj ) , np.multiply(UpperCAmelCase__ , (1 - bp_outa) ) )
lowerCAmelCase = np.dot(UpperCAmelCase__ , self.vji )
lowerCAmelCase = pd_i_all / (self.size_poolinga * self.size_poolinga)
lowerCAmelCase = pd_conva_pooled.T.getA().tolist()
lowerCAmelCase = self._calculate_gradient_from_pool(
UpperCAmelCase__ , UpperCAmelCase__ , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , )
# weight and threshold learning process---------
# convolution layer
for k_conv in range(self.conva[1] ):
lowerCAmelCase = self._expand_mat(pd_conva_all[k_conv] )
lowerCAmelCase = self.rate_weight * np.dot(UpperCAmelCase__ , UpperCAmelCase__ )
lowerCAmelCase = self.w_conva[k_conv] + delta_w.reshape(
(self.conva[0], self.conva[0]) )
lowerCAmelCase = (
self.thre_conva[k_conv]
- np.sum(pd_conva_all[k_conv] ) * self.rate_thre
)
# all connected layer
lowerCAmelCase = self.wkj + pd_k_all.T * bp_outa * self.rate_weight
lowerCAmelCase = self.vji + pd_j_all.T * bp_outa * self.rate_weight
lowerCAmelCase = self.thre_bpa - pd_k_all * self.rate_thre
lowerCAmelCase = self.thre_bpa - pd_j_all * self.rate_thre
# calculate the sum error of all single image
lowerCAmelCase = np.sum(abs(data_teach - bp_outa ) )
error_count += errors
# print(' ----Teach ',data_teach)
# print(' ----BP_output ',bp_out3)
lowerCAmelCase = rp + 1
lowerCAmelCase = error_count / patterns
all_mse.append(UpperCAmelCase__ )
def draw_error():
lowerCAmelCase = [error_accuracy for i in range(int(n_repeat * 1.2 ) )]
plt.plot(UpperCAmelCase__ , '''+-''' )
plt.plot(UpperCAmelCase__ , '''r--''' )
plt.xlabel('''Learning Times''' )
plt.ylabel('''All_mse''' )
plt.grid(UpperCAmelCase__ , alpha=0.5 )
plt.show()
print('''------------------Training Complished---------------------''' )
print((''' - - Training epoch: ''', rp, F" - - Mse: {mse:.6f}") )
if draw_e:
draw_error()
return mse
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Union[str, Any]:
# model predict
lowerCAmelCase = []
print('''-------------------Start Testing-------------------------''' )
print((''' - - Shape: Test_Data ''', np.shape(UpperCAmelCase__ )) )
for p in range(len(UpperCAmelCase__ ) ):
lowerCAmelCase = np.asmatrix(datas_test[p] )
lowerCAmelCase , lowerCAmelCase = self.convolute(
UpperCAmelCase__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , )
lowerCAmelCase = self.pooling(UpperCAmelCase__ , self.size_poolinga )
lowerCAmelCase = self._expand(UpperCAmelCase__ )
lowerCAmelCase = data_bp_input
lowerCAmelCase = bp_outa * self.vji.T - self.thre_bpa
lowerCAmelCase = self.sig(UpperCAmelCase__ )
lowerCAmelCase = bp_outa * self.wkj.T - self.thre_bpa
lowerCAmelCase = self.sig(UpperCAmelCase__ )
produce_out.extend(bp_outa.getA().tolist() )
lowerCAmelCase = [list(map(self.do_round , UpperCAmelCase__ ) ) for each in produce_out]
return np.asarray(UpperCAmelCase__ )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Tuple:
# return the data of image after convoluting process so we can check it out
lowerCAmelCase = np.asmatrix(UpperCAmelCase__ )
lowerCAmelCase , lowerCAmelCase = self.convolute(
UpperCAmelCase__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , )
lowerCAmelCase = self.pooling(UpperCAmelCase__ , self.size_poolinga )
return data_conveda, data_pooleda
if __name__ == "__main__":
pass
| 338 |
"""simple docstring"""
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
_a = _symbol_database.Default()
_a = _descriptor_pool.Default().AddSerializedFile(
b'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03'
)
_a = globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals)
if _descriptor._USE_C_DESCRIPTORS is False:
_a = None
_a = b'H\003'
# (generated by protobuf compiler, but `_TRAINERSPEC` is not defined)
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001"
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001"
_a = 45
_a = 15_81
_a = 15_17
_a = 15_70
_a = 15_84
_a = 17_93
_a = 17_95
_a = 19_16
_a = 18_64
_a = 19_05
_a = 19_19
_a = 24_29
_a = 22_08
_a = 24_18
_a = 23_23
_a = 24_07
# @@protoc_insertion_point(module_scope)
| 17 | 0 |
'''simple docstring'''
import argparse
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from PIL import Image
from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
a__ : List[str] =logging.get_logger(__name__)
def lowercase__ ( __lowercase : int ) -> Any:
"""simple docstring"""
__UpperCamelCase = OrderedDict()
for key, value in state_dict.items():
if key.startswith('module.encoder' ):
__UpperCamelCase = key.replace('module.encoder' , 'glpn.encoder' )
if key.startswith('module.decoder' ):
__UpperCamelCase = key.replace('module.decoder' , 'decoder.stages' )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
__UpperCamelCase = key[key.find('patch_embed' ) + len('patch_embed' )]
__UpperCamelCase = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(UpperCamelCase_ )-1}''' )
if "norm" in key:
__UpperCamelCase = key.replace('norm' , 'layer_norm' )
if "glpn.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
__UpperCamelCase = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )]
__UpperCamelCase = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(UpperCamelCase_ )-1}''' )
if "layer_norm1" in key:
__UpperCamelCase = key.replace('layer_norm1' , 'layer_norm_1' )
if "layer_norm2" in key:
__UpperCamelCase = key.replace('layer_norm2' , 'layer_norm_2' )
if "block" in key:
# replace for example block1 by block.0
__UpperCamelCase = key[key.find('block' ) + len('block' )]
__UpperCamelCase = key.replace(F'''block{idx}''' , F'''block.{int(UpperCamelCase_ )-1}''' )
if "attn.q" in key:
__UpperCamelCase = key.replace('attn.q' , 'attention.self.query' )
if "attn.proj" in key:
__UpperCamelCase = key.replace('attn.proj' , 'attention.output.dense' )
if "attn" in key:
__UpperCamelCase = key.replace('attn' , 'attention.self' )
if "fc1" in key:
__UpperCamelCase = key.replace('fc1' , 'dense1' )
if "fc2" in key:
__UpperCamelCase = key.replace('fc2' , 'dense2' )
if "linear_pred" in key:
__UpperCamelCase = key.replace('linear_pred' , 'classifier' )
if "linear_fuse" in key:
__UpperCamelCase = key.replace('linear_fuse.conv' , 'linear_fuse' )
__UpperCamelCase = key.replace('linear_fuse.bn' , 'batch_norm' )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
__UpperCamelCase = key[key.find('linear_c' ) + len('linear_c' )]
__UpperCamelCase = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(UpperCamelCase_ )-1}''' )
if "bot_conv" in key:
__UpperCamelCase = key.replace('bot_conv' , '0.convolution' )
if "skip_conv1" in key:
__UpperCamelCase = key.replace('skip_conv1' , '1.convolution' )
if "skip_conv2" in key:
__UpperCamelCase = key.replace('skip_conv2' , '2.convolution' )
if "fusion1" in key:
__UpperCamelCase = key.replace('fusion1' , '1.fusion' )
if "fusion2" in key:
__UpperCamelCase = key.replace('fusion2' , '2.fusion' )
if "fusion3" in key:
__UpperCamelCase = key.replace('fusion3' , '3.fusion' )
if "fusion" in key and "conv" in key:
__UpperCamelCase = key.replace('conv' , 'convolutional_layer' )
if key.startswith('module.last_layer_depth' ):
__UpperCamelCase = key.replace('module.last_layer_depth' , 'head.head' )
__UpperCamelCase = value
return new_state_dict
def lowercase__ ( __lowercase : Optional[int] , __lowercase : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
__UpperCamelCase = state_dict.pop(F'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' )
__UpperCamelCase = state_dict.pop(F'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' )
# next, add keys and values (in that order) to the state dict
__UpperCamelCase = kv_weight[
: config.hidden_sizes[i], :
]
__UpperCamelCase = kv_bias[: config.hidden_sizes[i]]
__UpperCamelCase = kv_weight[
config.hidden_sizes[i] :, :
]
__UpperCamelCase = kv_bias[config.hidden_sizes[i] :]
def lowercase__ ( ) -> Union[str, Any]:
"""simple docstring"""
__UpperCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg'
__UpperCamelCase = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw )
return image
@torch.no_grad()
def lowercase__ ( __lowercase : Any , __lowercase : int , __lowercase : int=False , __lowercase : str=None ) -> Any:
"""simple docstring"""
__UpperCamelCase = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] )
# load image processor (only resize + rescale)
__UpperCamelCase = GLPNImageProcessor()
# prepare image
__UpperCamelCase = prepare_img()
__UpperCamelCase = image_processor(images=UpperCamelCase_ , return_tensors='pt' ).pixel_values
logger.info('Converting model...' )
# load original state dict
__UpperCamelCase = torch.load(UpperCamelCase_ , map_location=torch.device('cpu' ) )
# rename keys
__UpperCamelCase = rename_keys(UpperCamelCase_ )
# key and value matrices need special treatment
read_in_k_v(UpperCamelCase_ , UpperCamelCase_ )
# create HuggingFace model and load state dict
__UpperCamelCase = GLPNForDepthEstimation(UpperCamelCase_ )
model.load_state_dict(UpperCamelCase_ )
model.eval()
# forward pass
__UpperCamelCase = model(UpperCamelCase_ )
__UpperCamelCase = outputs.predicted_depth
# verify output
if model_name is not None:
if "nyu" in model_name:
__UpperCamelCase = torch.tensor(
[[4.4_1_4_7, 4.0_8_7_3, 4.0_6_7_3], [3.7_8_9_0, 3.2_8_8_1, 3.1_5_2_5], [3.7_6_7_4, 3.5_4_2_3, 3.4_9_1_3]] )
elif "kitti" in model_name:
__UpperCamelCase = torch.tensor(
[[3.4_2_9_1, 2.7_8_6_5, 2.5_1_5_1], [3.2_8_4_1, 2.7_0_2_1, 2.3_5_0_2], [3.1_1_4_7, 2.4_6_2_5, 2.2_4_8_1]] )
else:
raise ValueError(F'''Unknown model name: {model_name}''' )
__UpperCamelCase = torch.Size([1, 480, 640] )
assert predicted_depth.shape == expected_shape
assert torch.allclose(predicted_depth[0, :3, :3] , UpperCamelCase_ , atol=1e-4 )
print('Looks ok!' )
# finally, push to hub if required
if push_to_hub:
logger.info('Pushing model and image processor to the hub...' )
model.push_to_hub(
repo_path_or_name=Path(UpperCamelCase_ , UpperCamelCase_ ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=UpperCamelCase_ , )
image_processor.push_to_hub(
repo_path_or_name=Path(UpperCamelCase_ , UpperCamelCase_ ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=UpperCamelCase_ , )
if __name__ == "__main__":
a__ : Tuple =argparse.ArgumentParser()
parser.add_argument(
'''--checkpoint_path''',
default=None,
type=str,
help='''Path to the original PyTorch checkpoint (.pth file).''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether to upload the model to the HuggingFace hub.'''
)
parser.add_argument(
'''--model_name''',
default='''glpn-kitti''',
type=str,
help='''Name of the model in case you\'re pushing to the hub.''',
)
a__ : Union[str, Any] =parser.parse_args()
convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
| 53 |
"""simple docstring"""
import baseaa
def _A ( UpperCamelCase_ : str) -> bytes:
'''simple docstring'''
return baseaa.baaencode(string.encode("utf-8"))
def _A ( UpperCamelCase_ : bytes) -> str:
'''simple docstring'''
return baseaa.baadecode(UpperCamelCase_).decode("utf-8")
if __name__ == "__main__":
_a = 'Hello World!'
_a = baseaa_encode(test)
print(encoded)
_a = baseaa_decode(encoded)
print(decoded)
| 17 | 0 |
import argparse
import logging
from collections import namedtuple
import torch
from model_bertabs import BertAbsSummarizer
from models.model_builder import AbsSummarizer # The authors' implementation
from transformers import BertTokenizer
logging.basicConfig(level=logging.INFO)
__lowerCamelCase = logging.getLogger(__name__)
__lowerCamelCase = """Hello world! cécé herlolip"""
__lowerCamelCase = namedtuple(
"""BertAbsConfig""",
[
"""temp_dir""",
"""large""",
"""use_bert_emb""",
"""finetune_bert""",
"""encoder""",
"""share_emb""",
"""max_pos""",
"""enc_layers""",
"""enc_hidden_size""",
"""enc_heads""",
"""enc_ff_size""",
"""enc_dropout""",
"""dec_layers""",
"""dec_hidden_size""",
"""dec_heads""",
"""dec_ff_size""",
"""dec_dropout""",
],
)
def UpperCamelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] ):
snake_case : List[Any] = BertAbsConfig(
temp_dir="." , finetune_bert=UpperCamelCase_ , large=UpperCamelCase_ , share_emb=UpperCamelCase_ , use_bert_emb=UpperCamelCase_ , encoder="bert" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , )
snake_case : Any = torch.load(UpperCamelCase_ , lambda __lowerCamelCase , __lowerCamelCase : storage )
snake_case : Optional[int] = AbsSummarizer(UpperCamelCase_ , torch.device("cpu" ) , UpperCamelCase_ )
original.eval()
snake_case : Any = BertAbsSummarizer(UpperCamelCase_ , torch.device("cpu" ) )
new_model.eval()
# -------------------
# Convert the weights
# -------------------
logging.info("convert the model" )
new_model.bert.load_state_dict(original.bert.state_dict() )
new_model.decoder.load_state_dict(original.decoder.state_dict() )
new_model.generator.load_state_dict(original.generator.state_dict() )
# ----------------------------------
# Make sure the outpus are identical
# ----------------------------------
logging.info("Make sure that the models' outputs are identical" )
snake_case : List[Any] = BertTokenizer.from_pretrained("bert-base-uncased" )
# prepare the model inputs
snake_case : List[Any] = tokenizer.encode("This is sample éàalj'-." )
encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(UpperCamelCase_ )) )
snake_case : Optional[Any] = torch.tensor(UpperCamelCase_ ).unsqueeze(0 )
snake_case : Any = tokenizer.encode("This is sample 3 éàalj'-." )
decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(UpperCamelCase_ )) )
snake_case : Optional[int] = torch.tensor(UpperCamelCase_ ).unsqueeze(0 )
# failsafe to make sure the weights reset does not affect the
# loaded weights.
assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0
# forward pass
snake_case : List[Any] = encoder_input_ids
snake_case : Any = decoder_input_ids
snake_case : Dict = None
snake_case : Optional[Any] = None
snake_case : Optional[Any] = None
snake_case : Dict = None
snake_case : int = None
# The original model does not apply the geneator layer immediatly but rather in
# the beam search (where it combines softmax + linear layer). Since we already
# apply the softmax in our generation process we only apply the linear layer here.
# We make sure that the outputs of the full stack are identical
snake_case : List[Any] = original(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )[0]
snake_case : List[Any] = original.generator(UpperCamelCase_ )
snake_case : List[str] = new_model(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )[0]
snake_case : str = new_model.generator(UpperCamelCase_ )
snake_case : Optional[int] = torch.max(torch.abs(output_converted_model - output_original_model ) ).item()
print("Maximum absolute difference beween weights: {:.2f}".format(UpperCamelCase_ ) )
snake_case : Tuple = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item()
print("Maximum absolute difference beween weights: {:.2f}".format(UpperCamelCase_ ) )
snake_case : Optional[Any] = torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-3 )
if are_identical:
logging.info("all weights are equal up to 1e-3" )
else:
raise ValueError("the weights are different. The new model is likely different from the original one." )
# The model has been saved with torch.save(model) and this is bound to the exact
# directory structure. We save the state_dict instead.
logging.info("saving the model's state dictionary" )
torch.save(
new_model.state_dict() , "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin" )
if __name__ == "__main__":
__lowerCamelCase = argparse.ArgumentParser()
parser.add_argument(
"""--bertabs_checkpoint_path""",
default=None,
type=str,
required=True,
help="""Path the official PyTorch dump.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""",
default=None,
type=str,
required=True,
help="""Path to the output PyTorch model.""",
)
__lowerCamelCase = parser.parse_args()
convert_bertabs_checkpoints(
args.bertabs_checkpoint_path,
args.pytorch_dump_folder_path,
)
| 59 |
"""simple docstring"""
def _A ( UpperCamelCase_ : Any) -> List[str]:
'''simple docstring'''
__lowercase ,__lowercase = [], []
while len(UpperCamelCase_) > 1:
__lowercase ,__lowercase = min(UpperCamelCase_), max(UpperCamelCase_)
start.append(UpperCamelCase_)
end.append(UpperCamelCase_)
collection.remove(UpperCamelCase_)
collection.remove(UpperCamelCase_)
end.reverse()
return start + collection + end
if __name__ == "__main__":
_a = input('Enter numbers separated by a comma:\n').strip()
_a = [int(item) for item in user_input.split(',')]
print(*merge_sort(unsorted), sep=',')
| 17 | 0 |
import unittest
from transformers.testing_utils import require_bsa
from transformers.utils import is_bsa_available
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin
if is_bsa_available():
from transformers import MarkupLMFeatureExtractor
class __lowercase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Optional[Any] , lowerCAmelCase__ : List[str]):
SCREAMING_SNAKE_CASE_: Dict = parent
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
return {}
def A_ ( ):
SCREAMING_SNAKE_CASE_: Union[str, Any] = "<HTML>\n\n <HEAD>\n <TITLE>sample document</TITLE>\n </HEAD>\n\n <BODY BGCOLOR=\"FFFFFF\">\n <HR>\n <a href=\"http://google.com\">Goog</a>\n <H1>This is one header</H1>\n <H2>This is a another Header</H2>\n <P>Travel from\n <P>\n <B>SFO to JFK</B>\n <BR>\n <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>\n <HR>\n <div style=\"color:#0000FF\">\n <h3>Traveler <b> name </b> is\n <p> John Doe </p>\n </div>"
SCREAMING_SNAKE_CASE_: Optional[int] = "\n <!DOCTYPE html>\n <html>\n <body>\n\n <h1>My First Heading</h1>\n <p>My first paragraph.</p>\n\n </body>\n </html>\n "
return [html_string_a, html_string_a]
@require_bsa
class __lowercase ( UpperCAmelCase_ , unittest.TestCase ):
"""simple docstring"""
_UpperCAmelCase : Tuple = MarkupLMFeatureExtractor if is_bsa_available() else None
def _SCREAMING_SNAKE_CASE ( self : List[str]):
SCREAMING_SNAKE_CASE_: Optional[int] = MarkupLMFeatureExtractionTester(self)
@property
def _SCREAMING_SNAKE_CASE ( self : Optional[int]):
return self.feature_extract_tester.prepare_feat_extract_dict()
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
# Initialize feature_extractor
SCREAMING_SNAKE_CASE_: Union[str, Any] = self.feature_extraction_class()
# Test not batched input
SCREAMING_SNAKE_CASE_: List[Any] = get_html_strings()[0]
SCREAMING_SNAKE_CASE_: List[Any] = feature_extractor(UpperCAmelCase__)
# fmt: off
SCREAMING_SNAKE_CASE_: Optional[Any] = [["sample document", "Goog", "This is one header", "This is a another Header", "Travel from", "SFO to JFK", "on May 2, 2015 at 2:00 pm. For details go to confirm.com", "Traveler", "name", "is", "John Doe"]]
SCREAMING_SNAKE_CASE_: Tuple = [["/html/head/title", "/html/body/a", "/html/body/h1", "/html/body/h2", "/html/body/p", "/html/body/p/p/b[1]", "/html/body/p/p/b[2]/i", "/html/body/p/p/div/h3", "/html/body/p/p/div/h3/b", "/html/body/p/p/div/h3", "/html/body/p/p/div/h3/p"]]
# fmt: on
self.assertEqual(encoding.nodes , UpperCAmelCase__)
self.assertEqual(encoding.xpaths , UpperCAmelCase__)
# Test batched
SCREAMING_SNAKE_CASE_: Tuple = get_html_strings()
SCREAMING_SNAKE_CASE_: Any = feature_extractor(UpperCAmelCase__)
# fmt: off
SCREAMING_SNAKE_CASE_: int = expected_nodes + [["My First Heading", "My first paragraph."]]
SCREAMING_SNAKE_CASE_: Optional[Any] = expected_xpaths + [["/html/body/h1", "/html/body/p"]]
self.assertEqual(len(encoding.nodes) , 2)
self.assertEqual(len(encoding.xpaths) , 2)
self.assertEqual(encoding.nodes , UpperCAmelCase__)
self.assertEqual(encoding.xpaths , UpperCAmelCase__)
| 13 |
"""simple docstring"""
def _A ( UpperCamelCase_ : list[int]) -> float:
'''simple docstring'''
if not nums: # Makes sure that the list is not empty
raise ValueError("List is empty")
__lowercase = sum(UpperCamelCase_) / len(UpperCamelCase_) # Calculate the average
return sum(abs(x - average) for x in nums) / len(UpperCamelCase_)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 17 | 0 |
def A ( a_ ,a_ ) -> int:
return int((input_a, input_a).count(1 ) != 0 )
def A ( ) -> None:
assert or_gate(0 ,0 ) == 0
assert or_gate(0 ,1 ) == 1
assert or_gate(1 ,0 ) == 1
assert or_gate(1 ,1 ) == 1
if __name__ == "__main__":
print(or_gate(0, 1))
print(or_gate(1, 0))
print(or_gate(0, 0))
print(or_gate(1, 1))
| 71 |
"""simple docstring"""
import inspect
import unittest
import numpy as np
from transformers import BeitConfig
from transformers.testing_utils import require_flax, require_vision, slow
from transformers.utils import cached_property, is_flax_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor
if is_flax_available():
import jax
from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : int=1_0_0, UpperCAmelCase__ : Any=1_3, UpperCAmelCase__ : List[Any]=3_0, UpperCAmelCase__ : Dict=2, UpperCAmelCase__ : Any=3, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[str]=True, UpperCAmelCase__ : Optional[Any]=3_2, UpperCAmelCase__ : Any=5, UpperCAmelCase__ : Any=4, UpperCAmelCase__ : Any=3_7, UpperCAmelCase__ : Optional[int]="gelu", UpperCAmelCase__ : Dict=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Dict=1_0, UpperCAmelCase__ : Tuple=0.02, UpperCAmelCase__ : List[Any]=3, ):
__lowercase = parent
__lowercase = vocab_size
__lowercase = batch_size
__lowercase = image_size
__lowercase = patch_size
__lowercase = num_channels
__lowercase = is_training
__lowercase = use_labels
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = type_sequence_label_size
__lowercase = initializer_range
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
__lowercase = (image_size // patch_size) ** 2
__lowercase = num_patches + 1
def _lowercase ( self : int ):
__lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size], self.type_sequence_label_size )
__lowercase = BeitConfig(
vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=UpperCAmelCase__, initializer_range=self.initializer_range, )
return config, pixel_values, labels
def _lowercase ( self : Any, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[str], UpperCAmelCase__ : List[str] ):
__lowercase = FlaxBeitModel(config=UpperCAmelCase__ )
__lowercase = model(UpperCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : List[Any] ):
__lowercase = FlaxBeitForMaskedImageModeling(config=UpperCAmelCase__ )
__lowercase = model(UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size) )
def _lowercase ( self : Dict, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : Union[str, Any] ):
__lowercase = self.type_sequence_label_size
__lowercase = FlaxBeitForImageClassification(config=UpperCAmelCase__ )
__lowercase = model(UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__lowercase = 1
__lowercase = FlaxBeitForImageClassification(UpperCAmelCase__ )
__lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__lowercase = model(UpperCAmelCase__ )
def _lowercase ( self : List[str] ):
__lowercase = self.prepare_config_and_inputs()
(
(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,
) = config_and_inputs
__lowercase = {"pixel_values": pixel_values}
return config, inputs_dict
@require_flax
class _lowerCAmelCase ( lowercase ,unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : str = (
(FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else ()
)
def _lowercase ( self : List[Any] ):
__lowercase = FlaxBeitModelTester(self )
__lowercase = ConfigTester(self, config_class=UpperCAmelCase__, has_text_modality=UpperCAmelCase__, hidden_size=3_7 )
def _lowercase ( self : Union[str, Any] ):
self.config_tester.run_common_tests()
def _lowercase ( self : Optional[int] ):
__lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowercase = model_class(UpperCAmelCase__ )
__lowercase = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowercase = [*signature.parameters.keys()]
__lowercase = ["pixel_values"]
self.assertListEqual(arg_names[:1], UpperCAmelCase__ )
def _lowercase ( self : Tuple ):
__lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__lowercase = self._prepare_for_class(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = model_class(UpperCAmelCase__ )
@jax.jit
def model_jitted(UpperCAmelCase__ : str, **UpperCAmelCase__ : Dict ):
return model(pixel_values=UpperCAmelCase__, **UpperCAmelCase__ )
with self.subTest("JIT Enabled" ):
__lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
__lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple()
self.assertEqual(len(UpperCAmelCase__ ), len(UpperCAmelCase__ ) )
for jitted_output, output in zip(UpperCAmelCase__, UpperCAmelCase__ ):
self.assertEqual(jitted_output.shape, output.shape )
def _lowercase ( self : List[str] ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase__ )
def _lowercase ( self : int ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ )
def _lowercase ( self : Tuple ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ )
@slow
def _lowercase ( self : Union[str, Any] ):
for model_class_name in self.all_model_classes:
__lowercase = model_class_name.from_pretrained("microsoft/beit-base-patch16-224" )
__lowercase = model(np.ones((1, 3, 2_2_4, 2_2_4) ) )
self.assertIsNotNone(UpperCAmelCase__ )
def _A ( ) -> str:
'''simple docstring'''
__lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_vision
@require_flax
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _lowercase ( self : Optional[int] ):
return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None
@slow
def _lowercase ( self : Any ):
__lowercase = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" )
__lowercase = self.default_image_processor
__lowercase = prepare_img()
__lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ).pixel_values
# prepare bool_masked_pos
__lowercase = np.ones((1, 1_9_6), dtype=UpperCAmelCase__ )
# forward pass
__lowercase = model(pixel_values=UpperCAmelCase__, bool_masked_pos=UpperCAmelCase__ )
__lowercase = outputs.logits
# verify the logits
__lowercase = (1, 1_9_6, 8_1_9_2)
self.assertEqual(logits.shape, UpperCAmelCase__ )
__lowercase = np.array(
[[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] )
self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3], UpperCAmelCase__, atol=1E-2 ) )
@slow
def _lowercase ( self : Any ):
__lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" )
__lowercase = self.default_image_processor
__lowercase = prepare_img()
__lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" )
# forward pass
__lowercase = model(**UpperCAmelCase__ )
__lowercase = outputs.logits
# verify the logits
__lowercase = (1, 1_0_0_0)
self.assertEqual(logits.shape, UpperCAmelCase__ )
__lowercase = np.array([-1.2_385, -1.0_987, -1.0_108] )
self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) )
__lowercase = 2_8_1
self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ )
@slow
def _lowercase ( self : List[str] ):
__lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" )
__lowercase = self.default_image_processor
__lowercase = prepare_img()
__lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" )
# forward pass
__lowercase = model(**UpperCAmelCase__ )
__lowercase = outputs.logits
# verify the logits
__lowercase = (1, 2_1_8_4_1)
self.assertEqual(logits.shape, UpperCAmelCase__ )
__lowercase = np.array([1.6_881, -0.2_787, 0.5_901] )
self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) )
__lowercase = 2_3_9_6
self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ )
| 17 | 0 |
'''simple docstring'''
import os
import sys
import tempfile
import torch
from .state import AcceleratorState
from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment
def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Dict=() , lowerCAmelCase__ : int=None , lowerCAmelCase__ : List[str]="no" , lowerCAmelCase__ : int="29500" ):
"""simple docstring"""
__UpperCAmelCase : Optional[int] = False
__UpperCAmelCase : Dict = False
if any(key.startswith("""KAGGLE""" ) for key in os.environ.keys() ):
__UpperCAmelCase : Dict = True
elif "IPython" in sys.modules:
__UpperCAmelCase : Dict = """google.colab""" in str(sys.modules["""IPython"""].get_ipython() )
try:
__UpperCAmelCase : Optional[int] = PrecisionType(mixed_precision.lower() )
except ValueError:
raise ValueError(
f'Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.' )
if (in_colab or in_kaggle) and (os.environ.get("""TPU_NAME""" , UpperCamelCase_ ) is not None):
# TPU launch
import torch_xla.distributed.xla_multiprocessing as xmp
if len(AcceleratorState._shared_state ) > 0:
raise ValueError(
"""To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside """
"""your training function. Restart your notebook and make sure no cells initializes an """
"""`Accelerator`.""" )
if num_processes is None:
__UpperCAmelCase : Tuple = 8
__UpperCAmelCase : Optional[Any] = PrepareForLaunch(UpperCamelCase_ , distributed_type="""TPU""" )
print(f'Launching a training on {num_processes} TPU cores.' )
xmp.spawn(UpperCamelCase_ , args=UpperCamelCase_ , nprocs=UpperCamelCase_ , start_method="""fork""" )
elif in_colab:
# No need for a distributed launch otherwise as it's either CPU or one GPU.
if torch.cuda.is_available():
print("""Launching training on one GPU.""" )
else:
print("""Launching training on one CPU.""" )
function(*UpperCamelCase_ )
else:
if num_processes is None:
raise ValueError(
"""You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.""" )
if num_processes > 1:
# Multi-GPU launch
from torch.multiprocessing import start_processes
from torch.multiprocessing.spawn import ProcessRaisedException
if len(AcceleratorState._shared_state ) > 0:
raise ValueError(
"""To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized """
"""inside your training function. Restart your notebook and make sure no cells initializes an """
"""`Accelerator`.""" )
if torch.cuda.is_initialized():
raise ValueError(
"""To launch a multi-GPU training from your notebook, you need to avoid running any instruction """
"""using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA """
"""function.""" )
# torch.distributed will expect a few environment variable to be here. We set the ones common to each
# process here (the other ones will be set be the launcher).
with patch_environment(
world_size=UpperCamelCase_ , master_addr="""127.0.01""" , master_port=UpperCamelCase_ , mixed_precision=UpperCamelCase_ ):
__UpperCAmelCase : List[Any] = PrepareForLaunch(UpperCamelCase_ , distributed_type="""MULTI_GPU""" )
print(f'Launching training on {num_processes} GPUs.' )
try:
start_processes(UpperCamelCase_ , args=UpperCamelCase_ , nprocs=UpperCamelCase_ , start_method="""fork""" )
except ProcessRaisedException as e:
if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]:
raise RuntimeError(
"""CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. """
"""This likely stems from an outside import causing issues once the `notebook_launcher()` is called. """
"""Please review your imports and test them when running the `notebook_launcher()` to identify """
"""which one is problematic.""" ) from e
else:
# No need for a distributed launch otherwise as it's either CPU, GPU or MPS.
if is_mps_available():
__UpperCAmelCase : Any = """1"""
print("""Launching training on MPS.""" )
elif torch.cuda.is_available():
print("""Launching training on one GPU.""" )
else:
print("""Launching training on CPU.""" )
function(*UpperCamelCase_ )
def lowercase_ ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any]=() , lowerCAmelCase__ : Optional[int]=2 ):
"""simple docstring"""
from torch.multiprocessing import start_processes
with tempfile.NamedTemporaryFile() as tmp_file:
# torch.distributed will expect a few environment variable to be here. We set the ones common to each
# process here (the other ones will be set be the launcher).
with patch_environment(
world_size=UpperCamelCase_ , master_addr="""127.0.01""" , master_port="""29500""" , accelerate_mixed_precision="""no""" , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu="""yes""" , ):
__UpperCAmelCase : List[Any] = PrepareForLaunch(UpperCamelCase_ , debug=UpperCamelCase_ )
start_processes(UpperCamelCase_ , args=UpperCamelCase_ , nprocs=UpperCamelCase_ , start_method="""fork""" )
| 254 |
"""simple docstring"""
import unittest
from transformers import load_tool
from .test_tools_common import ToolTesterMixin
class _lowerCAmelCase ( unittest.TestCase ,lowercase ):
"""simple docstring"""
def _lowercase ( self : List[Any] ):
__lowercase = load_tool("text-classification" )
self.tool.setup()
__lowercase = load_tool("text-classification", remote=UpperCAmelCase__ )
def _lowercase ( self : str ):
__lowercase = self.tool("That's quite cool", ["positive", "negative"] )
self.assertEqual(UpperCAmelCase__, "positive" )
def _lowercase ( self : str ):
__lowercase = self.remote_tool("That's quite cool", ["positive", "negative"] )
self.assertEqual(UpperCAmelCase__, "positive" )
def _lowercase ( self : List[str] ):
__lowercase = self.tool(text="That's quite cool", labels=["positive", "negative"] )
self.assertEqual(UpperCAmelCase__, "positive" )
def _lowercase ( self : Tuple ):
__lowercase = self.remote_tool(text="That's quite cool", labels=["positive", "negative"] )
self.assertEqual(UpperCAmelCase__, "positive" )
| 17 | 0 |
'''simple docstring'''
import unittest
from transformers import MPNetConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MPNetForMaskedLM,
MPNetForMultipleChoice,
MPNetForQuestionAnswering,
MPNetForSequenceClassification,
MPNetForTokenClassification,
MPNetModel,
)
class UpperCamelCase_ :
def __init__( self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=64 , A=5 , A=4 , A=64 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=3 , A=4 , A=None , ) -> Tuple:
UpperCAmelCase : Union[str, Any] = parent
UpperCAmelCase : Union[str, Any] = batch_size
UpperCAmelCase : Dict = seq_length
UpperCAmelCase : Optional[int] = is_training
UpperCAmelCase : int = use_input_mask
UpperCAmelCase : Union[str, Any] = use_token_type_ids
UpperCAmelCase : Optional[Any] = use_labels
UpperCAmelCase : List[str] = vocab_size
UpperCAmelCase : str = hidden_size
UpperCAmelCase : Optional[Any] = num_hidden_layers
UpperCAmelCase : Optional[int] = num_attention_heads
UpperCAmelCase : Dict = intermediate_size
UpperCAmelCase : Optional[int] = hidden_act
UpperCAmelCase : Tuple = hidden_dropout_prob
UpperCAmelCase : Optional[int] = attention_probs_dropout_prob
UpperCAmelCase : Optional[int] = max_position_embeddings
UpperCAmelCase : List[Any] = type_vocab_size
UpperCAmelCase : Optional[int] = type_sequence_label_size
UpperCAmelCase : Any = initializer_range
UpperCAmelCase : Union[str, Any] = num_labels
UpperCAmelCase : List[Any] = num_choices
UpperCAmelCase : List[str] = scope
def _lowercase( self ) -> List[str]:
return MPNetConfig.from_pretrained("""microsoft/mpnet-base""" )
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase : Union[str, Any] = None
if self.use_input_mask:
UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase : Optional[Any] = None
UpperCAmelCase : List[Any] = None
UpperCAmelCase : int = None
if self.use_labels:
UpperCAmelCase : int = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase : Dict = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def _lowercase( self ) -> List[str]:
return MPNetConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
def _lowercase( self , A , A , A , A , A , A ) -> Optional[Any]:
UpperCAmelCase : Any = MPNetModel(config=UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
UpperCAmelCase : Union[str, Any] = model(UpperCAmelCase__ , UpperCAmelCase__ )
UpperCAmelCase : Any = model(UpperCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def _lowercase( self , A , A , A , A , A , A ) -> Optional[int]:
UpperCAmelCase : Union[str, Any] = MPNetForQuestionAnswering(config=UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
UpperCAmelCase : int = model(
UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , start_positions=UpperCAmelCase__ , end_positions=UpperCAmelCase__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _lowercase( self , A , A , A , A , A , A ) -> int:
UpperCAmelCase : Optional[int] = self.num_labels
UpperCAmelCase : List[Any] = MPNetForSequenceClassification(UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
UpperCAmelCase : List[Any] = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _lowercase( self , A , A , A , A , A , A ) -> List[str]:
UpperCAmelCase : str = self.num_choices
UpperCAmelCase : int = MPNetForMultipleChoice(config=UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
UpperCAmelCase : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase : str = model(
UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _lowercase( self , A , A , A , A , A , A ) -> str:
UpperCAmelCase : Dict = self.num_labels
UpperCAmelCase : Optional[int] = MPNetForTokenClassification(config=UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
UpperCAmelCase : int = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : Any = self.prepare_config_and_inputs()
((UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase)) : List[Any] = config_and_inputs
UpperCAmelCase : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
lowercase = (
(
MPNetForMaskedLM,
MPNetForMultipleChoice,
MPNetForQuestionAnswering,
MPNetForSequenceClassification,
MPNetForTokenClassification,
MPNetModel,
)
if is_torch_available()
else ()
)
lowercase = (
{
"feature-extraction": MPNetModel,
"fill-mask": MPNetForMaskedLM,
"question-answering": MPNetForQuestionAnswering,
"text-classification": MPNetForSequenceClassification,
"token-classification": MPNetForTokenClassification,
"zero-shot": MPNetForSequenceClassification,
}
if is_torch_available()
else {}
)
lowercase = False
lowercase = True
def _lowercase( self ) -> Any:
UpperCAmelCase : int = MPNetModelTester(self )
UpperCAmelCase : Dict = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=37 )
def _lowercase( self ) -> Tuple:
self.config_tester.run_common_tests()
def _lowercase( self ) -> Any:
UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_model(*UpperCAmelCase__ )
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_sequence_classification(*UpperCAmelCase__ )
def _lowercase( self ) -> Any:
UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_multiple_choice(*UpperCAmelCase__ )
def _lowercase( self ) -> Dict:
UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_token_classification(*UpperCAmelCase__ )
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_question_answering(*UpperCAmelCase__ )
@require_torch
class UpperCamelCase_ ( unittest.TestCase ):
@slow
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : List[Any] = MPNetModel.from_pretrained("""microsoft/mpnet-base""" )
UpperCAmelCase : Optional[Any] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
UpperCAmelCase : int = model(UpperCAmelCase__ )[0]
UpperCAmelCase : Any = torch.Size((1, 11, 768) )
self.assertEqual(output.shape , UpperCAmelCase__ )
UpperCAmelCase : Any = torch.tensor(
[[[-0.0_5_5_0, 0.1_9_4_3, -0.0_7_4_0], [-0.0_5_6_2, 0.2_2_1_1, -0.0_5_7_9], [-0.0_4_3_7, 0.3_3_3_7, -0.0_6_4_1]]] )
# compare the actual values for a slice.
self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase__ , atol=1e-4 ) )
| 265 |
"""simple docstring"""
from typing import Any, Callable, Dict, List, Optional, Union
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
_a = 'CompVis/stable-diffusion-v1-1'
_a = 'CompVis/stable-diffusion-v1-2'
_a = 'CompVis/stable-diffusion-v1-3'
_a = 'CompVis/stable-diffusion-v1-4'
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
def __init__( self : Dict, UpperCAmelCase__ : AutoencoderKL, UpperCAmelCase__ : CLIPTextModel, UpperCAmelCase__ : CLIPTokenizer, UpperCAmelCase__ : UNetaDConditionModel, UpperCAmelCase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], UpperCAmelCase__ : StableDiffusionSafetyChecker, UpperCAmelCase__ : CLIPImageProcessor, UpperCAmelCase__ : bool = True, ):
super()._init_()
__lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ )
__lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ )
__lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ )
__lowercase = StableDiffusionPipeline(
vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, tokenizer=UpperCAmelCase__, unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, safety_checker=UpperCAmelCase__, feature_extractor=UpperCAmelCase__, requires_safety_checker=UpperCAmelCase__, )
self.register_modules(pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea )
@property
def _lowercase ( self : List[str] ):
return {k: getattr(self, UpperCAmelCase__ ) for k in self.config.keys() if not k.startswith("_" )}
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ):
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
__lowercase = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(UpperCAmelCase__ )
def _lowercase ( self : List[str] ):
self.enable_attention_slicing(UpperCAmelCase__ )
@torch.no_grad()
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Tuple, ):
return self.pipea(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
@torch.no_grad()
def _lowercase ( self : Tuple, UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : str, ):
return self.pipea(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
@torch.no_grad()
def _lowercase ( self : str, UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Any, ):
return self.pipea(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
@torch.no_grad()
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Optional[int], ):
return self.pipea(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
@torch.no_grad()
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : str, ):
__lowercase = "cuda" if torch.cuda.is_available() else "cpu"
self.to(UpperCAmelCase__ )
# Checks if the height and width are divisible by 8 or not
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" )
# Get first result from Stable Diffusion Checkpoint v1.1
__lowercase = self.textaimg_sda_a(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
# Get first result from Stable Diffusion Checkpoint v1.2
__lowercase = self.textaimg_sda_a(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
# Get first result from Stable Diffusion Checkpoint v1.3
__lowercase = self.textaimg_sda_a(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
# Get first result from Stable Diffusion Checkpoint v1.4
__lowercase = self.textaimg_sda_a(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
# Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result
return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
| 17 | 0 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaImgaImgPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class UpperCamelCase__( __A , unittest.TestCase ):
lowerCAmelCase__ : int = KandinskyVaaImgaImgPipeline
lowerCAmelCase__ : Optional[Any] = ["image_embeds", "negative_image_embeds", "image"]
lowerCAmelCase__ : int = [
"image_embeds",
"negative_image_embeds",
"image",
]
lowerCAmelCase__ : List[str] = [
"generator",
"height",
"width",
"strength",
"guidance_scale",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
lowerCAmelCase__ : List[Any] = False
@property
def snake_case__ ( self ) -> Dict:
return 32
@property
def snake_case__ ( self ) -> str:
return 32
@property
def snake_case__ ( self ) -> Optional[Any]:
return self.time_input_dim
@property
def snake_case__ ( self ) -> Optional[int]:
return self.time_input_dim * 4
@property
def snake_case__ ( self ) -> Optional[int]:
return 1_00
@property
def snake_case__ ( self ) -> Optional[int]:
torch.manual_seed(0 )
A__ = {
'in_channels': 4,
# Out channels is double in channels because predicts mean and variance
'out_channels': 8,
'addition_embed_type': 'image',
'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'),
'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'),
'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn',
'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2),
'layers_per_block': 1,
'encoder_hid_dim': self.text_embedder_hidden_size,
'encoder_hid_dim_type': 'image_proj',
'cross_attention_dim': self.cross_attention_dim,
'attention_head_dim': 4,
'resnet_time_scale_shift': 'scale_shift',
'class_embed_type': None,
}
A__ = UNetaDConditionModel(**UpperCAmelCase__ )
return model
@property
def snake_case__ ( self ) -> Dict:
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def snake_case__ ( self ) -> Dict:
torch.manual_seed(0 )
A__ = VQModel(**self.dummy_movq_kwargs )
return model
def snake_case__ ( self ) -> int:
A__ = self.dummy_unet
A__ = self.dummy_movq
A__ = {
'num_train_timesteps': 10_00,
'beta_schedule': 'linear',
'beta_start': 0.0_0_0_8_5,
'beta_end': 0.0_1_2,
'clip_sample': False,
'set_alpha_to_one': False,
'steps_offset': 0,
'prediction_type': 'epsilon',
'thresholding': False,
}
A__ = DDIMScheduler(**UpperCAmelCase__ )
A__ = {
'unet': unet,
'scheduler': scheduler,
'movq': movq,
}
return components
def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase=0 ) -> Any:
A__ = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ )
A__ = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(seed + 1 ) ).to(
UpperCAmelCase__ )
# create init_image
A__ = floats_tensor((1, 3, 64, 64) ,rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ )
A__ = image.cpu().permute(0 ,2 ,3 ,1 )[0]
A__ = Image.fromarray(np.uinta(UpperCAmelCase__ ) ).convert('RGB' ).resize((2_56, 2_56) )
if str(UpperCAmelCase__ ).startswith('mps' ):
A__ = torch.manual_seed(UpperCAmelCase__ )
else:
A__ = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ )
A__ = {
'image': init_image,
'image_embeds': image_embeds,
'negative_image_embeds': negative_image_embeds,
'generator': generator,
'height': 64,
'width': 64,
'num_inference_steps': 10,
'guidance_scale': 7.0,
'strength': 0.2,
'output_type': 'np',
}
return inputs
def snake_case__ ( self ) -> str:
A__ = 'cpu'
A__ = self.get_dummy_components()
A__ = self.pipeline_class(**UpperCAmelCase__ )
A__ = pipe.to(UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
A__ = pipe(**self.get_dummy_inputs(UpperCAmelCase__ ) )
A__ = output.images
A__ = pipe(
**self.get_dummy_inputs(UpperCAmelCase__ ) ,return_dict=UpperCAmelCase__ ,)[0]
A__ = image[0, -3:, -3:, -1]
A__ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
A__ = np.array(
[0.6_1_9_9_7_7_8, 0.6_3_9_8_4_4_0_6, 0.4_6_1_4_5_7_8_5, 0.6_2_9_4_4_9_8_4, 0.5_6_2_2_2_1_5, 0.4_7_3_0_6_1_3_2, 0.4_7_4_4_1_4_5_6, 0.4_6_0_7_6_0_6, 0.4_8_7_1_9_2_6_3] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
@slow
@require_torch_gpu
class UpperCamelCase__( unittest.TestCase ):
def snake_case__ ( self ) -> str:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def snake_case__ ( self ) -> Optional[Any]:
A__ = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/kandinskyv22/kandinskyv22_img2img_frog.npy' )
A__ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' )
A__ = 'A red cartoon frog, 4k'
A__ = KandinskyVaaPriorPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-2-prior' ,torch_dtype=torch.floataa )
pipe_prior.to(UpperCAmelCase__ )
A__ = KandinskyVaaImgaImgPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-2-decoder' ,torch_dtype=torch.floataa )
A__ = pipeline.to(UpperCAmelCase__ )
pipeline.set_progress_bar_config(disable=UpperCAmelCase__ )
A__ = torch.Generator(device='cpu' ).manual_seed(0 )
A__ , A__ = pipe_prior(
UpperCAmelCase__ ,generator=UpperCAmelCase__ ,num_inference_steps=5 ,negative_prompt='' ,).to_tuple()
A__ = pipeline(
image=UpperCAmelCase__ ,image_embeds=UpperCAmelCase__ ,negative_image_embeds=UpperCAmelCase__ ,generator=UpperCAmelCase__ ,num_inference_steps=1_00 ,height=7_68 ,width=7_68 ,strength=0.2 ,output_type='np' ,)
A__ = output.images[0]
assert image.shape == (7_68, 7_68, 3)
assert_mean_pixel_difference(UpperCAmelCase__ ,UpperCAmelCase__ )
| 221 |
"""simple docstring"""
import random
import unittest
import numpy as np
import torch
from diffusers import (
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionUpscalePipeline,
PNDMScheduler,
)
from diffusers.utils import floats_tensor
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class _lowerCAmelCase ( lowercase ,unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : str = "ssube/stable-diffusion-x4-upscaler-onnx"
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : List[str]=0 ):
__lowercase = floats_tensor((1, 3, 1_2_8, 1_2_8), rng=random.Random(UpperCAmelCase__ ) )
__lowercase = torch.manual_seed(UpperCAmelCase__ )
__lowercase = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 7.5,
"output_type": "numpy",
}
return inputs
def _lowercase ( self : Any ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1].flatten()
# started as 128, should now be 512
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] )
assert np.abs(image_slice - expected_slice ).max() < 1E-1
def _lowercase ( self : Optional[Any] ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
__lowercase = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.6_898_892, 0.59_240_556, 0.52_499_527, 0.58_866_215, 0.52_258_235, 0.52_572_715, 0.62_414_473, 0.6_174_387, 0.6_214_964] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def _lowercase ( self : int ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
__lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.7_659_278, 0.76_437_664, 0.75_579_107, 0.7_691_116, 0.77_666_986, 0.7_727_672, 0.7_758_664, 0.7_812_226, 0.76_942_515] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def _lowercase ( self : str ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
__lowercase = EulerDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def _lowercase ( self : Any ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
__lowercase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.77_424_496, 0.773_601, 0.7_645_288, 0.7_769_598, 0.7_772_739, 0.7_738_688, 0.78_187_233, 0.77_879_584, 0.767_043] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
@nightly
@require_onnxruntime
@require_torch_gpu
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@property
def _lowercase ( self : Tuple ):
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def _lowercase ( self : Dict ):
__lowercase = ort.SessionOptions()
__lowercase = False
return options
def _lowercase ( self : Dict ):
__lowercase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg" )
__lowercase = init_image.resize((1_2_8, 1_2_8) )
# using the PNDM scheduler by default
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(
"ssube/stable-diffusion-x4-upscaler-onnx", provider=self.gpu_provider, sess_options=self.gpu_options, )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = "A fantasy landscape, trending on artstation"
__lowercase = torch.manual_seed(0 )
__lowercase = pipe(
prompt=UpperCAmelCase__, image=UpperCAmelCase__, guidance_scale=7.5, num_inference_steps=1_0, generator=UpperCAmelCase__, output_type="np", )
__lowercase = output.images
__lowercase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert images.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array([0.4_883, 0.4_947, 0.4_980, 0.4_975, 0.4_982, 0.4_980, 0.5_000, 0.5_006, 0.4_972] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
def _lowercase ( self : str ):
__lowercase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg" )
__lowercase = init_image.resize((1_2_8, 1_2_8) )
__lowercase = LMSDiscreteScheduler.from_pretrained(
"ssube/stable-diffusion-x4-upscaler-onnx", subfolder="scheduler" )
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(
"ssube/stable-diffusion-x4-upscaler-onnx", scheduler=UpperCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = "A fantasy landscape, trending on artstation"
__lowercase = torch.manual_seed(0 )
__lowercase = pipe(
prompt=UpperCAmelCase__, image=UpperCAmelCase__, guidance_scale=7.5, num_inference_steps=2_0, generator=UpperCAmelCase__, output_type="np", )
__lowercase = output.images
__lowercase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert images.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.50_173_753, 0.50_223_356, 0.502_039, 0.50_233_036, 0.5_023_725, 0.5_022_601, 0.5_018_758, 0.50_234_085, 0.50_241_566] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
| 17 | 0 |
import asyncio
import os
import shutil
import subprocess
import sys
import tempfile
import unittest
from distutils.util import strtobool
from functools import partial
from pathlib import Path
from typing import List, Union
from unittest import mock
import torch
from ..state import AcceleratorState, PartialState
from ..utils import (
gather,
is_bnb_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_mps_available,
is_safetensors_available,
is_tensorboard_available,
is_torch_version,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
def lowerCAmelCase__( lowercase : List[Any] , lowercase : Tuple=False ) -> int:
try:
__snake_case : Union[str, Any] = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
__snake_case : Any = default
else:
# KEY is set, convert it to True or False.
try:
__snake_case : List[Any] = strtobool(UpperCamelCase_ )
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(f"""If set, {key} must be yes or no.""" )
return _value
_UpperCamelCase = parse_flag_from_env('''RUN_SLOW''', default=False)
def lowerCAmelCase__( lowercase : int ) -> Optional[int]:
return unittest.skip("Test was skipped" )(UpperCamelCase_ )
def lowerCAmelCase__( lowercase : Any ) -> Optional[int]:
return unittest.skipUnless(_run_slow_tests , "test is slow" )(UpperCamelCase_ )
def lowerCAmelCase__( lowercase : Tuple ) -> List[Any]:
return unittest.skipUnless(not torch.cuda.is_available() , "test requires only a CPU" )(UpperCamelCase_ )
def lowerCAmelCase__( lowercase : int ) -> Any:
return unittest.skipUnless(torch.cuda.is_available() , "test requires a GPU" )(UpperCamelCase_ )
def lowerCAmelCase__( lowercase : Optional[int] ) -> Tuple:
return unittest.skipUnless(is_xpu_available() , "test requires a XPU" )(UpperCamelCase_ )
def lowerCAmelCase__( lowercase : Optional[int] ) -> Dict:
return unittest.skipUnless(is_mps_available() , "test requires a `mps` backend support in `torch`" )(UpperCamelCase_ )
def lowerCAmelCase__( lowercase : int ) -> List[Any]:
return unittest.skipUnless(
is_transformers_available() and is_datasets_available() , "test requires the Hugging Face suite" )(UpperCamelCase_ )
def lowerCAmelCase__( lowercase : Union[str, Any] ) -> Tuple:
return unittest.skipUnless(is_bnb_available() , "test requires the bitsandbytes library" )(UpperCamelCase_ )
def lowerCAmelCase__( lowercase : Optional[Any] ) -> int:
return unittest.skipUnless(is_tpu_available() , "test requires TPU" )(UpperCamelCase_ )
def lowerCAmelCase__( lowercase : str ) -> List[Any]:
return unittest.skipUnless(torch.cuda.device_count() == 1 , "test requires a GPU" )(UpperCamelCase_ )
def lowerCAmelCase__( lowercase : Union[str, Any] ) -> List[str]:
return unittest.skipUnless(torch.xpu.device_count() == 1 , "test requires a XPU" )(UpperCamelCase_ )
def lowerCAmelCase__( lowercase : List[Any] ) -> str:
return unittest.skipUnless(torch.cuda.device_count() > 1 , "test requires multiple GPUs" )(UpperCamelCase_ )
def lowerCAmelCase__( lowercase : Optional[int] ) -> str:
return unittest.skipUnless(torch.xpu.device_count() > 1 , "test requires multiple XPUs" )(UpperCamelCase_ )
def lowerCAmelCase__( lowercase : str ) -> int:
return unittest.skipUnless(is_safetensors_available() , "test requires safetensors" )(UpperCamelCase_ )
def lowerCAmelCase__( lowercase : Dict ) -> str:
return unittest.skipUnless(is_deepspeed_available() , "test requires DeepSpeed" )(UpperCamelCase_ )
def lowerCAmelCase__( lowercase : List[str] ) -> Dict:
return unittest.skipUnless(is_torch_version(">=" , "1.12.0" ) , "test requires torch version >= 1.12.0" )(UpperCamelCase_ )
def lowerCAmelCase__( lowercase : Dict=None , lowercase : int=None ) -> int:
if test_case is None:
return partial(UpperCamelCase_ , version=UpperCamelCase_ )
return unittest.skipUnless(is_torch_version(">=" , UpperCamelCase_ ) , f"""test requires torch version >= {version}""" )(UpperCamelCase_ )
def lowerCAmelCase__( lowercase : List[Any] ) -> Any:
return unittest.skipUnless(is_tensorboard_available() , "test requires Tensorboard" )(UpperCamelCase_ )
def lowerCAmelCase__( lowercase : Optional[Any] ) -> Union[str, Any]:
return unittest.skipUnless(is_wandb_available() , "test requires wandb" )(UpperCamelCase_ )
def lowerCAmelCase__( lowercase : Optional[int] ) -> Tuple:
return unittest.skipUnless(is_comet_ml_available() , "test requires comet_ml" )(UpperCamelCase_ )
_UpperCamelCase = (
any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available()
)
def lowerCAmelCase__( lowercase : List[str] ) -> str:
return unittest.skipUnless(
_atleast_one_tracker_available , "test requires at least one tracker to be available and for `comet_ml` to not be installed" , )(UpperCamelCase_ )
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : Tuple =True
@classmethod
def UpperCAmelCase ( cls ) -> str:
'''simple docstring'''
__snake_case : str = tempfile.mkdtemp()
@classmethod
def UpperCAmelCase ( cls ) -> int:
'''simple docstring'''
if os.path.exists(cls.tmpdir ):
shutil.rmtree(cls.tmpdir )
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
if self.clear_on_setup:
for path in Path(self.tmpdir ).glob("**/*" ):
if path.is_file():
path.unlink()
elif path.is_dir():
shutil.rmtree(UpperCAmelCase__ )
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
super().tearDown()
# Reset the state of the AcceleratorState singleton.
AcceleratorState._reset_state()
PartialState._reset_state()
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
def UpperCAmelCase ( self , UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__snake_case : Any = mocks if isinstance(UpperCAmelCase__ , (tuple, list) ) else [mocks]
for m in self.mocks:
m.start()
self.addCleanup(m.stop )
def lowerCAmelCase__( lowercase : int ) -> int:
__snake_case : Tuple = AcceleratorState()
__snake_case : Optional[Any] = tensor[None].clone().to(state.device )
__snake_case : Dict = gather(UpperCamelCase_ ).cpu()
__snake_case : Optional[int] = tensor[0].cpu()
for i in range(tensors.shape[0] ):
if not torch.equal(tensors[i] , UpperCamelCase_ ):
return False
return True
class _lowerCamelCase :
"""simple docstring"""
def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any:
'''simple docstring'''
__snake_case : Optional[int] = returncode
__snake_case : Optional[int] = stdout
__snake_case : List[Any] = stderr
async def lowerCAmelCase__( lowercase : int , lowercase : List[str] ) -> Any:
while True:
__snake_case : Optional[int] = await stream.readline()
if line:
callback(UpperCamelCase_ )
else:
break
async def lowerCAmelCase__( lowercase : Optional[int] , lowercase : List[str]=None , lowercase : Optional[Any]=None , lowercase : List[str]=None , lowercase : Dict=False , lowercase : int=False ) -> _RunOutput:
if echo:
print("\nRunning: " , " ".join(UpperCamelCase_ ) )
__snake_case : Optional[int] = await asyncio.create_subprocess_exec(
cmd[0] , *cmd[1:] , stdin=UpperCamelCase_ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=UpperCamelCase_ , )
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
__snake_case : Any = []
__snake_case : int = []
def tee(lowercase : Any , lowercase : List[Any] , lowercase : Dict , lowercase : int="" ):
__snake_case : str = line.decode("utf-8" ).rstrip()
sink.append(UpperCamelCase_ )
if not quiet:
print(UpperCamelCase_ , UpperCamelCase_ , file=UpperCamelCase_ )
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
asyncio.create_task(_read_stream(p.stdout , lambda lowercase : tee(UpperCamelCase_ , UpperCamelCase_ , sys.stdout , label="stdout:" ) ) ),
asyncio.create_task(_read_stream(p.stderr , lambda lowercase : tee(UpperCamelCase_ , UpperCamelCase_ , sys.stderr , label="stderr:" ) ) ),
] , timeout=UpperCamelCase_ , )
return _RunOutput(await p.wait() , UpperCamelCase_ , UpperCamelCase_ )
def lowerCAmelCase__( lowercase : str , lowercase : Optional[Any]=None , lowercase : Dict=None , lowercase : str=180 , lowercase : Optional[int]=False , lowercase : int=True ) -> _RunOutput:
__snake_case : Optional[int] = asyncio.get_event_loop()
__snake_case : int = loop.run_until_complete(
_stream_subprocess(UpperCamelCase_ , env=UpperCamelCase_ , stdin=UpperCamelCase_ , timeout=UpperCamelCase_ , quiet=UpperCamelCase_ , echo=UpperCamelCase_ ) )
__snake_case : int = " ".join(UpperCamelCase_ )
if result.returncode > 0:
__snake_case : List[Any] = "\n".join(result.stderr )
raise RuntimeError(
f"""'{cmd_str}' failed with returncode {result.returncode}\n\n"""
f"""The combined stderr from workers follows:\n{stderr}""" )
return result
class _lowerCamelCase ( a ):
"""simple docstring"""
pass
def lowerCAmelCase__( lowercase : List[str] , lowercase : Optional[int]=False ) -> Union[str, Any]:
try:
__snake_case : Any = subprocess.check_output(UpperCamelCase_ , stderr=subprocess.STDOUT )
if return_stdout:
if hasattr(UpperCamelCase_ , "decode" ):
__snake_case : Optional[Any] = output.decode("utf-8" )
return output
except subprocess.CalledProcessError as e:
raise SubprocessCallException(
f"""Command `{" ".join(UpperCamelCase_ )}` failed with the following error:\n\n{e.output.decode()}""" ) from e
| 326 |
"""simple docstring"""
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
_a = datasets.utils.logging.get_logger(__name__)
_a = ['names', 'prefix']
_a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols']
_a = ['encoding_errors', 'on_bad_lines']
_a = ['date_format']
@dataclass
class _lowerCAmelCase ( datasets.BuilderConfig ):
"""simple docstring"""
__UpperCAmelCase : str = ","
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : Optional[Union[int, List[int], str]] = "infer"
__UpperCAmelCase : Optional[List[str]] = None
__UpperCAmelCase : Optional[List[str]] = None
__UpperCAmelCase : Optional[Union[int, str, List[int], List[str]]] = None
__UpperCAmelCase : Optional[Union[List[int], List[str]]] = None
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : bool = True
__UpperCAmelCase : Optional[Literal["c", "python", "pyarrow"]] = None
__UpperCAmelCase : Dict[Union[int, str], Callable[[Any], Any]] = None
__UpperCAmelCase : Optional[list] = None
__UpperCAmelCase : Optional[list] = None
__UpperCAmelCase : bool = False
__UpperCAmelCase : Optional[Union[int, List[int]]] = None
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : Optional[Union[str, List[str]]] = None
__UpperCAmelCase : bool = True
__UpperCAmelCase : bool = True
__UpperCAmelCase : bool = False
__UpperCAmelCase : bool = True
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : str = "."
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : str = '"'
__UpperCAmelCase : int = 0
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : bool = True
__UpperCAmelCase : bool = True
__UpperCAmelCase : int = 0
__UpperCAmelCase : bool = True
__UpperCAmelCase : bool = False
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : int = 1_0_0_0_0
__UpperCAmelCase : Optional[datasets.Features] = None
__UpperCAmelCase : Optional[str] = "strict"
__UpperCAmelCase : Literal["error", "warn", "skip"] = "error"
__UpperCAmelCase : Optional[str] = None
def _lowercase ( self : Tuple ):
if self.delimiter is not None:
__lowercase = self.delimiter
if self.column_names is not None:
__lowercase = self.column_names
@property
def _lowercase ( self : Union[str, Any] ):
__lowercase = {
"sep": self.sep,
"header": self.header,
"names": self.names,
"index_col": self.index_col,
"usecols": self.usecols,
"prefix": self.prefix,
"mangle_dupe_cols": self.mangle_dupe_cols,
"engine": self.engine,
"converters": self.converters,
"true_values": self.true_values,
"false_values": self.false_values,
"skipinitialspace": self.skipinitialspace,
"skiprows": self.skiprows,
"nrows": self.nrows,
"na_values": self.na_values,
"keep_default_na": self.keep_default_na,
"na_filter": self.na_filter,
"verbose": self.verbose,
"skip_blank_lines": self.skip_blank_lines,
"thousands": self.thousands,
"decimal": self.decimal,
"lineterminator": self.lineterminator,
"quotechar": self.quotechar,
"quoting": self.quoting,
"escapechar": self.escapechar,
"comment": self.comment,
"encoding": self.encoding,
"dialect": self.dialect,
"error_bad_lines": self.error_bad_lines,
"warn_bad_lines": self.warn_bad_lines,
"skipfooter": self.skipfooter,
"doublequote": self.doublequote,
"memory_map": self.memory_map,
"float_precision": self.float_precision,
"chunksize": self.chunksize,
"encoding_errors": self.encoding_errors,
"on_bad_lines": self.on_bad_lines,
"date_format": self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig(), UpperCAmelCase__ ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class _lowerCAmelCase ( datasets.ArrowBasedBuilder ):
"""simple docstring"""
__UpperCAmelCase : Tuple = CsvConfig
def _lowercase ( self : List[str] ):
return datasets.DatasetInfo(features=self.config.features )
def _lowercase ( self : List[Any], UpperCAmelCase__ : Dict ):
if not self.config.data_files:
raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" )
__lowercase = dl_manager.download_and_extract(self.config.data_files )
if isinstance(UpperCAmelCase__, (str, list, tuple) ):
__lowercase = data_files
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
__lowercase = [files]
__lowercase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files} )]
__lowercase = []
for split_name, files in data_files.items():
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
__lowercase = [files]
__lowercase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files]
splits.append(datasets.SplitGenerator(name=UpperCAmelCase__, gen_kwargs={"files": files} ) )
return splits
def _lowercase ( self : Dict, UpperCAmelCase__ : pa.Table ):
if self.config.features is not None:
__lowercase = self.config.features.arrow_schema
if all(not require_storage_cast(UpperCAmelCase__ ) for feature in self.config.features.values() ):
# cheaper cast
__lowercase = pa.Table.from_arrays([pa_table[field.name] for field in schema], schema=UpperCAmelCase__ )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
__lowercase = table_cast(UpperCAmelCase__, UpperCAmelCase__ )
return pa_table
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : List[str] ):
__lowercase = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
__lowercase = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(UpperCAmelCase__ ) else object
for name, dtype, feature in zip(schema.names, schema.types, self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase__ ) ):
__lowercase = pd.read_csv(UpperCAmelCase__, iterator=UpperCAmelCase__, dtype=UpperCAmelCase__, **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(UpperCAmelCase__ ):
__lowercase = pa.Table.from_pandas(UpperCAmelCase__ )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase__ )
except ValueError as e:
logger.error(F"""Failed to read file '{file}' with error {type(UpperCAmelCase__ )}: {e}""" )
raise
| 17 | 0 |
import unittest
from queue import Empty
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers import AutoModelForCausalLM
@require_torch
class lowercase ( unittest.TestCase ):
def a__ ( self ) -> Union[str, Any]:
_A : int = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
_A : List[Any] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(UpperCAmelCase__ )
_A : Optional[Any] = -1
_A : Optional[int] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCAmelCase__ )
_A : Dict = model.generate(UpperCAmelCase__ , max_new_tokens=10 , do_sample=UpperCAmelCase__ )
_A : Any = tokenizer.decode(greedy_ids[0] )
with CaptureStdout() as cs:
_A : Optional[int] = TextStreamer(UpperCAmelCase__ )
model.generate(UpperCAmelCase__ , max_new_tokens=10 , do_sample=UpperCAmelCase__ , streamer=UpperCAmelCase__ )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
_A : Optional[Any] = cs.out[:-1]
self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ )
def a__ ( self ) -> Tuple:
_A : Dict = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
_A : str = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(UpperCAmelCase__ )
_A : Optional[int] = -1
_A : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCAmelCase__ )
_A : Tuple = model.generate(UpperCAmelCase__ , max_new_tokens=10 , do_sample=UpperCAmelCase__ )
_A : Union[str, Any] = tokenizer.decode(greedy_ids[0] )
_A : Tuple = TextIteratorStreamer(UpperCAmelCase__ )
_A : Any = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer}
_A : int = Thread(target=model.generate , kwargs=UpperCAmelCase__ )
thread.start()
_A : Tuple = """"""
for new_text in streamer:
streamer_text += new_text
self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ )
def a__ ( self ) -> Optional[Any]:
_A : Optional[int] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
_A : Tuple = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(UpperCAmelCase__ )
_A : Union[str, Any] = -1
_A : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCAmelCase__ )
_A : int = model.generate(UpperCAmelCase__ , max_new_tokens=10 , do_sample=UpperCAmelCase__ )
_A : List[str] = greedy_ids[:, input_ids.shape[1] :]
_A : str = tokenizer.decode(new_greedy_ids[0] )
with CaptureStdout() as cs:
_A : Union[str, Any] = TextStreamer(UpperCAmelCase__ , skip_prompt=UpperCAmelCase__ )
model.generate(UpperCAmelCase__ , max_new_tokens=10 , do_sample=UpperCAmelCase__ , streamer=UpperCAmelCase__ )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
_A : Tuple = cs.out[:-1]
self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ )
def a__ ( self ) -> List[str]:
# Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested
# with actual models -- the dummy models' tokenizers are not aligned with their models, and
# `skip_special_tokens=True` has no effect on them
_A : Optional[Any] = AutoTokenizer.from_pretrained("""distilgpt2""" )
_A : List[str] = AutoModelForCausalLM.from_pretrained("""distilgpt2""" ).to(UpperCAmelCase__ )
_A : Optional[Any] = -1
_A : Dict = torch.ones((1, 5) , device=UpperCAmelCase__ ).long() * model.config.bos_token_id
with CaptureStdout() as cs:
_A : Tuple = TextStreamer(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ )
model.generate(UpperCAmelCase__ , max_new_tokens=1 , do_sample=UpperCAmelCase__ , streamer=UpperCAmelCase__ )
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
# re-tokenized, must only contain one token
_A : Tuple = cs.out[:-1] # Remove the final "\n"
_A : int = tokenizer(UpperCAmelCase__ , return_tensors="""pt""" )
self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) )
def a__ ( self ) -> List[str]:
_A : Optional[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
_A : Dict = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(UpperCAmelCase__ )
_A : Any = -1
_A : Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCAmelCase__ )
_A : Any = TextIteratorStreamer(UpperCAmelCase__ , timeout=0.001 )
_A : str = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer}
_A : Union[str, Any] = Thread(target=model.generate , kwargs=UpperCAmelCase__ )
thread.start()
# The streamer will timeout after 0.001 seconds, so an exception will be raised
with self.assertRaises(UpperCAmelCase__ ):
_A : int = """"""
for new_text in streamer:
streamer_text += new_text
| 26 |
"""simple docstring"""
from scipy.stats import spearmanr
import datasets
_a = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n'
_a = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n'
_a = r'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class _lowerCAmelCase ( datasets.Metric ):
"""simple docstring"""
def _lowercase ( self : Dict ):
return datasets.MetricInfo(
description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features(
{
"predictions": datasets.Value("float" ),
"references": datasets.Value("float" ),
} ), reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"], )
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int]=False ):
__lowercase = spearmanr(UpperCAmelCase__, UpperCAmelCase__ )
if return_pvalue:
return {"spearmanr": results[0], "spearmanr_pvalue": results[1]}
else:
return {"spearmanr": results[0]}
| 17 | 0 |
"""simple docstring"""
import argparse
import pytorch_lightning as pl
import torch
from torch import nn
from transformers import LongformerForQuestionAnswering, LongformerModel
class lowercase_ ( pl.LightningModule ):
'''simple docstring'''
def __init__( self : Optional[Any] , _UpperCAmelCase : str ):
super().__init__()
_A = model
_A = 2
_A = nn.Linear(self.model.config.hidden_size , self.num_labels )
def lowerCAmelCase_ ( self : Optional[int] ):
pass
def _snake_case ( _snake_case : str , _snake_case : str , _snake_case : str ) -> str:
'''simple docstring'''
_A = LongformerModel.from_pretrained(UpperCamelCase_ )
_A = LightningModel(UpperCamelCase_ )
_A = torch.load(UpperCamelCase_ , map_location=torch.device('cpu' ) )
lightning_model.load_state_dict(ckpt['state_dict'] )
# init longformer question answering model
_A = LongformerForQuestionAnswering.from_pretrained(UpperCamelCase_ )
# transfer weights
longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() )
longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() )
longformer_for_qa.eval()
# save model
longformer_for_qa.save_pretrained(UpperCamelCase_ )
print(F'''Conversion successful. Model saved under {pytorch_dump_folder_path}''' )
if __name__ == "__main__":
a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--longformer_model''',
default=None,
type=str,
required=True,
help='''model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.''',
)
parser.add_argument(
'''--longformer_question_answering_ckpt_path''',
default=None,
type=str,
required=True,
help='''Path the official PyTorch Lightning Checkpoint.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
a = parser.parse_args()
convert_longformer_qa_checkpoint_to_pytorch(
args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path
)
| 315 |
"""simple docstring"""
from collections.abc import Sequence
def _A ( UpperCamelCase_ : Sequence[float], UpperCamelCase_ : float) -> float:
'''simple docstring'''
return sum(c * (x**i) for i, c in enumerate(UpperCamelCase_))
def _A ( UpperCamelCase_ : Sequence[float], UpperCamelCase_ : float) -> float:
'''simple docstring'''
__lowercase = 0.0
for coeff in reversed(UpperCamelCase_):
__lowercase = result * x + coeff
return result
if __name__ == "__main__":
_a = (0.0, 0.0, 5.0, 9.3, 7.0)
_a = 10.0
print(evaluate_poly(poly, x))
print(horner(poly, x))
| 17 | 0 |
from sklearn.metrics import mean_squared_error
import datasets
lowercase__ : int = '''\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n'''
lowercase__ : Optional[int] = '''\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n'''
lowercase__ : Union[str, Any] = '''\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n "raw_values" : Returns a full set of errors in case of multioutput input.\n\n "uniform_average" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric("mse")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {\'mse\': 0.6123724356957945}\n\n If you\'re using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric("mse", "multilist")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mse\': array([0.41666667, 1. ])}\n'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowercase_ ( datasets.Metric ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[
'''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html'''
] , )
def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]:
if self.config_name == "multilist":
return {
"predictions": datasets.Sequence(datasets.Value('''float''' ) ),
"references": datasets.Sequence(datasets.Value('''float''' ) ),
}
else:
return {
"predictions": datasets.Value('''float''' ),
"references": datasets.Value('''float''' ),
}
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="uniform_average" , __SCREAMING_SNAKE_CASE=True ) ->Any:
lowerCAmelCase = mean_squared_error(
UpperCAmelCase__ , UpperCAmelCase__ , sample_weight=UpperCAmelCase__ , multioutput=UpperCAmelCase__ , squared=UpperCAmelCase__ )
return {"mse": mse}
| 338 |
"""simple docstring"""
import argparse
import pytorch_lightning as pl
import torch
from torch import nn
from transformers import LongformerForQuestionAnswering, LongformerModel
class _lowerCAmelCase ( pl.LightningModule ):
"""simple docstring"""
def __init__( self : Optional[Any], UpperCAmelCase__ : str ):
super().__init__()
__lowercase = model
__lowercase = 2
__lowercase = nn.Linear(self.model.config.hidden_size, self.num_labels )
def _lowercase ( self : Optional[int] ):
pass
def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str, UpperCamelCase_ : str) -> str:
'''simple docstring'''
__lowercase = LongformerModel.from_pretrained(UpperCamelCase_)
__lowercase = LightningModel(UpperCamelCase_)
__lowercase = torch.load(UpperCamelCase_, map_location=torch.device("cpu"))
lightning_model.load_state_dict(ckpt["state_dict"])
# init longformer question answering model
__lowercase = LongformerForQuestionAnswering.from_pretrained(UpperCamelCase_)
# transfer weights
longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict())
longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict())
longformer_for_qa.eval()
# save model
longformer_for_qa.save_pretrained(UpperCamelCase_)
print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""")
if __name__ == "__main__":
_a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--longformer_model',
default=None,
type=str,
required=True,
help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.',
)
parser.add_argument(
'--longformer_question_answering_ckpt_path',
default=None,
type=str,
required=True,
help='Path the official PyTorch Lightning Checkpoint.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
_a = parser.parse_args()
convert_longformer_qa_checkpoint_to_pytorch(
args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path
)
| 17 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
a__ : Union[str, Any] ={'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Union[str, Any] =['''PLBartTokenizer''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : str =[
'''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''PLBartForCausalLM''',
'''PLBartForConditionalGeneration''',
'''PLBartForSequenceClassification''',
'''PLBartModel''',
'''PLBartPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_plbart import PLBartTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_plbart import (
PLBART_PRETRAINED_MODEL_ARCHIVE_LIST,
PLBartForCausalLM,
PLBartForConditionalGeneration,
PLBartForSequenceClassification,
PLBartModel,
PLBartPreTrainedModel,
)
else:
import sys
a__ : Any =_LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 53 |
"""simple docstring"""
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("TEST_SAGEMAKER" ,"False" ) ) is not True ,reason="Skipping test because should only be run when releasing minor transformers version" ,)
@pytest.mark.usefixtures("sm_env" )
@parameterized_class(
[
{
"framework": "pytorch",
"script": "run_glue_model_parallelism.py",
"model_name_or_path": "roberta-large",
"instance_type": "ml.p3dn.24xlarge",
"results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2},
},
{
"framework": "pytorch",
"script": "run_glue.py",
"model_name_or_path": "roberta-large",
"instance_type": "ml.p3dn.24xlarge",
"results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2},
},
] )
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def _lowercase ( self : Optional[int] ):
if self.framework == "pytorch":
subprocess.run(
F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split(), encoding="utf-8", check=UpperCAmelCase__, )
assert hasattr(self, "env" )
def _lowercase ( self : str, UpperCAmelCase__ : List[Any] ):
# configuration for running training on smdistributed Model Parallel
__lowercase = {
"enabled": True,
"processes_per_host": 8,
}
__lowercase = {
"enabled": True,
"parameters": {
"microbatches": 4,
"placement_strategy": "spread",
"pipeline": "interleaved",
"optimize": "speed",
"partitions": 4,
"ddp": True,
},
}
__lowercase = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options}
__lowercase = "trainer" if self.script == "run_glue.py" else "smtrainer"
# creates estimator
return HuggingFace(
entry_point=self.script, source_dir=self.env.test_path, role=self.env.role, image_uri=self.env.image_uri, base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""", instance_count=UpperCAmelCase__, instance_type=self.instance_type, debugger_hook_config=UpperCAmelCase__, hyperparameters={
**self.env.hyperparameters,
"model_name_or_path": self.model_name_or_path,
"max_steps": 5_0_0,
}, metric_definitions=self.env.metric_definitions, distribution=UpperCAmelCase__, py_version="py36", )
def _lowercase ( self : Tuple, UpperCAmelCase__ : int ):
TrainingJobAnalytics(UpperCAmelCase__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" )
@parameterized.expand([(1,)] )
def _lowercase ( self : str, UpperCAmelCase__ : Union[str, Any] ):
# create estimator
__lowercase = self.create_estimator(UpperCAmelCase__ )
# run training
estimator.fit()
# result dataframe
__lowercase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
__lowercase = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] )
__lowercase = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
__lowercase = (
Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds", 9_9_9_9_9_9 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy )
assert all(t <= self.results["eval_loss"] for t in eval_loss )
# dump tests result into json file to share in PR
with open(F"""{estimator.latest_training_job.name}.json""", "w" ) as outfile:
json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss}, UpperCAmelCase__ )
| 17 | 0 |
from math import sqrt
def UpperCamelCase ( __lowerCamelCase : int ):
snake_case : List[Any] = 0
for i in range(1 , int(sqrt(UpperCamelCase_ ) + 1 ) ):
if n % i == 0 and i != sqrt(UpperCamelCase_ ):
total += i + n // i
elif i == sqrt(UpperCamelCase_ ):
total += i
return total - n
def UpperCamelCase ( __lowerCamelCase : int = 10000 ):
snake_case : List[str] = sum(
i
for i in range(1 , UpperCamelCase_ )
if sum_of_divisors(sum_of_divisors(UpperCamelCase_ ) ) == i and sum_of_divisors(UpperCamelCase_ ) != i )
return total
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 59 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor
from .base import PipelineTool
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
__UpperCAmelCase : Tuple = "openai/whisper-base"
__UpperCAmelCase : Union[str, Any] = (
"This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the "
"transcribed text."
)
__UpperCAmelCase : List[str] = "transcriber"
__UpperCAmelCase : Optional[Any] = WhisperProcessor
__UpperCAmelCase : str = WhisperForConditionalGeneration
__UpperCAmelCase : List[str] = ["audio"]
__UpperCAmelCase : Tuple = ["text"]
def _lowercase ( self : str, UpperCAmelCase__ : int ):
return self.pre_processor(UpperCAmelCase__, return_tensors="pt" ).input_features
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Any] ):
return self.model.generate(inputs=UpperCAmelCase__ )
def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[int] ):
return self.pre_processor.batch_decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ )[0]
| 17 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase : str = {
"""configuration_upernet""": ["""UperNetConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Union[str, Any] = [
"""UperNetForSemanticSegmentation""",
"""UperNetPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_upernet import UperNetConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel
else:
import sys
lowerCAmelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 13 |
"""simple docstring"""
import inspect
from typing import Optional, Union
import numpy as np
import PIL
import torch
from torch.nn import functional as F
from torchvision import transforms
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
DPMSolverMultistepScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.utils import (
PIL_INTERPOLATION,
randn_tensor,
)
def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str]) -> Optional[int]:
'''simple docstring'''
if isinstance(UpperCamelCase_, torch.Tensor):
return image
elif isinstance(UpperCamelCase_, PIL.Image.Image):
__lowercase = [image]
if isinstance(image[0], PIL.Image.Image):
__lowercase = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image]
__lowercase = np.concatenate(UpperCamelCase_, axis=0)
__lowercase = np.array(UpperCamelCase_).astype(np.floataa) / 255.0
__lowercase = image.transpose(0, 3, 1, 2)
__lowercase = 2.0 * image - 1.0
__lowercase = torch.from_numpy(UpperCamelCase_)
elif isinstance(image[0], torch.Tensor):
__lowercase = torch.cat(UpperCamelCase_, dim=0)
return image
def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : str, UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[Any]=0.9_995) -> int:
'''simple docstring'''
if not isinstance(UpperCamelCase_, np.ndarray):
__lowercase = True
__lowercase = va.device
__lowercase = va.cpu().numpy()
__lowercase = va.cpu().numpy()
__lowercase = np.sum(va * va / (np.linalg.norm(UpperCamelCase_) * np.linalg.norm(UpperCamelCase_)))
if np.abs(UpperCamelCase_) > DOT_THRESHOLD:
__lowercase = (1 - t) * va + t * va
else:
__lowercase = np.arccos(UpperCamelCase_)
__lowercase = np.sin(UpperCamelCase_)
__lowercase = theta_a * t
__lowercase = np.sin(UpperCamelCase_)
__lowercase = np.sin(theta_a - theta_t) / sin_theta_a
__lowercase = sin_theta_t / sin_theta_a
__lowercase = sa * va + sa * va
if inputs_are_torch:
__lowercase = torch.from_numpy(UpperCamelCase_).to(UpperCamelCase_)
return va
def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Union[str, Any]) -> int:
'''simple docstring'''
__lowercase = F.normalize(UpperCamelCase_, dim=-1)
__lowercase = F.normalize(UpperCamelCase_, dim=-1)
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)
def _A ( UpperCamelCase_ : Optional[int], UpperCamelCase_ : str) -> Optional[int]:
'''simple docstring'''
for param in model.parameters():
__lowercase = value
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
def __init__( self : Dict, UpperCAmelCase__ : AutoencoderKL, UpperCAmelCase__ : CLIPTextModel, UpperCAmelCase__ : CLIPModel, UpperCAmelCase__ : CLIPTokenizer, UpperCAmelCase__ : UNetaDConditionModel, UpperCAmelCase__ : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler], UpperCAmelCase__ : CLIPFeatureExtractor, UpperCAmelCase__ : Union[str, Any]=None, UpperCAmelCase__ : List[str]=None, UpperCAmelCase__ : Any=None, ):
super().__init__()
self.register_modules(
vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, clip_model=UpperCAmelCase__, tokenizer=UpperCAmelCase__, unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, feature_extractor=UpperCAmelCase__, coca_model=UpperCAmelCase__, coca_tokenizer=UpperCAmelCase__, coca_transform=UpperCAmelCase__, )
__lowercase = (
feature_extractor.size
if isinstance(feature_extractor.size, UpperCAmelCase__ )
else feature_extractor.size["shortest_edge"]
)
__lowercase = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std )
set_requires_grad(self.text_encoder, UpperCAmelCase__ )
set_requires_grad(self.clip_model, UpperCAmelCase__ )
def _lowercase ( self : Tuple, UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ):
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
__lowercase = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(UpperCAmelCase__ )
def _lowercase ( self : int ):
self.enable_attention_slicing(UpperCAmelCase__ )
def _lowercase ( self : str ):
set_requires_grad(self.vae, UpperCAmelCase__ )
def _lowercase ( self : Any ):
set_requires_grad(self.vae, UpperCAmelCase__ )
def _lowercase ( self : Union[str, Any] ):
set_requires_grad(self.unet, UpperCAmelCase__ )
def _lowercase ( self : Any ):
set_requires_grad(self.unet, UpperCAmelCase__ )
def _lowercase ( self : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : Optional[Any] ):
# get the original timestep using init_timestep
__lowercase = min(int(num_inference_steps * strength ), UpperCAmelCase__ )
__lowercase = max(num_inference_steps - init_timestep, 0 )
__lowercase = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def _lowercase ( self : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : int=None ):
if not isinstance(UpperCAmelCase__, torch.Tensor ):
raise ValueError(F"""`image` has to be of type `torch.Tensor` but is {type(UpperCAmelCase__ )}""" )
__lowercase = image.to(device=UpperCAmelCase__, dtype=UpperCAmelCase__ )
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
__lowercase = [
self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(UpperCAmelCase__ )
]
__lowercase = torch.cat(UpperCAmelCase__, dim=0 )
else:
__lowercase = self.vae.encode(UpperCAmelCase__ ).latent_dist.sample(UpperCAmelCase__ )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
__lowercase = 0.18_215 * init_latents
__lowercase = init_latents.repeat_interleave(UpperCAmelCase__, dim=0 )
__lowercase = randn_tensor(init_latents.shape, generator=UpperCAmelCase__, device=UpperCAmelCase__, dtype=UpperCAmelCase__ )
# get latents
__lowercase = self.scheduler.add_noise(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = init_latents
return latents
def _lowercase ( self : Optional[int], UpperCAmelCase__ : Dict ):
__lowercase = self.coca_transform(UpperCAmelCase__ ).unsqueeze(0 )
with torch.no_grad(), torch.cuda.amp.autocast():
__lowercase = self.coca_model.generate(transformed_image.to(device=self.device, dtype=self.coca_model.dtype ) )
__lowercase = self.coca_tokenizer.decode(generated[0].cpu().numpy() )
return generated.split("<end_of_text>" )[0].replace("<start_of_text>", "" ).rstrip(" .," )
def _lowercase ( self : Tuple, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Tuple ):
__lowercase = self.feature_extractor.preprocess(UpperCAmelCase__ )
__lowercase = torch.from_numpy(clip_image_input["pixel_values"][0] ).unsqueeze(0 ).to(self.device ).half()
__lowercase = self.clip_model.get_image_features(UpperCAmelCase__ )
__lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=UpperCAmelCase__ )
__lowercase = image_embeddings_clip.repeat_interleave(UpperCAmelCase__, dim=0 )
return image_embeddings_clip
@torch.enable_grad()
def _lowercase ( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[int], ):
__lowercase = latents.detach().requires_grad_()
__lowercase = self.scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ )
# predict the noise residual
__lowercase = self.unet(UpperCAmelCase__, UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__ ).sample
if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ):
__lowercase = self.scheduler.alphas_cumprod[timestep]
__lowercase = 1 - alpha_prod_t
# compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
__lowercase = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5
__lowercase = torch.sqrt(UpperCAmelCase__ )
__lowercase = pred_original_sample * (fac) + latents * (1 - fac)
elif isinstance(self.scheduler, UpperCAmelCase__ ):
__lowercase = self.scheduler.sigmas[index]
__lowercase = latents - sigma * noise_pred
else:
raise ValueError(F"""scheduler type {type(self.scheduler )} not supported""" )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
__lowercase = 1 / 0.18_215 * sample
__lowercase = self.vae.decode(UpperCAmelCase__ ).sample
__lowercase = (image / 2 + 0.5).clamp(0, 1 )
__lowercase = transforms.Resize(self.feature_extractor_size )(UpperCAmelCase__ )
__lowercase = self.normalize(UpperCAmelCase__ ).to(latents.dtype )
__lowercase = self.clip_model.get_image_features(UpperCAmelCase__ )
__lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=UpperCAmelCase__ )
__lowercase = spherical_dist_loss(UpperCAmelCase__, UpperCAmelCase__ ).mean() * clip_guidance_scale
__lowercase = -torch.autograd.grad(UpperCAmelCase__, UpperCAmelCase__ )[0]
if isinstance(self.scheduler, UpperCAmelCase__ ):
__lowercase = latents.detach() + grads * (sigma**2)
__lowercase = noise_pred_original
else:
__lowercase = noise_pred_original - torch.sqrt(UpperCAmelCase__ ) * grads
return noise_pred, latents
@torch.no_grad()
def __call__( self : str, UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image], UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image], UpperCAmelCase__ : Optional[str] = None, UpperCAmelCase__ : Optional[str] = None, UpperCAmelCase__ : Optional[int] = 5_1_2, UpperCAmelCase__ : Optional[int] = 5_1_2, UpperCAmelCase__ : float = 0.6, UpperCAmelCase__ : Optional[int] = 5_0, UpperCAmelCase__ : Optional[float] = 7.5, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[float] = 1_0_0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : float = 0.8, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, ):
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and len(UpperCAmelCase__ ) != batch_size:
raise ValueError(F"""You have passed {batch_size} batch_size, but only {len(UpperCAmelCase__ )} generators.""" )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" )
if isinstance(UpperCAmelCase__, torch.Generator ) and batch_size > 1:
__lowercase = [generator] + [None] * (batch_size - 1)
__lowercase = [
("model", self.coca_model is None),
("tokenizer", self.coca_tokenizer is None),
("transform", self.coca_transform is None),
]
__lowercase = [x[0] for x in coca_is_none if x[1]]
__lowercase = ", ".join(UpperCAmelCase__ )
# generate prompts with coca model if prompt is None
if content_prompt is None:
if len(UpperCAmelCase__ ):
raise ValueError(
F"""Content prompt is None and CoCa [{coca_is_none_str}] is None."""
F"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" )
__lowercase = self.get_image_description(UpperCAmelCase__ )
if style_prompt is None:
if len(UpperCAmelCase__ ):
raise ValueError(
F"""Style prompt is None and CoCa [{coca_is_none_str}] is None."""
F""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" )
__lowercase = self.get_image_description(UpperCAmelCase__ )
# get prompt text embeddings for content and style
__lowercase = self.tokenizer(
UpperCAmelCase__, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=UpperCAmelCase__, return_tensors="pt", )
__lowercase = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0]
__lowercase = self.tokenizer(
UpperCAmelCase__, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=UpperCAmelCase__, return_tensors="pt", )
__lowercase = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0]
__lowercase = slerp(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
# duplicate text embeddings for each generation per prompt
__lowercase = text_embeddings.repeat_interleave(UpperCAmelCase__, dim=0 )
# set timesteps
__lowercase = "offset" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() )
__lowercase = {}
if accepts_offset:
__lowercase = 1
self.scheduler.set_timesteps(UpperCAmelCase__, **UpperCAmelCase__ )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
self.scheduler.timesteps.to(self.device )
__lowercase ,__lowercase = self.get_timesteps(UpperCAmelCase__, UpperCAmelCase__, self.device )
__lowercase = timesteps[:1].repeat(UpperCAmelCase__ )
# Preprocess image
__lowercase = preprocess(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = self.prepare_latents(
UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, text_embeddings.dtype, self.device, UpperCAmelCase__ )
__lowercase = preprocess(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = self.prepare_latents(
UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, text_embeddings.dtype, self.device, UpperCAmelCase__ )
__lowercase = slerp(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
if clip_guidance_scale > 0:
__lowercase = self.get_clip_image_embeddings(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = self.get_clip_image_embeddings(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = slerp(
UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
__lowercase = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
__lowercase = content_text_input.input_ids.shape[-1]
__lowercase = self.tokenizer([""], padding="max_length", max_length=UpperCAmelCase__, return_tensors="pt" )
__lowercase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt
__lowercase = uncond_embeddings.repeat_interleave(UpperCAmelCase__, dim=0 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
__lowercase = torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
__lowercase = (batch_size, self.unet.config.in_channels, height // 8, width // 8)
__lowercase = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not work reproducibly on mps
__lowercase = torch.randn(UpperCAmelCase__, generator=UpperCAmelCase__, device="cpu", dtype=UpperCAmelCase__ ).to(
self.device )
else:
__lowercase = torch.randn(UpperCAmelCase__, generator=UpperCAmelCase__, device=self.device, dtype=UpperCAmelCase__ )
else:
if latents.shape != latents_shape:
raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" )
__lowercase = latents.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
__lowercase = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
__lowercase = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
__lowercase = {}
if accepts_eta:
__lowercase = eta
# check if the scheduler accepts generator
__lowercase = "generator" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
if accepts_generator:
__lowercase = generator
with self.progress_bar(total=UpperCAmelCase__ ):
for i, t in enumerate(UpperCAmelCase__ ):
# expand the latents if we are doing classifier free guidance
__lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
__lowercase = self.scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ )
# predict the noise residual
__lowercase = self.unet(UpperCAmelCase__, UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__ ).sample
# perform classifier free guidance
if do_classifier_free_guidance:
__lowercase ,__lowercase = noise_pred.chunk(2 )
__lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# perform clip guidance
if clip_guidance_scale > 0:
__lowercase = (
text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings
)
__lowercase ,__lowercase = self.cond_fn(
UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, )
# compute the previous noisy sample x_t -> x_t-1
__lowercase = self.scheduler.step(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, **UpperCAmelCase__ ).prev_sample
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
__lowercase = 1 / 0.18_215 * latents
__lowercase = self.vae.decode(UpperCAmelCase__ ).sample
__lowercase = (image / 2 + 0.5).clamp(0, 1 )
__lowercase = image.cpu().permute(0, 2, 3, 1 ).numpy()
if output_type == "pil":
__lowercase = self.numpy_to_pil(UpperCAmelCase__ )
if not return_dict:
return (image, None)
return StableDiffusionPipelineOutput(images=UpperCAmelCase__, nsfw_content_detected=UpperCAmelCase__ )
| 17 | 0 |
import time
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers.generation import (
MaxLengthCriteria,
MaxNewTokensCriteria,
MaxTimeCriteria,
StoppingCriteriaList,
validate_stopping_criteria,
)
@require_torch
class __A ( unittest.TestCase ):
"""simple docstring"""
def __lowercase ( self , lowerCamelCase__ ):
"""simple docstring"""
__UpperCamelCase : int =3
__UpperCamelCase : str =250
__UpperCamelCase : Dict =ids_tensor((batch_size, length) , UpperCAmelCase__ )
__UpperCamelCase : Tuple =torch.ones((batch_size, length) , device=UpperCAmelCase__ , dtype=torch.float ) / length
return input_ids, scores
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase , __UpperCamelCase : Optional[Any] =self._get_tensors(5 )
__UpperCamelCase : List[Any] =StoppingCriteriaList(
[
MaxLengthCriteria(max_length=10 ),
MaxTimeCriteria(max_time=0.1 ),
] )
self.assertFalse(criteria(UpperCAmelCase__ , UpperCAmelCase__ ) )
__UpperCamelCase , __UpperCamelCase : List[str] =self._get_tensors(9 )
self.assertFalse(criteria(UpperCAmelCase__ , UpperCAmelCase__ ) )
__UpperCamelCase , __UpperCamelCase : Dict =self._get_tensors(10 )
self.assertTrue(criteria(UpperCAmelCase__ , UpperCAmelCase__ ) )
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : int =MaxLengthCriteria(max_length=10 )
__UpperCamelCase , __UpperCamelCase : str =self._get_tensors(5 )
self.assertFalse(criteria(UpperCAmelCase__ , UpperCAmelCase__ ) )
__UpperCamelCase , __UpperCamelCase : Any =self._get_tensors(9 )
self.assertFalse(criteria(UpperCAmelCase__ , UpperCAmelCase__ ) )
__UpperCamelCase , __UpperCamelCase : Optional[int] =self._get_tensors(10 )
self.assertTrue(criteria(UpperCAmelCase__ , UpperCAmelCase__ ) )
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : Union[str, Any] =MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 )
__UpperCamelCase , __UpperCamelCase : Union[str, Any] =self._get_tensors(5 )
self.assertFalse(criteria(UpperCAmelCase__ , UpperCAmelCase__ ) )
__UpperCamelCase , __UpperCamelCase : Tuple =self._get_tensors(9 )
self.assertFalse(criteria(UpperCAmelCase__ , UpperCAmelCase__ ) )
__UpperCamelCase , __UpperCamelCase : List[str] =self._get_tensors(10 )
self.assertTrue(criteria(UpperCAmelCase__ , UpperCAmelCase__ ) )
__UpperCamelCase : Any =StoppingCriteriaList([criteria] )
self.assertEqual(criteria_list.max_length , 10 )
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase , __UpperCamelCase : Union[str, Any] =self._get_tensors(5 )
__UpperCamelCase : Tuple =MaxTimeCriteria(max_time=0.1 )
self.assertFalse(criteria(UpperCAmelCase__ , UpperCAmelCase__ ) )
__UpperCamelCase : Optional[Any] =MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 )
self.assertTrue(criteria(UpperCAmelCase__ , UpperCAmelCase__ ) )
def __lowercase ( self ):
"""simple docstring"""
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 )
with self.assertWarns(UpperCAmelCase__ ):
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 )
__UpperCamelCase : List[Any] =validate_stopping_criteria(StoppingCriteriaList() , 11 )
self.assertEqual(len(UpperCAmelCase__ ) , 1 )
| 71 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class _lowerCAmelCase :
"""simple docstring"""
__UpperCAmelCase : Tuple = XGLMConfig
__UpperCAmelCase : Optional[Any] = {}
__UpperCAmelCase : Union[str, Any] = "gelu"
def __init__( self : Optional[int], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int]=1_4, UpperCAmelCase__ : str=7, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[Any]=True, UpperCAmelCase__ : int=True, UpperCAmelCase__ : List[str]=9_9, UpperCAmelCase__ : Union[str, Any]=3_2, UpperCAmelCase__ : Union[str, Any]=2, UpperCAmelCase__ : Union[str, Any]=4, UpperCAmelCase__ : Tuple=3_7, UpperCAmelCase__ : List[Any]="gelu", UpperCAmelCase__ : List[str]=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Tuple=5_1_2, UpperCAmelCase__ : Optional[Any]=0.02, ):
__lowercase = parent
__lowercase = batch_size
__lowercase = seq_length
__lowercase = is_training
__lowercase = use_input_mask
__lowercase = use_labels
__lowercase = vocab_size
__lowercase = d_model
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = ffn_dim
__lowercase = activation_function
__lowercase = activation_dropout
__lowercase = attention_dropout
__lowercase = max_position_embeddings
__lowercase = initializer_range
__lowercase = None
__lowercase = 0
__lowercase = 2
__lowercase = 1
def _lowercase ( self : Union[str, Any] ):
return XGLMConfig.from_pretrained("facebook/xglm-564M" )
def _lowercase ( self : Tuple ):
__lowercase = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length], self.vocab_size ), clip_value_min=0, clip_value_max=3 )
__lowercase = None
if self.use_input_mask:
__lowercase = random_attention_mask([self.batch_size, self.seq_length] )
__lowercase = self.get_config()
__lowercase = floats_tensor([self.num_hidden_layers, self.num_attention_heads], 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def _lowercase ( self : List[Any] ):
return XGLMConfig(
vocab_size=self.vocab_size, d_model=self.hidden_size, num_layers=self.num_hidden_layers, attention_heads=self.num_attention_heads, ffn_dim=self.ffn_dim, activation_function=self.activation_function, activation_dropout=self.activation_dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, use_cache=UpperCAmelCase__, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, return_dict=UpperCAmelCase__, )
def _lowercase ( self : Dict ):
__lowercase = self.prepare_config_and_inputs()
(
(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,
) = config_and_inputs
__lowercase = {
"input_ids": input_ids,
"head_mask": head_mask,
}
return config, inputs_dict
@require_tf
class _lowerCAmelCase ( lowercase ,lowercase ,unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
__UpperCAmelCase : List[str] = (TFXGLMForCausalLM,) if is_tf_available() else ()
__UpperCAmelCase : Any = (
{"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {}
)
__UpperCAmelCase : Optional[Any] = False
__UpperCAmelCase : List[str] = False
__UpperCAmelCase : int = False
def _lowercase ( self : Optional[Any] ):
__lowercase = TFXGLMModelTester(self )
__lowercase = ConfigTester(self, config_class=UpperCAmelCase__, n_embd=3_7 )
def _lowercase ( self : Any ):
self.config_tester.run_common_tests()
@slow
def _lowercase ( self : List[str] ):
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowercase = TFXGLMModel.from_pretrained(UpperCAmelCase__ )
self.assertIsNotNone(UpperCAmelCase__ )
@unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." )
def _lowercase ( self : int ):
super().test_resize_token_embeddings()
@require_tf
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[int]=True ):
__lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
__lowercase = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]], dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
__lowercase = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1]
# fmt: on
__lowercase = model.generate(UpperCAmelCase__, do_sample=UpperCAmelCase__, num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist(), UpperCAmelCase__ )
@slow
def _lowercase ( self : List[Any] ):
__lowercase = XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
__lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
tf.random.set_seed(0 )
__lowercase = tokenizer("Today is a nice day and", return_tensors="tf" )
__lowercase = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(":/CPU:0" ):
__lowercase = model.generate(UpperCAmelCase__, do_sample=UpperCAmelCase__, seed=[7, 0] )
__lowercase = tokenizer.decode(output_ids[0], skip_special_tokens=UpperCAmelCase__ )
__lowercase = (
"Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due"
)
self.assertEqual(UpperCAmelCase__, UpperCAmelCase__ )
@slow
def _lowercase ( self : Dict ):
__lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
__lowercase = XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
__lowercase = "left"
# use different length sentences to test batching
__lowercase = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When",
"Hello, my dog is a little",
]
__lowercase = tokenizer(UpperCAmelCase__, return_tensors="tf", padding=UpperCAmelCase__ )
__lowercase = inputs["input_ids"]
__lowercase = model.generate(input_ids=UpperCAmelCase__, attention_mask=inputs["attention_mask"], max_new_tokens=1_2 )
__lowercase = tokenizer(sentences[0], return_tensors="tf" ).input_ids
__lowercase = model.generate(input_ids=UpperCAmelCase__, max_new_tokens=1_2 )
__lowercase = tokenizer(sentences[1], return_tensors="tf" ).input_ids
__lowercase = model.generate(input_ids=UpperCAmelCase__, max_new_tokens=1_2 )
__lowercase = tokenizer.batch_decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ )
__lowercase = tokenizer.decode(output_non_padded[0], skip_special_tokens=UpperCAmelCase__ )
__lowercase = tokenizer.decode(output_padded[0], skip_special_tokens=UpperCAmelCase__ )
__lowercase = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When left padding is applied, the sequence will be "
"a single",
"Hello, my dog is a little bit of a shy one, but he is very friendly",
]
self.assertListEqual(UpperCAmelCase__, UpperCAmelCase__ )
self.assertListEqual(UpperCAmelCase__, [non_padded_sentence, padded_sentence] )
| 17 | 0 |
'''simple docstring'''
from pathlib import Path
import fire
from tqdm import tqdm
def lowercase_ ( lowerCAmelCase__ : Optional[Any]="ro" , lowerCAmelCase__ : str="en" , lowerCAmelCase__ : Union[str, Any]="wmt16" , lowerCAmelCase__ : Tuple=None ):
"""simple docstring"""
try:
import datasets
except (ModuleNotFoundError, ImportError):
raise ImportError("""run pip install datasets""" )
__UpperCAmelCase : Optional[Any] = f'{src_lang}-{tgt_lang}'
print(f'Converting {dataset}-{pair}' )
__UpperCAmelCase : str = datasets.load_dataset(UpperCamelCase_ , UpperCamelCase_ )
if save_dir is None:
__UpperCAmelCase : Optional[int] = f'{dataset}-{pair}'
__UpperCAmelCase : Tuple = Path(UpperCamelCase_ )
save_dir.mkdir(exist_ok=UpperCamelCase_ )
for split in ds.keys():
print(f'Splitting {split} with {ds[split].num_rows} records' )
# to save to val.source, val.target like summary datasets
__UpperCAmelCase : Optional[Any] = """val""" if split == """validation""" else split
__UpperCAmelCase : int = save_dir.joinpath(f'{fn}.source' )
__UpperCAmelCase : List[Any] = save_dir.joinpath(f'{fn}.target' )
__UpperCAmelCase : Dict = src_path.open("""w+""" )
__UpperCAmelCase : Any = tgt_path.open("""w+""" )
# reader is the bottleneck so writing one record at a time doesn't slow things down
for x in tqdm(ds[split] ):
__UpperCAmelCase : Any = x["""translation"""]
src_fp.write(ex[src_lang] + """\n""" )
tgt_fp.write(ex[tgt_lang] + """\n""" )
print(f'Saved {dataset} dataset to {save_dir}' )
if __name__ == "__main__":
fire.Fire(download_wmt_dataset)
| 254 |
"""simple docstring"""
import time
from contextlib import contextmanager
from pathlib import Path
import pytest
import requests
from huggingface_hub.hf_api import HfApi, HfFolder
_a = '__DUMMY_TRANSFORMERS_USER__'
_a = 'Dummy User'
_a = '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'
_a = 'https://hub-ci.huggingface.co'
_a = CI_HUB_ENDPOINT + '/datasets/{repo_id}/resolve/{revision}/{path}'
_a = CI_HUB_ENDPOINT + '/{repo_id}/resolve/{revision}/{filename}'
_a = Path('~/.huggingface/hub_ci_token').expanduser()
@pytest.fixture
def _A ( UpperCamelCase_ : List[Any]) -> Tuple:
'''simple docstring'''
monkeypatch.setattr(
"huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE", UpperCamelCase_)
@pytest.fixture
def _A ( UpperCamelCase_ : int) -> List[Any]:
'''simple docstring'''
monkeypatch.setattr("datasets.config.HF_ENDPOINT", UpperCamelCase_)
monkeypatch.setattr("datasets.config.HUB_DATASETS_URL", UpperCamelCase_)
@pytest.fixture
def _A ( UpperCamelCase_ : str) -> Dict:
'''simple docstring'''
monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token", UpperCamelCase_)
@pytest.fixture
def _A ( UpperCamelCase_ : Optional[Any], UpperCamelCase_ : List[Any]) -> List[str]:
'''simple docstring'''
HfFolder.save_token(UpperCamelCase_)
yield
HfFolder.delete_token()
@pytest.fixture(scope="session")
def _A ( ) -> List[Any]:
'''simple docstring'''
return HfApi(endpoint=UpperCamelCase_)
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : HfApi) -> List[Any]:
'''simple docstring'''
__lowercase = HfFolder.get_token()
HfFolder.save_token(UpperCamelCase_)
yield CI_HUB_USER_TOKEN
if previous_token is not None:
HfFolder.save_token(UpperCamelCase_)
@pytest.fixture
def _A ( UpperCamelCase_ : Dict) -> int:
'''simple docstring'''
def _cleanup_repo(UpperCamelCase_ : Optional[int]):
hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset")
return _cleanup_repo
@pytest.fixture
def _A ( UpperCamelCase_ : str) -> Any:
'''simple docstring'''
@contextmanager
def _temporary_repo(UpperCamelCase_ : Any):
try:
yield repo_id
finally:
cleanup_repo(UpperCamelCase_)
return _temporary_repo
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : str, UpperCamelCase_ : Optional[int]) -> List[Any]:
'''simple docstring'''
__lowercase = F"""repo_txt_data-{int(time.time() * 10E3)}"""
__lowercase = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_)
hf_api.upload_file(
token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data/text_data.txt", repo_id=UpperCamelCase_, repo_type="dataset", )
yield repo_id
try:
hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset")
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : Any, UpperCamelCase_ : Dict) -> Optional[int]:
'''simple docstring'''
return hf_private_dataset_repo_txt_data_
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : int, UpperCamelCase_ : Optional[int]) -> int:
'''simple docstring'''
__lowercase = F"""repo_zipped_txt_data-{int(time.time() * 10E3)}"""
__lowercase = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_)
hf_api.upload_file(
token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data.zip", repo_id=UpperCamelCase_, repo_type="dataset", )
yield repo_id
try:
hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset")
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Dict, UpperCamelCase_ : Any) -> int:
'''simple docstring'''
return hf_private_dataset_repo_zipped_txt_data_
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : List[str], UpperCamelCase_ : List[str]) -> List[Any]:
'''simple docstring'''
__lowercase = F"""repo_zipped_img_data-{int(time.time() * 10E3)}"""
__lowercase = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_)
hf_api.upload_file(
token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data.zip", repo_id=UpperCamelCase_, repo_type="dataset", )
yield repo_id
try:
hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset")
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str], UpperCamelCase_ : List[str]) -> str:
'''simple docstring'''
return hf_private_dataset_repo_zipped_img_data_
| 17 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a : List[str] = logging.get_logger(__name__)
a : Dict = {
"""vinvino02/glpn-kitti""": """https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json""",
# See all GLPN models at https://huggingface.co/models?filter=glpn
}
class UpperCamelCase_ ( __magic_name__ ):
lowercase = "glpn"
def __init__( self , A=3 , A=4 , A=[2, 2, 2, 2] , A=[8, 4, 2, 1] , A=[32, 64, 160, 256] , A=[7, 3, 3, 3] , A=[4, 2, 2, 2] , A=[1, 2, 5, 8] , A=[4, 4, 4, 4] , A="gelu" , A=0.0 , A=0.0 , A=0.0_2 , A=0.1 , A=1e-6 , A=64 , A=10 , A=-1 , **A , ) -> Optional[Any]:
super().__init__(**UpperCAmelCase__ )
UpperCAmelCase : Dict = num_channels
UpperCAmelCase : Optional[Any] = num_encoder_blocks
UpperCAmelCase : List[Any] = depths
UpperCAmelCase : List[str] = sr_ratios
UpperCAmelCase : Any = hidden_sizes
UpperCAmelCase : List[Any] = patch_sizes
UpperCAmelCase : Dict = strides
UpperCAmelCase : Tuple = mlp_ratios
UpperCAmelCase : List[Any] = num_attention_heads
UpperCAmelCase : Optional[int] = hidden_act
UpperCAmelCase : Optional[Any] = hidden_dropout_prob
UpperCAmelCase : str = attention_probs_dropout_prob
UpperCAmelCase : Union[str, Any] = initializer_range
UpperCAmelCase : Optional[int] = drop_path_rate
UpperCAmelCase : str = layer_norm_eps
UpperCAmelCase : Union[str, Any] = decoder_hidden_size
UpperCAmelCase : Any = max_depth
UpperCAmelCase : str = head_in_index
| 265 |
"""simple docstring"""
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_a = logging.get_logger(__name__)
_a = {
'huggingface/time-series-transformer-tourism-monthly': (
'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json'
),
# See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer
}
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
__UpperCAmelCase : int = "time_series_transformer"
__UpperCAmelCase : Any = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
"num_hidden_layers": "encoder_layers",
}
def __init__( self : int, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : str = "student_t", UpperCAmelCase__ : str = "nll", UpperCAmelCase__ : int = 1, UpperCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7], UpperCAmelCase__ : Optional[Union[str, bool]] = "mean", UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : int = 3_2, UpperCAmelCase__ : int = 3_2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : str = "gelu", UpperCAmelCase__ : int = 6_4, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : int = 1_0_0, UpperCAmelCase__ : float = 0.02, UpperCAmelCase__ : Any=True, **UpperCAmelCase__ : List[str], ):
# time series specific configuration
__lowercase = prediction_length
__lowercase = context_length or prediction_length
__lowercase = distribution_output
__lowercase = loss
__lowercase = input_size
__lowercase = num_time_features
__lowercase = lags_sequence
__lowercase = scaling
__lowercase = num_dynamic_real_features
__lowercase = num_static_real_features
__lowercase = num_static_categorical_features
if cardinality and num_static_categorical_features > 0:
if len(UpperCAmelCase__ ) != num_static_categorical_features:
raise ValueError(
"The cardinality should be a list of the same length as `num_static_categorical_features`" )
__lowercase = cardinality
else:
__lowercase = [0]
if embedding_dimension and num_static_categorical_features > 0:
if len(UpperCAmelCase__ ) != num_static_categorical_features:
raise ValueError(
"The embedding dimension should be a list of the same length as `num_static_categorical_features`" )
__lowercase = embedding_dimension
else:
__lowercase = [min(5_0, (cat + 1) // 2 ) for cat in self.cardinality]
__lowercase = num_parallel_samples
# Transformer architecture configuration
__lowercase = input_size * len(UpperCAmelCase__ ) + self._number_of_features
__lowercase = d_model
__lowercase = encoder_attention_heads
__lowercase = decoder_attention_heads
__lowercase = encoder_ffn_dim
__lowercase = decoder_ffn_dim
__lowercase = encoder_layers
__lowercase = decoder_layers
__lowercase = dropout
__lowercase = attention_dropout
__lowercase = activation_dropout
__lowercase = encoder_layerdrop
__lowercase = decoder_layerdrop
__lowercase = activation_function
__lowercase = init_std
__lowercase = use_cache
super().__init__(is_encoder_decoder=UpperCAmelCase__, **UpperCAmelCase__ )
@property
def _lowercase ( self : Optional[Any] ):
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 17 | 0 |
"""simple docstring"""
def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ):
"""simple docstring"""
if not isinstance(UpperCamelCase_ , UpperCamelCase_ ):
raise ValueError('iterations must be defined as integers' )
if not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or not number >= 1:
raise ValueError(
'starting number must be\n and integer and be more than 0' )
if not iterations >= 1:
raise ValueError('Iterations must be done more than 0 times to play FizzBuzz' )
A__ = ''
while number <= iterations:
if number % 3 == 0:
out += "Fizz"
if number % 5 == 0:
out += "Buzz"
if 0 not in (number % 3, number % 5):
out += str(UpperCamelCase_ )
# print(out)
number += 1
out += " "
return out
if __name__ == "__main__":
import doctest
doctest.testmod()
| 221 |
"""simple docstring"""
import unittest
from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available
from transformers.pipelines import pipeline
from transformers.pipelines.document_question_answering import apply_tesseract
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_detectrona,
require_pytesseract,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
from transformers.image_utils import load_image
else:
class _lowerCAmelCase :
"""simple docstring"""
@staticmethod
def _lowercase ( *UpperCAmelCase__ : Tuple, **UpperCAmelCase__ : List[Any] ):
pass
def _A ( UpperCamelCase_ : Union[str, Any]) -> Any:
'''simple docstring'''
return None
# This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace,
# so we can expect it to be available.
_a = (
'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png'
)
@is_pipeline_test
@require_torch
@require_vision
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : Tuple = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING
@require_pytesseract
@require_vision
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Optional[Any] ):
__lowercase = pipeline(
"document-question-answering", model=UpperCAmelCase__, tokenizer=UpperCAmelCase__, image_processor=UpperCAmelCase__ )
__lowercase = INVOICE_URL
__lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) )
__lowercase = "What is the placebo?"
__lowercase = [
{
"image": load_image(UpperCAmelCase__ ),
"question": question,
},
{
"image": image,
"question": question,
},
{
"image": image,
"question": question,
"word_boxes": word_boxes,
},
]
return dqa_pipeline, examples
def _lowercase ( self : int, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Any ):
__lowercase = dqa_pipeline(UpperCAmelCase__, top_k=2 )
self.assertEqual(
UpperCAmelCase__, [
[
{"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ ), "start": ANY(UpperCAmelCase__ ), "end": ANY(UpperCAmelCase__ )},
{"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ ), "start": ANY(UpperCAmelCase__ ), "end": ANY(UpperCAmelCase__ )},
]
]
* 3, )
@require_torch
@require_detectrona
@require_pytesseract
def _lowercase ( self : Dict ):
__lowercase = pipeline("document-question-answering", model="hf-internal-testing/tiny-random-layoutlmv2" )
__lowercase = INVOICE_URL
__lowercase = "How many cats are there?"
__lowercase = [
{"score": 0.0_001, "answer": "oy 2312/2019", "start": 3_8, "end": 3_9},
{"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 3_8, "end": 4_0},
]
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), UpperCAmelCase__ )
__lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), UpperCAmelCase__ )
# This image does not detect ANY text in it, meaning layoutlmv2 should fail.
# Empty answer probably
__lowercase = "./tests/fixtures/tests_samples/COCO/000000039769.png"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(UpperCAmelCase__, [] )
# We can optionnally pass directly the words and bounding boxes
__lowercase = "./tests/fixtures/tests_samples/COCO/000000039769.png"
__lowercase = []
__lowercase = []
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, words=UpperCAmelCase__, boxes=UpperCAmelCase__, top_k=2 )
self.assertEqual(UpperCAmelCase__, [] )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def _lowercase ( self : List[str] ):
__lowercase = pipeline(
"document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
[
{"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6},
],
]
* 2, )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def _lowercase ( self : Dict ):
__lowercase = pipeline(
"document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", max_seq_len=5_0, )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3},
{"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3},
{"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
[
{"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3},
{"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6},
]
]
* 2, )
@slow
@require_torch
@require_pytesseract
@require_vision
def _lowercase ( self : Optional[Any] ):
__lowercase = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=UpperCAmelCase__ )
__lowercase = pipeline(
"document-question-answering", model="impira/layoutlm-document-qa", tokenizer=UpperCAmelCase__, revision="3dc6de3", )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3},
], )
__lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3},
], )
__lowercase = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
[
{"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3},
]
]
* 2, )
__lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) )
# This model should also work if `image` is set to None
__lowercase = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3},
], )
@slow
@require_torch
@require_pytesseract
@require_vision
def _lowercase ( self : Union[str, Any] ):
__lowercase = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=UpperCAmelCase__ )
__lowercase = pipeline(
"document-question-answering", model="impira/layoutlm-document-qa", tokenizer=UpperCAmelCase__, revision="3dc6de3", max_seq_len=5_0, )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
[
{"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6},
]
]
* 2, )
__lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) )
# This model should also work if `image` is set to None
__lowercase = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
@slow
@require_torch
def _lowercase ( self : Dict ):
__lowercase = pipeline(
"document-question-answering", model="naver-clova-ix/donut-base-finetuned-docvqa", tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ), feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa", )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), [{"answer": "us-001"}] )
@require_tf
@unittest.skip("Document question answering not implemented in TF" )
def _lowercase ( self : List[Any] ):
pass
| 17 | 0 |
import logging
import os
from logging import (
CRITICAL, # NOQA
DEBUG, # NOQA
ERROR, # NOQA
FATAL, # NOQA
INFO, # NOQA
NOTSET, # NOQA
WARN, # NOQA
WARNING, # NOQA
)
from typing import Optional
from tqdm import auto as tqdm_lib
_UpperCamelCase = {
'''debug''': logging.DEBUG,
'''info''': logging.INFO,
'''warning''': logging.WARNING,
'''error''': logging.ERROR,
'''critical''': logging.CRITICAL,
}
_UpperCamelCase = logging.WARNING
def lowerCAmelCase__( ) -> int:
__snake_case : Dict = os.getenv("DATASETS_VERBOSITY" , UpperCamelCase_ )
if env_level_str:
if env_level_str in log_levels:
return log_levels[env_level_str]
else:
logging.getLogger().warning(
f"""Unknown option DATASETS_VERBOSITY={env_level_str}, """
f"""has to be one of: { ", ".join(log_levels.keys() ) }""" )
return _default_log_level
def lowerCAmelCase__( ) -> str:
return __name__.split("." )[0]
def lowerCAmelCase__( ) -> logging.Logger:
return logging.getLogger(_get_library_name() )
def lowerCAmelCase__( ) -> None:
__snake_case : int = _get_library_root_logger()
library_root_logger.setLevel(_get_default_logging_level() )
def lowerCAmelCase__( ) -> None:
__snake_case : str = _get_library_root_logger()
library_root_logger.setLevel(logging.NOTSET )
def lowerCAmelCase__( lowercase : Optional[str] = None ) -> logging.Logger:
if name is None:
__snake_case : Any = _get_library_name()
return logging.getLogger(UpperCamelCase_ )
def lowerCAmelCase__( ) -> int:
return _get_library_root_logger().getEffectiveLevel()
def lowerCAmelCase__( lowercase : int ) -> None:
_get_library_root_logger().setLevel(UpperCamelCase_ )
def lowerCAmelCase__( ) -> Any:
return set_verbosity(UpperCamelCase_ )
def lowerCAmelCase__( ) -> Optional[int]:
return set_verbosity(UpperCamelCase_ )
def lowerCAmelCase__( ) -> Optional[Any]:
return set_verbosity(UpperCamelCase_ )
def lowerCAmelCase__( ) -> str:
return set_verbosity(UpperCamelCase_ )
def lowerCAmelCase__( ) -> None:
__snake_case : List[str] = False
def lowerCAmelCase__( ) -> None:
__snake_case : Dict = True
# Configure the library root logger at the module level (singleton-like)
_configure_library_root_logger()
class _lowerCamelCase :
"""simple docstring"""
def __init__( self , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: # pylint: disable=unused-argument
'''simple docstring'''
__snake_case : List[Any] = args[0] if args else None
def __iter__( self ) -> int:
'''simple docstring'''
return iter(self._iterator )
def __getattr__( self , UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
def empty_fn(*UpperCAmelCase , **UpperCAmelCase ): # pylint: disable=unused-argument
return
return empty_fn
def __enter__( self ) -> Tuple:
'''simple docstring'''
return self
def __exit__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Tuple:
'''simple docstring'''
return
_UpperCamelCase = True
class _lowerCamelCase :
"""simple docstring"""
def __call__( self , *UpperCAmelCase , UpperCAmelCase=False , **UpperCAmelCase ) -> int:
'''simple docstring'''
if _tqdm_active and not disable:
return tqdm_lib.tqdm(*UpperCAmelCase__ , **UpperCAmelCase__ )
else:
return EmptyTqdm(*UpperCAmelCase__ , **UpperCAmelCase__ )
def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Any:
'''simple docstring'''
__snake_case : Any = None
if _tqdm_active:
return tqdm_lib.tqdm.set_lock(*UpperCAmelCase__ , **UpperCAmelCase__ )
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
if _tqdm_active:
return tqdm_lib.tqdm.get_lock()
_UpperCamelCase = _tqdm_cls()
def lowerCAmelCase__( ) -> bool:
global _tqdm_active
return bool(_tqdm_active )
def lowerCAmelCase__( ) -> Optional[int]:
global _tqdm_active
__snake_case : List[str] = True
def lowerCAmelCase__( ) -> List[Any]:
global _tqdm_active
__snake_case : str = False
| 326 |
"""simple docstring"""
import argparse
import json
import os
import re
import shutil
import torch
from transformers import BioGptConfig, BioGptForCausalLM
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
from transformers.utils import WEIGHTS_NAME, logging
logging.set_verbosity_warning()
_a = 2
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Dict, *, # begin keyword-only arguments
UpperCAmelCase__ : str="<s>", UpperCAmelCase__ : Tuple="<pad>", UpperCAmelCase__ : str="</s>", UpperCAmelCase__ : Optional[Any]="<unk>", UpperCAmelCase__ : List[Any]=None, ):
__lowercase ,__lowercase ,__lowercase ,__lowercase = bos, unk, pad, eos
__lowercase = []
__lowercase = []
__lowercase = {}
__lowercase = self.add_symbol(UpperCAmelCase__ )
__lowercase = self.add_symbol(UpperCAmelCase__ )
__lowercase = self.add_symbol(UpperCAmelCase__ )
__lowercase = self.add_symbol(UpperCAmelCase__ )
if extra_special_symbols:
for s in extra_special_symbols:
self.add_symbol(UpperCAmelCase__ )
__lowercase = len(self.symbols )
def __eq__( self : List[str], UpperCAmelCase__ : Dict ):
return self.indices == other.indices
def __getitem__( self : Optional[int], UpperCAmelCase__ : List[str] ):
if idx < len(self.symbols ):
return self.symbols[idx]
return self.unk_word
def __len__( self : str ):
return len(self.symbols )
def __contains__( self : Any, UpperCAmelCase__ : Optional[Any] ):
return sym in self.indices
@classmethod
def _lowercase ( cls : List[Any], UpperCAmelCase__ : Optional[Any] ):
__lowercase = cls()
d.add_from_file(UpperCAmelCase__ )
return d
def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[Any]=1, UpperCAmelCase__ : str=False ):
if word in self.indices and not overwrite:
__lowercase = self.indices[word]
__lowercase = self.count[idx] + n
return idx
else:
__lowercase = len(self.symbols )
__lowercase = idx
self.symbols.append(UpperCAmelCase__ )
self.count.append(UpperCAmelCase__ )
return idx
def _lowercase ( self : Any, UpperCAmelCase__ : str ):
return 0
def _lowercase ( self : Tuple, UpperCAmelCase__ : List[Any] ):
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
try:
with open(UpperCAmelCase__, "r", encoding="utf-8" ) as fd:
self.add_from_file(UpperCAmelCase__ )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception("Incorrect encoding detected in {}, please rebuild the dataset".format(UpperCAmelCase__ ) )
return
__lowercase = f.readlines()
__lowercase = self._load_meta(UpperCAmelCase__ )
for line in lines[indices_start_line:]:
try:
__lowercase ,__lowercase = line.rstrip().rsplit(" ", 1 )
if field == "#fairseq:overwrite":
__lowercase = True
__lowercase ,__lowercase = line.rsplit(" ", 1 )
else:
__lowercase = False
__lowercase = int(UpperCAmelCase__ )
__lowercase = line
if word in self and not overwrite:
raise RuntimeError(
"Duplicate word found when loading Dictionary: '{}'. "
"Duplicate words can overwrite earlier ones by adding the "
"#fairseq:overwrite flag at the end of the corresponding row "
"in the dictionary file. If using the Camembert model, please "
"download an updated copy of the model file.".format(UpperCAmelCase__ ) )
self.add_symbol(UpperCAmelCase__, n=UpperCAmelCase__, overwrite=UpperCAmelCase__ )
except ValueError:
raise ValueError("Incorrect dictionary format, expected '<token> <cnt> [flags]'" )
def _A ( UpperCamelCase_ : int) -> str:
'''simple docstring'''
__lowercase = dict((re.sub(r"@@$", "", UpperCamelCase_), v) if k.endswith("@@") else (re.sub(r"$", "</w>", UpperCamelCase_), v) for k, v in d.items())
__lowercase = "<s> <pad> </s> <unk>".split()
# restore the special tokens
for k in keep_keys:
del da[F"""{k}</w>"""]
__lowercase = d[k] # restore
return da
def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str) -> List[Any]:
'''simple docstring'''
if not os.path.exists(UpperCamelCase_):
raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""")
os.makedirs(UpperCamelCase_, exist_ok=UpperCamelCase_)
print(F"""Writing results to {pytorch_dump_folder_path}""")
# handle various types of models
__lowercase = os.path.join(UpperCamelCase_, "checkpoint.pt")
if not os.path.isfile(UpperCamelCase_):
raise ValueError(F"""path to the file {checkpoint_file} does not exist!""")
__lowercase = torch.load(UpperCamelCase_, map_location="cpu")
__lowercase = chkpt["cfg"]["model"]
# dicts
__lowercase = os.path.join(UpperCamelCase_, "dict.txt")
if not os.path.isfile(UpperCamelCase_):
raise ValueError(F"""path to the file {dict_file} does not exist!""")
__lowercase = Dictionary.load(UpperCamelCase_)
__lowercase = rewrite_dict_keys(src_dict.indices)
__lowercase = len(UpperCamelCase_)
__lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["vocab_file"])
print(F"""Generating {src_vocab_file} of {src_vocab_size} records""")
with open(UpperCamelCase_, "w", encoding="utf-8") as f:
f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_))
# merges_file (bpecodes)
__lowercase = os.path.join(UpperCamelCase_, "bpecodes")
if not os.path.isfile(UpperCamelCase_):
raise ValueError(F"""path to the file {bpecodes_file} does not exist!""")
__lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["merges_file"])
shutil.copyfile(UpperCamelCase_, UpperCamelCase_)
# model config
__lowercase = os.path.join(UpperCamelCase_, "config.json")
__lowercase = {
"activation_dropout": args["activation_dropout"],
"architectures": ["BioGptForCausalLM"],
"attention_probs_dropout_prob": args["attention_dropout"],
"bos_token_id": 0,
"eos_token_id": 2,
"hidden_act": args["activation_fn"],
"hidden_dropout_prob": args["dropout"],
"hidden_size": args["decoder_embed_dim"],
"initializer_range": 0.02,
"intermediate_size": args["decoder_ffn_embed_dim"],
"layer_norm_eps": 1E-12,
"layerdrop": args["decoder_layerdrop"],
"max_position_embeddings": args["max_target_positions"],
"model_type": "biogpt",
"num_attention_heads": args["decoder_attention_heads"],
"num_hidden_layers": args["decoder_layers"],
"pad_token_id": 1,
"scale_embedding": not args["no_scale_embedding"],
"tie_word_embeddings": args["share_decoder_input_output_embed"],
"vocab_size": src_vocab_size,
}
# good hparam defaults to start with
print(F"""Generating {biogpt_model_config_file}""")
with open(UpperCamelCase_, "w", encoding="utf-8") as f:
f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_))
# tokenizer config
__lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_)
__lowercase = {
"bos_token": "<s>",
"eos_token": "</s>",
"model_max_length": 1024,
"pad_token": "<pad>",
"special_tokens_map_file": None,
"tokenizer_class": "BioGptTokenizer",
"unk_token": "<unk>",
}
print(F"""Generating {biogpt_tokenizer_config_file}""")
with open(UpperCamelCase_, "w", encoding="utf-8") as f:
f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_))
# model
__lowercase = chkpt["model"]
# remove unneeded keys
__lowercase = [
"decoder.version",
]
for k in ignore_keys:
model_state_dict.pop(UpperCamelCase_, UpperCamelCase_)
__lowercase = list(model_state_dict.keys())
for layer_name in layer_names:
if layer_name.endswith("output_projection.weight"):
__lowercase = model_state_dict.pop(UpperCamelCase_)
else:
__lowercase = model_state_dict.pop(UpperCamelCase_)
__lowercase = BioGptConfig.from_pretrained(UpperCamelCase_)
__lowercase = BioGptForCausalLM(UpperCamelCase_)
# check that it loads ok
model_new.load_state_dict(UpperCamelCase_)
# save
__lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_)
print(F"""Generating {pytorch_weights_dump_path}""")
torch.save(UpperCamelCase_, UpperCamelCase_)
print("Conversion is done!")
if __name__ == "__main__":
_a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--biogpt_checkpoint_path',
default=None,
type=str,
required=True,
help=(
'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,'
' bpecodes, etc.'
),
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
_a = parser.parse_args()
convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
| 17 | 0 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_big_bird import BigBirdTokenizer
else:
_snake_case = None
_snake_case = logging.get_logger(__name__)
_snake_case = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
_snake_case = {
"vocab_file": {
"google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model",
"google/bigbird-roberta-large": (
"https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model"
),
"google/bigbird-base-trivia-itc": (
"https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model"
),
},
"tokenizer_file": {
"google/bigbird-roberta-base": (
"https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json"
),
"google/bigbird-roberta-large": (
"https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json"
),
"google/bigbird-base-trivia-itc": (
"https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json"
),
},
}
_snake_case = {
"google/bigbird-roberta-base": 4096,
"google/bigbird-roberta-large": 4096,
"google/bigbird-base-trivia-itc": 4096,
}
_snake_case = "▁"
class lowercase ( UpperCamelCase__ ):
_a = VOCAB_FILES_NAMES
_a = PRETRAINED_VOCAB_FILES_MAP
_a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_a = BigBirdTokenizer
_a = ["input_ids", "attention_mask"]
_a = []
def __init__( self , _a=None , _a=None , _a="<unk>" , _a="<s>" , _a="</s>" , _a="<pad>" , _a="[SEP]" , _a="[MASK]" , _a="[CLS]" , **_a , ) -> List[str]:
_A : Tuple = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else bos_token
_A : List[str] = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else eos_token
_A : Tuple = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else unk_token
_A : Union[str, Any] = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else pad_token
_A : int = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else cls_token
_A : Optional[Any] = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
_A : str = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else mask_token
super().__init__(
UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , **UpperCAmelCase__ , )
_A : Tuple = vocab_file
_A : Optional[Any] = False if not self.vocab_file else True
def a__ ( self , _a , _a = None ) -> Any:
_A : List[str] = [self.sep_token_id]
_A : List[str] = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def a__ ( self , _a , _a = None , _a = False ) -> str:
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
"""You should not supply a second sequence if the provided sequence of """
"""ids is already formatted with special tokens for the model.""" )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is None:
return [1] + ([0] * len(UpperCAmelCase__ )) + [1]
return [1] + ([0] * len(UpperCAmelCase__ )) + [1] + ([0] * len(UpperCAmelCase__ )) + [1]
def a__ ( self , _a , _a = None ) -> Any:
_A : Tuple = [self.sep_token_id]
_A : int = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def a__ ( self , _a , _a = None ) -> Optional[Any]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(UpperCAmelCase__ ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
_A : int = os.path.join(
UpperCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ):
copyfile(self.vocab_file , UpperCAmelCase__ )
return (out_vocab_file,)
| 26 |
"""simple docstring"""
from __future__ import annotations
from typing import Any
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Any, UpperCAmelCase__ : int ):
__lowercase = num_of_nodes
__lowercase = []
__lowercase = {}
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : int, UpperCAmelCase__ : int ):
self.m_edges.append([u_node, v_node, weight] )
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : int ):
if self.m_component[u_node] == u_node:
return u_node
return self.find_component(self.m_component[u_node] )
def _lowercase ( self : List[Any], UpperCAmelCase__ : int ):
if self.m_component[u_node] != u_node:
for k in self.m_component:
__lowercase = self.find_component(UpperCAmelCase__ )
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : list[int], UpperCAmelCase__ : int, UpperCAmelCase__ : int ):
if component_size[u_node] <= component_size[v_node]:
__lowercase = v_node
component_size[v_node] += component_size[u_node]
self.set_component(UpperCAmelCase__ )
elif component_size[u_node] >= component_size[v_node]:
__lowercase = self.find_component(UpperCAmelCase__ )
component_size[u_node] += component_size[v_node]
self.set_component(UpperCAmelCase__ )
def _lowercase ( self : Any ):
__lowercase = []
__lowercase = 0
__lowercase = [-1] * self.m_num_of_nodes
# A list of components (initialized to all of the nodes)
for node in range(self.m_num_of_nodes ):
self.m_component.update({node: node} )
component_size.append(1 )
__lowercase = self.m_num_of_nodes
while num_of_components > 1:
for edge in self.m_edges:
__lowercase ,__lowercase ,__lowercase = edge
__lowercase = self.m_component[u]
__lowercase = self.m_component[v]
if u_component != v_component:
for component in (u_component, v_component):
if (
minimum_weight_edge[component] == -1
or minimum_weight_edge[component][2] > w
):
__lowercase = [u, v, w]
for edge in minimum_weight_edge:
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
__lowercase ,__lowercase ,__lowercase = edge
__lowercase = self.m_component[u]
__lowercase = self.m_component[v]
if u_component != v_component:
mst_weight += w
self.union(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" )
num_of_components -= 1
__lowercase = [-1] * self.m_num_of_nodes
print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" )
def _A ( ) -> None:
'''simple docstring'''
if __name__ == "__main__":
import doctest
doctest.testmod()
| 17 | 0 |
"""simple docstring"""
from __future__ import annotations
from itertools import permutations
from random import randint
from timeit import repeat
def _snake_case ( ) -> tuple[list[int], int]:
'''simple docstring'''
_A = [randint(-10_00 , 10_00 ) for i in range(10 )]
_A = randint(-50_00 , 50_00 )
return (arr, r)
a = make_dataset()
def _snake_case ( _snake_case : list[int] , _snake_case : int ) -> tuple[int, ...]:
'''simple docstring'''
for triplet in permutations(UpperCamelCase_ , 3 ):
if sum(UpperCamelCase_ ) == target:
return tuple(sorted(UpperCamelCase_ ) )
return (0, 0, 0)
def _snake_case ( _snake_case : list[int] , _snake_case : int ) -> tuple[int, int, int]:
'''simple docstring'''
arr.sort()
_A = len(UpperCamelCase_ )
for i in range(n - 1 ):
_A , _A = i + 1, n - 1
while left < right:
if arr[i] + arr[left] + arr[right] == target:
return (arr[i], arr[left], arr[right])
elif arr[i] + arr[left] + arr[right] < target:
left += 1
elif arr[i] + arr[left] + arr[right] > target:
right -= 1
return (0, 0, 0)
def _snake_case ( ) -> tuple[float, float]:
'''simple docstring'''
_A = '\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n'
_A = '\ntriplet_sum1(*dataset)\n'
_A = '\ntriplet_sum2(*dataset)\n'
_A = repeat(setup=UpperCamelCase_ , stmt=UpperCamelCase_ , repeat=5 , number=1_00_00 )
_A = repeat(setup=UpperCamelCase_ , stmt=UpperCamelCase_ , repeat=5 , number=1_00_00 )
return (min(UpperCamelCase_ ), min(UpperCamelCase_ ))
if __name__ == "__main__":
from doctest import testmod
testmod()
a = solution_times()
print(F'''The time for naive implementation is {times[0]}.''')
print(F'''The time for optimized implementation is {times[1]}.''')
| 315 |
"""simple docstring"""
from math import sqrt
def _A ( UpperCamelCase_ : int) -> int:
'''simple docstring'''
__lowercase = 0
for i in range(1, int(sqrt(UpperCamelCase_) + 1)):
if n % i == 0 and i != sqrt(UpperCamelCase_):
total += i + n // i
elif i == sqrt(UpperCamelCase_):
total += i
return total - n
def _A ( UpperCamelCase_ : int = 10000) -> int:
'''simple docstring'''
__lowercase = sum(
i
for i in range(1, UpperCamelCase_)
if sum_of_divisors(sum_of_divisors(UpperCamelCase_)) == i and sum_of_divisors(UpperCamelCase_) != i)
return total
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 17 | 0 |
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
lowercase__ : List[Any] = logging.get_logger(__name__)
lowercase__ : Tuple = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''}
lowercase__ : Union[str, Any] = {
'''tokenizer_file''': {
'''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json''',
},
}
lowercase__ : str = {
'''gpt-neox-20b''': 2_0_4_8,
}
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
UpperCAmelCase_ : List[str] = VOCAB_FILES_NAMES
UpperCAmelCase_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase_ : Optional[int] = ["input_ids", "attention_mask"]
def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="<|endoftext|>" , __SCREAMING_SNAKE_CASE="<|endoftext|>" , __SCREAMING_SNAKE_CASE="<|endoftext|>" , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ) ->Union[str, Any]:
super().__init__(
UpperCAmelCase__ , UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , **UpperCAmelCase__ , )
lowerCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('''add_prefix_space''' , UpperCAmelCase__ ) != add_prefix_space:
lowerCAmelCase = getattr(UpperCAmelCase__ , pre_tok_state.pop('''type''' ) )
lowerCAmelCase = add_prefix_space
lowerCAmelCase = pre_tok_class(**UpperCAmelCase__ )
lowerCAmelCase = add_prefix_space
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) ->Optional[int]:
lowerCAmelCase = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__ )
return tuple(UpperCAmelCase__ )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->List[str]:
lowerCAmelCase = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) + [self.eos_token_id] )
if len(UpperCAmelCase__ ) > self.model_max_length:
lowerCAmelCase = input_ids[-self.model_max_length :]
return input_ids
| 338 |
"""simple docstring"""
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
_a = _symbol_database.Default()
_a = _descriptor_pool.Default().AddSerializedFile(
b'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03'
)
_a = globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals)
if _descriptor._USE_C_DESCRIPTORS is False:
_a = None
_a = b'H\003'
# (generated by protobuf compiler, but `_TRAINERSPEC` is not defined)
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001"
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001"
_a = 45
_a = 15_81
_a = 15_17
_a = 15_70
_a = 15_84
_a = 17_93
_a = 17_95
_a = 19_16
_a = 18_64
_a = 19_05
_a = 19_19
_a = 24_29
_a = 22_08
_a = 24_18
_a = 23_23
_a = 24_07
# @@protoc_insertion_point(module_scope)
| 17 | 0 |
'''simple docstring'''
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
a__ : List[Any] =_symbol_database.Default()
a__ : Union[str, Any] =_descriptor_pool.Default().AddSerializedFile(
B'''\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03'''
)
a__ : List[Any] =globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, '''sentencepiece_model_pb2''', _globals)
if _descriptor._USE_C_DESCRIPTORS is False:
a__ : Optional[Any] =None
a__ : Union[str, Any] =B'''H\003'''
# (generated by protobuf compiler, but `_TRAINERSPEC` is not defined)
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001"
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001"
a__ : Any =45
a__ : Dict =1_581
a__ : Optional[int] =1_517
a__ : Dict =1_570
a__ : Tuple =1_584
a__ : Dict =1_793
a__ : Optional[Any] =1_795
a__ : Dict =1_916
a__ : Any =1_864
a__ : Tuple =1_905
a__ : Optional[Any] =1_919
a__ : Union[str, Any] =2_429
a__ : Tuple =2_208
a__ : Any =2_418
a__ : Any =2_323
a__ : Optional[Any] =2_407
# @@protoc_insertion_point(module_scope)
| 53 |
"""simple docstring"""
import baseaa
def _A ( UpperCamelCase_ : str) -> bytes:
'''simple docstring'''
return baseaa.baaencode(string.encode("utf-8"))
def _A ( UpperCamelCase_ : bytes) -> str:
'''simple docstring'''
return baseaa.baadecode(UpperCamelCase_).decode("utf-8")
if __name__ == "__main__":
_a = 'Hello World!'
_a = baseaa_encode(test)
print(encoded)
_a = baseaa_decode(encoded)
print(decoded)
| 17 | 0 |
import io
import math
from typing import Dict, Optional, Union
import numpy as np
from huggingface_hub import hf_hub_download
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image
from ...image_utils import (
ChannelDimension,
ImageInput,
get_image_size,
infer_channel_dimension_format,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_vision_available, logging
from ...utils.import_utils import requires_backends
if is_vision_available():
import textwrap
from PIL import Image, ImageDraw, ImageFont
if is_torch_available():
import torch
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
__lowerCamelCase = False
__lowerCamelCase = logging.get_logger(__name__)
__lowerCamelCase = """ybelkada/fonts"""
def UpperCamelCase ( ):
if is_torch_available() and not is_torch_greater_or_equal_than_1_11:
raise ImportError(
f"""You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use """
"Pix2StructImageProcessor. Please upgrade torch." )
def UpperCamelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] ):
requires_backends(UpperCamelCase_ , ["torch"] )
_check_torch_version()
snake_case : Any = image_tensor.unsqueeze(0 )
snake_case : Any = torch.nn.functional.unfold(UpperCamelCase_ , (patch_height, patch_width) , stride=(patch_height, patch_width) )
snake_case : List[Any] = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , UpperCamelCase_ , UpperCamelCase_ , -1 )
snake_case : List[str] = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape(
image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , )
return patches.unsqueeze(0 )
def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : int = 36 , __lowerCamelCase : str = "black" , __lowerCamelCase : str = "white" , __lowerCamelCase : int = 5 , __lowerCamelCase : int = 5 , __lowerCamelCase : int = 5 , __lowerCamelCase : int = 5 , __lowerCamelCase : Optional[bytes] = None , __lowerCamelCase : Optional[str] = None , ):
requires_backends(UpperCamelCase_ , "vision" )
# Add new lines so that each line is no more than 80 characters.
snake_case : Tuple = textwrap.TextWrapper(width=80 )
snake_case : Optional[int] = wrapper.wrap(text=UpperCamelCase_ )
snake_case : List[Any] = "\n".join(UpperCamelCase_ )
if font_bytes is not None and font_path is None:
snake_case : List[str] = io.BytesIO(UpperCamelCase_ )
elif font_path is not None:
snake_case : List[str] = font_path
else:
snake_case : Optional[int] = hf_hub_download(UpperCamelCase_ , "Arial.TTF" )
snake_case : Optional[int] = ImageFont.truetype(UpperCamelCase_ , encoding="UTF-8" , size=UpperCamelCase_ )
# Use a temporary canvas to determine the width and height in pixels when
# rendering the text.
snake_case : Dict = ImageDraw.Draw(Image.new("RGB" , (1, 1) , UpperCamelCase_ ) )
snake_case , snake_case , snake_case , snake_case : Optional[int] = temp_draw.textbbox((0, 0) , UpperCamelCase_ , UpperCamelCase_ )
# Create the actual image with a bit of padding around the text.
snake_case : str = text_width + left_padding + right_padding
snake_case : Optional[Any] = text_height + top_padding + bottom_padding
snake_case : Dict = Image.new("RGB" , (image_width, image_height) , UpperCamelCase_ )
snake_case : Tuple = ImageDraw.Draw(UpperCamelCase_ )
draw.text(xy=(left_padding, top_padding) , text=UpperCamelCase_ , fill=UpperCamelCase_ , font=UpperCamelCase_ )
return image
def UpperCamelCase ( __lowerCamelCase : np.ndarray , __lowerCamelCase : str , **__lowerCamelCase : Union[str, Any] ):
requires_backends(UpperCamelCase_ , "vision" )
# Convert to PIL image if necessary
snake_case : int = to_pil_image(UpperCamelCase_ )
snake_case : Tuple = render_text(UpperCamelCase_ , **UpperCamelCase_ )
snake_case : Any = max(header_image.width , image.width )
snake_case : str = int(image.height * (new_width / image.width) )
snake_case : Any = int(header_image.height * (new_width / header_image.width) )
snake_case : str = Image.new("RGB" , (new_width, new_height + new_header_height) , "white" )
new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) )
new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) )
# Convert back to the original framework if necessary
snake_case : Tuple = to_numpy_array(UpperCamelCase_ )
if infer_channel_dimension_format(UpperCamelCase_ ) == ChannelDimension.LAST:
snake_case : Optional[Any] = to_channel_dimension_format(UpperCamelCase_ , ChannelDimension.LAST )
return new_image
class UpperCAmelCase ( A_ ):
A__ : List[Any] = ["flattened_patches"]
def __init__(self : List[str] , snake_case__ : bool = True , snake_case__ : bool = True , snake_case__ : Dict[str, int] = None , snake_case__ : int = 20_48 , snake_case__ : bool = False , **snake_case__ : Dict , ) -> int:
'''simple docstring'''
super().__init__(**UpperCAmelCase__ )
snake_case : Dict = patch_size if patch_size is not None else {"height": 16, "width": 16}
snake_case : Any = do_normalize
snake_case : Optional[int] = do_convert_rgb
snake_case : int = max_patches
snake_case : Dict = is_vqa
def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : np.ndarray , snake_case__ : int , snake_case__ : dict , **snake_case__ : Dict ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self.extract_flattened_patches , "torch" )
_check_torch_version()
# convert to torch
snake_case : int = to_channel_dimension_format(UpperCAmelCase__ , ChannelDimension.FIRST )
snake_case : int = torch.from_numpy(UpperCAmelCase__ )
snake_case , snake_case : Any = patch_size["height"], patch_size["width"]
snake_case , snake_case : List[Any] = get_image_size(UpperCAmelCase__ )
# maximize scale s.t.
snake_case : Tuple = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) )
snake_case : Union[str, Any] = max(min(math.floor(scale * image_height / patch_height ) , UpperCAmelCase__ ) , 1 )
snake_case : Optional[Any] = max(min(math.floor(scale * image_width / patch_width ) , UpperCAmelCase__ ) , 1 )
snake_case : List[Any] = max(num_feasible_rows * patch_height , 1 )
snake_case : str = max(num_feasible_cols * patch_width , 1 )
snake_case : Dict = torch.nn.functional.interpolate(
image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode="bilinear" , align_corners=UpperCAmelCase__ , antialias=UpperCAmelCase__ , ).squeeze(0 )
# [1, rows, columns, patch_height * patch_width * image_channels]
snake_case : List[Any] = torch_extract_patches(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
snake_case : Optional[Any] = patches.shape
snake_case : Optional[Any] = patches_shape[1]
snake_case : List[str] = patches_shape[2]
snake_case : List[Any] = patches_shape[3]
# [rows * columns, patch_height * patch_width * image_channels]
snake_case : str = patches.reshape([rows * columns, depth] )
# [rows * columns, 1]
snake_case : int = torch.arange(UpperCAmelCase__ ).reshape([rows, 1] ).repeat(1 , UpperCAmelCase__ ).reshape([rows * columns, 1] )
snake_case : Optional[int] = torch.arange(UpperCAmelCase__ ).reshape([1, columns] ).repeat(UpperCAmelCase__ , 1 ).reshape([rows * columns, 1] )
# Offset by 1 so the ids do not contain zeros, which represent padding.
row_ids += 1
col_ids += 1
# Prepare additional patch features.
# [rows * columns, 1]
snake_case : Tuple = row_ids.to(torch.floataa )
snake_case : Union[str, Any] = col_ids.to(torch.floataa )
# [rows * columns, 2 + patch_height * patch_width * image_channels]
snake_case : str = torch.cat([row_ids, col_ids, patches] , -1 )
# [max_patches, 2 + patch_height * patch_width * image_channels]
snake_case : Any = torch.nn.functional.pad(UpperCAmelCase__ , [0, 0, 0, max_patches - (rows * columns)] ).float()
snake_case : List[Any] = to_numpy_array(UpperCAmelCase__ )
return result
def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : np.ndarray , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : Any ) -> List[Any]:
'''simple docstring'''
if image.dtype == np.uinta:
snake_case : Union[str, Any] = image.astype(np.floataa )
# take mean across the whole `image`
snake_case : str = np.mean(UpperCAmelCase__ )
snake_case : str = np.std(UpperCAmelCase__ )
snake_case : Union[str, Any] = max(UpperCAmelCase__ , 1.0 / math.sqrt(np.prod(image.shape ) ) )
return normalize(UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__ , **UpperCAmelCase__ )
def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : ImageInput , snake_case__ : Optional[str] = None , snake_case__ : bool = None , snake_case__ : Optional[bool] = None , snake_case__ : Optional[int] = None , snake_case__ : Optional[Dict[str, int]] = None , snake_case__ : Optional[Union[str, TensorType]] = None , snake_case__ : ChannelDimension = ChannelDimension.FIRST , **snake_case__ : Any , ) -> Dict:
'''simple docstring'''
snake_case : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize
snake_case : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
snake_case : List[Any] = patch_size if patch_size is not None else self.patch_size
snake_case : List[str] = max_patches if max_patches is not None else self.max_patches
snake_case : List[Any] = self.is_vqa
if kwargs.get("data_format" , UpperCAmelCase__ ) is not None:
raise ValueError("data_format is not an accepted input as the outputs are " )
snake_case : Any = make_list_of_images(UpperCAmelCase__ )
if not valid_images(UpperCAmelCase__ ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
snake_case : List[str] = [convert_to_rgb(UpperCAmelCase__ ) for image in images]
# All transformations expect numpy arrays.
snake_case : List[Any] = [to_numpy_array(UpperCAmelCase__ ) for image in images]
if is_vqa:
if header_text is None:
raise ValueError("A header text must be provided for VQA models." )
snake_case : Tuple = kwargs.pop("font_bytes" , UpperCAmelCase__ )
snake_case : Tuple = kwargs.pop("font_path" , UpperCAmelCase__ )
if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
snake_case : Tuple = [header_text] * len(UpperCAmelCase__ )
snake_case : Optional[Any] = [
render_header(UpperCAmelCase__ , header_text[i] , font_bytes=UpperCAmelCase__ , font_path=UpperCAmelCase__ )
for i, image in enumerate(UpperCAmelCase__ )
]
if do_normalize:
snake_case : List[str] = [self.normalize(image=UpperCAmelCase__ ) for image in images]
# convert to torch tensor and permute
snake_case : Union[str, Any] = [
self.extract_flattened_patches(image=UpperCAmelCase__ , max_patches=UpperCAmelCase__ , patch_size=UpperCAmelCase__ )
for image in images
]
# create attention mask in numpy
snake_case : List[str] = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images]
snake_case : List[Any] = BatchFeature(
data={"flattened_patches": images, "attention_mask": attention_masks} , tensor_type=UpperCAmelCase__ )
return encoded_outputs
| 59 |
"""simple docstring"""
def _A ( UpperCamelCase_ : Any) -> List[str]:
'''simple docstring'''
__lowercase ,__lowercase = [], []
while len(UpperCamelCase_) > 1:
__lowercase ,__lowercase = min(UpperCamelCase_), max(UpperCamelCase_)
start.append(UpperCamelCase_)
end.append(UpperCamelCase_)
collection.remove(UpperCamelCase_)
collection.remove(UpperCamelCase_)
end.reverse()
return start + collection + end
if __name__ == "__main__":
_a = input('Enter numbers separated by a comma:\n').strip()
_a = [int(item) for item in user_input.split(',')]
print(*merge_sort(unsorted), sep=',')
| 17 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowerCAmelCase : Optional[int] = {
"""configuration_bridgetower""": [
"""BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""BridgeTowerConfig""",
"""BridgeTowerTextConfig""",
"""BridgeTowerVisionConfig""",
],
"""processing_bridgetower""": ["""BridgeTowerProcessor"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : List[Any] = ["""BridgeTowerImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Dict = [
"""BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BridgeTowerForContrastiveLearning""",
"""BridgeTowerForImageAndTextRetrieval""",
"""BridgeTowerForMaskedLM""",
"""BridgeTowerModel""",
"""BridgeTowerPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_bridgetower import (
BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP,
BridgeTowerConfig,
BridgeTowerTextConfig,
BridgeTowerVisionConfig,
)
from .processing_bridgetower import BridgeTowerProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_bridgetower import BridgeTowerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bridgetower import (
BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST,
BridgeTowerForContrastiveLearning,
BridgeTowerForImageAndTextRetrieval,
BridgeTowerForMaskedLM,
BridgeTowerModel,
BridgeTowerPreTrainedModel,
)
else:
import sys
lowerCAmelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
| 13 |
"""simple docstring"""
def _A ( UpperCamelCase_ : list[int]) -> float:
'''simple docstring'''
if not nums: # Makes sure that the list is not empty
raise ValueError("List is empty")
__lowercase = sum(UpperCamelCase_) / len(UpperCamelCase_) # Calculate the average
return sum(abs(x - average) for x in nums) / len(UpperCamelCase_)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 17 | 0 |
from __future__ import annotations
def A ( a_ ) -> bool:
__UpperCamelCase : List[Any] =len(UpperCamelCase_ )
# We need to create solution object to save path.
__UpperCamelCase : Union[str, Any] =[[0 for _ in range(UpperCamelCase_ )] for _ in range(UpperCamelCase_ )]
__UpperCamelCase : Optional[int] =run_maze(UpperCamelCase_ ,0 ,0 ,UpperCamelCase_ )
if solved:
print('\n'.join(str(UpperCamelCase_ ) for row in solutions ) )
else:
print('No solution exists!' )
return solved
def A ( a_ ,a_ ,a_ ,a_ ) -> bool:
__UpperCamelCase : Optional[int] =len(UpperCamelCase_ )
# Final check point.
if i == j == (size - 1):
__UpperCamelCase : Union[str, Any] =1
return True
__UpperCamelCase : str =(not i < 0) and (not j < 0) # Check lower bounds
__UpperCamelCase : int =(i < size) and (j < size) # Check upper bounds
if lower_flag and upper_flag:
# check for already visited and block points.
__UpperCamelCase : str =(not solutions[i][j]) and (not maze[i][j])
if block_flag:
# check visited
__UpperCamelCase : Any =1
# check for directions
if (
run_maze(UpperCamelCase_ ,i + 1 ,UpperCamelCase_ ,UpperCamelCase_ )
or run_maze(UpperCamelCase_ ,UpperCamelCase_ ,j + 1 ,UpperCamelCase_ )
or run_maze(UpperCamelCase_ ,i - 1 ,UpperCamelCase_ ,UpperCamelCase_ )
or run_maze(UpperCamelCase_ ,UpperCamelCase_ ,j - 1 ,UpperCamelCase_ )
):
return True
__UpperCamelCase : Optional[int] =0
return False
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 71 |
"""simple docstring"""
import inspect
import unittest
import numpy as np
from transformers import BeitConfig
from transformers.testing_utils import require_flax, require_vision, slow
from transformers.utils import cached_property, is_flax_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor
if is_flax_available():
import jax
from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : int=1_0_0, UpperCAmelCase__ : Any=1_3, UpperCAmelCase__ : List[Any]=3_0, UpperCAmelCase__ : Dict=2, UpperCAmelCase__ : Any=3, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[str]=True, UpperCAmelCase__ : Optional[Any]=3_2, UpperCAmelCase__ : Any=5, UpperCAmelCase__ : Any=4, UpperCAmelCase__ : Any=3_7, UpperCAmelCase__ : Optional[int]="gelu", UpperCAmelCase__ : Dict=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Dict=1_0, UpperCAmelCase__ : Tuple=0.02, UpperCAmelCase__ : List[Any]=3, ):
__lowercase = parent
__lowercase = vocab_size
__lowercase = batch_size
__lowercase = image_size
__lowercase = patch_size
__lowercase = num_channels
__lowercase = is_training
__lowercase = use_labels
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = type_sequence_label_size
__lowercase = initializer_range
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
__lowercase = (image_size // patch_size) ** 2
__lowercase = num_patches + 1
def _lowercase ( self : int ):
__lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size], self.type_sequence_label_size )
__lowercase = BeitConfig(
vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=UpperCAmelCase__, initializer_range=self.initializer_range, )
return config, pixel_values, labels
def _lowercase ( self : Any, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[str], UpperCAmelCase__ : List[str] ):
__lowercase = FlaxBeitModel(config=UpperCAmelCase__ )
__lowercase = model(UpperCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : List[Any] ):
__lowercase = FlaxBeitForMaskedImageModeling(config=UpperCAmelCase__ )
__lowercase = model(UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size) )
def _lowercase ( self : Dict, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : Union[str, Any] ):
__lowercase = self.type_sequence_label_size
__lowercase = FlaxBeitForImageClassification(config=UpperCAmelCase__ )
__lowercase = model(UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__lowercase = 1
__lowercase = FlaxBeitForImageClassification(UpperCAmelCase__ )
__lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__lowercase = model(UpperCAmelCase__ )
def _lowercase ( self : List[str] ):
__lowercase = self.prepare_config_and_inputs()
(
(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,
) = config_and_inputs
__lowercase = {"pixel_values": pixel_values}
return config, inputs_dict
@require_flax
class _lowerCAmelCase ( lowercase ,unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : str = (
(FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else ()
)
def _lowercase ( self : List[Any] ):
__lowercase = FlaxBeitModelTester(self )
__lowercase = ConfigTester(self, config_class=UpperCAmelCase__, has_text_modality=UpperCAmelCase__, hidden_size=3_7 )
def _lowercase ( self : Union[str, Any] ):
self.config_tester.run_common_tests()
def _lowercase ( self : Optional[int] ):
__lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowercase = model_class(UpperCAmelCase__ )
__lowercase = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowercase = [*signature.parameters.keys()]
__lowercase = ["pixel_values"]
self.assertListEqual(arg_names[:1], UpperCAmelCase__ )
def _lowercase ( self : Tuple ):
__lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__lowercase = self._prepare_for_class(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = model_class(UpperCAmelCase__ )
@jax.jit
def model_jitted(UpperCAmelCase__ : str, **UpperCAmelCase__ : Dict ):
return model(pixel_values=UpperCAmelCase__, **UpperCAmelCase__ )
with self.subTest("JIT Enabled" ):
__lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
__lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple()
self.assertEqual(len(UpperCAmelCase__ ), len(UpperCAmelCase__ ) )
for jitted_output, output in zip(UpperCAmelCase__, UpperCAmelCase__ ):
self.assertEqual(jitted_output.shape, output.shape )
def _lowercase ( self : List[str] ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase__ )
def _lowercase ( self : int ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ )
def _lowercase ( self : Tuple ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ )
@slow
def _lowercase ( self : Union[str, Any] ):
for model_class_name in self.all_model_classes:
__lowercase = model_class_name.from_pretrained("microsoft/beit-base-patch16-224" )
__lowercase = model(np.ones((1, 3, 2_2_4, 2_2_4) ) )
self.assertIsNotNone(UpperCAmelCase__ )
def _A ( ) -> str:
'''simple docstring'''
__lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_vision
@require_flax
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _lowercase ( self : Optional[int] ):
return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None
@slow
def _lowercase ( self : Any ):
__lowercase = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" )
__lowercase = self.default_image_processor
__lowercase = prepare_img()
__lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ).pixel_values
# prepare bool_masked_pos
__lowercase = np.ones((1, 1_9_6), dtype=UpperCAmelCase__ )
# forward pass
__lowercase = model(pixel_values=UpperCAmelCase__, bool_masked_pos=UpperCAmelCase__ )
__lowercase = outputs.logits
# verify the logits
__lowercase = (1, 1_9_6, 8_1_9_2)
self.assertEqual(logits.shape, UpperCAmelCase__ )
__lowercase = np.array(
[[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] )
self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3], UpperCAmelCase__, atol=1E-2 ) )
@slow
def _lowercase ( self : Any ):
__lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" )
__lowercase = self.default_image_processor
__lowercase = prepare_img()
__lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" )
# forward pass
__lowercase = model(**UpperCAmelCase__ )
__lowercase = outputs.logits
# verify the logits
__lowercase = (1, 1_0_0_0)
self.assertEqual(logits.shape, UpperCAmelCase__ )
__lowercase = np.array([-1.2_385, -1.0_987, -1.0_108] )
self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) )
__lowercase = 2_8_1
self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ )
@slow
def _lowercase ( self : List[str] ):
__lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" )
__lowercase = self.default_image_processor
__lowercase = prepare_img()
__lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" )
# forward pass
__lowercase = model(**UpperCAmelCase__ )
__lowercase = outputs.logits
# verify the logits
__lowercase = (1, 2_1_8_4_1)
self.assertEqual(logits.shape, UpperCAmelCase__ )
__lowercase = np.array([1.6_881, -0.2_787, 0.5_901] )
self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) )
__lowercase = 2_3_9_6
self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ )
| 17 | 0 |
'''simple docstring'''
from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor
from .base import PipelineTool
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Tuple = "openai/whisper-base"
_SCREAMING_SNAKE_CASE : Union[str, Any] = (
"This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the "
"transcribed text."
)
_SCREAMING_SNAKE_CASE : List[str] = "transcriber"
_SCREAMING_SNAKE_CASE : Optional[Any] = WhisperProcessor
_SCREAMING_SNAKE_CASE : str = WhisperForConditionalGeneration
_SCREAMING_SNAKE_CASE : List[str] = ["audio"]
_SCREAMING_SNAKE_CASE : Tuple = ["text"]
def __A ( self , __UpperCAmelCase ) -> int:
'''simple docstring'''
return self.pre_processor(UpperCAmelCase__ , return_tensors="""pt""" ).input_features
def __A ( self , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
return self.model.generate(inputs=UpperCAmelCase__ )
def __A ( self , __UpperCAmelCase ) -> int:
'''simple docstring'''
return self.pre_processor.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ )[0]
| 254 |
"""simple docstring"""
import unittest
from transformers import load_tool
from .test_tools_common import ToolTesterMixin
class _lowerCAmelCase ( unittest.TestCase ,lowercase ):
"""simple docstring"""
def _lowercase ( self : List[Any] ):
__lowercase = load_tool("text-classification" )
self.tool.setup()
__lowercase = load_tool("text-classification", remote=UpperCAmelCase__ )
def _lowercase ( self : str ):
__lowercase = self.tool("That's quite cool", ["positive", "negative"] )
self.assertEqual(UpperCAmelCase__, "positive" )
def _lowercase ( self : str ):
__lowercase = self.remote_tool("That's quite cool", ["positive", "negative"] )
self.assertEqual(UpperCAmelCase__, "positive" )
def _lowercase ( self : List[str] ):
__lowercase = self.tool(text="That's quite cool", labels=["positive", "negative"] )
self.assertEqual(UpperCAmelCase__, "positive" )
def _lowercase ( self : Tuple ):
__lowercase = self.remote_tool(text="That's quite cool", labels=["positive", "negative"] )
self.assertEqual(UpperCAmelCase__, "positive" )
| 17 | 0 |
'''simple docstring'''
import unittest
from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available
from transformers.pipelines import pipeline
from transformers.pipelines.document_question_answering import apply_tesseract
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_detectrona,
require_pytesseract,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
from transformers.image_utils import load_image
else:
class UpperCamelCase_ :
@staticmethod
def _lowercase( *A , **A ) -> int:
pass
def __lowerCamelCase ( _lowercase ) -> Any:
return None
# This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace,
# so we can expect it to be available.
a : Dict = (
"""https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png"""
)
@is_pipeline_test
@require_torch
@require_vision
class UpperCamelCase_ ( unittest.TestCase ):
lowercase = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING
@require_pytesseract
@require_vision
def _lowercase( self , A , A , A ) -> Optional[int]:
UpperCAmelCase : int = pipeline(
"""document-question-answering""" , model=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ )
UpperCAmelCase : Optional[int] = INVOICE_URL
UpperCAmelCase : Dict = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ) , UpperCAmelCase__ , """""" ) ) )
UpperCAmelCase : Optional[Any] = """What is the placebo?"""
UpperCAmelCase : Dict = [
{
"""image""": load_image(UpperCAmelCase__ ),
"""question""": question,
},
{
"""image""": image,
"""question""": question,
},
{
"""image""": image,
"""question""": question,
"""word_boxes""": word_boxes,
},
]
return dqa_pipeline, examples
def _lowercase( self , A , A ) -> Union[str, Any]:
UpperCAmelCase : int = dqa_pipeline(UpperCAmelCase__ , top_k=2 )
self.assertEqual(
UpperCAmelCase__ , [
[
{"""score""": ANY(UpperCAmelCase__ ), """answer""": ANY(UpperCAmelCase__ ), """start""": ANY(UpperCAmelCase__ ), """end""": ANY(UpperCAmelCase__ )},
{"""score""": ANY(UpperCAmelCase__ ), """answer""": ANY(UpperCAmelCase__ ), """start""": ANY(UpperCAmelCase__ ), """end""": ANY(UpperCAmelCase__ )},
]
]
* 3 , )
@require_torch
@require_detectrona
@require_pytesseract
def _lowercase( self ) -> str:
UpperCAmelCase : int = pipeline("""document-question-answering""" , model="""hf-internal-testing/tiny-random-layoutlmv2""" )
UpperCAmelCase : Any = INVOICE_URL
UpperCAmelCase : List[Any] = """How many cats are there?"""
UpperCAmelCase : int = [
{"""score""": 0.0_0_0_1, """answer""": """oy 2312/2019""", """start""": 38, """end""": 39},
{"""score""": 0.0_0_0_1, """answer""": """oy 2312/2019 DUE""", """start""": 38, """end""": 40},
]
UpperCAmelCase : List[str] = dqa_pipeline(image=UpperCAmelCase__ , question=UpperCAmelCase__ , top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase__ , decimals=4 ) , UpperCAmelCase__ )
UpperCAmelCase : int = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase__ , decimals=4 ) , UpperCAmelCase__ )
# This image does not detect ANY text in it, meaning layoutlmv2 should fail.
# Empty answer probably
UpperCAmelCase : List[Any] = """./tests/fixtures/tests_samples/COCO/000000039769.png"""
UpperCAmelCase : int = dqa_pipeline(image=UpperCAmelCase__ , question=UpperCAmelCase__ , top_k=2 )
self.assertEqual(UpperCAmelCase__ , [] )
# We can optionnally pass directly the words and bounding boxes
UpperCAmelCase : Any = """./tests/fixtures/tests_samples/COCO/000000039769.png"""
UpperCAmelCase : List[str] = []
UpperCAmelCase : Tuple = []
UpperCAmelCase : Dict = dqa_pipeline(image=UpperCAmelCase__ , question=UpperCAmelCase__ , words=UpperCAmelCase__ , boxes=UpperCAmelCase__ , top_k=2 )
self.assertEqual(UpperCAmelCase__ , [] )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : Tuple = pipeline(
"""document-question-answering""" , model="""tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa""" , revision="""9977165""" , )
UpperCAmelCase : Optional[Any] = INVOICE_URL
UpperCAmelCase : Optional[Any] = """What is the invoice number?"""
UpperCAmelCase : Tuple = dqa_pipeline(image=UpperCAmelCase__ , question=UpperCAmelCase__ , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__ , decimals=4 ) , [
{"""score""": 0.9_9_4_4, """answer""": """us-001""", """start""": 16, """end""": 16},
{"""score""": 0.0_0_0_9, """answer""": """us-001""", """start""": 16, """end""": 16},
] , )
UpperCAmelCase : Any = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__ , decimals=4 ) , [
{"""score""": 0.9_9_4_4, """answer""": """us-001""", """start""": 16, """end""": 16},
{"""score""": 0.0_0_0_9, """answer""": """us-001""", """start""": 16, """end""": 16},
] , )
UpperCAmelCase : Any = dqa_pipeline(
[{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__ , decimals=4 ) , [
[
{"""score""": 0.9_9_4_4, """answer""": """us-001""", """start""": 16, """end""": 16},
{"""score""": 0.0_0_0_9, """answer""": """us-001""", """start""": 16, """end""": 16},
],
]
* 2 , )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : Any = pipeline(
"""document-question-answering""" , model="""tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa""" , revision="""9977165""" , max_seq_len=50 , )
UpperCAmelCase : Dict = INVOICE_URL
UpperCAmelCase : Optional[Any] = """What is the invoice number?"""
UpperCAmelCase : Tuple = dqa_pipeline(image=UpperCAmelCase__ , question=UpperCAmelCase__ , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__ , decimals=4 ) , [
{"""score""": 0.9_9_7_4, """answer""": """1110212019""", """start""": 23, """end""": 23},
{"""score""": 0.9_9_4_8, """answer""": """us-001""", """start""": 16, """end""": 16},
] , )
UpperCAmelCase : Dict = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__ , decimals=4 ) , [
{"""score""": 0.9_9_7_4, """answer""": """1110212019""", """start""": 23, """end""": 23},
{"""score""": 0.9_9_4_8, """answer""": """us-001""", """start""": 16, """end""": 16},
] , )
UpperCAmelCase : int = dqa_pipeline(
[{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__ , decimals=4 ) , [
[
{"""score""": 0.9_9_7_4, """answer""": """1110212019""", """start""": 23, """end""": 23},
{"""score""": 0.9_9_4_8, """answer""": """us-001""", """start""": 16, """end""": 16},
]
]
* 2 , )
@slow
@require_torch
@require_pytesseract
@require_vision
def _lowercase( self ) -> str:
UpperCAmelCase : str = AutoTokenizer.from_pretrained(
"""impira/layoutlm-document-qa""" , revision="""3dc6de3""" , add_prefix_space=UpperCAmelCase__ )
UpperCAmelCase : Union[str, Any] = pipeline(
"""document-question-answering""" , model="""impira/layoutlm-document-qa""" , tokenizer=UpperCAmelCase__ , revision="""3dc6de3""" , )
UpperCAmelCase : int = INVOICE_URL
UpperCAmelCase : Dict = """What is the invoice number?"""
UpperCAmelCase : List[str] = dqa_pipeline(image=UpperCAmelCase__ , question=UpperCAmelCase__ , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__ , decimals=4 ) , [
{"""score""": 0.4_2_5_1, """answer""": """us-001""", """start""": 16, """end""": 16},
{"""score""": 0.0_8_1_9, """answer""": """1110212019""", """start""": 23, """end""": 23},
] , )
UpperCAmelCase : Union[str, Any] = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__ , decimals=4 ) , [
{"""score""": 0.4_2_5_1, """answer""": """us-001""", """start""": 16, """end""": 16},
{"""score""": 0.0_8_1_9, """answer""": """1110212019""", """start""": 23, """end""": 23},
] , )
UpperCAmelCase : Optional[int] = dqa_pipeline(
[{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__ , decimals=4 ) , [
[
{"""score""": 0.4_2_5_1, """answer""": """us-001""", """start""": 16, """end""": 16},
{"""score""": 0.0_8_1_9, """answer""": """1110212019""", """start""": 23, """end""": 23},
]
]
* 2 , )
UpperCAmelCase : Optional[int] = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ) , UpperCAmelCase__ , """""" ) ) )
# This model should also work if `image` is set to None
UpperCAmelCase : int = dqa_pipeline({"""image""": None, """word_boxes""": word_boxes, """question""": question} , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__ , decimals=4 ) , [
{"""score""": 0.4_2_5_1, """answer""": """us-001""", """start""": 16, """end""": 16},
{"""score""": 0.0_8_1_9, """answer""": """1110212019""", """start""": 23, """end""": 23},
] , )
@slow
@require_torch
@require_pytesseract
@require_vision
def _lowercase( self ) -> int:
UpperCAmelCase : str = AutoTokenizer.from_pretrained(
"""impira/layoutlm-document-qa""" , revision="""3dc6de3""" , add_prefix_space=UpperCAmelCase__ )
UpperCAmelCase : List[Any] = pipeline(
"""document-question-answering""" , model="""impira/layoutlm-document-qa""" , tokenizer=UpperCAmelCase__ , revision="""3dc6de3""" , max_seq_len=50 , )
UpperCAmelCase : List[str] = INVOICE_URL
UpperCAmelCase : List[str] = """What is the invoice number?"""
UpperCAmelCase : List[Any] = dqa_pipeline(image=UpperCAmelCase__ , question=UpperCAmelCase__ , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__ , decimals=4 ) , [
{"""score""": 0.9_9_9_9, """answer""": """us-001""", """start""": 16, """end""": 16},
{"""score""": 0.9_9_9_8, """answer""": """us-001""", """start""": 16, """end""": 16},
] , )
UpperCAmelCase : List[str] = dqa_pipeline(
[{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__ , decimals=4 ) , [
[
{"""score""": 0.9_9_9_9, """answer""": """us-001""", """start""": 16, """end""": 16},
{"""score""": 0.9_9_9_8, """answer""": """us-001""", """start""": 16, """end""": 16},
]
]
* 2 , )
UpperCAmelCase : Any = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ) , UpperCAmelCase__ , """""" ) ) )
# This model should also work if `image` is set to None
UpperCAmelCase : Tuple = dqa_pipeline({"""image""": None, """word_boxes""": word_boxes, """question""": question} , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__ , decimals=4 ) , [
{"""score""": 0.9_9_9_9, """answer""": """us-001""", """start""": 16, """end""": 16},
{"""score""": 0.9_9_9_8, """answer""": """us-001""", """start""": 16, """end""": 16},
] , )
@slow
@require_torch
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : Optional[int] = pipeline(
"""document-question-answering""" , model="""naver-clova-ix/donut-base-finetuned-docvqa""" , tokenizer=AutoTokenizer.from_pretrained("""naver-clova-ix/donut-base-finetuned-docvqa""" ) , feature_extractor="""naver-clova-ix/donut-base-finetuned-docvqa""" , )
UpperCAmelCase : Optional[Any] = INVOICE_URL
UpperCAmelCase : Union[str, Any] = """What is the invoice number?"""
UpperCAmelCase : str = dqa_pipeline(image=UpperCAmelCase__ , question=UpperCAmelCase__ , top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase__ , decimals=4 ) , [{"""answer""": """us-001"""}] )
@require_tf
@unittest.skip("""Document question answering not implemented in TF""" )
def _lowercase( self ) -> int:
pass
| 265 |
"""simple docstring"""
from typing import Any, Callable, Dict, List, Optional, Union
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
_a = 'CompVis/stable-diffusion-v1-1'
_a = 'CompVis/stable-diffusion-v1-2'
_a = 'CompVis/stable-diffusion-v1-3'
_a = 'CompVis/stable-diffusion-v1-4'
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
def __init__( self : Dict, UpperCAmelCase__ : AutoencoderKL, UpperCAmelCase__ : CLIPTextModel, UpperCAmelCase__ : CLIPTokenizer, UpperCAmelCase__ : UNetaDConditionModel, UpperCAmelCase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], UpperCAmelCase__ : StableDiffusionSafetyChecker, UpperCAmelCase__ : CLIPImageProcessor, UpperCAmelCase__ : bool = True, ):
super()._init_()
__lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ )
__lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ )
__lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ )
__lowercase = StableDiffusionPipeline(
vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, tokenizer=UpperCAmelCase__, unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, safety_checker=UpperCAmelCase__, feature_extractor=UpperCAmelCase__, requires_safety_checker=UpperCAmelCase__, )
self.register_modules(pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea )
@property
def _lowercase ( self : List[str] ):
return {k: getattr(self, UpperCAmelCase__ ) for k in self.config.keys() if not k.startswith("_" )}
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ):
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
__lowercase = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(UpperCAmelCase__ )
def _lowercase ( self : List[str] ):
self.enable_attention_slicing(UpperCAmelCase__ )
@torch.no_grad()
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Tuple, ):
return self.pipea(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
@torch.no_grad()
def _lowercase ( self : Tuple, UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : str, ):
return self.pipea(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
@torch.no_grad()
def _lowercase ( self : str, UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Any, ):
return self.pipea(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
@torch.no_grad()
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Optional[int], ):
return self.pipea(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
@torch.no_grad()
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : str, ):
__lowercase = "cuda" if torch.cuda.is_available() else "cpu"
self.to(UpperCAmelCase__ )
# Checks if the height and width are divisible by 8 or not
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" )
# Get first result from Stable Diffusion Checkpoint v1.1
__lowercase = self.textaimg_sda_a(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
# Get first result from Stable Diffusion Checkpoint v1.2
__lowercase = self.textaimg_sda_a(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
# Get first result from Stable Diffusion Checkpoint v1.3
__lowercase = self.textaimg_sda_a(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
# Get first result from Stable Diffusion Checkpoint v1.4
__lowercase = self.textaimg_sda_a(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
# Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result
return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
| 17 | 0 |
"""simple docstring"""
import os
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from torch import nn
from transformers import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__=10 ):
"""simple docstring"""
A__ = []
for _ in range(UpperCamelCase_ ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
return lrs
def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__=10 ):
"""simple docstring"""
A__ = []
for step in range(UpperCamelCase_ ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
if step == num_steps // 2:
with tempfile.TemporaryDirectory() as tmpdirname:
A__ = os.path.join(UpperCamelCase_ , 'schedule.bin' )
torch.save(scheduler.state_dict() , UpperCamelCase_ )
A__ = torch.load(UpperCamelCase_ )
scheduler.load_state_dict(UpperCamelCase_ )
return lrs
@require_torch
class UpperCamelCase__( unittest.TestCase ):
def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> int:
self.assertEqual(len(UpperCAmelCase__ ) ,len(UpperCAmelCase__ ) )
for a, b in zip(UpperCAmelCase__ ,UpperCAmelCase__ ):
self.assertAlmostEqual(UpperCAmelCase__ ,UpperCAmelCase__ ,delta=UpperCAmelCase__ )
def snake_case__ ( self ) -> str:
A__ = torch.tensor([0.1, -0.2, -0.1] ,requires_grad=UpperCAmelCase__ )
A__ = torch.tensor([0.4, 0.2, -0.5] )
A__ = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
A__ = AdamW(params=[w] ,lr=2e-1 ,weight_decay=0.0 )
for _ in range(1_00 ):
A__ = criterion(UpperCAmelCase__ ,UpperCAmelCase__ )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1e-2 )
def snake_case__ ( self ) -> str:
A__ = torch.tensor([0.1, -0.2, -0.1] ,requires_grad=UpperCAmelCase__ )
A__ = torch.tensor([0.4, 0.2, -0.5] )
A__ = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
A__ = Adafactor(
params=[w] ,lr=1e-2 ,eps=(1e-30, 1e-3) ,clip_threshold=1.0 ,decay_rate=-0.8 ,betaa=UpperCAmelCase__ ,weight_decay=0.0 ,relative_step=UpperCAmelCase__ ,scale_parameter=UpperCAmelCase__ ,warmup_init=UpperCAmelCase__ ,)
for _ in range(10_00 ):
A__ = criterion(UpperCAmelCase__ ,UpperCAmelCase__ )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1e-2 )
@require_torch
class UpperCamelCase__( unittest.TestCase ):
lowerCAmelCase__ : Any = nn.Linear(50 , 50 ) if is_torch_available() else None
lowerCAmelCase__ : Optional[Any] = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None
lowerCAmelCase__ : Tuple = 10
def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase=None ) -> Optional[int]:
self.assertEqual(len(UpperCAmelCase__ ) ,len(UpperCAmelCase__ ) )
for a, b in zip(UpperCAmelCase__ ,UpperCAmelCase__ ):
self.assertAlmostEqual(UpperCAmelCase__ ,UpperCAmelCase__ ,delta=UpperCAmelCase__ ,msg=UpperCAmelCase__ )
def snake_case__ ( self ) -> Optional[int]:
A__ = {'num_warmup_steps': 2, 'num_training_steps': 10}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
A__ = {
get_constant_schedule: ({}, [1_0.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{'num_warmup_steps': 4},
[0.0, 2.5, 5.0, 7.5, 1_0.0, 1_0.0, 1_0.0, 1_0.0, 1_0.0, 1_0.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 1_0.0, 8.7_5, 7.5, 6.2_5, 5.0, 3.7_5, 2.5, 1.2_5],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 1_0.0, 9.6_1, 8.5_3, 6.9_1, 5.0, 3.0_8, 1.4_6, 0.3_8],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, 'num_cycles': 2},
[0.0, 5.0, 1_0.0, 8.5_3, 5.0, 1.4_6, 1_0.0, 8.5_3, 5.0, 1.4_6],
),
get_polynomial_decay_schedule_with_warmup: (
{**common_kwargs, 'power': 2.0, 'lr_end': 1e-7},
[0.0, 5.0, 1_0.0, 7.6_5_6, 5.6_2_5, 3.9_0_6, 2.5, 1.4_0_6, 0.6_2_5, 0.1_5_6],
),
get_inverse_sqrt_schedule: (
{'num_warmup_steps': 2},
[0.0, 5.0, 1_0.0, 8.1_6_5, 7.0_7_1, 6.3_2_5, 5.7_7_4, 5.3_4_5, 5.0, 4.7_1_4],
),
}
for scheduler_func, data in scheds.items():
A__ , A__ = data
A__ = scheduler_func(self.optimizer ,**UpperCAmelCase__ )
self.assertEqual(len([scheduler.get_lr()[0]] ) ,1 )
A__ = unwrap_schedule(UpperCAmelCase__ ,self.num_steps )
self.assertListAlmostEqual(
UpperCAmelCase__ ,UpperCAmelCase__ ,tol=1e-2 ,msg=f'''failed for {scheduler_func} in normal scheduler''' ,)
A__ = scheduler_func(self.optimizer ,**UpperCAmelCase__ )
if scheduler_func.__name__ != "get_constant_schedule":
LambdaScheduleWrapper.wrap_scheduler(UpperCAmelCase__ ) # wrap to test picklability of the schedule
A__ = unwrap_and_save_reload_schedule(UpperCAmelCase__ ,self.num_steps )
self.assertListEqual(UpperCAmelCase__ ,UpperCAmelCase__ ,msg=f'''failed for {scheduler_func} in save and reload''' )
class UpperCamelCase__:
def __init__( self ,__UpperCAmelCase ) -> List[str]:
A__ = fn
def __call__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> str:
return self.fn(*UpperCAmelCase__ ,**UpperCAmelCase__ )
@classmethod
def snake_case__ ( self ,__UpperCAmelCase ) -> Union[str, Any]:
A__ = list(map(self ,scheduler.lr_lambdas ) )
| 221 |
"""simple docstring"""
import random
import unittest
import numpy as np
import torch
from diffusers import (
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionUpscalePipeline,
PNDMScheduler,
)
from diffusers.utils import floats_tensor
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class _lowerCAmelCase ( lowercase ,unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : str = "ssube/stable-diffusion-x4-upscaler-onnx"
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : List[str]=0 ):
__lowercase = floats_tensor((1, 3, 1_2_8, 1_2_8), rng=random.Random(UpperCAmelCase__ ) )
__lowercase = torch.manual_seed(UpperCAmelCase__ )
__lowercase = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 7.5,
"output_type": "numpy",
}
return inputs
def _lowercase ( self : Any ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1].flatten()
# started as 128, should now be 512
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] )
assert np.abs(image_slice - expected_slice ).max() < 1E-1
def _lowercase ( self : Optional[Any] ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
__lowercase = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.6_898_892, 0.59_240_556, 0.52_499_527, 0.58_866_215, 0.52_258_235, 0.52_572_715, 0.62_414_473, 0.6_174_387, 0.6_214_964] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def _lowercase ( self : int ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
__lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.7_659_278, 0.76_437_664, 0.75_579_107, 0.7_691_116, 0.77_666_986, 0.7_727_672, 0.7_758_664, 0.7_812_226, 0.76_942_515] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def _lowercase ( self : str ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
__lowercase = EulerDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def _lowercase ( self : Any ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
__lowercase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.77_424_496, 0.773_601, 0.7_645_288, 0.7_769_598, 0.7_772_739, 0.7_738_688, 0.78_187_233, 0.77_879_584, 0.767_043] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
@nightly
@require_onnxruntime
@require_torch_gpu
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@property
def _lowercase ( self : Tuple ):
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def _lowercase ( self : Dict ):
__lowercase = ort.SessionOptions()
__lowercase = False
return options
def _lowercase ( self : Dict ):
__lowercase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg" )
__lowercase = init_image.resize((1_2_8, 1_2_8) )
# using the PNDM scheduler by default
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(
"ssube/stable-diffusion-x4-upscaler-onnx", provider=self.gpu_provider, sess_options=self.gpu_options, )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = "A fantasy landscape, trending on artstation"
__lowercase = torch.manual_seed(0 )
__lowercase = pipe(
prompt=UpperCAmelCase__, image=UpperCAmelCase__, guidance_scale=7.5, num_inference_steps=1_0, generator=UpperCAmelCase__, output_type="np", )
__lowercase = output.images
__lowercase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert images.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array([0.4_883, 0.4_947, 0.4_980, 0.4_975, 0.4_982, 0.4_980, 0.5_000, 0.5_006, 0.4_972] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
def _lowercase ( self : str ):
__lowercase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg" )
__lowercase = init_image.resize((1_2_8, 1_2_8) )
__lowercase = LMSDiscreteScheduler.from_pretrained(
"ssube/stable-diffusion-x4-upscaler-onnx", subfolder="scheduler" )
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(
"ssube/stable-diffusion-x4-upscaler-onnx", scheduler=UpperCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = "A fantasy landscape, trending on artstation"
__lowercase = torch.manual_seed(0 )
__lowercase = pipe(
prompt=UpperCAmelCase__, image=UpperCAmelCase__, guidance_scale=7.5, num_inference_steps=2_0, generator=UpperCAmelCase__, output_type="np", )
__lowercase = output.images
__lowercase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert images.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.50_173_753, 0.50_223_356, 0.502_039, 0.50_233_036, 0.5_023_725, 0.5_022_601, 0.5_018_758, 0.50_234_085, 0.50_241_566] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
| 17 | 0 |
def lowerCAmelCase__( lowercase : list[list[int]] , lowercase : int , lowercase : int , lowercase : list[int] ) -> bool:
if graph[path[curr_ind - 1]][next_ver] == 0:
return False
# 2. Validate that next vertex is not already in path
return not any(vertex == next_ver for vertex in path )
def lowerCAmelCase__( lowercase : list[list[int]] , lowercase : list[int] , lowercase : int ) -> bool:
if curr_ind == len(UpperCamelCase_ ):
# return whether path exists between current and starting vertices
return graph[path[curr_ind - 1]][path[0]] == 1
# Recursive Step
for next_ver in range(0 , len(UpperCamelCase_ ) ):
if valid_connection(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ):
# Insert current vertex into path as next transition
__snake_case : Optional[int] = next_ver
# Validate created path
if util_hamilton_cycle(UpperCamelCase_ , UpperCamelCase_ , curr_ind + 1 ):
return True
# Backtrack
__snake_case : List[Any] = -1
return False
def lowerCAmelCase__( lowercase : list[list[int]] , lowercase : int = 0 ) -> list[int]:
__snake_case : List[str] = [-1] * (len(UpperCamelCase_ ) + 1)
# initialize start and end of path with starting index
__snake_case : Optional[Any] = start_index
# evaluate and if we find answer return path either return empty array
return path if util_hamilton_cycle(UpperCamelCase_ , UpperCamelCase_ , 1 ) else []
| 326 |
"""simple docstring"""
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
_a = datasets.utils.logging.get_logger(__name__)
_a = ['names', 'prefix']
_a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols']
_a = ['encoding_errors', 'on_bad_lines']
_a = ['date_format']
@dataclass
class _lowerCAmelCase ( datasets.BuilderConfig ):
"""simple docstring"""
__UpperCAmelCase : str = ","
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : Optional[Union[int, List[int], str]] = "infer"
__UpperCAmelCase : Optional[List[str]] = None
__UpperCAmelCase : Optional[List[str]] = None
__UpperCAmelCase : Optional[Union[int, str, List[int], List[str]]] = None
__UpperCAmelCase : Optional[Union[List[int], List[str]]] = None
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : bool = True
__UpperCAmelCase : Optional[Literal["c", "python", "pyarrow"]] = None
__UpperCAmelCase : Dict[Union[int, str], Callable[[Any], Any]] = None
__UpperCAmelCase : Optional[list] = None
__UpperCAmelCase : Optional[list] = None
__UpperCAmelCase : bool = False
__UpperCAmelCase : Optional[Union[int, List[int]]] = None
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : Optional[Union[str, List[str]]] = None
__UpperCAmelCase : bool = True
__UpperCAmelCase : bool = True
__UpperCAmelCase : bool = False
__UpperCAmelCase : bool = True
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : str = "."
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : str = '"'
__UpperCAmelCase : int = 0
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : bool = True
__UpperCAmelCase : bool = True
__UpperCAmelCase : int = 0
__UpperCAmelCase : bool = True
__UpperCAmelCase : bool = False
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : int = 1_0_0_0_0
__UpperCAmelCase : Optional[datasets.Features] = None
__UpperCAmelCase : Optional[str] = "strict"
__UpperCAmelCase : Literal["error", "warn", "skip"] = "error"
__UpperCAmelCase : Optional[str] = None
def _lowercase ( self : Tuple ):
if self.delimiter is not None:
__lowercase = self.delimiter
if self.column_names is not None:
__lowercase = self.column_names
@property
def _lowercase ( self : Union[str, Any] ):
__lowercase = {
"sep": self.sep,
"header": self.header,
"names": self.names,
"index_col": self.index_col,
"usecols": self.usecols,
"prefix": self.prefix,
"mangle_dupe_cols": self.mangle_dupe_cols,
"engine": self.engine,
"converters": self.converters,
"true_values": self.true_values,
"false_values": self.false_values,
"skipinitialspace": self.skipinitialspace,
"skiprows": self.skiprows,
"nrows": self.nrows,
"na_values": self.na_values,
"keep_default_na": self.keep_default_na,
"na_filter": self.na_filter,
"verbose": self.verbose,
"skip_blank_lines": self.skip_blank_lines,
"thousands": self.thousands,
"decimal": self.decimal,
"lineterminator": self.lineterminator,
"quotechar": self.quotechar,
"quoting": self.quoting,
"escapechar": self.escapechar,
"comment": self.comment,
"encoding": self.encoding,
"dialect": self.dialect,
"error_bad_lines": self.error_bad_lines,
"warn_bad_lines": self.warn_bad_lines,
"skipfooter": self.skipfooter,
"doublequote": self.doublequote,
"memory_map": self.memory_map,
"float_precision": self.float_precision,
"chunksize": self.chunksize,
"encoding_errors": self.encoding_errors,
"on_bad_lines": self.on_bad_lines,
"date_format": self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig(), UpperCAmelCase__ ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class _lowerCAmelCase ( datasets.ArrowBasedBuilder ):
"""simple docstring"""
__UpperCAmelCase : Tuple = CsvConfig
def _lowercase ( self : List[str] ):
return datasets.DatasetInfo(features=self.config.features )
def _lowercase ( self : List[Any], UpperCAmelCase__ : Dict ):
if not self.config.data_files:
raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" )
__lowercase = dl_manager.download_and_extract(self.config.data_files )
if isinstance(UpperCAmelCase__, (str, list, tuple) ):
__lowercase = data_files
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
__lowercase = [files]
__lowercase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files} )]
__lowercase = []
for split_name, files in data_files.items():
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
__lowercase = [files]
__lowercase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files]
splits.append(datasets.SplitGenerator(name=UpperCAmelCase__, gen_kwargs={"files": files} ) )
return splits
def _lowercase ( self : Dict, UpperCAmelCase__ : pa.Table ):
if self.config.features is not None:
__lowercase = self.config.features.arrow_schema
if all(not require_storage_cast(UpperCAmelCase__ ) for feature in self.config.features.values() ):
# cheaper cast
__lowercase = pa.Table.from_arrays([pa_table[field.name] for field in schema], schema=UpperCAmelCase__ )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
__lowercase = table_cast(UpperCAmelCase__, UpperCAmelCase__ )
return pa_table
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : List[str] ):
__lowercase = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
__lowercase = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(UpperCAmelCase__ ) else object
for name, dtype, feature in zip(schema.names, schema.types, self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase__ ) ):
__lowercase = pd.read_csv(UpperCAmelCase__, iterator=UpperCAmelCase__, dtype=UpperCAmelCase__, **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(UpperCAmelCase__ ):
__lowercase = pa.Table.from_pandas(UpperCAmelCase__ )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase__ )
except ValueError as e:
logger.error(F"""Failed to read file '{file}' with error {type(UpperCAmelCase__ )}: {e}""" )
raise
| 17 | 0 |
import os
import unittest
from transformers import FunnelTokenizer, FunnelTokenizerFast
from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowercase ( UpperCamelCase__,unittest.TestCase ):
_a = FunnelTokenizer
_a = FunnelTokenizerFast
_a = True
_a = True
def a__ ( self ) -> Optional[int]:
super().setUp()
_A : Tuple = [
"""<unk>""",
"""<cls>""",
"""<sep>""",
"""want""",
"""##want""",
"""##ed""",
"""wa""",
"""un""",
"""runn""",
"""##ing""",
""",""",
"""low""",
"""lowest""",
]
_A : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
def a__ ( self , **_a ) -> Union[str, Any]:
return FunnelTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase__ )
def a__ ( self , **_a ) -> int:
return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase__ )
def a__ ( self , _a ) -> int:
_A : Tuple = """UNwant\u00E9d,running"""
_A : Optional[Any] = """unwanted, running"""
return input_text, output_text
def a__ ( self ) -> Optional[int]:
_A : Tuple = self.tokenizer_class(self.vocab_file )
_A : Union[str, Any] = tokenizer.tokenize("""UNwant\u00E9d,running""" )
self.assertListEqual(UpperCAmelCase__ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , [7, 4, 5, 10, 8, 9] )
def a__ ( self ) -> int:
_A : Union[str, Any] = self.get_tokenizers(do_lower_case=UpperCAmelCase__ )
for tokenizer in tokenizers:
_A : Union[str, Any] = tokenizer("""UNwant\u00E9d,running""" )
_A : int = len(inputs["""input_ids"""] ) - 1
self.assertListEqual(inputs["""token_type_ids"""] , [2] + [0] * sentence_len )
_A : int = tokenizer("""UNwant\u00E9d,running""" , """UNwant\u00E9d,running""" )
self.assertListEqual(inputs["""token_type_ids"""] , [2] + [0] * sentence_len + [1] * sentence_len )
| 26 |
"""simple docstring"""
from scipy.stats import spearmanr
import datasets
_a = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n'
_a = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n'
_a = r'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class _lowerCAmelCase ( datasets.Metric ):
"""simple docstring"""
def _lowercase ( self : Dict ):
return datasets.MetricInfo(
description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features(
{
"predictions": datasets.Value("float" ),
"references": datasets.Value("float" ),
} ), reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"], )
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int]=False ):
__lowercase = spearmanr(UpperCAmelCase__, UpperCAmelCase__ )
if return_pvalue:
return {"spearmanr": results[0], "spearmanr_pvalue": results[1]}
else:
return {"spearmanr": results[0]}
| 17 | 0 |
"""simple docstring"""
import unittest
import numpy as np
import requests
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
a = False
if is_vision_available():
from PIL import Image
from transformers import PixaStructImageProcessor
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : int , _UpperCAmelCase : Any , _UpperCAmelCase : str=7 , _UpperCAmelCase : int=3 , _UpperCAmelCase : List[Any]=18 , _UpperCAmelCase : Optional[Any]=30 , _UpperCAmelCase : Optional[int]=400 , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[str]=None , ):
_A = size if size is not None else {'height': 20, 'width': 20}
_A = parent
_A = batch_size
_A = num_channels
_A = image_size
_A = min_resolution
_A = max_resolution
_A = size
_A = do_normalize
_A = do_convert_rgb
_A = [512, 1_024, 2_048, 4_096]
_A = patch_size if patch_size is not None else {'height': 16, 'width': 16}
def lowerCAmelCase_ ( self : Tuple ):
return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb}
def lowerCAmelCase_ ( self : Any ):
_A = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg'
_A = Image.open(requests.get(UpperCAmelCase__ , stream=UpperCAmelCase__ ).raw ).convert('RGB' )
return raw_image
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , )
@require_torch
@require_vision
class lowercase_ ( __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = PixaStructImageProcessor if is_vision_available() else None
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = PixaStructImageProcessingTester(self )
@property
def lowerCAmelCase_ ( self : Dict ):
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCAmelCase_ ( self : int ):
_A = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase__ , 'do_normalize' ) )
self.assertTrue(hasattr(UpperCAmelCase__ , 'do_convert_rgb' ) )
def lowerCAmelCase_ ( self : int ):
_A = self.image_processor_tester.prepare_dummy_image()
_A = self.image_processing_class(**self.image_processor_dict )
_A = 2_048
_A = image_processor(UpperCAmelCase__ , return_tensors='pt' , max_patches=UpperCAmelCase__ )
self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1E-3 , rtol=1E-3 ) )
def lowerCAmelCase_ ( self : Dict ):
# Initialize image_processor
_A = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_A = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase__ , Image.Image )
# Test not batched input
_A = (
(self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width'])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_A = image_processor(
image_inputs[0] , return_tensors='pt' , max_patches=UpperCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_A = image_processor(
UpperCAmelCase__ , return_tensors='pt' , max_patches=UpperCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def lowerCAmelCase_ ( self : Tuple ):
# Initialize image_processor
_A = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_A = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase__ , Image.Image )
# Test not batched input
_A = (
(self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width'])
* self.image_processor_tester.num_channels
) + 2
_A = True
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
with self.assertRaises(UpperCAmelCase__ ):
_A = image_processor(
image_inputs[0] , return_tensors='pt' , max_patches=UpperCAmelCase__ ).flattened_patches
_A = 'Hello'
_A = image_processor(
image_inputs[0] , return_tensors='pt' , max_patches=UpperCAmelCase__ , header_text=UpperCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_A = image_processor(
UpperCAmelCase__ , return_tensors='pt' , max_patches=UpperCAmelCase__ , header_text=UpperCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def lowerCAmelCase_ ( self : Any ):
# Initialize image_processor
_A = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_A = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase__ , np.ndarray )
_A = (
(self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width'])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_A = image_processor(
image_inputs[0] , return_tensors='pt' , max_patches=UpperCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_A = image_processor(
UpperCAmelCase__ , return_tensors='pt' , max_patches=UpperCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def lowerCAmelCase_ ( self : Dict ):
# Initialize image_processor
_A = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_A = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase__ , torch.Tensor )
# Test not batched input
_A = (
(self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width'])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_A = image_processor(
image_inputs[0] , return_tensors='pt' , max_patches=UpperCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_A = image_processor(
UpperCAmelCase__ , return_tensors='pt' , max_patches=UpperCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , )
@require_torch
@require_vision
class lowercase_ ( __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : List[Any] = PixaStructImageProcessor if is_vision_available() else None
def lowerCAmelCase_ ( self : str ):
_A = PixaStructImageProcessingTester(self , num_channels=4 )
_A = 3
@property
def lowerCAmelCase_ ( self : Optional[int] ):
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCAmelCase_ ( self : str ):
_A = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase__ , 'do_normalize' ) )
self.assertTrue(hasattr(UpperCAmelCase__ , 'do_convert_rgb' ) )
def lowerCAmelCase_ ( self : List[Any] ):
# Initialize image_processor
_A = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_A = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase__ , Image.Image )
# Test not batched input
_A = (
(self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width'])
* (self.image_processor_tester.num_channels - 1)
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_A = image_processor(
image_inputs[0] , return_tensors='pt' , max_patches=UpperCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_A = image_processor(
UpperCAmelCase__ , return_tensors='pt' , max_patches=UpperCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
| 315 |
"""simple docstring"""
from collections.abc import Sequence
def _A ( UpperCamelCase_ : Sequence[float], UpperCamelCase_ : float) -> float:
'''simple docstring'''
return sum(c * (x**i) for i, c in enumerate(UpperCamelCase_))
def _A ( UpperCamelCase_ : Sequence[float], UpperCamelCase_ : float) -> float:
'''simple docstring'''
__lowercase = 0.0
for coeff in reversed(UpperCamelCase_):
__lowercase = result * x + coeff
return result
if __name__ == "__main__":
_a = (0.0, 0.0, 5.0, 9.3, 7.0)
_a = 10.0
print(evaluate_poly(poly, x))
print(horner(poly, x))
| 17 | 0 |
from ...configuration_utils import PretrainedConfig
lowercase__ : int = {
'''google/tapas-base-finetuned-sqa''': (
'''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-wtq''': (
'''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-wikisql-supervised''': (
'''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-tabfact''': (
'''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json'''
),
}
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = "tapas"
def __init__( self , __SCREAMING_SNAKE_CASE=30522 , __SCREAMING_SNAKE_CASE=768 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=3072 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=1024 , __SCREAMING_SNAKE_CASE=[3, 256, 256, 2, 256, 256, 10] , __SCREAMING_SNAKE_CASE=0.0_2 , __SCREAMING_SNAKE_CASE=1e-12 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=1_0.0 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE="ratio" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=64 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ) ->List[Any]:
super().__init__(pad_token_id=UpperCAmelCase__ , **UpperCAmelCase__ )
# BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes)
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = hidden_act
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = type_vocab_sizes
lowerCAmelCase = initializer_range
lowerCAmelCase = layer_norm_eps
# Fine-tuning task hyperparameters
lowerCAmelCase = positive_label_weight
lowerCAmelCase = num_aggregation_labels
lowerCAmelCase = aggregation_loss_weight
lowerCAmelCase = use_answer_as_supervision
lowerCAmelCase = answer_loss_importance
lowerCAmelCase = use_normalized_answer_loss
lowerCAmelCase = huber_loss_delta
lowerCAmelCase = temperature
lowerCAmelCase = aggregation_temperature
lowerCAmelCase = use_gumbel_for_cells
lowerCAmelCase = use_gumbel_for_aggregation
lowerCAmelCase = average_approximation_function
lowerCAmelCase = cell_selection_preference
lowerCAmelCase = answer_loss_cutoff
lowerCAmelCase = max_num_rows
lowerCAmelCase = max_num_columns
lowerCAmelCase = average_logits_per_cell
lowerCAmelCase = select_one_column
lowerCAmelCase = allow_empty_column_selection
lowerCAmelCase = init_cell_selection_weights_to_zero
lowerCAmelCase = reset_position_index_per_cell
lowerCAmelCase = disable_per_token_loss
# Aggregation hyperparameters
lowerCAmelCase = aggregation_labels
lowerCAmelCase = no_aggregation_label_index
if isinstance(self.aggregation_labels , UpperCAmelCase__ ):
lowerCAmelCase = {int(UpperCAmelCase__ ): v for k, v in aggregation_labels.items()}
| 338 |
"""simple docstring"""
import argparse
import pytorch_lightning as pl
import torch
from torch import nn
from transformers import LongformerForQuestionAnswering, LongformerModel
class _lowerCAmelCase ( pl.LightningModule ):
"""simple docstring"""
def __init__( self : Optional[Any], UpperCAmelCase__ : str ):
super().__init__()
__lowercase = model
__lowercase = 2
__lowercase = nn.Linear(self.model.config.hidden_size, self.num_labels )
def _lowercase ( self : Optional[int] ):
pass
def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str, UpperCamelCase_ : str) -> str:
'''simple docstring'''
__lowercase = LongformerModel.from_pretrained(UpperCamelCase_)
__lowercase = LightningModel(UpperCamelCase_)
__lowercase = torch.load(UpperCamelCase_, map_location=torch.device("cpu"))
lightning_model.load_state_dict(ckpt["state_dict"])
# init longformer question answering model
__lowercase = LongformerForQuestionAnswering.from_pretrained(UpperCamelCase_)
# transfer weights
longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict())
longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict())
longformer_for_qa.eval()
# save model
longformer_for_qa.save_pretrained(UpperCamelCase_)
print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""")
if __name__ == "__main__":
_a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--longformer_model',
default=None,
type=str,
required=True,
help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.',
)
parser.add_argument(
'--longformer_question_answering_ckpt_path',
default=None,
type=str,
required=True,
help='Path the official PyTorch Lightning Checkpoint.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
_a = parser.parse_args()
convert_longformer_qa_checkpoint_to_pytorch(
args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path
)
| 17 | 0 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_segformer import SegformerImageProcessor
a__ : int =logging.get_logger(__name__)
class snake_case ( __lowerCamelCase ):
"""simple docstring"""
def __init__( self : int , *__A : Dict , **__A : Optional[Any] ):
warnings.warn(
'The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use SegformerImageProcessor instead.' , UpperCAmelCase__ , )
super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ )
| 53 |
"""simple docstring"""
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("TEST_SAGEMAKER" ,"False" ) ) is not True ,reason="Skipping test because should only be run when releasing minor transformers version" ,)
@pytest.mark.usefixtures("sm_env" )
@parameterized_class(
[
{
"framework": "pytorch",
"script": "run_glue_model_parallelism.py",
"model_name_or_path": "roberta-large",
"instance_type": "ml.p3dn.24xlarge",
"results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2},
},
{
"framework": "pytorch",
"script": "run_glue.py",
"model_name_or_path": "roberta-large",
"instance_type": "ml.p3dn.24xlarge",
"results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2},
},
] )
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def _lowercase ( self : Optional[int] ):
if self.framework == "pytorch":
subprocess.run(
F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split(), encoding="utf-8", check=UpperCAmelCase__, )
assert hasattr(self, "env" )
def _lowercase ( self : str, UpperCAmelCase__ : List[Any] ):
# configuration for running training on smdistributed Model Parallel
__lowercase = {
"enabled": True,
"processes_per_host": 8,
}
__lowercase = {
"enabled": True,
"parameters": {
"microbatches": 4,
"placement_strategy": "spread",
"pipeline": "interleaved",
"optimize": "speed",
"partitions": 4,
"ddp": True,
},
}
__lowercase = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options}
__lowercase = "trainer" if self.script == "run_glue.py" else "smtrainer"
# creates estimator
return HuggingFace(
entry_point=self.script, source_dir=self.env.test_path, role=self.env.role, image_uri=self.env.image_uri, base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""", instance_count=UpperCAmelCase__, instance_type=self.instance_type, debugger_hook_config=UpperCAmelCase__, hyperparameters={
**self.env.hyperparameters,
"model_name_or_path": self.model_name_or_path,
"max_steps": 5_0_0,
}, metric_definitions=self.env.metric_definitions, distribution=UpperCAmelCase__, py_version="py36", )
def _lowercase ( self : Tuple, UpperCAmelCase__ : int ):
TrainingJobAnalytics(UpperCAmelCase__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" )
@parameterized.expand([(1,)] )
def _lowercase ( self : str, UpperCAmelCase__ : Union[str, Any] ):
# create estimator
__lowercase = self.create_estimator(UpperCAmelCase__ )
# run training
estimator.fit()
# result dataframe
__lowercase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
__lowercase = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] )
__lowercase = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
__lowercase = (
Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds", 9_9_9_9_9_9 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy )
assert all(t <= self.results["eval_loss"] for t in eval_loss )
# dump tests result into json file to share in PR
with open(F"""{estimator.latest_training_job.name}.json""", "w" ) as outfile:
json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss}, UpperCAmelCase__ )
| 17 | 0 |
from math import pow, sqrt
def UpperCamelCase ( *__lowerCamelCase : float ):
snake_case : Optional[int] = len(UpperCamelCase_ ) > 0 and all(value > 0.0 for value in values )
return result
def UpperCamelCase ( __lowerCamelCase : float , __lowerCamelCase : float ):
return (
round(sqrt(molar_mass_a / molar_mass_a ) , 6 )
if validate(UpperCamelCase_ , UpperCamelCase_ )
else ValueError("Input Error: Molar mass values must greater than 0." )
)
def UpperCamelCase ( __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : float ):
return (
round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 )
if validate(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
else ValueError(
"Input Error: Molar mass and effusion rate values must greater than 0." )
)
def UpperCamelCase ( __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : float ):
return (
round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 )
if validate(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
else ValueError(
"Input Error: Molar mass and effusion rate values must greater than 0." )
)
def UpperCamelCase ( __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : float ):
return (
round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 )
if validate(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
else ValueError(
"Input Error: Molar mass and effusion rate values must greater than 0." )
)
def UpperCamelCase ( __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : float ):
return (
round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 )
if validate(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
else ValueError(
"Input Error: Molar mass and effusion rate values must greater than 0." )
)
| 59 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor
from .base import PipelineTool
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
__UpperCAmelCase : Tuple = "openai/whisper-base"
__UpperCAmelCase : Union[str, Any] = (
"This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the "
"transcribed text."
)
__UpperCAmelCase : List[str] = "transcriber"
__UpperCAmelCase : Optional[Any] = WhisperProcessor
__UpperCAmelCase : str = WhisperForConditionalGeneration
__UpperCAmelCase : List[str] = ["audio"]
__UpperCAmelCase : Tuple = ["text"]
def _lowercase ( self : str, UpperCAmelCase__ : int ):
return self.pre_processor(UpperCAmelCase__, return_tensors="pt" ).input_features
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Any] ):
return self.model.generate(inputs=UpperCAmelCase__ )
def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[int] ):
return self.pre_processor.batch_decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ )[0]
| 17 | 0 |
from __future__ import annotations
from collections.abc import Iterable, Iterator
from dataclasses import dataclass
lowerCAmelCase : Union[str, Any] = (3, 9, -11, 0, 7, 5, 1, -1)
lowerCAmelCase : str = (4, 6, 2, 0, 8, 10, 3, -2)
@dataclass
class __lowercase :
"""simple docstring"""
_UpperCAmelCase : int
_UpperCAmelCase : Node | None
class __lowercase :
"""simple docstring"""
def __init__( self : Optional[int] , lowerCAmelCase__ : Iterable[int]):
SCREAMING_SNAKE_CASE_: str = None
for i in sorted(UpperCAmelCase__ , reverse=UpperCAmelCase__):
SCREAMING_SNAKE_CASE_: Dict = Node(UpperCAmelCase__ , self.head)
def __iter__( self : str):
SCREAMING_SNAKE_CASE_: List[str] = self.head
while node:
yield node.data
SCREAMING_SNAKE_CASE_: Any = node.next_node
def __len__( self : Optional[int]):
return sum(1 for _ in self)
def __str__( self : List[str]):
return " -> ".join([str(UpperCAmelCase__) for node in self])
def A_ ( _UpperCAmelCase , _UpperCAmelCase ):
return SortedLinkedList(list(UpperCamelCase_ ) + list(UpperCamelCase_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase : Optional[Any] = SortedLinkedList
print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
| 13 |
"""simple docstring"""
import inspect
from typing import Optional, Union
import numpy as np
import PIL
import torch
from torch.nn import functional as F
from torchvision import transforms
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
DPMSolverMultistepScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.utils import (
PIL_INTERPOLATION,
randn_tensor,
)
def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str]) -> Optional[int]:
'''simple docstring'''
if isinstance(UpperCamelCase_, torch.Tensor):
return image
elif isinstance(UpperCamelCase_, PIL.Image.Image):
__lowercase = [image]
if isinstance(image[0], PIL.Image.Image):
__lowercase = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image]
__lowercase = np.concatenate(UpperCamelCase_, axis=0)
__lowercase = np.array(UpperCamelCase_).astype(np.floataa) / 255.0
__lowercase = image.transpose(0, 3, 1, 2)
__lowercase = 2.0 * image - 1.0
__lowercase = torch.from_numpy(UpperCamelCase_)
elif isinstance(image[0], torch.Tensor):
__lowercase = torch.cat(UpperCamelCase_, dim=0)
return image
def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : str, UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[Any]=0.9_995) -> int:
'''simple docstring'''
if not isinstance(UpperCamelCase_, np.ndarray):
__lowercase = True
__lowercase = va.device
__lowercase = va.cpu().numpy()
__lowercase = va.cpu().numpy()
__lowercase = np.sum(va * va / (np.linalg.norm(UpperCamelCase_) * np.linalg.norm(UpperCamelCase_)))
if np.abs(UpperCamelCase_) > DOT_THRESHOLD:
__lowercase = (1 - t) * va + t * va
else:
__lowercase = np.arccos(UpperCamelCase_)
__lowercase = np.sin(UpperCamelCase_)
__lowercase = theta_a * t
__lowercase = np.sin(UpperCamelCase_)
__lowercase = np.sin(theta_a - theta_t) / sin_theta_a
__lowercase = sin_theta_t / sin_theta_a
__lowercase = sa * va + sa * va
if inputs_are_torch:
__lowercase = torch.from_numpy(UpperCamelCase_).to(UpperCamelCase_)
return va
def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Union[str, Any]) -> int:
'''simple docstring'''
__lowercase = F.normalize(UpperCamelCase_, dim=-1)
__lowercase = F.normalize(UpperCamelCase_, dim=-1)
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)
def _A ( UpperCamelCase_ : Optional[int], UpperCamelCase_ : str) -> Optional[int]:
'''simple docstring'''
for param in model.parameters():
__lowercase = value
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
def __init__( self : Dict, UpperCAmelCase__ : AutoencoderKL, UpperCAmelCase__ : CLIPTextModel, UpperCAmelCase__ : CLIPModel, UpperCAmelCase__ : CLIPTokenizer, UpperCAmelCase__ : UNetaDConditionModel, UpperCAmelCase__ : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler], UpperCAmelCase__ : CLIPFeatureExtractor, UpperCAmelCase__ : Union[str, Any]=None, UpperCAmelCase__ : List[str]=None, UpperCAmelCase__ : Any=None, ):
super().__init__()
self.register_modules(
vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, clip_model=UpperCAmelCase__, tokenizer=UpperCAmelCase__, unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, feature_extractor=UpperCAmelCase__, coca_model=UpperCAmelCase__, coca_tokenizer=UpperCAmelCase__, coca_transform=UpperCAmelCase__, )
__lowercase = (
feature_extractor.size
if isinstance(feature_extractor.size, UpperCAmelCase__ )
else feature_extractor.size["shortest_edge"]
)
__lowercase = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std )
set_requires_grad(self.text_encoder, UpperCAmelCase__ )
set_requires_grad(self.clip_model, UpperCAmelCase__ )
def _lowercase ( self : Tuple, UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ):
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
__lowercase = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(UpperCAmelCase__ )
def _lowercase ( self : int ):
self.enable_attention_slicing(UpperCAmelCase__ )
def _lowercase ( self : str ):
set_requires_grad(self.vae, UpperCAmelCase__ )
def _lowercase ( self : Any ):
set_requires_grad(self.vae, UpperCAmelCase__ )
def _lowercase ( self : Union[str, Any] ):
set_requires_grad(self.unet, UpperCAmelCase__ )
def _lowercase ( self : Any ):
set_requires_grad(self.unet, UpperCAmelCase__ )
def _lowercase ( self : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : Optional[Any] ):
# get the original timestep using init_timestep
__lowercase = min(int(num_inference_steps * strength ), UpperCAmelCase__ )
__lowercase = max(num_inference_steps - init_timestep, 0 )
__lowercase = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def _lowercase ( self : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : int=None ):
if not isinstance(UpperCAmelCase__, torch.Tensor ):
raise ValueError(F"""`image` has to be of type `torch.Tensor` but is {type(UpperCAmelCase__ )}""" )
__lowercase = image.to(device=UpperCAmelCase__, dtype=UpperCAmelCase__ )
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
__lowercase = [
self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(UpperCAmelCase__ )
]
__lowercase = torch.cat(UpperCAmelCase__, dim=0 )
else:
__lowercase = self.vae.encode(UpperCAmelCase__ ).latent_dist.sample(UpperCAmelCase__ )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
__lowercase = 0.18_215 * init_latents
__lowercase = init_latents.repeat_interleave(UpperCAmelCase__, dim=0 )
__lowercase = randn_tensor(init_latents.shape, generator=UpperCAmelCase__, device=UpperCAmelCase__, dtype=UpperCAmelCase__ )
# get latents
__lowercase = self.scheduler.add_noise(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = init_latents
return latents
def _lowercase ( self : Optional[int], UpperCAmelCase__ : Dict ):
__lowercase = self.coca_transform(UpperCAmelCase__ ).unsqueeze(0 )
with torch.no_grad(), torch.cuda.amp.autocast():
__lowercase = self.coca_model.generate(transformed_image.to(device=self.device, dtype=self.coca_model.dtype ) )
__lowercase = self.coca_tokenizer.decode(generated[0].cpu().numpy() )
return generated.split("<end_of_text>" )[0].replace("<start_of_text>", "" ).rstrip(" .," )
def _lowercase ( self : Tuple, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Tuple ):
__lowercase = self.feature_extractor.preprocess(UpperCAmelCase__ )
__lowercase = torch.from_numpy(clip_image_input["pixel_values"][0] ).unsqueeze(0 ).to(self.device ).half()
__lowercase = self.clip_model.get_image_features(UpperCAmelCase__ )
__lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=UpperCAmelCase__ )
__lowercase = image_embeddings_clip.repeat_interleave(UpperCAmelCase__, dim=0 )
return image_embeddings_clip
@torch.enable_grad()
def _lowercase ( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[int], ):
__lowercase = latents.detach().requires_grad_()
__lowercase = self.scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ )
# predict the noise residual
__lowercase = self.unet(UpperCAmelCase__, UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__ ).sample
if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ):
__lowercase = self.scheduler.alphas_cumprod[timestep]
__lowercase = 1 - alpha_prod_t
# compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
__lowercase = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5
__lowercase = torch.sqrt(UpperCAmelCase__ )
__lowercase = pred_original_sample * (fac) + latents * (1 - fac)
elif isinstance(self.scheduler, UpperCAmelCase__ ):
__lowercase = self.scheduler.sigmas[index]
__lowercase = latents - sigma * noise_pred
else:
raise ValueError(F"""scheduler type {type(self.scheduler )} not supported""" )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
__lowercase = 1 / 0.18_215 * sample
__lowercase = self.vae.decode(UpperCAmelCase__ ).sample
__lowercase = (image / 2 + 0.5).clamp(0, 1 )
__lowercase = transforms.Resize(self.feature_extractor_size )(UpperCAmelCase__ )
__lowercase = self.normalize(UpperCAmelCase__ ).to(latents.dtype )
__lowercase = self.clip_model.get_image_features(UpperCAmelCase__ )
__lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=UpperCAmelCase__ )
__lowercase = spherical_dist_loss(UpperCAmelCase__, UpperCAmelCase__ ).mean() * clip_guidance_scale
__lowercase = -torch.autograd.grad(UpperCAmelCase__, UpperCAmelCase__ )[0]
if isinstance(self.scheduler, UpperCAmelCase__ ):
__lowercase = latents.detach() + grads * (sigma**2)
__lowercase = noise_pred_original
else:
__lowercase = noise_pred_original - torch.sqrt(UpperCAmelCase__ ) * grads
return noise_pred, latents
@torch.no_grad()
def __call__( self : str, UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image], UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image], UpperCAmelCase__ : Optional[str] = None, UpperCAmelCase__ : Optional[str] = None, UpperCAmelCase__ : Optional[int] = 5_1_2, UpperCAmelCase__ : Optional[int] = 5_1_2, UpperCAmelCase__ : float = 0.6, UpperCAmelCase__ : Optional[int] = 5_0, UpperCAmelCase__ : Optional[float] = 7.5, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[float] = 1_0_0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : float = 0.8, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, ):
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and len(UpperCAmelCase__ ) != batch_size:
raise ValueError(F"""You have passed {batch_size} batch_size, but only {len(UpperCAmelCase__ )} generators.""" )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" )
if isinstance(UpperCAmelCase__, torch.Generator ) and batch_size > 1:
__lowercase = [generator] + [None] * (batch_size - 1)
__lowercase = [
("model", self.coca_model is None),
("tokenizer", self.coca_tokenizer is None),
("transform", self.coca_transform is None),
]
__lowercase = [x[0] for x in coca_is_none if x[1]]
__lowercase = ", ".join(UpperCAmelCase__ )
# generate prompts with coca model if prompt is None
if content_prompt is None:
if len(UpperCAmelCase__ ):
raise ValueError(
F"""Content prompt is None and CoCa [{coca_is_none_str}] is None."""
F"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" )
__lowercase = self.get_image_description(UpperCAmelCase__ )
if style_prompt is None:
if len(UpperCAmelCase__ ):
raise ValueError(
F"""Style prompt is None and CoCa [{coca_is_none_str}] is None."""
F""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" )
__lowercase = self.get_image_description(UpperCAmelCase__ )
# get prompt text embeddings for content and style
__lowercase = self.tokenizer(
UpperCAmelCase__, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=UpperCAmelCase__, return_tensors="pt", )
__lowercase = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0]
__lowercase = self.tokenizer(
UpperCAmelCase__, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=UpperCAmelCase__, return_tensors="pt", )
__lowercase = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0]
__lowercase = slerp(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
# duplicate text embeddings for each generation per prompt
__lowercase = text_embeddings.repeat_interleave(UpperCAmelCase__, dim=0 )
# set timesteps
__lowercase = "offset" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() )
__lowercase = {}
if accepts_offset:
__lowercase = 1
self.scheduler.set_timesteps(UpperCAmelCase__, **UpperCAmelCase__ )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
self.scheduler.timesteps.to(self.device )
__lowercase ,__lowercase = self.get_timesteps(UpperCAmelCase__, UpperCAmelCase__, self.device )
__lowercase = timesteps[:1].repeat(UpperCAmelCase__ )
# Preprocess image
__lowercase = preprocess(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = self.prepare_latents(
UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, text_embeddings.dtype, self.device, UpperCAmelCase__ )
__lowercase = preprocess(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = self.prepare_latents(
UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, text_embeddings.dtype, self.device, UpperCAmelCase__ )
__lowercase = slerp(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
if clip_guidance_scale > 0:
__lowercase = self.get_clip_image_embeddings(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = self.get_clip_image_embeddings(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = slerp(
UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
__lowercase = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
__lowercase = content_text_input.input_ids.shape[-1]
__lowercase = self.tokenizer([""], padding="max_length", max_length=UpperCAmelCase__, return_tensors="pt" )
__lowercase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt
__lowercase = uncond_embeddings.repeat_interleave(UpperCAmelCase__, dim=0 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
__lowercase = torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
__lowercase = (batch_size, self.unet.config.in_channels, height // 8, width // 8)
__lowercase = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not work reproducibly on mps
__lowercase = torch.randn(UpperCAmelCase__, generator=UpperCAmelCase__, device="cpu", dtype=UpperCAmelCase__ ).to(
self.device )
else:
__lowercase = torch.randn(UpperCAmelCase__, generator=UpperCAmelCase__, device=self.device, dtype=UpperCAmelCase__ )
else:
if latents.shape != latents_shape:
raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" )
__lowercase = latents.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
__lowercase = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
__lowercase = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
__lowercase = {}
if accepts_eta:
__lowercase = eta
# check if the scheduler accepts generator
__lowercase = "generator" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
if accepts_generator:
__lowercase = generator
with self.progress_bar(total=UpperCAmelCase__ ):
for i, t in enumerate(UpperCAmelCase__ ):
# expand the latents if we are doing classifier free guidance
__lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
__lowercase = self.scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ )
# predict the noise residual
__lowercase = self.unet(UpperCAmelCase__, UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__ ).sample
# perform classifier free guidance
if do_classifier_free_guidance:
__lowercase ,__lowercase = noise_pred.chunk(2 )
__lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# perform clip guidance
if clip_guidance_scale > 0:
__lowercase = (
text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings
)
__lowercase ,__lowercase = self.cond_fn(
UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, )
# compute the previous noisy sample x_t -> x_t-1
__lowercase = self.scheduler.step(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, **UpperCAmelCase__ ).prev_sample
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
__lowercase = 1 / 0.18_215 * latents
__lowercase = self.vae.decode(UpperCAmelCase__ ).sample
__lowercase = (image / 2 + 0.5).clamp(0, 1 )
__lowercase = image.cpu().permute(0, 2, 3, 1 ).numpy()
if output_type == "pil":
__lowercase = self.numpy_to_pil(UpperCAmelCase__ )
if not return_dict:
return (image, None)
return StableDiffusionPipelineOutput(images=UpperCAmelCase__, nsfw_content_detected=UpperCAmelCase__ )
| 17 | 0 |
import unittest
from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class __A :
"""simple docstring"""
@staticmethod
def __lowercase ( *lowerCamelCase__ , **lowerCamelCase__ ):
"""simple docstring"""
pass
@is_pipeline_test
@require_vision
@require_torch
class __A ( unittest.TestCase ):
"""simple docstring"""
UpperCamelCase__ : str =MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
__UpperCamelCase : str =pipeline(
'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection' )
__UpperCamelCase : Union[str, Any] =[
{
'image': './tests/fixtures/tests_samples/COCO/000000039769.png',
'candidate_labels': ['cat', 'remote', 'couch'],
}
]
return object_detector, examples
def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
__UpperCamelCase : Optional[Any] =object_detector(examples[0] , threshold=0.0 )
__UpperCamelCase : List[Any] =len(UpperCAmelCase__ )
self.assertGreater(UpperCAmelCase__ , 0 )
self.assertEqual(
UpperCAmelCase__ , [
{
'score': ANY(UpperCAmelCase__ ),
'label': ANY(UpperCAmelCase__ ),
'box': {'xmin': ANY(UpperCAmelCase__ ), 'ymin': ANY(UpperCAmelCase__ ), 'xmax': ANY(UpperCAmelCase__ ), 'ymax': ANY(UpperCAmelCase__ )},
}
for i in range(UpperCAmelCase__ )
] , )
@require_tf
@unittest.skip('Zero Shot Object Detection not implemented in TF' )
def __lowercase ( self ):
"""simple docstring"""
pass
@require_torch
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : Union[str, Any] =pipeline(
'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection' )
__UpperCamelCase : List[str] =object_detector(
'./tests/fixtures/tests_samples/COCO/000000039769.png' , candidate_labels=['cat', 'remote', 'couch'] , threshold=0.64 , )
self.assertEqual(
nested_simplify(UpperCAmelCase__ , decimals=4 ) , [
{'score': 0.7_235, 'label': 'cat', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}},
{'score': 0.7_218, 'label': 'remote', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}},
{'score': 0.7_184, 'label': 'couch', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}},
{'score': 0.6_748, 'label': 'remote', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}},
{'score': 0.6_656, 'label': 'cat', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}},
{'score': 0.6_614, 'label': 'couch', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}},
{'score': 0.6_456, 'label': 'remote', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}},
{'score': 0.642, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 274, 'xmax': 93, 'ymax': 297}},
{'score': 0.6_419, 'label': 'cat', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}},
] , )
__UpperCamelCase : str =object_detector(
[
{
'image': './tests/fixtures/tests_samples/COCO/000000039769.png',
'candidate_labels': ['cat', 'remote', 'couch'],
}
] , threshold=0.64 , )
self.assertEqual(
nested_simplify(UpperCAmelCase__ , decimals=4 ) , [
[
{'score': 0.7_235, 'label': 'cat', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}},
{'score': 0.7_218, 'label': 'remote', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}},
{'score': 0.7_184, 'label': 'couch', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}},
{'score': 0.6_748, 'label': 'remote', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}},
{'score': 0.6_656, 'label': 'cat', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}},
{'score': 0.6_614, 'label': 'couch', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}},
{'score': 0.6_456, 'label': 'remote', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}},
{'score': 0.642, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 274, 'xmax': 93, 'ymax': 297}},
{'score': 0.6_419, 'label': 'cat', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}},
]
] , )
@require_torch
@slow
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : Tuple =pipeline('zero-shot-object-detection' )
__UpperCamelCase : Dict =object_detector(
'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , )
self.assertEqual(
nested_simplify(UpperCAmelCase__ , decimals=4 ) , [
{'score': 0.2_868, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}},
{'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}},
{'score': 0.2_537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}},
{'score': 0.1_474, 'label': 'remote', 'box': {'xmin': 335, 'ymin': 74, 'xmax': 371, 'ymax': 187}},
{'score': 0.1_208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}},
] , )
__UpperCamelCase : Optional[Any] =object_detector(
[
{
'image': 'http://images.cocodataset.org/val2017/000000039769.jpg',
'candidate_labels': ['cat', 'remote', 'couch'],
},
{
'image': 'http://images.cocodataset.org/val2017/000000039769.jpg',
'candidate_labels': ['cat', 'remote', 'couch'],
},
] , )
self.assertEqual(
nested_simplify(UpperCAmelCase__ , decimals=4 ) , [
[
{'score': 0.2_868, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}},
{'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}},
{'score': 0.2_537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}},
{'score': 0.1_474, 'label': 'remote', 'box': {'xmin': 335, 'ymin': 74, 'xmax': 371, 'ymax': 187}},
{'score': 0.1_208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}},
],
[
{'score': 0.2_868, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}},
{'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}},
{'score': 0.2_537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}},
{'score': 0.1_474, 'label': 'remote', 'box': {'xmin': 335, 'ymin': 74, 'xmax': 371, 'ymax': 187}},
{'score': 0.1_208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}},
],
] , )
@require_tf
@unittest.skip('Zero Shot Object Detection not implemented in TF' )
def __lowercase ( self ):
"""simple docstring"""
pass
@require_torch
@slow
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : int =0.2
__UpperCamelCase : Optional[int] =pipeline('zero-shot-object-detection' )
__UpperCamelCase : Tuple =object_detector(
'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , threshold=UpperCAmelCase__ , )
self.assertEqual(
nested_simplify(UpperCAmelCase__ , decimals=4 ) , [
{'score': 0.2_868, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}},
{'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}},
{'score': 0.2_537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}},
] , )
@require_torch
@slow
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : List[Any] =2
__UpperCamelCase : str =pipeline('zero-shot-object-detection' )
__UpperCamelCase : List[Any] =object_detector(
'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , top_k=UpperCAmelCase__ , )
self.assertEqual(
nested_simplify(UpperCAmelCase__ , decimals=4 ) , [
{'score': 0.2_868, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}},
{'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}},
] , )
| 71 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class _lowerCAmelCase :
"""simple docstring"""
__UpperCAmelCase : Tuple = XGLMConfig
__UpperCAmelCase : Optional[Any] = {}
__UpperCAmelCase : Union[str, Any] = "gelu"
def __init__( self : Optional[int], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int]=1_4, UpperCAmelCase__ : str=7, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[Any]=True, UpperCAmelCase__ : int=True, UpperCAmelCase__ : List[str]=9_9, UpperCAmelCase__ : Union[str, Any]=3_2, UpperCAmelCase__ : Union[str, Any]=2, UpperCAmelCase__ : Union[str, Any]=4, UpperCAmelCase__ : Tuple=3_7, UpperCAmelCase__ : List[Any]="gelu", UpperCAmelCase__ : List[str]=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Tuple=5_1_2, UpperCAmelCase__ : Optional[Any]=0.02, ):
__lowercase = parent
__lowercase = batch_size
__lowercase = seq_length
__lowercase = is_training
__lowercase = use_input_mask
__lowercase = use_labels
__lowercase = vocab_size
__lowercase = d_model
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = ffn_dim
__lowercase = activation_function
__lowercase = activation_dropout
__lowercase = attention_dropout
__lowercase = max_position_embeddings
__lowercase = initializer_range
__lowercase = None
__lowercase = 0
__lowercase = 2
__lowercase = 1
def _lowercase ( self : Union[str, Any] ):
return XGLMConfig.from_pretrained("facebook/xglm-564M" )
def _lowercase ( self : Tuple ):
__lowercase = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length], self.vocab_size ), clip_value_min=0, clip_value_max=3 )
__lowercase = None
if self.use_input_mask:
__lowercase = random_attention_mask([self.batch_size, self.seq_length] )
__lowercase = self.get_config()
__lowercase = floats_tensor([self.num_hidden_layers, self.num_attention_heads], 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def _lowercase ( self : List[Any] ):
return XGLMConfig(
vocab_size=self.vocab_size, d_model=self.hidden_size, num_layers=self.num_hidden_layers, attention_heads=self.num_attention_heads, ffn_dim=self.ffn_dim, activation_function=self.activation_function, activation_dropout=self.activation_dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, use_cache=UpperCAmelCase__, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, return_dict=UpperCAmelCase__, )
def _lowercase ( self : Dict ):
__lowercase = self.prepare_config_and_inputs()
(
(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,
) = config_and_inputs
__lowercase = {
"input_ids": input_ids,
"head_mask": head_mask,
}
return config, inputs_dict
@require_tf
class _lowerCAmelCase ( lowercase ,lowercase ,unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
__UpperCAmelCase : List[str] = (TFXGLMForCausalLM,) if is_tf_available() else ()
__UpperCAmelCase : Any = (
{"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {}
)
__UpperCAmelCase : Optional[Any] = False
__UpperCAmelCase : List[str] = False
__UpperCAmelCase : int = False
def _lowercase ( self : Optional[Any] ):
__lowercase = TFXGLMModelTester(self )
__lowercase = ConfigTester(self, config_class=UpperCAmelCase__, n_embd=3_7 )
def _lowercase ( self : Any ):
self.config_tester.run_common_tests()
@slow
def _lowercase ( self : List[str] ):
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowercase = TFXGLMModel.from_pretrained(UpperCAmelCase__ )
self.assertIsNotNone(UpperCAmelCase__ )
@unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." )
def _lowercase ( self : int ):
super().test_resize_token_embeddings()
@require_tf
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[int]=True ):
__lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
__lowercase = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]], dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
__lowercase = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1]
# fmt: on
__lowercase = model.generate(UpperCAmelCase__, do_sample=UpperCAmelCase__, num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist(), UpperCAmelCase__ )
@slow
def _lowercase ( self : List[Any] ):
__lowercase = XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
__lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
tf.random.set_seed(0 )
__lowercase = tokenizer("Today is a nice day and", return_tensors="tf" )
__lowercase = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(":/CPU:0" ):
__lowercase = model.generate(UpperCAmelCase__, do_sample=UpperCAmelCase__, seed=[7, 0] )
__lowercase = tokenizer.decode(output_ids[0], skip_special_tokens=UpperCAmelCase__ )
__lowercase = (
"Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due"
)
self.assertEqual(UpperCAmelCase__, UpperCAmelCase__ )
@slow
def _lowercase ( self : Dict ):
__lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
__lowercase = XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
__lowercase = "left"
# use different length sentences to test batching
__lowercase = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When",
"Hello, my dog is a little",
]
__lowercase = tokenizer(UpperCAmelCase__, return_tensors="tf", padding=UpperCAmelCase__ )
__lowercase = inputs["input_ids"]
__lowercase = model.generate(input_ids=UpperCAmelCase__, attention_mask=inputs["attention_mask"], max_new_tokens=1_2 )
__lowercase = tokenizer(sentences[0], return_tensors="tf" ).input_ids
__lowercase = model.generate(input_ids=UpperCAmelCase__, max_new_tokens=1_2 )
__lowercase = tokenizer(sentences[1], return_tensors="tf" ).input_ids
__lowercase = model.generate(input_ids=UpperCAmelCase__, max_new_tokens=1_2 )
__lowercase = tokenizer.batch_decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ )
__lowercase = tokenizer.decode(output_non_padded[0], skip_special_tokens=UpperCAmelCase__ )
__lowercase = tokenizer.decode(output_padded[0], skip_special_tokens=UpperCAmelCase__ )
__lowercase = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When left padding is applied, the sequence will be "
"a single",
"Hello, my dog is a little bit of a shy one, but he is very friendly",
]
self.assertListEqual(UpperCAmelCase__, UpperCAmelCase__ )
self.assertListEqual(UpperCAmelCase__, [non_padded_sentence, padded_sentence] )
| 17 | 0 |
'''simple docstring'''
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import PIL
from PIL import Image
from ...utils import (
BaseOutput,
OptionalDependencyNotAvailable,
is_flax_available,
is_k_diffusion_available,
is_k_diffusion_version,
is_onnx_available,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
@dataclass
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : Union[List[PIL.Image.Image], np.ndarray]
_SCREAMING_SNAKE_CASE : Optional[List[bool]]
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_cycle_diffusion import CycleDiffusionPipeline
from .pipeline_stable_diffusion import StableDiffusionPipeline
from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline
from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline
from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline
from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy
from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline
from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline
from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline
from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline
from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline
from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline
from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline
from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline
from .pipeline_stable_unclip import StableUnCLIPPipeline
from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline
from .safety_checker import StableDiffusionSafetyChecker
from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline
else:
from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.26.0''')):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import (
StableDiffusionDepthaImgPipeline,
StableDiffusionDiffEditPipeline,
StableDiffusionPixaPixZeroPipeline,
)
else:
from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline
from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline
from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline
try:
if not (
is_torch_available()
and is_transformers_available()
and is_k_diffusion_available()
and is_k_diffusion_version('''>=''', '''0.0.12''')
):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403
else:
from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline
try:
if not (is_transformers_available() and is_onnx_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_onnx_objects import * # noqa F403
else:
from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline
from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline
from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline
from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy
from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline
if is_transformers_available() and is_flax_available():
import flax
@flax.struct.dataclass
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : np.ndarray
_SCREAMING_SNAKE_CASE : List[bool]
from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState
from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline
from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline
from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline
from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
| 254 |
"""simple docstring"""
import time
from contextlib import contextmanager
from pathlib import Path
import pytest
import requests
from huggingface_hub.hf_api import HfApi, HfFolder
_a = '__DUMMY_TRANSFORMERS_USER__'
_a = 'Dummy User'
_a = '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'
_a = 'https://hub-ci.huggingface.co'
_a = CI_HUB_ENDPOINT + '/datasets/{repo_id}/resolve/{revision}/{path}'
_a = CI_HUB_ENDPOINT + '/{repo_id}/resolve/{revision}/{filename}'
_a = Path('~/.huggingface/hub_ci_token').expanduser()
@pytest.fixture
def _A ( UpperCamelCase_ : List[Any]) -> Tuple:
'''simple docstring'''
monkeypatch.setattr(
"huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE", UpperCamelCase_)
@pytest.fixture
def _A ( UpperCamelCase_ : int) -> List[Any]:
'''simple docstring'''
monkeypatch.setattr("datasets.config.HF_ENDPOINT", UpperCamelCase_)
monkeypatch.setattr("datasets.config.HUB_DATASETS_URL", UpperCamelCase_)
@pytest.fixture
def _A ( UpperCamelCase_ : str) -> Dict:
'''simple docstring'''
monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token", UpperCamelCase_)
@pytest.fixture
def _A ( UpperCamelCase_ : Optional[Any], UpperCamelCase_ : List[Any]) -> List[str]:
'''simple docstring'''
HfFolder.save_token(UpperCamelCase_)
yield
HfFolder.delete_token()
@pytest.fixture(scope="session")
def _A ( ) -> List[Any]:
'''simple docstring'''
return HfApi(endpoint=UpperCamelCase_)
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : HfApi) -> List[Any]:
'''simple docstring'''
__lowercase = HfFolder.get_token()
HfFolder.save_token(UpperCamelCase_)
yield CI_HUB_USER_TOKEN
if previous_token is not None:
HfFolder.save_token(UpperCamelCase_)
@pytest.fixture
def _A ( UpperCamelCase_ : Dict) -> int:
'''simple docstring'''
def _cleanup_repo(UpperCamelCase_ : Optional[int]):
hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset")
return _cleanup_repo
@pytest.fixture
def _A ( UpperCamelCase_ : str) -> Any:
'''simple docstring'''
@contextmanager
def _temporary_repo(UpperCamelCase_ : Any):
try:
yield repo_id
finally:
cleanup_repo(UpperCamelCase_)
return _temporary_repo
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : str, UpperCamelCase_ : Optional[int]) -> List[Any]:
'''simple docstring'''
__lowercase = F"""repo_txt_data-{int(time.time() * 10E3)}"""
__lowercase = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_)
hf_api.upload_file(
token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data/text_data.txt", repo_id=UpperCamelCase_, repo_type="dataset", )
yield repo_id
try:
hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset")
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : Any, UpperCamelCase_ : Dict) -> Optional[int]:
'''simple docstring'''
return hf_private_dataset_repo_txt_data_
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : int, UpperCamelCase_ : Optional[int]) -> int:
'''simple docstring'''
__lowercase = F"""repo_zipped_txt_data-{int(time.time() * 10E3)}"""
__lowercase = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_)
hf_api.upload_file(
token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data.zip", repo_id=UpperCamelCase_, repo_type="dataset", )
yield repo_id
try:
hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset")
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Dict, UpperCamelCase_ : Any) -> int:
'''simple docstring'''
return hf_private_dataset_repo_zipped_txt_data_
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : List[str], UpperCamelCase_ : List[str]) -> List[Any]:
'''simple docstring'''
__lowercase = F"""repo_zipped_img_data-{int(time.time() * 10E3)}"""
__lowercase = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_)
hf_api.upload_file(
token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data.zip", repo_id=UpperCamelCase_, repo_type="dataset", )
yield repo_id
try:
hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset")
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str], UpperCamelCase_ : List[str]) -> str:
'''simple docstring'''
return hf_private_dataset_repo_zipped_img_data_
| 17 | 0 |
'''simple docstring'''
def __lowerCamelCase ( _lowercase , _lowercase ) -> float:
def get_matched_characters(_lowercase , _lowercase ) -> str:
UpperCAmelCase : List[Any] = []
UpperCAmelCase : Tuple = min(len(_stra ) , len(_stra ) ) // 2
for i, l in enumerate(_stra ):
UpperCAmelCase : List[str] = int(max(0 , i - limit ) )
UpperCAmelCase : Any = int(min(i + limit + 1 , len(_stra ) ) )
if l in _stra[left:right]:
matched.append(UpperCamelCase_ )
UpperCAmelCase : Optional[Any] = F'''{_stra[0:_stra.index(UpperCamelCase_ )]} {_stra[_stra.index(UpperCamelCase_ ) + 1:]}'''
return "".join(UpperCamelCase_ )
# matching characters
UpperCAmelCase : List[Any] = get_matched_characters(UpperCamelCase_ , UpperCamelCase_ )
UpperCAmelCase : Union[str, Any] = get_matched_characters(UpperCamelCase_ , UpperCamelCase_ )
UpperCAmelCase : List[Any] = len(UpperCamelCase_ )
# transposition
UpperCAmelCase : Dict = (
len([(ca, ca) for ca, ca in zip(UpperCamelCase_ , UpperCamelCase_ ) if ca != ca] ) // 2
)
if not match_count:
UpperCAmelCase : Tuple = 0.0
else:
UpperCAmelCase : Any = (
1
/ 3
* (
match_count / len(UpperCamelCase_ )
+ match_count / len(UpperCamelCase_ )
+ (match_count - transpositions) / match_count
)
)
# common prefix up to 4 characters
UpperCAmelCase : Any = 0
for ca, ca in zip(stra[:4] , stra[:4] ):
if ca == ca:
prefix_len += 1
else:
break
return jaro + 0.1 * prefix_len * (1 - jaro)
if __name__ == "__main__":
import doctest
doctest.testmod()
print(jaro_winkler("""hello""", """world"""))
| 265 |
"""simple docstring"""
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_a = logging.get_logger(__name__)
_a = {
'huggingface/time-series-transformer-tourism-monthly': (
'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json'
),
# See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer
}
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
__UpperCAmelCase : int = "time_series_transformer"
__UpperCAmelCase : Any = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
"num_hidden_layers": "encoder_layers",
}
def __init__( self : int, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : str = "student_t", UpperCAmelCase__ : str = "nll", UpperCAmelCase__ : int = 1, UpperCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7], UpperCAmelCase__ : Optional[Union[str, bool]] = "mean", UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : int = 3_2, UpperCAmelCase__ : int = 3_2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : str = "gelu", UpperCAmelCase__ : int = 6_4, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : int = 1_0_0, UpperCAmelCase__ : float = 0.02, UpperCAmelCase__ : Any=True, **UpperCAmelCase__ : List[str], ):
# time series specific configuration
__lowercase = prediction_length
__lowercase = context_length or prediction_length
__lowercase = distribution_output
__lowercase = loss
__lowercase = input_size
__lowercase = num_time_features
__lowercase = lags_sequence
__lowercase = scaling
__lowercase = num_dynamic_real_features
__lowercase = num_static_real_features
__lowercase = num_static_categorical_features
if cardinality and num_static_categorical_features > 0:
if len(UpperCAmelCase__ ) != num_static_categorical_features:
raise ValueError(
"The cardinality should be a list of the same length as `num_static_categorical_features`" )
__lowercase = cardinality
else:
__lowercase = [0]
if embedding_dimension and num_static_categorical_features > 0:
if len(UpperCAmelCase__ ) != num_static_categorical_features:
raise ValueError(
"The embedding dimension should be a list of the same length as `num_static_categorical_features`" )
__lowercase = embedding_dimension
else:
__lowercase = [min(5_0, (cat + 1) // 2 ) for cat in self.cardinality]
__lowercase = num_parallel_samples
# Transformer architecture configuration
__lowercase = input_size * len(UpperCAmelCase__ ) + self._number_of_features
__lowercase = d_model
__lowercase = encoder_attention_heads
__lowercase = decoder_attention_heads
__lowercase = encoder_ffn_dim
__lowercase = decoder_ffn_dim
__lowercase = encoder_layers
__lowercase = decoder_layers
__lowercase = dropout
__lowercase = attention_dropout
__lowercase = activation_dropout
__lowercase = encoder_layerdrop
__lowercase = decoder_layerdrop
__lowercase = activation_function
__lowercase = init_std
__lowercase = use_cache
super().__init__(is_encoder_decoder=UpperCAmelCase__, **UpperCAmelCase__ )
@property
def _lowercase ( self : Optional[Any] ):
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 17 | 0 |
"""simple docstring"""
import inspect
import unittest
from transformers import DecisionTransformerConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import DecisionTransformerModel
from transformers.models.decision_transformer.modeling_decision_transformer import (
DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
class UpperCamelCase__:
def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=13 ,__UpperCAmelCase=7 ,__UpperCAmelCase=6 ,__UpperCAmelCase=17 ,__UpperCAmelCase=23 ,__UpperCAmelCase=11 ,__UpperCAmelCase=True ,) -> Optional[int]:
A__ = parent
A__ = batch_size
A__ = seq_length
A__ = act_dim
A__ = state_dim
A__ = hidden_size
A__ = max_length
A__ = is_training
def snake_case__ ( self ) -> int:
A__ = floats_tensor((self.batch_size, self.seq_length, self.state_dim) )
A__ = floats_tensor((self.batch_size, self.seq_length, self.act_dim) )
A__ = floats_tensor((self.batch_size, self.seq_length, 1) )
A__ = floats_tensor((self.batch_size, self.seq_length, 1) )
A__ = ids_tensor((self.batch_size, self.seq_length) ,vocab_size=10_00 )
A__ = random_attention_mask((self.batch_size, self.seq_length) )
A__ = self.get_config()
return (
config,
states,
actions,
rewards,
returns_to_go,
timesteps,
attention_mask,
)
def snake_case__ ( self ) -> Optional[int]:
return DecisionTransformerConfig(
batch_size=self.batch_size ,seq_length=self.seq_length ,act_dim=self.act_dim ,state_dim=self.state_dim ,hidden_size=self.hidden_size ,max_length=self.max_length ,)
def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,) -> str:
A__ = DecisionTransformerModel(config=UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
A__ = model(UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ )
self.parent.assertEqual(result.state_preds.shape ,states.shape )
self.parent.assertEqual(result.action_preds.shape ,actions.shape )
self.parent.assertEqual(result.return_preds.shape ,returns_to_go.shape )
self.parent.assertEqual(
result.last_hidden_state.shape ,(self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions
def snake_case__ ( self ) -> Any:
A__ = self.prepare_config_and_inputs()
(
(
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) ,
) = config_and_inputs
A__ = {
'states': states,
'actions': actions,
'rewards': rewards,
'returns_to_go': returns_to_go,
'timesteps': timesteps,
'attention_mask': attention_mask,
}
return config, inputs_dict
@require_torch
class UpperCamelCase__( __A , __A , __A , unittest.TestCase ):
lowerCAmelCase__ : Tuple = (DecisionTransformerModel,) if is_torch_available() else ()
lowerCAmelCase__ : int = ()
lowerCAmelCase__ : Tuple = {"feature-extraction": DecisionTransformerModel} if is_torch_available() else {}
# Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids
lowerCAmelCase__ : str = False
# Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features
lowerCAmelCase__ : str = False
lowerCAmelCase__ : str = False
lowerCAmelCase__ : int = False
lowerCAmelCase__ : Any = False
lowerCAmelCase__ : Union[str, Any] = False
lowerCAmelCase__ : List[Any] = False
lowerCAmelCase__ : Any = False
lowerCAmelCase__ : Any = False
lowerCAmelCase__ : Optional[int] = False
def snake_case__ ( self ) -> List[str]:
A__ = DecisionTransformerModelTester(self )
A__ = ConfigTester(self ,config_class=UpperCAmelCase__ ,hidden_size=37 )
def snake_case__ ( self ) -> int:
self.config_tester.run_common_tests()
def snake_case__ ( self ) -> Tuple:
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase__ )
@slow
def snake_case__ ( self ) -> Optional[Any]:
for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A__ = DecisionTransformerModel.from_pretrained(UpperCAmelCase__ )
self.assertIsNotNone(UpperCAmelCase__ )
def snake_case__ ( self ) -> Tuple:
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A__ = model_class(UpperCAmelCase__ )
A__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A__ = [*signature.parameters.keys()]
A__ = [
'states',
'actions',
'rewards',
'returns_to_go',
'timesteps',
'attention_mask',
]
self.assertListEqual(arg_names[: len(UpperCAmelCase__ )] ,UpperCAmelCase__ )
@require_torch
class UpperCamelCase__( unittest.TestCase ):
@slow
def snake_case__ ( self ) -> Tuple:
A__ = 2 # number of steps of autoregressive prediction we will perform
A__ = 10 # defined by the RL environment, may be normalized
A__ = DecisionTransformerModel.from_pretrained('edbeeching/decision-transformer-gym-hopper-expert' )
A__ = model.to(UpperCAmelCase__ )
A__ = model.config
torch.manual_seed(0 )
A__ = torch.randn(1 ,1 ,config.state_dim ).to(device=UpperCAmelCase__ ,dtype=torch.floataa ) # env.reset()
A__ = torch.tensor(
[[0.2_4_2_7_9_3, -0.2_8_6_9_3_0_7_4, 0.8_7_4_2_6_1_3], [0.6_7_8_1_5_2_7_4, -0.0_8_1_0_1_0_8_5, -0.1_2_9_5_2_1_4_7]] ,device=UpperCAmelCase__ )
A__ = torch.tensor(UpperCAmelCase__ ,device=UpperCAmelCase__ ,dtype=torch.floataa ).reshape(1 ,1 ,1 )
A__ = state
A__ = torch.zeros(1 ,0 ,config.act_dim ,device=UpperCAmelCase__ ,dtype=torch.floataa )
A__ = torch.zeros(1 ,0 ,device=UpperCAmelCase__ ,dtype=torch.floataa )
A__ = torch.tensor(0 ,device=UpperCAmelCase__ ,dtype=torch.long ).reshape(1 ,1 )
for step in range(UpperCAmelCase__ ):
A__ = torch.cat([actions, torch.zeros(1 ,1 ,config.act_dim ,device=UpperCAmelCase__ )] ,dim=1 )
A__ = torch.cat([rewards, torch.zeros(1 ,1 ,device=UpperCAmelCase__ )] ,dim=1 )
A__ = torch.ones(1 ,states.shape[1] ).to(dtype=torch.long ,device=states.device )
with torch.no_grad():
A__ , A__ , A__ = model(
states=UpperCAmelCase__ ,actions=UpperCAmelCase__ ,rewards=UpperCAmelCase__ ,returns_to_go=UpperCAmelCase__ ,timesteps=UpperCAmelCase__ ,attention_mask=UpperCAmelCase__ ,return_dict=UpperCAmelCase__ ,)
self.assertEqual(action_pred.shape ,actions.shape )
self.assertTrue(torch.allclose(action_pred[0, -1] ,expected_outputs[step] ,atol=1e-4 ) )
A__ , A__ , A__ , A__ = ( # env.step(action)
torch.randn(1 ,1 ,config.state_dim ).to(device=UpperCAmelCase__ ,dtype=torch.floataa ),
1.0,
False,
{},
)
A__ = action_pred[0, -1]
A__ = torch.cat([states, state] ,dim=1 )
A__ = returns_to_go[0, -1] - reward
A__ = torch.cat([returns_to_go, pred_return.reshape(1 ,1 ,1 )] ,dim=1 )
A__ = torch.cat(
[timesteps, torch.ones((1, 1) ,device=UpperCAmelCase__ ,dtype=torch.long ) * (step + 1)] ,dim=1 )
| 221 |
"""simple docstring"""
import unittest
from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available
from transformers.pipelines import pipeline
from transformers.pipelines.document_question_answering import apply_tesseract
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_detectrona,
require_pytesseract,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
from transformers.image_utils import load_image
else:
class _lowerCAmelCase :
"""simple docstring"""
@staticmethod
def _lowercase ( *UpperCAmelCase__ : Tuple, **UpperCAmelCase__ : List[Any] ):
pass
def _A ( UpperCamelCase_ : Union[str, Any]) -> Any:
'''simple docstring'''
return None
# This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace,
# so we can expect it to be available.
_a = (
'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png'
)
@is_pipeline_test
@require_torch
@require_vision
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : Tuple = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING
@require_pytesseract
@require_vision
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Optional[Any] ):
__lowercase = pipeline(
"document-question-answering", model=UpperCAmelCase__, tokenizer=UpperCAmelCase__, image_processor=UpperCAmelCase__ )
__lowercase = INVOICE_URL
__lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) )
__lowercase = "What is the placebo?"
__lowercase = [
{
"image": load_image(UpperCAmelCase__ ),
"question": question,
},
{
"image": image,
"question": question,
},
{
"image": image,
"question": question,
"word_boxes": word_boxes,
},
]
return dqa_pipeline, examples
def _lowercase ( self : int, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Any ):
__lowercase = dqa_pipeline(UpperCAmelCase__, top_k=2 )
self.assertEqual(
UpperCAmelCase__, [
[
{"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ ), "start": ANY(UpperCAmelCase__ ), "end": ANY(UpperCAmelCase__ )},
{"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ ), "start": ANY(UpperCAmelCase__ ), "end": ANY(UpperCAmelCase__ )},
]
]
* 3, )
@require_torch
@require_detectrona
@require_pytesseract
def _lowercase ( self : Dict ):
__lowercase = pipeline("document-question-answering", model="hf-internal-testing/tiny-random-layoutlmv2" )
__lowercase = INVOICE_URL
__lowercase = "How many cats are there?"
__lowercase = [
{"score": 0.0_001, "answer": "oy 2312/2019", "start": 3_8, "end": 3_9},
{"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 3_8, "end": 4_0},
]
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), UpperCAmelCase__ )
__lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), UpperCAmelCase__ )
# This image does not detect ANY text in it, meaning layoutlmv2 should fail.
# Empty answer probably
__lowercase = "./tests/fixtures/tests_samples/COCO/000000039769.png"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(UpperCAmelCase__, [] )
# We can optionnally pass directly the words and bounding boxes
__lowercase = "./tests/fixtures/tests_samples/COCO/000000039769.png"
__lowercase = []
__lowercase = []
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, words=UpperCAmelCase__, boxes=UpperCAmelCase__, top_k=2 )
self.assertEqual(UpperCAmelCase__, [] )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def _lowercase ( self : List[str] ):
__lowercase = pipeline(
"document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
[
{"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6},
],
]
* 2, )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def _lowercase ( self : Dict ):
__lowercase = pipeline(
"document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", max_seq_len=5_0, )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3},
{"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3},
{"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
[
{"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3},
{"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6},
]
]
* 2, )
@slow
@require_torch
@require_pytesseract
@require_vision
def _lowercase ( self : Optional[Any] ):
__lowercase = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=UpperCAmelCase__ )
__lowercase = pipeline(
"document-question-answering", model="impira/layoutlm-document-qa", tokenizer=UpperCAmelCase__, revision="3dc6de3", )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3},
], )
__lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3},
], )
__lowercase = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
[
{"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3},
]
]
* 2, )
__lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) )
# This model should also work if `image` is set to None
__lowercase = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3},
], )
@slow
@require_torch
@require_pytesseract
@require_vision
def _lowercase ( self : Union[str, Any] ):
__lowercase = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=UpperCAmelCase__ )
__lowercase = pipeline(
"document-question-answering", model="impira/layoutlm-document-qa", tokenizer=UpperCAmelCase__, revision="3dc6de3", max_seq_len=5_0, )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
[
{"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6},
]
]
* 2, )
__lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) )
# This model should also work if `image` is set to None
__lowercase = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
@slow
@require_torch
def _lowercase ( self : Dict ):
__lowercase = pipeline(
"document-question-answering", model="naver-clova-ix/donut-base-finetuned-docvqa", tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ), feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa", )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), [{"answer": "us-001"}] )
@require_tf
@unittest.skip("Document question answering not implemented in TF" )
def _lowercase ( self : List[Any] ):
pass
| 17 | 0 |
import json
import multiprocessing
import os
import re
from collections import defaultdict
import torch
from accelerate import Accelerator
from accelerate.utils import set_seed
from arguments import HumanEvalArguments
from datasets import load_dataset, load_metric
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdm
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList
_UpperCamelCase = ['''\nclass''', '''\ndef''', '''\n#''', '''\n@''', '''\nprint''', '''\nif''']
class _lowerCamelCase ( a ):
"""simple docstring"""
def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=1 ) -> List[Any]:
'''simple docstring'''
__snake_case : Optional[Any] = tokenizer
__snake_case : Any = dataset
__snake_case : Optional[int] = len(UpperCAmelCase__ ) if n_tasks is None else n_tasks
__snake_case : List[Any] = n_copies
def __iter__( self ) -> Tuple:
'''simple docstring'''
__snake_case : Any = []
for task in range(self.n_tasks ):
# without strip, the model generate commented codes ...
prompts.append(self.tokenizer.eos_token + self.dataset[task]["prompt"].strip() )
__snake_case : Dict = self.tokenizer(UpperCAmelCase__ , padding=UpperCAmelCase__ , return_tensors="pt" )
for task in range(self.n_tasks ):
for _ in range(self.n_copies ):
yield {
"ids": outputs.input_ids[task],
"task_id": task,
"input_len": outputs.attention_mask[task].sum(),
}
class _lowerCamelCase ( a ):
"""simple docstring"""
def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__snake_case : str = start_length
__snake_case : List[str] = eof_strings
__snake_case : str = tokenizer
def __call__( self , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[str]:
'''simple docstring'''
__snake_case : Dict = self.tokenizer.batch_decode(input_ids[:, self.start_length :] )
__snake_case : List[Any] = []
for decoded_generation in decoded_generations:
done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) )
return all(UpperCAmelCase__ )
def lowerCAmelCase__( lowercase : List[Any] ) -> int:
__snake_case : List[str] = re.split("(%s)" % "|".join(UpperCamelCase_ ) , UpperCamelCase_ )
# last string should be ""
return "".join(string_list[:-2] )
def lowerCAmelCase__( lowercase : Dict , lowercase : Dict , lowercase : Tuple , lowercase : Optional[Any] , lowercase : Union[str, Any] , lowercase : List[Any]=20 , **lowercase : int ) -> int:
__snake_case : List[Any] = defaultdict(UpperCamelCase_ ) # dict of list of generated tokens
for step, batch in tqdm(enumerate(UpperCamelCase_ ) ):
with torch.no_grad():
__snake_case : Optional[Any] = batch["ids"].shape[-1]
__snake_case : int = accelerator.unwrap_model(UpperCamelCase_ ).generate(
input_ids=batch["ids"][:, : batch["input_len"]] , num_return_sequences=UpperCamelCase_ , **UpperCamelCase_ )
# each task is generated batch_size times
__snake_case : Dict = batch["task_id"].repeat(UpperCamelCase_ )
__snake_case : List[str] = accelerator.pad_across_processes(
UpperCamelCase_ , dim=1 , pad_index=tokenizer.pad_token_id )
__snake_case , __snake_case : Tuple = accelerator.gather((generated_tokens, generated_tasks) )
__snake_case : Tuple = generated_tokens.cpu().numpy()
__snake_case : int = generated_tasks.cpu().numpy()
for task, generated_tokens in zip(UpperCamelCase_ , UpperCamelCase_ ):
gen_token_dict[task].append(UpperCamelCase_ )
__snake_case : Dict = [[] for _ in range(UpperCamelCase_ )]
for task, generated_tokens in gen_token_dict.items():
for s in generated_tokens:
__snake_case : Optional[int] = tokenizer.decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ )
code_gens[task].append(remove_last_block(UpperCamelCase_ ) )
return code_gens
def lowerCAmelCase__( ) -> Dict:
__snake_case : Any = HfArgumentParser(UpperCamelCase_ )
__snake_case : Any = parser.parse_args()
transformers.logging.set_verbosity_error()
# enables code execution in code_eval metric
__snake_case : Tuple = args.HF_ALLOW_CODE_EVAL
# make sure tokenizer plays nice with multiprocessing
__snake_case : Optional[int] = "false"
if args.num_workers is None:
__snake_case : Optional[int] = multiprocessing.cpu_count()
# Use dataset load to feed to accelerate
__snake_case : str = Accelerator()
set_seed(args.seed , device_specific=UpperCamelCase_ )
# Load model and tokenizer
__snake_case : str = AutoTokenizer.from_pretrained(args.model_ckpt )
__snake_case : Optional[Any] = tokenizer.eos_token
__snake_case : Union[str, Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt )
# Generation settings
__snake_case : Dict = {
"do_sample": args.do_sample,
"temperature": args.temperature,
"max_new_tokens": args.max_new_tokens,
"top_p": args.top_p,
"top_k": args.top_k,
"stopping_criteria": StoppingCriteriaList([EndOfFunctionCriteria(0 , UpperCamelCase_ , UpperCamelCase_ )] ),
}
# Load evaluation dataset and metric
__snake_case : Tuple = load_dataset("openai_humaneval" )
__snake_case : List[str] = load_metric("code_eval" )
__snake_case : List[str] = args.num_tasks if args.num_tasks is not None else len(human_eval["test"] )
__snake_case : int = args.n_samples // args.batch_size
__snake_case : Optional[int] = TokenizedDataset(UpperCamelCase_ , human_eval["test"] , n_copies=UpperCamelCase_ , n_tasks=UpperCamelCase_ )
# do not confuse args.batch_size, which is actually the num_return_sequences
__snake_case : Any = DataLoader(UpperCamelCase_ , batch_size=1 )
# Run a quick test to see if code evaluation is enabled
try:
__snake_case : Dict = code_eval_metric.compute(references=[""] , predictions=[[""]] )
except ValueError as exception:
print(
"Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`"
" flag to enable code evaluation." )
raise exception
__snake_case , __snake_case : Tuple = accelerator.prepare(UpperCamelCase_ , UpperCamelCase_ )
__snake_case : Dict = complete_code(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , n_tasks=UpperCamelCase_ , batch_size=args.batch_size , **UpperCamelCase_ , )
if accelerator.is_main_process:
__snake_case : List[Any] = []
for task in tqdm(range(UpperCamelCase_ ) ):
__snake_case : Tuple = human_eval["test"][task]["test"]
__snake_case : Optional[Any] = f"""check({human_eval["test"][task]["entry_point"]})"""
references.append("\n" + test_func + "\n" + entry_point )
# Evaluate completions with "code_eval" metric
__snake_case , __snake_case : int = code_eval_metric.compute(
references=UpperCamelCase_ , predictions=UpperCamelCase_ , num_workers=args.num_workers )
print(f"""Results: {pass_at_k}""" )
# Save results to json file
with open(args.output_file , "w" ) as fp:
json.dump(UpperCamelCase_ , UpperCamelCase_ )
# For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing
# https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script
if __name__ == "__main__":
main()
| 326 |
"""simple docstring"""
import argparse
import json
import os
import re
import shutil
import torch
from transformers import BioGptConfig, BioGptForCausalLM
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
from transformers.utils import WEIGHTS_NAME, logging
logging.set_verbosity_warning()
_a = 2
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Dict, *, # begin keyword-only arguments
UpperCAmelCase__ : str="<s>", UpperCAmelCase__ : Tuple="<pad>", UpperCAmelCase__ : str="</s>", UpperCAmelCase__ : Optional[Any]="<unk>", UpperCAmelCase__ : List[Any]=None, ):
__lowercase ,__lowercase ,__lowercase ,__lowercase = bos, unk, pad, eos
__lowercase = []
__lowercase = []
__lowercase = {}
__lowercase = self.add_symbol(UpperCAmelCase__ )
__lowercase = self.add_symbol(UpperCAmelCase__ )
__lowercase = self.add_symbol(UpperCAmelCase__ )
__lowercase = self.add_symbol(UpperCAmelCase__ )
if extra_special_symbols:
for s in extra_special_symbols:
self.add_symbol(UpperCAmelCase__ )
__lowercase = len(self.symbols )
def __eq__( self : List[str], UpperCAmelCase__ : Dict ):
return self.indices == other.indices
def __getitem__( self : Optional[int], UpperCAmelCase__ : List[str] ):
if idx < len(self.symbols ):
return self.symbols[idx]
return self.unk_word
def __len__( self : str ):
return len(self.symbols )
def __contains__( self : Any, UpperCAmelCase__ : Optional[Any] ):
return sym in self.indices
@classmethod
def _lowercase ( cls : List[Any], UpperCAmelCase__ : Optional[Any] ):
__lowercase = cls()
d.add_from_file(UpperCAmelCase__ )
return d
def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[Any]=1, UpperCAmelCase__ : str=False ):
if word in self.indices and not overwrite:
__lowercase = self.indices[word]
__lowercase = self.count[idx] + n
return idx
else:
__lowercase = len(self.symbols )
__lowercase = idx
self.symbols.append(UpperCAmelCase__ )
self.count.append(UpperCAmelCase__ )
return idx
def _lowercase ( self : Any, UpperCAmelCase__ : str ):
return 0
def _lowercase ( self : Tuple, UpperCAmelCase__ : List[Any] ):
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
try:
with open(UpperCAmelCase__, "r", encoding="utf-8" ) as fd:
self.add_from_file(UpperCAmelCase__ )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception("Incorrect encoding detected in {}, please rebuild the dataset".format(UpperCAmelCase__ ) )
return
__lowercase = f.readlines()
__lowercase = self._load_meta(UpperCAmelCase__ )
for line in lines[indices_start_line:]:
try:
__lowercase ,__lowercase = line.rstrip().rsplit(" ", 1 )
if field == "#fairseq:overwrite":
__lowercase = True
__lowercase ,__lowercase = line.rsplit(" ", 1 )
else:
__lowercase = False
__lowercase = int(UpperCAmelCase__ )
__lowercase = line
if word in self and not overwrite:
raise RuntimeError(
"Duplicate word found when loading Dictionary: '{}'. "
"Duplicate words can overwrite earlier ones by adding the "
"#fairseq:overwrite flag at the end of the corresponding row "
"in the dictionary file. If using the Camembert model, please "
"download an updated copy of the model file.".format(UpperCAmelCase__ ) )
self.add_symbol(UpperCAmelCase__, n=UpperCAmelCase__, overwrite=UpperCAmelCase__ )
except ValueError:
raise ValueError("Incorrect dictionary format, expected '<token> <cnt> [flags]'" )
def _A ( UpperCamelCase_ : int) -> str:
'''simple docstring'''
__lowercase = dict((re.sub(r"@@$", "", UpperCamelCase_), v) if k.endswith("@@") else (re.sub(r"$", "</w>", UpperCamelCase_), v) for k, v in d.items())
__lowercase = "<s> <pad> </s> <unk>".split()
# restore the special tokens
for k in keep_keys:
del da[F"""{k}</w>"""]
__lowercase = d[k] # restore
return da
def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str) -> List[Any]:
'''simple docstring'''
if not os.path.exists(UpperCamelCase_):
raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""")
os.makedirs(UpperCamelCase_, exist_ok=UpperCamelCase_)
print(F"""Writing results to {pytorch_dump_folder_path}""")
# handle various types of models
__lowercase = os.path.join(UpperCamelCase_, "checkpoint.pt")
if not os.path.isfile(UpperCamelCase_):
raise ValueError(F"""path to the file {checkpoint_file} does not exist!""")
__lowercase = torch.load(UpperCamelCase_, map_location="cpu")
__lowercase = chkpt["cfg"]["model"]
# dicts
__lowercase = os.path.join(UpperCamelCase_, "dict.txt")
if not os.path.isfile(UpperCamelCase_):
raise ValueError(F"""path to the file {dict_file} does not exist!""")
__lowercase = Dictionary.load(UpperCamelCase_)
__lowercase = rewrite_dict_keys(src_dict.indices)
__lowercase = len(UpperCamelCase_)
__lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["vocab_file"])
print(F"""Generating {src_vocab_file} of {src_vocab_size} records""")
with open(UpperCamelCase_, "w", encoding="utf-8") as f:
f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_))
# merges_file (bpecodes)
__lowercase = os.path.join(UpperCamelCase_, "bpecodes")
if not os.path.isfile(UpperCamelCase_):
raise ValueError(F"""path to the file {bpecodes_file} does not exist!""")
__lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["merges_file"])
shutil.copyfile(UpperCamelCase_, UpperCamelCase_)
# model config
__lowercase = os.path.join(UpperCamelCase_, "config.json")
__lowercase = {
"activation_dropout": args["activation_dropout"],
"architectures": ["BioGptForCausalLM"],
"attention_probs_dropout_prob": args["attention_dropout"],
"bos_token_id": 0,
"eos_token_id": 2,
"hidden_act": args["activation_fn"],
"hidden_dropout_prob": args["dropout"],
"hidden_size": args["decoder_embed_dim"],
"initializer_range": 0.02,
"intermediate_size": args["decoder_ffn_embed_dim"],
"layer_norm_eps": 1E-12,
"layerdrop": args["decoder_layerdrop"],
"max_position_embeddings": args["max_target_positions"],
"model_type": "biogpt",
"num_attention_heads": args["decoder_attention_heads"],
"num_hidden_layers": args["decoder_layers"],
"pad_token_id": 1,
"scale_embedding": not args["no_scale_embedding"],
"tie_word_embeddings": args["share_decoder_input_output_embed"],
"vocab_size": src_vocab_size,
}
# good hparam defaults to start with
print(F"""Generating {biogpt_model_config_file}""")
with open(UpperCamelCase_, "w", encoding="utf-8") as f:
f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_))
# tokenizer config
__lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_)
__lowercase = {
"bos_token": "<s>",
"eos_token": "</s>",
"model_max_length": 1024,
"pad_token": "<pad>",
"special_tokens_map_file": None,
"tokenizer_class": "BioGptTokenizer",
"unk_token": "<unk>",
}
print(F"""Generating {biogpt_tokenizer_config_file}""")
with open(UpperCamelCase_, "w", encoding="utf-8") as f:
f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_))
# model
__lowercase = chkpt["model"]
# remove unneeded keys
__lowercase = [
"decoder.version",
]
for k in ignore_keys:
model_state_dict.pop(UpperCamelCase_, UpperCamelCase_)
__lowercase = list(model_state_dict.keys())
for layer_name in layer_names:
if layer_name.endswith("output_projection.weight"):
__lowercase = model_state_dict.pop(UpperCamelCase_)
else:
__lowercase = model_state_dict.pop(UpperCamelCase_)
__lowercase = BioGptConfig.from_pretrained(UpperCamelCase_)
__lowercase = BioGptForCausalLM(UpperCamelCase_)
# check that it loads ok
model_new.load_state_dict(UpperCamelCase_)
# save
__lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_)
print(F"""Generating {pytorch_weights_dump_path}""")
torch.save(UpperCamelCase_, UpperCamelCase_)
print("Conversion is done!")
if __name__ == "__main__":
_a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--biogpt_checkpoint_path',
default=None,
type=str,
required=True,
help=(
'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,'
' bpecodes, etc.'
),
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
_a = parser.parse_args()
convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
| 17 | 0 |
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
return int((input_a, input_a).count(0 ) == 0 )
def lowerCAmelCase_ ( ):
assert and_gate(0,0 ) == 0
assert and_gate(0,1 ) == 0
assert and_gate(1,0 ) == 0
assert and_gate(1,1 ) == 1
if __name__ == "__main__":
test_and_gate()
print(and_gate(1, 0))
print(and_gate(0, 0))
print(and_gate(0, 1))
print(and_gate(1, 1))
| 26 |
"""simple docstring"""
from __future__ import annotations
from typing import Any
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Any, UpperCAmelCase__ : int ):
__lowercase = num_of_nodes
__lowercase = []
__lowercase = {}
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : int, UpperCAmelCase__ : int ):
self.m_edges.append([u_node, v_node, weight] )
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : int ):
if self.m_component[u_node] == u_node:
return u_node
return self.find_component(self.m_component[u_node] )
def _lowercase ( self : List[Any], UpperCAmelCase__ : int ):
if self.m_component[u_node] != u_node:
for k in self.m_component:
__lowercase = self.find_component(UpperCAmelCase__ )
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : list[int], UpperCAmelCase__ : int, UpperCAmelCase__ : int ):
if component_size[u_node] <= component_size[v_node]:
__lowercase = v_node
component_size[v_node] += component_size[u_node]
self.set_component(UpperCAmelCase__ )
elif component_size[u_node] >= component_size[v_node]:
__lowercase = self.find_component(UpperCAmelCase__ )
component_size[u_node] += component_size[v_node]
self.set_component(UpperCAmelCase__ )
def _lowercase ( self : Any ):
__lowercase = []
__lowercase = 0
__lowercase = [-1] * self.m_num_of_nodes
# A list of components (initialized to all of the nodes)
for node in range(self.m_num_of_nodes ):
self.m_component.update({node: node} )
component_size.append(1 )
__lowercase = self.m_num_of_nodes
while num_of_components > 1:
for edge in self.m_edges:
__lowercase ,__lowercase ,__lowercase = edge
__lowercase = self.m_component[u]
__lowercase = self.m_component[v]
if u_component != v_component:
for component in (u_component, v_component):
if (
minimum_weight_edge[component] == -1
or minimum_weight_edge[component][2] > w
):
__lowercase = [u, v, w]
for edge in minimum_weight_edge:
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
__lowercase ,__lowercase ,__lowercase = edge
__lowercase = self.m_component[u]
__lowercase = self.m_component[v]
if u_component != v_component:
mst_weight += w
self.union(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" )
num_of_components -= 1
__lowercase = [-1] * self.m_num_of_nodes
print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" )
def _A ( ) -> None:
'''simple docstring'''
if __name__ == "__main__":
import doctest
doctest.testmod()
| 17 | 0 |
"""simple docstring"""
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Image
from .base import TaskTemplate
@dataclass(frozen=__lowerCAmelCase )
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : str = field(default='''image-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} )
UpperCAmelCase : ClassVar[Features] = Features({'''image''': Image()} )
UpperCAmelCase : ClassVar[Features] = Features({'''labels''': ClassLabel} )
UpperCAmelCase : str = "image"
UpperCAmelCase : str = "labels"
def lowerCAmelCase_ ( self : str , _UpperCAmelCase : Optional[int] ):
if self.label_column not in features:
raise ValueError(F'''Column {self.label_column} is not present in features.''' )
if not isinstance(features[self.label_column] , UpperCAmelCase__ ):
raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' )
_A = copy.deepcopy(self )
_A = self.label_schema.copy()
_A = features[self.label_column]
_A = label_schema
return task_template
@property
def lowerCAmelCase_ ( self : Optional[Any] ):
return {
self.image_column: "image",
self.label_column: "labels",
}
| 315 |
"""simple docstring"""
from math import sqrt
def _A ( UpperCamelCase_ : int) -> int:
'''simple docstring'''
__lowercase = 0
for i in range(1, int(sqrt(UpperCamelCase_) + 1)):
if n % i == 0 and i != sqrt(UpperCamelCase_):
total += i + n // i
elif i == sqrt(UpperCamelCase_):
total += i
return total - n
def _A ( UpperCamelCase_ : int = 10000) -> int:
'''simple docstring'''
__lowercase = sum(
i
for i in range(1, UpperCamelCase_)
if sum_of_divisors(sum_of_divisors(UpperCamelCase_)) == i and sum_of_divisors(UpperCamelCase_) != i)
return total
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 17 | 0 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowercase__ : Dict = logging.get_logger(__name__)
lowercase__ : Optional[Any] = {
'''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json''',
'''YituTech/conv-bert-medium-small''': (
'''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json'''
),
'''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json''',
# See all ConvBERT models at https://huggingface.co/models?filter=convbert
}
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
UpperCAmelCase_ : Any = "convbert"
def __init__( self , __SCREAMING_SNAKE_CASE=30522 , __SCREAMING_SNAKE_CASE=768 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=3072 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.0_2 , __SCREAMING_SNAKE_CASE=1e-12 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=768 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=9 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ) ->str:
super().__init__(
pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ , )
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_act
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = type_vocab_size
lowerCAmelCase = initializer_range
lowerCAmelCase = layer_norm_eps
lowerCAmelCase = embedding_size
lowerCAmelCase = head_ratio
lowerCAmelCase = conv_kernel_size
lowerCAmelCase = num_groups
lowerCAmelCase = classifier_dropout
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple:
if self.task == "multiple-choice":
lowerCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
lowerCAmelCase = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
('''token_type_ids''', dynamic_axis),
] )
| 338 |
"""simple docstring"""
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
_a = _symbol_database.Default()
_a = _descriptor_pool.Default().AddSerializedFile(
b'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03'
)
_a = globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals)
if _descriptor._USE_C_DESCRIPTORS is False:
_a = None
_a = b'H\003'
# (generated by protobuf compiler, but `_TRAINERSPEC` is not defined)
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001"
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001"
_a = 45
_a = 15_81
_a = 15_17
_a = 15_70
_a = 15_84
_a = 17_93
_a = 17_95
_a = 19_16
_a = 18_64
_a = 19_05
_a = 19_19
_a = 24_29
_a = 22_08
_a = 24_18
_a = 23_23
_a = 24_07
# @@protoc_insertion_point(module_scope)
| 17 | 0 |
'''simple docstring'''
import argparse
import torch
from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def lowercase__ ( __lowercase : Union[str, Any] , __lowercase : str , __lowercase : Optional[Any] ) -> List[Any]:
"""simple docstring"""
if openai_config_file == "":
__UpperCamelCase = OpenAIGPTConfig()
else:
__UpperCamelCase = OpenAIGPTConfig.from_json_file(UpperCamelCase_ )
__UpperCamelCase = OpenAIGPTModel(UpperCamelCase_ )
# Load weights from numpy
load_tf_weights_in_openai_gpt(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
# Save pytorch-model
__UpperCamelCase = pytorch_dump_folder_path + '/' + WEIGHTS_NAME
__UpperCamelCase = pytorch_dump_folder_path + '/' + CONFIG_NAME
print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' )
torch.save(model.state_dict() , UpperCamelCase_ )
print(F'''Save configuration file to {pytorch_config_dump_path}''' )
with open(UpperCamelCase_ , 'w' , encoding='utf-8' ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
a__ : Any =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--openai_checkpoint_folder_path''',
default=None,
type=str,
required=True,
help='''Path to the TensorFlow checkpoint path.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--openai_config_file''',
default='''''',
type=str,
help=(
'''An optional config json file corresponding to the pre-trained OpenAI model. \n'''
'''This specifies the model architecture.'''
),
)
a__ : Tuple =parser.parse_args()
convert_openai_checkpoint_to_pytorch(
args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path
)
| 53 |
"""simple docstring"""
import baseaa
def _A ( UpperCamelCase_ : str) -> bytes:
'''simple docstring'''
return baseaa.baaencode(string.encode("utf-8"))
def _A ( UpperCamelCase_ : bytes) -> str:
'''simple docstring'''
return baseaa.baadecode(UpperCamelCase_).decode("utf-8")
if __name__ == "__main__":
_a = 'Hello World!'
_a = baseaa_encode(test)
print(encoded)
_a = baseaa_decode(encoded)
print(decoded)
| 17 | 0 |
from typing import TYPE_CHECKING
from ..utils import _LazyModule
__lowerCamelCase = {
"""config""": [
"""EXTERNAL_DATA_FORMAT_SIZE_LIMIT""",
"""OnnxConfig""",
"""OnnxConfigWithPast""",
"""OnnxSeq2SeqConfigWithPast""",
"""PatchingSpec""",
],
"""convert""": ["""export""", """validate_model_outputs"""],
"""features""": ["""FeaturesManager"""],
"""utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""],
}
if TYPE_CHECKING:
from .config import (
EXTERNAL_DATA_FORMAT_SIZE_LIMIT,
OnnxConfig,
OnnxConfigWithPast,
OnnxSeqaSeqConfigWithPast,
PatchingSpec,
)
from .convert import export, validate_model_outputs
from .features import FeaturesManager
from .utils import ParameterFormat, compute_serialized_parameters_size
else:
import sys
__lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 59 |
"""simple docstring"""
def _A ( UpperCamelCase_ : Any) -> List[str]:
'''simple docstring'''
__lowercase ,__lowercase = [], []
while len(UpperCamelCase_) > 1:
__lowercase ,__lowercase = min(UpperCamelCase_), max(UpperCamelCase_)
start.append(UpperCamelCase_)
end.append(UpperCamelCase_)
collection.remove(UpperCamelCase_)
collection.remove(UpperCamelCase_)
end.reverse()
return start + collection + end
if __name__ == "__main__":
_a = input('Enter numbers separated by a comma:\n').strip()
_a = [int(item) for item in user_input.split(',')]
print(*merge_sort(unsorted), sep=',')
| 17 | 0 |
from __future__ import annotations
def A_ ( _UpperCAmelCase ):
create_state_space_tree(UpperCamelCase_ , [] , 0 , [0 for i in range(len(UpperCamelCase_ ) )] )
def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ):
if index == len(UpperCamelCase_ ):
print(UpperCamelCase_ )
return
for i in range(len(UpperCamelCase_ ) ):
if not index_used[i]:
current_sequence.append(sequence[i] )
SCREAMING_SNAKE_CASE_: List[Any] = True
create_state_space_tree(UpperCamelCase_ , UpperCamelCase_ , index + 1 , UpperCamelCase_ )
current_sequence.pop()
SCREAMING_SNAKE_CASE_: Optional[Any] = False
lowerCAmelCase : Optional[int] = [3, 1, 2, 4]
generate_all_permutations(sequence)
lowerCAmelCase : List[Any] = ["""A""", """B""", """C"""]
generate_all_permutations(sequence_a)
| 13 |
"""simple docstring"""
def _A ( UpperCamelCase_ : list[int]) -> float:
'''simple docstring'''
if not nums: # Makes sure that the list is not empty
raise ValueError("List is empty")
__lowercase = sum(UpperCamelCase_) / len(UpperCamelCase_) # Calculate the average
return sum(abs(x - average) for x in nums) / len(UpperCamelCase_)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 17 | 0 |
from __future__ import annotations
from typing import Any
class __A :
"""simple docstring"""
def __init__( self , lowerCamelCase__ ):
"""simple docstring"""
__UpperCamelCase : Optional[Any] =num_of_nodes
__UpperCamelCase : Tuple =[]
__UpperCamelCase : Optional[int] ={}
def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
self.m_edges.append([u_node, v_node, weight] )
def __lowercase ( self , lowerCamelCase__ ):
"""simple docstring"""
if self.m_component[u_node] == u_node:
return u_node
return self.find_component(self.m_component[u_node] )
def __lowercase ( self , lowerCamelCase__ ):
"""simple docstring"""
if self.m_component[u_node] != u_node:
for k in self.m_component:
__UpperCamelCase : Any =self.find_component(UpperCAmelCase__ )
def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
if component_size[u_node] <= component_size[v_node]:
__UpperCamelCase : Dict =v_node
component_size[v_node] += component_size[u_node]
self.set_component(UpperCAmelCase__ )
elif component_size[u_node] >= component_size[v_node]:
__UpperCamelCase : int =self.find_component(UpperCAmelCase__ )
component_size[u_node] += component_size[v_node]
self.set_component(UpperCAmelCase__ )
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : Any =[]
__UpperCamelCase : List[Any] =0
__UpperCamelCase : int =[-1] * self.m_num_of_nodes
# A list of components (initialized to all of the nodes)
for node in range(self.m_num_of_nodes ):
self.m_component.update({node: node} )
component_size.append(1 )
__UpperCamelCase : Any =self.m_num_of_nodes
while num_of_components > 1:
for edge in self.m_edges:
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase : List[str] =edge
__UpperCamelCase : Optional[Any] =self.m_component[u]
__UpperCamelCase : List[Any] =self.m_component[v]
if u_component != v_component:
for component in (u_component, v_component):
if (
minimum_weight_edge[component] == -1
or minimum_weight_edge[component][2] > w
):
__UpperCamelCase : List[str] =[u, v, w]
for edge in minimum_weight_edge:
if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Union[str, Any] =edge
__UpperCamelCase : Union[str, Any] =self.m_component[u]
__UpperCamelCase : Dict =self.m_component[v]
if u_component != v_component:
mst_weight += w
self.union(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
print(f'Added edge [{u} - {v}]\nAdded weight: {w}\n' )
num_of_components -= 1
__UpperCamelCase : Optional[int] =[-1] * self.m_num_of_nodes
print(f'The total weight of the minimal spanning tree is: {mst_weight}' )
def A ( ) -> None:
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 71 |
"""simple docstring"""
import inspect
import unittest
import numpy as np
from transformers import BeitConfig
from transformers.testing_utils import require_flax, require_vision, slow
from transformers.utils import cached_property, is_flax_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor
if is_flax_available():
import jax
from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : int=1_0_0, UpperCAmelCase__ : Any=1_3, UpperCAmelCase__ : List[Any]=3_0, UpperCAmelCase__ : Dict=2, UpperCAmelCase__ : Any=3, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[str]=True, UpperCAmelCase__ : Optional[Any]=3_2, UpperCAmelCase__ : Any=5, UpperCAmelCase__ : Any=4, UpperCAmelCase__ : Any=3_7, UpperCAmelCase__ : Optional[int]="gelu", UpperCAmelCase__ : Dict=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Dict=1_0, UpperCAmelCase__ : Tuple=0.02, UpperCAmelCase__ : List[Any]=3, ):
__lowercase = parent
__lowercase = vocab_size
__lowercase = batch_size
__lowercase = image_size
__lowercase = patch_size
__lowercase = num_channels
__lowercase = is_training
__lowercase = use_labels
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = type_sequence_label_size
__lowercase = initializer_range
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
__lowercase = (image_size // patch_size) ** 2
__lowercase = num_patches + 1
def _lowercase ( self : int ):
__lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size], self.type_sequence_label_size )
__lowercase = BeitConfig(
vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=UpperCAmelCase__, initializer_range=self.initializer_range, )
return config, pixel_values, labels
def _lowercase ( self : Any, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[str], UpperCAmelCase__ : List[str] ):
__lowercase = FlaxBeitModel(config=UpperCAmelCase__ )
__lowercase = model(UpperCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : List[Any] ):
__lowercase = FlaxBeitForMaskedImageModeling(config=UpperCAmelCase__ )
__lowercase = model(UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size) )
def _lowercase ( self : Dict, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : Union[str, Any] ):
__lowercase = self.type_sequence_label_size
__lowercase = FlaxBeitForImageClassification(config=UpperCAmelCase__ )
__lowercase = model(UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__lowercase = 1
__lowercase = FlaxBeitForImageClassification(UpperCAmelCase__ )
__lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__lowercase = model(UpperCAmelCase__ )
def _lowercase ( self : List[str] ):
__lowercase = self.prepare_config_and_inputs()
(
(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,
) = config_and_inputs
__lowercase = {"pixel_values": pixel_values}
return config, inputs_dict
@require_flax
class _lowerCAmelCase ( lowercase ,unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : str = (
(FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else ()
)
def _lowercase ( self : List[Any] ):
__lowercase = FlaxBeitModelTester(self )
__lowercase = ConfigTester(self, config_class=UpperCAmelCase__, has_text_modality=UpperCAmelCase__, hidden_size=3_7 )
def _lowercase ( self : Union[str, Any] ):
self.config_tester.run_common_tests()
def _lowercase ( self : Optional[int] ):
__lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowercase = model_class(UpperCAmelCase__ )
__lowercase = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowercase = [*signature.parameters.keys()]
__lowercase = ["pixel_values"]
self.assertListEqual(arg_names[:1], UpperCAmelCase__ )
def _lowercase ( self : Tuple ):
__lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__lowercase = self._prepare_for_class(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = model_class(UpperCAmelCase__ )
@jax.jit
def model_jitted(UpperCAmelCase__ : str, **UpperCAmelCase__ : Dict ):
return model(pixel_values=UpperCAmelCase__, **UpperCAmelCase__ )
with self.subTest("JIT Enabled" ):
__lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
__lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple()
self.assertEqual(len(UpperCAmelCase__ ), len(UpperCAmelCase__ ) )
for jitted_output, output in zip(UpperCAmelCase__, UpperCAmelCase__ ):
self.assertEqual(jitted_output.shape, output.shape )
def _lowercase ( self : List[str] ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase__ )
def _lowercase ( self : int ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ )
def _lowercase ( self : Tuple ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ )
@slow
def _lowercase ( self : Union[str, Any] ):
for model_class_name in self.all_model_classes:
__lowercase = model_class_name.from_pretrained("microsoft/beit-base-patch16-224" )
__lowercase = model(np.ones((1, 3, 2_2_4, 2_2_4) ) )
self.assertIsNotNone(UpperCAmelCase__ )
def _A ( ) -> str:
'''simple docstring'''
__lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_vision
@require_flax
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _lowercase ( self : Optional[int] ):
return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None
@slow
def _lowercase ( self : Any ):
__lowercase = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" )
__lowercase = self.default_image_processor
__lowercase = prepare_img()
__lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ).pixel_values
# prepare bool_masked_pos
__lowercase = np.ones((1, 1_9_6), dtype=UpperCAmelCase__ )
# forward pass
__lowercase = model(pixel_values=UpperCAmelCase__, bool_masked_pos=UpperCAmelCase__ )
__lowercase = outputs.logits
# verify the logits
__lowercase = (1, 1_9_6, 8_1_9_2)
self.assertEqual(logits.shape, UpperCAmelCase__ )
__lowercase = np.array(
[[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] )
self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3], UpperCAmelCase__, atol=1E-2 ) )
@slow
def _lowercase ( self : Any ):
__lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" )
__lowercase = self.default_image_processor
__lowercase = prepare_img()
__lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" )
# forward pass
__lowercase = model(**UpperCAmelCase__ )
__lowercase = outputs.logits
# verify the logits
__lowercase = (1, 1_0_0_0)
self.assertEqual(logits.shape, UpperCAmelCase__ )
__lowercase = np.array([-1.2_385, -1.0_987, -1.0_108] )
self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) )
__lowercase = 2_8_1
self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ )
@slow
def _lowercase ( self : List[str] ):
__lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" )
__lowercase = self.default_image_processor
__lowercase = prepare_img()
__lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" )
# forward pass
__lowercase = model(**UpperCAmelCase__ )
__lowercase = outputs.logits
# verify the logits
__lowercase = (1, 2_1_8_4_1)
self.assertEqual(logits.shape, UpperCAmelCase__ )
__lowercase = np.array([1.6_881, -0.2_787, 0.5_901] )
self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) )
__lowercase = 2_3_9_6
self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ )
| 17 | 0 |
'''simple docstring'''
import os
import tempfile
import unittest
from transformers import DistilBertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
DistilBertModel,
)
class _A ( __SCREAMING_SNAKE_CASE ):
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : str = parent
__UpperCAmelCase : Optional[int] = batch_size
__UpperCAmelCase : List[str] = seq_length
__UpperCAmelCase : Tuple = is_training
__UpperCAmelCase : Any = use_input_mask
__UpperCAmelCase : Union[str, Any] = use_token_type_ids
__UpperCAmelCase : Any = use_labels
__UpperCAmelCase : Tuple = vocab_size
__UpperCAmelCase : Tuple = hidden_size
__UpperCAmelCase : List[Any] = num_hidden_layers
__UpperCAmelCase : Optional[Any] = num_attention_heads
__UpperCAmelCase : Optional[Any] = intermediate_size
__UpperCAmelCase : List[str] = hidden_act
__UpperCAmelCase : Any = hidden_dropout_prob
__UpperCAmelCase : Any = attention_probs_dropout_prob
__UpperCAmelCase : List[Any] = max_position_embeddings
__UpperCAmelCase : Union[str, Any] = type_vocab_size
__UpperCAmelCase : Optional[Any] = type_sequence_label_size
__UpperCAmelCase : Dict = initializer_range
__UpperCAmelCase : Dict = num_labels
__UpperCAmelCase : Union[str, Any] = num_choices
__UpperCAmelCase : Optional[int] = scope
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : str = None
if self.use_input_mask:
__UpperCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase : Union[str, Any] = None
__UpperCAmelCase : Optional[Any] = None
__UpperCAmelCase : str = None
if self.use_labels:
__UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices )
__UpperCAmelCase : Optional[int] = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def __A ( self ) -> str:
'''simple docstring'''
return DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Tuple = DistilBertModel(config=UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
__UpperCAmelCase : List[str] = model(UpperCAmelCase__ , UpperCAmelCase__ )
__UpperCAmelCase : List[str] = model(UpperCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Dict = DistilBertForMaskedLM(config=UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
__UpperCAmelCase : int = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Tuple = DistilBertForQuestionAnswering(config=UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
__UpperCAmelCase : Dict = model(
UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , start_positions=UpperCAmelCase__ , end_positions=UpperCAmelCase__ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = self.num_labels
__UpperCAmelCase : Tuple = DistilBertForSequenceClassification(UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
__UpperCAmelCase : Union[str, Any] = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : int = self.num_labels
__UpperCAmelCase : str = DistilBertForTokenClassification(config=UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
__UpperCAmelCase : Any = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = self.num_choices
__UpperCAmelCase : Dict = DistilBertForMultipleChoice(config=UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
__UpperCAmelCase : List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase : Optional[int] = model(
UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs()
((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) : List[str] = config_and_inputs
__UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : int = (
(
DistilBertModel,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
)
if is_torch_available()
else None
)
_SCREAMING_SNAKE_CASE : List[Any] = (
{
"feature-extraction": DistilBertModel,
"fill-mask": DistilBertForMaskedLM,
"question-answering": DistilBertForQuestionAnswering,
"text-classification": DistilBertForSequenceClassification,
"token-classification": DistilBertForTokenClassification,
"zero-shot": DistilBertForSequenceClassification,
}
if is_torch_available()
else {}
)
_SCREAMING_SNAKE_CASE : Union[str, Any] = True
_SCREAMING_SNAKE_CASE : Optional[Any] = True
_SCREAMING_SNAKE_CASE : Union[str, Any] = True
_SCREAMING_SNAKE_CASE : str = True
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = DistilBertModelTester(self )
__UpperCAmelCase : List[Any] = ConfigTester(self , config_class=UpperCAmelCase__ , dim=37 )
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*UpperCAmelCase__ )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCAmelCase__ )
def __A ( self ) -> str:
'''simple docstring'''
__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCAmelCase__ )
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCAmelCase__ )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCAmelCase__ )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCAmelCase__ )
@slow
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : List[str] = DistilBertModel.from_pretrained(UpperCAmelCase__ )
self.assertIsNotNone(UpperCAmelCase__ )
@slow
@require_torch_gpu
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# BertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == DistilBertForMultipleChoice:
return
__UpperCAmelCase : Optional[Any] = True
__UpperCAmelCase : Optional[Any] = model_class(config=UpperCAmelCase__ )
__UpperCAmelCase : Any = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ )
__UpperCAmelCase : Optional[Any] = torch.jit.trace(
UpperCAmelCase__ , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(UpperCAmelCase__ , os.path.join(UpperCAmelCase__ , """traced_model.pt""" ) )
__UpperCAmelCase : List[str] = torch.jit.load(os.path.join(UpperCAmelCase__ , """traced_model.pt""" ) , map_location=UpperCAmelCase__ )
loaded(inputs_dict["""input_ids"""].to(UpperCAmelCase__ ) , inputs_dict["""attention_mask"""].to(UpperCAmelCase__ ) )
@require_torch
class _A ( unittest.TestCase ):
@slow
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Tuple = DistilBertModel.from_pretrained("""distilbert-base-uncased""" )
__UpperCAmelCase : Tuple = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] )
__UpperCAmelCase : List[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
__UpperCAmelCase : List[str] = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ )[0]
__UpperCAmelCase : Tuple = torch.Size((1, 11, 768) )
self.assertEqual(output.shape , UpperCAmelCase__ )
__UpperCAmelCase : int = torch.tensor(
[[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCAmelCase__ , atol=1E-4 ) )
| 254 |
"""simple docstring"""
import unittest
from transformers import load_tool
from .test_tools_common import ToolTesterMixin
class _lowerCAmelCase ( unittest.TestCase ,lowercase ):
"""simple docstring"""
def _lowercase ( self : List[Any] ):
__lowercase = load_tool("text-classification" )
self.tool.setup()
__lowercase = load_tool("text-classification", remote=UpperCAmelCase__ )
def _lowercase ( self : str ):
__lowercase = self.tool("That's quite cool", ["positive", "negative"] )
self.assertEqual(UpperCAmelCase__, "positive" )
def _lowercase ( self : str ):
__lowercase = self.remote_tool("That's quite cool", ["positive", "negative"] )
self.assertEqual(UpperCAmelCase__, "positive" )
def _lowercase ( self : List[str] ):
__lowercase = self.tool(text="That's quite cool", labels=["positive", "negative"] )
self.assertEqual(UpperCAmelCase__, "positive" )
def _lowercase ( self : Tuple ):
__lowercase = self.remote_tool(text="That's quite cool", labels=["positive", "negative"] )
self.assertEqual(UpperCAmelCase__, "positive" )
| 17 | 0 |
'''simple docstring'''
def __lowerCamelCase ( _lowercase = 1_0 , _lowercase = 1_0_0_0 , _lowercase = True ) -> int:
assert (
isinstance(UpperCamelCase_ , UpperCamelCase_ )
and isinstance(UpperCamelCase_ , UpperCamelCase_ )
and isinstance(UpperCamelCase_ , UpperCamelCase_ )
), "Invalid type of value(s) specified to function!"
if min_val > max_val:
raise ValueError("""Invalid value for min_val or max_val (min_value < max_value)""" )
return min_val if option else max_val
def __lowerCamelCase ( _lowercase , _lowercase ) -> int:
return int((number_a + number_a) / 2 )
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> None:
assert (
isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(UpperCamelCase_ , UpperCamelCase_ )
), 'argument values must be type of "int"'
if lower > higher:
raise ValueError("""argument value for lower and higher must be(lower > higher)""" )
if not lower < to_guess < higher:
raise ValueError(
"""guess value must be within the range of lower and higher value""" )
def answer(_lowercase ) -> str:
if number > to_guess:
return "high"
elif number < to_guess:
return "low"
else:
return "same"
print("""started...""" )
UpperCAmelCase : Dict = lower
UpperCAmelCase : Tuple = higher
UpperCAmelCase : Optional[Any] = []
while True:
UpperCAmelCase : Optional[Any] = get_avg(UpperCamelCase_ , UpperCamelCase_ )
last_numbers.append(UpperCamelCase_ )
if answer(UpperCamelCase_ ) == "low":
UpperCAmelCase : Union[str, Any] = number
elif answer(UpperCamelCase_ ) == "high":
UpperCAmelCase : int = number
else:
break
print(F'''guess the number : {last_numbers[-1]}''' )
print(F'''details : {last_numbers!s}''' )
def __lowerCamelCase ( ) -> None:
UpperCAmelCase : List[Any] = int(input("""Enter lower value : """ ).strip() )
UpperCAmelCase : List[str] = int(input("""Enter high value : """ ).strip() )
UpperCAmelCase : Union[str, Any] = int(input("""Enter value to guess : """ ).strip() )
guess_the_number(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
if __name__ == "__main__":
main()
| 265 |
"""simple docstring"""
from typing import Any, Callable, Dict, List, Optional, Union
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
_a = 'CompVis/stable-diffusion-v1-1'
_a = 'CompVis/stable-diffusion-v1-2'
_a = 'CompVis/stable-diffusion-v1-3'
_a = 'CompVis/stable-diffusion-v1-4'
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
def __init__( self : Dict, UpperCAmelCase__ : AutoencoderKL, UpperCAmelCase__ : CLIPTextModel, UpperCAmelCase__ : CLIPTokenizer, UpperCAmelCase__ : UNetaDConditionModel, UpperCAmelCase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], UpperCAmelCase__ : StableDiffusionSafetyChecker, UpperCAmelCase__ : CLIPImageProcessor, UpperCAmelCase__ : bool = True, ):
super()._init_()
__lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ )
__lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ )
__lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ )
__lowercase = StableDiffusionPipeline(
vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, tokenizer=UpperCAmelCase__, unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, safety_checker=UpperCAmelCase__, feature_extractor=UpperCAmelCase__, requires_safety_checker=UpperCAmelCase__, )
self.register_modules(pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea )
@property
def _lowercase ( self : List[str] ):
return {k: getattr(self, UpperCAmelCase__ ) for k in self.config.keys() if not k.startswith("_" )}
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ):
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
__lowercase = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(UpperCAmelCase__ )
def _lowercase ( self : List[str] ):
self.enable_attention_slicing(UpperCAmelCase__ )
@torch.no_grad()
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Tuple, ):
return self.pipea(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
@torch.no_grad()
def _lowercase ( self : Tuple, UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : str, ):
return self.pipea(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
@torch.no_grad()
def _lowercase ( self : str, UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Any, ):
return self.pipea(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
@torch.no_grad()
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Optional[int], ):
return self.pipea(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
@torch.no_grad()
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : str, ):
__lowercase = "cuda" if torch.cuda.is_available() else "cpu"
self.to(UpperCAmelCase__ )
# Checks if the height and width are divisible by 8 or not
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" )
# Get first result from Stable Diffusion Checkpoint v1.1
__lowercase = self.textaimg_sda_a(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
# Get first result from Stable Diffusion Checkpoint v1.2
__lowercase = self.textaimg_sda_a(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
# Get first result from Stable Diffusion Checkpoint v1.3
__lowercase = self.textaimg_sda_a(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
# Get first result from Stable Diffusion Checkpoint v1.4
__lowercase = self.textaimg_sda_a(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
# Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result
return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
| 17 | 0 |
"""simple docstring"""
__lowerCamelCase = 8.3_1_4_4_5_9_8
def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ):
"""simple docstring"""
if temperature < 0:
raise Exception('Temperature cannot be less than 0 K' )
if molar_mass <= 0:
raise Exception('Molar mass cannot be less than or equal to 0 kg/mol' )
else:
return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
# example
__lowerCamelCase = 3_00
__lowerCamelCase = 28
__lowerCamelCase = rms_speed_of_molecule(temperature, molar_mass)
print(F'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
| 221 |
"""simple docstring"""
import random
import unittest
import numpy as np
import torch
from diffusers import (
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionUpscalePipeline,
PNDMScheduler,
)
from diffusers.utils import floats_tensor
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class _lowerCAmelCase ( lowercase ,unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : str = "ssube/stable-diffusion-x4-upscaler-onnx"
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : List[str]=0 ):
__lowercase = floats_tensor((1, 3, 1_2_8, 1_2_8), rng=random.Random(UpperCAmelCase__ ) )
__lowercase = torch.manual_seed(UpperCAmelCase__ )
__lowercase = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 7.5,
"output_type": "numpy",
}
return inputs
def _lowercase ( self : Any ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1].flatten()
# started as 128, should now be 512
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] )
assert np.abs(image_slice - expected_slice ).max() < 1E-1
def _lowercase ( self : Optional[Any] ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
__lowercase = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.6_898_892, 0.59_240_556, 0.52_499_527, 0.58_866_215, 0.52_258_235, 0.52_572_715, 0.62_414_473, 0.6_174_387, 0.6_214_964] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def _lowercase ( self : int ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
__lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.7_659_278, 0.76_437_664, 0.75_579_107, 0.7_691_116, 0.77_666_986, 0.7_727_672, 0.7_758_664, 0.7_812_226, 0.76_942_515] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def _lowercase ( self : str ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
__lowercase = EulerDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def _lowercase ( self : Any ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
__lowercase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.77_424_496, 0.773_601, 0.7_645_288, 0.7_769_598, 0.7_772_739, 0.7_738_688, 0.78_187_233, 0.77_879_584, 0.767_043] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
@nightly
@require_onnxruntime
@require_torch_gpu
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@property
def _lowercase ( self : Tuple ):
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def _lowercase ( self : Dict ):
__lowercase = ort.SessionOptions()
__lowercase = False
return options
def _lowercase ( self : Dict ):
__lowercase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg" )
__lowercase = init_image.resize((1_2_8, 1_2_8) )
# using the PNDM scheduler by default
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(
"ssube/stable-diffusion-x4-upscaler-onnx", provider=self.gpu_provider, sess_options=self.gpu_options, )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = "A fantasy landscape, trending on artstation"
__lowercase = torch.manual_seed(0 )
__lowercase = pipe(
prompt=UpperCAmelCase__, image=UpperCAmelCase__, guidance_scale=7.5, num_inference_steps=1_0, generator=UpperCAmelCase__, output_type="np", )
__lowercase = output.images
__lowercase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert images.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array([0.4_883, 0.4_947, 0.4_980, 0.4_975, 0.4_982, 0.4_980, 0.5_000, 0.5_006, 0.4_972] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
def _lowercase ( self : str ):
__lowercase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg" )
__lowercase = init_image.resize((1_2_8, 1_2_8) )
__lowercase = LMSDiscreteScheduler.from_pretrained(
"ssube/stable-diffusion-x4-upscaler-onnx", subfolder="scheduler" )
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(
"ssube/stable-diffusion-x4-upscaler-onnx", scheduler=UpperCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = "A fantasy landscape, trending on artstation"
__lowercase = torch.manual_seed(0 )
__lowercase = pipe(
prompt=UpperCAmelCase__, image=UpperCAmelCase__, guidance_scale=7.5, num_inference_steps=2_0, generator=UpperCAmelCase__, output_type="np", )
__lowercase = output.images
__lowercase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert images.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.50_173_753, 0.50_223_356, 0.502_039, 0.50_233_036, 0.5_023_725, 0.5_022_601, 0.5_018_758, 0.50_234_085, 0.50_241_566] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
| 17 | 0 |
import numpy as np
# Importing the Keras libraries and packages
import tensorflow as tf
from tensorflow.keras import layers, models
if __name__ == "__main__":
# Initialising the CNN
# (Sequential- Building the model layer by layer)
_UpperCamelCase = models.Sequential()
# Step 1 - Convolution
# Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel
# (3,3) is the kernel size (filter matrix)
classifier.add(
layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='''relu''')
)
# Step 2 - Pooling
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Adding a second convolutional layer
classifier.add(layers.ConvaD(32, (3, 3), activation='''relu'''))
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Step 3 - Flattening
classifier.add(layers.Flatten())
# Step 4 - Full connection
classifier.add(layers.Dense(units=128, activation='''relu'''))
classifier.add(layers.Dense(units=1, activation='''sigmoid'''))
# Compiling the CNN
classifier.compile(
optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy''']
)
# Part 2 - Fitting the CNN to the images
# Load Trained model weights
# from keras.models import load_model
# regressor=load_model('cnn.h5')
_UpperCamelCase = tf.keras.preprocessing.image.ImageDataGenerator(
rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True
)
_UpperCamelCase = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255)
_UpperCamelCase = train_datagen.flow_from_directory(
'''dataset/training_set''', target_size=(64, 64), batch_size=32, class_mode='''binary'''
)
_UpperCamelCase = test_datagen.flow_from_directory(
'''dataset/test_set''', target_size=(64, 64), batch_size=32, class_mode='''binary'''
)
classifier.fit_generator(
training_set, steps_per_epoch=5, epochs=30, validation_data=test_set
)
classifier.save('''cnn.h5''')
# Part 3 - Making new predictions
_UpperCamelCase = tf.keras.preprocessing.image.load_img(
'''dataset/single_prediction/image.png''', target_size=(64, 64)
)
_UpperCamelCase = tf.keras.preprocessing.image.img_to_array(test_image)
_UpperCamelCase = np.expand_dims(test_image, axis=0)
_UpperCamelCase = classifier.predict(test_image)
# training_set.class_indices
if result[0][0] == 0:
_UpperCamelCase = '''Normal'''
if result[0][0] == 1:
_UpperCamelCase = '''Abnormality detected'''
| 326 |
"""simple docstring"""
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
_a = datasets.utils.logging.get_logger(__name__)
_a = ['names', 'prefix']
_a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols']
_a = ['encoding_errors', 'on_bad_lines']
_a = ['date_format']
@dataclass
class _lowerCAmelCase ( datasets.BuilderConfig ):
"""simple docstring"""
__UpperCAmelCase : str = ","
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : Optional[Union[int, List[int], str]] = "infer"
__UpperCAmelCase : Optional[List[str]] = None
__UpperCAmelCase : Optional[List[str]] = None
__UpperCAmelCase : Optional[Union[int, str, List[int], List[str]]] = None
__UpperCAmelCase : Optional[Union[List[int], List[str]]] = None
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : bool = True
__UpperCAmelCase : Optional[Literal["c", "python", "pyarrow"]] = None
__UpperCAmelCase : Dict[Union[int, str], Callable[[Any], Any]] = None
__UpperCAmelCase : Optional[list] = None
__UpperCAmelCase : Optional[list] = None
__UpperCAmelCase : bool = False
__UpperCAmelCase : Optional[Union[int, List[int]]] = None
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : Optional[Union[str, List[str]]] = None
__UpperCAmelCase : bool = True
__UpperCAmelCase : bool = True
__UpperCAmelCase : bool = False
__UpperCAmelCase : bool = True
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : str = "."
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : str = '"'
__UpperCAmelCase : int = 0
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : bool = True
__UpperCAmelCase : bool = True
__UpperCAmelCase : int = 0
__UpperCAmelCase : bool = True
__UpperCAmelCase : bool = False
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : int = 1_0_0_0_0
__UpperCAmelCase : Optional[datasets.Features] = None
__UpperCAmelCase : Optional[str] = "strict"
__UpperCAmelCase : Literal["error", "warn", "skip"] = "error"
__UpperCAmelCase : Optional[str] = None
def _lowercase ( self : Tuple ):
if self.delimiter is not None:
__lowercase = self.delimiter
if self.column_names is not None:
__lowercase = self.column_names
@property
def _lowercase ( self : Union[str, Any] ):
__lowercase = {
"sep": self.sep,
"header": self.header,
"names": self.names,
"index_col": self.index_col,
"usecols": self.usecols,
"prefix": self.prefix,
"mangle_dupe_cols": self.mangle_dupe_cols,
"engine": self.engine,
"converters": self.converters,
"true_values": self.true_values,
"false_values": self.false_values,
"skipinitialspace": self.skipinitialspace,
"skiprows": self.skiprows,
"nrows": self.nrows,
"na_values": self.na_values,
"keep_default_na": self.keep_default_na,
"na_filter": self.na_filter,
"verbose": self.verbose,
"skip_blank_lines": self.skip_blank_lines,
"thousands": self.thousands,
"decimal": self.decimal,
"lineterminator": self.lineterminator,
"quotechar": self.quotechar,
"quoting": self.quoting,
"escapechar": self.escapechar,
"comment": self.comment,
"encoding": self.encoding,
"dialect": self.dialect,
"error_bad_lines": self.error_bad_lines,
"warn_bad_lines": self.warn_bad_lines,
"skipfooter": self.skipfooter,
"doublequote": self.doublequote,
"memory_map": self.memory_map,
"float_precision": self.float_precision,
"chunksize": self.chunksize,
"encoding_errors": self.encoding_errors,
"on_bad_lines": self.on_bad_lines,
"date_format": self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig(), UpperCAmelCase__ ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class _lowerCAmelCase ( datasets.ArrowBasedBuilder ):
"""simple docstring"""
__UpperCAmelCase : Tuple = CsvConfig
def _lowercase ( self : List[str] ):
return datasets.DatasetInfo(features=self.config.features )
def _lowercase ( self : List[Any], UpperCAmelCase__ : Dict ):
if not self.config.data_files:
raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" )
__lowercase = dl_manager.download_and_extract(self.config.data_files )
if isinstance(UpperCAmelCase__, (str, list, tuple) ):
__lowercase = data_files
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
__lowercase = [files]
__lowercase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files} )]
__lowercase = []
for split_name, files in data_files.items():
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
__lowercase = [files]
__lowercase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files]
splits.append(datasets.SplitGenerator(name=UpperCAmelCase__, gen_kwargs={"files": files} ) )
return splits
def _lowercase ( self : Dict, UpperCAmelCase__ : pa.Table ):
if self.config.features is not None:
__lowercase = self.config.features.arrow_schema
if all(not require_storage_cast(UpperCAmelCase__ ) for feature in self.config.features.values() ):
# cheaper cast
__lowercase = pa.Table.from_arrays([pa_table[field.name] for field in schema], schema=UpperCAmelCase__ )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
__lowercase = table_cast(UpperCAmelCase__, UpperCAmelCase__ )
return pa_table
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : List[str] ):
__lowercase = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
__lowercase = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(UpperCAmelCase__ ) else object
for name, dtype, feature in zip(schema.names, schema.types, self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase__ ) ):
__lowercase = pd.read_csv(UpperCAmelCase__, iterator=UpperCAmelCase__, dtype=UpperCAmelCase__, **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(UpperCAmelCase__ ):
__lowercase = pa.Table.from_pandas(UpperCAmelCase__ )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase__ )
except ValueError as e:
logger.error(F"""Failed to read file '{file}' with error {type(UpperCAmelCase__ )}: {e}""" )
raise
| 17 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
_snake_case = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = ["FNetTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = ["FNetTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
"FNET_PRETRAINED_MODEL_ARCHIVE_LIST",
"FNetForMaskedLM",
"FNetForMultipleChoice",
"FNetForNextSentencePrediction",
"FNetForPreTraining",
"FNetForQuestionAnswering",
"FNetForSequenceClassification",
"FNetForTokenClassification",
"FNetLayer",
"FNetModel",
"FNetPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet import FNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet_fast import FNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_fnet import (
FNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FNetForMaskedLM,
FNetForMultipleChoice,
FNetForNextSentencePrediction,
FNetForPreTraining,
FNetForQuestionAnswering,
FNetForSequenceClassification,
FNetForTokenClassification,
FNetLayer,
FNetModel,
FNetPreTrainedModel,
)
else:
import sys
_snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 26 |
"""simple docstring"""
from scipy.stats import spearmanr
import datasets
_a = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n'
_a = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n'
_a = r'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class _lowerCAmelCase ( datasets.Metric ):
"""simple docstring"""
def _lowercase ( self : Dict ):
return datasets.MetricInfo(
description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features(
{
"predictions": datasets.Value("float" ),
"references": datasets.Value("float" ),
} ), reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"], )
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int]=False ):
__lowercase = spearmanr(UpperCAmelCase__, UpperCAmelCase__ )
if return_pvalue:
return {"spearmanr": results[0], "spearmanr_pvalue": results[1]}
else:
return {"spearmanr": results[0]}
| 17 | 0 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
load_numpy,
nightly,
require_torch_gpu,
slow,
torch_device,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class lowercase_ ( __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : Dict = LDMTextToImagePipeline
UpperCAmelCase : str = TEXT_TO_IMAGE_PARAMS - {
"negative_prompt",
"negative_prompt_embeds",
"cross_attention_kwargs",
"prompt_embeds",
}
UpperCAmelCase : Optional[Any] = PipelineTesterMixin.required_optional_params - {
"num_images_per_prompt",
"callback",
"callback_steps",
}
UpperCAmelCase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS
UpperCAmelCase : List[str] = False
def lowerCAmelCase_ ( self : str ):
torch.manual_seed(0 )
_A = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , )
_A = DDIMScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=UpperCAmelCase__ , set_alpha_to_one=UpperCAmelCase__ , )
torch.manual_seed(0 )
_A = AutoencoderKL(
block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , latent_channels=4 , )
torch.manual_seed(0 )
_A = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
_A = CLIPTextModel(UpperCAmelCase__ )
_A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
_A = {
'unet': unet,
'scheduler': scheduler,
'vqvae': vae,
'bert': text_encoder,
'tokenizer': tokenizer,
}
return components
def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any]=0 ):
if str(UpperCAmelCase__ ).startswith('mps' ):
_A = torch.manual_seed(UpperCAmelCase__ )
else:
_A = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ )
_A = {
'prompt': 'A painting of a squirrel eating a burger',
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def lowerCAmelCase_ ( self : int ):
_A = 'cpu' # ensure determinism for the device-dependent torch.Generator
_A = self.get_dummy_components()
_A = LDMTextToImagePipeline(**UpperCAmelCase__ )
pipe.to(UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
_A = self.get_dummy_inputs(UpperCAmelCase__ )
_A = pipe(**UpperCAmelCase__ ).images
_A = image[0, -3:, -3:, -1]
assert image.shape == (1, 16, 16, 3)
_A = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
@slow
@require_torch_gpu
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : Dict ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict=torch.floataa , _UpperCAmelCase : Dict=0 ):
_A = torch.manual_seed(UpperCAmelCase__ )
_A = np.random.RandomState(UpperCAmelCase__ ).standard_normal((1, 4, 32, 32) )
_A = torch.from_numpy(UpperCAmelCase__ ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ )
_A = {
'prompt': 'A painting of a squirrel eating a burger',
'latents': latents,
'generator': generator,
'num_inference_steps': 3,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def lowerCAmelCase_ ( self : Tuple ):
_A = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
_A = self.get_inputs(UpperCAmelCase__ )
_A = pipe(**UpperCAmelCase__ ).images
_A = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 256, 256, 3)
_A = np.array([0.5_1825, 0.5_2850, 0.5_2543, 0.5_4258, 0.5_2304, 0.5_2569, 0.5_4363, 0.5_5276, 0.5_6878] )
_A = np.abs(expected_slice - image_slice ).max()
assert max_diff < 1E-3
@nightly
@require_torch_gpu
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : List[str] ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str]=torch.floataa , _UpperCAmelCase : List[str]=0 ):
_A = torch.manual_seed(UpperCAmelCase__ )
_A = np.random.RandomState(UpperCAmelCase__ ).standard_normal((1, 4, 32, 32) )
_A = torch.from_numpy(UpperCAmelCase__ ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ )
_A = {
'prompt': 'A painting of a squirrel eating a burger',
'latents': latents,
'generator': generator,
'num_inference_steps': 50,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def lowerCAmelCase_ ( self : int ):
_A = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
_A = self.get_inputs(UpperCAmelCase__ )
_A = pipe(**UpperCAmelCase__ ).images[0]
_A = load_numpy(
'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' )
_A = np.abs(expected_image - image ).max()
assert max_diff < 1E-3
| 315 |
"""simple docstring"""
from collections.abc import Sequence
def _A ( UpperCamelCase_ : Sequence[float], UpperCamelCase_ : float) -> float:
'''simple docstring'''
return sum(c * (x**i) for i, c in enumerate(UpperCamelCase_))
def _A ( UpperCamelCase_ : Sequence[float], UpperCamelCase_ : float) -> float:
'''simple docstring'''
__lowercase = 0.0
for coeff in reversed(UpperCamelCase_):
__lowercase = result * x + coeff
return result
if __name__ == "__main__":
_a = (0.0, 0.0, 5.0, 9.3, 7.0)
_a = 10.0
print(evaluate_poly(poly, x))
print(horner(poly, x))
| 17 | 0 |
import unittest
from transformers import load_tool
from .test_tools_common import ToolTesterMixin
lowercase__ : str = '''\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n'''
class lowercase_ ( unittest.TestCase , UpperCamelCase_ ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]:
lowerCAmelCase = load_tool('''text-question-answering''' )
self.tool.setup()
lowerCAmelCase = load_tool('''text-question-answering''' , remote=UpperCAmelCase__ )
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
lowerCAmelCase = self.tool(UpperCAmelCase__ , '''What did Hugging Face do in April 2021?''' )
self.assertEqual(UpperCAmelCase__ , '''launched the BigScience Research Workshop''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]:
lowerCAmelCase = self.remote_tool(UpperCAmelCase__ , '''What did Hugging Face do in April 2021?''' )
self.assertEqual(UpperCAmelCase__ , '''launched the BigScience Research Workshop''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
lowerCAmelCase = self.tool(text=UpperCAmelCase__ , question='''What did Hugging Face do in April 2021?''' )
self.assertEqual(UpperCAmelCase__ , '''launched the BigScience Research Workshop''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
lowerCAmelCase = self.remote_tool(text=UpperCAmelCase__ , question='''What did Hugging Face do in April 2021?''' )
self.assertEqual(UpperCAmelCase__ , '''launched the BigScience Research Workshop''' )
| 338 |
"""simple docstring"""
import argparse
import pytorch_lightning as pl
import torch
from torch import nn
from transformers import LongformerForQuestionAnswering, LongformerModel
class _lowerCAmelCase ( pl.LightningModule ):
"""simple docstring"""
def __init__( self : Optional[Any], UpperCAmelCase__ : str ):
super().__init__()
__lowercase = model
__lowercase = 2
__lowercase = nn.Linear(self.model.config.hidden_size, self.num_labels )
def _lowercase ( self : Optional[int] ):
pass
def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str, UpperCamelCase_ : str) -> str:
'''simple docstring'''
__lowercase = LongformerModel.from_pretrained(UpperCamelCase_)
__lowercase = LightningModel(UpperCamelCase_)
__lowercase = torch.load(UpperCamelCase_, map_location=torch.device("cpu"))
lightning_model.load_state_dict(ckpt["state_dict"])
# init longformer question answering model
__lowercase = LongformerForQuestionAnswering.from_pretrained(UpperCamelCase_)
# transfer weights
longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict())
longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict())
longformer_for_qa.eval()
# save model
longformer_for_qa.save_pretrained(UpperCamelCase_)
print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""")
if __name__ == "__main__":
_a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--longformer_model',
default=None,
type=str,
required=True,
help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.',
)
parser.add_argument(
'--longformer_question_answering_ckpt_path',
default=None,
type=str,
required=True,
help='Path the official PyTorch Lightning Checkpoint.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
_a = parser.parse_args()
convert_longformer_qa_checkpoint_to_pytorch(
args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path
)
| 17 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a__ : Optional[Any] ={
'''configuration_jukebox''': [
'''JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''JukeboxConfig''',
'''JukeboxPriorConfig''',
'''JukeboxVQVAEConfig''',
],
'''tokenization_jukebox''': ['''JukeboxTokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Dict =[
'''JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''JukeboxModel''',
'''JukeboxPreTrainedModel''',
'''JukeboxVQVAE''',
'''JukeboxPrior''',
]
if TYPE_CHECKING:
from .configuration_jukebox import (
JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP,
JukeboxConfig,
JukeboxPriorConfig,
JukeboxVQVAEConfig,
)
from .tokenization_jukebox import JukeboxTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_jukebox import (
JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST,
JukeboxModel,
JukeboxPreTrainedModel,
JukeboxPrior,
JukeboxVQVAE,
)
else:
import sys
a__ : Optional[Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 53 |
"""simple docstring"""
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("TEST_SAGEMAKER" ,"False" ) ) is not True ,reason="Skipping test because should only be run when releasing minor transformers version" ,)
@pytest.mark.usefixtures("sm_env" )
@parameterized_class(
[
{
"framework": "pytorch",
"script": "run_glue_model_parallelism.py",
"model_name_or_path": "roberta-large",
"instance_type": "ml.p3dn.24xlarge",
"results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2},
},
{
"framework": "pytorch",
"script": "run_glue.py",
"model_name_or_path": "roberta-large",
"instance_type": "ml.p3dn.24xlarge",
"results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2},
},
] )
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def _lowercase ( self : Optional[int] ):
if self.framework == "pytorch":
subprocess.run(
F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split(), encoding="utf-8", check=UpperCAmelCase__, )
assert hasattr(self, "env" )
def _lowercase ( self : str, UpperCAmelCase__ : List[Any] ):
# configuration for running training on smdistributed Model Parallel
__lowercase = {
"enabled": True,
"processes_per_host": 8,
}
__lowercase = {
"enabled": True,
"parameters": {
"microbatches": 4,
"placement_strategy": "spread",
"pipeline": "interleaved",
"optimize": "speed",
"partitions": 4,
"ddp": True,
},
}
__lowercase = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options}
__lowercase = "trainer" if self.script == "run_glue.py" else "smtrainer"
# creates estimator
return HuggingFace(
entry_point=self.script, source_dir=self.env.test_path, role=self.env.role, image_uri=self.env.image_uri, base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""", instance_count=UpperCAmelCase__, instance_type=self.instance_type, debugger_hook_config=UpperCAmelCase__, hyperparameters={
**self.env.hyperparameters,
"model_name_or_path": self.model_name_or_path,
"max_steps": 5_0_0,
}, metric_definitions=self.env.metric_definitions, distribution=UpperCAmelCase__, py_version="py36", )
def _lowercase ( self : Tuple, UpperCAmelCase__ : int ):
TrainingJobAnalytics(UpperCAmelCase__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" )
@parameterized.expand([(1,)] )
def _lowercase ( self : str, UpperCAmelCase__ : Union[str, Any] ):
# create estimator
__lowercase = self.create_estimator(UpperCAmelCase__ )
# run training
estimator.fit()
# result dataframe
__lowercase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
__lowercase = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] )
__lowercase = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
__lowercase = (
Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds", 9_9_9_9_9_9 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy )
assert all(t <= self.results["eval_loss"] for t in eval_loss )
# dump tests result into json file to share in PR
with open(F"""{estimator.latest_training_job.name}.json""", "w" ) as outfile:
json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss}, UpperCAmelCase__ )
| 17 | 0 |
from __future__ import annotations
import unittest
from transformers import DistilBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.distilbert.modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertModel,
)
class UpperCAmelCase :
def __init__(self : List[str] , snake_case__ : Tuple , ) -> Dict:
'''simple docstring'''
snake_case : Dict = parent
snake_case : Optional[Any] = 13
snake_case : Dict = 7
snake_case : Optional[Any] = True
snake_case : Optional[Any] = True
snake_case : Optional[Any] = False
snake_case : int = True
snake_case : int = 99
snake_case : List[Any] = 32
snake_case : str = 2
snake_case : Optional[Any] = 4
snake_case : int = 37
snake_case : Any = "gelu"
snake_case : List[str] = 0.1
snake_case : Union[str, Any] = 0.1
snake_case : Any = 5_12
snake_case : List[Any] = 16
snake_case : Any = 2
snake_case : Optional[Any] = 0.02
snake_case : List[str] = 3
snake_case : Any = 4
snake_case : Dict = None
def _SCREAMING_SNAKE_CASE (self : int ) -> Tuple:
'''simple docstring'''
snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case : Optional[Any] = None
if self.use_input_mask:
snake_case : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
snake_case : Optional[Any] = None
snake_case : Optional[int] = None
snake_case : Tuple = None
if self.use_labels:
snake_case : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
snake_case : Tuple = ids_tensor([self.batch_size] , self.num_choices )
snake_case : Optional[int] = DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : str , snake_case__ : Dict , snake_case__ : int , snake_case__ : Dict , snake_case__ : Any , snake_case__ : Optional[int] ) -> int:
'''simple docstring'''
snake_case : List[str] = TFDistilBertModel(config=UpperCAmelCase__ )
snake_case : Tuple = {"input_ids": input_ids, "attention_mask": input_mask}
snake_case : Optional[int] = model(UpperCAmelCase__ )
snake_case : int = [input_ids, input_mask]
snake_case : Union[str, Any] = model(UpperCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : Optional[Any] , snake_case__ : Any , snake_case__ : Tuple , snake_case__ : Any , snake_case__ : Union[str, Any] , snake_case__ : List[str] ) -> Optional[int]:
'''simple docstring'''
snake_case : str = TFDistilBertForMaskedLM(config=UpperCAmelCase__ )
snake_case : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask}
snake_case : Union[str, Any] = model(UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _SCREAMING_SNAKE_CASE (self : int , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Dict , snake_case__ : Any , snake_case__ : Dict , snake_case__ : Any ) -> int:
'''simple docstring'''
snake_case : Optional[Any] = TFDistilBertForQuestionAnswering(config=UpperCAmelCase__ )
snake_case : Tuple = {
"input_ids": input_ids,
"attention_mask": input_mask,
}
snake_case : Optional[int] = model(UpperCAmelCase__ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : Any ) -> Union[str, Any]:
'''simple docstring'''
snake_case : Union[str, Any] = self.num_labels
snake_case : List[str] = TFDistilBertForSequenceClassification(UpperCAmelCase__ )
snake_case : str = {"input_ids": input_ids, "attention_mask": input_mask}
snake_case : Dict = model(UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : Dict , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : Tuple ) -> str:
'''simple docstring'''
snake_case : Dict = self.num_choices
snake_case : Tuple = TFDistilBertForMultipleChoice(UpperCAmelCase__ )
snake_case : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase__ , 1 ) , (1, self.num_choices, 1) )
snake_case : Dict = tf.tile(tf.expand_dims(UpperCAmelCase__ , 1 ) , (1, self.num_choices, 1) )
snake_case : Tuple = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
}
snake_case : Tuple = model(UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Union[str, Any] , snake_case__ : str , snake_case__ : Any , snake_case__ : Optional[int] , snake_case__ : int , snake_case__ : List[Any] ) -> int:
'''simple docstring'''
snake_case : Any = self.num_labels
snake_case : Optional[Any] = TFDistilBertForTokenClassification(UpperCAmelCase__ )
snake_case : Dict = {"input_ids": input_ids, "attention_mask": input_mask}
snake_case : Dict = model(UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _SCREAMING_SNAKE_CASE (self : Dict ) -> Dict:
'''simple docstring'''
snake_case : Optional[int] = self.prepare_config_and_inputs()
((snake_case) , (snake_case) , (snake_case) , (snake_case) , (snake_case) , (snake_case)) : List[str] = config_and_inputs
snake_case : str = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf
class UpperCAmelCase ( A_ ,A_ ,unittest.TestCase ):
A__ : int = (
(
TFDistilBertModel,
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertForMultipleChoice,
)
if is_tf_available()
else None
)
A__ : Union[str, Any] = (
{
"feature-extraction": TFDistilBertModel,
"fill-mask": TFDistilBertForMaskedLM,
"question-answering": TFDistilBertForQuestionAnswering,
"text-classification": TFDistilBertForSequenceClassification,
"token-classification": TFDistilBertForTokenClassification,
"zero-shot": TFDistilBertForSequenceClassification,
}
if is_tf_available()
else {}
)
A__ : str = False
A__ : List[str] = False
def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> str:
'''simple docstring'''
snake_case : Dict = TFDistilBertModelTester(self )
snake_case : List[Any] = ConfigTester(self , config_class=UpperCAmelCase__ , dim=37 )
def _SCREAMING_SNAKE_CASE (self : str ) -> Tuple:
'''simple docstring'''
self.config_tester.run_common_tests()
def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Dict:
'''simple docstring'''
snake_case : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*UpperCAmelCase__ )
def _SCREAMING_SNAKE_CASE (self : Dict ) -> int:
'''simple docstring'''
snake_case : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCAmelCase__ )
def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Tuple:
'''simple docstring'''
snake_case : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCAmelCase__ )
def _SCREAMING_SNAKE_CASE (self : Dict ) -> List[str]:
'''simple docstring'''
snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCAmelCase__ )
def _SCREAMING_SNAKE_CASE (self : List[str] ) -> int:
'''simple docstring'''
snake_case : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCAmelCase__ )
def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Optional[Any]:
'''simple docstring'''
snake_case : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCAmelCase__ )
@slow
def _SCREAMING_SNAKE_CASE (self : str ) -> List[Any]:
'''simple docstring'''
for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ):
snake_case : int = TFDistilBertModel.from_pretrained(UpperCAmelCase__ )
self.assertIsNotNone(UpperCAmelCase__ )
@require_tf
class UpperCAmelCase ( unittest.TestCase ):
@slow
def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Tuple:
'''simple docstring'''
snake_case : List[str] = TFDistilBertModel.from_pretrained("distilbert-base-uncased" )
snake_case : Optional[Any] = tf.constant([[0, 1, 2, 3, 4, 5]] )
snake_case : Optional[int] = model(UpperCAmelCase__ )[0]
snake_case : Any = [1, 6, 7_68]
self.assertEqual(output.shape , UpperCAmelCase__ )
snake_case : List[str] = tf.constant(
[
[
[0.19261885, -0.13732955, 0.4119799],
[0.22150156, -0.07422661, 0.39037204],
[0.22756018, -0.0896414, 0.3701467],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase__ , atol=1e-4 )
| 59 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor
from .base import PipelineTool
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
__UpperCAmelCase : Tuple = "openai/whisper-base"
__UpperCAmelCase : Union[str, Any] = (
"This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the "
"transcribed text."
)
__UpperCAmelCase : List[str] = "transcriber"
__UpperCAmelCase : Optional[Any] = WhisperProcessor
__UpperCAmelCase : str = WhisperForConditionalGeneration
__UpperCAmelCase : List[str] = ["audio"]
__UpperCAmelCase : Tuple = ["text"]
def _lowercase ( self : str, UpperCAmelCase__ : int ):
return self.pre_processor(UpperCAmelCase__, return_tensors="pt" ).input_features
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Any] ):
return self.model.generate(inputs=UpperCAmelCase__ )
def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[int] ):
return self.pre_processor.batch_decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ )[0]
| 17 | 0 |
import math
def A_ ( _UpperCAmelCase ):
assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or not number % 2:
# Negatives, 0, 1 and all even numbers are not primes
return False
SCREAMING_SNAKE_CASE_: Optional[Any] = range(3 , int(math.sqrt(UpperCamelCase_ ) + 1 ) , 2 )
return not any(not number % i for i in odd_numbers )
def A_ ( _UpperCAmelCase , _UpperCAmelCase=1 , **_UpperCAmelCase ):
SCREAMING_SNAKE_CASE_: Union[str, Any] = factor * value
SCREAMING_SNAKE_CASE_: List[Any] = value
while not is_prime(UpperCamelCase_ ):
value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1
if value == first_value_val:
return next_prime(value + 1 , **UpperCamelCase_ )
return value
| 13 |
"""simple docstring"""
import inspect
from typing import Optional, Union
import numpy as np
import PIL
import torch
from torch.nn import functional as F
from torchvision import transforms
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
DPMSolverMultistepScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.utils import (
PIL_INTERPOLATION,
randn_tensor,
)
def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str]) -> Optional[int]:
'''simple docstring'''
if isinstance(UpperCamelCase_, torch.Tensor):
return image
elif isinstance(UpperCamelCase_, PIL.Image.Image):
__lowercase = [image]
if isinstance(image[0], PIL.Image.Image):
__lowercase = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image]
__lowercase = np.concatenate(UpperCamelCase_, axis=0)
__lowercase = np.array(UpperCamelCase_).astype(np.floataa) / 255.0
__lowercase = image.transpose(0, 3, 1, 2)
__lowercase = 2.0 * image - 1.0
__lowercase = torch.from_numpy(UpperCamelCase_)
elif isinstance(image[0], torch.Tensor):
__lowercase = torch.cat(UpperCamelCase_, dim=0)
return image
def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : str, UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[Any]=0.9_995) -> int:
'''simple docstring'''
if not isinstance(UpperCamelCase_, np.ndarray):
__lowercase = True
__lowercase = va.device
__lowercase = va.cpu().numpy()
__lowercase = va.cpu().numpy()
__lowercase = np.sum(va * va / (np.linalg.norm(UpperCamelCase_) * np.linalg.norm(UpperCamelCase_)))
if np.abs(UpperCamelCase_) > DOT_THRESHOLD:
__lowercase = (1 - t) * va + t * va
else:
__lowercase = np.arccos(UpperCamelCase_)
__lowercase = np.sin(UpperCamelCase_)
__lowercase = theta_a * t
__lowercase = np.sin(UpperCamelCase_)
__lowercase = np.sin(theta_a - theta_t) / sin_theta_a
__lowercase = sin_theta_t / sin_theta_a
__lowercase = sa * va + sa * va
if inputs_are_torch:
__lowercase = torch.from_numpy(UpperCamelCase_).to(UpperCamelCase_)
return va
def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Union[str, Any]) -> int:
'''simple docstring'''
__lowercase = F.normalize(UpperCamelCase_, dim=-1)
__lowercase = F.normalize(UpperCamelCase_, dim=-1)
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)
def _A ( UpperCamelCase_ : Optional[int], UpperCamelCase_ : str) -> Optional[int]:
'''simple docstring'''
for param in model.parameters():
__lowercase = value
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
def __init__( self : Dict, UpperCAmelCase__ : AutoencoderKL, UpperCAmelCase__ : CLIPTextModel, UpperCAmelCase__ : CLIPModel, UpperCAmelCase__ : CLIPTokenizer, UpperCAmelCase__ : UNetaDConditionModel, UpperCAmelCase__ : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler], UpperCAmelCase__ : CLIPFeatureExtractor, UpperCAmelCase__ : Union[str, Any]=None, UpperCAmelCase__ : List[str]=None, UpperCAmelCase__ : Any=None, ):
super().__init__()
self.register_modules(
vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, clip_model=UpperCAmelCase__, tokenizer=UpperCAmelCase__, unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, feature_extractor=UpperCAmelCase__, coca_model=UpperCAmelCase__, coca_tokenizer=UpperCAmelCase__, coca_transform=UpperCAmelCase__, )
__lowercase = (
feature_extractor.size
if isinstance(feature_extractor.size, UpperCAmelCase__ )
else feature_extractor.size["shortest_edge"]
)
__lowercase = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std )
set_requires_grad(self.text_encoder, UpperCAmelCase__ )
set_requires_grad(self.clip_model, UpperCAmelCase__ )
def _lowercase ( self : Tuple, UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ):
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
__lowercase = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(UpperCAmelCase__ )
def _lowercase ( self : int ):
self.enable_attention_slicing(UpperCAmelCase__ )
def _lowercase ( self : str ):
set_requires_grad(self.vae, UpperCAmelCase__ )
def _lowercase ( self : Any ):
set_requires_grad(self.vae, UpperCAmelCase__ )
def _lowercase ( self : Union[str, Any] ):
set_requires_grad(self.unet, UpperCAmelCase__ )
def _lowercase ( self : Any ):
set_requires_grad(self.unet, UpperCAmelCase__ )
def _lowercase ( self : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : Optional[Any] ):
# get the original timestep using init_timestep
__lowercase = min(int(num_inference_steps * strength ), UpperCAmelCase__ )
__lowercase = max(num_inference_steps - init_timestep, 0 )
__lowercase = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def _lowercase ( self : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : int=None ):
if not isinstance(UpperCAmelCase__, torch.Tensor ):
raise ValueError(F"""`image` has to be of type `torch.Tensor` but is {type(UpperCAmelCase__ )}""" )
__lowercase = image.to(device=UpperCAmelCase__, dtype=UpperCAmelCase__ )
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
__lowercase = [
self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(UpperCAmelCase__ )
]
__lowercase = torch.cat(UpperCAmelCase__, dim=0 )
else:
__lowercase = self.vae.encode(UpperCAmelCase__ ).latent_dist.sample(UpperCAmelCase__ )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
__lowercase = 0.18_215 * init_latents
__lowercase = init_latents.repeat_interleave(UpperCAmelCase__, dim=0 )
__lowercase = randn_tensor(init_latents.shape, generator=UpperCAmelCase__, device=UpperCAmelCase__, dtype=UpperCAmelCase__ )
# get latents
__lowercase = self.scheduler.add_noise(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = init_latents
return latents
def _lowercase ( self : Optional[int], UpperCAmelCase__ : Dict ):
__lowercase = self.coca_transform(UpperCAmelCase__ ).unsqueeze(0 )
with torch.no_grad(), torch.cuda.amp.autocast():
__lowercase = self.coca_model.generate(transformed_image.to(device=self.device, dtype=self.coca_model.dtype ) )
__lowercase = self.coca_tokenizer.decode(generated[0].cpu().numpy() )
return generated.split("<end_of_text>" )[0].replace("<start_of_text>", "" ).rstrip(" .," )
def _lowercase ( self : Tuple, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Tuple ):
__lowercase = self.feature_extractor.preprocess(UpperCAmelCase__ )
__lowercase = torch.from_numpy(clip_image_input["pixel_values"][0] ).unsqueeze(0 ).to(self.device ).half()
__lowercase = self.clip_model.get_image_features(UpperCAmelCase__ )
__lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=UpperCAmelCase__ )
__lowercase = image_embeddings_clip.repeat_interleave(UpperCAmelCase__, dim=0 )
return image_embeddings_clip
@torch.enable_grad()
def _lowercase ( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[int], ):
__lowercase = latents.detach().requires_grad_()
__lowercase = self.scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ )
# predict the noise residual
__lowercase = self.unet(UpperCAmelCase__, UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__ ).sample
if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ):
__lowercase = self.scheduler.alphas_cumprod[timestep]
__lowercase = 1 - alpha_prod_t
# compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
__lowercase = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5
__lowercase = torch.sqrt(UpperCAmelCase__ )
__lowercase = pred_original_sample * (fac) + latents * (1 - fac)
elif isinstance(self.scheduler, UpperCAmelCase__ ):
__lowercase = self.scheduler.sigmas[index]
__lowercase = latents - sigma * noise_pred
else:
raise ValueError(F"""scheduler type {type(self.scheduler )} not supported""" )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
__lowercase = 1 / 0.18_215 * sample
__lowercase = self.vae.decode(UpperCAmelCase__ ).sample
__lowercase = (image / 2 + 0.5).clamp(0, 1 )
__lowercase = transforms.Resize(self.feature_extractor_size )(UpperCAmelCase__ )
__lowercase = self.normalize(UpperCAmelCase__ ).to(latents.dtype )
__lowercase = self.clip_model.get_image_features(UpperCAmelCase__ )
__lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=UpperCAmelCase__ )
__lowercase = spherical_dist_loss(UpperCAmelCase__, UpperCAmelCase__ ).mean() * clip_guidance_scale
__lowercase = -torch.autograd.grad(UpperCAmelCase__, UpperCAmelCase__ )[0]
if isinstance(self.scheduler, UpperCAmelCase__ ):
__lowercase = latents.detach() + grads * (sigma**2)
__lowercase = noise_pred_original
else:
__lowercase = noise_pred_original - torch.sqrt(UpperCAmelCase__ ) * grads
return noise_pred, latents
@torch.no_grad()
def __call__( self : str, UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image], UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image], UpperCAmelCase__ : Optional[str] = None, UpperCAmelCase__ : Optional[str] = None, UpperCAmelCase__ : Optional[int] = 5_1_2, UpperCAmelCase__ : Optional[int] = 5_1_2, UpperCAmelCase__ : float = 0.6, UpperCAmelCase__ : Optional[int] = 5_0, UpperCAmelCase__ : Optional[float] = 7.5, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[float] = 1_0_0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : float = 0.8, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, ):
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and len(UpperCAmelCase__ ) != batch_size:
raise ValueError(F"""You have passed {batch_size} batch_size, but only {len(UpperCAmelCase__ )} generators.""" )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" )
if isinstance(UpperCAmelCase__, torch.Generator ) and batch_size > 1:
__lowercase = [generator] + [None] * (batch_size - 1)
__lowercase = [
("model", self.coca_model is None),
("tokenizer", self.coca_tokenizer is None),
("transform", self.coca_transform is None),
]
__lowercase = [x[0] for x in coca_is_none if x[1]]
__lowercase = ", ".join(UpperCAmelCase__ )
# generate prompts with coca model if prompt is None
if content_prompt is None:
if len(UpperCAmelCase__ ):
raise ValueError(
F"""Content prompt is None and CoCa [{coca_is_none_str}] is None."""
F"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" )
__lowercase = self.get_image_description(UpperCAmelCase__ )
if style_prompt is None:
if len(UpperCAmelCase__ ):
raise ValueError(
F"""Style prompt is None and CoCa [{coca_is_none_str}] is None."""
F""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" )
__lowercase = self.get_image_description(UpperCAmelCase__ )
# get prompt text embeddings for content and style
__lowercase = self.tokenizer(
UpperCAmelCase__, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=UpperCAmelCase__, return_tensors="pt", )
__lowercase = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0]
__lowercase = self.tokenizer(
UpperCAmelCase__, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=UpperCAmelCase__, return_tensors="pt", )
__lowercase = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0]
__lowercase = slerp(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
# duplicate text embeddings for each generation per prompt
__lowercase = text_embeddings.repeat_interleave(UpperCAmelCase__, dim=0 )
# set timesteps
__lowercase = "offset" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() )
__lowercase = {}
if accepts_offset:
__lowercase = 1
self.scheduler.set_timesteps(UpperCAmelCase__, **UpperCAmelCase__ )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
self.scheduler.timesteps.to(self.device )
__lowercase ,__lowercase = self.get_timesteps(UpperCAmelCase__, UpperCAmelCase__, self.device )
__lowercase = timesteps[:1].repeat(UpperCAmelCase__ )
# Preprocess image
__lowercase = preprocess(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = self.prepare_latents(
UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, text_embeddings.dtype, self.device, UpperCAmelCase__ )
__lowercase = preprocess(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = self.prepare_latents(
UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, text_embeddings.dtype, self.device, UpperCAmelCase__ )
__lowercase = slerp(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
if clip_guidance_scale > 0:
__lowercase = self.get_clip_image_embeddings(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = self.get_clip_image_embeddings(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = slerp(
UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
__lowercase = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
__lowercase = content_text_input.input_ids.shape[-1]
__lowercase = self.tokenizer([""], padding="max_length", max_length=UpperCAmelCase__, return_tensors="pt" )
__lowercase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt
__lowercase = uncond_embeddings.repeat_interleave(UpperCAmelCase__, dim=0 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
__lowercase = torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
__lowercase = (batch_size, self.unet.config.in_channels, height // 8, width // 8)
__lowercase = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not work reproducibly on mps
__lowercase = torch.randn(UpperCAmelCase__, generator=UpperCAmelCase__, device="cpu", dtype=UpperCAmelCase__ ).to(
self.device )
else:
__lowercase = torch.randn(UpperCAmelCase__, generator=UpperCAmelCase__, device=self.device, dtype=UpperCAmelCase__ )
else:
if latents.shape != latents_shape:
raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" )
__lowercase = latents.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
__lowercase = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
__lowercase = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
__lowercase = {}
if accepts_eta:
__lowercase = eta
# check if the scheduler accepts generator
__lowercase = "generator" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
if accepts_generator:
__lowercase = generator
with self.progress_bar(total=UpperCAmelCase__ ):
for i, t in enumerate(UpperCAmelCase__ ):
# expand the latents if we are doing classifier free guidance
__lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
__lowercase = self.scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ )
# predict the noise residual
__lowercase = self.unet(UpperCAmelCase__, UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__ ).sample
# perform classifier free guidance
if do_classifier_free_guidance:
__lowercase ,__lowercase = noise_pred.chunk(2 )
__lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# perform clip guidance
if clip_guidance_scale > 0:
__lowercase = (
text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings
)
__lowercase ,__lowercase = self.cond_fn(
UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, )
# compute the previous noisy sample x_t -> x_t-1
__lowercase = self.scheduler.step(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, **UpperCAmelCase__ ).prev_sample
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
__lowercase = 1 / 0.18_215 * latents
__lowercase = self.vae.decode(UpperCAmelCase__ ).sample
__lowercase = (image / 2 + 0.5).clamp(0, 1 )
__lowercase = image.cpu().permute(0, 2, 3, 1 ).numpy()
if output_type == "pil":
__lowercase = self.numpy_to_pil(UpperCAmelCase__ )
if not return_dict:
return (image, None)
return StableDiffusionPipelineOutput(images=UpperCAmelCase__, nsfw_content_detected=UpperCAmelCase__ )
| 17 | 0 |
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, PegasusConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel
@require_tf
class __A :
"""simple docstring"""
UpperCamelCase__ : List[Any] =PegasusConfig
UpperCamelCase__ : Optional[int] ={}
UpperCamelCase__ : Any ="gelu"
def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=2 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=40 , lowerCamelCase__=2 , lowerCamelCase__=1 , lowerCamelCase__=0 , ):
"""simple docstring"""
__UpperCamelCase : str =parent
__UpperCamelCase : str =batch_size
__UpperCamelCase : Any =seq_length
__UpperCamelCase : Optional[Any] =is_training
__UpperCamelCase : Dict =use_labels
__UpperCamelCase : List[Any] =vocab_size
__UpperCamelCase : str =hidden_size
__UpperCamelCase : List[str] =num_hidden_layers
__UpperCamelCase : str =num_attention_heads
__UpperCamelCase : Optional[int] =intermediate_size
__UpperCamelCase : Optional[Any] =hidden_dropout_prob
__UpperCamelCase : List[Any] =attention_probs_dropout_prob
__UpperCamelCase : Optional[Any] =max_position_embeddings
__UpperCamelCase : Union[str, Any] =eos_token_id
__UpperCamelCase : List[str] =pad_token_id
__UpperCamelCase : str =bos_token_id
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : Optional[Any] =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
__UpperCamelCase : Any =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
__UpperCamelCase : int =tf.concat([input_ids, eos_tensor] , axis=1 )
__UpperCamelCase : int =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCamelCase : Optional[int] =self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
__UpperCamelCase : List[str] =prepare_pegasus_inputs_dict(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
return config, inputs_dict
def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
__UpperCamelCase : Tuple =TFPegasusModel(config=UpperCAmelCase__ ).get_decoder()
__UpperCamelCase : str =inputs_dict['input_ids']
__UpperCamelCase : str =input_ids[:1, :]
__UpperCamelCase : Tuple =inputs_dict['attention_mask'][:1, :]
__UpperCamelCase : List[Any] =inputs_dict['head_mask']
__UpperCamelCase : Optional[Any] =1
# first forward pass
__UpperCamelCase : Union[str, Any] =model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , head_mask=UpperCAmelCase__ , use_cache=UpperCAmelCase__ )
__UpperCamelCase , __UpperCamelCase : Union[str, Any] =outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
__UpperCamelCase : Any =ids_tensor((self.batch_size, 3) , config.vocab_size )
__UpperCamelCase : List[str] =tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
__UpperCamelCase : Dict =tf.concat([input_ids, next_tokens] , axis=-1 )
__UpperCamelCase : Any =tf.concat([attention_mask, next_attn_mask] , axis=-1 )
__UpperCamelCase : int =model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ )[0]
__UpperCamelCase : List[Any] =model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
__UpperCamelCase : Optional[int] =int(ids_tensor((1,) , output_from_past.shape[-1] ) )
__UpperCamelCase : int =output_from_no_past[:, -3:, random_slice_idx]
__UpperCamelCase : Optional[Any] =output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(UpperCAmelCase__ , UpperCAmelCase__ , rtol=1E-3 )
def A ( a_ ,a_ ,a_ ,a_=None ,a_=None ,a_=None ,a_=None ,a_=None ,) -> Tuple:
if attention_mask is None:
__UpperCamelCase : Dict =tf.cast(tf.math.not_equal(UpperCamelCase_ ,config.pad_token_id ) ,tf.inta )
if decoder_attention_mask is None:
__UpperCamelCase : Optional[int] =tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape ,dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ) ,tf.inta ),
] ,axis=-1 ,)
if head_mask is None:
__UpperCamelCase : Union[str, Any] =tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
__UpperCamelCase : Any =tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
__UpperCamelCase : Optional[int] =tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class __A ( a , a , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase__ : Dict =(TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else ()
UpperCamelCase__ : str =(TFPegasusForConditionalGeneration,) if is_tf_available() else ()
UpperCamelCase__ : Optional[int] =(
{
"conversational": TFPegasusForConditionalGeneration,
"feature-extraction": TFPegasusModel,
"summarization": TFPegasusForConditionalGeneration,
"text2text-generation": TFPegasusForConditionalGeneration,
"translation": TFPegasusForConditionalGeneration,
}
if is_tf_available()
else {}
)
UpperCamelCase__ : List[Any] =True
UpperCamelCase__ : Union[str, Any] =False
UpperCamelCase__ : Dict =False
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : List[str] =TFPegasusModelTester(self )
__UpperCamelCase : Optional[int] =ConfigTester(self , config_class=UpperCAmelCase__ )
def __lowercase ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : Tuple =self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*UpperCAmelCase__ )
@require_sentencepiece
@require_tokenizers
@require_tf
class __A ( unittest.TestCase ):
"""simple docstring"""
UpperCamelCase__ : Tuple =[
" PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.",
" The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ",
]
UpperCamelCase__ : List[str] =[
"California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to"
" reduce the risk of wildfires.",
"N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.",
] # differs slightly from pytorch, likely due to numerical differences in linear layers
UpperCamelCase__ : Dict ="google/pegasus-xsum"
@cached_property
def __lowercase ( self ):
"""simple docstring"""
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : Union[str, Any] =TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def __lowercase ( self , **lowerCamelCase__ ):
"""simple docstring"""
__UpperCamelCase : Optional[Any] =self.translate_src_text(**UpperCAmelCase__ )
assert self.expected_text == generated_words
def __lowercase ( self , **lowerCamelCase__ ):
"""simple docstring"""
__UpperCamelCase : Union[str, Any] =self.tokenizer(self.src_text , **UpperCAmelCase__ , padding=UpperCAmelCase__ , return_tensors='tf' )
__UpperCamelCase : Optional[Any] =self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=UpperCAmelCase__ , )
__UpperCamelCase : Tuple =self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=UpperCAmelCase__ )
return generated_words
@slow
def __lowercase ( self ):
"""simple docstring"""
self._assert_generated_batch_equal_expected()
| 71 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class _lowerCAmelCase :
"""simple docstring"""
__UpperCAmelCase : Tuple = XGLMConfig
__UpperCAmelCase : Optional[Any] = {}
__UpperCAmelCase : Union[str, Any] = "gelu"
def __init__( self : Optional[int], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int]=1_4, UpperCAmelCase__ : str=7, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[Any]=True, UpperCAmelCase__ : int=True, UpperCAmelCase__ : List[str]=9_9, UpperCAmelCase__ : Union[str, Any]=3_2, UpperCAmelCase__ : Union[str, Any]=2, UpperCAmelCase__ : Union[str, Any]=4, UpperCAmelCase__ : Tuple=3_7, UpperCAmelCase__ : List[Any]="gelu", UpperCAmelCase__ : List[str]=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Tuple=5_1_2, UpperCAmelCase__ : Optional[Any]=0.02, ):
__lowercase = parent
__lowercase = batch_size
__lowercase = seq_length
__lowercase = is_training
__lowercase = use_input_mask
__lowercase = use_labels
__lowercase = vocab_size
__lowercase = d_model
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = ffn_dim
__lowercase = activation_function
__lowercase = activation_dropout
__lowercase = attention_dropout
__lowercase = max_position_embeddings
__lowercase = initializer_range
__lowercase = None
__lowercase = 0
__lowercase = 2
__lowercase = 1
def _lowercase ( self : Union[str, Any] ):
return XGLMConfig.from_pretrained("facebook/xglm-564M" )
def _lowercase ( self : Tuple ):
__lowercase = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length], self.vocab_size ), clip_value_min=0, clip_value_max=3 )
__lowercase = None
if self.use_input_mask:
__lowercase = random_attention_mask([self.batch_size, self.seq_length] )
__lowercase = self.get_config()
__lowercase = floats_tensor([self.num_hidden_layers, self.num_attention_heads], 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def _lowercase ( self : List[Any] ):
return XGLMConfig(
vocab_size=self.vocab_size, d_model=self.hidden_size, num_layers=self.num_hidden_layers, attention_heads=self.num_attention_heads, ffn_dim=self.ffn_dim, activation_function=self.activation_function, activation_dropout=self.activation_dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, use_cache=UpperCAmelCase__, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, return_dict=UpperCAmelCase__, )
def _lowercase ( self : Dict ):
__lowercase = self.prepare_config_and_inputs()
(
(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,
) = config_and_inputs
__lowercase = {
"input_ids": input_ids,
"head_mask": head_mask,
}
return config, inputs_dict
@require_tf
class _lowerCAmelCase ( lowercase ,lowercase ,unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
__UpperCAmelCase : List[str] = (TFXGLMForCausalLM,) if is_tf_available() else ()
__UpperCAmelCase : Any = (
{"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {}
)
__UpperCAmelCase : Optional[Any] = False
__UpperCAmelCase : List[str] = False
__UpperCAmelCase : int = False
def _lowercase ( self : Optional[Any] ):
__lowercase = TFXGLMModelTester(self )
__lowercase = ConfigTester(self, config_class=UpperCAmelCase__, n_embd=3_7 )
def _lowercase ( self : Any ):
self.config_tester.run_common_tests()
@slow
def _lowercase ( self : List[str] ):
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowercase = TFXGLMModel.from_pretrained(UpperCAmelCase__ )
self.assertIsNotNone(UpperCAmelCase__ )
@unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." )
def _lowercase ( self : int ):
super().test_resize_token_embeddings()
@require_tf
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[int]=True ):
__lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
__lowercase = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]], dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
__lowercase = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1]
# fmt: on
__lowercase = model.generate(UpperCAmelCase__, do_sample=UpperCAmelCase__, num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist(), UpperCAmelCase__ )
@slow
def _lowercase ( self : List[Any] ):
__lowercase = XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
__lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
tf.random.set_seed(0 )
__lowercase = tokenizer("Today is a nice day and", return_tensors="tf" )
__lowercase = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(":/CPU:0" ):
__lowercase = model.generate(UpperCAmelCase__, do_sample=UpperCAmelCase__, seed=[7, 0] )
__lowercase = tokenizer.decode(output_ids[0], skip_special_tokens=UpperCAmelCase__ )
__lowercase = (
"Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due"
)
self.assertEqual(UpperCAmelCase__, UpperCAmelCase__ )
@slow
def _lowercase ( self : Dict ):
__lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
__lowercase = XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
__lowercase = "left"
# use different length sentences to test batching
__lowercase = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When",
"Hello, my dog is a little",
]
__lowercase = tokenizer(UpperCAmelCase__, return_tensors="tf", padding=UpperCAmelCase__ )
__lowercase = inputs["input_ids"]
__lowercase = model.generate(input_ids=UpperCAmelCase__, attention_mask=inputs["attention_mask"], max_new_tokens=1_2 )
__lowercase = tokenizer(sentences[0], return_tensors="tf" ).input_ids
__lowercase = model.generate(input_ids=UpperCAmelCase__, max_new_tokens=1_2 )
__lowercase = tokenizer(sentences[1], return_tensors="tf" ).input_ids
__lowercase = model.generate(input_ids=UpperCAmelCase__, max_new_tokens=1_2 )
__lowercase = tokenizer.batch_decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ )
__lowercase = tokenizer.decode(output_non_padded[0], skip_special_tokens=UpperCAmelCase__ )
__lowercase = tokenizer.decode(output_padded[0], skip_special_tokens=UpperCAmelCase__ )
__lowercase = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When left padding is applied, the sequence will be "
"a single",
"Hello, my dog is a little bit of a shy one, but he is very friendly",
]
self.assertListEqual(UpperCAmelCase__, UpperCAmelCase__ )
self.assertListEqual(UpperCAmelCase__, [non_padded_sentence, padded_sentence] )
| 17 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/config.json''',
'''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/config.json'''
# See all FNet models at https://huggingface.co/models?filter=fnet
}
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : List[Any] = "fnet"
def __init__( self , __UpperCAmelCase=32_000 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=3_072 , __UpperCAmelCase="gelu_new" , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=4 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=False , __UpperCAmelCase=512 , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , **__UpperCAmelCase , ) -> Tuple:
'''simple docstring'''
super().__init__(pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ )
__UpperCAmelCase : List[str] = vocab_size
__UpperCAmelCase : int = max_position_embeddings
__UpperCAmelCase : str = hidden_size
__UpperCAmelCase : Tuple = num_hidden_layers
__UpperCAmelCase : Optional[int] = intermediate_size
__UpperCAmelCase : str = hidden_act
__UpperCAmelCase : List[Any] = hidden_dropout_prob
__UpperCAmelCase : List[Any] = initializer_range
__UpperCAmelCase : Any = type_vocab_size
__UpperCAmelCase : Optional[Any] = layer_norm_eps
__UpperCAmelCase : Any = use_tpu_fourier_optimizations
__UpperCAmelCase : Optional[int] = tpu_short_seq_length
| 254 |
"""simple docstring"""
import time
from contextlib import contextmanager
from pathlib import Path
import pytest
import requests
from huggingface_hub.hf_api import HfApi, HfFolder
_a = '__DUMMY_TRANSFORMERS_USER__'
_a = 'Dummy User'
_a = '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'
_a = 'https://hub-ci.huggingface.co'
_a = CI_HUB_ENDPOINT + '/datasets/{repo_id}/resolve/{revision}/{path}'
_a = CI_HUB_ENDPOINT + '/{repo_id}/resolve/{revision}/{filename}'
_a = Path('~/.huggingface/hub_ci_token').expanduser()
@pytest.fixture
def _A ( UpperCamelCase_ : List[Any]) -> Tuple:
'''simple docstring'''
monkeypatch.setattr(
"huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE", UpperCamelCase_)
@pytest.fixture
def _A ( UpperCamelCase_ : int) -> List[Any]:
'''simple docstring'''
monkeypatch.setattr("datasets.config.HF_ENDPOINT", UpperCamelCase_)
monkeypatch.setattr("datasets.config.HUB_DATASETS_URL", UpperCamelCase_)
@pytest.fixture
def _A ( UpperCamelCase_ : str) -> Dict:
'''simple docstring'''
monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token", UpperCamelCase_)
@pytest.fixture
def _A ( UpperCamelCase_ : Optional[Any], UpperCamelCase_ : List[Any]) -> List[str]:
'''simple docstring'''
HfFolder.save_token(UpperCamelCase_)
yield
HfFolder.delete_token()
@pytest.fixture(scope="session")
def _A ( ) -> List[Any]:
'''simple docstring'''
return HfApi(endpoint=UpperCamelCase_)
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : HfApi) -> List[Any]:
'''simple docstring'''
__lowercase = HfFolder.get_token()
HfFolder.save_token(UpperCamelCase_)
yield CI_HUB_USER_TOKEN
if previous_token is not None:
HfFolder.save_token(UpperCamelCase_)
@pytest.fixture
def _A ( UpperCamelCase_ : Dict) -> int:
'''simple docstring'''
def _cleanup_repo(UpperCamelCase_ : Optional[int]):
hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset")
return _cleanup_repo
@pytest.fixture
def _A ( UpperCamelCase_ : str) -> Any:
'''simple docstring'''
@contextmanager
def _temporary_repo(UpperCamelCase_ : Any):
try:
yield repo_id
finally:
cleanup_repo(UpperCamelCase_)
return _temporary_repo
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : str, UpperCamelCase_ : Optional[int]) -> List[Any]:
'''simple docstring'''
__lowercase = F"""repo_txt_data-{int(time.time() * 10E3)}"""
__lowercase = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_)
hf_api.upload_file(
token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data/text_data.txt", repo_id=UpperCamelCase_, repo_type="dataset", )
yield repo_id
try:
hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset")
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : Any, UpperCamelCase_ : Dict) -> Optional[int]:
'''simple docstring'''
return hf_private_dataset_repo_txt_data_
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : int, UpperCamelCase_ : Optional[int]) -> int:
'''simple docstring'''
__lowercase = F"""repo_zipped_txt_data-{int(time.time() * 10E3)}"""
__lowercase = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_)
hf_api.upload_file(
token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data.zip", repo_id=UpperCamelCase_, repo_type="dataset", )
yield repo_id
try:
hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset")
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Dict, UpperCamelCase_ : Any) -> int:
'''simple docstring'''
return hf_private_dataset_repo_zipped_txt_data_
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : List[str], UpperCamelCase_ : List[str]) -> List[Any]:
'''simple docstring'''
__lowercase = F"""repo_zipped_img_data-{int(time.time() * 10E3)}"""
__lowercase = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_)
hf_api.upload_file(
token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data.zip", repo_id=UpperCamelCase_, repo_type="dataset", )
yield repo_id
try:
hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset")
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str], UpperCamelCase_ : List[str]) -> str:
'''simple docstring'''
return hf_private_dataset_repo_zipped_img_data_
| 17 | 0 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTConfig,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
a : Any = logging.get_logger(__name__)
def __lowerCamelCase ( _lowercase ) -> Optional[Any]:
UpperCAmelCase : Dict = MobileViTConfig()
# size of the architecture
if "mobilevit_s" in mobilevit_name:
UpperCAmelCase : str = [1_4_4, 1_9_2, 2_4_0]
UpperCAmelCase : Optional[Any] = [1_6, 3_2, 6_4, 9_6, 1_2_8, 1_6_0, 6_4_0]
elif "mobilevit_xs" in mobilevit_name:
UpperCAmelCase : Tuple = [9_6, 1_2_0, 1_4_4]
UpperCAmelCase : Optional[Any] = [1_6, 3_2, 4_8, 6_4, 8_0, 9_6, 3_8_4]
elif "mobilevit_xxs" in mobilevit_name:
UpperCAmelCase : Tuple = [6_4, 8_0, 9_6]
UpperCAmelCase : List[Any] = [1_6, 1_6, 2_4, 4_8, 6_4, 8_0, 3_2_0]
UpperCAmelCase : Optional[Any] = 0.05
UpperCAmelCase : List[Any] = 2.0
if mobilevit_name.startswith("""deeplabv3_""" ):
UpperCAmelCase : Optional[int] = 5_1_2
UpperCAmelCase : str = 1_6
UpperCAmelCase : Union[str, Any] = 2_1
UpperCAmelCase : List[str] = """pascal-voc-id2label.json"""
else:
UpperCAmelCase : Optional[int] = 1_0_0_0
UpperCAmelCase : Tuple = """imagenet-1k-id2label.json"""
UpperCAmelCase : int = """huggingface/label-files"""
UpperCAmelCase : Any = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ , repo_type="""dataset""" ) , """r""" ) )
UpperCAmelCase : Any = {int(UpperCamelCase_ ): v for k, v in idalabel.items()}
UpperCAmelCase : List[str] = idalabel
UpperCAmelCase : str = {v: k for k, v in idalabel.items()}
return config
def __lowerCamelCase ( _lowercase , _lowercase=False ) -> Optional[Any]:
for i in range(1 , 6 ):
if F'''layer_{i}.''' in name:
UpperCAmelCase : List[str] = name.replace(F'''layer_{i}.''' , F'''encoder.layer.{i - 1}.''' )
if "conv_1." in name:
UpperCAmelCase : Tuple = name.replace("""conv_1.""" , """conv_stem.""" )
if ".block." in name:
UpperCAmelCase : Optional[Any] = name.replace(""".block.""" , """.""" )
if "exp_1x1" in name:
UpperCAmelCase : Tuple = name.replace("""exp_1x1""" , """expand_1x1""" )
if "red_1x1" in name:
UpperCAmelCase : List[Any] = name.replace("""red_1x1""" , """reduce_1x1""" )
if ".local_rep.conv_3x3." in name:
UpperCAmelCase : str = name.replace(""".local_rep.conv_3x3.""" , """.conv_kxk.""" )
if ".local_rep.conv_1x1." in name:
UpperCAmelCase : Tuple = name.replace(""".local_rep.conv_1x1.""" , """.conv_1x1.""" )
if ".norm." in name:
UpperCAmelCase : Union[str, Any] = name.replace(""".norm.""" , """.normalization.""" )
if ".conv." in name:
UpperCAmelCase : List[str] = name.replace(""".conv.""" , """.convolution.""" )
if ".conv_proj." in name:
UpperCAmelCase : Optional[int] = name.replace(""".conv_proj.""" , """.conv_projection.""" )
for i in range(0 , 2 ):
for j in range(0 , 4 ):
if F'''.{i}.{j}.''' in name:
UpperCAmelCase : List[Any] = name.replace(F'''.{i}.{j}.''' , F'''.{i}.layer.{j}.''' )
for i in range(2 , 6 ):
for j in range(0 , 4 ):
if F'''.{i}.{j}.''' in name:
UpperCAmelCase : Optional[Any] = name.replace(F'''.{i}.{j}.''' , F'''.{i}.''' )
if "expand_1x1" in name:
UpperCAmelCase : Union[str, Any] = name.replace("""expand_1x1""" , """downsampling_layer.expand_1x1""" )
if "conv_3x3" in name:
UpperCAmelCase : Any = name.replace("""conv_3x3""" , """downsampling_layer.conv_3x3""" )
if "reduce_1x1" in name:
UpperCAmelCase : Optional[int] = name.replace("""reduce_1x1""" , """downsampling_layer.reduce_1x1""" )
for i in range(2 , 5 ):
if F'''.global_rep.{i}.weight''' in name:
UpperCAmelCase : str = name.replace(F'''.global_rep.{i}.weight''' , """.layernorm.weight""" )
if F'''.global_rep.{i}.bias''' in name:
UpperCAmelCase : List[str] = name.replace(F'''.global_rep.{i}.bias''' , """.layernorm.bias""" )
if ".global_rep." in name:
UpperCAmelCase : Union[str, Any] = name.replace(""".global_rep.""" , """.transformer.""" )
if ".pre_norm_mha.0." in name:
UpperCAmelCase : Any = name.replace(""".pre_norm_mha.0.""" , """.layernorm_before.""" )
if ".pre_norm_mha.1.out_proj." in name:
UpperCAmelCase : Dict = name.replace(""".pre_norm_mha.1.out_proj.""" , """.attention.output.dense.""" )
if ".pre_norm_ffn.0." in name:
UpperCAmelCase : str = name.replace(""".pre_norm_ffn.0.""" , """.layernorm_after.""" )
if ".pre_norm_ffn.1." in name:
UpperCAmelCase : List[str] = name.replace(""".pre_norm_ffn.1.""" , """.intermediate.dense.""" )
if ".pre_norm_ffn.4." in name:
UpperCAmelCase : str = name.replace(""".pre_norm_ffn.4.""" , """.output.dense.""" )
if ".transformer." in name:
UpperCAmelCase : Tuple = name.replace(""".transformer.""" , """.transformer.layer.""" )
if ".aspp_layer." in name:
UpperCAmelCase : Optional[Any] = name.replace(""".aspp_layer.""" , """.""" )
if ".aspp_pool." in name:
UpperCAmelCase : str = name.replace(""".aspp_pool.""" , """.""" )
if "seg_head." in name:
UpperCAmelCase : int = name.replace("""seg_head.""" , """segmentation_head.""" )
if "segmentation_head.classifier.classifier." in name:
UpperCAmelCase : Union[str, Any] = name.replace("""segmentation_head.classifier.classifier.""" , """segmentation_head.classifier.""" )
if "classifier.fc." in name:
UpperCAmelCase : str = name.replace("""classifier.fc.""" , """classifier.""" )
elif (not base_model) and ("segmentation_head." not in name):
UpperCAmelCase : Optional[Any] = """mobilevit.""" + name
return name
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=False ) -> Tuple:
if base_model:
UpperCAmelCase : List[str] = """"""
else:
UpperCAmelCase : List[Any] = """mobilevit."""
for key in orig_state_dict.copy().keys():
UpperCAmelCase : Optional[int] = orig_state_dict.pop(UpperCamelCase_ )
if key[:8] == "encoder.":
UpperCAmelCase : Union[str, Any] = key[8:]
if "qkv" in key:
UpperCAmelCase : str = key.split(""".""" )
UpperCAmelCase : Optional[int] = int(key_split[0][6:] ) - 1
UpperCAmelCase : List[Any] = int(key_split[3] )
UpperCAmelCase : List[Any] = model.get_submodule(F'''{model_prefix}encoder.layer.{layer_num}''' )
UpperCAmelCase : List[str] = layer.transformer.layer[transformer_num].attention.attention.all_head_size
UpperCAmelCase : List[str] = (
F'''{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.'''
)
if "weight" in key:
UpperCAmelCase : Dict = val[:dim, :]
UpperCAmelCase : str = val[dim : dim * 2, :]
UpperCAmelCase : List[str] = val[-dim:, :]
else:
UpperCAmelCase : Optional[int] = val[:dim]
UpperCAmelCase : Tuple = val[dim : dim * 2]
UpperCAmelCase : Tuple = val[-dim:]
else:
UpperCAmelCase : Tuple = val
return orig_state_dict
def __lowerCamelCase ( ) -> Tuple:
UpperCAmelCase : Any = """http://images.cocodataset.org/val2017/000000039769.jpg"""
UpperCAmelCase : Any = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw )
return im
@torch.no_grad()
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=False ) -> str:
UpperCAmelCase : str = get_mobilevit_config(UpperCamelCase_ )
# load original state_dict
UpperCAmelCase : int = torch.load(UpperCamelCase_ , map_location="""cpu""" )
# load 🤗 model
if mobilevit_name.startswith("""deeplabv3_""" ):
UpperCAmelCase : int = MobileViTForSemanticSegmentation(UpperCamelCase_ ).eval()
else:
UpperCAmelCase : int = MobileViTForImageClassification(UpperCamelCase_ ).eval()
UpperCAmelCase : int = convert_state_dict(UpperCamelCase_ , UpperCamelCase_ )
model.load_state_dict(UpperCamelCase_ )
# Check outputs on an image, prepared by MobileViTImageProcessor
UpperCAmelCase : Optional[Any] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 3_2 )
UpperCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors="""pt""" )
UpperCAmelCase : Tuple = model(**UpperCamelCase_ )
UpperCAmelCase : Optional[Any] = outputs.logits
if mobilevit_name.startswith("""deeplabv3_""" ):
assert logits.shape == (1, 2_1, 3_2, 3_2)
if mobilevit_name == "deeplabv3_mobilevit_s":
UpperCAmelCase : str = torch.tensor(
[
[[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]],
[[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]],
[[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xs":
UpperCAmelCase : int = torch.tensor(
[
[[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]],
[[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]],
[[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xxs":
UpperCAmelCase : int = torch.tensor(
[
[[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]],
[[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]],
[[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]],
] )
else:
raise ValueError(F'''Unknown mobilevit_name: {mobilevit_name}''' )
assert torch.allclose(logits[0, :3, :3, :3] , UpperCamelCase_ , atol=1e-4 )
else:
assert logits.shape == (1, 1_0_0_0)
if mobilevit_name == "mobilevit_s":
UpperCAmelCase : Optional[int] = torch.tensor([-0.9866, 0.2392, -1.1241] )
elif mobilevit_name == "mobilevit_xs":
UpperCAmelCase : Tuple = torch.tensor([-2.4761, -0.9399, -1.9587] )
elif mobilevit_name == "mobilevit_xxs":
UpperCAmelCase : str = torch.tensor([-1.9364, -1.2327, -0.4653] )
else:
raise ValueError(F'''Unknown mobilevit_name: {mobilevit_name}''' )
assert torch.allclose(logits[0, :3] , UpperCamelCase_ , atol=1e-4 )
Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ )
print(F'''Saving model {mobilevit_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(UpperCamelCase_ )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(UpperCamelCase_ )
if push_to_hub:
UpperCAmelCase : Optional[Any] = {
"""mobilevit_s""": """mobilevit-small""",
"""mobilevit_xs""": """mobilevit-x-small""",
"""mobilevit_xxs""": """mobilevit-xx-small""",
"""deeplabv3_mobilevit_s""": """deeplabv3-mobilevit-small""",
"""deeplabv3_mobilevit_xs""": """deeplabv3-mobilevit-x-small""",
"""deeplabv3_mobilevit_xxs""": """deeplabv3-mobilevit-xx-small""",
}
print("""Pushing to the hub...""" )
UpperCAmelCase : Union[str, Any] = model_mapping[mobilevit_name]
image_processor.push_to_hub(UpperCamelCase_ , organization="""apple""" )
model.push_to_hub(UpperCamelCase_ , organization="""apple""" )
if __name__ == "__main__":
a : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--mobilevit_name""",
default="""mobilevit_s""",
type=str,
help=(
"""Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',"""
""" \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'."""
),
)
parser.add_argument(
"""--checkpoint_path""", required=True, type=str, help="""Path to the original state dict (.pt file)."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
a : Optional[int] = parser.parse_args()
convert_movilevit_checkpoint(
args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 265 |
"""simple docstring"""
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_a = logging.get_logger(__name__)
_a = {
'huggingface/time-series-transformer-tourism-monthly': (
'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json'
),
# See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer
}
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
__UpperCAmelCase : int = "time_series_transformer"
__UpperCAmelCase : Any = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
"num_hidden_layers": "encoder_layers",
}
def __init__( self : int, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : str = "student_t", UpperCAmelCase__ : str = "nll", UpperCAmelCase__ : int = 1, UpperCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7], UpperCAmelCase__ : Optional[Union[str, bool]] = "mean", UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : int = 3_2, UpperCAmelCase__ : int = 3_2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : str = "gelu", UpperCAmelCase__ : int = 6_4, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : int = 1_0_0, UpperCAmelCase__ : float = 0.02, UpperCAmelCase__ : Any=True, **UpperCAmelCase__ : List[str], ):
# time series specific configuration
__lowercase = prediction_length
__lowercase = context_length or prediction_length
__lowercase = distribution_output
__lowercase = loss
__lowercase = input_size
__lowercase = num_time_features
__lowercase = lags_sequence
__lowercase = scaling
__lowercase = num_dynamic_real_features
__lowercase = num_static_real_features
__lowercase = num_static_categorical_features
if cardinality and num_static_categorical_features > 0:
if len(UpperCAmelCase__ ) != num_static_categorical_features:
raise ValueError(
"The cardinality should be a list of the same length as `num_static_categorical_features`" )
__lowercase = cardinality
else:
__lowercase = [0]
if embedding_dimension and num_static_categorical_features > 0:
if len(UpperCAmelCase__ ) != num_static_categorical_features:
raise ValueError(
"The embedding dimension should be a list of the same length as `num_static_categorical_features`" )
__lowercase = embedding_dimension
else:
__lowercase = [min(5_0, (cat + 1) // 2 ) for cat in self.cardinality]
__lowercase = num_parallel_samples
# Transformer architecture configuration
__lowercase = input_size * len(UpperCAmelCase__ ) + self._number_of_features
__lowercase = d_model
__lowercase = encoder_attention_heads
__lowercase = decoder_attention_heads
__lowercase = encoder_ffn_dim
__lowercase = decoder_ffn_dim
__lowercase = encoder_layers
__lowercase = decoder_layers
__lowercase = dropout
__lowercase = attention_dropout
__lowercase = activation_dropout
__lowercase = encoder_layerdrop
__lowercase = decoder_layerdrop
__lowercase = activation_function
__lowercase = init_std
__lowercase = use_cache
super().__init__(is_encoder_decoder=UpperCAmelCase__, **UpperCAmelCase__ )
@property
def _lowercase ( self : Optional[Any] ):
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 17 | 0 |
"""simple docstring"""
from __future__ import annotations
import time
__lowerCamelCase = list[tuple[int, int]]
__lowerCamelCase = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
__lowerCamelCase = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
class UpperCamelCase__:
def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Any:
A__ = pos_x
A__ = pos_y
A__ = (pos_y, pos_x)
A__ = goal_x
A__ = goal_y
A__ = parent
class UpperCamelCase__:
def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> Dict:
A__ = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,UpperCAmelCase__ )
A__ = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,UpperCAmelCase__ )
A__ = [self.start]
A__ = False
def snake_case__ ( self ) -> int:
while self.node_queue:
A__ = self.node_queue.pop(0 )
if current_node.pos == self.target.pos:
A__ = True
return self.retrace_path(UpperCAmelCase__ )
A__ = self.get_successors(UpperCAmelCase__ )
for node in successors:
self.node_queue.append(UpperCAmelCase__ )
if not self.reached:
return [self.start.pos]
return None
def snake_case__ ( self ,__UpperCAmelCase ) -> List[str]:
A__ = []
for action in delta:
A__ = parent.pos_x + action[1]
A__ = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(UpperCAmelCase__ ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(UpperCAmelCase__ ,UpperCAmelCase__ ,self.target.pos_y ,self.target.pos_x ,UpperCAmelCase__ ) )
return successors
def snake_case__ ( self ,__UpperCAmelCase ) -> str:
A__ = node
A__ = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
A__ = current_node.parent
path.reverse()
return path
class UpperCamelCase__:
def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> Tuple:
A__ = BreadthFirstSearch(UpperCAmelCase__ ,UpperCAmelCase__ )
A__ = BreadthFirstSearch(UpperCAmelCase__ ,UpperCAmelCase__ )
A__ = False
def snake_case__ ( self ) -> Tuple:
while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue:
A__ = self.fwd_bfs.node_queue.pop(0 )
A__ = self.bwd_bfs.node_queue.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
A__ = True
return self.retrace_bidirectional_path(
UpperCAmelCase__ ,UpperCAmelCase__ )
A__ = current_bwd_node
A__ = current_fwd_node
A__ = {
self.fwd_bfs: self.fwd_bfs.get_successors(UpperCAmelCase__ ),
self.bwd_bfs: self.bwd_bfs.get_successors(UpperCAmelCase__ ),
}
for bfs in [self.fwd_bfs, self.bwd_bfs]:
for node in successors[bfs]:
bfs.node_queue.append(UpperCAmelCase__ )
if not self.reached:
return [self.fwd_bfs.start.pos]
return None
def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> Dict:
A__ = self.fwd_bfs.retrace_path(UpperCAmelCase__ )
A__ = self.bwd_bfs.retrace_path(UpperCAmelCase__ )
bwd_path.pop()
bwd_path.reverse()
A__ = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
import doctest
doctest.testmod()
__lowerCamelCase = (0, 0)
__lowerCamelCase = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
__lowerCamelCase = time.time()
__lowerCamelCase = BreadthFirstSearch(init, goal)
__lowerCamelCase = bfs.search()
__lowerCamelCase = time.time() - start_bfs_time
print("Unidirectional BFS computation time : ", bfs_time)
__lowerCamelCase = time.time()
__lowerCamelCase = BidirectionalBreadthFirstSearch(init, goal)
__lowerCamelCase = bd_bfs.search()
__lowerCamelCase = time.time() - start_bd_bfs_time
print("Bidirectional BFS computation time : ", bd_bfs_time)
| 221 |
"""simple docstring"""
import unittest
from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available
from transformers.pipelines import pipeline
from transformers.pipelines.document_question_answering import apply_tesseract
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_detectrona,
require_pytesseract,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
from transformers.image_utils import load_image
else:
class _lowerCAmelCase :
"""simple docstring"""
@staticmethod
def _lowercase ( *UpperCAmelCase__ : Tuple, **UpperCAmelCase__ : List[Any] ):
pass
def _A ( UpperCamelCase_ : Union[str, Any]) -> Any:
'''simple docstring'''
return None
# This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace,
# so we can expect it to be available.
_a = (
'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png'
)
@is_pipeline_test
@require_torch
@require_vision
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : Tuple = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING
@require_pytesseract
@require_vision
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Optional[Any] ):
__lowercase = pipeline(
"document-question-answering", model=UpperCAmelCase__, tokenizer=UpperCAmelCase__, image_processor=UpperCAmelCase__ )
__lowercase = INVOICE_URL
__lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) )
__lowercase = "What is the placebo?"
__lowercase = [
{
"image": load_image(UpperCAmelCase__ ),
"question": question,
},
{
"image": image,
"question": question,
},
{
"image": image,
"question": question,
"word_boxes": word_boxes,
},
]
return dqa_pipeline, examples
def _lowercase ( self : int, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Any ):
__lowercase = dqa_pipeline(UpperCAmelCase__, top_k=2 )
self.assertEqual(
UpperCAmelCase__, [
[
{"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ ), "start": ANY(UpperCAmelCase__ ), "end": ANY(UpperCAmelCase__ )},
{"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ ), "start": ANY(UpperCAmelCase__ ), "end": ANY(UpperCAmelCase__ )},
]
]
* 3, )
@require_torch
@require_detectrona
@require_pytesseract
def _lowercase ( self : Dict ):
__lowercase = pipeline("document-question-answering", model="hf-internal-testing/tiny-random-layoutlmv2" )
__lowercase = INVOICE_URL
__lowercase = "How many cats are there?"
__lowercase = [
{"score": 0.0_001, "answer": "oy 2312/2019", "start": 3_8, "end": 3_9},
{"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 3_8, "end": 4_0},
]
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), UpperCAmelCase__ )
__lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), UpperCAmelCase__ )
# This image does not detect ANY text in it, meaning layoutlmv2 should fail.
# Empty answer probably
__lowercase = "./tests/fixtures/tests_samples/COCO/000000039769.png"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(UpperCAmelCase__, [] )
# We can optionnally pass directly the words and bounding boxes
__lowercase = "./tests/fixtures/tests_samples/COCO/000000039769.png"
__lowercase = []
__lowercase = []
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, words=UpperCAmelCase__, boxes=UpperCAmelCase__, top_k=2 )
self.assertEqual(UpperCAmelCase__, [] )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def _lowercase ( self : List[str] ):
__lowercase = pipeline(
"document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
[
{"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6},
],
]
* 2, )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def _lowercase ( self : Dict ):
__lowercase = pipeline(
"document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", max_seq_len=5_0, )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3},
{"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3},
{"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
[
{"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3},
{"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6},
]
]
* 2, )
@slow
@require_torch
@require_pytesseract
@require_vision
def _lowercase ( self : Optional[Any] ):
__lowercase = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=UpperCAmelCase__ )
__lowercase = pipeline(
"document-question-answering", model="impira/layoutlm-document-qa", tokenizer=UpperCAmelCase__, revision="3dc6de3", )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3},
], )
__lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3},
], )
__lowercase = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
[
{"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3},
]
]
* 2, )
__lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) )
# This model should also work if `image` is set to None
__lowercase = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3},
], )
@slow
@require_torch
@require_pytesseract
@require_vision
def _lowercase ( self : Union[str, Any] ):
__lowercase = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=UpperCAmelCase__ )
__lowercase = pipeline(
"document-question-answering", model="impira/layoutlm-document-qa", tokenizer=UpperCAmelCase__, revision="3dc6de3", max_seq_len=5_0, )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
[
{"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6},
]
]
* 2, )
__lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) )
# This model should also work if `image` is set to None
__lowercase = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
@slow
@require_torch
def _lowercase ( self : Dict ):
__lowercase = pipeline(
"document-question-answering", model="naver-clova-ix/donut-base-finetuned-docvqa", tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ), feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa", )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), [{"answer": "us-001"}] )
@require_tf
@unittest.skip("Document question answering not implemented in TF" )
def _lowercase ( self : List[Any] ):
pass
| 17 | 0 |
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, logging
if is_torch_available():
import torch
_UpperCamelCase = logging.get_logger(__name__)
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Tuple =["pixel_values"]
def __init__( self , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = PILImageResampling.BILINEAR , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = 1 / 255 , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ) -> Dict:
'''simple docstring'''
super().__init__(**UpperCAmelCase__ )
__snake_case : Tuple = size if size is not None else {"shortest_edge": 256}
__snake_case : List[Any] = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ )
__snake_case : Tuple = crop_size if crop_size is not None else {"height": 224, "width": 224}
__snake_case : Optional[Any] = get_size_dict(UpperCAmelCase__ , param_name="crop_size" )
__snake_case : Any = do_resize
__snake_case : int = size
__snake_case : int = resample
__snake_case : Any = do_center_crop
__snake_case : Any = crop_size
__snake_case : Optional[int] = do_rescale
__snake_case : Tuple = rescale_factor
__snake_case : str = do_normalize
__snake_case : Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__snake_case : List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = PILImageResampling.BICUBIC , UpperCAmelCase = None , **UpperCAmelCase , ) -> str:
'''simple docstring'''
__snake_case : int = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ )
if "shortest_edge" not in size:
raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" )
__snake_case : str = get_resize_output_image_size(UpperCAmelCase__ , size=size["shortest_edge"] , default_to_square=UpperCAmelCase__ )
return resize(UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> str:
'''simple docstring'''
__snake_case : List[str] = get_size_dict(UpperCAmelCase__ )
if "height" not in size or "width" not in size:
raise ValueError(F"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" )
return center_crop(UpperCAmelCase__ , size=(size["height"], size["width"]) , data_format=UpperCAmelCase__ , **UpperCAmelCase__ )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase ) -> Any:
'''simple docstring'''
return rescale(UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> Any:
'''simple docstring'''
return normalize(UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = ChannelDimension.FIRST , **UpperCAmelCase , ) -> Any:
'''simple docstring'''
__snake_case : Optional[Any] = do_resize if do_resize is not None else self.do_resize
__snake_case : List[Any] = size if size is not None else self.size
__snake_case : str = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ )
__snake_case : Tuple = resample if resample is not None else self.resample
__snake_case : int = do_center_crop if do_center_crop is not None else self.do_center_crop
__snake_case : str = crop_size if crop_size is not None else self.crop_size
__snake_case : List[str] = get_size_dict(UpperCAmelCase__ , param_name="crop_size" )
__snake_case : Tuple = do_rescale if do_rescale is not None else self.do_rescale
__snake_case : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor
__snake_case : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize
__snake_case : Optional[Any] = image_mean if image_mean is not None else self.image_mean
__snake_case : Any = image_std if image_std is not None else self.image_std
__snake_case : Optional[int] = make_list_of_images(UpperCAmelCase__ )
if not valid_images(UpperCAmelCase__ ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True." )
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
__snake_case : int = [to_numpy_array(UpperCAmelCase__ ) for image in images]
if do_resize:
__snake_case : Tuple = [self.resize(image=UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ ) for image in images]
if do_center_crop:
__snake_case : Union[str, Any] = [self.center_crop(image=UpperCAmelCase__ , size=UpperCAmelCase__ ) for image in images]
if do_rescale:
__snake_case : Tuple = [self.rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ ) for image in images]
if do_normalize:
__snake_case : int = [self.normalize(image=UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__ ) for image in images]
__snake_case : Union[str, Any] = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images]
__snake_case : Tuple = {"pixel_values": images}
return BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[Any]:
'''simple docstring'''
__snake_case : int = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits" )
if is_torch_tensor(UpperCAmelCase__ ):
__snake_case : Dict = target_sizes.numpy()
__snake_case : Tuple = []
for idx in range(len(UpperCAmelCase__ ) ):
__snake_case : Tuple = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=UpperCAmelCase__ )
__snake_case : Any = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(UpperCAmelCase__ )
else:
__snake_case : Tuple = logits.argmax(dim=1 )
__snake_case : Union[str, Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 326 |
"""simple docstring"""
import argparse
import json
import os
import re
import shutil
import torch
from transformers import BioGptConfig, BioGptForCausalLM
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
from transformers.utils import WEIGHTS_NAME, logging
logging.set_verbosity_warning()
_a = 2
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Dict, *, # begin keyword-only arguments
UpperCAmelCase__ : str="<s>", UpperCAmelCase__ : Tuple="<pad>", UpperCAmelCase__ : str="</s>", UpperCAmelCase__ : Optional[Any]="<unk>", UpperCAmelCase__ : List[Any]=None, ):
__lowercase ,__lowercase ,__lowercase ,__lowercase = bos, unk, pad, eos
__lowercase = []
__lowercase = []
__lowercase = {}
__lowercase = self.add_symbol(UpperCAmelCase__ )
__lowercase = self.add_symbol(UpperCAmelCase__ )
__lowercase = self.add_symbol(UpperCAmelCase__ )
__lowercase = self.add_symbol(UpperCAmelCase__ )
if extra_special_symbols:
for s in extra_special_symbols:
self.add_symbol(UpperCAmelCase__ )
__lowercase = len(self.symbols )
def __eq__( self : List[str], UpperCAmelCase__ : Dict ):
return self.indices == other.indices
def __getitem__( self : Optional[int], UpperCAmelCase__ : List[str] ):
if idx < len(self.symbols ):
return self.symbols[idx]
return self.unk_word
def __len__( self : str ):
return len(self.symbols )
def __contains__( self : Any, UpperCAmelCase__ : Optional[Any] ):
return sym in self.indices
@classmethod
def _lowercase ( cls : List[Any], UpperCAmelCase__ : Optional[Any] ):
__lowercase = cls()
d.add_from_file(UpperCAmelCase__ )
return d
def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[Any]=1, UpperCAmelCase__ : str=False ):
if word in self.indices and not overwrite:
__lowercase = self.indices[word]
__lowercase = self.count[idx] + n
return idx
else:
__lowercase = len(self.symbols )
__lowercase = idx
self.symbols.append(UpperCAmelCase__ )
self.count.append(UpperCAmelCase__ )
return idx
def _lowercase ( self : Any, UpperCAmelCase__ : str ):
return 0
def _lowercase ( self : Tuple, UpperCAmelCase__ : List[Any] ):
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
try:
with open(UpperCAmelCase__, "r", encoding="utf-8" ) as fd:
self.add_from_file(UpperCAmelCase__ )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception("Incorrect encoding detected in {}, please rebuild the dataset".format(UpperCAmelCase__ ) )
return
__lowercase = f.readlines()
__lowercase = self._load_meta(UpperCAmelCase__ )
for line in lines[indices_start_line:]:
try:
__lowercase ,__lowercase = line.rstrip().rsplit(" ", 1 )
if field == "#fairseq:overwrite":
__lowercase = True
__lowercase ,__lowercase = line.rsplit(" ", 1 )
else:
__lowercase = False
__lowercase = int(UpperCAmelCase__ )
__lowercase = line
if word in self and not overwrite:
raise RuntimeError(
"Duplicate word found when loading Dictionary: '{}'. "
"Duplicate words can overwrite earlier ones by adding the "
"#fairseq:overwrite flag at the end of the corresponding row "
"in the dictionary file. If using the Camembert model, please "
"download an updated copy of the model file.".format(UpperCAmelCase__ ) )
self.add_symbol(UpperCAmelCase__, n=UpperCAmelCase__, overwrite=UpperCAmelCase__ )
except ValueError:
raise ValueError("Incorrect dictionary format, expected '<token> <cnt> [flags]'" )
def _A ( UpperCamelCase_ : int) -> str:
'''simple docstring'''
__lowercase = dict((re.sub(r"@@$", "", UpperCamelCase_), v) if k.endswith("@@") else (re.sub(r"$", "</w>", UpperCamelCase_), v) for k, v in d.items())
__lowercase = "<s> <pad> </s> <unk>".split()
# restore the special tokens
for k in keep_keys:
del da[F"""{k}</w>"""]
__lowercase = d[k] # restore
return da
def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str) -> List[Any]:
'''simple docstring'''
if not os.path.exists(UpperCamelCase_):
raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""")
os.makedirs(UpperCamelCase_, exist_ok=UpperCamelCase_)
print(F"""Writing results to {pytorch_dump_folder_path}""")
# handle various types of models
__lowercase = os.path.join(UpperCamelCase_, "checkpoint.pt")
if not os.path.isfile(UpperCamelCase_):
raise ValueError(F"""path to the file {checkpoint_file} does not exist!""")
__lowercase = torch.load(UpperCamelCase_, map_location="cpu")
__lowercase = chkpt["cfg"]["model"]
# dicts
__lowercase = os.path.join(UpperCamelCase_, "dict.txt")
if not os.path.isfile(UpperCamelCase_):
raise ValueError(F"""path to the file {dict_file} does not exist!""")
__lowercase = Dictionary.load(UpperCamelCase_)
__lowercase = rewrite_dict_keys(src_dict.indices)
__lowercase = len(UpperCamelCase_)
__lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["vocab_file"])
print(F"""Generating {src_vocab_file} of {src_vocab_size} records""")
with open(UpperCamelCase_, "w", encoding="utf-8") as f:
f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_))
# merges_file (bpecodes)
__lowercase = os.path.join(UpperCamelCase_, "bpecodes")
if not os.path.isfile(UpperCamelCase_):
raise ValueError(F"""path to the file {bpecodes_file} does not exist!""")
__lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["merges_file"])
shutil.copyfile(UpperCamelCase_, UpperCamelCase_)
# model config
__lowercase = os.path.join(UpperCamelCase_, "config.json")
__lowercase = {
"activation_dropout": args["activation_dropout"],
"architectures": ["BioGptForCausalLM"],
"attention_probs_dropout_prob": args["attention_dropout"],
"bos_token_id": 0,
"eos_token_id": 2,
"hidden_act": args["activation_fn"],
"hidden_dropout_prob": args["dropout"],
"hidden_size": args["decoder_embed_dim"],
"initializer_range": 0.02,
"intermediate_size": args["decoder_ffn_embed_dim"],
"layer_norm_eps": 1E-12,
"layerdrop": args["decoder_layerdrop"],
"max_position_embeddings": args["max_target_positions"],
"model_type": "biogpt",
"num_attention_heads": args["decoder_attention_heads"],
"num_hidden_layers": args["decoder_layers"],
"pad_token_id": 1,
"scale_embedding": not args["no_scale_embedding"],
"tie_word_embeddings": args["share_decoder_input_output_embed"],
"vocab_size": src_vocab_size,
}
# good hparam defaults to start with
print(F"""Generating {biogpt_model_config_file}""")
with open(UpperCamelCase_, "w", encoding="utf-8") as f:
f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_))
# tokenizer config
__lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_)
__lowercase = {
"bos_token": "<s>",
"eos_token": "</s>",
"model_max_length": 1024,
"pad_token": "<pad>",
"special_tokens_map_file": None,
"tokenizer_class": "BioGptTokenizer",
"unk_token": "<unk>",
}
print(F"""Generating {biogpt_tokenizer_config_file}""")
with open(UpperCamelCase_, "w", encoding="utf-8") as f:
f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_))
# model
__lowercase = chkpt["model"]
# remove unneeded keys
__lowercase = [
"decoder.version",
]
for k in ignore_keys:
model_state_dict.pop(UpperCamelCase_, UpperCamelCase_)
__lowercase = list(model_state_dict.keys())
for layer_name in layer_names:
if layer_name.endswith("output_projection.weight"):
__lowercase = model_state_dict.pop(UpperCamelCase_)
else:
__lowercase = model_state_dict.pop(UpperCamelCase_)
__lowercase = BioGptConfig.from_pretrained(UpperCamelCase_)
__lowercase = BioGptForCausalLM(UpperCamelCase_)
# check that it loads ok
model_new.load_state_dict(UpperCamelCase_)
# save
__lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_)
print(F"""Generating {pytorch_weights_dump_path}""")
torch.save(UpperCamelCase_, UpperCamelCase_)
print("Conversion is done!")
if __name__ == "__main__":
_a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--biogpt_checkpoint_path',
default=None,
type=str,
required=True,
help=(
'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,'
' bpecodes, etc.'
),
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
_a = parser.parse_args()
convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
| 17 | 0 |
import os
import pytest
import yaml
from datasets.features.features import Features, Value
from datasets.info import DatasetInfo, DatasetInfosDict
@pytest.mark.parametrize(
"""files""",[
["""full:README.md""", """dataset_infos.json"""],
["""empty:README.md""", """dataset_infos.json"""],
["""dataset_infos.json"""],
["""full:README.md"""],
],)
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_A : Tuple = tmp_path_factory.mktemp("""dset_infos_dir""" )
if "full:README.md" in files:
with open(dataset_infos_dir / """README.md""","""w""" ) as f:
f.write("""---\ndataset_info:\n dataset_size: 42\n---""" )
if "empty:README.md" in files:
with open(dataset_infos_dir / """README.md""","""w""" ) as f:
f.write("""""" )
# we want to support dataset_infos.json for backward compatibility
if "dataset_infos.json" in files:
with open(dataset_infos_dir / """dataset_infos.json""","""w""" ) as f:
f.write("""{\"default\": {\"dataset_size\": 42}}""" )
_A : Optional[int] = DatasetInfosDict.from_directory(UpperCamelCase_ )
assert dataset_infos
assert dataset_infos["default"].dataset_size == 42
@pytest.mark.parametrize(
"""dataset_info""",[
DatasetInfo(),
DatasetInfo(
description="""foo""",features=Features({"""a""": Value("""int32""" )} ),builder_name="""builder""",config_name="""config""",version="""1.0.0""",splits=[{"""name""": """train"""}],download_size=42,),
],)
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_A : List[str] = str(UpperCamelCase_ )
dataset_info.write_to_directory(UpperCamelCase_ )
_A : Dict = DatasetInfo.from_directory(UpperCamelCase_ )
assert dataset_info == reloaded
assert os.path.exists(os.path.join(UpperCamelCase_,"""dataset_info.json""" ) )
def lowerCAmelCase_ ( ):
_A : Union[str, Any] = DatasetInfo(
description="""foo""",citation="""bar""",homepage="""https://foo.bar""",license="""CC0""",features=Features({"""a""": Value("""int32""" )} ),post_processed={},supervised_keys=(),task_templates=[],builder_name="""builder""",config_name="""config""",version="""1.0.0""",splits=[{"""name""": """train""", """num_examples""": 42}],download_checksums={},download_size=1337,post_processing_size=442,dataset_size=1234,size_in_bytes=1337 + 442 + 1234,)
_A : Any = dataset_info._to_yaml_dict()
assert sorted(UpperCamelCase_ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML )
for key in DatasetInfo._INCLUDED_INFO_IN_YAML:
assert key in dataset_info_yaml_dict
assert isinstance(dataset_info_yaml_dict[key],(list, dict, int, str) )
_A : Optional[int] = yaml.safe_dump(UpperCamelCase_ )
_A : Optional[int] = yaml.safe_load(UpperCamelCase_ )
assert dataset_info_yaml_dict == reloaded
def lowerCAmelCase_ ( ):
_A : Optional[int] = DatasetInfo()
_A : Union[str, Any] = dataset_info._to_yaml_dict()
assert dataset_info_yaml_dict == {}
@pytest.mark.parametrize(
"""dataset_infos_dict""",[
DatasetInfosDict(),
DatasetInfosDict({"""default""": DatasetInfo()} ),
DatasetInfosDict({"""my_config_name""": DatasetInfo()} ),
DatasetInfosDict(
{
"""default""": DatasetInfo(
description="""foo""",features=Features({"""a""": Value("""int32""" )} ),builder_name="""builder""",config_name="""config""",version="""1.0.0""",splits=[{"""name""": """train"""}],download_size=42,)
} ),
DatasetInfosDict(
{
"""v1""": DatasetInfo(dataset_size=42 ),
"""v2""": DatasetInfo(dataset_size=1337 ),
} ),
],)
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_A : Dict = str(UpperCamelCase_ )
dataset_infos_dict.write_to_directory(UpperCamelCase_ )
_A : Any = DatasetInfosDict.from_directory(UpperCamelCase_ )
# the config_name of the dataset_infos_dict take over the attribute
for config_name, dataset_info in dataset_infos_dict.items():
_A : Any = config_name
# the yaml representation doesn't include fields like description or citation
# so we just test that we can recover what we can from the yaml
_A : str = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() )
assert dataset_infos_dict == reloaded
if dataset_infos_dict:
assert os.path.exists(os.path.join(UpperCamelCase_,"""README.md""" ) )
| 26 |
"""simple docstring"""
from __future__ import annotations
from typing import Any
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Any, UpperCAmelCase__ : int ):
__lowercase = num_of_nodes
__lowercase = []
__lowercase = {}
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : int, UpperCAmelCase__ : int ):
self.m_edges.append([u_node, v_node, weight] )
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : int ):
if self.m_component[u_node] == u_node:
return u_node
return self.find_component(self.m_component[u_node] )
def _lowercase ( self : List[Any], UpperCAmelCase__ : int ):
if self.m_component[u_node] != u_node:
for k in self.m_component:
__lowercase = self.find_component(UpperCAmelCase__ )
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : list[int], UpperCAmelCase__ : int, UpperCAmelCase__ : int ):
if component_size[u_node] <= component_size[v_node]:
__lowercase = v_node
component_size[v_node] += component_size[u_node]
self.set_component(UpperCAmelCase__ )
elif component_size[u_node] >= component_size[v_node]:
__lowercase = self.find_component(UpperCAmelCase__ )
component_size[u_node] += component_size[v_node]
self.set_component(UpperCAmelCase__ )
def _lowercase ( self : Any ):
__lowercase = []
__lowercase = 0
__lowercase = [-1] * self.m_num_of_nodes
# A list of components (initialized to all of the nodes)
for node in range(self.m_num_of_nodes ):
self.m_component.update({node: node} )
component_size.append(1 )
__lowercase = self.m_num_of_nodes
while num_of_components > 1:
for edge in self.m_edges:
__lowercase ,__lowercase ,__lowercase = edge
__lowercase = self.m_component[u]
__lowercase = self.m_component[v]
if u_component != v_component:
for component in (u_component, v_component):
if (
minimum_weight_edge[component] == -1
or minimum_weight_edge[component][2] > w
):
__lowercase = [u, v, w]
for edge in minimum_weight_edge:
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
__lowercase ,__lowercase ,__lowercase = edge
__lowercase = self.m_component[u]
__lowercase = self.m_component[v]
if u_component != v_component:
mst_weight += w
self.union(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" )
num_of_components -= 1
__lowercase = [-1] * self.m_num_of_nodes
print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" )
def _A ( ) -> None:
'''simple docstring'''
if __name__ == "__main__":
import doctest
doctest.testmod()
| 17 | 0 |
"""simple docstring"""
import argparse
import torch
from safetensors.torch import load_file
from diffusers import StableDiffusionPipeline
def _snake_case ( _snake_case : Optional[Any] , _snake_case : Any , _snake_case : Dict , _snake_case : Optional[int] , _snake_case : List[Any] ) -> str:
'''simple docstring'''
_A = StableDiffusionPipeline.from_pretrained(UpperCamelCase_ , torch_dtype=torch.floataa )
# load LoRA weight from .safetensors
_A = load_file(UpperCamelCase_ )
_A = []
# directly update weight in diffusers model
for key in state_dict:
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
_A = key.split('.' )[0].split(LORA_PREFIX_TEXT_ENCODER + '_' )[-1].split('_' )
_A = pipeline.text_encoder
else:
_A = key.split('.' )[0].split(LORA_PREFIX_UNET + '_' )[-1].split('_' )
_A = pipeline.unet
# find the target layer
_A = layer_infos.pop(0 )
while len(UpperCamelCase_ ) > -1:
try:
_A = curr_layer.__getattr__(UpperCamelCase_ )
if len(UpperCamelCase_ ) > 0:
_A = layer_infos.pop(0 )
elif len(UpperCamelCase_ ) == 0:
break
except Exception:
if len(UpperCamelCase_ ) > 0:
temp_name += "_" + layer_infos.pop(0 )
else:
_A = layer_infos.pop(0 )
_A = []
if "lora_down" in key:
pair_keys.append(key.replace('lora_down' , 'lora_up' ) )
pair_keys.append(UpperCamelCase_ )
else:
pair_keys.append(UpperCamelCase_ )
pair_keys.append(key.replace('lora_up' , 'lora_down' ) )
# update weight
if len(state_dict[pair_keys[0]].shape ) == 4:
_A = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
_A = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(UpperCamelCase_ , UpperCamelCase_ ).unsqueeze(2 ).unsqueeze(3 )
else:
_A = state_dict[pair_keys[0]].to(torch.floataa )
_A = state_dict[pair_keys[1]].to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(UpperCamelCase_ , UpperCamelCase_ )
# update visited list
for item in pair_keys:
visited.append(UpperCamelCase_ )
return pipeline
if __name__ == "__main__":
a = argparse.ArgumentParser()
parser.add_argument(
'''--base_model_path''', default=None, type=str, required=True, help='''Path to the base model in diffusers format.'''
)
parser.add_argument(
'''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.'''
)
parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''')
parser.add_argument(
'''--lora_prefix_unet''', default='''lora_unet''', type=str, help='''The prefix of UNet weight in safetensors'''
)
parser.add_argument(
'''--lora_prefix_text_encoder''',
default='''lora_te''',
type=str,
help='''The prefix of text encoder weight in safetensors''',
)
parser.add_argument('''--alpha''', default=0.7_5, type=float, help='''The merging ratio in W = W0 + alpha * deltaW''')
parser.add_argument(
'''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.'''
)
parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''')
a = parser.parse_args()
a = args.base_model_path
a = args.checkpoint_path
a = args.dump_path
a = args.lora_prefix_unet
a = args.lora_prefix_text_encoder
a = args.alpha
a = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)
a = pipe.to(args.device)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 315 |
"""simple docstring"""
from math import sqrt
def _A ( UpperCamelCase_ : int) -> int:
'''simple docstring'''
__lowercase = 0
for i in range(1, int(sqrt(UpperCamelCase_) + 1)):
if n % i == 0 and i != sqrt(UpperCamelCase_):
total += i + n // i
elif i == sqrt(UpperCamelCase_):
total += i
return total - n
def _A ( UpperCamelCase_ : int = 10000) -> int:
'''simple docstring'''
__lowercase = sum(
i
for i in range(1, UpperCamelCase_)
if sum_of_divisors(sum_of_divisors(UpperCamelCase_)) == i and sum_of_divisors(UpperCamelCase_) != i)
return total
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 17 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.