code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : List[Any] ): __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) __lowercase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(UpperCAmelCase__ ) __lowercase = -1 __lowercase = ids_tensor((1, 5), vocab_size=model.config.vocab_size ).to(UpperCAmelCase__ ) __lowercase = model.generate(UpperCAmelCase__, max_new_tokens=1_0, do_sample=UpperCAmelCase__ ) __lowercase = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: __lowercase = TextStreamer(UpperCAmelCase__ ) model.generate(UpperCAmelCase__, max_new_tokens=1_0, do_sample=UpperCAmelCase__, streamer=UpperCAmelCase__ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __lowercase = cs.out[:-1] self.assertEqual(UpperCAmelCase__, UpperCAmelCase__ ) def _lowercase ( self : List[str] ): __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) __lowercase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(UpperCAmelCase__ ) __lowercase = -1 __lowercase = ids_tensor((1, 5), vocab_size=model.config.vocab_size ).to(UpperCAmelCase__ ) __lowercase = model.generate(UpperCAmelCase__, max_new_tokens=1_0, do_sample=UpperCAmelCase__ ) __lowercase = tokenizer.decode(greedy_ids[0] ) __lowercase = TextIteratorStreamer(UpperCAmelCase__ ) __lowercase = {"input_ids": input_ids, "max_new_tokens": 1_0, "do_sample": False, "streamer": streamer} __lowercase = Thread(target=model.generate, kwargs=UpperCAmelCase__ ) thread.start() __lowercase = "" for new_text in streamer: streamer_text += new_text self.assertEqual(UpperCAmelCase__, UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ): __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) __lowercase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(UpperCAmelCase__ ) __lowercase = -1 __lowercase = ids_tensor((1, 5), vocab_size=model.config.vocab_size ).to(UpperCAmelCase__ ) __lowercase = model.generate(UpperCAmelCase__, max_new_tokens=1_0, do_sample=UpperCAmelCase__ ) __lowercase = greedy_ids[:, input_ids.shape[1] :] __lowercase = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: __lowercase = TextStreamer(UpperCAmelCase__, skip_prompt=UpperCAmelCase__ ) model.generate(UpperCAmelCase__, max_new_tokens=1_0, do_sample=UpperCAmelCase__, streamer=UpperCAmelCase__ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __lowercase = cs.out[:-1] self.assertEqual(UpperCAmelCase__, UpperCAmelCase__ ) def _lowercase ( self : Optional[Any] ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them __lowercase = AutoTokenizer.from_pretrained("distilgpt2" ) __lowercase = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(UpperCAmelCase__ ) __lowercase = -1 __lowercase = torch.ones((1, 5), device=UpperCAmelCase__ ).long() * model.config.bos_token_id with CaptureStdout() as cs: __lowercase = TextStreamer(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ ) model.generate(UpperCAmelCase__, max_new_tokens=1, do_sample=UpperCAmelCase__, streamer=UpperCAmelCase__ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token __lowercase = cs.out[:-1] # Remove the final "\n" __lowercase = tokenizer(UpperCAmelCase__, return_tensors="pt" ) self.assertEqual(streamer_text_tokenized.input_ids.shape, (1, 1) ) def _lowercase ( self : Any ): __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) __lowercase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(UpperCAmelCase__ ) __lowercase = -1 __lowercase = ids_tensor((1, 5), vocab_size=model.config.vocab_size ).to(UpperCAmelCase__ ) __lowercase = TextIteratorStreamer(UpperCAmelCase__, timeout=0.001 ) __lowercase = {"input_ids": input_ids, "max_new_tokens": 1_0, "do_sample": False, "streamer": streamer} __lowercase = Thread(target=model.generate, kwargs=UpperCAmelCase__ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(UpperCAmelCase__ ): __lowercase = "" for new_text in streamer: streamer_text += new_text
17
"""simple docstring""" import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal _a = datasets.utils.logging.get_logger(__name__) _a = ['names', 'prefix'] _a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] _a = ['encoding_errors', 'on_bad_lines'] _a = ['date_format'] @dataclass class _lowerCAmelCase ( datasets.BuilderConfig ): """simple docstring""" __UpperCAmelCase : str = "," __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[Union[int, List[int], str]] = "infer" __UpperCAmelCase : Optional[List[str]] = None __UpperCAmelCase : Optional[List[str]] = None __UpperCAmelCase : Optional[Union[int, str, List[int], List[str]]] = None __UpperCAmelCase : Optional[Union[List[int], List[str]]] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : bool = True __UpperCAmelCase : Optional[Literal["c", "python", "pyarrow"]] = None __UpperCAmelCase : Dict[Union[int, str], Callable[[Any], Any]] = None __UpperCAmelCase : Optional[list] = None __UpperCAmelCase : Optional[list] = None __UpperCAmelCase : bool = False __UpperCAmelCase : Optional[Union[int, List[int]]] = None __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Optional[Union[str, List[str]]] = None __UpperCAmelCase : bool = True __UpperCAmelCase : bool = True __UpperCAmelCase : bool = False __UpperCAmelCase : bool = True __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : str = "." __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : str = '"' __UpperCAmelCase : int = 0 __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : bool = True __UpperCAmelCase : bool = True __UpperCAmelCase : int = 0 __UpperCAmelCase : bool = True __UpperCAmelCase : bool = False __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : int = 1_0_0_0_0 __UpperCAmelCase : Optional[datasets.Features] = None __UpperCAmelCase : Optional[str] = "strict" __UpperCAmelCase : Literal["error", "warn", "skip"] = "error" __UpperCAmelCase : Optional[str] = None def _lowercase ( self : Tuple ): if self.delimiter is not None: __lowercase = self.delimiter if self.column_names is not None: __lowercase = self.column_names @property def _lowercase ( self : Union[str, Any] ): __lowercase = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig(), UpperCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class _lowerCAmelCase ( datasets.ArrowBasedBuilder ): """simple docstring""" __UpperCAmelCase : Tuple = CsvConfig def _lowercase ( self : List[str] ): return datasets.DatasetInfo(features=self.config.features ) def _lowercase ( self : List[Any], UpperCAmelCase__ : Dict ): if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) __lowercase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(UpperCAmelCase__, (str, list, tuple) ): __lowercase = data_files if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = [files] __lowercase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files} )] __lowercase = [] for split_name, files in data_files.items(): if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = [files] __lowercase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=UpperCAmelCase__, gen_kwargs={"files": files} ) ) return splits def _lowercase ( self : Dict, UpperCAmelCase__ : pa.Table ): if self.config.features is not None: __lowercase = self.config.features.arrow_schema if all(not require_storage_cast(UpperCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast __lowercase = pa.Table.from_arrays([pa_table[field.name] for field in schema], schema=UpperCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example __lowercase = table_cast(UpperCAmelCase__, UpperCAmelCase__ ) return pa_table def _lowercase ( self : Optional[Any], UpperCAmelCase__ : List[str] ): __lowercase = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str __lowercase = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(UpperCAmelCase__ ) else object for name, dtype, feature in zip(schema.names, schema.types, self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase__ ) ): __lowercase = pd.read_csv(UpperCAmelCase__, iterator=UpperCAmelCase__, dtype=UpperCAmelCase__, **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(UpperCAmelCase__ ): __lowercase = pa.Table.from_pandas(UpperCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase__ ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(UpperCAmelCase__ )}: {e}""" ) raise
17
1
"""simple docstring""" import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging _a = logging.get_logger(__name__) _a = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED _a = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } _a = { 'allenai/led-base-16384': 1_63_84, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def _A ( ) -> Union[str, Any]: '''simple docstring''' __lowercase = ( list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) ) __lowercase = bs[:] __lowercase = 0 for b in range(2**8): if b not in bs: bs.append(UpperCamelCase_) cs.append(2**8 + n) n += 1 __lowercase = [chr(UpperCamelCase_) for n in cs] return dict(zip(UpperCamelCase_, UpperCamelCase_)) def _A ( UpperCamelCase_ : List[Any]) -> Any: '''simple docstring''' __lowercase = set() __lowercase = word[0] for char in word[1:]: pairs.add((prev_char, char)) __lowercase = char return pairs class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : Any = VOCAB_FILES_NAMES __UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : List[Any] = ["input_ids", "attention_mask"] def __init__( self : Optional[Any], UpperCAmelCase__ : List[str], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Union[str, Any]="replace", UpperCAmelCase__ : Tuple="<s>", UpperCAmelCase__ : Optional[Any]="</s>", UpperCAmelCase__ : Any="</s>", UpperCAmelCase__ : Optional[int]="<s>", UpperCAmelCase__ : Tuple="<unk>", UpperCAmelCase__ : Dict="<pad>", UpperCAmelCase__ : int="<mask>", UpperCAmelCase__ : Any=False, **UpperCAmelCase__ : List[Any], ): __lowercase = AddedToken(UpperCAmelCase__, lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__, UpperCAmelCase__ ) else bos_token __lowercase = AddedToken(UpperCAmelCase__, lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__, UpperCAmelCase__ ) else eos_token __lowercase = AddedToken(UpperCAmelCase__, lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__, UpperCAmelCase__ ) else sep_token __lowercase = AddedToken(UpperCAmelCase__, lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__, UpperCAmelCase__ ) else cls_token __lowercase = AddedToken(UpperCAmelCase__, lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__, UpperCAmelCase__ ) else unk_token __lowercase = AddedToken(UpperCAmelCase__, lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__, UpperCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __lowercase = AddedToken(UpperCAmelCase__, lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__, UpperCAmelCase__ ) else mask_token super().__init__( errors=UpperCAmelCase__, bos_token=UpperCAmelCase__, eos_token=UpperCAmelCase__, unk_token=UpperCAmelCase__, sep_token=UpperCAmelCase__, cls_token=UpperCAmelCase__, pad_token=UpperCAmelCase__, mask_token=UpperCAmelCase__, add_prefix_space=UpperCAmelCase__, **UpperCAmelCase__, ) with open(UpperCAmelCase__, encoding="utf-8" ) as vocab_handle: __lowercase = json.load(UpperCAmelCase__ ) __lowercase = {v: k for k, v in self.encoder.items()} __lowercase = errors # how to handle errors in decoding __lowercase = bytes_to_unicode() __lowercase = {v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase__, encoding="utf-8" ) as merges_handle: __lowercase = merges_handle.read().split("\n" )[1:-1] __lowercase = [tuple(merge.split() ) for merge in bpe_merges] __lowercase = dict(zip(UpperCAmelCase__, range(len(UpperCAmelCase__ ) ) ) ) __lowercase = {} __lowercase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __lowercase = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _lowercase ( self : List[str] ): return len(self.encoder ) def _lowercase ( self : int ): return dict(self.encoder, **self.added_tokens_encoder ) def _lowercase ( self : str, UpperCAmelCase__ : str ): if token in self.cache: return self.cache[token] __lowercase = tuple(UpperCAmelCase__ ) __lowercase = get_pairs(UpperCAmelCase__ ) if not pairs: return token while True: __lowercase = min(UpperCAmelCase__, key=lambda UpperCAmelCase__ : self.bpe_ranks.get(UpperCAmelCase__, float("inf" ) ) ) if bigram not in self.bpe_ranks: break __lowercase ,__lowercase = bigram __lowercase = [] __lowercase = 0 while i < len(UpperCAmelCase__ ): try: __lowercase = word.index(UpperCAmelCase__, UpperCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowercase = j if word[i] == first and i < len(UpperCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowercase = tuple(UpperCAmelCase__ ) __lowercase = new_word if len(UpperCAmelCase__ ) == 1: break else: __lowercase = get_pairs(UpperCAmelCase__ ) __lowercase = " ".join(UpperCAmelCase__ ) __lowercase = word return word def _lowercase ( self : Tuple, UpperCAmelCase__ : Tuple ): __lowercase = [] for token in re.findall(self.pat, UpperCAmelCase__ ): __lowercase = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase__ ).split(" " ) ) return bpe_tokens def _lowercase ( self : Optional[int], UpperCAmelCase__ : int ): return self.encoder.get(UpperCAmelCase__, self.encoder.get(self.unk_token ) ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : str ): return self.decoder.get(UpperCAmelCase__ ) def _lowercase ( self : List[Any], UpperCAmelCase__ : Any ): __lowercase = "".join(UpperCAmelCase__ ) __lowercase = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8", errors=self.errors ) return text def _lowercase ( self : str, UpperCAmelCase__ : str, UpperCAmelCase__ : Optional[str] = None ): if not os.path.isdir(UpperCAmelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( UpperCAmelCase__, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __lowercase = os.path.join( UpperCAmelCase__, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(UpperCAmelCase__, "w", encoding="utf-8" ) as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=UpperCAmelCase__, ensure_ascii=UpperCAmelCase__ ) + "\n" ) __lowercase = 0 with open(UpperCAmelCase__, "w", encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda UpperCAmelCase__ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) __lowercase = token_index writer.write(" ".join(UpperCAmelCase__ ) + "\n" ) index += 1 return vocab_file, merge_file def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : List[int], UpperCAmelCase__ : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowercase = [self.cls_token_id] __lowercase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self : Any, UpperCAmelCase__ : List[int], UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase__, token_ids_a=UpperCAmelCase__, already_has_special_tokens=UpperCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase__ )) + [1] return [1] + ([0] * len(UpperCAmelCase__ )) + [1, 1] + ([0] * len(UpperCAmelCase__ )) + [1] def _lowercase ( self : List[Any], UpperCAmelCase__ : List[int], UpperCAmelCase__ : Optional[List[int]] = None ): __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self : Dict, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : str=False, **UpperCAmelCase__ : List[Any] ): __lowercase = kwargs.pop("add_prefix_space", self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase__ ) > 0 and not text[0].isspace()): __lowercase = " " + text return (text, kwargs) def _lowercase ( self : Dict, UpperCAmelCase__ : Union[Dict[str, EncodedInput], BatchEncoding], UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : Optional[bool] = None, ): __lowercase = super()._pad( encoded_inputs=UpperCAmelCase__, max_length=UpperCAmelCase__, padding_strategy=UpperCAmelCase__, pad_to_multiple_of=UpperCAmelCase__, return_attention_mask=UpperCAmelCase__, ) # Load from model defaults if return_attention_mask is None: __lowercase = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __lowercase = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __lowercase = len(encoded_inputs["global_attention_mask"] ) != len(UpperCAmelCase__ ) if needs_to_be_padded: __lowercase = len(UpperCAmelCase__ ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __lowercase = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": __lowercase = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
17
"""simple docstring""" from scipy.stats import spearmanr import datasets _a = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n' _a = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n' _a = r'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def _lowercase ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ), reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"], ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int]=False ): __lowercase = spearmanr(UpperCAmelCase__, UpperCAmelCase__ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
17
1
"""simple docstring""" import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration _a = 50_00_00 _a , _a = os.path.split(__file__) _a = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def _A ( UpperCamelCase_ : datasets.Dataset, **UpperCamelCase_ : Tuple) -> Optional[Any]: '''simple docstring''' __lowercase = dataset.map(**UpperCamelCase_) @get_duration def _A ( UpperCamelCase_ : datasets.Dataset, **UpperCamelCase_ : str) -> Tuple: '''simple docstring''' __lowercase = dataset.filter(**UpperCamelCase_) def _A ( ) -> Optional[int]: '''simple docstring''' __lowercase = {"num examples": SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: __lowercase = datasets.Features({"text": datasets.Value("string"), "numbers": datasets.Value("float32")}) __lowercase = generate_example_dataset( os.path.join(UpperCamelCase_, "dataset.arrow"), UpperCamelCase_, num_examples=UpperCamelCase_) __lowercase = transformers.AutoTokenizer.from_pretrained("bert-base-cased", use_fast=UpperCamelCase_) def tokenize(UpperCamelCase_ : int): return tokenizer(examples["text"]) __lowercase = map(UpperCamelCase_) __lowercase = map(UpperCamelCase_, batched=UpperCamelCase_) __lowercase = map(UpperCamelCase_, function=lambda UpperCamelCase_: None, batched=UpperCamelCase_) with dataset.formatted_as(type="numpy"): __lowercase = map(UpperCamelCase_, function=lambda UpperCamelCase_: None, batched=UpperCamelCase_) with dataset.formatted_as(type="pandas"): __lowercase = map(UpperCamelCase_, function=lambda UpperCamelCase_: None, batched=UpperCamelCase_) with dataset.formatted_as(type="torch", columns="numbers"): __lowercase = map(UpperCamelCase_, function=lambda UpperCamelCase_: None, batched=UpperCamelCase_) with dataset.formatted_as(type="tensorflow", columns="numbers"): __lowercase = map(UpperCamelCase_, function=lambda UpperCamelCase_: None, batched=UpperCamelCase_) __lowercase = map(UpperCamelCase_, function=UpperCamelCase_, batched=UpperCamelCase_) __lowercase = filter(UpperCamelCase_) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(UpperCamelCase_, "wb") as f: f.write(json.dumps(UpperCamelCase_).encode("utf-8")) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
17
"""simple docstring""" from collections.abc import Sequence def _A ( UpperCamelCase_ : Sequence[float], UpperCamelCase_ : float) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(UpperCamelCase_)) def _A ( UpperCamelCase_ : Sequence[float], UpperCamelCase_ : float) -> float: '''simple docstring''' __lowercase = 0.0 for coeff in reversed(UpperCamelCase_): __lowercase = result * x + coeff return result if __name__ == "__main__": _a = (0.0, 0.0, 5.0, 9.3, 7.0) _a = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
17
1
"""simple docstring""" import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a = logging.get_logger(__name__) _a = {'vocab_file': 'vocab.json'} _a = { 'vocab_file': { 'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json', } } _a = {'mgp-str': 27} class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : Dict = VOCAB_FILES_NAMES __UpperCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Any, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int]="[GO]", UpperCAmelCase__ : str="[GO]", UpperCAmelCase__ : Dict="[s]", UpperCAmelCase__ : Union[str, Any]="[GO]", **UpperCAmelCase__ : Tuple ): super().__init__( unk_token=UpperCAmelCase__, bos_token=UpperCAmelCase__, eos_token=UpperCAmelCase__, pad_token=UpperCAmelCase__, **UpperCAmelCase__, ) with open(UpperCAmelCase__, encoding="utf-8" ) as vocab_handle: __lowercase = json.load(UpperCAmelCase__ ) __lowercase = {v: k for k, v in self.vocab.items()} @property def _lowercase ( self : List[Any] ): return len(self.vocab ) def _lowercase ( self : int ): return dict(self.vocab, **self.added_tokens_encoder ) def _lowercase ( self : Any, UpperCAmelCase__ : Tuple ): __lowercase = [] for s in text: char_tokens.extend(UpperCAmelCase__ ) return char_tokens def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Any ): return self.vocab.get(UpperCAmelCase__, self.vocab.get(self.unk_token ) ) def _lowercase ( self : int, UpperCAmelCase__ : List[str] ): return self.decoder.get(UpperCAmelCase__ ) def _lowercase ( self : Optional[int], UpperCAmelCase__ : str, UpperCAmelCase__ : Optional[str] = None ): if not os.path.isdir(UpperCAmelCase__ ): logger.error("Vocabulary path ({}) should be a directory".format(UpperCAmelCase__ ) ) return __lowercase = os.path.join( UpperCAmelCase__, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(UpperCAmelCase__, "w", encoding="utf-8" ) as f: f.write(json.dumps(self.vocab, indent=2, sort_keys=UpperCAmelCase__, ensure_ascii=UpperCAmelCase__ ) + "\n" ) return (vocab_file,)
17
"""simple docstring""" import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class _lowerCAmelCase ( pl.LightningModule ): """simple docstring""" def __init__( self : Optional[Any], UpperCAmelCase__ : str ): super().__init__() __lowercase = model __lowercase = 2 __lowercase = nn.Linear(self.model.config.hidden_size, self.num_labels ) def _lowercase ( self : Optional[int] ): pass def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str, UpperCamelCase_ : str) -> str: '''simple docstring''' __lowercase = LongformerModel.from_pretrained(UpperCamelCase_) __lowercase = LightningModel(UpperCamelCase_) __lowercase = torch.load(UpperCamelCase_, map_location=torch.device("cpu")) lightning_model.load_state_dict(ckpt["state_dict"]) # init longformer question answering model __lowercase = LongformerForQuestionAnswering.from_pretrained(UpperCamelCase_) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict()) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict()) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(UpperCamelCase_) print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""") if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _a = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
17
1
"""simple docstring""" # using dfs for finding eulerian path traversal def _A ( UpperCamelCase_ : int, UpperCamelCase_ : int, UpperCamelCase_ : Optional[Any], UpperCamelCase_ : Tuple=None) -> List[str]: '''simple docstring''' __lowercase = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: __lowercase ,__lowercase = True, True __lowercase = dfs(UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_) return path def _A ( UpperCamelCase_ : int, UpperCamelCase_ : int) -> Union[str, Any]: '''simple docstring''' __lowercase = 0 __lowercase = -1 for i in range(UpperCamelCase_): if i not in graph.keys(): continue if len(graph[i]) % 2 == 1: odd_degree_nodes += 1 __lowercase = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : Dict) -> Union[str, Any]: '''simple docstring''' __lowercase = [[False for _ in range(max_node + 1)] for _ in range(max_node + 1)] __lowercase ,__lowercase = check_circuit_or_path(UpperCamelCase_, UpperCamelCase_) if check == 3: print("graph is not Eulerian") print("no path") return __lowercase = 1 if check == 2: __lowercase = odd_node print("graph has a Euler path") if check == 1: print("graph has a Euler cycle") __lowercase = dfs(UpperCamelCase_, UpperCamelCase_, UpperCamelCase_) print(UpperCamelCase_) def _A ( ) -> int: '''simple docstring''' __lowercase = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} __lowercase = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} __lowercase = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} __lowercase = {1: [2, 3], 2: [1, 3], 3: [1, 2]} __lowercase = { 1: [], 2: [] # all degree is zero } __lowercase = 10 check_euler(UpperCamelCase_, UpperCamelCase_) check_euler(UpperCamelCase_, UpperCamelCase_) check_euler(UpperCamelCase_, UpperCamelCase_) check_euler(UpperCamelCase_, UpperCamelCase_) check_euler(UpperCamelCase_, UpperCamelCase_) if __name__ == "__main__": main()
17
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" ,"False" ) ) is not True ,reason="Skipping test because should only be run when releasing minor transformers version" ,) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Optional[int] ): if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split(), encoding="utf-8", check=UpperCAmelCase__, ) assert hasattr(self, "env" ) def _lowercase ( self : str, UpperCAmelCase__ : List[Any] ): # configuration for running training on smdistributed Model Parallel __lowercase = { "enabled": True, "processes_per_host": 8, } __lowercase = { "enabled": True, "parameters": { "microbatches": 4, "placement_strategy": "spread", "pipeline": "interleaved", "optimize": "speed", "partitions": 4, "ddp": True, }, } __lowercase = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options} __lowercase = "trainer" if self.script == "run_glue.py" else "smtrainer" # creates estimator return HuggingFace( entry_point=self.script, source_dir=self.env.test_path, role=self.env.role, image_uri=self.env.image_uri, base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""", instance_count=UpperCAmelCase__, instance_type=self.instance_type, debugger_hook_config=UpperCAmelCase__, hyperparameters={ **self.env.hyperparameters, "model_name_or_path": self.model_name_or_path, "max_steps": 5_0_0, }, metric_definitions=self.env.metric_definitions, distribution=UpperCAmelCase__, py_version="py36", ) def _lowercase ( self : Tuple, UpperCAmelCase__ : int ): TrainingJobAnalytics(UpperCAmelCase__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def _lowercase ( self : str, UpperCAmelCase__ : Union[str, Any] ): # create estimator __lowercase = self.create_estimator(UpperCAmelCase__ ) # run training estimator.fit() # result dataframe __lowercase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __lowercase = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) __lowercase = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __lowercase = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds", 9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""", "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss}, UpperCAmelCase__ )
17
1
"""simple docstring""" def _A ( UpperCamelCase_ : Union[str, Any]) -> Dict: '''simple docstring''' __lowercase = [] __lowercase = [] __lowercase = { "^": 3, "*": 2, "/": 2, "%": 2, "+": 1, "-": 1, } # Priority of each operator __lowercase = len(UpperCamelCase_) if (len(UpperCamelCase_) > 7) else 7 # Print table header for output print( "Symbol".center(8), "Stack".center(UpperCamelCase_), "Postfix".center(UpperCamelCase_), sep=" | ", ) print("-" * (print_width * 3 + 7)) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(UpperCamelCase_) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(UpperCamelCase_) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop()) # Pop stack & add the content to Postfix stack.pop() else: if len(UpperCamelCase_) == 0: stack.append(UpperCamelCase_) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(UpperCamelCase_) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop()) # pop stack & add to Postfix stack.append(UpperCamelCase_) # push x to stack print( x.center(8), ("".join(UpperCamelCase_)).ljust(UpperCamelCase_), ("".join(UpperCamelCase_)).ljust(UpperCamelCase_), sep=" | ", ) # Output in tabular format while len(UpperCamelCase_) > 0: # while stack is not empty post_fix.append(stack.pop()) # pop stack & add to Postfix print( " ".center(8), ("".join(UpperCamelCase_)).ljust(UpperCamelCase_), ("".join(UpperCamelCase_)).ljust(UpperCamelCase_), sep=" | ", ) # Output in tabular format return "".join(UpperCamelCase_) # return Postfix as str def _A ( UpperCamelCase_ : Union[str, Any]) -> List[Any]: '''simple docstring''' __lowercase = list(infix[::-1]) # reverse the infix equation for i in range(len(UpperCamelCase_)): if infix[i] == "(": __lowercase = ")" # change "(" to ")" elif infix[i] == ")": __lowercase = "(" # change ")" to "(" return (infix_2_postfix("".join(UpperCamelCase_)))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": _a = input('\nEnter an Infix Equation = ') # Input an Infix equation _a = ''.join(Infix.split()) # Remove spaces from the input print('\n\t', Infix, '(Infix) -> ', infix_2_prefix(Infix), '(Prefix)')
17
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : Tuple = "openai/whisper-base" __UpperCAmelCase : Union[str, Any] = ( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) __UpperCAmelCase : List[str] = "transcriber" __UpperCAmelCase : Optional[Any] = WhisperProcessor __UpperCAmelCase : str = WhisperForConditionalGeneration __UpperCAmelCase : List[str] = ["audio"] __UpperCAmelCase : Tuple = ["text"] def _lowercase ( self : str, UpperCAmelCase__ : int ): return self.pre_processor(UpperCAmelCase__, return_tensors="pt" ).input_features def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Any] ): return self.model.generate(inputs=UpperCAmelCase__ ) def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[int] ): return self.pre_processor.batch_decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ )[0]
17
1
"""simple docstring""" def _A ( UpperCamelCase_ : int, UpperCamelCase_ : int) -> int: '''simple docstring''' return int(input_a == input_a == 0) def _A ( ) -> None: '''simple docstring''' print("Truth Table of NOR Gate:") print("| Input 1 | Input 2 | Output |") print(F"""| 0 | 0 | {nor_gate(0, 0)} |""") print(F"""| 0 | 1 | {nor_gate(0, 1)} |""") print(F"""| 1 | 0 | {nor_gate(1, 0)} |""") print(F"""| 1 | 1 | {nor_gate(1, 1)} |""") if __name__ == "__main__": import doctest doctest.testmod() main()
17
"""simple docstring""" import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str]) -> Optional[int]: '''simple docstring''' if isinstance(UpperCamelCase_, torch.Tensor): return image elif isinstance(UpperCamelCase_, PIL.Image.Image): __lowercase = [image] if isinstance(image[0], PIL.Image.Image): __lowercase = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image] __lowercase = np.concatenate(UpperCamelCase_, axis=0) __lowercase = np.array(UpperCamelCase_).astype(np.floataa) / 255.0 __lowercase = image.transpose(0, 3, 1, 2) __lowercase = 2.0 * image - 1.0 __lowercase = torch.from_numpy(UpperCamelCase_) elif isinstance(image[0], torch.Tensor): __lowercase = torch.cat(UpperCamelCase_, dim=0) return image def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : str, UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[Any]=0.9_995) -> int: '''simple docstring''' if not isinstance(UpperCamelCase_, np.ndarray): __lowercase = True __lowercase = va.device __lowercase = va.cpu().numpy() __lowercase = va.cpu().numpy() __lowercase = np.sum(va * va / (np.linalg.norm(UpperCamelCase_) * np.linalg.norm(UpperCamelCase_))) if np.abs(UpperCamelCase_) > DOT_THRESHOLD: __lowercase = (1 - t) * va + t * va else: __lowercase = np.arccos(UpperCamelCase_) __lowercase = np.sin(UpperCamelCase_) __lowercase = theta_a * t __lowercase = np.sin(UpperCamelCase_) __lowercase = np.sin(theta_a - theta_t) / sin_theta_a __lowercase = sin_theta_t / sin_theta_a __lowercase = sa * va + sa * va if inputs_are_torch: __lowercase = torch.from_numpy(UpperCamelCase_).to(UpperCamelCase_) return va def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Union[str, Any]) -> int: '''simple docstring''' __lowercase = F.normalize(UpperCamelCase_, dim=-1) __lowercase = F.normalize(UpperCamelCase_, dim=-1) return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2) def _A ( UpperCamelCase_ : Optional[int], UpperCamelCase_ : str) -> Optional[int]: '''simple docstring''' for param in model.parameters(): __lowercase = value class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : Dict, UpperCAmelCase__ : AutoencoderKL, UpperCAmelCase__ : CLIPTextModel, UpperCAmelCase__ : CLIPModel, UpperCAmelCase__ : CLIPTokenizer, UpperCAmelCase__ : UNetaDConditionModel, UpperCAmelCase__ : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler], UpperCAmelCase__ : CLIPFeatureExtractor, UpperCAmelCase__ : Union[str, Any]=None, UpperCAmelCase__ : List[str]=None, UpperCAmelCase__ : Any=None, ): super().__init__() self.register_modules( vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, clip_model=UpperCAmelCase__, tokenizer=UpperCAmelCase__, unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, feature_extractor=UpperCAmelCase__, coca_model=UpperCAmelCase__, coca_tokenizer=UpperCAmelCase__, coca_transform=UpperCAmelCase__, ) __lowercase = ( feature_extractor.size if isinstance(feature_extractor.size, UpperCAmelCase__ ) else feature_extractor.size["shortest_edge"] ) __lowercase = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std ) set_requires_grad(self.text_encoder, UpperCAmelCase__ ) set_requires_grad(self.clip_model, UpperCAmelCase__ ) def _lowercase ( self : Tuple, UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase__ ) def _lowercase ( self : int ): self.enable_attention_slicing(UpperCAmelCase__ ) def _lowercase ( self : str ): set_requires_grad(self.vae, UpperCAmelCase__ ) def _lowercase ( self : Any ): set_requires_grad(self.vae, UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ): set_requires_grad(self.unet, UpperCAmelCase__ ) def _lowercase ( self : Any ): set_requires_grad(self.unet, UpperCAmelCase__ ) def _lowercase ( self : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : Optional[Any] ): # get the original timestep using init_timestep __lowercase = min(int(num_inference_steps * strength ), UpperCAmelCase__ ) __lowercase = max(num_inference_steps - init_timestep, 0 ) __lowercase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowercase ( self : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : int=None ): if not isinstance(UpperCAmelCase__, torch.Tensor ): raise ValueError(F"""`image` has to be of type `torch.Tensor` but is {type(UpperCAmelCase__ )}""" ) __lowercase = image.to(device=UpperCAmelCase__, dtype=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(UpperCAmelCase__ ) ] __lowercase = torch.cat(UpperCAmelCase__, dim=0 ) else: __lowercase = self.vae.encode(UpperCAmelCase__ ).latent_dist.sample(UpperCAmelCase__ ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowercase = 0.18_215 * init_latents __lowercase = init_latents.repeat_interleave(UpperCAmelCase__, dim=0 ) __lowercase = randn_tensor(init_latents.shape, generator=UpperCAmelCase__, device=UpperCAmelCase__, dtype=UpperCAmelCase__ ) # get latents __lowercase = self.scheduler.add_noise(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = init_latents return latents def _lowercase ( self : Optional[int], UpperCAmelCase__ : Dict ): __lowercase = self.coca_transform(UpperCAmelCase__ ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): __lowercase = self.coca_model.generate(transformed_image.to(device=self.device, dtype=self.coca_model.dtype ) ) __lowercase = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("<end_of_text>" )[0].replace("<start_of_text>", "" ).rstrip(" .," ) def _lowercase ( self : Tuple, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Tuple ): __lowercase = self.feature_extractor.preprocess(UpperCAmelCase__ ) __lowercase = torch.from_numpy(clip_image_input["pixel_values"][0] ).unsqueeze(0 ).to(self.device ).half() __lowercase = self.clip_model.get_image_features(UpperCAmelCase__ ) __lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=UpperCAmelCase__ ) __lowercase = image_embeddings_clip.repeat_interleave(UpperCAmelCase__, dim=0 ) return image_embeddings_clip @torch.enable_grad() def _lowercase ( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[int], ): __lowercase = latents.detach().requires_grad_() __lowercase = self.scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ ) # predict the noise residual __lowercase = self.unet(UpperCAmelCase__, UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__ ).sample if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): __lowercase = self.scheduler.alphas_cumprod[timestep] __lowercase = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowercase = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 __lowercase = torch.sqrt(UpperCAmelCase__ ) __lowercase = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler, UpperCAmelCase__ ): __lowercase = self.scheduler.sigmas[index] __lowercase = latents - sigma * noise_pred else: raise ValueError(F"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowercase = 1 / 0.18_215 * sample __lowercase = self.vae.decode(UpperCAmelCase__ ).sample __lowercase = (image / 2 + 0.5).clamp(0, 1 ) __lowercase = transforms.Resize(self.feature_extractor_size )(UpperCAmelCase__ ) __lowercase = self.normalize(UpperCAmelCase__ ).to(latents.dtype ) __lowercase = self.clip_model.get_image_features(UpperCAmelCase__ ) __lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=UpperCAmelCase__ ) __lowercase = spherical_dist_loss(UpperCAmelCase__, UpperCAmelCase__ ).mean() * clip_guidance_scale __lowercase = -torch.autograd.grad(UpperCAmelCase__, UpperCAmelCase__ )[0] if isinstance(self.scheduler, UpperCAmelCase__ ): __lowercase = latents.detach() + grads * (sigma**2) __lowercase = noise_pred_original else: __lowercase = noise_pred_original - torch.sqrt(UpperCAmelCase__ ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : str, UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image], UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image], UpperCAmelCase__ : Optional[str] = None, UpperCAmelCase__ : Optional[str] = None, UpperCAmelCase__ : Optional[int] = 5_1_2, UpperCAmelCase__ : Optional[int] = 5_1_2, UpperCAmelCase__ : float = 0.6, UpperCAmelCase__ : Optional[int] = 5_0, UpperCAmelCase__ : Optional[float] = 7.5, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[float] = 1_0_0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : float = 0.8, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, ): if isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and len(UpperCAmelCase__ ) != batch_size: raise ValueError(F"""You have passed {batch_size} batch_size, but only {len(UpperCAmelCase__ )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(UpperCAmelCase__, torch.Generator ) and batch_size > 1: __lowercase = [generator] + [None] * (batch_size - 1) __lowercase = [ ("model", self.coca_model is None), ("tokenizer", self.coca_tokenizer is None), ("transform", self.coca_transform is None), ] __lowercase = [x[0] for x in coca_is_none if x[1]] __lowercase = ", ".join(UpperCAmelCase__ ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(UpperCAmelCase__ ): raise ValueError( F"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" F"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) __lowercase = self.get_image_description(UpperCAmelCase__ ) if style_prompt is None: if len(UpperCAmelCase__ ): raise ValueError( F"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" F""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) __lowercase = self.get_image_description(UpperCAmelCase__ ) # get prompt text embeddings for content and style __lowercase = self.tokenizer( UpperCAmelCase__, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=UpperCAmelCase__, return_tensors="pt", ) __lowercase = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] __lowercase = self.tokenizer( UpperCAmelCase__, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=UpperCAmelCase__, return_tensors="pt", ) __lowercase = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] __lowercase = slerp(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # duplicate text embeddings for each generation per prompt __lowercase = text_embeddings.repeat_interleave(UpperCAmelCase__, dim=0 ) # set timesteps __lowercase = "offset" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) __lowercase = {} if accepts_offset: __lowercase = 1 self.scheduler.set_timesteps(UpperCAmelCase__, **UpperCAmelCase__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) __lowercase ,__lowercase = self.get_timesteps(UpperCAmelCase__, UpperCAmelCase__, self.device ) __lowercase = timesteps[:1].repeat(UpperCAmelCase__ ) # Preprocess image __lowercase = preprocess(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = self.prepare_latents( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, text_embeddings.dtype, self.device, UpperCAmelCase__ ) __lowercase = preprocess(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = self.prepare_latents( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, text_embeddings.dtype, self.device, UpperCAmelCase__ ) __lowercase = slerp(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) if clip_guidance_scale > 0: __lowercase = self.get_clip_image_embeddings(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = self.get_clip_image_embeddings(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = slerp( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __lowercase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __lowercase = content_text_input.input_ids.shape[-1] __lowercase = self.tokenizer([""], padding="max_length", max_length=UpperCAmelCase__, return_tensors="pt" ) __lowercase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt __lowercase = uncond_embeddings.repeat_interleave(UpperCAmelCase__, dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowercase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __lowercase = (batch_size, self.unet.config.in_channels, height // 8, width // 8) __lowercase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps __lowercase = torch.randn(UpperCAmelCase__, generator=UpperCAmelCase__, device="cpu", dtype=UpperCAmelCase__ ).to( self.device ) else: __lowercase = torch.randn(UpperCAmelCase__, generator=UpperCAmelCase__, device=self.device, dtype=UpperCAmelCase__ ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) __lowercase = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __lowercase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __lowercase = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __lowercase = {} if accepts_eta: __lowercase = eta # check if the scheduler accepts generator __lowercase = "generator" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: __lowercase = generator with self.progress_bar(total=UpperCAmelCase__ ): for i, t in enumerate(UpperCAmelCase__ ): # expand the latents if we are doing classifier free guidance __lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowercase = self.scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ ) # predict the noise residual __lowercase = self.unet(UpperCAmelCase__, UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__ ).sample # perform classifier free guidance if do_classifier_free_guidance: __lowercase ,__lowercase = noise_pred.chunk(2 ) __lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: __lowercase = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) __lowercase ,__lowercase = self.cond_fn( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) # compute the previous noisy sample x_t -> x_t-1 __lowercase = self.scheduler.step(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, **UpperCAmelCase__ ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowercase = 1 / 0.18_215 * latents __lowercase = self.vae.decode(UpperCAmelCase__ ).sample __lowercase = (image / 2 + 0.5).clamp(0, 1 ) __lowercase = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": __lowercase = self.numpy_to_pil(UpperCAmelCase__ ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=UpperCAmelCase__, nsfw_content_detected=UpperCAmelCase__ )
17
1
"""simple docstring""" def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str) -> float: '''simple docstring''' def get_matched_characters(UpperCamelCase_ : str, UpperCamelCase_ : str) -> str: __lowercase = [] __lowercase = min(len(_stra), len(_stra)) // 2 for i, l in enumerate(_stra): __lowercase = int(max(0, i - limit)) __lowercase = int(min(i + limit + 1, len(_stra))) if l in _stra[left:right]: matched.append(UpperCamelCase_) __lowercase = F"""{_stra[0:_stra.index(UpperCamelCase_)]} {_stra[_stra.index(UpperCamelCase_) + 1:]}""" return "".join(UpperCamelCase_) # matching characters __lowercase = get_matched_characters(UpperCamelCase_, UpperCamelCase_) __lowercase = get_matched_characters(UpperCamelCase_, UpperCamelCase_) __lowercase = len(UpperCamelCase_) # transposition __lowercase = ( len([(ca, ca) for ca, ca in zip(UpperCamelCase_, UpperCamelCase_) if ca != ca]) // 2 ) if not match_count: __lowercase = 0.0 else: __lowercase = ( 1 / 3 * ( match_count / len(UpperCamelCase_) + match_count / len(UpperCamelCase_) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters __lowercase = 0 for ca, ca in zip(stra[:4], stra[:4]): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
17
"""simple docstring""" from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class _lowerCAmelCase : """simple docstring""" __UpperCAmelCase : Tuple = XGLMConfig __UpperCAmelCase : Optional[Any] = {} __UpperCAmelCase : Union[str, Any] = "gelu" def __init__( self : Optional[int], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int]=1_4, UpperCAmelCase__ : str=7, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[Any]=True, UpperCAmelCase__ : int=True, UpperCAmelCase__ : List[str]=9_9, UpperCAmelCase__ : Union[str, Any]=3_2, UpperCAmelCase__ : Union[str, Any]=2, UpperCAmelCase__ : Union[str, Any]=4, UpperCAmelCase__ : Tuple=3_7, UpperCAmelCase__ : List[Any]="gelu", UpperCAmelCase__ : List[str]=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Tuple=5_1_2, UpperCAmelCase__ : Optional[Any]=0.02, ): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_labels __lowercase = vocab_size __lowercase = d_model __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = ffn_dim __lowercase = activation_function __lowercase = activation_dropout __lowercase = attention_dropout __lowercase = max_position_embeddings __lowercase = initializer_range __lowercase = None __lowercase = 0 __lowercase = 2 __lowercase = 1 def _lowercase ( self : Union[str, Any] ): return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def _lowercase ( self : Tuple ): __lowercase = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length], self.vocab_size ), clip_value_min=0, clip_value_max=3 ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = self.get_config() __lowercase = floats_tensor([self.num_hidden_layers, self.num_attention_heads], 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowercase ( self : List[Any] ): return XGLMConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, num_layers=self.num_hidden_layers, attention_heads=self.num_attention_heads, ffn_dim=self.ffn_dim, activation_function=self.activation_function, activation_dropout=self.activation_dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, use_cache=UpperCAmelCase__, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, return_dict=UpperCAmelCase__, ) def _lowercase ( self : Dict ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) , ) = config_and_inputs __lowercase = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class _lowerCAmelCase ( lowercase ,lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () __UpperCAmelCase : List[str] = (TFXGLMForCausalLM,) if is_tf_available() else () __UpperCAmelCase : Any = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : List[str] = False __UpperCAmelCase : int = False def _lowercase ( self : Optional[Any] ): __lowercase = TFXGLMModelTester(self ) __lowercase = ConfigTester(self, config_class=UpperCAmelCase__, n_embd=3_7 ) def _lowercase ( self : Any ): self.config_tester.run_common_tests() @slow def _lowercase ( self : List[str] ): for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFXGLMModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def _lowercase ( self : int ): super().test_resize_token_embeddings() @require_tf class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[int]=True ): __lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) __lowercase = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]], dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __lowercase = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on __lowercase = model.generate(UpperCAmelCase__, do_sample=UpperCAmelCase__, num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist(), UpperCAmelCase__ ) @slow def _lowercase ( self : List[Any] ): __lowercase = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) __lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) __lowercase = tokenizer("Today is a nice day and", return_tensors="tf" ) __lowercase = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): __lowercase = model.generate(UpperCAmelCase__, do_sample=UpperCAmelCase__, seed=[7, 0] ) __lowercase = tokenizer.decode(output_ids[0], skip_special_tokens=UpperCAmelCase__ ) __lowercase = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(UpperCAmelCase__, UpperCAmelCase__ ) @slow def _lowercase ( self : Dict ): __lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) __lowercase = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) __lowercase = "left" # use different length sentences to test batching __lowercase = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] __lowercase = tokenizer(UpperCAmelCase__, return_tensors="tf", padding=UpperCAmelCase__ ) __lowercase = inputs["input_ids"] __lowercase = model.generate(input_ids=UpperCAmelCase__, attention_mask=inputs["attention_mask"], max_new_tokens=1_2 ) __lowercase = tokenizer(sentences[0], return_tensors="tf" ).input_ids __lowercase = model.generate(input_ids=UpperCAmelCase__, max_new_tokens=1_2 ) __lowercase = tokenizer(sentences[1], return_tensors="tf" ).input_ids __lowercase = model.generate(input_ids=UpperCAmelCase__, max_new_tokens=1_2 ) __lowercase = tokenizer.batch_decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ ) __lowercase = tokenizer.decode(output_non_padded[0], skip_special_tokens=UpperCAmelCase__ ) __lowercase = tokenizer.decode(output_padded[0], skip_special_tokens=UpperCAmelCase__ ) __lowercase = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(UpperCAmelCase__, UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__, [non_padded_sentence, padded_sentence] )
17
1
"""simple docstring""" def _A ( UpperCamelCase_ : int, UpperCamelCase_ : int) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive") __lowercase = str(bin(UpperCamelCase_))[2:] # remove the leading "0b" __lowercase = str(bin(UpperCamelCase_))[2:] # remove the leading "0b" __lowercase = max(len(UpperCamelCase_), len(UpperCamelCase_)) return "0b" + "".join( str(int(char_a == "1" and char_b == "1")) for char_a, char_b in zip(a_binary.zfill(UpperCamelCase_), b_binary.zfill(UpperCamelCase_))) if __name__ == "__main__": import doctest doctest.testmod()
17
"""simple docstring""" import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder _a = '__DUMMY_TRANSFORMERS_USER__' _a = 'Dummy User' _a = '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' _a = 'https://hub-ci.huggingface.co' _a = CI_HUB_ENDPOINT + '/datasets/{repo_id}/resolve/{revision}/{path}' _a = CI_HUB_ENDPOINT + '/{repo_id}/resolve/{revision}/{filename}' _a = Path('~/.huggingface/hub_ci_token').expanduser() @pytest.fixture def _A ( UpperCamelCase_ : List[Any]) -> Tuple: '''simple docstring''' monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE", UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : int) -> List[Any]: '''simple docstring''' monkeypatch.setattr("datasets.config.HF_ENDPOINT", UpperCamelCase_) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL", UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : str) -> Dict: '''simple docstring''' monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token", UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : Optional[Any], UpperCamelCase_ : List[Any]) -> List[str]: '''simple docstring''' HfFolder.save_token(UpperCamelCase_) yield HfFolder.delete_token() @pytest.fixture(scope="session") def _A ( ) -> List[Any]: '''simple docstring''' return HfApi(endpoint=UpperCamelCase_) @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi) -> List[Any]: '''simple docstring''' __lowercase = HfFolder.get_token() HfFolder.save_token(UpperCamelCase_) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : Dict) -> int: '''simple docstring''' def _cleanup_repo(UpperCamelCase_ : Optional[int]): hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") return _cleanup_repo @pytest.fixture def _A ( UpperCamelCase_ : str) -> Any: '''simple docstring''' @contextmanager def _temporary_repo(UpperCamelCase_ : Any): try: yield repo_id finally: cleanup_repo(UpperCamelCase_) return _temporary_repo @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : str, UpperCamelCase_ : Optional[int]) -> List[Any]: '''simple docstring''' __lowercase = F"""repo_txt_data-{int(time.time() * 10E3)}""" __lowercase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_) hf_api.upload_file( token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data/text_data.txt", repo_id=UpperCamelCase_, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : Any, UpperCamelCase_ : Dict) -> Optional[int]: '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : int, UpperCamelCase_ : Optional[int]) -> int: '''simple docstring''' __lowercase = F"""repo_zipped_txt_data-{int(time.time() * 10E3)}""" __lowercase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_) hf_api.upload_file( token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data.zip", repo_id=UpperCamelCase_, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Dict, UpperCamelCase_ : Any) -> int: '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : List[str], UpperCamelCase_ : List[str]) -> List[Any]: '''simple docstring''' __lowercase = F"""repo_zipped_img_data-{int(time.time() * 10E3)}""" __lowercase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_) hf_api.upload_file( token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data.zip", repo_id=UpperCamelCase_, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str], UpperCamelCase_ : List[str]) -> str: '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
17
1
"""simple docstring""" from datetime import datetime import matplotlib.pyplot as plt import torch def _A ( UpperCamelCase_ : Optional[Any]) -> Union[str, Any]: '''simple docstring''' for param in module.parameters(): __lowercase = False def _A ( ) -> Optional[Any]: '''simple docstring''' __lowercase = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): __lowercase = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations.") return device def _A ( UpperCamelCase_ : int) -> Any: '''simple docstring''' __lowercase = plt.imshow(UpperCamelCase_) fig.axes.get_xaxis().set_visible(UpperCamelCase_) fig.axes.get_yaxis().set_visible(UpperCamelCase_) plt.show() def _A ( ) -> List[str]: '''simple docstring''' __lowercase = datetime.now() __lowercase = current_time.strftime("%H:%M:%S") return timestamp
17
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : int = "time_series_transformer" __UpperCAmelCase : Any = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : int, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : str = "student_t", UpperCAmelCase__ : str = "nll", UpperCAmelCase__ : int = 1, UpperCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7], UpperCAmelCase__ : Optional[Union[str, bool]] = "mean", UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : int = 3_2, UpperCAmelCase__ : int = 3_2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : str = "gelu", UpperCAmelCase__ : int = 6_4, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : int = 1_0_0, UpperCAmelCase__ : float = 0.02, UpperCAmelCase__ : Any=True, **UpperCAmelCase__ : List[str], ): # time series specific configuration __lowercase = prediction_length __lowercase = context_length or prediction_length __lowercase = distribution_output __lowercase = loss __lowercase = input_size __lowercase = num_time_features __lowercase = lags_sequence __lowercase = scaling __lowercase = num_dynamic_real_features __lowercase = num_static_real_features __lowercase = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(UpperCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) __lowercase = cardinality else: __lowercase = [0] if embedding_dimension and num_static_categorical_features > 0: if len(UpperCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) __lowercase = embedding_dimension else: __lowercase = [min(5_0, (cat + 1) // 2 ) for cat in self.cardinality] __lowercase = num_parallel_samples # Transformer architecture configuration __lowercase = input_size * len(UpperCAmelCase__ ) + self._number_of_features __lowercase = d_model __lowercase = encoder_attention_heads __lowercase = decoder_attention_heads __lowercase = encoder_ffn_dim __lowercase = decoder_ffn_dim __lowercase = encoder_layers __lowercase = decoder_layers __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = activation_function __lowercase = init_std __lowercase = use_cache super().__init__(is_encoder_decoder=UpperCAmelCase__, **UpperCAmelCase__ ) @property def _lowercase ( self : Optional[Any] ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
17
1
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : List[str] ): __lowercase = AutoModelForSeqaSeqLM.from_pretrained("google/mt5-small", return_dict=UpperCAmelCase__ ).to(UpperCAmelCase__ ) __lowercase = AutoTokenizer.from_pretrained("google/mt5-small" ) __lowercase = tokenizer("Hello there", return_tensors="pt" ).input_ids __lowercase = tokenizer("Hi I am", return_tensors="pt" ).input_ids __lowercase = model(input_ids.to(UpperCAmelCase__ ), labels=labels.to(UpperCAmelCase__ ) ).loss __lowercase = -(labels.shape[-1] * loss.item()) __lowercase = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
17
"""simple docstring""" import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class _lowerCAmelCase : """simple docstring""" @staticmethod def _lowercase ( *UpperCAmelCase__ : Tuple, **UpperCAmelCase__ : List[Any] ): pass def _A ( UpperCamelCase_ : Union[str, Any]) -> Any: '''simple docstring''' return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. _a = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Tuple = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Optional[Any] ): __lowercase = pipeline( "document-question-answering", model=UpperCAmelCase__, tokenizer=UpperCAmelCase__, image_processor=UpperCAmelCase__ ) __lowercase = INVOICE_URL __lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) ) __lowercase = "What is the placebo?" __lowercase = [ { "image": load_image(UpperCAmelCase__ ), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def _lowercase ( self : int, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Any ): __lowercase = dqa_pipeline(UpperCAmelCase__, top_k=2 ) self.assertEqual( UpperCAmelCase__, [ [ {"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ ), "start": ANY(UpperCAmelCase__ ), "end": ANY(UpperCAmelCase__ )}, {"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ ), "start": ANY(UpperCAmelCase__ ), "end": ANY(UpperCAmelCase__ )}, ] ] * 3, ) @require_torch @require_detectrona @require_pytesseract def _lowercase ( self : Dict ): __lowercase = pipeline("document-question-answering", model="hf-internal-testing/tiny-random-layoutlmv2" ) __lowercase = INVOICE_URL __lowercase = "How many cats are there?" __lowercase = [ {"score": 0.0_001, "answer": "oy 2312/2019", "start": 3_8, "end": 3_9}, {"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 3_8, "end": 4_0}, ] __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), UpperCAmelCase__ ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), UpperCAmelCase__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably __lowercase = "./tests/fixtures/tests_samples/COCO/000000039769.png" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual(UpperCAmelCase__, [] ) # We can optionnally pass directly the words and bounding boxes __lowercase = "./tests/fixtures/tests_samples/COCO/000000039769.png" __lowercase = [] __lowercase = [] __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, words=UpperCAmelCase__, boxes=UpperCAmelCase__, top_k=2 ) self.assertEqual(UpperCAmelCase__, [] ) @slow @require_torch @require_detectrona @require_pytesseract def _lowercase ( self : List[str] ): __lowercase = pipeline( "document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ] * 2, ) @slow @require_torch @require_detectrona @require_pytesseract def _lowercase ( self : Dict ): __lowercase = pipeline( "document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", max_seq_len=5_0, ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3}, {"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3}, {"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3}, {"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6}, ] ] * 2, ) @slow @require_torch @require_pytesseract @require_vision def _lowercase ( self : Optional[Any] ): __lowercase = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=UpperCAmelCase__ ) __lowercase = pipeline( "document-question-answering", model="impira/layoutlm-document-qa", tokenizer=UpperCAmelCase__, revision="3dc6de3", ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ], ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ] ] * 2, ) __lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) ) # This model should also work if `image` is set to None __lowercase = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ], ) @slow @require_torch @require_pytesseract @require_vision def _lowercase ( self : Union[str, Any] ): __lowercase = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=UpperCAmelCase__ ) __lowercase = pipeline( "document-question-answering", model="impira/layoutlm-document-qa", tokenizer=UpperCAmelCase__, revision="3dc6de3", max_seq_len=5_0, ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6}, ] ] * 2, ) __lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) ) # This model should also work if `image` is set to None __lowercase = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) @slow @require_torch def _lowercase ( self : Dict ): __lowercase = pipeline( "document-question-answering", model="naver-clova-ix/donut-base-finetuned-docvqa", tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ), feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa", ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def _lowercase ( self : List[Any] ): pass
17
1
"""simple docstring""" import math def _A ( UpperCamelCase_ : int) -> bool: '''simple docstring''' assert isinstance(UpperCamelCase_, UpperCamelCase_) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False __lowercase = range(3, int(math.sqrt(UpperCamelCase_) + 1), 2) return not any(not number % i for i in odd_numbers) def _A ( UpperCamelCase_ : Optional[Any], UpperCamelCase_ : int=1, **UpperCamelCase_ : Optional[Any]) -> Tuple: '''simple docstring''' __lowercase = factor * value __lowercase = value while not is_prime(UpperCamelCase_): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1, **UpperCamelCase_) return value
17
"""simple docstring""" import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _a = 2 class _lowerCAmelCase : """simple docstring""" def __init__( self : Dict, *, # begin keyword-only arguments UpperCAmelCase__ : str="<s>", UpperCAmelCase__ : Tuple="<pad>", UpperCAmelCase__ : str="</s>", UpperCAmelCase__ : Optional[Any]="<unk>", UpperCAmelCase__ : List[Any]=None, ): __lowercase ,__lowercase ,__lowercase ,__lowercase = bos, unk, pad, eos __lowercase = [] __lowercase = [] __lowercase = {} __lowercase = self.add_symbol(UpperCAmelCase__ ) __lowercase = self.add_symbol(UpperCAmelCase__ ) __lowercase = self.add_symbol(UpperCAmelCase__ ) __lowercase = self.add_symbol(UpperCAmelCase__ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(UpperCAmelCase__ ) __lowercase = len(self.symbols ) def __eq__( self : List[str], UpperCAmelCase__ : Dict ): return self.indices == other.indices def __getitem__( self : Optional[int], UpperCAmelCase__ : List[str] ): if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : str ): return len(self.symbols ) def __contains__( self : Any, UpperCAmelCase__ : Optional[Any] ): return sym in self.indices @classmethod def _lowercase ( cls : List[Any], UpperCAmelCase__ : Optional[Any] ): __lowercase = cls() d.add_from_file(UpperCAmelCase__ ) return d def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[Any]=1, UpperCAmelCase__ : str=False ): if word in self.indices and not overwrite: __lowercase = self.indices[word] __lowercase = self.count[idx] + n return idx else: __lowercase = len(self.symbols ) __lowercase = idx self.symbols.append(UpperCAmelCase__ ) self.count.append(UpperCAmelCase__ ) return idx def _lowercase ( self : Any, UpperCAmelCase__ : str ): return 0 def _lowercase ( self : Tuple, UpperCAmelCase__ : List[Any] ): if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): try: with open(UpperCAmelCase__, "r", encoding="utf-8" ) as fd: self.add_from_file(UpperCAmelCase__ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("Incorrect encoding detected in {}, please rebuild the dataset".format(UpperCAmelCase__ ) ) return __lowercase = f.readlines() __lowercase = self._load_meta(UpperCAmelCase__ ) for line in lines[indices_start_line:]: try: __lowercase ,__lowercase = line.rstrip().rsplit(" ", 1 ) if field == "#fairseq:overwrite": __lowercase = True __lowercase ,__lowercase = line.rsplit(" ", 1 ) else: __lowercase = False __lowercase = int(UpperCAmelCase__ ) __lowercase = line if word in self and not overwrite: raise RuntimeError( "Duplicate word found when loading Dictionary: '{}'. " "Duplicate words can overwrite earlier ones by adding the " "#fairseq:overwrite flag at the end of the corresponding row " "in the dictionary file. If using the Camembert model, please " "download an updated copy of the model file.".format(UpperCAmelCase__ ) ) self.add_symbol(UpperCAmelCase__, n=UpperCAmelCase__, overwrite=UpperCAmelCase__ ) except ValueError: raise ValueError("Incorrect dictionary format, expected '<token> <cnt> [flags]'" ) def _A ( UpperCamelCase_ : int) -> str: '''simple docstring''' __lowercase = dict((re.sub(r"@@$", "", UpperCamelCase_), v) if k.endswith("@@") else (re.sub(r"$", "</w>", UpperCamelCase_), v) for k, v in d.items()) __lowercase = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] __lowercase = d[k] # restore return da def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str) -> List[Any]: '''simple docstring''' if not os.path.exists(UpperCamelCase_): raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""") os.makedirs(UpperCamelCase_, exist_ok=UpperCamelCase_) print(F"""Writing results to {pytorch_dump_folder_path}""") # handle various types of models __lowercase = os.path.join(UpperCamelCase_, "checkpoint.pt") if not os.path.isfile(UpperCamelCase_): raise ValueError(F"""path to the file {checkpoint_file} does not exist!""") __lowercase = torch.load(UpperCamelCase_, map_location="cpu") __lowercase = chkpt["cfg"]["model"] # dicts __lowercase = os.path.join(UpperCamelCase_, "dict.txt") if not os.path.isfile(UpperCamelCase_): raise ValueError(F"""path to the file {dict_file} does not exist!""") __lowercase = Dictionary.load(UpperCamelCase_) __lowercase = rewrite_dict_keys(src_dict.indices) __lowercase = len(UpperCamelCase_) __lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["vocab_file"]) print(F"""Generating {src_vocab_file} of {src_vocab_size} records""") with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_)) # merges_file (bpecodes) __lowercase = os.path.join(UpperCamelCase_, "bpecodes") if not os.path.isfile(UpperCamelCase_): raise ValueError(F"""path to the file {bpecodes_file} does not exist!""") __lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["merges_file"]) shutil.copyfile(UpperCamelCase_, UpperCamelCase_) # model config __lowercase = os.path.join(UpperCamelCase_, "config.json") __lowercase = { "activation_dropout": args["activation_dropout"], "architectures": ["BioGptForCausalLM"], "attention_probs_dropout_prob": args["attention_dropout"], "bos_token_id": 0, "eos_token_id": 2, "hidden_act": args["activation_fn"], "hidden_dropout_prob": args["dropout"], "hidden_size": args["decoder_embed_dim"], "initializer_range": 0.02, "intermediate_size": args["decoder_ffn_embed_dim"], "layer_norm_eps": 1E-12, "layerdrop": args["decoder_layerdrop"], "max_position_embeddings": args["max_target_positions"], "model_type": "biogpt", "num_attention_heads": args["decoder_attention_heads"], "num_hidden_layers": args["decoder_layers"], "pad_token_id": 1, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_decoder_input_output_embed"], "vocab_size": src_vocab_size, } # good hparam defaults to start with print(F"""Generating {biogpt_model_config_file}""") with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_)) # tokenizer config __lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_) __lowercase = { "bos_token": "<s>", "eos_token": "</s>", "model_max_length": 1024, "pad_token": "<pad>", "special_tokens_map_file": None, "tokenizer_class": "BioGptTokenizer", "unk_token": "<unk>", } print(F"""Generating {biogpt_tokenizer_config_file}""") with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_)) # model __lowercase = chkpt["model"] # remove unneeded keys __lowercase = [ "decoder.version", ] for k in ignore_keys: model_state_dict.pop(UpperCamelCase_, UpperCamelCase_) __lowercase = list(model_state_dict.keys()) for layer_name in layer_names: if layer_name.endswith("output_projection.weight"): __lowercase = model_state_dict.pop(UpperCamelCase_) else: __lowercase = model_state_dict.pop(UpperCamelCase_) __lowercase = BioGptConfig.from_pretrained(UpperCamelCase_) __lowercase = BioGptForCausalLM(UpperCamelCase_) # check that it loads ok model_new.load_state_dict(UpperCamelCase_) # save __lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_) print(F"""Generating {pytorch_weights_dump_path}""") torch.save(UpperCamelCase_, UpperCamelCase_) print("Conversion is done!") if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _a = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
17
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig _a = { 'google/tapas-base-finetuned-sqa': ( 'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json' ), 'google/tapas-base-finetuned-wtq': ( 'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json' ), 'google/tapas-base-finetuned-wikisql-supervised': ( 'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json' ), 'google/tapas-base-finetuned-tabfact': ( 'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json' ), } class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = "tapas" def __init__( self : int, UpperCAmelCase__ : List[Any]=3_0_5_2_2, UpperCAmelCase__ : Any=7_6_8, UpperCAmelCase__ : Tuple=1_2, UpperCAmelCase__ : str=1_2, UpperCAmelCase__ : Union[str, Any]=3_0_7_2, UpperCAmelCase__ : Union[str, Any]="gelu", UpperCAmelCase__ : Dict=0.1, UpperCAmelCase__ : Union[str, Any]=0.1, UpperCAmelCase__ : Optional[int]=1_0_2_4, UpperCAmelCase__ : Optional[Any]=[3, 2_5_6, 2_5_6, 2, 2_5_6, 2_5_6, 1_0], UpperCAmelCase__ : Dict=0.02, UpperCAmelCase__ : str=1E-12, UpperCAmelCase__ : int=0, UpperCAmelCase__ : Optional[Any]=10.0, UpperCAmelCase__ : Union[str, Any]=0, UpperCAmelCase__ : Any=1.0, UpperCAmelCase__ : List[Any]=None, UpperCAmelCase__ : Any=1.0, UpperCAmelCase__ : Union[str, Any]=False, UpperCAmelCase__ : Union[str, Any]=None, UpperCAmelCase__ : Union[str, Any]=1.0, UpperCAmelCase__ : Optional[Any]=1.0, UpperCAmelCase__ : Optional[Any]=False, UpperCAmelCase__ : str=False, UpperCAmelCase__ : List[str]="ratio", UpperCAmelCase__ : Optional[Any]=None, UpperCAmelCase__ : Dict=None, UpperCAmelCase__ : Optional[Any]=6_4, UpperCAmelCase__ : Dict=3_2, UpperCAmelCase__ : Any=False, UpperCAmelCase__ : List[str]=True, UpperCAmelCase__ : Optional[Any]=False, UpperCAmelCase__ : Optional[Any]=False, UpperCAmelCase__ : Any=True, UpperCAmelCase__ : Union[str, Any]=False, UpperCAmelCase__ : str=None, UpperCAmelCase__ : int=None, **UpperCAmelCase__ : Optional[int], ): super().__init__(pad_token_id=UpperCAmelCase__, **UpperCAmelCase__ ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_sizes __lowercase = initializer_range __lowercase = layer_norm_eps # Fine-tuning task hyperparameters __lowercase = positive_label_weight __lowercase = num_aggregation_labels __lowercase = aggregation_loss_weight __lowercase = use_answer_as_supervision __lowercase = answer_loss_importance __lowercase = use_normalized_answer_loss __lowercase = huber_loss_delta __lowercase = temperature __lowercase = aggregation_temperature __lowercase = use_gumbel_for_cells __lowercase = use_gumbel_for_aggregation __lowercase = average_approximation_function __lowercase = cell_selection_preference __lowercase = answer_loss_cutoff __lowercase = max_num_rows __lowercase = max_num_columns __lowercase = average_logits_per_cell __lowercase = select_one_column __lowercase = allow_empty_column_selection __lowercase = init_cell_selection_weights_to_zero __lowercase = reset_position_index_per_cell __lowercase = disable_per_token_loss # Aggregation hyperparameters __lowercase = aggregation_labels __lowercase = no_aggregation_label_index if isinstance(self.aggregation_labels, UpperCAmelCase__ ): __lowercase = {int(UpperCAmelCase__ ): v for k, v in aggregation_labels.items()}
17
"""simple docstring""" from __future__ import annotations from typing import Any class _lowerCAmelCase : """simple docstring""" def __init__( self : Any, UpperCAmelCase__ : int ): __lowercase = num_of_nodes __lowercase = [] __lowercase = {} def _lowercase ( self : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : int, UpperCAmelCase__ : int ): self.m_edges.append([u_node, v_node, weight] ) def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _lowercase ( self : List[Any], UpperCAmelCase__ : int ): if self.m_component[u_node] != u_node: for k in self.m_component: __lowercase = self.find_component(UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : list[int], UpperCAmelCase__ : int, UpperCAmelCase__ : int ): if component_size[u_node] <= component_size[v_node]: __lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(UpperCAmelCase__ ) elif component_size[u_node] >= component_size[v_node]: __lowercase = self.find_component(UpperCAmelCase__ ) component_size[u_node] += component_size[v_node] self.set_component(UpperCAmelCase__ ) def _lowercase ( self : Any ): __lowercase = [] __lowercase = 0 __lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowercase ,__lowercase ,__lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase ,__lowercase ,__lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 __lowercase = [-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def _A ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
17
1
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
17
"""simple docstring""" from math import sqrt def _A ( UpperCamelCase_ : int) -> int: '''simple docstring''' __lowercase = 0 for i in range(1, int(sqrt(UpperCamelCase_) + 1)): if n % i == 0 and i != sqrt(UpperCamelCase_): total += i + n // i elif i == sqrt(UpperCamelCase_): total += i return total - n def _A ( UpperCamelCase_ : int = 10000) -> int: '''simple docstring''' __lowercase = sum( i for i in range(1, UpperCamelCase_) if sum_of_divisors(sum_of_divisors(UpperCamelCase_)) == i and sum_of_divisors(UpperCamelCase_) != i) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
17
1
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Union[str, Any] ): __lowercase = tempfile.mkdtemp() __lowercase = BlipImageProcessor() __lowercase = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" ) __lowercase = BlipProcessor(UpperCAmelCase__, UpperCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) def _lowercase ( self : Tuple, **UpperCAmelCase__ : Any ): return AutoProcessor.from_pretrained(self.tmpdirname, **UpperCAmelCase__ ).tokenizer def _lowercase ( self : List[str], **UpperCAmelCase__ : Tuple ): return AutoProcessor.from_pretrained(self.tmpdirname, **UpperCAmelCase__ ).image_processor def _lowercase ( self : Dict ): shutil.rmtree(self.tmpdirname ) def _lowercase ( self : Dict ): __lowercase = [np.random.randint(2_5_5, size=(3, 3_0, 4_0_0), dtype=np.uinta )] __lowercase = [Image.fromarray(np.moveaxis(UpperCAmelCase__, 0, -1 ) ) for x in image_inputs] return image_inputs def _lowercase ( self : List[Any] ): __lowercase = BlipProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowercase = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)" ) __lowercase = self.get_image_processor(do_normalize=UpperCAmelCase__, padding_value=1.0 ) __lowercase = BlipProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=UpperCAmelCase__, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, UpperCAmelCase__ ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, UpperCAmelCase__ ) def _lowercase ( self : Dict ): __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = BlipProcessor(tokenizer=UpperCAmelCase__, image_processor=UpperCAmelCase__ ) __lowercase = self.prepare_image_inputs() __lowercase = image_processor(UpperCAmelCase__, return_tensors="np" ) __lowercase = processor(images=UpperCAmelCase__, return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2 ) def _lowercase ( self : Optional[int] ): __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = BlipProcessor(tokenizer=UpperCAmelCase__, image_processor=UpperCAmelCase__ ) __lowercase = "lower newer" __lowercase = processor(text=UpperCAmelCase__ ) __lowercase = tokenizer(UpperCAmelCase__, return_token_type_ids=UpperCAmelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def _lowercase ( self : Tuple ): __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = BlipProcessor(tokenizer=UpperCAmelCase__, image_processor=UpperCAmelCase__ ) __lowercase = "lower newer" __lowercase = self.prepare_image_inputs() __lowercase = processor(text=UpperCAmelCase__, images=UpperCAmelCase__ ) self.assertListEqual(list(inputs.keys() ), ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase__ ): processor() def _lowercase ( self : List[str] ): __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = BlipProcessor(tokenizer=UpperCAmelCase__, image_processor=UpperCAmelCase__ ) __lowercase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowercase = processor.batch_decode(UpperCAmelCase__ ) __lowercase = tokenizer.batch_decode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__, UpperCAmelCase__ ) def _lowercase ( self : Optional[int] ): __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = BlipProcessor(tokenizer=UpperCAmelCase__, image_processor=UpperCAmelCase__ ) __lowercase = "lower newer" __lowercase = self.prepare_image_inputs() __lowercase = processor(text=UpperCAmelCase__, images=UpperCAmelCase__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ), ["pixel_values", "input_ids", "attention_mask"] )
17
"""simple docstring""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _a = _symbol_database.Default() _a = _descriptor_pool.Default().AddSerializedFile( b'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) _a = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: _a = None _a = b'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" _a = 45 _a = 15_81 _a = 15_17 _a = 15_70 _a = 15_84 _a = 17_93 _a = 17_95 _a = 19_16 _a = 18_64 _a = 19_05 _a = 19_19 _a = 24_29 _a = 22_08 _a = 24_18 _a = 23_23 _a = 24_07 # @@protoc_insertion_point(module_scope)
17
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _a = { 'configuration_groupvit': [ 'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GroupViTConfig', 'GroupViTOnnxConfig', 'GroupViTTextConfig', 'GroupViTVisionConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GroupViTModel', 'GroupViTPreTrainedModel', 'GroupViTTextModel', 'GroupViTVisionModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFGroupViTModel', 'TFGroupViTPreTrainedModel', 'TFGroupViTTextModel', 'TFGroupViTVisionModel', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys _a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
17
"""simple docstring""" import baseaa def _A ( UpperCamelCase_ : str) -> bytes: '''simple docstring''' return baseaa.baaencode(string.encode("utf-8")) def _A ( UpperCamelCase_ : bytes) -> str: '''simple docstring''' return baseaa.baadecode(UpperCamelCase_).decode("utf-8") if __name__ == "__main__": _a = 'Hello World!' _a = baseaa_encode(test) print(encoded) _a = baseaa_decode(encoded) print(decoded)
17
1
"""simple docstring""" import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : str, UpperCamelCase_ : Optional[Any]) -> List[Any]: '''simple docstring''' if openai_config_file == "": __lowercase = OpenAIGPTConfig() else: __lowercase = OpenAIGPTConfig.from_json_file(UpperCamelCase_) __lowercase = OpenAIGPTModel(UpperCamelCase_) # Load weights from numpy load_tf_weights_in_openai_gpt(UpperCamelCase_, UpperCamelCase_, UpperCamelCase_) # Save pytorch-model __lowercase = pytorch_dump_folder_path + "/" + WEIGHTS_NAME __lowercase = pytorch_dump_folder_path + "/" + CONFIG_NAME print(F"""Save PyTorch model to {pytorch_weights_dump_path}""") torch.save(model.state_dict(), UpperCamelCase_) print(F"""Save configuration file to {pytorch_config_dump_path}""") with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write(config.to_json_string()) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--openai_checkpoint_folder_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--openai_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) _a = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
17
"""simple docstring""" def _A ( UpperCamelCase_ : Any) -> List[str]: '''simple docstring''' __lowercase ,__lowercase = [], [] while len(UpperCamelCase_) > 1: __lowercase ,__lowercase = min(UpperCamelCase_), max(UpperCamelCase_) start.append(UpperCamelCase_) end.append(UpperCamelCase_) collection.remove(UpperCamelCase_) collection.remove(UpperCamelCase_) end.reverse() return start + collection + end if __name__ == "__main__": _a = input('Enter numbers separated by a comma:\n').strip() _a = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
17
1
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : """simple docstring""" def __init__( self : Optional[int], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Tuple=1_3, UpperCAmelCase__ : str=3_2, UpperCAmelCase__ : Optional[int]=3, UpperCAmelCase__ : int=4, UpperCAmelCase__ : str=[1_0, 2_0, 3_0, 4_0], UpperCAmelCase__ : Optional[Any]=[2, 2, 3, 2], UpperCAmelCase__ : List[Any]=True, UpperCAmelCase__ : Tuple=True, UpperCAmelCase__ : Optional[int]=3_7, UpperCAmelCase__ : Optional[Any]="gelu", UpperCAmelCase__ : int=1_0, UpperCAmelCase__ : Optional[int]=0.02, UpperCAmelCase__ : Union[str, Any]=["stage2", "stage3", "stage4"], UpperCAmelCase__ : Tuple=[2, 3, 4], UpperCAmelCase__ : Optional[Any]=None, ): __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = num_channels __lowercase = num_stages __lowercase = hidden_sizes __lowercase = depths __lowercase = is_training __lowercase = use_labels __lowercase = intermediate_size __lowercase = hidden_act __lowercase = num_labels __lowercase = initializer_range __lowercase = out_features __lowercase = out_indices __lowercase = scope def _lowercase ( self : List[Any] ): __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size], self.num_labels ) __lowercase = self.get_config() return config, pixel_values, labels def _lowercase ( self : Tuple ): return ConvNextVaConfig( num_channels=self.num_channels, hidden_sizes=self.hidden_sizes, depths=self.depths, num_stages=self.num_stages, hidden_act=self.hidden_act, is_decoder=UpperCAmelCase__, initializer_range=self.initializer_range, out_features=self.out_features, out_indices=self.out_indices, num_labels=self.num_labels, ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Any ): __lowercase = ConvNextVaModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowercase = model(UpperCAmelCase__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2), ) def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : str, UpperCAmelCase__ : Tuple ): __lowercase = ConvNextVaForImageClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowercase = model(UpperCAmelCase__, labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Dict ): __lowercase = ConvNextVaBackbone(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowercase = model(UpperCAmelCase__ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ), len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ), len(config.out_features ) ) self.parent.assertListEqual(model.channels, config.hidden_sizes[1:] ) # verify backbone works with out_features=None __lowercase = None __lowercase = ConvNextVaBackbone(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowercase = model(UpperCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ), 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ), 1 ) self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]] ) def _lowercase ( self : List[Any] ): __lowercase = self.prepare_config_and_inputs() __lowercase ,__lowercase ,__lowercase = config_and_inputs __lowercase = {"pixel_values": pixel_values} return config, inputs_dict def _lowercase ( self : List[Any] ): __lowercase = self.prepare_config_and_inputs() __lowercase ,__lowercase ,__lowercase = config_and_inputs __lowercase = {"pixel_values": pixel_values, "labels": labels} return config, inputs_dict @require_torch class _lowerCAmelCase ( lowercase ,lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Any = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) __UpperCAmelCase : Optional[Any] = ( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) __UpperCAmelCase : int = False __UpperCAmelCase : int = False __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : Optional[Any] = False def _lowercase ( self : Any ): __lowercase = ConvNextVaModelTester(self ) __lowercase = ConfigTester(self, config_class=UpperCAmelCase__, has_text_modality=UpperCAmelCase__, hidden_size=3_7 ) def _lowercase ( self : Dict ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase ( self : Tuple ): return @unittest.skip(reason="ConvNextV2 does not use inputs_embeds" ) def _lowercase ( self : Any ): pass @unittest.skip(reason="ConvNextV2 does not support input and output embeddings" ) def _lowercase ( self : Dict ): pass @unittest.skip(reason="ConvNextV2 does not use feedforward chunking" ) def _lowercase ( self : Tuple ): pass def _lowercase ( self : Dict ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_with_labels() __lowercase = True if model_class.__name__ in [ *get_values(UpperCAmelCase__ ), *get_values(UpperCAmelCase__ ), ]: continue __lowercase = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.train() __lowercase = self._prepare_for_class(UpperCAmelCase__, UpperCAmelCase__, return_labels=UpperCAmelCase__ ) __lowercase = model(**UpperCAmelCase__ ).loss loss.backward() def _lowercase ( self : List[str] ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_with_labels() __lowercase = False __lowercase = True if ( model_class.__name__ in [*get_values(UpperCAmelCase__ ), *get_values(UpperCAmelCase__ )] or not model_class.supports_gradient_checkpointing ): continue __lowercase = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.gradient_checkpointing_enable() model.train() __lowercase = self._prepare_for_class(UpperCAmelCase__, UpperCAmelCase__, return_labels=UpperCAmelCase__ ) __lowercase = model(**UpperCAmelCase__ ).loss loss.backward() def _lowercase ( self : Optional[int] ): __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(UpperCAmelCase__ ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["pixel_values"] self.assertListEqual(arg_names[:1], UpperCAmelCase__ ) def _lowercase ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def _lowercase ( self : List[str] ): def check_hidden_states_output(UpperCAmelCase__ : int, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Dict ): __lowercase = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(UpperCAmelCase__, UpperCAmelCase__ ) ) __lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowercase = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase__ ), expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ ) @slow def _lowercase ( self : Optional[Any] ): for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = ConvNextVaModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) def _A ( ) -> Optional[int]: '''simple docstring''' __lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : str ): return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None @slow def _lowercase ( self : Any ): __lowercase = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(UpperCAmelCase__ ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = preprocessor(images=UpperCAmelCase__, return_tensors="pt" ).to(UpperCAmelCase__ ) # forward pass with torch.no_grad(): __lowercase = model(**UpperCAmelCase__ ) # verify the logits __lowercase = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape, UpperCAmelCase__ ) __lowercase = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(UpperCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], UpperCAmelCase__, atol=1E-4 ) )
17
"""simple docstring""" def _A ( UpperCamelCase_ : list[int]) -> float: '''simple docstring''' if not nums: # Makes sure that the list is not empty raise ValueError("List is empty") __lowercase = sum(UpperCamelCase_) / len(UpperCamelCase_) # Calculate the average return sum(abs(x - average) for x in nums) / len(UpperCamelCase_) if __name__ == "__main__": import doctest doctest.testmod()
17
1
"""simple docstring""" import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : int = FunnelTokenizer __UpperCAmelCase : Optional[int] = FunnelTokenizerFast __UpperCAmelCase : str = True __UpperCAmelCase : str = True def _lowercase ( self : str ): super().setUp() __lowercase = [ "<unk>", "<cls>", "<sep>", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __lowercase = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file, "w", encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def _lowercase ( self : List[Any], **UpperCAmelCase__ : int ): return FunnelTokenizer.from_pretrained(self.tmpdirname, **UpperCAmelCase__ ) def _lowercase ( self : Optional[Any], **UpperCAmelCase__ : Union[str, Any] ): return FunnelTokenizerFast.from_pretrained(self.tmpdirname, **UpperCAmelCase__ ) def _lowercase ( self : Any, UpperCAmelCase__ : Dict ): __lowercase = "UNwant\u00E9d,running" __lowercase = "unwanted, running" return input_text, output_text def _lowercase ( self : str ): __lowercase = self.tokenizer_class(self.vocab_file ) __lowercase = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(UpperCAmelCase__, ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ), [7, 4, 5, 1_0, 8, 9] ) def _lowercase ( self : Optional[int] ): __lowercase = self.get_tokenizers(do_lower_case=UpperCAmelCase__ ) for tokenizer in tokenizers: __lowercase = tokenizer("UNwant\u00E9d,running" ) __lowercase = len(inputs["input_ids"] ) - 1 self.assertListEqual(inputs["token_type_ids"], [2] + [0] * sentence_len ) __lowercase = tokenizer("UNwant\u00E9d,running", "UNwant\u00E9d,running" ) self.assertListEqual(inputs["token_type_ids"], [2] + [0] * sentence_len + [1] * sentence_len )
17
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : int=1_0_0, UpperCAmelCase__ : Any=1_3, UpperCAmelCase__ : List[Any]=3_0, UpperCAmelCase__ : Dict=2, UpperCAmelCase__ : Any=3, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[str]=True, UpperCAmelCase__ : Optional[Any]=3_2, UpperCAmelCase__ : Any=5, UpperCAmelCase__ : Any=4, UpperCAmelCase__ : Any=3_7, UpperCAmelCase__ : Optional[int]="gelu", UpperCAmelCase__ : Dict=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Dict=1_0, UpperCAmelCase__ : Tuple=0.02, UpperCAmelCase__ : List[Any]=3, ): __lowercase = parent __lowercase = vocab_size __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase = (image_size // patch_size) ** 2 __lowercase = num_patches + 1 def _lowercase ( self : int ): __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size], self.type_sequence_label_size ) __lowercase = BeitConfig( vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=UpperCAmelCase__, initializer_range=self.initializer_range, ) return config, pixel_values, labels def _lowercase ( self : Any, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[str], UpperCAmelCase__ : List[str] ): __lowercase = FlaxBeitModel(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : List[Any] ): __lowercase = FlaxBeitForMaskedImageModeling(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size) ) def _lowercase ( self : Dict, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : Union[str, Any] ): __lowercase = self.type_sequence_label_size __lowercase = FlaxBeitForImageClassification(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowercase = 1 __lowercase = FlaxBeitForImageClassification(UpperCAmelCase__ ) __lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase = model(UpperCAmelCase__ ) def _lowercase ( self : List[str] ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) ,( __lowercase ) ,( __lowercase ) , ) = config_and_inputs __lowercase = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class _lowerCAmelCase ( lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def _lowercase ( self : List[Any] ): __lowercase = FlaxBeitModelTester(self ) __lowercase = ConfigTester(self, config_class=UpperCAmelCase__, has_text_modality=UpperCAmelCase__, hidden_size=3_7 ) def _lowercase ( self : Union[str, Any] ): self.config_tester.run_common_tests() def _lowercase ( self : Optional[int] ): __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(UpperCAmelCase__ ) __lowercase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["pixel_values"] self.assertListEqual(arg_names[:1], UpperCAmelCase__ ) def _lowercase ( self : Tuple ): __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowercase = self._prepare_for_class(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = model_class(UpperCAmelCase__ ) @jax.jit def model_jitted(UpperCAmelCase__ : str, **UpperCAmelCase__ : Dict ): return model(pixel_values=UpperCAmelCase__, **UpperCAmelCase__ ) with self.subTest("JIT Enabled" ): __lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ), len(UpperCAmelCase__ ) ) for jitted_output, output in zip(UpperCAmelCase__, UpperCAmelCase__ ): self.assertEqual(jitted_output.shape, output.shape ) def _lowercase ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def _lowercase ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ ) def _lowercase ( self : Tuple ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ ) @slow def _lowercase ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: __lowercase = model_class_name.from_pretrained("microsoft/beit-base-patch16-224" ) __lowercase = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(UpperCAmelCase__ ) def _A ( ) -> str: '''simple docstring''' __lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_vision @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : Optional[int] ): return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def _lowercase ( self : Any ): __lowercase = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ).pixel_values # prepare bool_masked_pos __lowercase = np.ones((1, 1_9_6), dtype=UpperCAmelCase__ ) # forward pass __lowercase = model(pixel_values=UpperCAmelCase__, bool_masked_pos=UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 1_9_6, 8_1_9_2) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3], UpperCAmelCase__, atol=1E-2 ) ) @slow def _lowercase ( self : Any ): __lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ) # forward pass __lowercase = model(**UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 1_0_0_0) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array([-1.2_385, -1.0_987, -1.0_108] ) self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) ) __lowercase = 2_8_1 self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ ) @slow def _lowercase ( self : List[str] ): __lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ) # forward pass __lowercase = model(**UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 2_1_8_4_1) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array([1.6_881, -0.2_787, 0.5_901] ) self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) ) __lowercase = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ )
17
1
"""simple docstring""" # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def _A ( UpperCamelCase_ : List[Any]) -> Optional[int]: '''simple docstring''' return 1 / (1 + np.exp(-z)) def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : Optional[int]) -> Tuple: '''simple docstring''' return (-y * np.log(UpperCamelCase_) - (1 - y) * np.log(1 - h)).mean() def _A ( UpperCamelCase_ : Optional[Any], UpperCamelCase_ : Any, UpperCamelCase_ : Optional[int]) -> List[str]: '''simple docstring''' __lowercase = np.dot(UpperCamelCase_, UpperCamelCase_) return np.sum(y * scores - np.log(1 + np.exp(UpperCamelCase_))) def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : Optional[int], UpperCamelCase_ : Tuple, UpperCamelCase_ : List[Any]=70000) -> Tuple: '''simple docstring''' __lowercase = np.zeros(x.shape[1]) for iterations in range(UpperCamelCase_): __lowercase = np.dot(UpperCamelCase_, UpperCamelCase_) __lowercase = sigmoid_function(UpperCamelCase_) __lowercase = np.dot(x.T, h - y) / y.size __lowercase = theta - alpha * gradient # updating the weights __lowercase = np.dot(UpperCamelCase_, UpperCamelCase_) __lowercase = sigmoid_function(UpperCamelCase_) __lowercase = cost_function(UpperCamelCase_, UpperCamelCase_) if iterations % 100 == 0: print(F"""loss: {j} \t""") # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": _a = datasets.load_iris() _a = iris.data[:, :2] _a = (iris.target != 0) * 1 _a = 0.1 _a = logistic_reg(alpha, x, y, max_iterations=7_00_00) print('theta: ', theta) # printing the theta i.e our weights vector def _A ( UpperCamelCase_ : str) -> Tuple: '''simple docstring''' return sigmoid_function( np.dot(UpperCamelCase_, UpperCamelCase_)) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') ((_a) , (_a)) = (x[:, 0].min(), x[:, 0].max()) ((_a) , (_a)) = (x[:, 1].min(), x[:, 1].max()) ((_a) , (_a)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) _a = np.c_[xxa.ravel(), xxa.ravel()] _a = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
17
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class _lowerCAmelCase ( unittest.TestCase ,lowercase ): """simple docstring""" def _lowercase ( self : List[Any] ): __lowercase = load_tool("text-classification" ) self.tool.setup() __lowercase = load_tool("text-classification", remote=UpperCAmelCase__ ) def _lowercase ( self : str ): __lowercase = self.tool("That's quite cool", ["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" ) def _lowercase ( self : str ): __lowercase = self.remote_tool("That's quite cool", ["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" ) def _lowercase ( self : List[str] ): __lowercase = self.tool(text="That's quite cool", labels=["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" ) def _lowercase ( self : Tuple ): __lowercase = self.remote_tool(text="That's quite cool", labels=["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" )
17
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : Any = "realm" def __init__( self : List[str], UpperCAmelCase__ : Union[str, Any]=3_0_5_2_2, UpperCAmelCase__ : List[Any]=7_6_8, UpperCAmelCase__ : Any=1_2_8, UpperCAmelCase__ : List[str]=1_2, UpperCAmelCase__ : Tuple=1_2, UpperCAmelCase__ : Dict=8, UpperCAmelCase__ : Any=3_0_7_2, UpperCAmelCase__ : List[Any]="gelu_new", UpperCAmelCase__ : str=0.1, UpperCAmelCase__ : List[Any]=0.1, UpperCAmelCase__ : List[Any]=5_1_2, UpperCAmelCase__ : Optional[int]=2, UpperCAmelCase__ : Optional[int]=0.02, UpperCAmelCase__ : Union[str, Any]=1E-12, UpperCAmelCase__ : Dict=2_5_6, UpperCAmelCase__ : Optional[int]=1_0, UpperCAmelCase__ : Any=1E-3, UpperCAmelCase__ : List[str]=5, UpperCAmelCase__ : List[Any]=3_2_0, UpperCAmelCase__ : Optional[int]=1_3_3_5_3_7_1_8, UpperCAmelCase__ : Optional[Any]=5_0_0_0, UpperCAmelCase__ : Optional[Any]=1, UpperCAmelCase__ : int=0, UpperCAmelCase__ : Dict=2, **UpperCAmelCase__ : List[str], ): super().__init__(pad_token_id=UpperCAmelCase__, bos_token_id=UpperCAmelCase__, eos_token_id=UpperCAmelCase__, **UpperCAmelCase__ ) # Common config __lowercase = vocab_size __lowercase = max_position_embeddings __lowercase = hidden_size __lowercase = retriever_proj_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = num_candidates __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = type_vocab_size __lowercase = layer_norm_eps # Reader config __lowercase = span_hidden_size __lowercase = max_span_width __lowercase = reader_layer_norm_eps __lowercase = reader_beam_size __lowercase = reader_seq_len # Retrieval config __lowercase = num_block_records __lowercase = searcher_beam_size
17
"""simple docstring""" from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker _a = 'CompVis/stable-diffusion-v1-1' _a = 'CompVis/stable-diffusion-v1-2' _a = 'CompVis/stable-diffusion-v1-3' _a = 'CompVis/stable-diffusion-v1-4' class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : Dict, UpperCAmelCase__ : AutoencoderKL, UpperCAmelCase__ : CLIPTextModel, UpperCAmelCase__ : CLIPTokenizer, UpperCAmelCase__ : UNetaDConditionModel, UpperCAmelCase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], UpperCAmelCase__ : StableDiffusionSafetyChecker, UpperCAmelCase__ : CLIPImageProcessor, UpperCAmelCase__ : bool = True, ): super()._init_() __lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ ) __lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ ) __lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ ) __lowercase = StableDiffusionPipeline( vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, tokenizer=UpperCAmelCase__, unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, safety_checker=UpperCAmelCase__, feature_extractor=UpperCAmelCase__, requires_safety_checker=UpperCAmelCase__, ) self.register_modules(pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea ) @property def _lowercase ( self : List[str] ): return {k: getattr(self, UpperCAmelCase__ ) for k in self.config.keys() if not k.startswith("_" )} def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase__ ) def _lowercase ( self : List[str] ): self.enable_attention_slicing(UpperCAmelCase__ ) @torch.no_grad() def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Tuple, ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : Tuple, UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : str, ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : str, UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Any, ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Optional[int], ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : str, ): __lowercase = "cuda" if torch.cuda.is_available() else "cpu" self.to(UpperCAmelCase__ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" ) # Get first result from Stable Diffusion Checkpoint v1.1 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get first result from Stable Diffusion Checkpoint v1.2 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get first result from Stable Diffusion Checkpoint v1.3 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get first result from Stable Diffusion Checkpoint v1.4 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
17
1
"""simple docstring""" from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = ["image_processor"] __UpperCAmelCase : Optional[Any] = "SamImageProcessor" def __init__( self : Any, UpperCAmelCase__ : Dict ): super().__init__(UpperCAmelCase__ ) __lowercase = self.image_processor __lowercase = -1_0 __lowercase = self.image_processor.size["longest_edge"] def __call__( self : Dict, UpperCAmelCase__ : int=None, UpperCAmelCase__ : List[str]=None, UpperCAmelCase__ : List[str]=None, UpperCAmelCase__ : Union[str, Any]=None, UpperCAmelCase__ : Optional[Union[str, TensorType]] = None, **UpperCAmelCase__ : Tuple, ): __lowercase = self.image_processor( UpperCAmelCase__, return_tensors=UpperCAmelCase__, **UpperCAmelCase__, ) # pop arguments that are not used in the foward but used nevertheless __lowercase = encoding_image_processor["original_sizes"] if hasattr(UpperCAmelCase__, "numpy" ): # Checks if Torch or TF tensor __lowercase = original_sizes.numpy() __lowercase ,__lowercase ,__lowercase = self._check_and_preprocess_points( input_points=UpperCAmelCase__, input_labels=UpperCAmelCase__, input_boxes=UpperCAmelCase__, ) __lowercase = self._normalize_and_convert( UpperCAmelCase__, UpperCAmelCase__, input_points=UpperCAmelCase__, input_labels=UpperCAmelCase__, input_boxes=UpperCAmelCase__, return_tensors=UpperCAmelCase__, ) return encoding_image_processor def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[Any]=None, UpperCAmelCase__ : Optional[int]=None, UpperCAmelCase__ : Optional[Any]=None, UpperCAmelCase__ : int="pt", ): if input_points is not None: if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): __lowercase = [ self._normalize_coordinates(self.target_size, UpperCAmelCase__, original_sizes[0] ) for point in input_points ] else: __lowercase = [ self._normalize_coordinates(self.target_size, UpperCAmelCase__, UpperCAmelCase__ ) for point, original_size in zip(UpperCAmelCase__, UpperCAmelCase__ ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: __lowercase ,__lowercase = self._pad_points_and_labels(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = np.array(UpperCAmelCase__ ) if input_labels is not None: __lowercase = np.array(UpperCAmelCase__ ) if input_boxes is not None: if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): __lowercase = [ self._normalize_coordinates(self.target_size, UpperCAmelCase__, original_sizes[0], is_bounding_box=UpperCAmelCase__ ) for box in input_boxes ] else: __lowercase = [ self._normalize_coordinates(self.target_size, UpperCAmelCase__, UpperCAmelCase__, is_bounding_box=UpperCAmelCase__ ) for box, original_size in zip(UpperCAmelCase__, UpperCAmelCase__ ) ] __lowercase = np.array(UpperCAmelCase__ ) if input_boxes is not None: if return_tensors == "pt": __lowercase = torch.from_numpy(UpperCAmelCase__ ) # boxes batch size of 1 by default __lowercase = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": __lowercase = tf.convert_to_tensor(UpperCAmelCase__ ) # boxes batch size of 1 by default __lowercase = tf.expand_dims(UpperCAmelCase__, 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"input_boxes": input_boxes} ) if input_points is not None: if return_tensors == "pt": __lowercase = torch.from_numpy(UpperCAmelCase__ ) # point batch size of 1 by default __lowercase = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": __lowercase = tf.convert_to_tensor(UpperCAmelCase__ ) # point batch size of 1 by default __lowercase = tf.expand_dims(UpperCAmelCase__, 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"input_points": input_points} ) if input_labels is not None: if return_tensors == "pt": __lowercase = torch.from_numpy(UpperCAmelCase__ ) # point batch size of 1 by default __lowercase = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": __lowercase = tf.convert_to_tensor(UpperCAmelCase__ ) # point batch size of 1 by default __lowercase = tf.expand_dims(UpperCAmelCase__, 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"input_labels": input_labels} ) return encoding_image_processor def _lowercase ( self : Tuple, UpperCAmelCase__ : int, UpperCAmelCase__ : Optional[Any] ): __lowercase = max([point.shape[0] for point in input_points] ) __lowercase = [] for i, point in enumerate(UpperCAmelCase__ ): if point.shape[0] != expected_nb_points: __lowercase = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value], axis=0 ) __lowercase = np.append(input_labels[i], [self.point_pad_value] ) processed_input_points.append(UpperCAmelCase__ ) __lowercase = processed_input_points return input_points, input_labels def _lowercase ( self : List[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : np.ndarray, UpperCAmelCase__ : Any, UpperCAmelCase__ : Tuple=False ): __lowercase ,__lowercase = original_size __lowercase ,__lowercase = self.image_processor._get_preprocess_shape(UpperCAmelCase__, longest_edge=UpperCAmelCase__ ) __lowercase = deepcopy(UpperCAmelCase__ ).astype(UpperCAmelCase__ ) if is_bounding_box: __lowercase = coords.reshape(-1, 2, 2 ) __lowercase = coords[..., 0] * (new_w / old_w) __lowercase = coords[..., 1] * (new_h / old_h) if is_bounding_box: __lowercase = coords.reshape(-1, 4 ) return coords def _lowercase ( self : Tuple, UpperCAmelCase__ : List[Any]=None, UpperCAmelCase__ : Optional[int]=None, UpperCAmelCase__ : List[Any]=None, ): if input_points is not None: if hasattr(UpperCAmelCase__, "numpy" ): # Checks for TF or Torch tensor __lowercase = input_points.numpy().tolist() if not isinstance(UpperCAmelCase__, UpperCAmelCase__ ) or not isinstance(input_points[0], UpperCAmelCase__ ): raise ValueError("Input points must be a list of list of floating points." ) __lowercase = [np.array(UpperCAmelCase__ ) for input_point in input_points] else: __lowercase = None if input_labels is not None: if hasattr(UpperCAmelCase__, "numpy" ): __lowercase = input_labels.numpy().tolist() if not isinstance(UpperCAmelCase__, UpperCAmelCase__ ) or not isinstance(input_labels[0], UpperCAmelCase__ ): raise ValueError("Input labels must be a list of list integers." ) __lowercase = [np.array(UpperCAmelCase__ ) for label in input_labels] else: __lowercase = None if input_boxes is not None: if hasattr(UpperCAmelCase__, "numpy" ): __lowercase = input_boxes.numpy().tolist() if ( not isinstance(UpperCAmelCase__, UpperCAmelCase__ ) or not isinstance(input_boxes[0], UpperCAmelCase__ ) or not isinstance(input_boxes[0][0], UpperCAmelCase__ ) ): raise ValueError("Input boxes must be a list of list of list of floating points." ) __lowercase = [np.array(UpperCAmelCase__ ).astype(np.floataa ) for box in input_boxes] else: __lowercase = None return input_points, input_labels, input_boxes @property def _lowercase ( self : Optional[Any] ): __lowercase = self.image_processor.model_input_names return list(dict.fromkeys(UpperCAmelCase__ ) ) def _lowercase ( self : Optional[int], *UpperCAmelCase__ : List[str], **UpperCAmelCase__ : Union[str, Any] ): return self.image_processor.post_process_masks(*UpperCAmelCase__, **UpperCAmelCase__ )
17
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowerCAmelCase ( lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = "ssube/stable-diffusion-x4-upscaler-onnx" def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : List[str]=0 ): __lowercase = floats_tensor((1, 3, 1_2_8, 1_2_8), rng=random.Random(UpperCAmelCase__ ) ) __lowercase = torch.manual_seed(UpperCAmelCase__ ) __lowercase = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def _lowercase ( self : Any ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def _lowercase ( self : Optional[Any] ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) __lowercase = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.6_898_892, 0.59_240_556, 0.52_499_527, 0.58_866_215, 0.52_258_235, 0.52_572_715, 0.62_414_473, 0.6_174_387, 0.6_214_964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _lowercase ( self : int ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.7_659_278, 0.76_437_664, 0.75_579_107, 0.7_691_116, 0.77_666_986, 0.7_727_672, 0.7_758_664, 0.7_812_226, 0.76_942_515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _lowercase ( self : str ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) __lowercase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _lowercase ( self : Any ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) __lowercase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.77_424_496, 0.773_601, 0.7_645_288, 0.7_769_598, 0.7_772_739, 0.7_738_688, 0.78_187_233, 0.77_879_584, 0.767_043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @property def _lowercase ( self : Tuple ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowercase ( self : Dict ): __lowercase = ort.SessionOptions() __lowercase = False return options def _lowercase ( self : Dict ): __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) __lowercase = init_image.resize((1_2_8, 1_2_8) ) # using the PNDM scheduler by default __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx", provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = "A fantasy landscape, trending on artstation" __lowercase = torch.manual_seed(0 ) __lowercase = pipe( prompt=UpperCAmelCase__, image=UpperCAmelCase__, guidance_scale=7.5, num_inference_steps=1_0, generator=UpperCAmelCase__, output_type="np", ) __lowercase = output.images __lowercase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array([0.4_883, 0.4_947, 0.4_980, 0.4_975, 0.4_982, 0.4_980, 0.5_000, 0.5_006, 0.4_972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def _lowercase ( self : str ): __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) __lowercase = init_image.resize((1_2_8, 1_2_8) ) __lowercase = LMSDiscreteScheduler.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx", subfolder="scheduler" ) __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx", scheduler=UpperCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = "A fantasy landscape, trending on artstation" __lowercase = torch.manual_seed(0 ) __lowercase = pipe( prompt=UpperCAmelCase__, image=UpperCAmelCase__, guidance_scale=7.5, num_inference_steps=2_0, generator=UpperCAmelCase__, output_type="np", ) __lowercase = output.images __lowercase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.50_173_753, 0.50_223_356, 0.502_039, 0.50_233_036, 0.5_023_725, 0.5_022_601, 0.5_018_758, 0.50_234_085, 0.50_241_566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
17
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _a = { 'configuration_bridgetower': [ 'BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BridgeTowerConfig', 'BridgeTowerTextConfig', 'BridgeTowerVisionConfig', ], 'processing_bridgetower': ['BridgeTowerProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ['BridgeTowerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST', 'BridgeTowerForContrastiveLearning', 'BridgeTowerForImageAndTextRetrieval', 'BridgeTowerForMaskedLM', 'BridgeTowerModel', 'BridgeTowerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()['__file__'], _import_structure)
17
"""simple docstring""" import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal _a = datasets.utils.logging.get_logger(__name__) _a = ['names', 'prefix'] _a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] _a = ['encoding_errors', 'on_bad_lines'] _a = ['date_format'] @dataclass class _lowerCAmelCase ( datasets.BuilderConfig ): """simple docstring""" __UpperCAmelCase : str = "," __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[Union[int, List[int], str]] = "infer" __UpperCAmelCase : Optional[List[str]] = None __UpperCAmelCase : Optional[List[str]] = None __UpperCAmelCase : Optional[Union[int, str, List[int], List[str]]] = None __UpperCAmelCase : Optional[Union[List[int], List[str]]] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : bool = True __UpperCAmelCase : Optional[Literal["c", "python", "pyarrow"]] = None __UpperCAmelCase : Dict[Union[int, str], Callable[[Any], Any]] = None __UpperCAmelCase : Optional[list] = None __UpperCAmelCase : Optional[list] = None __UpperCAmelCase : bool = False __UpperCAmelCase : Optional[Union[int, List[int]]] = None __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Optional[Union[str, List[str]]] = None __UpperCAmelCase : bool = True __UpperCAmelCase : bool = True __UpperCAmelCase : bool = False __UpperCAmelCase : bool = True __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : str = "." __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : str = '"' __UpperCAmelCase : int = 0 __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : bool = True __UpperCAmelCase : bool = True __UpperCAmelCase : int = 0 __UpperCAmelCase : bool = True __UpperCAmelCase : bool = False __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : int = 1_0_0_0_0 __UpperCAmelCase : Optional[datasets.Features] = None __UpperCAmelCase : Optional[str] = "strict" __UpperCAmelCase : Literal["error", "warn", "skip"] = "error" __UpperCAmelCase : Optional[str] = None def _lowercase ( self : Tuple ): if self.delimiter is not None: __lowercase = self.delimiter if self.column_names is not None: __lowercase = self.column_names @property def _lowercase ( self : Union[str, Any] ): __lowercase = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig(), UpperCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class _lowerCAmelCase ( datasets.ArrowBasedBuilder ): """simple docstring""" __UpperCAmelCase : Tuple = CsvConfig def _lowercase ( self : List[str] ): return datasets.DatasetInfo(features=self.config.features ) def _lowercase ( self : List[Any], UpperCAmelCase__ : Dict ): if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) __lowercase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(UpperCAmelCase__, (str, list, tuple) ): __lowercase = data_files if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = [files] __lowercase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files} )] __lowercase = [] for split_name, files in data_files.items(): if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = [files] __lowercase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=UpperCAmelCase__, gen_kwargs={"files": files} ) ) return splits def _lowercase ( self : Dict, UpperCAmelCase__ : pa.Table ): if self.config.features is not None: __lowercase = self.config.features.arrow_schema if all(not require_storage_cast(UpperCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast __lowercase = pa.Table.from_arrays([pa_table[field.name] for field in schema], schema=UpperCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example __lowercase = table_cast(UpperCAmelCase__, UpperCAmelCase__ ) return pa_table def _lowercase ( self : Optional[Any], UpperCAmelCase__ : List[str] ): __lowercase = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str __lowercase = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(UpperCAmelCase__ ) else object for name, dtype, feature in zip(schema.names, schema.types, self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase__ ) ): __lowercase = pd.read_csv(UpperCAmelCase__, iterator=UpperCAmelCase__, dtype=UpperCAmelCase__, **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(UpperCAmelCase__ ): __lowercase = pa.Table.from_pandas(UpperCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase__ ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(UpperCAmelCase__ )}: {e}""" ) raise
17
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class _lowerCAmelCase : """simple docstring""" def __init__( self : List[str], UpperCAmelCase__ : Tuple, ): __lowercase = parent __lowercase = 1_3 __lowercase = 7 __lowercase = True __lowercase = True __lowercase = False __lowercase = True __lowercase = 9_9 __lowercase = 3_2 __lowercase = 2 __lowercase = 4 __lowercase = 3_7 __lowercase = "gelu" __lowercase = 0.1 __lowercase = 0.1 __lowercase = 5_1_2 __lowercase = 1_6 __lowercase = 2 __lowercase = 0.02 __lowercase = 3 __lowercase = 4 __lowercase = None def _lowercase ( self : int ): __lowercase = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size], self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) __lowercase = ids_tensor([self.batch_size], self.num_choices ) __lowercase = DistilBertConfig( vocab_size=self.vocab_size, dim=self.hidden_size, n_layers=self.num_hidden_layers, n_heads=self.num_attention_heads, hidden_dim=self.intermediate_size, hidden_act=self.hidden_act, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : str, UpperCAmelCase__ : Dict, UpperCAmelCase__ : int, UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : Optional[int] ): __lowercase = TFDistilBertModel(config=UpperCAmelCase__ ) __lowercase = {"input_ids": input_ids, "attention_mask": input_mask} __lowercase = model(UpperCAmelCase__ ) __lowercase = [input_ids, input_mask] __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Tuple, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Any, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : List[str] ): __lowercase = TFDistilBertForMaskedLM(config=UpperCAmelCase__ ) __lowercase = {"input_ids": input_ids, "attention_mask": input_mask} __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self : int, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any ): __lowercase = TFDistilBertForQuestionAnswering(config=UpperCAmelCase__ ) __lowercase = { "input_ids": input_ids, "attention_mask": input_mask, } __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def _lowercase ( self : Any, UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Any, UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Any ): __lowercase = self.num_labels __lowercase = TFDistilBertForSequenceClassification(UpperCAmelCase__ ) __lowercase = {"input_ids": input_ids, "attention_mask": input_mask} __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def _lowercase ( self : Optional[int], UpperCAmelCase__ : str, UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Dict, UpperCAmelCase__ : int, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Tuple ): __lowercase = self.num_choices __lowercase = TFDistilBertForMultipleChoice(UpperCAmelCase__ ) __lowercase = tf.tile(tf.expand_dims(UpperCAmelCase__, 1 ), (1, self.num_choices, 1) ) __lowercase = tf.tile(tf.expand_dims(UpperCAmelCase__, 1 ), (1, self.num_choices, 1) ) __lowercase = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, } __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def _lowercase ( self : str, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : str, UpperCAmelCase__ : Any, UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : int, UpperCAmelCase__ : List[Any] ): __lowercase = self.num_labels __lowercase = TFDistilBertForTokenClassification(UpperCAmelCase__ ) __lowercase = {"input_ids": input_ids, "attention_mask": input_mask} __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self : Dict ): __lowercase = self.prepare_config_and_inputs() ((__lowercase) ,(__lowercase) ,(__lowercase) ,(__lowercase) ,(__lowercase) ,(__lowercase)) = config_and_inputs __lowercase = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _lowerCAmelCase ( lowercase ,lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : int = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) __UpperCAmelCase : Union[str, Any] = ( { "feature-extraction": TFDistilBertModel, "fill-mask": TFDistilBertForMaskedLM, "question-answering": TFDistilBertForQuestionAnswering, "text-classification": TFDistilBertForSequenceClassification, "token-classification": TFDistilBertForTokenClassification, "zero-shot": TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) __UpperCAmelCase : str = False __UpperCAmelCase : List[str] = False def _lowercase ( self : Optional[int] ): __lowercase = TFDistilBertModelTester(self ) __lowercase = ConfigTester(self, config_class=UpperCAmelCase__, dim=3_7 ) def _lowercase ( self : str ): self.config_tester.run_common_tests() def _lowercase ( self : Optional[int] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*UpperCAmelCase__ ) def _lowercase ( self : Dict ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCAmelCase__ ) def _lowercase ( self : List[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCAmelCase__ ) def _lowercase ( self : Dict ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCAmelCase__ ) def _lowercase ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCAmelCase__ ) def _lowercase ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCAmelCase__ ) @slow def _lowercase ( self : str ): for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): __lowercase = TFDistilBertModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @require_tf class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : Union[str, Any] ): __lowercase = TFDistilBertModel.from_pretrained("distilbert-base-uncased" ) __lowercase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __lowercase = model(UpperCAmelCase__ )[0] __lowercase = [1, 6, 7_6_8] self.assertEqual(output.shape, UpperCAmelCase__ ) __lowercase = tf.constant( [ [ [0.19_261_885, -0.13_732_955, 0.4_119_799], [0.22_150_156, -0.07_422_661, 0.39_037_204], [0.22_756_018, -0.0_896_414, 0.3_701_467], ] ] ) tf.debugging.assert_near(output[:, :3, :3], UpperCAmelCase__, atol=1E-4 )
17
"""simple docstring""" from scipy.stats import spearmanr import datasets _a = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n' _a = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n' _a = r'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def _lowercase ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ), reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"], ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int]=False ): __lowercase = spearmanr(UpperCAmelCase__, UpperCAmelCase__ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
17
1
"""simple docstring""" import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList _a = ['\nclass', '\ndef', '\n#', '\n@', '\nprint', '\nif'] class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : Dict, UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Tuple=None, UpperCAmelCase__ : Tuple=1 ): __lowercase = tokenizer __lowercase = dataset __lowercase = len(UpperCAmelCase__ ) if n_tasks is None else n_tasks __lowercase = n_copies def __iter__( self : int ): __lowercase = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]["prompt"].strip() ) __lowercase = self.tokenizer(UpperCAmelCase__, padding=UpperCAmelCase__, return_tensors="pt" ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : int, UpperCAmelCase__ : Any, UpperCAmelCase__ : int, UpperCAmelCase__ : str ): __lowercase = start_length __lowercase = eof_strings __lowercase = tokenizer def __call__( self : Union[str, Any], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[Any], **UpperCAmelCase__ : Dict ): __lowercase = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) __lowercase = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(UpperCAmelCase__ ) def _A ( UpperCamelCase_ : List[Any]) -> int: '''simple docstring''' __lowercase = re.split("(%s)" % "|".join(UpperCamelCase_), UpperCamelCase_) # last string should be "" return "".join(string_list[:-2]) def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : Dict, UpperCamelCase_ : Tuple, UpperCamelCase_ : Optional[Any], UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[Any]=20, **UpperCamelCase_ : int) -> int: '''simple docstring''' __lowercase = defaultdict(UpperCamelCase_) # dict of list of generated tokens for step, batch in tqdm(enumerate(UpperCamelCase_)): with torch.no_grad(): __lowercase = batch["ids"].shape[-1] __lowercase = accelerator.unwrap_model(UpperCamelCase_).generate( input_ids=batch["ids"][:, : batch["input_len"]], num_return_sequences=UpperCamelCase_, **UpperCamelCase_) # each task is generated batch_size times __lowercase = batch["task_id"].repeat(UpperCamelCase_) __lowercase = accelerator.pad_across_processes( UpperCamelCase_, dim=1, pad_index=tokenizer.pad_token_id) __lowercase ,__lowercase = accelerator.gather((generated_tokens, generated_tasks)) __lowercase = generated_tokens.cpu().numpy() __lowercase = generated_tasks.cpu().numpy() for task, generated_tokens in zip(UpperCamelCase_, UpperCamelCase_): gen_token_dict[task].append(UpperCamelCase_) __lowercase = [[] for _ in range(UpperCamelCase_)] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: __lowercase = tokenizer.decode(UpperCamelCase_, skip_special_tokens=UpperCamelCase_, clean_up_tokenization_spaces=UpperCamelCase_) code_gens[task].append(remove_last_block(UpperCamelCase_)) return code_gens def _A ( ) -> Dict: '''simple docstring''' __lowercase = HfArgumentParser(UpperCamelCase_) __lowercase = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric __lowercase = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing __lowercase = "false" if args.num_workers is None: __lowercase = multiprocessing.cpu_count() # Use dataset load to feed to accelerate __lowercase = Accelerator() set_seed(args.seed, device_specific=UpperCamelCase_) # Load model and tokenizer __lowercase = AutoTokenizer.from_pretrained(args.model_ckpt) __lowercase = tokenizer.eos_token __lowercase = AutoModelForCausalLM.from_pretrained(args.model_ckpt) # Generation settings __lowercase = { "do_sample": args.do_sample, "temperature": args.temperature, "max_new_tokens": args.max_new_tokens, "top_p": args.top_p, "top_k": args.top_k, "stopping_criteria": StoppingCriteriaList([EndOfFunctionCriteria(0, UpperCamelCase_, UpperCamelCase_)]), } # Load evaluation dataset and metric __lowercase = load_dataset("openai_humaneval") __lowercase = load_metric("code_eval") __lowercase = args.num_tasks if args.num_tasks is not None else len(human_eval["test"]) __lowercase = args.n_samples // args.batch_size __lowercase = TokenizedDataset(UpperCamelCase_, human_eval["test"], n_copies=UpperCamelCase_, n_tasks=UpperCamelCase_) # do not confuse args.batch_size, which is actually the num_return_sequences __lowercase = DataLoader(UpperCamelCase_, batch_size=1) # Run a quick test to see if code evaluation is enabled try: __lowercase = code_eval_metric.compute(references=[""], predictions=[[""]]) except ValueError as exception: print( "Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`" " flag to enable code evaluation.") raise exception __lowercase ,__lowercase = accelerator.prepare(UpperCamelCase_, UpperCamelCase_) __lowercase = complete_code( UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, n_tasks=UpperCamelCase_, batch_size=args.batch_size, **UpperCamelCase_, ) if accelerator.is_main_process: __lowercase = [] for task in tqdm(range(UpperCamelCase_)): __lowercase = human_eval["test"][task]["test"] __lowercase = F"""check({human_eval["test"][task]["entry_point"]})""" references.append("\n" + test_func + "\n" + entry_point) # Evaluate completions with "code_eval" metric __lowercase ,__lowercase = code_eval_metric.compute( references=UpperCamelCase_, predictions=UpperCamelCase_, num_workers=args.num_workers) print(F"""Results: {pass_at_k}""") # Save results to json file with open(args.output_file, "w") as fp: json.dump(UpperCamelCase_, UpperCamelCase_) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
17
"""simple docstring""" from collections.abc import Sequence def _A ( UpperCamelCase_ : Sequence[float], UpperCamelCase_ : float) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(UpperCamelCase_)) def _A ( UpperCamelCase_ : Sequence[float], UpperCamelCase_ : float) -> float: '''simple docstring''' __lowercase = 0.0 for coeff in reversed(UpperCamelCase_): __lowercase = result * x + coeff return result if __name__ == "__main__": _a = (0.0, 0.0, 5.0, 9.3, 7.0) _a = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
17
1
"""simple docstring""" def _A ( UpperCamelCase_ : int) -> int: '''simple docstring''' if not isinstance(UpperCamelCase_, UpperCamelCase_): raise ValueError("Input must be an integer") if input_num <= 0: raise ValueError("Input must be positive") return sum( divisor for divisor in range(1, input_num // 2 + 1) if input_num % divisor == 0) if __name__ == "__main__": import doctest doctest.testmod()
17
"""simple docstring""" import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class _lowerCAmelCase ( pl.LightningModule ): """simple docstring""" def __init__( self : Optional[Any], UpperCAmelCase__ : str ): super().__init__() __lowercase = model __lowercase = 2 __lowercase = nn.Linear(self.model.config.hidden_size, self.num_labels ) def _lowercase ( self : Optional[int] ): pass def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str, UpperCamelCase_ : str) -> str: '''simple docstring''' __lowercase = LongformerModel.from_pretrained(UpperCamelCase_) __lowercase = LightningModel(UpperCamelCase_) __lowercase = torch.load(UpperCamelCase_, map_location=torch.device("cpu")) lightning_model.load_state_dict(ckpt["state_dict"]) # init longformer question answering model __lowercase = LongformerForQuestionAnswering.from_pretrained(UpperCamelCase_) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict()) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict()) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(UpperCamelCase_) print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""") if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _a = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
17
1
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _a = logging.get_logger(__name__) _a = {'vocab_file': 'spiece.model'} _a = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } _a = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) _a = 0 _a = 1 _a = 2 _a = 3 _a = 4 class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : Any = VOCAB_FILES_NAMES __UpperCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : List[Any] = "left" def __init__( self : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int]=False, UpperCAmelCase__ : Union[str, Any]=True, UpperCAmelCase__ : Dict=False, UpperCAmelCase__ : Dict="<s>", UpperCAmelCase__ : int="</s>", UpperCAmelCase__ : List[Any]="<unk>", UpperCAmelCase__ : List[Any]="<sep>", UpperCAmelCase__ : List[Any]="<pad>", UpperCAmelCase__ : List[Any]="<cls>", UpperCAmelCase__ : Any="<mask>", UpperCAmelCase__ : str=["<eop>", "<eod>"], UpperCAmelCase__ : Optional[Dict[str, Any]] = None, **UpperCAmelCase__ : int, ): # Mask token behave like a normal word, i.e. include the space before it __lowercase = AddedToken(UpperCAmelCase__, lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__, UpperCAmelCase__ ) else mask_token __lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCAmelCase__, remove_space=UpperCAmelCase__, keep_accents=UpperCAmelCase__, bos_token=UpperCAmelCase__, eos_token=UpperCAmelCase__, unk_token=UpperCAmelCase__, sep_token=UpperCAmelCase__, pad_token=UpperCAmelCase__, cls_token=UpperCAmelCase__, mask_token=UpperCAmelCase__, additional_special_tokens=UpperCAmelCase__, sp_model_kwargs=self.sp_model_kwargs, **UpperCAmelCase__, ) __lowercase = 3 __lowercase = do_lower_case __lowercase = remove_space __lowercase = keep_accents __lowercase = vocab_file __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase__ ) @property def _lowercase ( self : Union[str, Any] ): return len(self.sp_model ) def _lowercase ( self : int ): __lowercase = {self.convert_ids_to_tokens(UpperCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ): __lowercase = self.__dict__.copy() __lowercase = None return state def __setstate__( self : Tuple, UpperCAmelCase__ : str ): __lowercase = d # for backward compatibility if not hasattr(self, "sp_model_kwargs" ): __lowercase = {} __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[int] ): if self.remove_space: __lowercase = " ".join(inputs.strip().split() ) else: __lowercase = inputs __lowercase = outputs.replace("``", "\"" ).replace("''", "\"" ) if not self.keep_accents: __lowercase = unicodedata.normalize("NFKD", UpperCAmelCase__ ) __lowercase = "".join([c for c in outputs if not unicodedata.combining(UpperCAmelCase__ )] ) if self.do_lower_case: __lowercase = outputs.lower() return outputs def _lowercase ( self : Optional[int], UpperCAmelCase__ : str ): __lowercase = self.preprocess_text(UpperCAmelCase__ ) __lowercase = self.sp_model.encode(UpperCAmelCase__, out_type=UpperCAmelCase__ ) __lowercase = [] for piece in pieces: if len(UpperCAmelCase__ ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): __lowercase = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase__, "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __lowercase = cur_pieces[1:] else: __lowercase = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(UpperCAmelCase__ ) else: new_pieces.append(UpperCAmelCase__ ) return new_pieces def _lowercase ( self : Dict, UpperCAmelCase__ : Any ): return self.sp_model.PieceToId(UpperCAmelCase__ ) def _lowercase ( self : List[Any], UpperCAmelCase__ : Any ): return self.sp_model.IdToPiece(UpperCAmelCase__ ) def _lowercase ( self : Optional[int], UpperCAmelCase__ : Optional[int] ): __lowercase = "".join(UpperCAmelCase__ ).replace(UpperCAmelCase__, " " ).strip() return out_string def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : List[int], UpperCAmelCase__ : bool = False, UpperCAmelCase__ : bool = None, UpperCAmelCase__ : bool = True, **UpperCAmelCase__ : Union[str, Any], ): __lowercase = kwargs.pop("use_source_tokenizer", UpperCAmelCase__ ) __lowercase = self.convert_ids_to_tokens(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 __lowercase = [] __lowercase = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCAmelCase__ ) ) __lowercase = [] sub_texts.append(UpperCAmelCase__ ) else: current_sub_text.append(UpperCAmelCase__ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCAmelCase__ ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens __lowercase = "".join(UpperCAmelCase__ ) __lowercase = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: __lowercase = self.clean_up_tokenization(UpperCAmelCase__ ) return clean_text else: return text def _lowercase ( self : Any, UpperCAmelCase__ : List[int], UpperCAmelCase__ : Optional[List[int]] = None ): __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowercase ( self : Dict, UpperCAmelCase__ : List[int], UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase__, token_ids_a=UpperCAmelCase__, already_has_special_tokens=UpperCAmelCase__ ) if token_ids_a is not None: return ([0] * len(UpperCAmelCase__ )) + [1] + ([0] * len(UpperCAmelCase__ )) + [1, 1] return ([0] * len(UpperCAmelCase__ )) + [1, 1] def _lowercase ( self : Optional[Any], UpperCAmelCase__ : List[int], UpperCAmelCase__ : Optional[List[int]] = None ): __lowercase = [self.sep_token_id] __lowercase = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _lowercase ( self : Optional[Any], UpperCAmelCase__ : str, UpperCAmelCase__ : Optional[str] = None ): if not os.path.isdir(UpperCAmelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( UpperCAmelCase__, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, UpperCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase__, "wb" ) as fi: __lowercase = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase__ ) return (out_vocab_file,)
17
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" ,"False" ) ) is not True ,reason="Skipping test because should only be run when releasing minor transformers version" ,) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Optional[int] ): if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split(), encoding="utf-8", check=UpperCAmelCase__, ) assert hasattr(self, "env" ) def _lowercase ( self : str, UpperCAmelCase__ : List[Any] ): # configuration for running training on smdistributed Model Parallel __lowercase = { "enabled": True, "processes_per_host": 8, } __lowercase = { "enabled": True, "parameters": { "microbatches": 4, "placement_strategy": "spread", "pipeline": "interleaved", "optimize": "speed", "partitions": 4, "ddp": True, }, } __lowercase = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options} __lowercase = "trainer" if self.script == "run_glue.py" else "smtrainer" # creates estimator return HuggingFace( entry_point=self.script, source_dir=self.env.test_path, role=self.env.role, image_uri=self.env.image_uri, base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""", instance_count=UpperCAmelCase__, instance_type=self.instance_type, debugger_hook_config=UpperCAmelCase__, hyperparameters={ **self.env.hyperparameters, "model_name_or_path": self.model_name_or_path, "max_steps": 5_0_0, }, metric_definitions=self.env.metric_definitions, distribution=UpperCAmelCase__, py_version="py36", ) def _lowercase ( self : Tuple, UpperCAmelCase__ : int ): TrainingJobAnalytics(UpperCAmelCase__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def _lowercase ( self : str, UpperCAmelCase__ : Union[str, Any] ): # create estimator __lowercase = self.create_estimator(UpperCAmelCase__ ) # run training estimator.fit() # result dataframe __lowercase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __lowercase = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) __lowercase = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __lowercase = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds", 9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""", "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss}, UpperCAmelCase__ )
17
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor _a = logging.get_logger(__name__) class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : int, *UpperCAmelCase__ : Dict, **UpperCAmelCase__ : Optional[Any] ): warnings.warn( "The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use SegformerImageProcessor instead.", UpperCAmelCase__, ) super().__init__(*UpperCAmelCase__, **UpperCAmelCase__ )
17
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : Tuple = "openai/whisper-base" __UpperCAmelCase : Union[str, Any] = ( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) __UpperCAmelCase : List[str] = "transcriber" __UpperCAmelCase : Optional[Any] = WhisperProcessor __UpperCAmelCase : str = WhisperForConditionalGeneration __UpperCAmelCase : List[str] = ["audio"] __UpperCAmelCase : Tuple = ["text"] def _lowercase ( self : str, UpperCAmelCase__ : int ): return self.pre_processor(UpperCAmelCase__, return_tensors="pt" ).input_features def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Any] ): return self.model.generate(inputs=UpperCAmelCase__ ) def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[int] ): return self.pre_processor.batch_decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ )[0]
17
1
"""simple docstring""" import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType _a , _a , _a = False, False, False @dataclass class _lowerCAmelCase : """simple docstring""" __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : bool = True __UpperCAmelCase : bool = True __UpperCAmelCase : Optional[str] = None # Automatically constructed __UpperCAmelCase : ClassVar[str] = "dict" __UpperCAmelCase : ClassVar[Any] = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) __UpperCAmelCase : str = field(default="Audio" ,init=lowercase ,repr=lowercase ) def __call__( self : int ): return self.pa_type def _lowercase ( self : str, UpperCAmelCase__ : Union[str, bytes, dict] ): try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("To support encoding audio data, please install 'soundfile'." ) from err if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): return {"bytes": None, "path": value} elif isinstance(UpperCAmelCase__, UpperCAmelCase__ ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes __lowercase = BytesIO() sf.write(UpperCAmelCase__, value["array"], value["sampling_rate"], format="wav" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("pcm" ): # "PCM" only has raw audio bytes if value.get("sampling_rate" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("To use PCM files, please specify a 'sampling_rate' in Audio object" ) if value.get("bytes" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) __lowercase = np.frombuffer(value["bytes"], dtype=np.intaa ).astype(np.floataa ) / 3_2_7_6_7 else: __lowercase = np.memmap(value["path"], dtype="h", mode="r" ).astype(np.floataa ) / 3_2_7_6_7 __lowercase = BytesIO(bytes() ) sf.write(UpperCAmelCase__, UpperCAmelCase__, value["sampling_rate"], format="wav" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( F"""An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" ) def _lowercase ( self : List[Any], UpperCAmelCase__ : dict, UpperCAmelCase__ : Optional[Dict[str, Union[str, bool, None]]] = None ): if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead." ) __lowercase ,__lowercase = (value["path"], BytesIO(value["bytes"] )) if value["bytes"] is not None else (value["path"], None) if path is None and file is None: raise ValueError(F"""An audio sample should have one of 'path' or 'bytes' but both are None in {value}.""" ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("To support decoding audio files, please install 'librosa' and 'soundfile'." ) from err __lowercase = xsplitext(UpperCAmelCase__ )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( "Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( "Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) if file is None: __lowercase = token_per_repo_id or {} __lowercase = path.split("::" )[-1] try: __lowercase = string_to_dict(UpperCAmelCase__, config.HUB_DATASETS_URL )["repo_id"] __lowercase = token_per_repo_id[repo_id] except (ValueError, KeyError): __lowercase = None with xopen(UpperCAmelCase__, "rb", use_auth_token=UpperCAmelCase__ ) as f: __lowercase ,__lowercase = sf.read(UpperCAmelCase__ ) else: __lowercase ,__lowercase = sf.read(UpperCAmelCase__ ) __lowercase = array.T if self.mono: __lowercase = librosa.to_mono(UpperCAmelCase__ ) if self.sampling_rate and self.sampling_rate != sampling_rate: __lowercase = librosa.resample(UpperCAmelCase__, orig_sr=UpperCAmelCase__, target_sr=self.sampling_rate ) __lowercase = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def _lowercase ( self : List[Any] ): from .features import Value if self.decode: raise ValueError("Cannot flatten a decoded Audio feature." ) return { "bytes": Value("binary" ), "path": Value("string" ), } def _lowercase ( self : List[str], UpperCAmelCase__ : Union[pa.StringArray, pa.StructArray] ): if pa.types.is_string(storage.type ): __lowercase = pa.array([None] * len(UpperCAmelCase__ ), type=pa.binary() ) __lowercase = pa.StructArray.from_arrays([bytes_array, storage], ["bytes", "path"], mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): __lowercase = pa.array([None] * len(UpperCAmelCase__ ), type=pa.string() ) __lowercase = pa.StructArray.from_arrays([storage, path_array], ["bytes", "path"], mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("array" ): __lowercase = pa.array([Audio().encode_example(UpperCAmelCase__ ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: __lowercase = storage.field("bytes" ) else: __lowercase = pa.array([None] * len(UpperCAmelCase__ ), type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: __lowercase = storage.field("path" ) else: __lowercase = pa.array([None] * len(UpperCAmelCase__ ), type=pa.string() ) __lowercase = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=storage.is_null() ) return array_cast(UpperCAmelCase__, self.pa_type ) def _lowercase ( self : Any, UpperCAmelCase__ : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(UpperCAmelCase__ : Any ): with xopen(UpperCAmelCase__, "rb" ) as f: __lowercase = f.read() return bytes_ __lowercase = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ], type=pa.binary(), ) __lowercase = pa.array( [os.path.basename(UpperCAmelCase__ ) if path is not None else None for path in storage.field("path" ).to_pylist()], type=pa.string(), ) __lowercase = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null() ) return array_cast(UpperCAmelCase__, self.pa_type )
17
"""simple docstring""" import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str]) -> Optional[int]: '''simple docstring''' if isinstance(UpperCamelCase_, torch.Tensor): return image elif isinstance(UpperCamelCase_, PIL.Image.Image): __lowercase = [image] if isinstance(image[0], PIL.Image.Image): __lowercase = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image] __lowercase = np.concatenate(UpperCamelCase_, axis=0) __lowercase = np.array(UpperCamelCase_).astype(np.floataa) / 255.0 __lowercase = image.transpose(0, 3, 1, 2) __lowercase = 2.0 * image - 1.0 __lowercase = torch.from_numpy(UpperCamelCase_) elif isinstance(image[0], torch.Tensor): __lowercase = torch.cat(UpperCamelCase_, dim=0) return image def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : str, UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[Any]=0.9_995) -> int: '''simple docstring''' if not isinstance(UpperCamelCase_, np.ndarray): __lowercase = True __lowercase = va.device __lowercase = va.cpu().numpy() __lowercase = va.cpu().numpy() __lowercase = np.sum(va * va / (np.linalg.norm(UpperCamelCase_) * np.linalg.norm(UpperCamelCase_))) if np.abs(UpperCamelCase_) > DOT_THRESHOLD: __lowercase = (1 - t) * va + t * va else: __lowercase = np.arccos(UpperCamelCase_) __lowercase = np.sin(UpperCamelCase_) __lowercase = theta_a * t __lowercase = np.sin(UpperCamelCase_) __lowercase = np.sin(theta_a - theta_t) / sin_theta_a __lowercase = sin_theta_t / sin_theta_a __lowercase = sa * va + sa * va if inputs_are_torch: __lowercase = torch.from_numpy(UpperCamelCase_).to(UpperCamelCase_) return va def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Union[str, Any]) -> int: '''simple docstring''' __lowercase = F.normalize(UpperCamelCase_, dim=-1) __lowercase = F.normalize(UpperCamelCase_, dim=-1) return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2) def _A ( UpperCamelCase_ : Optional[int], UpperCamelCase_ : str) -> Optional[int]: '''simple docstring''' for param in model.parameters(): __lowercase = value class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : Dict, UpperCAmelCase__ : AutoencoderKL, UpperCAmelCase__ : CLIPTextModel, UpperCAmelCase__ : CLIPModel, UpperCAmelCase__ : CLIPTokenizer, UpperCAmelCase__ : UNetaDConditionModel, UpperCAmelCase__ : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler], UpperCAmelCase__ : CLIPFeatureExtractor, UpperCAmelCase__ : Union[str, Any]=None, UpperCAmelCase__ : List[str]=None, UpperCAmelCase__ : Any=None, ): super().__init__() self.register_modules( vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, clip_model=UpperCAmelCase__, tokenizer=UpperCAmelCase__, unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, feature_extractor=UpperCAmelCase__, coca_model=UpperCAmelCase__, coca_tokenizer=UpperCAmelCase__, coca_transform=UpperCAmelCase__, ) __lowercase = ( feature_extractor.size if isinstance(feature_extractor.size, UpperCAmelCase__ ) else feature_extractor.size["shortest_edge"] ) __lowercase = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std ) set_requires_grad(self.text_encoder, UpperCAmelCase__ ) set_requires_grad(self.clip_model, UpperCAmelCase__ ) def _lowercase ( self : Tuple, UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase__ ) def _lowercase ( self : int ): self.enable_attention_slicing(UpperCAmelCase__ ) def _lowercase ( self : str ): set_requires_grad(self.vae, UpperCAmelCase__ ) def _lowercase ( self : Any ): set_requires_grad(self.vae, UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ): set_requires_grad(self.unet, UpperCAmelCase__ ) def _lowercase ( self : Any ): set_requires_grad(self.unet, UpperCAmelCase__ ) def _lowercase ( self : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : Optional[Any] ): # get the original timestep using init_timestep __lowercase = min(int(num_inference_steps * strength ), UpperCAmelCase__ ) __lowercase = max(num_inference_steps - init_timestep, 0 ) __lowercase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowercase ( self : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : int=None ): if not isinstance(UpperCAmelCase__, torch.Tensor ): raise ValueError(F"""`image` has to be of type `torch.Tensor` but is {type(UpperCAmelCase__ )}""" ) __lowercase = image.to(device=UpperCAmelCase__, dtype=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(UpperCAmelCase__ ) ] __lowercase = torch.cat(UpperCAmelCase__, dim=0 ) else: __lowercase = self.vae.encode(UpperCAmelCase__ ).latent_dist.sample(UpperCAmelCase__ ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowercase = 0.18_215 * init_latents __lowercase = init_latents.repeat_interleave(UpperCAmelCase__, dim=0 ) __lowercase = randn_tensor(init_latents.shape, generator=UpperCAmelCase__, device=UpperCAmelCase__, dtype=UpperCAmelCase__ ) # get latents __lowercase = self.scheduler.add_noise(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = init_latents return latents def _lowercase ( self : Optional[int], UpperCAmelCase__ : Dict ): __lowercase = self.coca_transform(UpperCAmelCase__ ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): __lowercase = self.coca_model.generate(transformed_image.to(device=self.device, dtype=self.coca_model.dtype ) ) __lowercase = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("<end_of_text>" )[0].replace("<start_of_text>", "" ).rstrip(" .," ) def _lowercase ( self : Tuple, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Tuple ): __lowercase = self.feature_extractor.preprocess(UpperCAmelCase__ ) __lowercase = torch.from_numpy(clip_image_input["pixel_values"][0] ).unsqueeze(0 ).to(self.device ).half() __lowercase = self.clip_model.get_image_features(UpperCAmelCase__ ) __lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=UpperCAmelCase__ ) __lowercase = image_embeddings_clip.repeat_interleave(UpperCAmelCase__, dim=0 ) return image_embeddings_clip @torch.enable_grad() def _lowercase ( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[int], ): __lowercase = latents.detach().requires_grad_() __lowercase = self.scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ ) # predict the noise residual __lowercase = self.unet(UpperCAmelCase__, UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__ ).sample if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): __lowercase = self.scheduler.alphas_cumprod[timestep] __lowercase = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowercase = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 __lowercase = torch.sqrt(UpperCAmelCase__ ) __lowercase = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler, UpperCAmelCase__ ): __lowercase = self.scheduler.sigmas[index] __lowercase = latents - sigma * noise_pred else: raise ValueError(F"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowercase = 1 / 0.18_215 * sample __lowercase = self.vae.decode(UpperCAmelCase__ ).sample __lowercase = (image / 2 + 0.5).clamp(0, 1 ) __lowercase = transforms.Resize(self.feature_extractor_size )(UpperCAmelCase__ ) __lowercase = self.normalize(UpperCAmelCase__ ).to(latents.dtype ) __lowercase = self.clip_model.get_image_features(UpperCAmelCase__ ) __lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=UpperCAmelCase__ ) __lowercase = spherical_dist_loss(UpperCAmelCase__, UpperCAmelCase__ ).mean() * clip_guidance_scale __lowercase = -torch.autograd.grad(UpperCAmelCase__, UpperCAmelCase__ )[0] if isinstance(self.scheduler, UpperCAmelCase__ ): __lowercase = latents.detach() + grads * (sigma**2) __lowercase = noise_pred_original else: __lowercase = noise_pred_original - torch.sqrt(UpperCAmelCase__ ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : str, UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image], UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image], UpperCAmelCase__ : Optional[str] = None, UpperCAmelCase__ : Optional[str] = None, UpperCAmelCase__ : Optional[int] = 5_1_2, UpperCAmelCase__ : Optional[int] = 5_1_2, UpperCAmelCase__ : float = 0.6, UpperCAmelCase__ : Optional[int] = 5_0, UpperCAmelCase__ : Optional[float] = 7.5, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[float] = 1_0_0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : float = 0.8, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, ): if isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and len(UpperCAmelCase__ ) != batch_size: raise ValueError(F"""You have passed {batch_size} batch_size, but only {len(UpperCAmelCase__ )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(UpperCAmelCase__, torch.Generator ) and batch_size > 1: __lowercase = [generator] + [None] * (batch_size - 1) __lowercase = [ ("model", self.coca_model is None), ("tokenizer", self.coca_tokenizer is None), ("transform", self.coca_transform is None), ] __lowercase = [x[0] for x in coca_is_none if x[1]] __lowercase = ", ".join(UpperCAmelCase__ ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(UpperCAmelCase__ ): raise ValueError( F"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" F"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) __lowercase = self.get_image_description(UpperCAmelCase__ ) if style_prompt is None: if len(UpperCAmelCase__ ): raise ValueError( F"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" F""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) __lowercase = self.get_image_description(UpperCAmelCase__ ) # get prompt text embeddings for content and style __lowercase = self.tokenizer( UpperCAmelCase__, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=UpperCAmelCase__, return_tensors="pt", ) __lowercase = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] __lowercase = self.tokenizer( UpperCAmelCase__, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=UpperCAmelCase__, return_tensors="pt", ) __lowercase = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] __lowercase = slerp(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # duplicate text embeddings for each generation per prompt __lowercase = text_embeddings.repeat_interleave(UpperCAmelCase__, dim=0 ) # set timesteps __lowercase = "offset" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) __lowercase = {} if accepts_offset: __lowercase = 1 self.scheduler.set_timesteps(UpperCAmelCase__, **UpperCAmelCase__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) __lowercase ,__lowercase = self.get_timesteps(UpperCAmelCase__, UpperCAmelCase__, self.device ) __lowercase = timesteps[:1].repeat(UpperCAmelCase__ ) # Preprocess image __lowercase = preprocess(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = self.prepare_latents( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, text_embeddings.dtype, self.device, UpperCAmelCase__ ) __lowercase = preprocess(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = self.prepare_latents( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, text_embeddings.dtype, self.device, UpperCAmelCase__ ) __lowercase = slerp(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) if clip_guidance_scale > 0: __lowercase = self.get_clip_image_embeddings(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = self.get_clip_image_embeddings(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = slerp( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __lowercase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __lowercase = content_text_input.input_ids.shape[-1] __lowercase = self.tokenizer([""], padding="max_length", max_length=UpperCAmelCase__, return_tensors="pt" ) __lowercase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt __lowercase = uncond_embeddings.repeat_interleave(UpperCAmelCase__, dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowercase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __lowercase = (batch_size, self.unet.config.in_channels, height // 8, width // 8) __lowercase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps __lowercase = torch.randn(UpperCAmelCase__, generator=UpperCAmelCase__, device="cpu", dtype=UpperCAmelCase__ ).to( self.device ) else: __lowercase = torch.randn(UpperCAmelCase__, generator=UpperCAmelCase__, device=self.device, dtype=UpperCAmelCase__ ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) __lowercase = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __lowercase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __lowercase = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __lowercase = {} if accepts_eta: __lowercase = eta # check if the scheduler accepts generator __lowercase = "generator" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: __lowercase = generator with self.progress_bar(total=UpperCAmelCase__ ): for i, t in enumerate(UpperCAmelCase__ ): # expand the latents if we are doing classifier free guidance __lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowercase = self.scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ ) # predict the noise residual __lowercase = self.unet(UpperCAmelCase__, UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__ ).sample # perform classifier free guidance if do_classifier_free_guidance: __lowercase ,__lowercase = noise_pred.chunk(2 ) __lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: __lowercase = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) __lowercase ,__lowercase = self.cond_fn( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) # compute the previous noisy sample x_t -> x_t-1 __lowercase = self.scheduler.step(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, **UpperCAmelCase__ ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowercase = 1 / 0.18_215 * latents __lowercase = self.vae.decode(UpperCAmelCase__ ).sample __lowercase = (image / 2 + 0.5).clamp(0, 1 ) __lowercase = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": __lowercase = self.numpy_to_pil(UpperCAmelCase__ ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=UpperCAmelCase__, nsfw_content_detected=UpperCAmelCase__ )
17
1
"""simple docstring""" import pickle import numpy as np from matplotlib import pyplot as plt class _lowerCAmelCase : """simple docstring""" def __init__( self : Dict, UpperCAmelCase__ : str, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Any, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Optional[Any]=0.2, UpperCAmelCase__ : Tuple=0.2 ): __lowercase = bp_numa __lowercase = bp_numa __lowercase = bp_numa __lowercase = conva_get[:2] __lowercase = conva_get[2] __lowercase = size_pa __lowercase = rate_w __lowercase = rate_t __lowercase = [ np.mat(-1 * np.random.rand(self.conva[0], self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] __lowercase = np.mat(-1 * np.random.rand(self.num_bpa, self.num_bpa ) + 0.5 ) __lowercase = np.mat(-1 * np.random.rand(self.num_bpa, self.num_bpa ) + 0.5 ) __lowercase = -2 * np.random.rand(self.conva[1] ) + 1 __lowercase = -2 * np.random.rand(self.num_bpa ) + 1 __lowercase = -2 * np.random.rand(self.num_bpa ) + 1 def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Tuple ): # save model dict with pickle __lowercase = { "num_bp1": self.num_bpa, "num_bp2": self.num_bpa, "num_bp3": self.num_bpa, "conv1": self.conva, "step_conv1": self.step_conva, "size_pooling1": self.size_poolinga, "rate_weight": self.rate_weight, "rate_thre": self.rate_thre, "w_conv1": self.w_conva, "wkj": self.wkj, "vji": self.vji, "thre_conv1": self.thre_conva, "thre_bp2": self.thre_bpa, "thre_bp3": self.thre_bpa, } with open(UpperCAmelCase__, "wb" ) as f: pickle.dump(UpperCAmelCase__, UpperCAmelCase__ ) print(F"""Model saved: {save_path}""" ) @classmethod def _lowercase ( cls : int, UpperCAmelCase__ : int ): # read saved model with open(UpperCAmelCase__, "rb" ) as f: __lowercase = pickle.load(UpperCAmelCase__ ) # noqa: S301 __lowercase = model_dic.get("conv1" ) conv_get.append(model_dic.get("step_conv1" ) ) __lowercase = model_dic.get("size_pooling1" ) __lowercase = model_dic.get("num_bp1" ) __lowercase = model_dic.get("num_bp2" ) __lowercase = model_dic.get("num_bp3" ) __lowercase = model_dic.get("rate_weight" ) __lowercase = model_dic.get("rate_thre" ) # create model instance __lowercase = CNN(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # modify model parameter __lowercase = model_dic.get("w_conv1" ) __lowercase = model_dic.get("wkj" ) __lowercase = model_dic.get("vji" ) __lowercase = model_dic.get("thre_conv1" ) __lowercase = model_dic.get("thre_bp2" ) __lowercase = model_dic.get("thre_bp3" ) return conv_ins def _lowercase ( self : List[str], UpperCAmelCase__ : Dict ): return 1 / (1 + np.exp(-1 * x )) def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Any ): return round(UpperCAmelCase__, 3 ) def _lowercase ( self : List[str], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Tuple ): # convolution process __lowercase = convs[0] __lowercase = convs[1] __lowercase = np.shape(UpperCAmelCase__ )[0] # get the data slice of original image data, data_focus __lowercase = [] for i_focus in range(0, size_data - size_conv + 1, UpperCAmelCase__ ): for j_focus in range(0, size_data - size_conv + 1, UpperCAmelCase__ ): __lowercase = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(UpperCAmelCase__ ) # calculate the feature map of every single kernel, and saved as list of matrix __lowercase = [] __lowercase = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(UpperCAmelCase__ ): __lowercase = [] for i_focus in range(len(UpperCAmelCase__ ) ): __lowercase = ( np.sum(np.multiply(data_focus[i_focus], w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(UpperCAmelCase__ ) ) __lowercase = np.asmatrix(UpperCAmelCase__ ).reshape( UpperCAmelCase__, UpperCAmelCase__ ) data_featuremap.append(UpperCAmelCase__ ) # expanding the data slice to One dimenssion __lowercase = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(UpperCAmelCase__ ) ) __lowercase = np.asarray(UpperCAmelCase__ ) return focus_list, data_featuremap def _lowercase ( self : Optional[int], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[int]="average_pool" ): # pooling process __lowercase = len(featuremaps[0] ) __lowercase = int(size_map / size_pooling ) __lowercase = [] for i_map in range(len(UpperCAmelCase__ ) ): __lowercase = featuremaps[i_map] __lowercase = [] for i_focus in range(0, UpperCAmelCase__, UpperCAmelCase__ ): for j_focus in range(0, UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(UpperCAmelCase__ ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(UpperCAmelCase__ ) ) __lowercase = np.asmatrix(UpperCAmelCase__ ).reshape(UpperCAmelCase__, UpperCAmelCase__ ) featuremap_pooled.append(UpperCAmelCase__ ) return featuremap_pooled def _lowercase ( self : str, UpperCAmelCase__ : List[Any] ): # expanding three dimension data to one dimension list __lowercase = [] for i in range(len(UpperCAmelCase__ ) ): __lowercase = np.shape(data[i] ) __lowercase = data[i].reshape(1, shapes[0] * shapes[1] ) __lowercase = data_listed.getA().tolist()[0] data_expanded.extend(UpperCAmelCase__ ) __lowercase = np.asarray(UpperCAmelCase__ ) return data_expanded def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Dict ): # expanding matrix to one dimension list __lowercase = np.asarray(UpperCAmelCase__ ) __lowercase = np.shape(UpperCAmelCase__ ) __lowercase = data_mat.reshape(1, shapes[0] * shapes[1] ) return data_expanded def _lowercase ( self : Tuple, UpperCAmelCase__ : Any, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[str], UpperCAmelCase__ : str ): __lowercase = [] __lowercase = 0 for i_map in range(UpperCAmelCase__ ): __lowercase = np.ones((size_map, size_map) ) for i in range(0, UpperCAmelCase__, UpperCAmelCase__ ): for j in range(0, UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = pd_pool[ i_pool ] __lowercase = i_pool + 1 __lowercase = np.multiply( UpperCAmelCase__, np.multiply(out_map[i_map], (1 - out_map[i_map]) ) ) pd_all.append(UpperCAmelCase__ ) return pd_all def _lowercase ( self : Optional[Any], UpperCAmelCase__ : List[str], UpperCAmelCase__ : str, UpperCAmelCase__ : Dict, UpperCAmelCase__ : str, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Tuple=bool ): # model traning print("----------------------Start Training-------------------------" ) print((" - - Shape: Train_Data ", np.shape(UpperCAmelCase__ )) ) print((" - - Shape: Teach_Data ", np.shape(UpperCAmelCase__ )) ) __lowercase = 0 __lowercase = [] __lowercase = 1_0_0_0_0 while rp < n_repeat and mse >= error_accuracy: __lowercase = 0 print(F"""-------------Learning Time {rp}--------------""" ) for p in range(len(UpperCAmelCase__ ) ): # print('------------Learning Image: %d--------------'%p) __lowercase = np.asmatrix(datas_train[p] ) __lowercase = np.asarray(datas_teach[p] ) __lowercase ,__lowercase = self.convolute( UpperCAmelCase__, self.conva, self.w_conva, self.thre_conva, conv_step=self.step_conva, ) __lowercase = self.pooling(UpperCAmelCase__, self.size_poolinga ) __lowercase = np.shape(UpperCAmelCase__ ) __lowercase = self._expand(UpperCAmelCase__ ) __lowercase = data_bp_input __lowercase = np.dot(UpperCAmelCase__, self.vji.T ) - self.thre_bpa __lowercase = self.sig(UpperCAmelCase__ ) __lowercase = np.dot(UpperCAmelCase__, self.wkj.T ) - self.thre_bpa __lowercase = self.sig(UpperCAmelCase__ ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- __lowercase = np.multiply( (data_teach - bp_outa), np.multiply(UpperCAmelCase__, (1 - bp_outa) ) ) __lowercase = np.multiply( np.dot(UpperCAmelCase__, self.wkj ), np.multiply(UpperCAmelCase__, (1 - bp_outa) ) ) __lowercase = np.dot(UpperCAmelCase__, self.vji ) __lowercase = pd_i_all / (self.size_poolinga * self.size_poolinga) __lowercase = pd_conva_pooled.T.getA().tolist() __lowercase = self._calculate_gradient_from_pool( UpperCAmelCase__, UpperCAmelCase__, shape_featuremapa[0], shape_featuremapa[1], self.size_poolinga, ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): __lowercase = self._expand_mat(pd_conva_all[k_conv] ) __lowercase = self.rate_weight * np.dot(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) __lowercase = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer __lowercase = self.wkj + pd_k_all.T * bp_outa * self.rate_weight __lowercase = self.vji + pd_j_all.T * bp_outa * self.rate_weight __lowercase = self.thre_bpa - pd_k_all * self.rate_thre __lowercase = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image __lowercase = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) __lowercase = rp + 1 __lowercase = error_count / patterns all_mse.append(UpperCAmelCase__ ) def draw_error(): __lowercase = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(UpperCAmelCase__, "+-" ) plt.plot(UpperCAmelCase__, "r--" ) plt.xlabel("Learning Times" ) plt.ylabel("All_mse" ) plt.grid(UpperCAmelCase__, alpha=0.5 ) plt.show() print("------------------Training Complished---------------------" ) print((" - - Training epoch: ", rp, F""" - - Mse: {mse:.6f}""") ) if draw_e: draw_error() return mse def _lowercase ( self : List[str], UpperCAmelCase__ : Any ): # model predict __lowercase = [] print("-------------------Start Testing-------------------------" ) print((" - - Shape: Test_Data ", np.shape(UpperCAmelCase__ )) ) for p in range(len(UpperCAmelCase__ ) ): __lowercase = np.asmatrix(datas_test[p] ) __lowercase ,__lowercase = self.convolute( UpperCAmelCase__, self.conva, self.w_conva, self.thre_conva, conv_step=self.step_conva, ) __lowercase = self.pooling(UpperCAmelCase__, self.size_poolinga ) __lowercase = self._expand(UpperCAmelCase__ ) __lowercase = data_bp_input __lowercase = bp_outa * self.vji.T - self.thre_bpa __lowercase = self.sig(UpperCAmelCase__ ) __lowercase = bp_outa * self.wkj.T - self.thre_bpa __lowercase = self.sig(UpperCAmelCase__ ) produce_out.extend(bp_outa.getA().tolist() ) __lowercase = [list(map(self.do_round, UpperCAmelCase__ ) ) for each in produce_out] return np.asarray(UpperCAmelCase__ ) def _lowercase ( self : Optional[int], UpperCAmelCase__ : str ): # return the data of image after convoluting process so we can check it out __lowercase = np.asmatrix(UpperCAmelCase__ ) __lowercase ,__lowercase = self.convolute( UpperCAmelCase__, self.conva, self.w_conva, self.thre_conva, conv_step=self.step_conva, ) __lowercase = self.pooling(UpperCAmelCase__, self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
17
"""simple docstring""" from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class _lowerCAmelCase : """simple docstring""" __UpperCAmelCase : Tuple = XGLMConfig __UpperCAmelCase : Optional[Any] = {} __UpperCAmelCase : Union[str, Any] = "gelu" def __init__( self : Optional[int], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int]=1_4, UpperCAmelCase__ : str=7, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[Any]=True, UpperCAmelCase__ : int=True, UpperCAmelCase__ : List[str]=9_9, UpperCAmelCase__ : Union[str, Any]=3_2, UpperCAmelCase__ : Union[str, Any]=2, UpperCAmelCase__ : Union[str, Any]=4, UpperCAmelCase__ : Tuple=3_7, UpperCAmelCase__ : List[Any]="gelu", UpperCAmelCase__ : List[str]=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Tuple=5_1_2, UpperCAmelCase__ : Optional[Any]=0.02, ): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_labels __lowercase = vocab_size __lowercase = d_model __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = ffn_dim __lowercase = activation_function __lowercase = activation_dropout __lowercase = attention_dropout __lowercase = max_position_embeddings __lowercase = initializer_range __lowercase = None __lowercase = 0 __lowercase = 2 __lowercase = 1 def _lowercase ( self : Union[str, Any] ): return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def _lowercase ( self : Tuple ): __lowercase = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length], self.vocab_size ), clip_value_min=0, clip_value_max=3 ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = self.get_config() __lowercase = floats_tensor([self.num_hidden_layers, self.num_attention_heads], 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowercase ( self : List[Any] ): return XGLMConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, num_layers=self.num_hidden_layers, attention_heads=self.num_attention_heads, ffn_dim=self.ffn_dim, activation_function=self.activation_function, activation_dropout=self.activation_dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, use_cache=UpperCAmelCase__, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, return_dict=UpperCAmelCase__, ) def _lowercase ( self : Dict ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) , ) = config_and_inputs __lowercase = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class _lowerCAmelCase ( lowercase ,lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () __UpperCAmelCase : List[str] = (TFXGLMForCausalLM,) if is_tf_available() else () __UpperCAmelCase : Any = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : List[str] = False __UpperCAmelCase : int = False def _lowercase ( self : Optional[Any] ): __lowercase = TFXGLMModelTester(self ) __lowercase = ConfigTester(self, config_class=UpperCAmelCase__, n_embd=3_7 ) def _lowercase ( self : Any ): self.config_tester.run_common_tests() @slow def _lowercase ( self : List[str] ): for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFXGLMModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def _lowercase ( self : int ): super().test_resize_token_embeddings() @require_tf class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[int]=True ): __lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) __lowercase = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]], dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __lowercase = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on __lowercase = model.generate(UpperCAmelCase__, do_sample=UpperCAmelCase__, num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist(), UpperCAmelCase__ ) @slow def _lowercase ( self : List[Any] ): __lowercase = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) __lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) __lowercase = tokenizer("Today is a nice day and", return_tensors="tf" ) __lowercase = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): __lowercase = model.generate(UpperCAmelCase__, do_sample=UpperCAmelCase__, seed=[7, 0] ) __lowercase = tokenizer.decode(output_ids[0], skip_special_tokens=UpperCAmelCase__ ) __lowercase = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(UpperCAmelCase__, UpperCAmelCase__ ) @slow def _lowercase ( self : Dict ): __lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) __lowercase = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) __lowercase = "left" # use different length sentences to test batching __lowercase = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] __lowercase = tokenizer(UpperCAmelCase__, return_tensors="tf", padding=UpperCAmelCase__ ) __lowercase = inputs["input_ids"] __lowercase = model.generate(input_ids=UpperCAmelCase__, attention_mask=inputs["attention_mask"], max_new_tokens=1_2 ) __lowercase = tokenizer(sentences[0], return_tensors="tf" ).input_ids __lowercase = model.generate(input_ids=UpperCAmelCase__, max_new_tokens=1_2 ) __lowercase = tokenizer(sentences[1], return_tensors="tf" ).input_ids __lowercase = model.generate(input_ids=UpperCAmelCase__, max_new_tokens=1_2 ) __lowercase = tokenizer.batch_decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ ) __lowercase = tokenizer.decode(output_non_padded[0], skip_special_tokens=UpperCAmelCase__ ) __lowercase = tokenizer.decode(output_padded[0], skip_special_tokens=UpperCAmelCase__ ) __lowercase = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(UpperCAmelCase__, UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__, [non_padded_sentence, padded_sentence] )
17
1
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch _a = logging.get_logger(__name__) class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : Tuple = ["pixel_values"] def __init__( self : Optional[int], UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Dict[str, int]] = None, UpperCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Dict[str, int] = None, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Union[int, float] = 1 / 2_5_5, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Union[float, List[float]]] = None, UpperCAmelCase__ : Optional[Union[float, List[float]]] = None, **UpperCAmelCase__ : Any, ): super().__init__(**UpperCAmelCase__ ) __lowercase = size if size is not None else {"shortest_edge": 2_5_6} __lowercase = get_size_dict(UpperCAmelCase__, default_to_square=UpperCAmelCase__ ) __lowercase = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} __lowercase = get_size_dict(UpperCAmelCase__, param_name="crop_size" ) __lowercase = do_resize __lowercase = size __lowercase = resample __lowercase = do_center_crop __lowercase = crop_size __lowercase = do_rescale __lowercase = rescale_factor __lowercase = do_normalize __lowercase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowercase = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : np.ndarray, UpperCAmelCase__ : Dict[str, int], UpperCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC, UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None, **UpperCAmelCase__ : Union[str, Any], ): __lowercase = get_size_dict(UpperCAmelCase__, default_to_square=UpperCAmelCase__ ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __lowercase = get_resize_output_image_size(UpperCAmelCase__, size=size["shortest_edge"], default_to_square=UpperCAmelCase__ ) return resize(UpperCAmelCase__, size=UpperCAmelCase__, resample=UpperCAmelCase__, data_format=UpperCAmelCase__, **UpperCAmelCase__ ) def _lowercase ( self : Optional[int], UpperCAmelCase__ : np.ndarray, UpperCAmelCase__ : Dict[str, int], UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None, **UpperCAmelCase__ : Optional[int], ): __lowercase = get_size_dict(UpperCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(UpperCAmelCase__, size=(size["height"], size["width"]), data_format=UpperCAmelCase__, **UpperCAmelCase__ ) def _lowercase ( self : str, UpperCAmelCase__ : np.ndarray, UpperCAmelCase__ : float, UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None, **UpperCAmelCase__ : Union[str, Any] ): return rescale(UpperCAmelCase__, scale=UpperCAmelCase__, data_format=UpperCAmelCase__, **UpperCAmelCase__ ) def _lowercase ( self : List[str], UpperCAmelCase__ : np.ndarray, UpperCAmelCase__ : Union[float, List[float]], UpperCAmelCase__ : Union[float, List[float]], UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None, **UpperCAmelCase__ : Tuple, ): return normalize(UpperCAmelCase__, mean=UpperCAmelCase__, std=UpperCAmelCase__, data_format=UpperCAmelCase__, **UpperCAmelCase__ ) def _lowercase ( self : Dict, UpperCAmelCase__ : ImageInput, UpperCAmelCase__ : Optional[bool] = None, UpperCAmelCase__ : Dict[str, int] = None, UpperCAmelCase__ : PILImageResampling = None, UpperCAmelCase__ : bool = None, UpperCAmelCase__ : Dict[str, int] = None, UpperCAmelCase__ : Optional[bool] = None, UpperCAmelCase__ : Optional[float] = None, UpperCAmelCase__ : Optional[bool] = None, UpperCAmelCase__ : Optional[Union[float, List[float]]] = None, UpperCAmelCase__ : Optional[Union[float, List[float]]] = None, UpperCAmelCase__ : Optional[Union[str, TensorType]] = None, UpperCAmelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST, **UpperCAmelCase__ : Optional[Any], ): __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = size if size is not None else self.size __lowercase = get_size_dict(UpperCAmelCase__, default_to_square=UpperCAmelCase__ ) __lowercase = resample if resample is not None else self.resample __lowercase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase = crop_size if crop_size is not None else self.crop_size __lowercase = get_size_dict(UpperCAmelCase__, param_name="crop_size" ) __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = image_mean if image_mean is not None else self.image_mean __lowercase = image_std if image_std is not None else self.image_std __lowercase = make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. __lowercase = [to_numpy_array(UpperCAmelCase__ ) for image in images] if do_resize: __lowercase = [self.resize(image=UpperCAmelCase__, size=UpperCAmelCase__, resample=UpperCAmelCase__ ) for image in images] if do_center_crop: __lowercase = [self.center_crop(image=UpperCAmelCase__, size=UpperCAmelCase__ ) for image in images] if do_rescale: __lowercase = [self.rescale(image=UpperCAmelCase__, scale=UpperCAmelCase__ ) for image in images] if do_normalize: __lowercase = [self.normalize(image=UpperCAmelCase__, mean=UpperCAmelCase__, std=UpperCAmelCase__ ) for image in images] __lowercase = [to_channel_dimension_format(UpperCAmelCase__, UpperCAmelCase__ ) for image in images] __lowercase = {"pixel_values": images} return BatchFeature(data=UpperCAmelCase__, tensor_type=UpperCAmelCase__ ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Tuple] = None ): __lowercase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(UpperCAmelCase__ ): __lowercase = target_sizes.numpy() __lowercase = [] for idx in range(len(UpperCAmelCase__ ) ): __lowercase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ), size=target_sizes[idx], mode="bilinear", align_corners=UpperCAmelCase__ ) __lowercase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(UpperCAmelCase__ ) else: __lowercase = logits.argmax(dim=1 ) __lowercase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
17
"""simple docstring""" import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder _a = '__DUMMY_TRANSFORMERS_USER__' _a = 'Dummy User' _a = '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' _a = 'https://hub-ci.huggingface.co' _a = CI_HUB_ENDPOINT + '/datasets/{repo_id}/resolve/{revision}/{path}' _a = CI_HUB_ENDPOINT + '/{repo_id}/resolve/{revision}/{filename}' _a = Path('~/.huggingface/hub_ci_token').expanduser() @pytest.fixture def _A ( UpperCamelCase_ : List[Any]) -> Tuple: '''simple docstring''' monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE", UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : int) -> List[Any]: '''simple docstring''' monkeypatch.setattr("datasets.config.HF_ENDPOINT", UpperCamelCase_) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL", UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : str) -> Dict: '''simple docstring''' monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token", UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : Optional[Any], UpperCamelCase_ : List[Any]) -> List[str]: '''simple docstring''' HfFolder.save_token(UpperCamelCase_) yield HfFolder.delete_token() @pytest.fixture(scope="session") def _A ( ) -> List[Any]: '''simple docstring''' return HfApi(endpoint=UpperCamelCase_) @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi) -> List[Any]: '''simple docstring''' __lowercase = HfFolder.get_token() HfFolder.save_token(UpperCamelCase_) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : Dict) -> int: '''simple docstring''' def _cleanup_repo(UpperCamelCase_ : Optional[int]): hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") return _cleanup_repo @pytest.fixture def _A ( UpperCamelCase_ : str) -> Any: '''simple docstring''' @contextmanager def _temporary_repo(UpperCamelCase_ : Any): try: yield repo_id finally: cleanup_repo(UpperCamelCase_) return _temporary_repo @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : str, UpperCamelCase_ : Optional[int]) -> List[Any]: '''simple docstring''' __lowercase = F"""repo_txt_data-{int(time.time() * 10E3)}""" __lowercase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_) hf_api.upload_file( token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data/text_data.txt", repo_id=UpperCamelCase_, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : Any, UpperCamelCase_ : Dict) -> Optional[int]: '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : int, UpperCamelCase_ : Optional[int]) -> int: '''simple docstring''' __lowercase = F"""repo_zipped_txt_data-{int(time.time() * 10E3)}""" __lowercase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_) hf_api.upload_file( token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data.zip", repo_id=UpperCamelCase_, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Dict, UpperCamelCase_ : Any) -> int: '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : List[str], UpperCamelCase_ : List[str]) -> List[Any]: '''simple docstring''' __lowercase = F"""repo_zipped_img_data-{int(time.time() * 10E3)}""" __lowercase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_) hf_api.upload_file( token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data.zip", repo_id=UpperCamelCase_, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str], UpperCamelCase_ : List[str]) -> str: '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
17
1
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _a = logging.get_logger(__name__) _a = { 'Salesforce/codegen-350M-nl': 'https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json', 'Salesforce/codegen-350M-multi': 'https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json', 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json', 'Salesforce/codegen-2B-nl': 'https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json', 'Salesforce/codegen-2B-multi': 'https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json', 'Salesforce/codegen-2B-mono': 'https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json', 'Salesforce/codegen-6B-nl': 'https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json', 'Salesforce/codegen-6B-multi': 'https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json', 'Salesforce/codegen-6B-mono': 'https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json', 'Salesforce/codegen-16B-nl': 'https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json', 'Salesforce/codegen-16B-multi': 'https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json', 'Salesforce/codegen-16B-mono': 'https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json', } class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : List[str] = "codegen" __UpperCAmelCase : int = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Optional[Any], UpperCAmelCase__ : Union[str, Any]=5_0_4_0_0, UpperCAmelCase__ : int=2_0_4_8, UpperCAmelCase__ : Tuple=2_0_4_8, UpperCAmelCase__ : Optional[Any]=4_0_9_6, UpperCAmelCase__ : Optional[int]=2_8, UpperCAmelCase__ : List[Any]=1_6, UpperCAmelCase__ : Union[str, Any]=6_4, UpperCAmelCase__ : Union[str, Any]=None, UpperCAmelCase__ : Optional[int]="gelu_new", UpperCAmelCase__ : Union[str, Any]=0.0, UpperCAmelCase__ : int=0.0, UpperCAmelCase__ : List[str]=0.0, UpperCAmelCase__ : int=1E-5, UpperCAmelCase__ : int=0.02, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : int=5_0_2_5_6, UpperCAmelCase__ : Tuple=5_0_2_5_6, UpperCAmelCase__ : int=False, **UpperCAmelCase__ : Any, ): __lowercase = vocab_size __lowercase = n_ctx __lowercase = n_positions __lowercase = n_embd __lowercase = n_layer __lowercase = n_head __lowercase = n_inner __lowercase = rotary_dim __lowercase = activation_function __lowercase = resid_pdrop __lowercase = embd_pdrop __lowercase = attn_pdrop __lowercase = layer_norm_epsilon __lowercase = initializer_range __lowercase = use_cache __lowercase = bos_token_id __lowercase = eos_token_id super().__init__( bos_token_id=UpperCAmelCase__, eos_token_id=UpperCAmelCase__, tie_word_embeddings=UpperCAmelCase__, **UpperCAmelCase__ ) class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : Dict, UpperCAmelCase__ : PretrainedConfig, UpperCAmelCase__ : str = "default", UpperCAmelCase__ : List[PatchingSpec] = None, UpperCAmelCase__ : bool = False, ): super().__init__(UpperCAmelCase__, task=UpperCAmelCase__, patching_specs=UpperCAmelCase__, use_past=UpperCAmelCase__ ) if not getattr(self._config, "pad_token_id", UpperCAmelCase__ ): # TODO: how to do that better? __lowercase = 0 @property def _lowercase ( self : int ): __lowercase = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(UpperCAmelCase__, direction="inputs" ) __lowercase = {0: "batch", 1: "past_sequence + sequence"} else: __lowercase = {0: "batch", 1: "sequence"} return common_inputs @property def _lowercase ( self : Any ): return self._config.n_layer @property def _lowercase ( self : int ): return self._config.n_head def _lowercase ( self : Optional[int], UpperCAmelCase__ : PreTrainedTokenizer, UpperCAmelCase__ : int = -1, UpperCAmelCase__ : int = -1, UpperCAmelCase__ : bool = False, UpperCAmelCase__ : Optional[TensorType] = None, ): __lowercase = super(UpperCAmelCase__, self ).generate_dummy_inputs( UpperCAmelCase__, batch_size=UpperCAmelCase__, seq_length=UpperCAmelCase__, is_pair=UpperCAmelCase__, framework=UpperCAmelCase__ ) # We need to order the input in the way they appears in the forward() __lowercase = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch __lowercase ,__lowercase = common_inputs["input_ids"].shape # Not using the same length for past_key_values __lowercase = seqlen + 2 __lowercase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __lowercase = [ (torch.zeros(UpperCAmelCase__ ), torch.zeros(UpperCAmelCase__ )) for _ in range(self.num_layers ) ] __lowercase = common_inputs["attention_mask"] if self.use_past: __lowercase = ordered_inputs["attention_mask"].dtype __lowercase = torch.cat( [ordered_inputs["attention_mask"], torch.ones(UpperCAmelCase__, UpperCAmelCase__, dtype=UpperCAmelCase__ )], dim=1 ) return ordered_inputs @property def _lowercase ( self : str ): return 1_3
17
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : int = "time_series_transformer" __UpperCAmelCase : Any = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : int, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : str = "student_t", UpperCAmelCase__ : str = "nll", UpperCAmelCase__ : int = 1, UpperCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7], UpperCAmelCase__ : Optional[Union[str, bool]] = "mean", UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : int = 3_2, UpperCAmelCase__ : int = 3_2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : str = "gelu", UpperCAmelCase__ : int = 6_4, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : int = 1_0_0, UpperCAmelCase__ : float = 0.02, UpperCAmelCase__ : Any=True, **UpperCAmelCase__ : List[str], ): # time series specific configuration __lowercase = prediction_length __lowercase = context_length or prediction_length __lowercase = distribution_output __lowercase = loss __lowercase = input_size __lowercase = num_time_features __lowercase = lags_sequence __lowercase = scaling __lowercase = num_dynamic_real_features __lowercase = num_static_real_features __lowercase = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(UpperCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) __lowercase = cardinality else: __lowercase = [0] if embedding_dimension and num_static_categorical_features > 0: if len(UpperCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) __lowercase = embedding_dimension else: __lowercase = [min(5_0, (cat + 1) // 2 ) for cat in self.cardinality] __lowercase = num_parallel_samples # Transformer architecture configuration __lowercase = input_size * len(UpperCAmelCase__ ) + self._number_of_features __lowercase = d_model __lowercase = encoder_attention_heads __lowercase = decoder_attention_heads __lowercase = encoder_ffn_dim __lowercase = decoder_ffn_dim __lowercase = encoder_layers __lowercase = decoder_layers __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = activation_function __lowercase = init_std __lowercase = use_cache super().__init__(is_encoder_decoder=UpperCAmelCase__, **UpperCAmelCase__ ) @property def _lowercase ( self : Optional[Any] ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
17
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { 'vinvino02/glpn-kitti': 'https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json', # See all GLPN models at https://huggingface.co/models?filter=glpn } class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : Dict = "glpn" def __init__( self : str, UpperCAmelCase__ : List[Any]=3, UpperCAmelCase__ : Any=4, UpperCAmelCase__ : Any=[2, 2, 2, 2], UpperCAmelCase__ : int=[8, 4, 2, 1], UpperCAmelCase__ : Any=[3_2, 6_4, 1_6_0, 2_5_6], UpperCAmelCase__ : Dict=[7, 3, 3, 3], UpperCAmelCase__ : int=[4, 2, 2, 2], UpperCAmelCase__ : Optional[int]=[1, 2, 5, 8], UpperCAmelCase__ : str=[4, 4, 4, 4], UpperCAmelCase__ : int="gelu", UpperCAmelCase__ : Union[str, Any]=0.0, UpperCAmelCase__ : Tuple=0.0, UpperCAmelCase__ : Any=0.02, UpperCAmelCase__ : List[Any]=0.1, UpperCAmelCase__ : List[str]=1E-6, UpperCAmelCase__ : Tuple=6_4, UpperCAmelCase__ : str=1_0, UpperCAmelCase__ : List[str]=-1, **UpperCAmelCase__ : Union[str, Any], ): super().__init__(**UpperCAmelCase__ ) __lowercase = num_channels __lowercase = num_encoder_blocks __lowercase = depths __lowercase = sr_ratios __lowercase = hidden_sizes __lowercase = patch_sizes __lowercase = strides __lowercase = mlp_ratios __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = drop_path_rate __lowercase = layer_norm_eps __lowercase = decoder_hidden_size __lowercase = max_depth __lowercase = head_in_index
17
"""simple docstring""" import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class _lowerCAmelCase : """simple docstring""" @staticmethod def _lowercase ( *UpperCAmelCase__ : Tuple, **UpperCAmelCase__ : List[Any] ): pass def _A ( UpperCamelCase_ : Union[str, Any]) -> Any: '''simple docstring''' return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. _a = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Tuple = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Optional[Any] ): __lowercase = pipeline( "document-question-answering", model=UpperCAmelCase__, tokenizer=UpperCAmelCase__, image_processor=UpperCAmelCase__ ) __lowercase = INVOICE_URL __lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) ) __lowercase = "What is the placebo?" __lowercase = [ { "image": load_image(UpperCAmelCase__ ), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def _lowercase ( self : int, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Any ): __lowercase = dqa_pipeline(UpperCAmelCase__, top_k=2 ) self.assertEqual( UpperCAmelCase__, [ [ {"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ ), "start": ANY(UpperCAmelCase__ ), "end": ANY(UpperCAmelCase__ )}, {"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ ), "start": ANY(UpperCAmelCase__ ), "end": ANY(UpperCAmelCase__ )}, ] ] * 3, ) @require_torch @require_detectrona @require_pytesseract def _lowercase ( self : Dict ): __lowercase = pipeline("document-question-answering", model="hf-internal-testing/tiny-random-layoutlmv2" ) __lowercase = INVOICE_URL __lowercase = "How many cats are there?" __lowercase = [ {"score": 0.0_001, "answer": "oy 2312/2019", "start": 3_8, "end": 3_9}, {"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 3_8, "end": 4_0}, ] __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), UpperCAmelCase__ ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), UpperCAmelCase__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably __lowercase = "./tests/fixtures/tests_samples/COCO/000000039769.png" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual(UpperCAmelCase__, [] ) # We can optionnally pass directly the words and bounding boxes __lowercase = "./tests/fixtures/tests_samples/COCO/000000039769.png" __lowercase = [] __lowercase = [] __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, words=UpperCAmelCase__, boxes=UpperCAmelCase__, top_k=2 ) self.assertEqual(UpperCAmelCase__, [] ) @slow @require_torch @require_detectrona @require_pytesseract def _lowercase ( self : List[str] ): __lowercase = pipeline( "document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ] * 2, ) @slow @require_torch @require_detectrona @require_pytesseract def _lowercase ( self : Dict ): __lowercase = pipeline( "document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", max_seq_len=5_0, ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3}, {"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3}, {"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3}, {"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6}, ] ] * 2, ) @slow @require_torch @require_pytesseract @require_vision def _lowercase ( self : Optional[Any] ): __lowercase = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=UpperCAmelCase__ ) __lowercase = pipeline( "document-question-answering", model="impira/layoutlm-document-qa", tokenizer=UpperCAmelCase__, revision="3dc6de3", ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ], ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ] ] * 2, ) __lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) ) # This model should also work if `image` is set to None __lowercase = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ], ) @slow @require_torch @require_pytesseract @require_vision def _lowercase ( self : Union[str, Any] ): __lowercase = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=UpperCAmelCase__ ) __lowercase = pipeline( "document-question-answering", model="impira/layoutlm-document-qa", tokenizer=UpperCAmelCase__, revision="3dc6de3", max_seq_len=5_0, ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6}, ] ] * 2, ) __lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) ) # This model should also work if `image` is set to None __lowercase = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) @slow @require_torch def _lowercase ( self : Dict ): __lowercase = pipeline( "document-question-answering", model="naver-clova-ix/donut-base-finetuned-docvqa", tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ), feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa", ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def _lowercase ( self : List[Any] ): pass
17
1
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : int=1_0_0, UpperCAmelCase__ : Any=1_3, UpperCAmelCase__ : List[Any]=3_0, UpperCAmelCase__ : Dict=2, UpperCAmelCase__ : Any=3, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[str]=True, UpperCAmelCase__ : Optional[Any]=3_2, UpperCAmelCase__ : Any=5, UpperCAmelCase__ : Any=4, UpperCAmelCase__ : Any=3_7, UpperCAmelCase__ : Optional[int]="gelu", UpperCAmelCase__ : Dict=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Dict=1_0, UpperCAmelCase__ : Tuple=0.02, UpperCAmelCase__ : List[Any]=3, ): __lowercase = parent __lowercase = vocab_size __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase = (image_size // patch_size) ** 2 __lowercase = num_patches + 1 def _lowercase ( self : int ): __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size], self.type_sequence_label_size ) __lowercase = BeitConfig( vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=UpperCAmelCase__, initializer_range=self.initializer_range, ) return config, pixel_values, labels def _lowercase ( self : Any, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[str], UpperCAmelCase__ : List[str] ): __lowercase = FlaxBeitModel(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : List[Any] ): __lowercase = FlaxBeitForMaskedImageModeling(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size) ) def _lowercase ( self : Dict, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : Union[str, Any] ): __lowercase = self.type_sequence_label_size __lowercase = FlaxBeitForImageClassification(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowercase = 1 __lowercase = FlaxBeitForImageClassification(UpperCAmelCase__ ) __lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase = model(UpperCAmelCase__ ) def _lowercase ( self : List[str] ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) ,( __lowercase ) ,( __lowercase ) , ) = config_and_inputs __lowercase = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class _lowerCAmelCase ( lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def _lowercase ( self : List[Any] ): __lowercase = FlaxBeitModelTester(self ) __lowercase = ConfigTester(self, config_class=UpperCAmelCase__, has_text_modality=UpperCAmelCase__, hidden_size=3_7 ) def _lowercase ( self : Union[str, Any] ): self.config_tester.run_common_tests() def _lowercase ( self : Optional[int] ): __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(UpperCAmelCase__ ) __lowercase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["pixel_values"] self.assertListEqual(arg_names[:1], UpperCAmelCase__ ) def _lowercase ( self : Tuple ): __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowercase = self._prepare_for_class(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = model_class(UpperCAmelCase__ ) @jax.jit def model_jitted(UpperCAmelCase__ : str, **UpperCAmelCase__ : Dict ): return model(pixel_values=UpperCAmelCase__, **UpperCAmelCase__ ) with self.subTest("JIT Enabled" ): __lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ), len(UpperCAmelCase__ ) ) for jitted_output, output in zip(UpperCAmelCase__, UpperCAmelCase__ ): self.assertEqual(jitted_output.shape, output.shape ) def _lowercase ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def _lowercase ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ ) def _lowercase ( self : Tuple ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ ) @slow def _lowercase ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: __lowercase = model_class_name.from_pretrained("microsoft/beit-base-patch16-224" ) __lowercase = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(UpperCAmelCase__ ) def _A ( ) -> str: '''simple docstring''' __lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_vision @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : Optional[int] ): return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def _lowercase ( self : Any ): __lowercase = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ).pixel_values # prepare bool_masked_pos __lowercase = np.ones((1, 1_9_6), dtype=UpperCAmelCase__ ) # forward pass __lowercase = model(pixel_values=UpperCAmelCase__, bool_masked_pos=UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 1_9_6, 8_1_9_2) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3], UpperCAmelCase__, atol=1E-2 ) ) @slow def _lowercase ( self : Any ): __lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ) # forward pass __lowercase = model(**UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 1_0_0_0) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array([-1.2_385, -1.0_987, -1.0_108] ) self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) ) __lowercase = 2_8_1 self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ ) @slow def _lowercase ( self : List[str] ): __lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ) # forward pass __lowercase = model(**UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 2_1_8_4_1) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array([1.6_881, -0.2_787, 0.5_901] ) self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) ) __lowercase = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ )
17
"""simple docstring""" import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _a = 2 class _lowerCAmelCase : """simple docstring""" def __init__( self : Dict, *, # begin keyword-only arguments UpperCAmelCase__ : str="<s>", UpperCAmelCase__ : Tuple="<pad>", UpperCAmelCase__ : str="</s>", UpperCAmelCase__ : Optional[Any]="<unk>", UpperCAmelCase__ : List[Any]=None, ): __lowercase ,__lowercase ,__lowercase ,__lowercase = bos, unk, pad, eos __lowercase = [] __lowercase = [] __lowercase = {} __lowercase = self.add_symbol(UpperCAmelCase__ ) __lowercase = self.add_symbol(UpperCAmelCase__ ) __lowercase = self.add_symbol(UpperCAmelCase__ ) __lowercase = self.add_symbol(UpperCAmelCase__ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(UpperCAmelCase__ ) __lowercase = len(self.symbols ) def __eq__( self : List[str], UpperCAmelCase__ : Dict ): return self.indices == other.indices def __getitem__( self : Optional[int], UpperCAmelCase__ : List[str] ): if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : str ): return len(self.symbols ) def __contains__( self : Any, UpperCAmelCase__ : Optional[Any] ): return sym in self.indices @classmethod def _lowercase ( cls : List[Any], UpperCAmelCase__ : Optional[Any] ): __lowercase = cls() d.add_from_file(UpperCAmelCase__ ) return d def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[Any]=1, UpperCAmelCase__ : str=False ): if word in self.indices and not overwrite: __lowercase = self.indices[word] __lowercase = self.count[idx] + n return idx else: __lowercase = len(self.symbols ) __lowercase = idx self.symbols.append(UpperCAmelCase__ ) self.count.append(UpperCAmelCase__ ) return idx def _lowercase ( self : Any, UpperCAmelCase__ : str ): return 0 def _lowercase ( self : Tuple, UpperCAmelCase__ : List[Any] ): if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): try: with open(UpperCAmelCase__, "r", encoding="utf-8" ) as fd: self.add_from_file(UpperCAmelCase__ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("Incorrect encoding detected in {}, please rebuild the dataset".format(UpperCAmelCase__ ) ) return __lowercase = f.readlines() __lowercase = self._load_meta(UpperCAmelCase__ ) for line in lines[indices_start_line:]: try: __lowercase ,__lowercase = line.rstrip().rsplit(" ", 1 ) if field == "#fairseq:overwrite": __lowercase = True __lowercase ,__lowercase = line.rsplit(" ", 1 ) else: __lowercase = False __lowercase = int(UpperCAmelCase__ ) __lowercase = line if word in self and not overwrite: raise RuntimeError( "Duplicate word found when loading Dictionary: '{}'. " "Duplicate words can overwrite earlier ones by adding the " "#fairseq:overwrite flag at the end of the corresponding row " "in the dictionary file. If using the Camembert model, please " "download an updated copy of the model file.".format(UpperCAmelCase__ ) ) self.add_symbol(UpperCAmelCase__, n=UpperCAmelCase__, overwrite=UpperCAmelCase__ ) except ValueError: raise ValueError("Incorrect dictionary format, expected '<token> <cnt> [flags]'" ) def _A ( UpperCamelCase_ : int) -> str: '''simple docstring''' __lowercase = dict((re.sub(r"@@$", "", UpperCamelCase_), v) if k.endswith("@@") else (re.sub(r"$", "</w>", UpperCamelCase_), v) for k, v in d.items()) __lowercase = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] __lowercase = d[k] # restore return da def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str) -> List[Any]: '''simple docstring''' if not os.path.exists(UpperCamelCase_): raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""") os.makedirs(UpperCamelCase_, exist_ok=UpperCamelCase_) print(F"""Writing results to {pytorch_dump_folder_path}""") # handle various types of models __lowercase = os.path.join(UpperCamelCase_, "checkpoint.pt") if not os.path.isfile(UpperCamelCase_): raise ValueError(F"""path to the file {checkpoint_file} does not exist!""") __lowercase = torch.load(UpperCamelCase_, map_location="cpu") __lowercase = chkpt["cfg"]["model"] # dicts __lowercase = os.path.join(UpperCamelCase_, "dict.txt") if not os.path.isfile(UpperCamelCase_): raise ValueError(F"""path to the file {dict_file} does not exist!""") __lowercase = Dictionary.load(UpperCamelCase_) __lowercase = rewrite_dict_keys(src_dict.indices) __lowercase = len(UpperCamelCase_) __lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["vocab_file"]) print(F"""Generating {src_vocab_file} of {src_vocab_size} records""") with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_)) # merges_file (bpecodes) __lowercase = os.path.join(UpperCamelCase_, "bpecodes") if not os.path.isfile(UpperCamelCase_): raise ValueError(F"""path to the file {bpecodes_file} does not exist!""") __lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["merges_file"]) shutil.copyfile(UpperCamelCase_, UpperCamelCase_) # model config __lowercase = os.path.join(UpperCamelCase_, "config.json") __lowercase = { "activation_dropout": args["activation_dropout"], "architectures": ["BioGptForCausalLM"], "attention_probs_dropout_prob": args["attention_dropout"], "bos_token_id": 0, "eos_token_id": 2, "hidden_act": args["activation_fn"], "hidden_dropout_prob": args["dropout"], "hidden_size": args["decoder_embed_dim"], "initializer_range": 0.02, "intermediate_size": args["decoder_ffn_embed_dim"], "layer_norm_eps": 1E-12, "layerdrop": args["decoder_layerdrop"], "max_position_embeddings": args["max_target_positions"], "model_type": "biogpt", "num_attention_heads": args["decoder_attention_heads"], "num_hidden_layers": args["decoder_layers"], "pad_token_id": 1, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_decoder_input_output_embed"], "vocab_size": src_vocab_size, } # good hparam defaults to start with print(F"""Generating {biogpt_model_config_file}""") with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_)) # tokenizer config __lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_) __lowercase = { "bos_token": "<s>", "eos_token": "</s>", "model_max_length": 1024, "pad_token": "<pad>", "special_tokens_map_file": None, "tokenizer_class": "BioGptTokenizer", "unk_token": "<unk>", } print(F"""Generating {biogpt_tokenizer_config_file}""") with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_)) # model __lowercase = chkpt["model"] # remove unneeded keys __lowercase = [ "decoder.version", ] for k in ignore_keys: model_state_dict.pop(UpperCamelCase_, UpperCamelCase_) __lowercase = list(model_state_dict.keys()) for layer_name in layer_names: if layer_name.endswith("output_projection.weight"): __lowercase = model_state_dict.pop(UpperCamelCase_) else: __lowercase = model_state_dict.pop(UpperCamelCase_) __lowercase = BioGptConfig.from_pretrained(UpperCamelCase_) __lowercase = BioGptForCausalLM(UpperCamelCase_) # check that it loads ok model_new.load_state_dict(UpperCamelCase_) # save __lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_) print(F"""Generating {pytorch_weights_dump_path}""") torch.save(UpperCamelCase_, UpperCamelCase_) print("Conversion is done!") if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _a = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
17
1
"""simple docstring""" import cmath import math def _A ( UpperCamelCase_ : float, UpperCamelCase_ : float, UpperCamelCase_ : float, UpperCamelCase_ : float) -> complex: '''simple docstring''' __lowercase = math.radians(UpperCamelCase_) __lowercase = math.radians(UpperCamelCase_) # Convert voltage and current to rectangular form __lowercase = cmath.rect(UpperCamelCase_, UpperCamelCase_) __lowercase = cmath.rect(UpperCamelCase_, UpperCamelCase_) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
17
"""simple docstring""" from __future__ import annotations from typing import Any class _lowerCAmelCase : """simple docstring""" def __init__( self : Any, UpperCAmelCase__ : int ): __lowercase = num_of_nodes __lowercase = [] __lowercase = {} def _lowercase ( self : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : int, UpperCAmelCase__ : int ): self.m_edges.append([u_node, v_node, weight] ) def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _lowercase ( self : List[Any], UpperCAmelCase__ : int ): if self.m_component[u_node] != u_node: for k in self.m_component: __lowercase = self.find_component(UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : list[int], UpperCAmelCase__ : int, UpperCAmelCase__ : int ): if component_size[u_node] <= component_size[v_node]: __lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(UpperCAmelCase__ ) elif component_size[u_node] >= component_size[v_node]: __lowercase = self.find_component(UpperCAmelCase__ ) component_size[u_node] += component_size[v_node] self.set_component(UpperCAmelCase__ ) def _lowercase ( self : Any ): __lowercase = [] __lowercase = 0 __lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowercase ,__lowercase ,__lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase ,__lowercase ,__lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 __lowercase = [-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def _A ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
17
1
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( "files", [ ["full:README.md", "dataset_infos.json"], ["empty:README.md", "dataset_infos.json"], ["dataset_infos.json"], ["full:README.md"], ], ) def _A ( UpperCamelCase_ : Any, UpperCamelCase_ : str) -> Optional[int]: '''simple docstring''' __lowercase = tmp_path_factory.mktemp("dset_infos_dir") if "full:README.md" in files: with open(dataset_infos_dir / "README.md", "w") as f: f.write("---\ndataset_info:\n dataset_size: 42\n---") if "empty:README.md" in files: with open(dataset_infos_dir / "README.md", "w") as f: f.write("") # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / "dataset_infos.json", "w") as f: f.write("{\"default\": {\"dataset_size\": 42}}") __lowercase = DatasetInfosDict.from_directory(UpperCamelCase_) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( "dataset_info", [ DatasetInfo(), DatasetInfo( description="foo", features=Features({"a": Value("int32")}), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ), ], ) def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : DatasetInfo) -> str: '''simple docstring''' __lowercase = str(UpperCamelCase_) dataset_info.write_to_directory(UpperCamelCase_) __lowercase = DatasetInfo.from_directory(UpperCamelCase_) assert dataset_info == reloaded assert os.path.exists(os.path.join(UpperCamelCase_, "dataset_info.json")) def _A ( ) -> Union[str, Any]: '''simple docstring''' __lowercase = DatasetInfo( description="foo", citation="bar", homepage="https://foo.bar", license="CC0", features=Features({"a": Value("int32")}), post_processed={}, supervised_keys=(), task_templates=[], builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train", "num_examples": 42}], download_checksums={}, download_size=1337, post_processing_size=442, dataset_size=1234, size_in_bytes=1337 + 442 + 1234, ) __lowercase = dataset_info._to_yaml_dict() assert sorted(UpperCamelCase_) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key], (list, dict, int, str)) __lowercase = yaml.safe_dump(UpperCamelCase_) __lowercase = yaml.safe_load(UpperCamelCase_) assert dataset_info_yaml_dict == reloaded def _A ( ) -> Optional[Any]: '''simple docstring''' __lowercase = DatasetInfo() __lowercase = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( "dataset_infos_dict", [ DatasetInfosDict(), DatasetInfosDict({"default": DatasetInfo()}), DatasetInfosDict({"my_config_name": DatasetInfo()}), DatasetInfosDict( { "default": DatasetInfo( description="foo", features=Features({"a": Value("int32")}), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ) }), DatasetInfosDict( { "v1": DatasetInfo(dataset_size=42), "v2": DatasetInfo(dataset_size=1337), }), ], ) def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : DatasetInfosDict) -> List[str]: '''simple docstring''' __lowercase = str(UpperCamelCase_) dataset_infos_dict.write_to_directory(UpperCamelCase_) __lowercase = DatasetInfosDict.from_directory(UpperCamelCase_) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): __lowercase = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml __lowercase = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict()) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(UpperCamelCase_, "README.md"))
17
"""simple docstring""" from math import sqrt def _A ( UpperCamelCase_ : int) -> int: '''simple docstring''' __lowercase = 0 for i in range(1, int(sqrt(UpperCamelCase_) + 1)): if n % i == 0 and i != sqrt(UpperCamelCase_): total += i + n // i elif i == sqrt(UpperCamelCase_): total += i return total - n def _A ( UpperCamelCase_ : int = 10000) -> int: '''simple docstring''' __lowercase = sum( i for i in range(1, UpperCamelCase_) if sum_of_divisors(sum_of_divisors(UpperCamelCase_)) == i and sum_of_divisors(UpperCamelCase_) != i) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
17
1
"""simple docstring""" import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib _a = { 'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, 'critical': logging.CRITICAL, } _a = logging.WARNING def _A ( ) -> int: '''simple docstring''' __lowercase = os.getenv("DATASETS_VERBOSITY", UpperCamelCase_) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F"""Unknown option DATASETS_VERBOSITY={env_level_str}, """ F"""has to be one of: { ", ".join(log_levels.keys()) }""") return _default_log_level def _A ( ) -> str: '''simple docstring''' return __name__.split(".")[0] def _A ( ) -> logging.Logger: '''simple docstring''' return logging.getLogger(_get_library_name()) def _A ( ) -> None: '''simple docstring''' __lowercase = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level()) def _A ( ) -> None: '''simple docstring''' __lowercase = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET) def _A ( UpperCamelCase_ : Optional[str] = None) -> logging.Logger: '''simple docstring''' if name is None: __lowercase = _get_library_name() return logging.getLogger(UpperCamelCase_) def _A ( ) -> int: '''simple docstring''' return _get_library_root_logger().getEffectiveLevel() def _A ( UpperCamelCase_ : int) -> None: '''simple docstring''' _get_library_root_logger().setLevel(UpperCamelCase_) def _A ( ) -> Any: '''simple docstring''' return set_verbosity(UpperCamelCase_) def _A ( ) -> Optional[int]: '''simple docstring''' return set_verbosity(UpperCamelCase_) def _A ( ) -> Optional[Any]: '''simple docstring''' return set_verbosity(UpperCamelCase_) def _A ( ) -> str: '''simple docstring''' return set_verbosity(UpperCamelCase_) def _A ( ) -> None: '''simple docstring''' __lowercase = False def _A ( ) -> None: '''simple docstring''' __lowercase = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class _lowerCAmelCase : """simple docstring""" def __init__( self : List[Any], *UpperCAmelCase__ : Optional[Any], **UpperCAmelCase__ : List[str] ): # pylint: disable=unused-argument __lowercase = args[0] if args else None def __iter__( self : Optional[int] ): return iter(self._iterator ) def __getattr__( self : Tuple, UpperCAmelCase__ : Any ): def empty_fn(*UpperCAmelCase__ : List[str], **UpperCAmelCase__ : str ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Tuple ): return self def __exit__( self : str, UpperCAmelCase__ : Any, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Optional[int] ): return _a = True class _lowerCAmelCase : """simple docstring""" def __call__( self : int, *UpperCAmelCase__ : Dict, UpperCAmelCase__ : Optional[int]=False, **UpperCAmelCase__ : Union[str, Any] ): if _tqdm_active and not disable: return tqdm_lib.tqdm(*UpperCAmelCase__, **UpperCAmelCase__ ) else: return EmptyTqdm(*UpperCAmelCase__, **UpperCAmelCase__ ) def _lowercase ( self : List[Any], *UpperCAmelCase__ : List[Any], **UpperCAmelCase__ : Optional[int] ): __lowercase = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*UpperCAmelCase__, **UpperCAmelCase__ ) def _lowercase ( self : str ): if _tqdm_active: return tqdm_lib.tqdm.get_lock() _a = _tqdm_cls() def _A ( ) -> bool: '''simple docstring''' global _tqdm_active return bool(_tqdm_active) def _A ( ) -> Optional[int]: '''simple docstring''' global _tqdm_active __lowercase = True def _A ( ) -> List[Any]: '''simple docstring''' global _tqdm_active __lowercase = False
17
"""simple docstring""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _a = _symbol_database.Default() _a = _descriptor_pool.Default().AddSerializedFile( b'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) _a = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: _a = None _a = b'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" _a = 45 _a = 15_81 _a = 15_17 _a = 15_70 _a = 15_84 _a = 17_93 _a = 17_95 _a = 19_16 _a = 18_64 _a = 19_05 _a = 19_19 _a = 24_29 _a = 22_08 _a = 24_18 _a = 23_23 _a = 24_07 # @@protoc_insertion_point(module_scope)
17
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: _a = None _a = logging.get_logger(__name__) _a = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} _a = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), }, 'tokenizer_file': { 'google/bigbird-roberta-base': ( 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json' ), 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json' ), }, } _a = { 'google/bigbird-roberta-base': 40_96, 'google/bigbird-roberta-large': 40_96, 'google/bigbird-base-trivia-itc': 40_96, } _a = '▁' class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : int = VOCAB_FILES_NAMES __UpperCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : List[Any] = BigBirdTokenizer __UpperCAmelCase : int = ["input_ids", "attention_mask"] __UpperCAmelCase : List[int] = [] def __init__( self : Optional[int], UpperCAmelCase__ : Union[str, Any]=None, UpperCAmelCase__ : Any=None, UpperCAmelCase__ : Optional[Any]="<unk>", UpperCAmelCase__ : Any="<s>", UpperCAmelCase__ : Optional[Any]="</s>", UpperCAmelCase__ : Tuple="<pad>", UpperCAmelCase__ : Optional[int]="[SEP]", UpperCAmelCase__ : Any="[MASK]", UpperCAmelCase__ : Optional[Any]="[CLS]", **UpperCAmelCase__ : List[str], ): __lowercase = AddedToken(UpperCAmelCase__, lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__, UpperCAmelCase__ ) else bos_token __lowercase = AddedToken(UpperCAmelCase__, lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__, UpperCAmelCase__ ) else eos_token __lowercase = AddedToken(UpperCAmelCase__, lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__, UpperCAmelCase__ ) else unk_token __lowercase = AddedToken(UpperCAmelCase__, lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__, UpperCAmelCase__ ) else pad_token __lowercase = AddedToken(UpperCAmelCase__, lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__, UpperCAmelCase__ ) else cls_token __lowercase = AddedToken(UpperCAmelCase__, lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__, UpperCAmelCase__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it __lowercase = AddedToken(UpperCAmelCase__, lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__, UpperCAmelCase__ ) else mask_token super().__init__( UpperCAmelCase__, tokenizer_file=UpperCAmelCase__, bos_token=UpperCAmelCase__, eos_token=UpperCAmelCase__, unk_token=UpperCAmelCase__, sep_token=UpperCAmelCase__, pad_token=UpperCAmelCase__, cls_token=UpperCAmelCase__, mask_token=UpperCAmelCase__, **UpperCAmelCase__, ) __lowercase = vocab_file __lowercase = False if not self.vocab_file else True def _lowercase ( self : List[Any], UpperCAmelCase__ : List[int], UpperCAmelCase__ : Optional[List[int]] = None ): __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowercase ( self : Any, UpperCAmelCase__ : List[int], UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase__ )) + [1] return [1] + ([0] * len(UpperCAmelCase__ )) + [1] + ([0] * len(UpperCAmelCase__ )) + [1] def _lowercase ( self : str, UpperCAmelCase__ : List[int], UpperCAmelCase__ : Optional[List[int]] = None ): __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase ( self : Optional[int], UpperCAmelCase__ : str, UpperCAmelCase__ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(UpperCAmelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( UpperCAmelCase__, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ): copyfile(self.vocab_file, UpperCAmelCase__ ) return (out_vocab_file,)
17
"""simple docstring""" import baseaa def _A ( UpperCamelCase_ : str) -> bytes: '''simple docstring''' return baseaa.baaencode(string.encode("utf-8")) def _A ( UpperCamelCase_ : bytes) -> str: '''simple docstring''' return baseaa.baadecode(UpperCamelCase_).decode("utf-8") if __name__ == "__main__": _a = 'Hello World!' _a = baseaa_encode(test) print(encoded) _a = baseaa_decode(encoded) print(decoded)
17
1
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" ,"False" ) ) is not True ,reason="Skipping test because should only be run when releasing minor transformers version" ,) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Optional[int] ): if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split(), encoding="utf-8", check=UpperCAmelCase__, ) assert hasattr(self, "env" ) def _lowercase ( self : str, UpperCAmelCase__ : List[Any] ): # configuration for running training on smdistributed Model Parallel __lowercase = { "enabled": True, "processes_per_host": 8, } __lowercase = { "enabled": True, "parameters": { "microbatches": 4, "placement_strategy": "spread", "pipeline": "interleaved", "optimize": "speed", "partitions": 4, "ddp": True, }, } __lowercase = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options} __lowercase = "trainer" if self.script == "run_glue.py" else "smtrainer" # creates estimator return HuggingFace( entry_point=self.script, source_dir=self.env.test_path, role=self.env.role, image_uri=self.env.image_uri, base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""", instance_count=UpperCAmelCase__, instance_type=self.instance_type, debugger_hook_config=UpperCAmelCase__, hyperparameters={ **self.env.hyperparameters, "model_name_or_path": self.model_name_or_path, "max_steps": 5_0_0, }, metric_definitions=self.env.metric_definitions, distribution=UpperCAmelCase__, py_version="py36", ) def _lowercase ( self : Tuple, UpperCAmelCase__ : int ): TrainingJobAnalytics(UpperCAmelCase__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def _lowercase ( self : str, UpperCAmelCase__ : Union[str, Any] ): # create estimator __lowercase = self.create_estimator(UpperCAmelCase__ ) # run training estimator.fit() # result dataframe __lowercase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __lowercase = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) __lowercase = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __lowercase = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds", 9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""", "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss}, UpperCAmelCase__ )
17
"""simple docstring""" def _A ( UpperCamelCase_ : Any) -> List[str]: '''simple docstring''' __lowercase ,__lowercase = [], [] while len(UpperCamelCase_) > 1: __lowercase ,__lowercase = min(UpperCamelCase_), max(UpperCamelCase_) start.append(UpperCamelCase_) end.append(UpperCamelCase_) collection.remove(UpperCamelCase_) collection.remove(UpperCamelCase_) end.reverse() return start + collection + end if __name__ == "__main__": _a = input('Enter numbers separated by a comma:\n').strip() _a = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
17
1
"""simple docstring""" import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 _a = get_tests_dir('fixtures/dummy-config.json') class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : List[str] ): __lowercase = 0 def _lowercase ( self : Any ): self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("transformers.models.auto" ) ) def _lowercase ( self : int ): __lowercase = AutoConfig.from_pretrained("bert-base-uncased" ) self.assertIsInstance(UpperCAmelCase__, UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ): __lowercase = AutoConfig.from_pretrained(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__, UpperCAmelCase__ ) def _lowercase ( self : List[str] ): __lowercase = AutoConfig.from_pretrained(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__, UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ): __lowercase = AutoConfig.for_model("roberta" ) self.assertIsInstance(UpperCAmelCase__, UpperCAmelCase__ ) def _lowercase ( self : int ): with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. __lowercase = os.path.join(UpperCAmelCase__, "fake-roberta" ) os.makedirs(UpperCAmelCase__, exist_ok=UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__, "config.json" ), "w" ) as f: f.write(json.dumps({} ) ) __lowercase = AutoConfig.from_pretrained(UpperCAmelCase__ ) self.assertEqual(type(UpperCAmelCase__ ), UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ): try: AutoConfig.register("custom", UpperCAmelCase__ ) # Wrong model type will raise an error with self.assertRaises(UpperCAmelCase__ ): AutoConfig.register("model", UpperCAmelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase__ ): AutoConfig.register("bert", UpperCAmelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API __lowercase = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase__ ) __lowercase = AutoConfig.from_pretrained(UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__, UpperCAmelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def _lowercase ( self : Union[str, Any] ): with self.assertRaisesRegex( UpperCAmelCase__, "bert-base is not a local folder and is not a valid model identifier" ): __lowercase = AutoConfig.from_pretrained("bert-base" ) def _lowercase ( self : Any ): with self.assertRaisesRegex( UpperCAmelCase__, r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): __lowercase = AutoConfig.from_pretrained(UpperCAmelCase__, revision="aaaaaa" ) def _lowercase ( self : Tuple ): with self.assertRaisesRegex( UpperCAmelCase__, "hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.", ): __lowercase = AutoConfig.from_pretrained("hf-internal-testing/no-config-test-repo" ) def _lowercase ( self : Tuple ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCAmelCase__ ): __lowercase = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCAmelCase__ ): __lowercase = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model", trust_remote_code=UpperCAmelCase__ ) __lowercase = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model", trust_remote_code=UpperCAmelCase__ ) self.assertEqual(config.__class__.__name__, "NewModelConfig" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase__ ) __lowercase = AutoConfig.from_pretrained(UpperCAmelCase__, trust_remote_code=UpperCAmelCase__ ) self.assertEqual(reloaded_config.__class__.__name__, "NewModelConfig" ) def _lowercase ( self : Optional[Any] ): class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : Optional[Any] = "new-model" try: AutoConfig.register("new-model", UpperCAmelCase__ ) # If remote code is not set, the default is to use local __lowercase = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) self.assertEqual(config.__class__.__name__, "NewModelConfigLocal" ) # If remote code is disabled, we load the local one. __lowercase = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model", trust_remote_code=UpperCAmelCase__ ) self.assertEqual(config.__class__.__name__, "NewModelConfigLocal" ) # If remote is enabled, we load from the Hub __lowercase = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model", trust_remote_code=UpperCAmelCase__ ) self.assertEqual(config.__class__.__name__, "NewModelConfig" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
17
"""simple docstring""" def _A ( UpperCamelCase_ : list[int]) -> float: '''simple docstring''' if not nums: # Makes sure that the list is not empty raise ValueError("List is empty") __lowercase = sum(UpperCamelCase_) / len(UpperCamelCase_) # Calculate the average return sum(abs(x - average) for x in nums) / len(UpperCamelCase_) if __name__ == "__main__": import doctest doctest.testmod()
17
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : Any = "convbert" def __init__( self : List[str], UpperCAmelCase__ : Tuple=3_0_5_2_2, UpperCAmelCase__ : Tuple=7_6_8, UpperCAmelCase__ : int=1_2, UpperCAmelCase__ : Tuple=1_2, UpperCAmelCase__ : Any=3_0_7_2, UpperCAmelCase__ : List[str]="gelu", UpperCAmelCase__ : Union[str, Any]=0.1, UpperCAmelCase__ : str=0.1, UpperCAmelCase__ : Tuple=5_1_2, UpperCAmelCase__ : Any=2, UpperCAmelCase__ : int=0.02, UpperCAmelCase__ : List[str]=1E-12, UpperCAmelCase__ : Union[str, Any]=1, UpperCAmelCase__ : Union[str, Any]=0, UpperCAmelCase__ : Dict=2, UpperCAmelCase__ : Any=7_6_8, UpperCAmelCase__ : List[Any]=2, UpperCAmelCase__ : int=9, UpperCAmelCase__ : Optional[Any]=1, UpperCAmelCase__ : Optional[int]=None, **UpperCAmelCase__ : List[str], ): super().__init__( pad_token_id=UpperCAmelCase__, bos_token_id=UpperCAmelCase__, eos_token_id=UpperCAmelCase__, **UpperCAmelCase__, ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = embedding_size __lowercase = head_ratio __lowercase = conv_kernel_size __lowercase = num_groups __lowercase = classifier_dropout class _lowerCAmelCase ( lowercase ): """simple docstring""" @property def _lowercase ( self : Union[str, Any] ): if self.task == "multiple-choice": __lowercase = {0: "batch", 1: "choice", 2: "sequence"} else: __lowercase = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
17
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : int=1_0_0, UpperCAmelCase__ : Any=1_3, UpperCAmelCase__ : List[Any]=3_0, UpperCAmelCase__ : Dict=2, UpperCAmelCase__ : Any=3, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[str]=True, UpperCAmelCase__ : Optional[Any]=3_2, UpperCAmelCase__ : Any=5, UpperCAmelCase__ : Any=4, UpperCAmelCase__ : Any=3_7, UpperCAmelCase__ : Optional[int]="gelu", UpperCAmelCase__ : Dict=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Dict=1_0, UpperCAmelCase__ : Tuple=0.02, UpperCAmelCase__ : List[Any]=3, ): __lowercase = parent __lowercase = vocab_size __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase = (image_size // patch_size) ** 2 __lowercase = num_patches + 1 def _lowercase ( self : int ): __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size], self.type_sequence_label_size ) __lowercase = BeitConfig( vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=UpperCAmelCase__, initializer_range=self.initializer_range, ) return config, pixel_values, labels def _lowercase ( self : Any, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[str], UpperCAmelCase__ : List[str] ): __lowercase = FlaxBeitModel(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : List[Any] ): __lowercase = FlaxBeitForMaskedImageModeling(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size) ) def _lowercase ( self : Dict, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : Union[str, Any] ): __lowercase = self.type_sequence_label_size __lowercase = FlaxBeitForImageClassification(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowercase = 1 __lowercase = FlaxBeitForImageClassification(UpperCAmelCase__ ) __lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase = model(UpperCAmelCase__ ) def _lowercase ( self : List[str] ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) ,( __lowercase ) ,( __lowercase ) , ) = config_and_inputs __lowercase = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class _lowerCAmelCase ( lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def _lowercase ( self : List[Any] ): __lowercase = FlaxBeitModelTester(self ) __lowercase = ConfigTester(self, config_class=UpperCAmelCase__, has_text_modality=UpperCAmelCase__, hidden_size=3_7 ) def _lowercase ( self : Union[str, Any] ): self.config_tester.run_common_tests() def _lowercase ( self : Optional[int] ): __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(UpperCAmelCase__ ) __lowercase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["pixel_values"] self.assertListEqual(arg_names[:1], UpperCAmelCase__ ) def _lowercase ( self : Tuple ): __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowercase = self._prepare_for_class(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = model_class(UpperCAmelCase__ ) @jax.jit def model_jitted(UpperCAmelCase__ : str, **UpperCAmelCase__ : Dict ): return model(pixel_values=UpperCAmelCase__, **UpperCAmelCase__ ) with self.subTest("JIT Enabled" ): __lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ), len(UpperCAmelCase__ ) ) for jitted_output, output in zip(UpperCAmelCase__, UpperCAmelCase__ ): self.assertEqual(jitted_output.shape, output.shape ) def _lowercase ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def _lowercase ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ ) def _lowercase ( self : Tuple ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ ) @slow def _lowercase ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: __lowercase = model_class_name.from_pretrained("microsoft/beit-base-patch16-224" ) __lowercase = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(UpperCAmelCase__ ) def _A ( ) -> str: '''simple docstring''' __lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_vision @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : Optional[int] ): return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def _lowercase ( self : Any ): __lowercase = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ).pixel_values # prepare bool_masked_pos __lowercase = np.ones((1, 1_9_6), dtype=UpperCAmelCase__ ) # forward pass __lowercase = model(pixel_values=UpperCAmelCase__, bool_masked_pos=UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 1_9_6, 8_1_9_2) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3], UpperCAmelCase__, atol=1E-2 ) ) @slow def _lowercase ( self : Any ): __lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ) # forward pass __lowercase = model(**UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 1_0_0_0) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array([-1.2_385, -1.0_987, -1.0_108] ) self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) ) __lowercase = 2_8_1 self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ ) @slow def _lowercase ( self : List[str] ): __lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ) # forward pass __lowercase = model(**UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 2_1_8_4_1) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array([1.6_881, -0.2_787, 0.5_901] ) self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) ) __lowercase = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ )
17
1
"""simple docstring""" from numpy import exp, pi, sqrt def _A ( UpperCamelCase_ : str, UpperCamelCase_ : float = 0.0, UpperCamelCase_ : float = 1.0) -> int: '''simple docstring''' return 1 / sqrt(2 * pi * sigma**2) * exp(-((x - mu) ** 2) / (2 * sigma**2)) if __name__ == "__main__": import doctest doctest.testmod()
17
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class _lowerCAmelCase ( unittest.TestCase ,lowercase ): """simple docstring""" def _lowercase ( self : List[Any] ): __lowercase = load_tool("text-classification" ) self.tool.setup() __lowercase = load_tool("text-classification", remote=UpperCAmelCase__ ) def _lowercase ( self : str ): __lowercase = self.tool("That's quite cool", ["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" ) def _lowercase ( self : str ): __lowercase = self.remote_tool("That's quite cool", ["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" ) def _lowercase ( self : List[str] ): __lowercase = self.tool(text="That's quite cool", labels=["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" ) def _lowercase ( self : Tuple ): __lowercase = self.remote_tool(text="That's quite cool", labels=["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" )
17
1
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights __lowercase = FlaxDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=UpperCAmelCase__, cache_dir=UpperCAmelCase__ ) __lowercase = [t[-1] for t in os.walk(os.path.join(UpperCAmelCase__, os.listdir(UpperCAmelCase__ )[0], "snapshots" ) )] __lowercase = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(".bin" ) for f in files ) @slow @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : List[Any] ): __lowercase ,__lowercase = FlaxStableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=UpperCAmelCase__ ) __lowercase = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) __lowercase = jax.random.PRNGKey(0 ) __lowercase = 4 __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = pipeline.prepare_inputs(UpperCAmelCase__ ) # shard inputs and rng __lowercase = replicate(UpperCAmelCase__ ) __lowercase = jax.random.split(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = shard(UpperCAmelCase__ ) __lowercase = pipeline(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, jit=UpperCAmelCase__ ).images assert images.shape == (num_samples, 1, 6_4, 6_4, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 4.1_514_745 ) < 1E-3 assert np.abs(np.abs(UpperCAmelCase__, dtype=np.floataa ).sum() - 49_947.875 ) < 5E-1 __lowercase = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(UpperCAmelCase__ ) == num_samples def _lowercase ( self : int ): __lowercase ,__lowercase = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="flax", safety_checker=UpperCAmelCase__ ) __lowercase = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) __lowercase = jax.random.PRNGKey(0 ) __lowercase = 5_0 __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = pipeline.prepare_inputs(UpperCAmelCase__ ) # shard inputs and rng __lowercase = replicate(UpperCAmelCase__ ) __lowercase = jax.random.split(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = shard(UpperCAmelCase__ ) __lowercase = pipeline(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, jit=UpperCAmelCase__ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.05_652_401) ) < 1E-3 assert np.abs((np.abs(UpperCAmelCase__, dtype=np.floataa ).sum() - 2_383_808.2) ) < 5E-1 def _lowercase ( self : Optional[int] ): __lowercase ,__lowercase = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="bf16", dtype=jnp.bfloataa, safety_checker=UpperCAmelCase__ ) __lowercase = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) __lowercase = jax.random.PRNGKey(0 ) __lowercase = 5_0 __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = pipeline.prepare_inputs(UpperCAmelCase__ ) # shard inputs and rng __lowercase = replicate(UpperCAmelCase__ ) __lowercase = jax.random.split(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = shard(UpperCAmelCase__ ) __lowercase = pipeline(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, jit=UpperCAmelCase__ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.04_003_906) ) < 1E-3 assert np.abs((np.abs(UpperCAmelCase__, dtype=np.floataa ).sum() - 2_373_516.75) ) < 5E-1 def _lowercase ( self : Optional[int] ): __lowercase ,__lowercase = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="bf16", dtype=jnp.bfloataa ) __lowercase = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) __lowercase = jax.random.PRNGKey(0 ) __lowercase = 5_0 __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = pipeline.prepare_inputs(UpperCAmelCase__ ) # shard inputs and rng __lowercase = replicate(UpperCAmelCase__ ) __lowercase = jax.random.split(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = shard(UpperCAmelCase__ ) __lowercase = pipeline(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, jit=UpperCAmelCase__ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.04_003_906) ) < 1E-3 assert np.abs((np.abs(UpperCAmelCase__, dtype=np.floataa ).sum() - 2_373_516.75) ) < 5E-1 def _lowercase ( self : Optional[int] ): __lowercase = FlaxDDIMScheduler( beta_start=0.00_085, beta_end=0.012, beta_schedule="scaled_linear", set_alpha_to_one=UpperCAmelCase__, steps_offset=1, ) __lowercase ,__lowercase = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="bf16", dtype=jnp.bfloataa, scheduler=UpperCAmelCase__, safety_checker=UpperCAmelCase__, ) __lowercase = scheduler.create_state() __lowercase = scheduler_state __lowercase = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) __lowercase = jax.random.PRNGKey(0 ) __lowercase = 5_0 __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = pipeline.prepare_inputs(UpperCAmelCase__ ) # shard inputs and rng __lowercase = replicate(UpperCAmelCase__ ) __lowercase = jax.random.split(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = shard(UpperCAmelCase__ ) __lowercase = pipeline(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, jit=UpperCAmelCase__ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.045_043_945) ) < 1E-3 assert np.abs((np.abs(UpperCAmelCase__, dtype=np.floataa ).sum() - 2_347_693.5) ) < 5E-1 def _lowercase ( self : Dict ): __lowercase = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = jax.random.split(jax.random.PRNGKey(0 ), UpperCAmelCase__ ) __lowercase ,__lowercase = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="bf16", dtype=jnp.bfloataa, safety_checker=UpperCAmelCase__, ) __lowercase = replicate(UpperCAmelCase__ ) __lowercase = pipeline.prepare_inputs(UpperCAmelCase__ ) __lowercase = shard(UpperCAmelCase__ ) __lowercase = pipeline(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, jit=UpperCAmelCase__ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) __lowercase = images[2, 0, 2_5_6, 1_0:1_7, 1] # With memory efficient attention __lowercase ,__lowercase = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="bf16", dtype=jnp.bfloataa, safety_checker=UpperCAmelCase__, use_memory_efficient_attention=UpperCAmelCase__, ) __lowercase = replicate(UpperCAmelCase__ ) __lowercase = pipeline.prepare_inputs(UpperCAmelCase__ ) __lowercase = shard(UpperCAmelCase__ ) __lowercase = pipeline(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, jit=UpperCAmelCase__ ).images assert images_eff.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) __lowercase = images[2, 0, 2_5_6, 1_0:1_7, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
17
"""simple docstring""" from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker _a = 'CompVis/stable-diffusion-v1-1' _a = 'CompVis/stable-diffusion-v1-2' _a = 'CompVis/stable-diffusion-v1-3' _a = 'CompVis/stable-diffusion-v1-4' class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : Dict, UpperCAmelCase__ : AutoencoderKL, UpperCAmelCase__ : CLIPTextModel, UpperCAmelCase__ : CLIPTokenizer, UpperCAmelCase__ : UNetaDConditionModel, UpperCAmelCase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], UpperCAmelCase__ : StableDiffusionSafetyChecker, UpperCAmelCase__ : CLIPImageProcessor, UpperCAmelCase__ : bool = True, ): super()._init_() __lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ ) __lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ ) __lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ ) __lowercase = StableDiffusionPipeline( vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, tokenizer=UpperCAmelCase__, unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, safety_checker=UpperCAmelCase__, feature_extractor=UpperCAmelCase__, requires_safety_checker=UpperCAmelCase__, ) self.register_modules(pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea ) @property def _lowercase ( self : List[str] ): return {k: getattr(self, UpperCAmelCase__ ) for k in self.config.keys() if not k.startswith("_" )} def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase__ ) def _lowercase ( self : List[str] ): self.enable_attention_slicing(UpperCAmelCase__ ) @torch.no_grad() def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Tuple, ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : Tuple, UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : str, ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : str, UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Any, ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Optional[int], ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : str, ): __lowercase = "cuda" if torch.cuda.is_available() else "cpu" self.to(UpperCAmelCase__ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" ) # Get first result from Stable Diffusion Checkpoint v1.1 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get first result from Stable Diffusion Checkpoint v1.2 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get first result from Stable Diffusion Checkpoint v1.3 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get first result from Stable Diffusion Checkpoint v1.4 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
17
1
"""simple docstring""" import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCAmelCase : """simple docstring""" def __init__( self : str, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[str]=2, UpperCAmelCase__ : str=8, UpperCAmelCase__ : int=True, UpperCAmelCase__ : str=True, UpperCAmelCase__ : Optional[int]=True, UpperCAmelCase__ : Any=True, UpperCAmelCase__ : Tuple=9_9, UpperCAmelCase__ : Dict=1_6, UpperCAmelCase__ : Optional[int]=5, UpperCAmelCase__ : Any=2, UpperCAmelCase__ : int=3_6, UpperCAmelCase__ : List[Any]="gelu", UpperCAmelCase__ : str=0.0, UpperCAmelCase__ : Dict=0.0, UpperCAmelCase__ : List[str]=5_1_2, UpperCAmelCase__ : Optional[int]=1_6, UpperCAmelCase__ : Tuple=2, UpperCAmelCase__ : Tuple=0.02, UpperCAmelCase__ : int=3, UpperCAmelCase__ : Tuple=4, UpperCAmelCase__ : List[Any]=None, ): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def _lowercase ( self : str ): __lowercase = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size], self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) __lowercase = ids_tensor([self.batch_size], self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self : Optional[Any] ): return MraConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=UpperCAmelCase__, initializer_range=self.initializer_range, ) def _lowercase ( self : Union[str, Any] ): __lowercase = self.get_config() __lowercase = 3_0_0 return config def _lowercase ( self : List[str] ): ( ( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) , ) = self.prepare_config_and_inputs() __lowercase = True __lowercase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowercase = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _lowercase ( self : List[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Dict, UpperCAmelCase__ : Dict, UpperCAmelCase__ : Dict ): __lowercase = MraModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowercase = model(UpperCAmelCase__, attention_mask=UpperCAmelCase__, token_type_ids=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__, token_type_ids=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Tuple, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Optional[Any], ): __lowercase = True __lowercase = MraModel(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowercase = model( UpperCAmelCase__, attention_mask=UpperCAmelCase__, token_type_ids=UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__, encoder_attention_mask=UpperCAmelCase__, ) __lowercase = model( UpperCAmelCase__, attention_mask=UpperCAmelCase__, token_type_ids=UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__, ) __lowercase = model(UpperCAmelCase__, attention_mask=UpperCAmelCase__, token_type_ids=UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Dict, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : str, UpperCAmelCase__ : Dict, UpperCAmelCase__ : int, UpperCAmelCase__ : Dict, UpperCAmelCase__ : str, UpperCAmelCase__ : int ): __lowercase = MraForMaskedLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowercase = model(UpperCAmelCase__, attention_mask=UpperCAmelCase__, token_type_ids=UpperCAmelCase__, labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self : str, UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : str, UpperCAmelCase__ : List[str] ): __lowercase = MraForQuestionAnswering(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowercase = model( UpperCAmelCase__, attention_mask=UpperCAmelCase__, token_type_ids=UpperCAmelCase__, start_positions=UpperCAmelCase__, end_positions=UpperCAmelCase__, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def _lowercase ( self : str, UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Any, UpperCAmelCase__ : List[str], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Tuple ): __lowercase = self.num_labels __lowercase = MraForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowercase = model(UpperCAmelCase__, attention_mask=UpperCAmelCase__, token_type_ids=UpperCAmelCase__, labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def _lowercase ( self : Optional[int], UpperCAmelCase__ : int, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Optional[Any] ): __lowercase = self.num_labels __lowercase = MraForTokenClassification(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowercase = model(UpperCAmelCase__, attention_mask=UpperCAmelCase__, token_type_ids=UpperCAmelCase__, labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : int, UpperCAmelCase__ : Dict, UpperCAmelCase__ : int, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Tuple ): __lowercase = self.num_choices __lowercase = MraForMultipleChoice(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() __lowercase = token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() __lowercase = model( UpperCAmelCase__, attention_mask=UpperCAmelCase__, token_type_ids=UpperCAmelCase__, labels=UpperCAmelCase__, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def _lowercase ( self : Union[str, Any] ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) , ) = config_and_inputs __lowercase = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Optional[int] = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) __UpperCAmelCase : Any = False __UpperCAmelCase : List[Any] = False __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : List[Any] = False __UpperCAmelCase : List[Any] = () def _lowercase ( self : List[Any] ): __lowercase = MraModelTester(self ) __lowercase = ConfigTester(self, config_class=UpperCAmelCase__, hidden_size=3_7 ) def _lowercase ( self : Any ): self.config_tester.run_common_tests() def _lowercase ( self : Union[str, Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def _lowercase ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase = type self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def _lowercase ( self : Tuple ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ ) def _lowercase ( self : Tuple ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase__ ) def _lowercase ( self : Tuple ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase__ ) def _lowercase ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase__ ) def _lowercase ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase__ ) @slow def _lowercase ( self : Any ): for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = MraModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @unittest.skip(reason="MRA does not output attentions" ) def _lowercase ( self : Union[str, Any] ): return @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : Tuple ): __lowercase = MraModel.from_pretrained("uw-madison/mra-base-512-4" ) __lowercase = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): __lowercase = model(UpperCAmelCase__ )[0] __lowercase = torch.Size((1, 2_5_6, 7_6_8) ) self.assertEqual(output.shape, UpperCAmelCase__ ) __lowercase = torch.tensor( [[[-0.0_140, 0.0_830, -0.0_381], [0.1_546, 0.1_402, 0.0_220], [0.1_162, 0.0_851, 0.0_165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], UpperCAmelCase__, atol=1E-4 ) ) @slow def _lowercase ( self : Union[str, Any] ): __lowercase = MraForMaskedLM.from_pretrained("uw-madison/mra-base-512-4" ) __lowercase = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): __lowercase = model(UpperCAmelCase__ )[0] __lowercase = 5_0_2_6_5 __lowercase = torch.Size((1, 2_5_6, vocab_size) ) self.assertEqual(output.shape, UpperCAmelCase__ ) __lowercase = torch.tensor( [[[9.2_595, -3.6_038, 11.8_819], [9.3_869, -3.2_693, 11.0_956], [11.8_524, -3.4_938, 13.1_210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], UpperCAmelCase__, atol=1E-4 ) ) @slow def _lowercase ( self : Tuple ): __lowercase = MraForMaskedLM.from_pretrained("uw-madison/mra-base-4096-8-d3" ) __lowercase = torch.arange(4_0_9_6 ).unsqueeze(0 ) with torch.no_grad(): __lowercase = model(UpperCAmelCase__ )[0] __lowercase = 5_0_2_6_5 __lowercase = torch.Size((1, 4_0_9_6, vocab_size) ) self.assertEqual(output.shape, UpperCAmelCase__ ) __lowercase = torch.tensor( [[[5.4_789, -2.3_564, 7.5_064], [7.9_067, -1.3_369, 9.9_668], [9.0_712, -1.8_106, 7.0_380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], UpperCAmelCase__, atol=1E-4 ) )
17
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowerCAmelCase ( lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = "ssube/stable-diffusion-x4-upscaler-onnx" def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : List[str]=0 ): __lowercase = floats_tensor((1, 3, 1_2_8, 1_2_8), rng=random.Random(UpperCAmelCase__ ) ) __lowercase = torch.manual_seed(UpperCAmelCase__ ) __lowercase = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def _lowercase ( self : Any ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def _lowercase ( self : Optional[Any] ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) __lowercase = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.6_898_892, 0.59_240_556, 0.52_499_527, 0.58_866_215, 0.52_258_235, 0.52_572_715, 0.62_414_473, 0.6_174_387, 0.6_214_964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _lowercase ( self : int ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.7_659_278, 0.76_437_664, 0.75_579_107, 0.7_691_116, 0.77_666_986, 0.7_727_672, 0.7_758_664, 0.7_812_226, 0.76_942_515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _lowercase ( self : str ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) __lowercase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _lowercase ( self : Any ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) __lowercase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.77_424_496, 0.773_601, 0.7_645_288, 0.7_769_598, 0.7_772_739, 0.7_738_688, 0.78_187_233, 0.77_879_584, 0.767_043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @property def _lowercase ( self : Tuple ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowercase ( self : Dict ): __lowercase = ort.SessionOptions() __lowercase = False return options def _lowercase ( self : Dict ): __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) __lowercase = init_image.resize((1_2_8, 1_2_8) ) # using the PNDM scheduler by default __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx", provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = "A fantasy landscape, trending on artstation" __lowercase = torch.manual_seed(0 ) __lowercase = pipe( prompt=UpperCAmelCase__, image=UpperCAmelCase__, guidance_scale=7.5, num_inference_steps=1_0, generator=UpperCAmelCase__, output_type="np", ) __lowercase = output.images __lowercase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array([0.4_883, 0.4_947, 0.4_980, 0.4_975, 0.4_982, 0.4_980, 0.5_000, 0.5_006, 0.4_972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def _lowercase ( self : str ): __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) __lowercase = init_image.resize((1_2_8, 1_2_8) ) __lowercase = LMSDiscreteScheduler.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx", subfolder="scheduler" ) __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx", scheduler=UpperCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = "A fantasy landscape, trending on artstation" __lowercase = torch.manual_seed(0 ) __lowercase = pipe( prompt=UpperCAmelCase__, image=UpperCAmelCase__, guidance_scale=7.5, num_inference_steps=2_0, generator=UpperCAmelCase__, output_type="np", ) __lowercase = output.images __lowercase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.50_173_753, 0.50_223_356, 0.502_039, 0.50_233_036, 0.5_023_725, 0.5_022_601, 0.5_018_758, 0.50_234_085, 0.50_241_566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
17
1
"""simple docstring""" import cva import numpy as np class _lowerCAmelCase : """simple docstring""" def __init__( self : Tuple, UpperCAmelCase__ : float, UpperCAmelCase__ : int ): if k in (0.04, 0.06): __lowercase = k __lowercase = window_size else: raise ValueError("invalid k value" ) def __str__( self : Any ): return str(self.k ) def _lowercase ( self : Optional[int], UpperCAmelCase__ : str ): __lowercase = cva.imread(UpperCAmelCase__, 0 ) __lowercase ,__lowercase = img.shape __lowercase = [] __lowercase = img.copy() __lowercase = cva.cvtColor(UpperCAmelCase__, cva.COLOR_GRAY2RGB ) __lowercase ,__lowercase = np.gradient(UpperCAmelCase__ ) __lowercase = dx**2 __lowercase = dy**2 __lowercase = dx * dy __lowercase = 0.04 __lowercase = self.window_size // 2 for y in range(UpperCAmelCase__, h - offset ): for x in range(UpperCAmelCase__, w - offset ): __lowercase = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __lowercase = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __lowercase = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __lowercase = (wxx * wyy) - (wxy**2) __lowercase = wxx + wyy __lowercase = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0), 0 ) color_img.itemset((y, x, 1), 0 ) color_img.itemset((y, x, 2), 2_5_5 ) return color_img, corner_list if __name__ == "__main__": _a = HarrisCorner(0.04, 3) _a , _a = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
17
"""simple docstring""" import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal _a = datasets.utils.logging.get_logger(__name__) _a = ['names', 'prefix'] _a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] _a = ['encoding_errors', 'on_bad_lines'] _a = ['date_format'] @dataclass class _lowerCAmelCase ( datasets.BuilderConfig ): """simple docstring""" __UpperCAmelCase : str = "," __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[Union[int, List[int], str]] = "infer" __UpperCAmelCase : Optional[List[str]] = None __UpperCAmelCase : Optional[List[str]] = None __UpperCAmelCase : Optional[Union[int, str, List[int], List[str]]] = None __UpperCAmelCase : Optional[Union[List[int], List[str]]] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : bool = True __UpperCAmelCase : Optional[Literal["c", "python", "pyarrow"]] = None __UpperCAmelCase : Dict[Union[int, str], Callable[[Any], Any]] = None __UpperCAmelCase : Optional[list] = None __UpperCAmelCase : Optional[list] = None __UpperCAmelCase : bool = False __UpperCAmelCase : Optional[Union[int, List[int]]] = None __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Optional[Union[str, List[str]]] = None __UpperCAmelCase : bool = True __UpperCAmelCase : bool = True __UpperCAmelCase : bool = False __UpperCAmelCase : bool = True __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : str = "." __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : str = '"' __UpperCAmelCase : int = 0 __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : bool = True __UpperCAmelCase : bool = True __UpperCAmelCase : int = 0 __UpperCAmelCase : bool = True __UpperCAmelCase : bool = False __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : int = 1_0_0_0_0 __UpperCAmelCase : Optional[datasets.Features] = None __UpperCAmelCase : Optional[str] = "strict" __UpperCAmelCase : Literal["error", "warn", "skip"] = "error" __UpperCAmelCase : Optional[str] = None def _lowercase ( self : Tuple ): if self.delimiter is not None: __lowercase = self.delimiter if self.column_names is not None: __lowercase = self.column_names @property def _lowercase ( self : Union[str, Any] ): __lowercase = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig(), UpperCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class _lowerCAmelCase ( datasets.ArrowBasedBuilder ): """simple docstring""" __UpperCAmelCase : Tuple = CsvConfig def _lowercase ( self : List[str] ): return datasets.DatasetInfo(features=self.config.features ) def _lowercase ( self : List[Any], UpperCAmelCase__ : Dict ): if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) __lowercase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(UpperCAmelCase__, (str, list, tuple) ): __lowercase = data_files if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = [files] __lowercase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files} )] __lowercase = [] for split_name, files in data_files.items(): if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = [files] __lowercase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=UpperCAmelCase__, gen_kwargs={"files": files} ) ) return splits def _lowercase ( self : Dict, UpperCAmelCase__ : pa.Table ): if self.config.features is not None: __lowercase = self.config.features.arrow_schema if all(not require_storage_cast(UpperCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast __lowercase = pa.Table.from_arrays([pa_table[field.name] for field in schema], schema=UpperCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example __lowercase = table_cast(UpperCAmelCase__, UpperCAmelCase__ ) return pa_table def _lowercase ( self : Optional[Any], UpperCAmelCase__ : List[str] ): __lowercase = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str __lowercase = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(UpperCAmelCase__ ) else object for name, dtype, feature in zip(schema.names, schema.types, self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase__ ) ): __lowercase = pd.read_csv(UpperCAmelCase__, iterator=UpperCAmelCase__, dtype=UpperCAmelCase__, **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(UpperCAmelCase__ ): __lowercase = pa.Table.from_pandas(UpperCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase__ ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(UpperCAmelCase__ )}: {e}""" ) raise
17
1
"""simple docstring""" import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) _a = logging.getLogger() def _A ( ) -> Dict: '''simple docstring''' __lowercase = argparse.ArgumentParser() parser.add_argument("-f") __lowercase = parser.parse_args() return args.f class _lowerCAmelCase ( lowercase ): """simple docstring""" def _lowercase ( self : Dict ): __lowercase = logging.StreamHandler(sys.stdout ) logger.addHandler(UpperCAmelCase__ ) def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[Any] ): __lowercase = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0, "run_glue_deebert.py" ) with patch.object(UpperCAmelCase__, "argv", UpperCAmelCase__ ): __lowercase = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(UpperCAmelCase__, 0.666 ) @slow @require_torch_non_multi_gpu def _lowercase ( self : Optional[int] ): __lowercase = "\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n ".split() self.run_and_check(UpperCAmelCase__ ) __lowercase = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(UpperCAmelCase__ ) __lowercase = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(UpperCAmelCase__ )
17
"""simple docstring""" from scipy.stats import spearmanr import datasets _a = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n' _a = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n' _a = r'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def _lowercase ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ), reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"], ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int]=False ): __lowercase = spearmanr(UpperCAmelCase__, UpperCAmelCase__ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
17
1
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow _a = logging.getLogger() @unittest.skip("Temporarily disable the doc tests." ) @require_torch @require_tf @slow class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : List[str], UpperCAmelCase__ : Path, UpperCAmelCase__ : Union[str, None] = None, UpperCAmelCase__ : Union[List[str], None] = None, UpperCAmelCase__ : Union[str, List[str], None] = None, UpperCAmelCase__ : bool = True, ): __lowercase = [file for file in os.listdir(UpperCAmelCase__ ) if os.path.isfile(os.path.join(UpperCAmelCase__, UpperCAmelCase__ ) )] if identifier is not None: __lowercase = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): for n_ in n_identifier: __lowercase = [file for file in files if n_ not in file] else: __lowercase = [file for file in files if n_identifier not in file] __lowercase = ignore_files or [] ignore_files.append("__init__.py" ) __lowercase = [file for file in files if file not in ignore_files] for file in files: # Open all files print("Testing", UpperCAmelCase__ ) if only_modules: __lowercase = file.split("." )[0] try: __lowercase = getattr(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = doctest.DocTestSuite(UpperCAmelCase__ ) __lowercase = unittest.TextTestRunner().run(UpperCAmelCase__ ) self.assertIs(len(result.failures ), 0 ) except AttributeError: logger.info(F"""{module_identifier} is not a module.""" ) else: __lowercase = doctest.testfile(str(".." / directory / file ), optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed, 0 ) def _lowercase ( self : Tuple ): __lowercase = Path("src/transformers" ) __lowercase = "modeling" __lowercase = [ "modeling_ctrl.py", "modeling_tf_ctrl.py", ] self.analyze_directory(UpperCAmelCase__, identifier=UpperCAmelCase__, ignore_files=UpperCAmelCase__ ) def _lowercase ( self : Optional[Any] ): __lowercase = Path("src/transformers" ) __lowercase = "tokenization" self.analyze_directory(UpperCAmelCase__, identifier=UpperCAmelCase__ ) def _lowercase ( self : int ): __lowercase = Path("src/transformers" ) __lowercase = "configuration" self.analyze_directory(UpperCAmelCase__, identifier=UpperCAmelCase__ ) def _lowercase ( self : Optional[int] ): __lowercase = Path("src/transformers" ) __lowercase = ["configuration", "modeling", "tokenization"] self.analyze_directory(UpperCAmelCase__, n_identifier=UpperCAmelCase__ ) def _lowercase ( self : Optional[Any] ): __lowercase = Path("docs/source" ) __lowercase = ["favicon.ico"] self.analyze_directory(UpperCAmelCase__, ignore_files=UpperCAmelCase__, only_modules=UpperCAmelCase__ )
17
"""simple docstring""" from collections.abc import Sequence def _A ( UpperCamelCase_ : Sequence[float], UpperCamelCase_ : float) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(UpperCamelCase_)) def _A ( UpperCamelCase_ : Sequence[float], UpperCamelCase_ : float) -> float: '''simple docstring''' __lowercase = 0.0 for coeff in reversed(UpperCamelCase_): __lowercase = result * x + coeff return result if __name__ == "__main__": _a = (0.0, 0.0, 5.0, 9.3, 7.0) _a = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
17
1
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def _A ( UpperCamelCase_ : Optional[int], UpperCamelCase_ : str=False) -> Optional[int]: '''simple docstring''' __lowercase = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("head"): __lowercase = "segformer.encoder." + key if key.startswith("backbone"): __lowercase = key.replace("backbone", "segformer.encoder") if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 __lowercase = key[key.find("patch_embed") + len("patch_embed")] __lowercase = key.replace(F"""patch_embed{idx}""", F"""patch_embeddings.{int(UpperCamelCase_)-1}""") if "norm" in key: __lowercase = key.replace("norm", "layer_norm") if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 __lowercase = key[key.find("segformer.encoder.layer_norm") + len("segformer.encoder.layer_norm")] __lowercase = key.replace(F"""layer_norm{idx}""", F"""layer_norm.{int(UpperCamelCase_)-1}""") if "layer_norm1" in key: __lowercase = key.replace("layer_norm1", "layer_norm_1") if "layer_norm2" in key: __lowercase = key.replace("layer_norm2", "layer_norm_2") if "block" in key: # replace for example block1 by block.0 __lowercase = key[key.find("block") + len("block")] __lowercase = key.replace(F"""block{idx}""", F"""block.{int(UpperCamelCase_)-1}""") if "attn.q" in key: __lowercase = key.replace("attn.q", "attention.self.query") if "attn.proj" in key: __lowercase = key.replace("attn.proj", "attention.output.dense") if "attn" in key: __lowercase = key.replace("attn", "attention.self") if "fc1" in key: __lowercase = key.replace("fc1", "dense1") if "fc2" in key: __lowercase = key.replace("fc2", "dense2") if "linear_pred" in key: __lowercase = key.replace("linear_pred", "classifier") if "linear_fuse" in key: __lowercase = key.replace("linear_fuse.conv", "linear_fuse") __lowercase = key.replace("linear_fuse.bn", "batch_norm") if "linear_c" in key: # replace for example linear_c4 by linear_c.3 __lowercase = key[key.find("linear_c") + len("linear_c")] __lowercase = key.replace(F"""linear_c{idx}""", F"""linear_c.{int(UpperCamelCase_)-1}""") if key.startswith("head"): __lowercase = key.replace("head", "classifier") __lowercase = value return new_state_dict def _A ( UpperCamelCase_ : Optional[int], UpperCamelCase_ : Union[str, Any]) -> Dict: '''simple docstring''' for i in range(config.num_encoder_blocks): for j in range(config.depths[i]): # read in weights + bias of keys and values (which is a single matrix in the original implementation) __lowercase = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.weight""") __lowercase = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.bias""") # next, add keys and values (in that order) to the state dict __lowercase = kv_weight[ : config.hidden_sizes[i], : ] __lowercase = kv_bias[: config.hidden_sizes[i]] __lowercase = kv_weight[ config.hidden_sizes[i] :, : ] __lowercase = kv_bias[ config.hidden_sizes[i] : ] def _A ( ) -> List[Any]: '''simple docstring''' __lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowercase = Image.open(requests.get(UpperCamelCase_, stream=UpperCamelCase_).raw) return image @torch.no_grad() def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : int, UpperCamelCase_ : Tuple) -> List[Any]: '''simple docstring''' __lowercase = SegformerConfig() __lowercase = False # set attributes based on model_name __lowercase = "huggingface/label-files" if "segformer" in model_name: __lowercase = model_name[len("segformer.") : len("segformer.") + 2] if "ade" in model_name: __lowercase = 150 __lowercase = "ade20k-id2label.json" __lowercase = (1, 150, 128, 128) elif "city" in model_name: __lowercase = 19 __lowercase = "cityscapes-id2label.json" __lowercase = (1, 19, 128, 128) else: raise ValueError(F"""Model {model_name} not supported""") elif "mit" in model_name: __lowercase = True __lowercase = model_name[4:6] __lowercase = 1000 __lowercase = "imagenet-1k-id2label.json" __lowercase = (1, 1000) else: raise ValueError(F"""Model {model_name} not supported""") # set config attributes __lowercase = json.load(open(hf_hub_download(UpperCamelCase_, UpperCamelCase_, repo_type="dataset"), "r")) __lowercase = {int(UpperCamelCase_): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": __lowercase = [64, 128, 320, 512] __lowercase = 256 elif size == "b2": __lowercase = [64, 128, 320, 512] __lowercase = 768 __lowercase = [3, 4, 6, 3] elif size == "b3": __lowercase = [64, 128, 320, 512] __lowercase = 768 __lowercase = [3, 4, 18, 3] elif size == "b4": __lowercase = [64, 128, 320, 512] __lowercase = 768 __lowercase = [3, 8, 27, 3] elif size == "b5": __lowercase = [64, 128, 320, 512] __lowercase = 768 __lowercase = [3, 6, 40, 3] else: raise ValueError(F"""Size {size} not supported""") # load image processor (only resize + normalize) __lowercase = SegformerImageProcessor( image_scale=(512, 512), keep_ratio=UpperCamelCase_, align=UpperCamelCase_, do_random_crop=UpperCamelCase_) # prepare image __lowercase = prepare_img() __lowercase = image_processor(images=UpperCamelCase_, return_tensors="pt").pixel_values logger.info(F"""Converting model {model_name}...""") # load original state dict if encoder_only: __lowercase = torch.load(UpperCamelCase_, map_location=torch.device("cpu")) else: __lowercase = torch.load(UpperCamelCase_, map_location=torch.device("cpu"))["state_dict"] # rename keys __lowercase = rename_keys(UpperCamelCase_, encoder_only=UpperCamelCase_) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(UpperCamelCase_, UpperCamelCase_) # create HuggingFace model and load state dict if encoder_only: __lowercase = False __lowercase = SegformerForImageClassification(UpperCamelCase_) else: __lowercase = SegformerForSemanticSegmentation(UpperCamelCase_) model.load_state_dict(UpperCamelCase_) model.eval() # forward pass __lowercase = model(UpperCamelCase_) __lowercase = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": __lowercase = torch.tensor( [ [[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]], [[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]], [[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]], ]) elif model_name == "segformer.b1.512x512.ade.160k": __lowercase = torch.tensor( [ [[-7.5_820, -8.7_231, -8.3_215], [-8.0_600, -10.3_529, -10.0_304], [-7.5_208, -9.4_103, -9.6_239]], [[-12.6_918, -13.8_994, -13.7_137], [-13.3_196, -15.7_523, -15.4_789], [-12.9_343, -14.8_757, -14.9_689]], [[-11.1_911, -11.9_421, -11.3_243], [-11.3_342, -13.6_839, -13.3_581], [-10.3_909, -12.1_832, -12.4_858]], ]) elif model_name == "segformer.b2.512x512.ade.160k": __lowercase = torch.tensor( [ [[-11.8_173, -14.3_850, -16.3_128], [-14.5_648, -16.5_804, -18.6_568], [-14.7_223, -15.7_387, -18.4_218]], [[-15.7_290, -17.9_171, -19.4_423], [-18.3_105, -19.9_448, -21.4_661], [-17.9_296, -18.6_497, -20.7_910]], [[-15.0_783, -17.0_336, -18.2_789], [-16.8_771, -18.6_870, -20.1_612], [-16.2_454, -17.1_426, -19.5_055]], ]) elif model_name == "segformer.b3.512x512.ade.160k": __lowercase = torch.tensor( [ [[-9.0_878, -10.2_081, -10.1_891], [-9.3_144, -10.7_941, -10.9_843], [-9.2_294, -10.3_855, -10.5_704]], [[-12.2_316, -13.9_068, -13.6_102], [-12.9_161, -14.3_702, -14.3_235], [-12.5_233, -13.7_174, -13.7_932]], [[-14.6_275, -15.2_490, -14.9_727], [-14.3_400, -15.9_687, -16.2_827], [-14.1_484, -15.4_033, -15.8_937]], ]) elif model_name == "segformer.b4.512x512.ade.160k": __lowercase = torch.tensor( [ [[-12.3_144, -13.2_447, -14.0_802], [-13.3_614, -14.5_816, -15.6_117], [-13.3_340, -14.4_433, -16.2_219]], [[-19.2_781, -20.4_128, -20.7_506], [-20.6_153, -21.6_566, -22.0_998], [-19.9_800, -21.0_430, -22.1_494]], [[-18.8_739, -19.7_804, -21.1_834], [-20.1_233, -21.6_765, -23.2_944], [-20.0_315, -21.2_641, -23.6_944]], ]) elif model_name == "segformer.b5.640x640.ade.160k": __lowercase = torch.tensor( [ [[-9.5_524, -12.0_835, -11.7_348], [-10.5_229, -13.6_446, -14.5_662], [-9.5_842, -12.8_851, -13.9_414]], [[-15.3_432, -17.5_323, -17.0_818], [-16.3_330, -18.9_255, -19.2_101], [-15.1_340, -17.7_848, -18.3_971]], [[-12.6_072, -14.9_486, -14.6_631], [-13.7_629, -17.0_907, -17.7_745], [-12.7_899, -16.1_695, -17.1_671]], ]) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": __lowercase = torch.tensor( [ [[-11.9_295, -13.4_057, -14.8_106], [-13.3_431, -14.8_179, -15.3_781], [-14.2_836, -15.5_942, -16.1_588]], [[-11.4_906, -12.8_067, -13.6_564], [-13.1_189, -14.0_500, -14.1_543], [-13.8_748, -14.5_136, -14.8_789]], [[0.5_374, 0.1_067, -0.4_742], [0.1_141, -0.2_255, -0.7_099], [-0.3_000, -0.5_924, -1.3_105]], ]) elif model_name == "segformer.b0.512x1024.city.160k": __lowercase = torch.tensor( [ [[-7.8_217, -9.8_767, -10.1_717], [-9.4_438, -10.9_058, -11.4_047], [-9.7_939, -12.3_495, -12.1_079]], [[-7.1_514, -9.5_336, -10.0_860], [-9.7_776, -11.6_822, -11.8_439], [-10.1_411, -12.7_655, -12.8_972]], [[0.3_021, 0.0_805, -0.2_310], [-0.0_328, -0.1_605, -0.2_714], [-0.1_408, -0.5_477, -0.6_976]], ]) elif model_name == "segformer.b0.640x1280.city.160k": __lowercase = torch.tensor( [ [ [-1.1372E01, -1.2787E01, -1.3477E01], [-1.2536E01, -1.4194E01, -1.4409E01], [-1.3217E01, -1.4888E01, -1.5327E01], ], [ [-1.4791E01, -1.7122E01, -1.8277E01], [-1.7163E01, -1.9192E01, -1.9533E01], [-1.7897E01, -1.9991E01, -2.0315E01], ], [ [7.6723E-01, 4.1921E-01, -7.7878E-02], [4.7772E-01, 9.5557E-03, -2.8082E-01], [3.6032E-01, -2.4826E-01, -5.1168E-01], ], ]) elif model_name == "segformer.b0.768x768.city.160k": __lowercase = torch.tensor( [ [[-9.4_959, -11.3_087, -11.7_479], [-11.0_025, -12.6_540, -12.3_319], [-11.4_064, -13.0_487, -12.9_905]], [[-9.8_905, -11.3_084, -12.0_854], [-11.1_726, -12.7_698, -12.9_583], [-11.5_985, -13.3_278, -14.1_774]], [[0.2_213, 0.0_192, -0.2_466], [-0.1_731, -0.4_213, -0.4_874], [-0.3_126, -0.6_541, -1.1_389]], ]) elif model_name == "segformer.b1.1024x1024.city.160k": __lowercase = torch.tensor( [ [[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]], [[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]], [[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]], ]) elif model_name == "segformer.b2.1024x1024.city.160k": __lowercase = torch.tensor( [ [[-16.0_976, -16.4_856, -17.3_962], [-16.6_234, -19.0_342, -19.7_685], [-16.0_900, -18.0_661, -19.1_180]], [[-18.4_750, -18.8_488, -19.5_074], [-19.4_030, -22.1_570, -22.5_977], [-19.1_191, -20.8_486, -22.3_783]], [[-4.5_178, -5.5_037, -6.5_109], [-5.0_884, -7.2_174, -8.0_334], [-4.4_156, -5.8_117, -7.2_970]], ]) elif model_name == "segformer.b3.1024x1024.city.160k": __lowercase = torch.tensor( [ [[-14.2_081, -14.4_732, -14.1_977], [-14.5_867, -16.4_423, -16.6_356], [-13.4_441, -14.9_685, -16.8_696]], [[-14.4_576, -14.7_073, -15.0_451], [-15.0_816, -17.6_237, -17.9_873], [-14.4_213, -16.0_199, -18.5_992]], [[-4.7_349, -4.9_588, -5.0_966], [-4.3_210, -6.9_325, -7.2_591], [-3.4_312, -4.7_484, -7.1_917]], ]) elif model_name == "segformer.b4.1024x1024.city.160k": __lowercase = torch.tensor( [ [[-11.7_737, -11.9_526, -11.3_273], [-13.6_692, -14.4_574, -13.8_878], [-13.8_937, -14.6_924, -15.9_345]], [[-14.6_706, -14.5_330, -14.1_306], [-16.1_502, -16.8_180, -16.4_269], [-16.8_338, -17.8_939, -20.1_746]], [[1.0_491, 0.8_289, 1.0_310], [1.1_044, 0.5_219, 0.8_055], [1.0_899, 0.6_926, 0.5_590]], ]) elif model_name == "segformer.b5.1024x1024.city.160k": __lowercase = torch.tensor( [ [[-12.5_641, -13.4_777, -13.0_684], [-13.9_587, -15.8_983, -16.6_557], [-13.3_109, -15.7_350, -16.3_141]], [[-14.7_074, -15.4_352, -14.5_944], [-16.6_353, -18.1_663, -18.6_120], [-15.1_702, -18.0_329, -18.1_547]], [[-1.7_990, -2.0_951, -1.7_784], [-2.6_397, -3.8_245, -3.9_686], [-1.5_264, -2.8_126, -2.9_316]], ]) else: __lowercase = logits.argmax(-1).item() print("Predicted class:", model.config.idalabel[predicted_class_idx]) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3], UpperCamelCase_, atol=1E-2) # finally, save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""") Path(UpperCamelCase_).mkdir(exist_ok=UpperCamelCase_) model.save_pretrained(UpperCamelCase_) image_processor.save_pretrained(UpperCamelCase_) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument( '--model_name', default='segformer.b0.512x512.ade.160k', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) _a = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
17
"""simple docstring""" import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class _lowerCAmelCase ( pl.LightningModule ): """simple docstring""" def __init__( self : Optional[Any], UpperCAmelCase__ : str ): super().__init__() __lowercase = model __lowercase = 2 __lowercase = nn.Linear(self.model.config.hidden_size, self.num_labels ) def _lowercase ( self : Optional[int] ): pass def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str, UpperCamelCase_ : str) -> str: '''simple docstring''' __lowercase = LongformerModel.from_pretrained(UpperCamelCase_) __lowercase = LightningModel(UpperCamelCase_) __lowercase = torch.load(UpperCamelCase_, map_location=torch.device("cpu")) lightning_model.load_state_dict(ckpt["state_dict"]) # init longformer question answering model __lowercase = LongformerForQuestionAnswering.from_pretrained(UpperCamelCase_) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict()) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict()) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(UpperCamelCase_) print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""") if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _a = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
17
1
"""simple docstring""" import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : List[str] ): __lowercase = logging.get_logger() # the current default level is logging.WARNING __lowercase = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel(), logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel(), logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel(), logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel(), logging.get_verbosity() ) # restore to the original level logging.set_verbosity(UpperCAmelCase__ ) def _lowercase ( self : str ): __lowercase = logging.get_verbosity() __lowercase = logging.get_logger("transformers.models.bart.tokenization_bart" ) __lowercase = "Testing 1, 2, 3" # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(UpperCAmelCase__ ) as cl: logger.warning(UpperCAmelCase__ ) self.assertEqual(cl.out, msg + "\n" ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(UpperCAmelCase__ ) as cl: logger.warning(UpperCAmelCase__ ) self.assertEqual(cl.out, "" ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(UpperCAmelCase__ ) as cl: logger.warning(UpperCAmelCase__ ) self.assertEqual(cl.out, msg + "\n" ) # restore to the original level logging.set_verbosity(UpperCAmelCase__ ) @mockenv(TRANSFORMERS_VERBOSITY="error" ) def _lowercase ( self : Any ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var __lowercase = logging.get_logger("transformers.models.bart.tokenization_bart" ) __lowercase = os.getenv("TRANSFORMERS_VERBOSITY", UpperCAmelCase__ ) __lowercase = logging.log_levels[env_level_str] __lowercase = logging.get_verbosity() self.assertEqual( UpperCAmelCase__, UpperCAmelCase__, F"""TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}""", ) # restore to the original level __lowercase = "" transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY="super-error" ) def _lowercase ( self : str ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() __lowercase = logging.logging.getLogger() with CaptureLogger(UpperCAmelCase__ ) as cl: # this action activates the env var logging.get_logger("transformers.models.bart.tokenization_bart" ) self.assertIn("Unknown option TRANSFORMERS_VERBOSITY=super-error", cl.out ) # no need to restore as nothing was changed def _lowercase ( self : Union[str, Any] ): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() __lowercase = logging.get_logger("transformers.models.bart.tokenization_bart" ) __lowercase = "Testing 1, 2, 3" with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="1" ): # nothing should be logged as env var disables this method with CaptureLogger(UpperCAmelCase__ ) as cl: logger.warning_advice(UpperCAmelCase__ ) self.assertEqual(cl.out, "" ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="" ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(UpperCAmelCase__ ) as cl: logger.warning_advice(UpperCAmelCase__ ) self.assertEqual(cl.out, msg + "\n" ) def _A ( ) -> int: '''simple docstring''' disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
17
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" ,"False" ) ) is not True ,reason="Skipping test because should only be run when releasing minor transformers version" ,) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Optional[int] ): if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split(), encoding="utf-8", check=UpperCAmelCase__, ) assert hasattr(self, "env" ) def _lowercase ( self : str, UpperCAmelCase__ : List[Any] ): # configuration for running training on smdistributed Model Parallel __lowercase = { "enabled": True, "processes_per_host": 8, } __lowercase = { "enabled": True, "parameters": { "microbatches": 4, "placement_strategy": "spread", "pipeline": "interleaved", "optimize": "speed", "partitions": 4, "ddp": True, }, } __lowercase = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options} __lowercase = "trainer" if self.script == "run_glue.py" else "smtrainer" # creates estimator return HuggingFace( entry_point=self.script, source_dir=self.env.test_path, role=self.env.role, image_uri=self.env.image_uri, base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""", instance_count=UpperCAmelCase__, instance_type=self.instance_type, debugger_hook_config=UpperCAmelCase__, hyperparameters={ **self.env.hyperparameters, "model_name_or_path": self.model_name_or_path, "max_steps": 5_0_0, }, metric_definitions=self.env.metric_definitions, distribution=UpperCAmelCase__, py_version="py36", ) def _lowercase ( self : Tuple, UpperCAmelCase__ : int ): TrainingJobAnalytics(UpperCAmelCase__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def _lowercase ( self : str, UpperCAmelCase__ : Union[str, Any] ): # create estimator __lowercase = self.create_estimator(UpperCAmelCase__ ) # run training estimator.fit() # result dataframe __lowercase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __lowercase = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) __lowercase = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __lowercase = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds", 9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""", "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss}, UpperCAmelCase__ )
17
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { 'RWKV/rwkv-4-169m-pile': 'https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json', 'RWKV/rwkv-4-430m-pile': 'https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json', 'RWKV/rwkv-4-1b5-pile': 'https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json', 'RWKV/rwkv-4-3b-pile': 'https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json', 'RWKV/rwkv-4-7b-pile': 'https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json', 'RWKV/rwkv-4-14b-pile': 'https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json', 'RWKV/rwkv-raven-1b5': 'https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json', 'RWKV/rwkv-raven-3b': 'https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json', 'RWKV/rwkv-raven-7b': 'https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json', 'RWKV/rwkv-raven-14b': 'https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json', } class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : List[str] = "rwkv" __UpperCAmelCase : List[Any] = {"max_position_embeddings": "context_length"} def __init__( self : Optional[Any], UpperCAmelCase__ : Any=5_0_2_7_7, UpperCAmelCase__ : Union[str, Any]=1_0_2_4, UpperCAmelCase__ : int=4_0_9_6, UpperCAmelCase__ : str=3_2, UpperCAmelCase__ : int=None, UpperCAmelCase__ : Optional[int]=None, UpperCAmelCase__ : Optional[int]=1E-5, UpperCAmelCase__ : str=0, UpperCAmelCase__ : Optional[int]=0, UpperCAmelCase__ : Optional[int]=6, UpperCAmelCase__ : Any=False, UpperCAmelCase__ : Any=True, **UpperCAmelCase__ : int, ): __lowercase = vocab_size __lowercase = context_length __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = attention_hidden_size if attention_hidden_size is not None else hidden_size __lowercase = intermediate_size if intermediate_size is not None else 4 * hidden_size __lowercase = layer_norm_epsilon __lowercase = rescale_every __lowercase = use_cache __lowercase = bos_token_id __lowercase = eos_token_id super().__init__( tie_word_embeddings=UpperCAmelCase__, bos_token_id=UpperCAmelCase__, eos_token_id=UpperCAmelCase__, **UpperCAmelCase__ )
17
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : Tuple = "openai/whisper-base" __UpperCAmelCase : Union[str, Any] = ( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) __UpperCAmelCase : List[str] = "transcriber" __UpperCAmelCase : Optional[Any] = WhisperProcessor __UpperCAmelCase : str = WhisperForConditionalGeneration __UpperCAmelCase : List[str] = ["audio"] __UpperCAmelCase : Tuple = ["text"] def _lowercase ( self : str, UpperCAmelCase__ : int ): return self.pre_processor(UpperCAmelCase__, return_tensors="pt" ).input_features def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Any] ): return self.model.generate(inputs=UpperCAmelCase__ ) def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[int] ): return self.pre_processor.batch_decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ )[0]
17
1
"""simple docstring""" import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class _lowerCAmelCase ( ctypes.Structure ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = [("size", ctypes.c_int), ("visible", ctypes.c_byte)] def _A ( ) -> int: '''simple docstring''' if os.name == "nt": __lowercase = CursorInfo() __lowercase = ctypes.windll.kernelaa.GetStdHandle(-11) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCamelCase_, ctypes.byref(UpperCamelCase_)) __lowercase = False ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCamelCase_, ctypes.byref(UpperCamelCase_)) elif os.name == "posix": sys.stdout.write("\033[?25l") sys.stdout.flush() def _A ( ) -> int: '''simple docstring''' if os.name == "nt": __lowercase = CursorInfo() __lowercase = ctypes.windll.kernelaa.GetStdHandle(-11) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCamelCase_, ctypes.byref(UpperCamelCase_)) __lowercase = True ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCamelCase_, ctypes.byref(UpperCamelCase_)) elif os.name == "posix": sys.stdout.write("\033[?25h") sys.stdout.flush() @contextmanager def _A ( ) -> Optional[int]: '''simple docstring''' try: hide_cursor() yield finally: show_cursor()
17
"""simple docstring""" import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str]) -> Optional[int]: '''simple docstring''' if isinstance(UpperCamelCase_, torch.Tensor): return image elif isinstance(UpperCamelCase_, PIL.Image.Image): __lowercase = [image] if isinstance(image[0], PIL.Image.Image): __lowercase = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image] __lowercase = np.concatenate(UpperCamelCase_, axis=0) __lowercase = np.array(UpperCamelCase_).astype(np.floataa) / 255.0 __lowercase = image.transpose(0, 3, 1, 2) __lowercase = 2.0 * image - 1.0 __lowercase = torch.from_numpy(UpperCamelCase_) elif isinstance(image[0], torch.Tensor): __lowercase = torch.cat(UpperCamelCase_, dim=0) return image def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : str, UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[Any]=0.9_995) -> int: '''simple docstring''' if not isinstance(UpperCamelCase_, np.ndarray): __lowercase = True __lowercase = va.device __lowercase = va.cpu().numpy() __lowercase = va.cpu().numpy() __lowercase = np.sum(va * va / (np.linalg.norm(UpperCamelCase_) * np.linalg.norm(UpperCamelCase_))) if np.abs(UpperCamelCase_) > DOT_THRESHOLD: __lowercase = (1 - t) * va + t * va else: __lowercase = np.arccos(UpperCamelCase_) __lowercase = np.sin(UpperCamelCase_) __lowercase = theta_a * t __lowercase = np.sin(UpperCamelCase_) __lowercase = np.sin(theta_a - theta_t) / sin_theta_a __lowercase = sin_theta_t / sin_theta_a __lowercase = sa * va + sa * va if inputs_are_torch: __lowercase = torch.from_numpy(UpperCamelCase_).to(UpperCamelCase_) return va def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Union[str, Any]) -> int: '''simple docstring''' __lowercase = F.normalize(UpperCamelCase_, dim=-1) __lowercase = F.normalize(UpperCamelCase_, dim=-1) return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2) def _A ( UpperCamelCase_ : Optional[int], UpperCamelCase_ : str) -> Optional[int]: '''simple docstring''' for param in model.parameters(): __lowercase = value class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : Dict, UpperCAmelCase__ : AutoencoderKL, UpperCAmelCase__ : CLIPTextModel, UpperCAmelCase__ : CLIPModel, UpperCAmelCase__ : CLIPTokenizer, UpperCAmelCase__ : UNetaDConditionModel, UpperCAmelCase__ : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler], UpperCAmelCase__ : CLIPFeatureExtractor, UpperCAmelCase__ : Union[str, Any]=None, UpperCAmelCase__ : List[str]=None, UpperCAmelCase__ : Any=None, ): super().__init__() self.register_modules( vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, clip_model=UpperCAmelCase__, tokenizer=UpperCAmelCase__, unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, feature_extractor=UpperCAmelCase__, coca_model=UpperCAmelCase__, coca_tokenizer=UpperCAmelCase__, coca_transform=UpperCAmelCase__, ) __lowercase = ( feature_extractor.size if isinstance(feature_extractor.size, UpperCAmelCase__ ) else feature_extractor.size["shortest_edge"] ) __lowercase = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std ) set_requires_grad(self.text_encoder, UpperCAmelCase__ ) set_requires_grad(self.clip_model, UpperCAmelCase__ ) def _lowercase ( self : Tuple, UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase__ ) def _lowercase ( self : int ): self.enable_attention_slicing(UpperCAmelCase__ ) def _lowercase ( self : str ): set_requires_grad(self.vae, UpperCAmelCase__ ) def _lowercase ( self : Any ): set_requires_grad(self.vae, UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ): set_requires_grad(self.unet, UpperCAmelCase__ ) def _lowercase ( self : Any ): set_requires_grad(self.unet, UpperCAmelCase__ ) def _lowercase ( self : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : Optional[Any] ): # get the original timestep using init_timestep __lowercase = min(int(num_inference_steps * strength ), UpperCAmelCase__ ) __lowercase = max(num_inference_steps - init_timestep, 0 ) __lowercase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowercase ( self : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : int=None ): if not isinstance(UpperCAmelCase__, torch.Tensor ): raise ValueError(F"""`image` has to be of type `torch.Tensor` but is {type(UpperCAmelCase__ )}""" ) __lowercase = image.to(device=UpperCAmelCase__, dtype=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(UpperCAmelCase__ ) ] __lowercase = torch.cat(UpperCAmelCase__, dim=0 ) else: __lowercase = self.vae.encode(UpperCAmelCase__ ).latent_dist.sample(UpperCAmelCase__ ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowercase = 0.18_215 * init_latents __lowercase = init_latents.repeat_interleave(UpperCAmelCase__, dim=0 ) __lowercase = randn_tensor(init_latents.shape, generator=UpperCAmelCase__, device=UpperCAmelCase__, dtype=UpperCAmelCase__ ) # get latents __lowercase = self.scheduler.add_noise(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = init_latents return latents def _lowercase ( self : Optional[int], UpperCAmelCase__ : Dict ): __lowercase = self.coca_transform(UpperCAmelCase__ ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): __lowercase = self.coca_model.generate(transformed_image.to(device=self.device, dtype=self.coca_model.dtype ) ) __lowercase = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("<end_of_text>" )[0].replace("<start_of_text>", "" ).rstrip(" .," ) def _lowercase ( self : Tuple, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Tuple ): __lowercase = self.feature_extractor.preprocess(UpperCAmelCase__ ) __lowercase = torch.from_numpy(clip_image_input["pixel_values"][0] ).unsqueeze(0 ).to(self.device ).half() __lowercase = self.clip_model.get_image_features(UpperCAmelCase__ ) __lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=UpperCAmelCase__ ) __lowercase = image_embeddings_clip.repeat_interleave(UpperCAmelCase__, dim=0 ) return image_embeddings_clip @torch.enable_grad() def _lowercase ( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[int], ): __lowercase = latents.detach().requires_grad_() __lowercase = self.scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ ) # predict the noise residual __lowercase = self.unet(UpperCAmelCase__, UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__ ).sample if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): __lowercase = self.scheduler.alphas_cumprod[timestep] __lowercase = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowercase = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 __lowercase = torch.sqrt(UpperCAmelCase__ ) __lowercase = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler, UpperCAmelCase__ ): __lowercase = self.scheduler.sigmas[index] __lowercase = latents - sigma * noise_pred else: raise ValueError(F"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowercase = 1 / 0.18_215 * sample __lowercase = self.vae.decode(UpperCAmelCase__ ).sample __lowercase = (image / 2 + 0.5).clamp(0, 1 ) __lowercase = transforms.Resize(self.feature_extractor_size )(UpperCAmelCase__ ) __lowercase = self.normalize(UpperCAmelCase__ ).to(latents.dtype ) __lowercase = self.clip_model.get_image_features(UpperCAmelCase__ ) __lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=UpperCAmelCase__ ) __lowercase = spherical_dist_loss(UpperCAmelCase__, UpperCAmelCase__ ).mean() * clip_guidance_scale __lowercase = -torch.autograd.grad(UpperCAmelCase__, UpperCAmelCase__ )[0] if isinstance(self.scheduler, UpperCAmelCase__ ): __lowercase = latents.detach() + grads * (sigma**2) __lowercase = noise_pred_original else: __lowercase = noise_pred_original - torch.sqrt(UpperCAmelCase__ ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : str, UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image], UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image], UpperCAmelCase__ : Optional[str] = None, UpperCAmelCase__ : Optional[str] = None, UpperCAmelCase__ : Optional[int] = 5_1_2, UpperCAmelCase__ : Optional[int] = 5_1_2, UpperCAmelCase__ : float = 0.6, UpperCAmelCase__ : Optional[int] = 5_0, UpperCAmelCase__ : Optional[float] = 7.5, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[float] = 1_0_0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : float = 0.8, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, ): if isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and len(UpperCAmelCase__ ) != batch_size: raise ValueError(F"""You have passed {batch_size} batch_size, but only {len(UpperCAmelCase__ )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(UpperCAmelCase__, torch.Generator ) and batch_size > 1: __lowercase = [generator] + [None] * (batch_size - 1) __lowercase = [ ("model", self.coca_model is None), ("tokenizer", self.coca_tokenizer is None), ("transform", self.coca_transform is None), ] __lowercase = [x[0] for x in coca_is_none if x[1]] __lowercase = ", ".join(UpperCAmelCase__ ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(UpperCAmelCase__ ): raise ValueError( F"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" F"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) __lowercase = self.get_image_description(UpperCAmelCase__ ) if style_prompt is None: if len(UpperCAmelCase__ ): raise ValueError( F"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" F""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) __lowercase = self.get_image_description(UpperCAmelCase__ ) # get prompt text embeddings for content and style __lowercase = self.tokenizer( UpperCAmelCase__, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=UpperCAmelCase__, return_tensors="pt", ) __lowercase = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] __lowercase = self.tokenizer( UpperCAmelCase__, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=UpperCAmelCase__, return_tensors="pt", ) __lowercase = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] __lowercase = slerp(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # duplicate text embeddings for each generation per prompt __lowercase = text_embeddings.repeat_interleave(UpperCAmelCase__, dim=0 ) # set timesteps __lowercase = "offset" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) __lowercase = {} if accepts_offset: __lowercase = 1 self.scheduler.set_timesteps(UpperCAmelCase__, **UpperCAmelCase__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) __lowercase ,__lowercase = self.get_timesteps(UpperCAmelCase__, UpperCAmelCase__, self.device ) __lowercase = timesteps[:1].repeat(UpperCAmelCase__ ) # Preprocess image __lowercase = preprocess(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = self.prepare_latents( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, text_embeddings.dtype, self.device, UpperCAmelCase__ ) __lowercase = preprocess(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = self.prepare_latents( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, text_embeddings.dtype, self.device, UpperCAmelCase__ ) __lowercase = slerp(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) if clip_guidance_scale > 0: __lowercase = self.get_clip_image_embeddings(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = self.get_clip_image_embeddings(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = slerp( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __lowercase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __lowercase = content_text_input.input_ids.shape[-1] __lowercase = self.tokenizer([""], padding="max_length", max_length=UpperCAmelCase__, return_tensors="pt" ) __lowercase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt __lowercase = uncond_embeddings.repeat_interleave(UpperCAmelCase__, dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowercase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __lowercase = (batch_size, self.unet.config.in_channels, height // 8, width // 8) __lowercase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps __lowercase = torch.randn(UpperCAmelCase__, generator=UpperCAmelCase__, device="cpu", dtype=UpperCAmelCase__ ).to( self.device ) else: __lowercase = torch.randn(UpperCAmelCase__, generator=UpperCAmelCase__, device=self.device, dtype=UpperCAmelCase__ ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) __lowercase = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __lowercase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __lowercase = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __lowercase = {} if accepts_eta: __lowercase = eta # check if the scheduler accepts generator __lowercase = "generator" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: __lowercase = generator with self.progress_bar(total=UpperCAmelCase__ ): for i, t in enumerate(UpperCAmelCase__ ): # expand the latents if we are doing classifier free guidance __lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowercase = self.scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ ) # predict the noise residual __lowercase = self.unet(UpperCAmelCase__, UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__ ).sample # perform classifier free guidance if do_classifier_free_guidance: __lowercase ,__lowercase = noise_pred.chunk(2 ) __lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: __lowercase = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) __lowercase ,__lowercase = self.cond_fn( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) # compute the previous noisy sample x_t -> x_t-1 __lowercase = self.scheduler.step(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, **UpperCAmelCase__ ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowercase = 1 / 0.18_215 * latents __lowercase = self.vae.decode(UpperCAmelCase__ ).sample __lowercase = (image / 2 + 0.5).clamp(0, 1 ) __lowercase = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": __lowercase = self.numpy_to_pil(UpperCAmelCase__ ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=UpperCAmelCase__, nsfw_content_detected=UpperCAmelCase__ )
17
1
"""simple docstring""" import pytest _a = '__dummy_dataset1__' _a = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def _A ( ) -> Dict: '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def _A ( ) -> Union[str, Any]: '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : int) -> Optional[Any]: '''simple docstring''' __lowercase = dataset_loading_script_name __lowercase = tmp_path / "datasets" / script_name script_dir.mkdir(parents=UpperCamelCase_) __lowercase = script_dir / F"""{script_name}.py""" with open(UpperCamelCase_, "w") as f: f.write(UpperCamelCase_) return str(UpperCamelCase_)
17
"""simple docstring""" from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class _lowerCAmelCase : """simple docstring""" __UpperCAmelCase : Tuple = XGLMConfig __UpperCAmelCase : Optional[Any] = {} __UpperCAmelCase : Union[str, Any] = "gelu" def __init__( self : Optional[int], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int]=1_4, UpperCAmelCase__ : str=7, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[Any]=True, UpperCAmelCase__ : int=True, UpperCAmelCase__ : List[str]=9_9, UpperCAmelCase__ : Union[str, Any]=3_2, UpperCAmelCase__ : Union[str, Any]=2, UpperCAmelCase__ : Union[str, Any]=4, UpperCAmelCase__ : Tuple=3_7, UpperCAmelCase__ : List[Any]="gelu", UpperCAmelCase__ : List[str]=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Tuple=5_1_2, UpperCAmelCase__ : Optional[Any]=0.02, ): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_labels __lowercase = vocab_size __lowercase = d_model __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = ffn_dim __lowercase = activation_function __lowercase = activation_dropout __lowercase = attention_dropout __lowercase = max_position_embeddings __lowercase = initializer_range __lowercase = None __lowercase = 0 __lowercase = 2 __lowercase = 1 def _lowercase ( self : Union[str, Any] ): return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def _lowercase ( self : Tuple ): __lowercase = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length], self.vocab_size ), clip_value_min=0, clip_value_max=3 ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = self.get_config() __lowercase = floats_tensor([self.num_hidden_layers, self.num_attention_heads], 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowercase ( self : List[Any] ): return XGLMConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, num_layers=self.num_hidden_layers, attention_heads=self.num_attention_heads, ffn_dim=self.ffn_dim, activation_function=self.activation_function, activation_dropout=self.activation_dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, use_cache=UpperCAmelCase__, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, return_dict=UpperCAmelCase__, ) def _lowercase ( self : Dict ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) , ) = config_and_inputs __lowercase = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class _lowerCAmelCase ( lowercase ,lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () __UpperCAmelCase : List[str] = (TFXGLMForCausalLM,) if is_tf_available() else () __UpperCAmelCase : Any = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : List[str] = False __UpperCAmelCase : int = False def _lowercase ( self : Optional[Any] ): __lowercase = TFXGLMModelTester(self ) __lowercase = ConfigTester(self, config_class=UpperCAmelCase__, n_embd=3_7 ) def _lowercase ( self : Any ): self.config_tester.run_common_tests() @slow def _lowercase ( self : List[str] ): for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFXGLMModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def _lowercase ( self : int ): super().test_resize_token_embeddings() @require_tf class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[int]=True ): __lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) __lowercase = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]], dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __lowercase = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on __lowercase = model.generate(UpperCAmelCase__, do_sample=UpperCAmelCase__, num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist(), UpperCAmelCase__ ) @slow def _lowercase ( self : List[Any] ): __lowercase = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) __lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) __lowercase = tokenizer("Today is a nice day and", return_tensors="tf" ) __lowercase = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): __lowercase = model.generate(UpperCAmelCase__, do_sample=UpperCAmelCase__, seed=[7, 0] ) __lowercase = tokenizer.decode(output_ids[0], skip_special_tokens=UpperCAmelCase__ ) __lowercase = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(UpperCAmelCase__, UpperCAmelCase__ ) @slow def _lowercase ( self : Dict ): __lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) __lowercase = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) __lowercase = "left" # use different length sentences to test batching __lowercase = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] __lowercase = tokenizer(UpperCAmelCase__, return_tensors="tf", padding=UpperCAmelCase__ ) __lowercase = inputs["input_ids"] __lowercase = model.generate(input_ids=UpperCAmelCase__, attention_mask=inputs["attention_mask"], max_new_tokens=1_2 ) __lowercase = tokenizer(sentences[0], return_tensors="tf" ).input_ids __lowercase = model.generate(input_ids=UpperCAmelCase__, max_new_tokens=1_2 ) __lowercase = tokenizer(sentences[1], return_tensors="tf" ).input_ids __lowercase = model.generate(input_ids=UpperCAmelCase__, max_new_tokens=1_2 ) __lowercase = tokenizer.batch_decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ ) __lowercase = tokenizer.decode(output_non_padded[0], skip_special_tokens=UpperCAmelCase__ ) __lowercase = tokenizer.decode(output_padded[0], skip_special_tokens=UpperCAmelCase__ ) __lowercase = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(UpperCAmelCase__, UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__, [non_padded_sentence, padded_sentence] )
17
1
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') _a = logging.getLogger(__name__) @dataclass class _lowerCAmelCase : """simple docstring""" __UpperCAmelCase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __UpperCAmelCase : Optional[str] = field( default=lowercase ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __UpperCAmelCase : Optional[str] = field( default=lowercase ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __UpperCAmelCase : Optional[str] = field( default=lowercase ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,) __UpperCAmelCase : bool = field( default=lowercase ,metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} ,) __UpperCAmelCase : str = field( default="main" ,metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} ,) __UpperCAmelCase : bool = field( default=lowercase ,metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } ,) @dataclass class _lowerCAmelCase : """simple docstring""" __UpperCAmelCase : Optional[str] = field(default=lowercase ,metadata={"help": "The input training data file (a text file)."} ) __UpperCAmelCase : Optional[str] = field( default=lowercase ,metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} ,) __UpperCAmelCase : bool = field( default=lowercase ,metadata={"help": "Overwrite the cached training and evaluation sets"} ) __UpperCAmelCase : Optional[int] = field( default=lowercase ,metadata={"help": "The number of processes to use for the preprocessing."} ,) __UpperCAmelCase : Optional[int] = field( default=lowercase ,metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } ,) __UpperCAmelCase : bool = field( default=lowercase ,metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } ,) __UpperCAmelCase : Optional[int] = field( default=lowercase ,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } ,) __UpperCAmelCase : Optional[int] = field( default=lowercase ,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } ,) def _lowercase ( self : Union[str, Any] ): if self.train_file is not None: __lowercase = self.train_file.split("." )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: __lowercase = self.validation_file.split("." )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class _lowerCAmelCase : """simple docstring""" __UpperCAmelCase : PreTrainedTokenizerBase __UpperCAmelCase : Union[bool, str, PaddingStrategy] = True __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Optional[int] = None def __call__( self : Optional[int], UpperCAmelCase__ : Optional[int] ): __lowercase = "label" if "label" in features[0].keys() else "labels" __lowercase = [feature.pop(UpperCAmelCase__ ) for feature in features] __lowercase = len(UpperCAmelCase__ ) __lowercase = len(features[0]["input_ids"] ) __lowercase = [ [{k: v[i] for k, v in feature.items()} for i in range(UpperCAmelCase__ )] for feature in features ] __lowercase = list(chain(*UpperCAmelCase__ ) ) __lowercase = self.tokenizer.pad( UpperCAmelCase__, padding=self.padding, max_length=self.max_length, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="pt", ) # Un-flatten __lowercase = {k: v.view(UpperCAmelCase__, UpperCAmelCase__, -1 ) for k, v in batch.items()} # Add back labels __lowercase = torch.tensor(UpperCAmelCase__, dtype=torch.intaa ) return batch def _A ( ) -> int: '''simple docstring''' __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowercase ,__lowercase ,__lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: __lowercase ,__lowercase ,__lowercase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_swag", UpperCamelCase_, UpperCamelCase_) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __lowercase = training_args.get_process_log_level() logger.setLevel(UpperCamelCase_) datasets.utils.logging.set_verbosity(UpperCamelCase_) transformers.utils.logging.set_verbosity(UpperCamelCase_) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fpaa}""") logger.info(F"""Training/evaluation parameters {training_args}""") # Detecting last checkpoint. __lowercase = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: __lowercase = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome.") elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch.") # Set seed before initializing model. set_seed(training_args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: __lowercase = {} if data_args.train_file is not None: __lowercase = data_args.train_file if data_args.validation_file is not None: __lowercase = data_args.validation_file __lowercase = data_args.train_file.split(".")[-1] __lowercase = load_dataset( UpperCamelCase_, data_files=UpperCamelCase_, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) else: # Downloading and loading the swag dataset from the hub. __lowercase = load_dataset( "swag", "regular", cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowercase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) __lowercase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) __lowercase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=UpperCamelCase_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # When using your own dataset or a different dataset from swag, you will probably need to change this. __lowercase = [F"""ending{i}""" for i in range(4)] __lowercase = "sent1" __lowercase = "sent2" if data_args.max_seq_length is None: __lowercase = tokenizer.model_max_length if max_seq_length > 1024: logger.warning( "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value" " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can" " override this default with `--block_size xxx`.") __lowercase = 1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""") __lowercase = min(data_args.max_seq_length, tokenizer.model_max_length) # Preprocessing the datasets. def preprocess_function(UpperCamelCase_ : Any): __lowercase = [[context] * 4 for context in examples[context_name]] __lowercase = examples[question_header_name] __lowercase = [ [F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(UpperCamelCase_) ] # Flatten out __lowercase = list(chain(*UpperCamelCase_)) __lowercase = list(chain(*UpperCamelCase_)) # Tokenize __lowercase = tokenizer( UpperCamelCase_, UpperCamelCase_, truncation=UpperCamelCase_, max_length=UpperCamelCase_, padding="max_length" if data_args.pad_to_max_length else False, ) # Un-flatten return {k: [v[i : i + 4] for i in range(0, len(UpperCamelCase_), 4)] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset") __lowercase = raw_datasets["train"] if data_args.max_train_samples is not None: __lowercase = min(len(UpperCamelCase_), data_args.max_train_samples) __lowercase = train_dataset.select(range(UpperCamelCase_)) with training_args.main_process_first(desc="train dataset map pre-processing"): __lowercase = train_dataset.map( UpperCamelCase_, batched=UpperCamelCase_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset") __lowercase = raw_datasets["validation"] if data_args.max_eval_samples is not None: __lowercase = min(len(UpperCamelCase_), data_args.max_eval_samples) __lowercase = eval_dataset.select(range(UpperCamelCase_)) with training_args.main_process_first(desc="validation dataset map pre-processing"): __lowercase = eval_dataset.map( UpperCamelCase_, batched=UpperCamelCase_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) # Data collator __lowercase = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=UpperCamelCase_, pad_to_multiple_of=8 if training_args.fpaa else None) ) # Metric def compute_metrics(UpperCamelCase_ : Tuple): __lowercase ,__lowercase = eval_predictions __lowercase = np.argmax(UpperCamelCase_, axis=1) return {"accuracy": (preds == label_ids).astype(np.floataa).mean().item()} # Initialize our Trainer __lowercase = Trainer( model=UpperCamelCase_, args=UpperCamelCase_, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=UpperCamelCase_, data_collator=UpperCamelCase_, compute_metrics=UpperCamelCase_, ) # Training if training_args.do_train: __lowercase = None if training_args.resume_from_checkpoint is not None: __lowercase = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowercase = last_checkpoint __lowercase = trainer.train(resume_from_checkpoint=UpperCamelCase_) trainer.save_model() # Saves the tokenizer too for easy upload __lowercase = train_result.metrics __lowercase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCamelCase_) ) __lowercase = min(UpperCamelCase_, len(UpperCamelCase_)) trainer.log_metrics("train", UpperCamelCase_) trainer.save_metrics("train", UpperCamelCase_) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***") __lowercase = trainer.evaluate() __lowercase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(UpperCamelCase_) __lowercase = min(UpperCamelCase_, len(UpperCamelCase_)) trainer.log_metrics("eval", UpperCamelCase_) trainer.save_metrics("eval", UpperCamelCase_) __lowercase = { "finetuned_from": model_args.model_name_or_path, "tasks": "multiple-choice", "dataset_tags": "swag", "dataset_args": "regular", "dataset": "SWAG", "language": "en", } if training_args.push_to_hub: trainer.push_to_hub(**UpperCamelCase_) else: trainer.create_model_card(**UpperCamelCase_) def _A ( UpperCamelCase_ : Optional[Any]) -> Optional[int]: '''simple docstring''' main() if __name__ == "__main__": main()
17
"""simple docstring""" import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder _a = '__DUMMY_TRANSFORMERS_USER__' _a = 'Dummy User' _a = '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' _a = 'https://hub-ci.huggingface.co' _a = CI_HUB_ENDPOINT + '/datasets/{repo_id}/resolve/{revision}/{path}' _a = CI_HUB_ENDPOINT + '/{repo_id}/resolve/{revision}/{filename}' _a = Path('~/.huggingface/hub_ci_token').expanduser() @pytest.fixture def _A ( UpperCamelCase_ : List[Any]) -> Tuple: '''simple docstring''' monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE", UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : int) -> List[Any]: '''simple docstring''' monkeypatch.setattr("datasets.config.HF_ENDPOINT", UpperCamelCase_) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL", UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : str) -> Dict: '''simple docstring''' monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token", UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : Optional[Any], UpperCamelCase_ : List[Any]) -> List[str]: '''simple docstring''' HfFolder.save_token(UpperCamelCase_) yield HfFolder.delete_token() @pytest.fixture(scope="session") def _A ( ) -> List[Any]: '''simple docstring''' return HfApi(endpoint=UpperCamelCase_) @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi) -> List[Any]: '''simple docstring''' __lowercase = HfFolder.get_token() HfFolder.save_token(UpperCamelCase_) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : Dict) -> int: '''simple docstring''' def _cleanup_repo(UpperCamelCase_ : Optional[int]): hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") return _cleanup_repo @pytest.fixture def _A ( UpperCamelCase_ : str) -> Any: '''simple docstring''' @contextmanager def _temporary_repo(UpperCamelCase_ : Any): try: yield repo_id finally: cleanup_repo(UpperCamelCase_) return _temporary_repo @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : str, UpperCamelCase_ : Optional[int]) -> List[Any]: '''simple docstring''' __lowercase = F"""repo_txt_data-{int(time.time() * 10E3)}""" __lowercase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_) hf_api.upload_file( token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data/text_data.txt", repo_id=UpperCamelCase_, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : Any, UpperCamelCase_ : Dict) -> Optional[int]: '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : int, UpperCamelCase_ : Optional[int]) -> int: '''simple docstring''' __lowercase = F"""repo_zipped_txt_data-{int(time.time() * 10E3)}""" __lowercase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_) hf_api.upload_file( token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data.zip", repo_id=UpperCamelCase_, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Dict, UpperCamelCase_ : Any) -> int: '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : List[str], UpperCamelCase_ : List[str]) -> List[Any]: '''simple docstring''' __lowercase = F"""repo_zipped_img_data-{int(time.time() * 10E3)}""" __lowercase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_) hf_api.upload_file( token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data.zip", repo_id=UpperCamelCase_, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str], UpperCamelCase_ : List[str]) -> str: '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
17
1
"""simple docstring""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _a = _symbol_database.Default() _a = _descriptor_pool.Default().AddSerializedFile( b'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) _a = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: _a = None _a = b'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" _a = 45 _a = 15_81 _a = 15_17 _a = 15_70 _a = 15_84 _a = 17_93 _a = 17_95 _a = 19_16 _a = 18_64 _a = 19_05 _a = 19_19 _a = 24_29 _a = 22_08 _a = 24_18 _a = 23_23 _a = 24_07 # @@protoc_insertion_point(module_scope)
17
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : int = "time_series_transformer" __UpperCAmelCase : Any = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : int, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : str = "student_t", UpperCAmelCase__ : str = "nll", UpperCAmelCase__ : int = 1, UpperCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7], UpperCAmelCase__ : Optional[Union[str, bool]] = "mean", UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : int = 3_2, UpperCAmelCase__ : int = 3_2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : str = "gelu", UpperCAmelCase__ : int = 6_4, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : int = 1_0_0, UpperCAmelCase__ : float = 0.02, UpperCAmelCase__ : Any=True, **UpperCAmelCase__ : List[str], ): # time series specific configuration __lowercase = prediction_length __lowercase = context_length or prediction_length __lowercase = distribution_output __lowercase = loss __lowercase = input_size __lowercase = num_time_features __lowercase = lags_sequence __lowercase = scaling __lowercase = num_dynamic_real_features __lowercase = num_static_real_features __lowercase = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(UpperCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) __lowercase = cardinality else: __lowercase = [0] if embedding_dimension and num_static_categorical_features > 0: if len(UpperCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) __lowercase = embedding_dimension else: __lowercase = [min(5_0, (cat + 1) // 2 ) for cat in self.cardinality] __lowercase = num_parallel_samples # Transformer architecture configuration __lowercase = input_size * len(UpperCAmelCase__ ) + self._number_of_features __lowercase = d_model __lowercase = encoder_attention_heads __lowercase = decoder_attention_heads __lowercase = encoder_ffn_dim __lowercase = decoder_ffn_dim __lowercase = encoder_layers __lowercase = decoder_layers __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = activation_function __lowercase = init_std __lowercase = use_cache super().__init__(is_encoder_decoder=UpperCAmelCase__, **UpperCAmelCase__ ) @property def _lowercase ( self : Optional[Any] ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
17
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _a = { 'configuration_deberta': ['DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DebertaConfig', 'DebertaOnnxConfig'], 'tokenization_deberta': ['DebertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ['DebertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'DebertaForMaskedLM', 'DebertaForQuestionAnswering', 'DebertaForSequenceClassification', 'DebertaForTokenClassification', 'DebertaModel', 'DebertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDebertaForMaskedLM', 'TFDebertaForQuestionAnswering', 'TFDebertaForSequenceClassification', 'TFDebertaForTokenClassification', 'TFDebertaModel', 'TFDebertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
17
"""simple docstring""" import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class _lowerCAmelCase : """simple docstring""" @staticmethod def _lowercase ( *UpperCAmelCase__ : Tuple, **UpperCAmelCase__ : List[Any] ): pass def _A ( UpperCamelCase_ : Union[str, Any]) -> Any: '''simple docstring''' return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. _a = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Tuple = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Optional[Any] ): __lowercase = pipeline( "document-question-answering", model=UpperCAmelCase__, tokenizer=UpperCAmelCase__, image_processor=UpperCAmelCase__ ) __lowercase = INVOICE_URL __lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) ) __lowercase = "What is the placebo?" __lowercase = [ { "image": load_image(UpperCAmelCase__ ), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def _lowercase ( self : int, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Any ): __lowercase = dqa_pipeline(UpperCAmelCase__, top_k=2 ) self.assertEqual( UpperCAmelCase__, [ [ {"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ ), "start": ANY(UpperCAmelCase__ ), "end": ANY(UpperCAmelCase__ )}, {"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ ), "start": ANY(UpperCAmelCase__ ), "end": ANY(UpperCAmelCase__ )}, ] ] * 3, ) @require_torch @require_detectrona @require_pytesseract def _lowercase ( self : Dict ): __lowercase = pipeline("document-question-answering", model="hf-internal-testing/tiny-random-layoutlmv2" ) __lowercase = INVOICE_URL __lowercase = "How many cats are there?" __lowercase = [ {"score": 0.0_001, "answer": "oy 2312/2019", "start": 3_8, "end": 3_9}, {"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 3_8, "end": 4_0}, ] __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), UpperCAmelCase__ ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), UpperCAmelCase__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably __lowercase = "./tests/fixtures/tests_samples/COCO/000000039769.png" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual(UpperCAmelCase__, [] ) # We can optionnally pass directly the words and bounding boxes __lowercase = "./tests/fixtures/tests_samples/COCO/000000039769.png" __lowercase = [] __lowercase = [] __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, words=UpperCAmelCase__, boxes=UpperCAmelCase__, top_k=2 ) self.assertEqual(UpperCAmelCase__, [] ) @slow @require_torch @require_detectrona @require_pytesseract def _lowercase ( self : List[str] ): __lowercase = pipeline( "document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ] * 2, ) @slow @require_torch @require_detectrona @require_pytesseract def _lowercase ( self : Dict ): __lowercase = pipeline( "document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", max_seq_len=5_0, ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3}, {"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3}, {"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3}, {"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6}, ] ] * 2, ) @slow @require_torch @require_pytesseract @require_vision def _lowercase ( self : Optional[Any] ): __lowercase = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=UpperCAmelCase__ ) __lowercase = pipeline( "document-question-answering", model="impira/layoutlm-document-qa", tokenizer=UpperCAmelCase__, revision="3dc6de3", ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ], ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ] ] * 2, ) __lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) ) # This model should also work if `image` is set to None __lowercase = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ], ) @slow @require_torch @require_pytesseract @require_vision def _lowercase ( self : Union[str, Any] ): __lowercase = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=UpperCAmelCase__ ) __lowercase = pipeline( "document-question-answering", model="impira/layoutlm-document-qa", tokenizer=UpperCAmelCase__, revision="3dc6de3", max_seq_len=5_0, ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6}, ] ] * 2, ) __lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) ) # This model should also work if `image` is set to None __lowercase = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) @slow @require_torch def _lowercase ( self : Dict ): __lowercase = pipeline( "document-question-answering", model="naver-clova-ix/donut-base-finetuned-docvqa", tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ), feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa", ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def _lowercase ( self : List[Any] ): pass
17
1
"""simple docstring""" import inspect import unittest class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Tuple ): try: import diffusers # noqa: F401 except ImportError: assert False def _lowercase ( self : Optional[Any] ): import diffusers from diffusers.dependency_versions_table import deps __lowercase = inspect.getmembers(UpperCAmelCase__, inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": __lowercase = "k-diffusion" elif backend == "invisible_watermark": __lowercase = "invisible-watermark" assert backend in deps, F"""{backend} is not in the deps table!"""
17
"""simple docstring""" import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _a = 2 class _lowerCAmelCase : """simple docstring""" def __init__( self : Dict, *, # begin keyword-only arguments UpperCAmelCase__ : str="<s>", UpperCAmelCase__ : Tuple="<pad>", UpperCAmelCase__ : str="</s>", UpperCAmelCase__ : Optional[Any]="<unk>", UpperCAmelCase__ : List[Any]=None, ): __lowercase ,__lowercase ,__lowercase ,__lowercase = bos, unk, pad, eos __lowercase = [] __lowercase = [] __lowercase = {} __lowercase = self.add_symbol(UpperCAmelCase__ ) __lowercase = self.add_symbol(UpperCAmelCase__ ) __lowercase = self.add_symbol(UpperCAmelCase__ ) __lowercase = self.add_symbol(UpperCAmelCase__ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(UpperCAmelCase__ ) __lowercase = len(self.symbols ) def __eq__( self : List[str], UpperCAmelCase__ : Dict ): return self.indices == other.indices def __getitem__( self : Optional[int], UpperCAmelCase__ : List[str] ): if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : str ): return len(self.symbols ) def __contains__( self : Any, UpperCAmelCase__ : Optional[Any] ): return sym in self.indices @classmethod def _lowercase ( cls : List[Any], UpperCAmelCase__ : Optional[Any] ): __lowercase = cls() d.add_from_file(UpperCAmelCase__ ) return d def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[Any]=1, UpperCAmelCase__ : str=False ): if word in self.indices and not overwrite: __lowercase = self.indices[word] __lowercase = self.count[idx] + n return idx else: __lowercase = len(self.symbols ) __lowercase = idx self.symbols.append(UpperCAmelCase__ ) self.count.append(UpperCAmelCase__ ) return idx def _lowercase ( self : Any, UpperCAmelCase__ : str ): return 0 def _lowercase ( self : Tuple, UpperCAmelCase__ : List[Any] ): if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): try: with open(UpperCAmelCase__, "r", encoding="utf-8" ) as fd: self.add_from_file(UpperCAmelCase__ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("Incorrect encoding detected in {}, please rebuild the dataset".format(UpperCAmelCase__ ) ) return __lowercase = f.readlines() __lowercase = self._load_meta(UpperCAmelCase__ ) for line in lines[indices_start_line:]: try: __lowercase ,__lowercase = line.rstrip().rsplit(" ", 1 ) if field == "#fairseq:overwrite": __lowercase = True __lowercase ,__lowercase = line.rsplit(" ", 1 ) else: __lowercase = False __lowercase = int(UpperCAmelCase__ ) __lowercase = line if word in self and not overwrite: raise RuntimeError( "Duplicate word found when loading Dictionary: '{}'. " "Duplicate words can overwrite earlier ones by adding the " "#fairseq:overwrite flag at the end of the corresponding row " "in the dictionary file. If using the Camembert model, please " "download an updated copy of the model file.".format(UpperCAmelCase__ ) ) self.add_symbol(UpperCAmelCase__, n=UpperCAmelCase__, overwrite=UpperCAmelCase__ ) except ValueError: raise ValueError("Incorrect dictionary format, expected '<token> <cnt> [flags]'" ) def _A ( UpperCamelCase_ : int) -> str: '''simple docstring''' __lowercase = dict((re.sub(r"@@$", "", UpperCamelCase_), v) if k.endswith("@@") else (re.sub(r"$", "</w>", UpperCamelCase_), v) for k, v in d.items()) __lowercase = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] __lowercase = d[k] # restore return da def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str) -> List[Any]: '''simple docstring''' if not os.path.exists(UpperCamelCase_): raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""") os.makedirs(UpperCamelCase_, exist_ok=UpperCamelCase_) print(F"""Writing results to {pytorch_dump_folder_path}""") # handle various types of models __lowercase = os.path.join(UpperCamelCase_, "checkpoint.pt") if not os.path.isfile(UpperCamelCase_): raise ValueError(F"""path to the file {checkpoint_file} does not exist!""") __lowercase = torch.load(UpperCamelCase_, map_location="cpu") __lowercase = chkpt["cfg"]["model"] # dicts __lowercase = os.path.join(UpperCamelCase_, "dict.txt") if not os.path.isfile(UpperCamelCase_): raise ValueError(F"""path to the file {dict_file} does not exist!""") __lowercase = Dictionary.load(UpperCamelCase_) __lowercase = rewrite_dict_keys(src_dict.indices) __lowercase = len(UpperCamelCase_) __lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["vocab_file"]) print(F"""Generating {src_vocab_file} of {src_vocab_size} records""") with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_)) # merges_file (bpecodes) __lowercase = os.path.join(UpperCamelCase_, "bpecodes") if not os.path.isfile(UpperCamelCase_): raise ValueError(F"""path to the file {bpecodes_file} does not exist!""") __lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["merges_file"]) shutil.copyfile(UpperCamelCase_, UpperCamelCase_) # model config __lowercase = os.path.join(UpperCamelCase_, "config.json") __lowercase = { "activation_dropout": args["activation_dropout"], "architectures": ["BioGptForCausalLM"], "attention_probs_dropout_prob": args["attention_dropout"], "bos_token_id": 0, "eos_token_id": 2, "hidden_act": args["activation_fn"], "hidden_dropout_prob": args["dropout"], "hidden_size": args["decoder_embed_dim"], "initializer_range": 0.02, "intermediate_size": args["decoder_ffn_embed_dim"], "layer_norm_eps": 1E-12, "layerdrop": args["decoder_layerdrop"], "max_position_embeddings": args["max_target_positions"], "model_type": "biogpt", "num_attention_heads": args["decoder_attention_heads"], "num_hidden_layers": args["decoder_layers"], "pad_token_id": 1, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_decoder_input_output_embed"], "vocab_size": src_vocab_size, } # good hparam defaults to start with print(F"""Generating {biogpt_model_config_file}""") with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_)) # tokenizer config __lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_) __lowercase = { "bos_token": "<s>", "eos_token": "</s>", "model_max_length": 1024, "pad_token": "<pad>", "special_tokens_map_file": None, "tokenizer_class": "BioGptTokenizer", "unk_token": "<unk>", } print(F"""Generating {biogpt_tokenizer_config_file}""") with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_)) # model __lowercase = chkpt["model"] # remove unneeded keys __lowercase = [ "decoder.version", ] for k in ignore_keys: model_state_dict.pop(UpperCamelCase_, UpperCamelCase_) __lowercase = list(model_state_dict.keys()) for layer_name in layer_names: if layer_name.endswith("output_projection.weight"): __lowercase = model_state_dict.pop(UpperCamelCase_) else: __lowercase = model_state_dict.pop(UpperCamelCase_) __lowercase = BioGptConfig.from_pretrained(UpperCamelCase_) __lowercase = BioGptForCausalLM(UpperCamelCase_) # check that it loads ok model_new.load_state_dict(UpperCamelCase_) # save __lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_) print(F"""Generating {pytorch_weights_dump_path}""") torch.save(UpperCamelCase_, UpperCamelCase_) print("Conversion is done!") if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _a = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
17
1
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : Dict = ["image_processor", "tokenizer"] __UpperCAmelCase : List[Any] = "ViltImageProcessor" __UpperCAmelCase : Optional[int] = ("BertTokenizer", "BertTokenizerFast") def __init__( self : Any, UpperCAmelCase__ : List[Any]=None, UpperCAmelCase__ : Optional[int]=None, **UpperCAmelCase__ : str ): __lowercase = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead.", UpperCAmelCase__, ) __lowercase = kwargs.pop("feature_extractor" ) __lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = self.image_processor def __call__( self : Optional[Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Union[bool, str, PaddingStrategy] = False, UpperCAmelCase__ : Union[bool, str, TruncationStrategy] = None, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : Optional[bool] = None, UpperCAmelCase__ : Optional[bool] = None, UpperCAmelCase__ : bool = False, UpperCAmelCase__ : bool = False, UpperCAmelCase__ : bool = False, UpperCAmelCase__ : bool = False, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Union[str, TensorType]] = None, **UpperCAmelCase__ : Tuple, ): __lowercase = self.tokenizer( text=UpperCAmelCase__, add_special_tokens=UpperCAmelCase__, padding=UpperCAmelCase__, truncation=UpperCAmelCase__, max_length=UpperCAmelCase__, stride=UpperCAmelCase__, pad_to_multiple_of=UpperCAmelCase__, return_token_type_ids=UpperCAmelCase__, return_attention_mask=UpperCAmelCase__, return_overflowing_tokens=UpperCAmelCase__, return_special_tokens_mask=UpperCAmelCase__, return_offsets_mapping=UpperCAmelCase__, return_length=UpperCAmelCase__, verbose=UpperCAmelCase__, return_tensors=UpperCAmelCase__, **UpperCAmelCase__, ) # add pixel_values + pixel_mask __lowercase = self.image_processor(UpperCAmelCase__, return_tensors=UpperCAmelCase__ ) encoding.update(UpperCAmelCase__ ) return encoding def _lowercase ( self : List[str], *UpperCAmelCase__ : int, **UpperCAmelCase__ : Any ): return self.tokenizer.batch_decode(*UpperCAmelCase__, **UpperCAmelCase__ ) def _lowercase ( self : Optional[Any], *UpperCAmelCase__ : Optional[int], **UpperCAmelCase__ : List[Any] ): return self.tokenizer.decode(*UpperCAmelCase__, **UpperCAmelCase__ ) @property def _lowercase ( self : List[str] ): __lowercase = self.tokenizer.model_input_names __lowercase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _lowercase ( self : Optional[Any] ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.", UpperCAmelCase__, ) return self.image_processor_class @property def _lowercase ( self : Dict ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.", UpperCAmelCase__, ) return self.image_processor
17
"""simple docstring""" from __future__ import annotations from typing import Any class _lowerCAmelCase : """simple docstring""" def __init__( self : Any, UpperCAmelCase__ : int ): __lowercase = num_of_nodes __lowercase = [] __lowercase = {} def _lowercase ( self : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : int, UpperCAmelCase__ : int ): self.m_edges.append([u_node, v_node, weight] ) def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _lowercase ( self : List[Any], UpperCAmelCase__ : int ): if self.m_component[u_node] != u_node: for k in self.m_component: __lowercase = self.find_component(UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : list[int], UpperCAmelCase__ : int, UpperCAmelCase__ : int ): if component_size[u_node] <= component_size[v_node]: __lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(UpperCAmelCase__ ) elif component_size[u_node] >= component_size[v_node]: __lowercase = self.find_component(UpperCAmelCase__ ) component_size[u_node] += component_size[v_node] self.set_component(UpperCAmelCase__ ) def _lowercase ( self : Any ): __lowercase = [] __lowercase = 0 __lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowercase ,__lowercase ,__lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase ,__lowercase ,__lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 __lowercase = [-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def _A ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
17
1
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class _lowerCAmelCase ( unittest.TestCase ,lowercase ): """simple docstring""" def _lowercase ( self : List[Any] ): __lowercase = load_tool("text-classification" ) self.tool.setup() __lowercase = load_tool("text-classification", remote=UpperCAmelCase__ ) def _lowercase ( self : str ): __lowercase = self.tool("That's quite cool", ["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" ) def _lowercase ( self : str ): __lowercase = self.remote_tool("That's quite cool", ["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" ) def _lowercase ( self : List[str] ): __lowercase = self.tool(text="That's quite cool", labels=["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" ) def _lowercase ( self : Tuple ): __lowercase = self.remote_tool(text="That's quite cool", labels=["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" )
17
"""simple docstring""" from math import sqrt def _A ( UpperCamelCase_ : int) -> int: '''simple docstring''' __lowercase = 0 for i in range(1, int(sqrt(UpperCamelCase_) + 1)): if n % i == 0 and i != sqrt(UpperCamelCase_): total += i + n // i elif i == sqrt(UpperCamelCase_): total += i return total - n def _A ( UpperCamelCase_ : int = 10000) -> int: '''simple docstring''' __lowercase = sum( i for i in range(1, UpperCamelCase_) if sum_of_divisors(sum_of_divisors(UpperCamelCase_)) == i and sum_of_divisors(UpperCamelCase_) != i) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
17
1
"""simple docstring""" import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: _a = False _a = logging.get_logger(__name__) _a = 'ybelkada/fonts' def _A ( ) -> int: '''simple docstring''' if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F"""You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use """ "Pix2StructImageProcessor. Please upgrade torch.") def _A ( UpperCamelCase_ : Optional[int], UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : Optional[Any]) -> int: '''simple docstring''' requires_backends(UpperCamelCase_, ["torch"]) _check_torch_version() __lowercase = image_tensor.unsqueeze(0) __lowercase = torch.nn.functional.unfold(UpperCamelCase_, (patch_height, patch_width), stride=(patch_height, patch_width)) __lowercase = patches.reshape(image_tensor.size(0), image_tensor.size(1), UpperCamelCase_, UpperCamelCase_, -1) __lowercase = patches.permute(0, 4, 2, 3, 1).reshape( image_tensor.size(2) // patch_height, image_tensor.size(3) // patch_width, image_tensor.size(1) * patch_height * patch_width, ) return patches.unsqueeze(0) def _A ( UpperCamelCase_ : str, UpperCamelCase_ : int = 36, UpperCamelCase_ : str = "black", UpperCamelCase_ : str = "white", UpperCamelCase_ : int = 5, UpperCamelCase_ : int = 5, UpperCamelCase_ : int = 5, UpperCamelCase_ : int = 5, UpperCamelCase_ : Optional[bytes] = None, UpperCamelCase_ : Optional[str] = None, ) -> Image.Image: '''simple docstring''' requires_backends(UpperCamelCase_, "vision") # Add new lines so that each line is no more than 80 characters. __lowercase = textwrap.TextWrapper(width=80) __lowercase = wrapper.wrap(text=UpperCamelCase_) __lowercase = "\n".join(UpperCamelCase_) if font_bytes is not None and font_path is None: __lowercase = io.BytesIO(UpperCamelCase_) elif font_path is not None: __lowercase = font_path else: __lowercase = hf_hub_download(UpperCamelCase_, "Arial.TTF") __lowercase = ImageFont.truetype(UpperCamelCase_, encoding="UTF-8", size=UpperCamelCase_) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. __lowercase = ImageDraw.Draw(Image.new("RGB", (1, 1), UpperCamelCase_)) __lowercase ,__lowercase ,__lowercase ,__lowercase = temp_draw.textbbox((0, 0), UpperCamelCase_, UpperCamelCase_) # Create the actual image with a bit of padding around the text. __lowercase = text_width + left_padding + right_padding __lowercase = text_height + top_padding + bottom_padding __lowercase = Image.new("RGB", (image_width, image_height), UpperCamelCase_) __lowercase = ImageDraw.Draw(UpperCamelCase_) draw.text(xy=(left_padding, top_padding), text=UpperCamelCase_, fill=UpperCamelCase_, font=UpperCamelCase_) return image def _A ( UpperCamelCase_ : np.ndarray, UpperCamelCase_ : str, **UpperCamelCase_ : Union[str, Any]) -> List[str]: '''simple docstring''' requires_backends(UpperCamelCase_, "vision") # Convert to PIL image if necessary __lowercase = to_pil_image(UpperCamelCase_) __lowercase = render_text(UpperCamelCase_, **UpperCamelCase_) __lowercase = max(header_image.width, image.width) __lowercase = int(image.height * (new_width / image.width)) __lowercase = int(header_image.height * (new_width / header_image.width)) __lowercase = Image.new("RGB", (new_width, new_height + new_header_height), "white") new_image.paste(header_image.resize((new_width, new_header_height)), (0, 0)) new_image.paste(image.resize((new_width, new_height)), (0, new_header_height)) # Convert back to the original framework if necessary __lowercase = to_numpy_array(UpperCamelCase_) if infer_channel_dimension_format(UpperCamelCase_) == ChannelDimension.LAST: __lowercase = to_channel_dimension_format(UpperCamelCase_, ChannelDimension.LAST) return new_image class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : List[Any] = ["flattened_patches"] def __init__( self : List[str], UpperCAmelCase__ : bool = True, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Dict[str, int] = None, UpperCAmelCase__ : int = 2_0_4_8, UpperCAmelCase__ : bool = False, **UpperCAmelCase__ : Dict, ): super().__init__(**UpperCAmelCase__ ) __lowercase = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6} __lowercase = do_normalize __lowercase = do_convert_rgb __lowercase = max_patches __lowercase = is_vqa def _lowercase ( self : Optional[int], UpperCAmelCase__ : np.ndarray, UpperCAmelCase__ : int, UpperCAmelCase__ : dict, **UpperCAmelCase__ : Dict ): requires_backends(self.extract_flattened_patches, "torch" ) _check_torch_version() # convert to torch __lowercase = to_channel_dimension_format(UpperCAmelCase__, ChannelDimension.FIRST ) __lowercase = torch.from_numpy(UpperCAmelCase__ ) __lowercase ,__lowercase = patch_size["height"], patch_size["width"] __lowercase ,__lowercase = get_image_size(UpperCAmelCase__ ) # maximize scale s.t. __lowercase = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) __lowercase = max(min(math.floor(scale * image_height / patch_height ), UpperCAmelCase__ ), 1 ) __lowercase = max(min(math.floor(scale * image_width / patch_width ), UpperCAmelCase__ ), 1 ) __lowercase = max(num_feasible_rows * patch_height, 1 ) __lowercase = max(num_feasible_cols * patch_width, 1 ) __lowercase = torch.nn.functional.interpolate( image.unsqueeze(0 ), size=(resized_height, resized_width), mode="bilinear", align_corners=UpperCAmelCase__, antialias=UpperCAmelCase__, ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] __lowercase = torch_extract_patches(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = patches.shape __lowercase = patches_shape[1] __lowercase = patches_shape[2] __lowercase = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] __lowercase = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] __lowercase = torch.arange(UpperCAmelCase__ ).reshape([rows, 1] ).repeat(1, UpperCAmelCase__ ).reshape([rows * columns, 1] ) __lowercase = torch.arange(UpperCAmelCase__ ).reshape([1, columns] ).repeat(UpperCAmelCase__, 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] __lowercase = row_ids.to(torch.floataa ) __lowercase = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] __lowercase = torch.cat([row_ids, col_ids, patches], -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] __lowercase = torch.nn.functional.pad(UpperCAmelCase__, [0, 0, 0, max_patches - (rows * columns)] ).float() __lowercase = to_numpy_array(UpperCAmelCase__ ) return result def _lowercase ( self : List[Any], UpperCAmelCase__ : np.ndarray, UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None, **UpperCAmelCase__ : Any ): if image.dtype == np.uinta: __lowercase = image.astype(np.floataa ) # take mean across the whole `image` __lowercase = np.mean(UpperCAmelCase__ ) __lowercase = np.std(UpperCAmelCase__ ) __lowercase = max(UpperCAmelCase__, 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(UpperCAmelCase__, mean=UpperCAmelCase__, std=UpperCAmelCase__, **UpperCAmelCase__ ) def _lowercase ( self : Dict, UpperCAmelCase__ : ImageInput, UpperCAmelCase__ : Optional[str] = None, UpperCAmelCase__ : bool = None, UpperCAmelCase__ : Optional[bool] = None, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : Optional[Dict[str, int]] = None, UpperCAmelCase__ : Optional[Union[str, TensorType]] = None, UpperCAmelCase__ : ChannelDimension = ChannelDimension.FIRST, **UpperCAmelCase__ : Any, ): __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase = patch_size if patch_size is not None else self.patch_size __lowercase = max_patches if max_patches is not None else self.max_patches __lowercase = self.is_vqa if kwargs.get("data_format", UpperCAmelCase__ ) is not None: raise ValueError("data_format is not an accepted input as the outputs are " ) __lowercase = make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase = [convert_to_rgb(UpperCAmelCase__ ) for image in images] # All transformations expect numpy arrays. __lowercase = [to_numpy_array(UpperCAmelCase__ ) for image in images] if is_vqa: if header_text is None: raise ValueError("A header text must be provided for VQA models." ) __lowercase = kwargs.pop("font_bytes", UpperCAmelCase__ ) __lowercase = kwargs.pop("font_path", UpperCAmelCase__ ) if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = [header_text] * len(UpperCAmelCase__ ) __lowercase = [ render_header(UpperCAmelCase__, header_text[i], font_bytes=UpperCAmelCase__, font_path=UpperCAmelCase__ ) for i, image in enumerate(UpperCAmelCase__ ) ] if do_normalize: __lowercase = [self.normalize(image=UpperCAmelCase__ ) for image in images] # convert to torch tensor and permute __lowercase = [ self.extract_flattened_patches(image=UpperCAmelCase__, max_patches=UpperCAmelCase__, patch_size=UpperCAmelCase__ ) for image in images ] # create attention mask in numpy __lowercase = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] __lowercase = BatchFeature( data={"flattened_patches": images, "attention_mask": attention_masks}, tensor_type=UpperCAmelCase__ ) return encoded_outputs
17
"""simple docstring""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _a = _symbol_database.Default() _a = _descriptor_pool.Default().AddSerializedFile( b'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) _a = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: _a = None _a = b'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" _a = 45 _a = 15_81 _a = 15_17 _a = 15_70 _a = 15_84 _a = 17_93 _a = 17_95 _a = 19_16 _a = 18_64 _a = 19_05 _a = 19_19 _a = 24_29 _a = 22_08 _a = 24_18 _a = 23_23 _a = 24_07 # @@protoc_insertion_point(module_scope)
17
1
"""simple docstring""" def _A ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1000 - i, -1000 - i, -1)) for i in range(1000)] _a = generate_large_matrix() _a = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def _A ( UpperCamelCase_ : list[list[int]]) -> None: '''simple docstring''' assert all(row == sorted(UpperCamelCase_, reverse=UpperCamelCase_) for row in grid) assert all(list(UpperCamelCase_) == sorted(UpperCamelCase_, reverse=UpperCamelCase_) for col in zip(*UpperCamelCase_)) def _A ( UpperCamelCase_ : list[int]) -> int: '''simple docstring''' __lowercase = 0 __lowercase = len(UpperCamelCase_) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __lowercase = (left + right) // 2 __lowercase = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __lowercase = mid + 1 else: __lowercase = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(UpperCamelCase_) def _A ( UpperCamelCase_ : list[list[int]]) -> int: '''simple docstring''' __lowercase = 0 __lowercase = len(grid[0]) for i in range(len(UpperCamelCase_)): __lowercase = find_negative_index(grid[i][:bound]) total += bound return (len(UpperCamelCase_) * len(grid[0])) - total def _A ( UpperCamelCase_ : list[list[int]]) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0]) def _A ( UpperCamelCase_ : list[list[int]]) -> int: '''simple docstring''' __lowercase = 0 for row in grid: for i, number in enumerate(UpperCamelCase_): if number < 0: total += len(UpperCamelCase_) - i break return total def _A ( ) -> None: '''simple docstring''' from timeit import timeit print("Running benchmarks") __lowercase = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __lowercase = timeit(F"""{func}(grid=grid)""", setup=UpperCamelCase_, number=500) print(F"""{func}() took {time:0.4f} seconds""") if __name__ == "__main__": import doctest doctest.testmod() benchmark()
17
"""simple docstring""" import baseaa def _A ( UpperCamelCase_ : str) -> bytes: '''simple docstring''' return baseaa.baaencode(string.encode("utf-8")) def _A ( UpperCamelCase_ : bytes) -> str: '''simple docstring''' return baseaa.baadecode(UpperCamelCase_).decode("utf-8") if __name__ == "__main__": _a = 'Hello World!' _a = baseaa_encode(test) print(encoded) _a = baseaa_decode(encoded) print(decoded)
17
1
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowercase ( self : str ): __lowercase = 1 __lowercase = 3 __lowercase = (3_2, 3_2) __lowercase = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0 ) ).to(UpperCAmelCase__ ) return image @property def _lowercase ( self : Optional[Any] ): torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( block_out_channels=(3_2, 6_4), layers_per_block=2, sample_size=3_2, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=3_2, ) return model @property def _lowercase ( self : Optional[Any] ): torch.manual_seed(0 ) __lowercase = AutoencoderKL( block_out_channels=[3_2, 6_4], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) return model @property def _lowercase ( self : Dict ): torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=3_2, intermediate_size=3_7, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_0_0_0, ) return CLIPTextModel(UpperCAmelCase__ ) @property def _lowercase ( self : str ): def extract(*UpperCAmelCase__ : Tuple, **UpperCAmelCase__ : str ): class _lowerCAmelCase : """simple docstring""" def __init__( self : int ): __lowercase = torch.ones([0] ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Dict ): self.pixel_values.to(UpperCAmelCase__ ) return self return Out() return extract def _lowercase ( self : Optional[Any] ): __lowercase = "cpu" # ensure determinism for the device-dependent torch.Generator __lowercase = self.dummy_cond_unet __lowercase = DDIMScheduler( beta_start=0.00_085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=UpperCAmelCase__, set_alpha_to_one=UpperCAmelCase__, ) __lowercase = self.dummy_vae __lowercase = self.dummy_text_encoder __lowercase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk __lowercase = StableDiffusionPipeline( unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, tokenizer=UpperCAmelCase__, safety_checker=UpperCAmelCase__, feature_extractor=self.dummy_extractor, ) __lowercase = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = "A painting of a squirrel eating a burger" __lowercase = torch.Generator(device=UpperCAmelCase__ ).manual_seed(0 ) __lowercase = sd_pipe([prompt], generator=UpperCAmelCase__, guidance_scale=6.0, num_inference_steps=2, output_type="np" ) __lowercase = output.images __lowercase = torch.Generator(device=UpperCAmelCase__ ).manual_seed(0 ) __lowercase = sd_pipe( [prompt], generator=UpperCAmelCase__, guidance_scale=6.0, num_inference_steps=2, output_type="np", return_dict=UpperCAmelCase__, )[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __lowercase = np.array([0.5_756, 0.6_118, 0.5_005, 0.5_041, 0.5_471, 0.4_726, 0.4_976, 0.4_865, 0.4_864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowercase ( self : Union[str, Any] ): __lowercase = "cpu" # ensure determinism for the device-dependent torch.Generator __lowercase = self.dummy_cond_unet __lowercase = PNDMScheduler(skip_prk_steps=UpperCAmelCase__ ) __lowercase = self.dummy_vae __lowercase = self.dummy_text_encoder __lowercase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk __lowercase = StableDiffusionPipeline( unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, tokenizer=UpperCAmelCase__, safety_checker=UpperCAmelCase__, feature_extractor=self.dummy_extractor, ) __lowercase = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = "A painting of a squirrel eating a burger" __lowercase = torch.Generator(device=UpperCAmelCase__ ).manual_seed(0 ) __lowercase = sd_pipe([prompt], generator=UpperCAmelCase__, guidance_scale=6.0, num_inference_steps=2, output_type="np" ) __lowercase = output.images __lowercase = torch.Generator(device=UpperCAmelCase__ ).manual_seed(0 ) __lowercase = sd_pipe( [prompt], generator=UpperCAmelCase__, guidance_scale=6.0, num_inference_steps=2, output_type="np", return_dict=UpperCAmelCase__, )[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __lowercase = np.array([0.5_125, 0.5_716, 0.4_828, 0.5_060, 0.5_650, 0.4_768, 0.5_185, 0.4_895, 0.4_993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowercase ( self : int ): __lowercase = StableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-lms-pipe", safety_checker=UpperCAmelCase__ ) assert isinstance(UpperCAmelCase__, UpperCAmelCase__ ) assert isinstance(pipe.scheduler, UpperCAmelCase__ ) assert pipe.safety_checker is None __lowercase = pipe("example prompt", num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCAmelCase__ ) __lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ ) # sanity check that the pipeline still works assert pipe.safety_checker is None __lowercase = pipe("example prompt", num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != "cuda", "This test requires a GPU" ) def _lowercase ( self : str ): __lowercase = self.dummy_cond_unet __lowercase = PNDMScheduler(skip_prk_steps=UpperCAmelCase__ ) __lowercase = self.dummy_vae __lowercase = self.dummy_text_encoder __lowercase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # put models in fp16 __lowercase = unet.half() __lowercase = vae.half() __lowercase = bert.half() # make sure here that pndm scheduler skips prk __lowercase = StableDiffusionPipeline( unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, tokenizer=UpperCAmelCase__, safety_checker=UpperCAmelCase__, feature_extractor=self.dummy_extractor, ) __lowercase = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = "A painting of a squirrel eating a burger" __lowercase = sd_pipe([prompt], num_inference_steps=2, output_type="np" ).images assert image.shape == (1, 6_4, 6_4, 3) @nightly @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : int ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : Dict ): __lowercase = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=UpperCAmelCase__ ) __lowercase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) __lowercase = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = ( "portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle" " coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with" " anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and" " children from bahnhof zoo, detailed " ) __lowercase = 4_0_0_3_6_6_0_3_4_6 __lowercase = 7 # without safety guidance (sld_guidance_scale = 0) __lowercase = torch.manual_seed(UpperCAmelCase__ ) __lowercase = sd_pipe( [prompt], generator=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, num_inference_steps=5_0, output_type="np", width=5_1_2, height=5_1_2, sld_guidance_scale=0, ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] __lowercase = [0.2_278, 0.2_231, 0.2_249, 0.2_333, 0.2_303, 0.1_885, 0.2_273, 0.2_144, 0.2_176] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) __lowercase = torch.manual_seed(UpperCAmelCase__ ) __lowercase = sd_pipe( [prompt], generator=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, num_inference_steps=5_0, output_type="np", width=5_1_2, height=5_1_2, sld_guidance_scale=2_0_0_0, sld_warmup_steps=7, sld_threshold=0.025, sld_momentum_scale=0.5, sld_mom_beta=0.7, ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] __lowercase = [0.2_383, 0.2_276, 0.236, 0.2_192, 0.2_186, 0.2_053, 0.1_971, 0.1_901, 0.1_719] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowercase ( self : str ): __lowercase = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=UpperCAmelCase__ ) __lowercase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) __lowercase = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = "padme amidala taking a bath artwork, safe for work, no nudity" __lowercase = 2_7_3_4_9_7_1_7_5_5 __lowercase = 7 __lowercase = torch.manual_seed(UpperCAmelCase__ ) __lowercase = sd_pipe( [prompt], generator=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, num_inference_steps=5_0, output_type="np", width=5_1_2, height=5_1_2, sld_guidance_scale=0, ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] __lowercase = [0.3_502, 0.3_622, 0.3_396, 0.3_642, 0.3_478, 0.3_318, 0.35, 0.3_348, 0.3_297] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 __lowercase = torch.manual_seed(UpperCAmelCase__ ) __lowercase = sd_pipe( [prompt], generator=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, num_inference_steps=5_0, output_type="np", width=5_1_2, height=5_1_2, sld_guidance_scale=2_0_0_0, sld_warmup_steps=7, sld_threshold=0.025, sld_momentum_scale=0.5, sld_mom_beta=0.7, ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] __lowercase = [0.5_531, 0.5_206, 0.4_895, 0.5_156, 0.5_182, 0.4_751, 0.4_802, 0.4_803, 0.4_443] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowercase ( self : Tuple ): __lowercase = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" ) __lowercase = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = ( "the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c." " leyendecker" ) __lowercase = 1_0_4_4_3_5_5_2_3_4 __lowercase = 1_2 __lowercase = torch.manual_seed(UpperCAmelCase__ ) __lowercase = sd_pipe( [prompt], generator=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, num_inference_steps=5_0, output_type="np", width=5_1_2, height=5_1_2, sld_guidance_scale=0, ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] __lowercase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 __lowercase = torch.manual_seed(UpperCAmelCase__ ) __lowercase = sd_pipe( [prompt], generator=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, num_inference_steps=5_0, output_type="np", width=5_1_2, height=5_1_2, sld_guidance_scale=2_0_0_0, sld_warmup_steps=7, sld_threshold=0.025, sld_momentum_scale=0.5, sld_mom_beta=0.7, ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] __lowercase = np.array([0.5_818, 0.6_285, 0.6_835, 0.6_019, 0.625, 0.6_754, 0.6_096, 0.6_334, 0.6_561] ) assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
17
"""simple docstring""" def _A ( UpperCamelCase_ : Any) -> List[str]: '''simple docstring''' __lowercase ,__lowercase = [], [] while len(UpperCamelCase_) > 1: __lowercase ,__lowercase = min(UpperCamelCase_), max(UpperCamelCase_) start.append(UpperCamelCase_) end.append(UpperCamelCase_) collection.remove(UpperCamelCase_) collection.remove(UpperCamelCase_) end.reverse() return start + collection + end if __name__ == "__main__": _a = input('Enter numbers separated by a comma:\n').strip() _a = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
17
1
"""simple docstring""" import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging _a = ( 'https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py' ) _a = logging.get_logger(__name__) # pylint: disable=invalid-name def _A ( ) -> int: '''simple docstring''' __lowercase = "https://pypi.org/pypi/diffusers/json" __lowercase = json.loads(request.urlopen(UpperCamelCase_).read())["releases"].keys() return sorted(UpperCamelCase_, key=lambda UpperCamelCase_: version.Version(UpperCamelCase_)) def _A ( ) -> Union[str, Any]: '''simple docstring''' if HF_MODULES_CACHE in sys.path: return sys.path.append(UpperCamelCase_) os.makedirs(UpperCamelCase_, exist_ok=UpperCamelCase_) __lowercase = Path(UpperCamelCase_) / "__init__.py" if not init_path.exists(): init_path.touch() def _A ( UpperCamelCase_ : Union[str, os.PathLike]) -> Union[str, Any]: '''simple docstring''' init_hf_modules() __lowercase = Path(UpperCamelCase_) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent) os.makedirs(UpperCamelCase_, exist_ok=UpperCamelCase_) __lowercase = dynamic_module_path / "__init__.py" if not init_path.exists(): init_path.touch() def _A ( UpperCamelCase_ : Dict) -> Optional[Any]: '''simple docstring''' with open(UpperCamelCase_, "r", encoding="utf-8") as f: __lowercase = f.read() # Imports of the form `import .xxx` __lowercase = re.findall("^\s*import\s+\.(\S+)\s*$", UpperCamelCase_, flags=re.MULTILINE) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("^\s*from\s+\.(\S+)\s+import", UpperCamelCase_, flags=re.MULTILINE) # Unique-ify return list(set(UpperCamelCase_)) def _A ( UpperCamelCase_ : List[str]) -> Any: '''simple docstring''' __lowercase = False __lowercase = [module_file] __lowercase = [] # Let's recurse through all relative imports while not no_change: __lowercase = [] for f in files_to_check: new_imports.extend(get_relative_imports(UpperCamelCase_)) __lowercase = Path(UpperCamelCase_).parent __lowercase = [str(module_path / m) for m in new_imports] __lowercase = [f for f in new_import_files if f not in all_relative_imports] __lowercase = [F"""{f}.py""" for f in new_import_files] __lowercase = len(UpperCamelCase_) == 0 all_relative_imports.extend(UpperCamelCase_) return all_relative_imports def _A ( UpperCamelCase_ : Optional[int]) -> Optional[Any]: '''simple docstring''' with open(UpperCamelCase_, "r", encoding="utf-8") as f: __lowercase = f.read() # Imports of the form `import xxx` __lowercase = re.findall("^\s*import\s+(\S+)\s*$", UpperCamelCase_, flags=re.MULTILINE) # Imports of the form `from xxx import yyy` imports += re.findall("^\s*from\s+(\S+)\s+import", UpperCamelCase_, flags=re.MULTILINE) # Only keep the top-level module __lowercase = [imp.split(".")[0] for imp in imports if not imp.startswith(".")] # Unique-ify and test we got them all __lowercase = list(set(UpperCamelCase_)) __lowercase = [] for imp in imports: try: importlib.import_module(UpperCamelCase_) except ImportError: missing_packages.append(UpperCamelCase_) if len(UpperCamelCase_) > 0: raise ImportError( "This modeling file requires the following packages that were not found in your environment: " F"""{", ".join(UpperCamelCase_)}. Run `pip install {" ".join(UpperCamelCase_)}`""") return get_relative_imports(UpperCamelCase_) def _A ( UpperCamelCase_ : Optional[int], UpperCamelCase_ : int) -> List[Any]: '''simple docstring''' __lowercase = module_path.replace(os.path.sep, ".") __lowercase = importlib.import_module(UpperCamelCase_) if class_name is None: return find_pipeline_class(UpperCamelCase_) return getattr(UpperCamelCase_, UpperCamelCase_) def _A ( UpperCamelCase_ : int) -> Optional[Any]: '''simple docstring''' from ..pipelines import DiffusionPipeline __lowercase = dict(inspect.getmembers(UpperCamelCase_, inspect.isclass)) __lowercase = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls, UpperCamelCase_) and cls.__module__.split(".")[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F"""Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:""" F""" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in""" F""" {loaded_module}.""") __lowercase = cls return pipeline_class def _A ( UpperCamelCase_ : Union[str, os.PathLike], UpperCamelCase_ : str, UpperCamelCase_ : Optional[Union[str, os.PathLike]] = None, UpperCamelCase_ : bool = False, UpperCamelCase_ : bool = False, UpperCamelCase_ : Optional[Dict[str, str]] = None, UpperCamelCase_ : Optional[Union[bool, str]] = None, UpperCamelCase_ : Optional[str] = None, UpperCamelCase_ : bool = False, ) -> Optional[int]: '''simple docstring''' __lowercase = str(UpperCamelCase_) __lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_) if os.path.isfile(UpperCamelCase_): __lowercase = module_file_or_url __lowercase = "local" elif pretrained_model_name_or_path.count("/") == 0: __lowercase = get_diffusers_versions() # cut ".dev0" __lowercase = "v" + ".".join(__version__.split(".")[:3]) # retrieve github version that matches if revision is None: __lowercase = latest_version if latest_version[1:] in available_versions else "main" logger.info(F"""Defaulting to latest_version: {revision}.""") elif revision in available_versions: __lowercase = F"""v{revision}""" elif revision == "main": __lowercase = revision else: raise ValueError( F"""`custom_revision`: {revision} does not exist. Please make sure to choose one of""" F""" {", ".join(available_versions + ["main"])}.""") # community pipeline on GitHub __lowercase = COMMUNITY_PIPELINES_URL.format(revision=UpperCamelCase_, pipeline=UpperCamelCase_) try: __lowercase = cached_download( UpperCamelCase_, cache_dir=UpperCamelCase_, force_download=UpperCamelCase_, proxies=UpperCamelCase_, resume_download=UpperCamelCase_, local_files_only=UpperCamelCase_, use_auth_token=UpperCamelCase_, ) __lowercase = "git" __lowercase = pretrained_model_name_or_path + ".py" except EnvironmentError: logger.error(F"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""") raise else: try: # Load from URL or cache if already cached __lowercase = hf_hub_download( UpperCamelCase_, UpperCamelCase_, cache_dir=UpperCamelCase_, force_download=UpperCamelCase_, proxies=UpperCamelCase_, resume_download=UpperCamelCase_, local_files_only=UpperCamelCase_, use_auth_token=UpperCamelCase_, ) __lowercase = os.path.join("local", "--".join(pretrained_model_name_or_path.split("/"))) except EnvironmentError: logger.error(F"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""") raise # Check we have all the requirements in our environment __lowercase = check_imports(UpperCamelCase_) # Now we move the module inside our cached dynamic modules. __lowercase = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(UpperCamelCase_) __lowercase = Path(UpperCamelCase_) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(UpperCamelCase_, submodule_path / module_file) for module_needed in modules_needed: __lowercase = F"""{module_needed}.py""" shutil.copy(os.path.join(UpperCamelCase_, UpperCamelCase_), submodule_path / module_needed) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(UpperCamelCase_, UpperCamelCase_): __lowercase = use_auth_token elif use_auth_token is True: __lowercase = HfFolder.get_token() else: __lowercase = None __lowercase = model_info(UpperCamelCase_, revision=UpperCamelCase_, token=UpperCamelCase_).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. __lowercase = submodule_path / commit_hash __lowercase = full_submodule + os.path.sep + commit_hash create_dynamic_module(UpperCamelCase_) if not (submodule_path / module_file).exists(): shutil.copy(UpperCamelCase_, submodule_path / module_file) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( UpperCamelCase_, F"""{module_needed}.py""", cache_dir=UpperCamelCase_, force_download=UpperCamelCase_, resume_download=UpperCamelCase_, proxies=UpperCamelCase_, use_auth_token=UpperCamelCase_, revision=UpperCamelCase_, local_files_only=UpperCamelCase_, ) return os.path.join(UpperCamelCase_, UpperCamelCase_) def _A ( UpperCamelCase_ : Union[str, os.PathLike], UpperCamelCase_ : str, UpperCamelCase_ : Optional[str] = None, UpperCamelCase_ : Optional[Union[str, os.PathLike]] = None, UpperCamelCase_ : bool = False, UpperCamelCase_ : bool = False, UpperCamelCase_ : Optional[Dict[str, str]] = None, UpperCamelCase_ : Optional[Union[bool, str]] = None, UpperCamelCase_ : Optional[str] = None, UpperCamelCase_ : bool = False, **UpperCamelCase_ : List[str], ) -> Dict: '''simple docstring''' __lowercase = get_cached_module_file( UpperCamelCase_, UpperCamelCase_, cache_dir=UpperCamelCase_, force_download=UpperCamelCase_, resume_download=UpperCamelCase_, proxies=UpperCamelCase_, use_auth_token=UpperCamelCase_, revision=UpperCamelCase_, local_files_only=UpperCamelCase_, ) return get_class_in_module(UpperCamelCase_, final_module.replace(".py", ""))
17
"""simple docstring""" def _A ( UpperCamelCase_ : list[int]) -> float: '''simple docstring''' if not nums: # Makes sure that the list is not empty raise ValueError("List is empty") __lowercase = sum(UpperCamelCase_) / len(UpperCamelCase_) # Calculate the average return sum(abs(x - average) for x in nums) / len(UpperCamelCase_) if __name__ == "__main__": import doctest doctest.testmod()
17
1
"""simple docstring""" def _A ( UpperCamelCase_ : int = 1000) -> int: '''simple docstring''' __lowercase ,__lowercase = 1, 1 __lowercase = 2 while True: __lowercase = 0 __lowercase = fa + fa __lowercase ,__lowercase = fa, f index += 1 for _ in str(UpperCamelCase_): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
17
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : int=1_0_0, UpperCAmelCase__ : Any=1_3, UpperCAmelCase__ : List[Any]=3_0, UpperCAmelCase__ : Dict=2, UpperCAmelCase__ : Any=3, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[str]=True, UpperCAmelCase__ : Optional[Any]=3_2, UpperCAmelCase__ : Any=5, UpperCAmelCase__ : Any=4, UpperCAmelCase__ : Any=3_7, UpperCAmelCase__ : Optional[int]="gelu", UpperCAmelCase__ : Dict=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Dict=1_0, UpperCAmelCase__ : Tuple=0.02, UpperCAmelCase__ : List[Any]=3, ): __lowercase = parent __lowercase = vocab_size __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase = (image_size // patch_size) ** 2 __lowercase = num_patches + 1 def _lowercase ( self : int ): __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size], self.type_sequence_label_size ) __lowercase = BeitConfig( vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=UpperCAmelCase__, initializer_range=self.initializer_range, ) return config, pixel_values, labels def _lowercase ( self : Any, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[str], UpperCAmelCase__ : List[str] ): __lowercase = FlaxBeitModel(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : List[Any] ): __lowercase = FlaxBeitForMaskedImageModeling(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size) ) def _lowercase ( self : Dict, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : Union[str, Any] ): __lowercase = self.type_sequence_label_size __lowercase = FlaxBeitForImageClassification(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowercase = 1 __lowercase = FlaxBeitForImageClassification(UpperCAmelCase__ ) __lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase = model(UpperCAmelCase__ ) def _lowercase ( self : List[str] ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) ,( __lowercase ) ,( __lowercase ) , ) = config_and_inputs __lowercase = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class _lowerCAmelCase ( lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def _lowercase ( self : List[Any] ): __lowercase = FlaxBeitModelTester(self ) __lowercase = ConfigTester(self, config_class=UpperCAmelCase__, has_text_modality=UpperCAmelCase__, hidden_size=3_7 ) def _lowercase ( self : Union[str, Any] ): self.config_tester.run_common_tests() def _lowercase ( self : Optional[int] ): __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(UpperCAmelCase__ ) __lowercase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["pixel_values"] self.assertListEqual(arg_names[:1], UpperCAmelCase__ ) def _lowercase ( self : Tuple ): __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowercase = self._prepare_for_class(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = model_class(UpperCAmelCase__ ) @jax.jit def model_jitted(UpperCAmelCase__ : str, **UpperCAmelCase__ : Dict ): return model(pixel_values=UpperCAmelCase__, **UpperCAmelCase__ ) with self.subTest("JIT Enabled" ): __lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ), len(UpperCAmelCase__ ) ) for jitted_output, output in zip(UpperCAmelCase__, UpperCAmelCase__ ): self.assertEqual(jitted_output.shape, output.shape ) def _lowercase ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def _lowercase ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ ) def _lowercase ( self : Tuple ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ ) @slow def _lowercase ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: __lowercase = model_class_name.from_pretrained("microsoft/beit-base-patch16-224" ) __lowercase = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(UpperCAmelCase__ ) def _A ( ) -> str: '''simple docstring''' __lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_vision @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : Optional[int] ): return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def _lowercase ( self : Any ): __lowercase = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ).pixel_values # prepare bool_masked_pos __lowercase = np.ones((1, 1_9_6), dtype=UpperCAmelCase__ ) # forward pass __lowercase = model(pixel_values=UpperCAmelCase__, bool_masked_pos=UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 1_9_6, 8_1_9_2) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3], UpperCAmelCase__, atol=1E-2 ) ) @slow def _lowercase ( self : Any ): __lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ) # forward pass __lowercase = model(**UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 1_0_0_0) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array([-1.2_385, -1.0_987, -1.0_108] ) self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) ) __lowercase = 2_8_1 self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ ) @slow def _lowercase ( self : List[str] ): __lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ) # forward pass __lowercase = model(**UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 2_1_8_4_1) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array([1.6_881, -0.2_787, 0.5_901] ) self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) ) __lowercase = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ )
17
1
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def _A ( UpperCamelCase_ : int) -> Any: '''simple docstring''' __lowercase = OrderedDict() for key, value in state_dict.items(): if key.startswith("module.encoder"): __lowercase = key.replace("module.encoder", "glpn.encoder") if key.startswith("module.decoder"): __lowercase = key.replace("module.decoder", "decoder.stages") if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 __lowercase = key[key.find("patch_embed") + len("patch_embed")] __lowercase = key.replace(F"""patch_embed{idx}""", F"""patch_embeddings.{int(UpperCamelCase_)-1}""") if "norm" in key: __lowercase = key.replace("norm", "layer_norm") if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 __lowercase = key[key.find("glpn.encoder.layer_norm") + len("glpn.encoder.layer_norm")] __lowercase = key.replace(F"""layer_norm{idx}""", F"""layer_norm.{int(UpperCamelCase_)-1}""") if "layer_norm1" in key: __lowercase = key.replace("layer_norm1", "layer_norm_1") if "layer_norm2" in key: __lowercase = key.replace("layer_norm2", "layer_norm_2") if "block" in key: # replace for example block1 by block.0 __lowercase = key[key.find("block") + len("block")] __lowercase = key.replace(F"""block{idx}""", F"""block.{int(UpperCamelCase_)-1}""") if "attn.q" in key: __lowercase = key.replace("attn.q", "attention.self.query") if "attn.proj" in key: __lowercase = key.replace("attn.proj", "attention.output.dense") if "attn" in key: __lowercase = key.replace("attn", "attention.self") if "fc1" in key: __lowercase = key.replace("fc1", "dense1") if "fc2" in key: __lowercase = key.replace("fc2", "dense2") if "linear_pred" in key: __lowercase = key.replace("linear_pred", "classifier") if "linear_fuse" in key: __lowercase = key.replace("linear_fuse.conv", "linear_fuse") __lowercase = key.replace("linear_fuse.bn", "batch_norm") if "linear_c" in key: # replace for example linear_c4 by linear_c.3 __lowercase = key[key.find("linear_c") + len("linear_c")] __lowercase = key.replace(F"""linear_c{idx}""", F"""linear_c.{int(UpperCamelCase_)-1}""") if "bot_conv" in key: __lowercase = key.replace("bot_conv", "0.convolution") if "skip_conv1" in key: __lowercase = key.replace("skip_conv1", "1.convolution") if "skip_conv2" in key: __lowercase = key.replace("skip_conv2", "2.convolution") if "fusion1" in key: __lowercase = key.replace("fusion1", "1.fusion") if "fusion2" in key: __lowercase = key.replace("fusion2", "2.fusion") if "fusion3" in key: __lowercase = key.replace("fusion3", "3.fusion") if "fusion" in key and "conv" in key: __lowercase = key.replace("conv", "convolutional_layer") if key.startswith("module.last_layer_depth"): __lowercase = key.replace("module.last_layer_depth", "head.head") __lowercase = value return new_state_dict def _A ( UpperCamelCase_ : Optional[int], UpperCamelCase_ : Union[str, Any]) -> Optional[Any]: '''simple docstring''' for i in range(config.num_encoder_blocks): for j in range(config.depths[i]): # read in weights + bias of keys and values (which is a single matrix in the original implementation) __lowercase = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""") __lowercase = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""") # next, add keys and values (in that order) to the state dict __lowercase = kv_weight[ : config.hidden_sizes[i], : ] __lowercase = kv_bias[: config.hidden_sizes[i]] __lowercase = kv_weight[ config.hidden_sizes[i] :, : ] __lowercase = kv_bias[config.hidden_sizes[i] :] def _A ( ) -> Union[str, Any]: '''simple docstring''' __lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowercase = Image.open(requests.get(UpperCamelCase_, stream=UpperCamelCase_).raw) return image @torch.no_grad() def _A ( UpperCamelCase_ : Any, UpperCamelCase_ : int, UpperCamelCase_ : int=False, UpperCamelCase_ : str=None) -> Any: '''simple docstring''' __lowercase = GLPNConfig(hidden_sizes=[64, 128, 320, 512], decoder_hidden_size=64, depths=[3, 8, 27, 3]) # load image processor (only resize + rescale) __lowercase = GLPNImageProcessor() # prepare image __lowercase = prepare_img() __lowercase = image_processor(images=UpperCamelCase_, return_tensors="pt").pixel_values logger.info("Converting model...") # load original state dict __lowercase = torch.load(UpperCamelCase_, map_location=torch.device("cpu")) # rename keys __lowercase = rename_keys(UpperCamelCase_) # key and value matrices need special treatment read_in_k_v(UpperCamelCase_, UpperCamelCase_) # create HuggingFace model and load state dict __lowercase = GLPNForDepthEstimation(UpperCamelCase_) model.load_state_dict(UpperCamelCase_) model.eval() # forward pass __lowercase = model(UpperCamelCase_) __lowercase = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: __lowercase = torch.tensor( [[4.4_147, 4.0_873, 4.0_673], [3.7_890, 3.2_881, 3.1_525], [3.7_674, 3.5_423, 3.4_913]]) elif "kitti" in model_name: __lowercase = torch.tensor( [[3.4_291, 2.7_865, 2.5_151], [3.2_841, 2.7_021, 2.3_502], [3.1_147, 2.4_625, 2.2_481]]) else: raise ValueError(F"""Unknown model name: {model_name}""") __lowercase = torch.Size([1, 480, 640]) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3], UpperCamelCase_, atol=1E-4) print("Looks ok!") # finally, push to hub if required if push_to_hub: logger.info("Pushing model and image processor to the hub...") model.push_to_hub( repo_path_or_name=Path(UpperCamelCase_, UpperCamelCase_), organization="nielsr", commit_message="Add model", use_temp_dir=UpperCamelCase_, ) image_processor.push_to_hub( repo_path_or_name=Path(UpperCamelCase_, UpperCamelCase_), organization="nielsr", commit_message="Add image processor", use_temp_dir=UpperCamelCase_, ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) parser.add_argument( '--model_name', default='glpn-kitti', type=str, help='Name of the model in case you\'re pushing to the hub.', ) _a = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
17
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class _lowerCAmelCase ( unittest.TestCase ,lowercase ): """simple docstring""" def _lowercase ( self : List[Any] ): __lowercase = load_tool("text-classification" ) self.tool.setup() __lowercase = load_tool("text-classification", remote=UpperCAmelCase__ ) def _lowercase ( self : str ): __lowercase = self.tool("That's quite cool", ["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" ) def _lowercase ( self : str ): __lowercase = self.remote_tool("That's quite cool", ["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" ) def _lowercase ( self : List[str] ): __lowercase = self.tool(text="That's quite cool", labels=["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" ) def _lowercase ( self : Tuple ): __lowercase = self.remote_tool(text="That's quite cool", labels=["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" )
17
1
"""simple docstring""" def _A ( UpperCamelCase_ : Optional[int]) -> int: '''simple docstring''' return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def _A ( UpperCamelCase_ : dict[int, list[int]]) -> list[tuple[int, int]]: '''simple docstring''' __lowercase = 0 __lowercase = len(UpperCamelCase_) # No of vertices in graph __lowercase = [0] * n __lowercase = [False] * n def dfs(UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : Optional[int], UpperCamelCase_ : Any, UpperCamelCase_ : Optional[Any]): __lowercase = True __lowercase = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, id_) __lowercase = min(low[at], low[to]) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at)) else: # This edge is a back edge and cannot be a bridge __lowercase = min(low[at], low[to]) __lowercase = [] for i in range(UpperCamelCase_): if not visited[i]: dfs(UpperCamelCase_, -1, UpperCamelCase_, id_) return bridges if __name__ == "__main__": import doctest doctest.testmod()
17
"""simple docstring""" from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker _a = 'CompVis/stable-diffusion-v1-1' _a = 'CompVis/stable-diffusion-v1-2' _a = 'CompVis/stable-diffusion-v1-3' _a = 'CompVis/stable-diffusion-v1-4' class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : Dict, UpperCAmelCase__ : AutoencoderKL, UpperCAmelCase__ : CLIPTextModel, UpperCAmelCase__ : CLIPTokenizer, UpperCAmelCase__ : UNetaDConditionModel, UpperCAmelCase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], UpperCAmelCase__ : StableDiffusionSafetyChecker, UpperCAmelCase__ : CLIPImageProcessor, UpperCAmelCase__ : bool = True, ): super()._init_() __lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ ) __lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ ) __lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ ) __lowercase = StableDiffusionPipeline( vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, tokenizer=UpperCAmelCase__, unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, safety_checker=UpperCAmelCase__, feature_extractor=UpperCAmelCase__, requires_safety_checker=UpperCAmelCase__, ) self.register_modules(pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea ) @property def _lowercase ( self : List[str] ): return {k: getattr(self, UpperCAmelCase__ ) for k in self.config.keys() if not k.startswith("_" )} def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase__ ) def _lowercase ( self : List[str] ): self.enable_attention_slicing(UpperCAmelCase__ ) @torch.no_grad() def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Tuple, ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : Tuple, UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : str, ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : str, UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Any, ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Optional[int], ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : str, ): __lowercase = "cuda" if torch.cuda.is_available() else "cpu" self.to(UpperCAmelCase__ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" ) # Get first result from Stable Diffusion Checkpoint v1.1 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get first result from Stable Diffusion Checkpoint v1.2 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get first result from Stable Diffusion Checkpoint v1.3 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get first result from Stable Diffusion Checkpoint v1.4 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
17
1
"""simple docstring""" import os import sys import unittest _a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) _a = os.path.join('tests', 'models', 'bert', 'test_modeling_bert.py') _a = os.path.join('tests', 'models', 'blip', 'test_modeling_blip.py') class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : int ): __lowercase = get_test_to_tester_mapping(UpperCAmelCase__ ) __lowercase = get_test_to_tester_mapping(UpperCAmelCase__ ) __lowercase = {"BertModelTest": "BertModelTester"} __lowercase = { "BlipModelTest": "BlipModelTester", "BlipTextImageModelTest": "BlipTextImageModelsModelTester", "BlipTextModelTest": "BlipTextModelTester", "BlipTextRetrievalModelTest": "BlipTextRetrievalModelTester", "BlipVQAModelTest": "BlipVQAModelTester", "BlipVisionModelTest": "BlipVisionModelTester", } self.assertEqual(get_test_info.to_json(UpperCAmelCase__ ), UpperCAmelCase__ ) self.assertEqual(get_test_info.to_json(UpperCAmelCase__ ), UpperCAmelCase__ ) def _lowercase ( self : List[str] ): __lowercase = get_model_to_test_mapping(UpperCAmelCase__ ) __lowercase = get_model_to_test_mapping(UpperCAmelCase__ ) __lowercase = { "BertForMaskedLM": ["BertModelTest"], "BertForMultipleChoice": ["BertModelTest"], "BertForNextSentencePrediction": ["BertModelTest"], "BertForPreTraining": ["BertModelTest"], "BertForQuestionAnswering": ["BertModelTest"], "BertForSequenceClassification": ["BertModelTest"], "BertForTokenClassification": ["BertModelTest"], "BertLMHeadModel": ["BertModelTest"], "BertModel": ["BertModelTest"], } __lowercase = { "BlipForConditionalGeneration": ["BlipTextImageModelTest"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTest"], "BlipForQuestionAnswering": ["BlipVQAModelTest"], "BlipModel": ["BlipModelTest"], "BlipTextModel": ["BlipTextModelTest"], "BlipVisionModel": ["BlipVisionModelTest"], } self.assertEqual(get_test_info.to_json(UpperCAmelCase__ ), UpperCAmelCase__ ) self.assertEqual(get_test_info.to_json(UpperCAmelCase__ ), UpperCAmelCase__ ) def _lowercase ( self : List[Any] ): __lowercase = get_model_to_tester_mapping(UpperCAmelCase__ ) __lowercase = get_model_to_tester_mapping(UpperCAmelCase__ ) __lowercase = { "BertForMaskedLM": ["BertModelTester"], "BertForMultipleChoice": ["BertModelTester"], "BertForNextSentencePrediction": ["BertModelTester"], "BertForPreTraining": ["BertModelTester"], "BertForQuestionAnswering": ["BertModelTester"], "BertForSequenceClassification": ["BertModelTester"], "BertForTokenClassification": ["BertModelTester"], "BertLMHeadModel": ["BertModelTester"], "BertModel": ["BertModelTester"], } __lowercase = { "BlipForConditionalGeneration": ["BlipTextImageModelsModelTester"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTester"], "BlipForQuestionAnswering": ["BlipVQAModelTester"], "BlipModel": ["BlipModelTester"], "BlipTextModel": ["BlipTextModelTester"], "BlipVisionModel": ["BlipVisionModelTester"], } self.assertEqual(get_test_info.to_json(UpperCAmelCase__ ), UpperCAmelCase__ ) self.assertEqual(get_test_info.to_json(UpperCAmelCase__ ), UpperCAmelCase__ )
17
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowerCAmelCase ( lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = "ssube/stable-diffusion-x4-upscaler-onnx" def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : List[str]=0 ): __lowercase = floats_tensor((1, 3, 1_2_8, 1_2_8), rng=random.Random(UpperCAmelCase__ ) ) __lowercase = torch.manual_seed(UpperCAmelCase__ ) __lowercase = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def _lowercase ( self : Any ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def _lowercase ( self : Optional[Any] ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) __lowercase = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.6_898_892, 0.59_240_556, 0.52_499_527, 0.58_866_215, 0.52_258_235, 0.52_572_715, 0.62_414_473, 0.6_174_387, 0.6_214_964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _lowercase ( self : int ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.7_659_278, 0.76_437_664, 0.75_579_107, 0.7_691_116, 0.77_666_986, 0.7_727_672, 0.7_758_664, 0.7_812_226, 0.76_942_515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _lowercase ( self : str ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) __lowercase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _lowercase ( self : Any ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) __lowercase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.77_424_496, 0.773_601, 0.7_645_288, 0.7_769_598, 0.7_772_739, 0.7_738_688, 0.78_187_233, 0.77_879_584, 0.767_043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @property def _lowercase ( self : Tuple ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowercase ( self : Dict ): __lowercase = ort.SessionOptions() __lowercase = False return options def _lowercase ( self : Dict ): __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) __lowercase = init_image.resize((1_2_8, 1_2_8) ) # using the PNDM scheduler by default __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx", provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = "A fantasy landscape, trending on artstation" __lowercase = torch.manual_seed(0 ) __lowercase = pipe( prompt=UpperCAmelCase__, image=UpperCAmelCase__, guidance_scale=7.5, num_inference_steps=1_0, generator=UpperCAmelCase__, output_type="np", ) __lowercase = output.images __lowercase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array([0.4_883, 0.4_947, 0.4_980, 0.4_975, 0.4_982, 0.4_980, 0.5_000, 0.5_006, 0.4_972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def _lowercase ( self : str ): __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) __lowercase = init_image.resize((1_2_8, 1_2_8) ) __lowercase = LMSDiscreteScheduler.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx", subfolder="scheduler" ) __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx", scheduler=UpperCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = "A fantasy landscape, trending on artstation" __lowercase = torch.manual_seed(0 ) __lowercase = pipe( prompt=UpperCAmelCase__, image=UpperCAmelCase__, guidance_scale=7.5, num_inference_steps=2_0, generator=UpperCAmelCase__, output_type="np", ) __lowercase = output.images __lowercase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.50_173_753, 0.50_223_356, 0.502_039, 0.50_233_036, 0.5_023_725, 0.5_022_601, 0.5_018_758, 0.50_234_085, 0.50_241_566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
17
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Tuple, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : int=7, UpperCAmelCase__ : Optional[int]=3, UpperCAmelCase__ : Dict=1_8, UpperCAmelCase__ : Any=3_0, UpperCAmelCase__ : Any=4_0_0, UpperCAmelCase__ : Dict=True, UpperCAmelCase__ : Optional[int]=None, UpperCAmelCase__ : List[Any]=True, UpperCAmelCase__ : Union[str, Any]=None, UpperCAmelCase__ : int=True, ): __lowercase = size if size is not None else {"shortest_edge": 2_0} __lowercase = crop_size if crop_size is not None else {"height": 1_8, "width": 1_8} __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = image_size __lowercase = min_resolution __lowercase = max_resolution __lowercase = do_resize __lowercase = size __lowercase = do_center_crop __lowercase = crop_size __lowercase = do_flip_channel_order def _lowercase ( self : Optional[int] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class _lowerCAmelCase ( lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Tuple = MobileViTImageProcessor if is_vision_available() else None def _lowercase ( self : Any ): __lowercase = MobileViTImageProcessingTester(self ) @property def _lowercase ( self : Any ): return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : List[str] ): __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase__, "do_resize" ) ) self.assertTrue(hasattr(UpperCAmelCase__, "size" ) ) self.assertTrue(hasattr(UpperCAmelCase__, "do_center_crop" ) ) self.assertTrue(hasattr(UpperCAmelCase__, "center_crop" ) ) self.assertTrue(hasattr(UpperCAmelCase__, "do_flip_channel_order" ) ) def _lowercase ( self : List[str] ): __lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {"shortest_edge": 2_0} ) self.assertEqual(image_processor.crop_size, {"height": 1_8, "width": 1_8} ) __lowercase = self.image_processing_class.from_dict(self.image_processor_dict, size=4_2, crop_size=8_4 ) self.assertEqual(image_processor.size, {"shortest_edge": 4_2} ) self.assertEqual(image_processor.crop_size, {"height": 8_4, "width": 8_4} ) def _lowercase ( self : str ): pass def _lowercase ( self : Any ): # Initialize image_processing __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__, Image.Image ) # Test not batched input __lowercase = image_processing(image_inputs[0], return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), ) # Test batched __lowercase = image_processing(UpperCAmelCase__, return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), ) def _lowercase ( self : List[Any] ): # Initialize image_processing __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCAmelCase__, numpify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__, np.ndarray ) # Test not batched input __lowercase = image_processing(image_inputs[0], return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), ) # Test batched __lowercase = image_processing(UpperCAmelCase__, return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), ) def _lowercase ( self : Dict ): # Initialize image_processing __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCAmelCase__, torchify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__, torch.Tensor ) # Test not batched input __lowercase = image_processing(image_inputs[0], return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), ) # Test batched __lowercase = image_processing(UpperCAmelCase__, return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), )
17
"""simple docstring""" import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal _a = datasets.utils.logging.get_logger(__name__) _a = ['names', 'prefix'] _a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] _a = ['encoding_errors', 'on_bad_lines'] _a = ['date_format'] @dataclass class _lowerCAmelCase ( datasets.BuilderConfig ): """simple docstring""" __UpperCAmelCase : str = "," __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[Union[int, List[int], str]] = "infer" __UpperCAmelCase : Optional[List[str]] = None __UpperCAmelCase : Optional[List[str]] = None __UpperCAmelCase : Optional[Union[int, str, List[int], List[str]]] = None __UpperCAmelCase : Optional[Union[List[int], List[str]]] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : bool = True __UpperCAmelCase : Optional[Literal["c", "python", "pyarrow"]] = None __UpperCAmelCase : Dict[Union[int, str], Callable[[Any], Any]] = None __UpperCAmelCase : Optional[list] = None __UpperCAmelCase : Optional[list] = None __UpperCAmelCase : bool = False __UpperCAmelCase : Optional[Union[int, List[int]]] = None __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Optional[Union[str, List[str]]] = None __UpperCAmelCase : bool = True __UpperCAmelCase : bool = True __UpperCAmelCase : bool = False __UpperCAmelCase : bool = True __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : str = "." __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : str = '"' __UpperCAmelCase : int = 0 __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : bool = True __UpperCAmelCase : bool = True __UpperCAmelCase : int = 0 __UpperCAmelCase : bool = True __UpperCAmelCase : bool = False __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : int = 1_0_0_0_0 __UpperCAmelCase : Optional[datasets.Features] = None __UpperCAmelCase : Optional[str] = "strict" __UpperCAmelCase : Literal["error", "warn", "skip"] = "error" __UpperCAmelCase : Optional[str] = None def _lowercase ( self : Tuple ): if self.delimiter is not None: __lowercase = self.delimiter if self.column_names is not None: __lowercase = self.column_names @property def _lowercase ( self : Union[str, Any] ): __lowercase = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig(), UpperCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class _lowerCAmelCase ( datasets.ArrowBasedBuilder ): """simple docstring""" __UpperCAmelCase : Tuple = CsvConfig def _lowercase ( self : List[str] ): return datasets.DatasetInfo(features=self.config.features ) def _lowercase ( self : List[Any], UpperCAmelCase__ : Dict ): if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) __lowercase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(UpperCAmelCase__, (str, list, tuple) ): __lowercase = data_files if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = [files] __lowercase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files} )] __lowercase = [] for split_name, files in data_files.items(): if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = [files] __lowercase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=UpperCAmelCase__, gen_kwargs={"files": files} ) ) return splits def _lowercase ( self : Dict, UpperCAmelCase__ : pa.Table ): if self.config.features is not None: __lowercase = self.config.features.arrow_schema if all(not require_storage_cast(UpperCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast __lowercase = pa.Table.from_arrays([pa_table[field.name] for field in schema], schema=UpperCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example __lowercase = table_cast(UpperCAmelCase__, UpperCAmelCase__ ) return pa_table def _lowercase ( self : Optional[Any], UpperCAmelCase__ : List[str] ): __lowercase = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str __lowercase = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(UpperCAmelCase__ ) else object for name, dtype, feature in zip(schema.names, schema.types, self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase__ ) ): __lowercase = pd.read_csv(UpperCAmelCase__, iterator=UpperCAmelCase__, dtype=UpperCAmelCase__, **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(UpperCAmelCase__ ): __lowercase = pa.Table.from_pandas(UpperCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase__ ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(UpperCAmelCase__ )}: {e}""" ) raise
17
1
"""simple docstring""" def _A ( UpperCamelCase_ : int, UpperCamelCase_ : int) -> int: '''simple docstring''' return int((input_a, input_a).count(1) != 0) def _A ( ) -> None: '''simple docstring''' assert or_gate(0, 0) == 0 assert or_gate(0, 1) == 1 assert or_gate(1, 0) == 1 assert or_gate(1, 1) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
17
"""simple docstring""" from scipy.stats import spearmanr import datasets _a = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n' _a = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n' _a = r'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def _lowercase ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ), reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"], ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int]=False ): __lowercase = spearmanr(UpperCAmelCase__, UpperCAmelCase__ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
17
1
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin _a = get_tests_dir('fixtures/test_sentencepiece.model') _a = {'target_lang': 'fi', 'source_lang': 'en'} _a = '>>zh<<' _a = 'Helsinki-NLP/' if is_torch_available(): _a = 'pt' elif is_tf_available(): _a = 'tf' else: _a = 'jax' @require_sentencepiece class _lowerCAmelCase ( lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = MarianTokenizer __UpperCAmelCase : Any = False __UpperCAmelCase : int = True def _lowercase ( self : int ): super().setUp() __lowercase = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] __lowercase = dict(zip(UpperCAmelCase__, range(len(UpperCAmelCase__ ) ) ) ) __lowercase = Path(self.tmpdirname ) save_json(UpperCAmelCase__, save_dir / VOCAB_FILES_NAMES["vocab"] ) save_json(UpperCAmelCase__, save_dir / VOCAB_FILES_NAMES["tokenizer_config_file"] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(UpperCAmelCase__, save_dir / VOCAB_FILES_NAMES["source_spm"] ) copyfile(UpperCAmelCase__, save_dir / VOCAB_FILES_NAMES["target_spm"] ) __lowercase = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self : List[Any], **UpperCAmelCase__ : int ): return MarianTokenizer.from_pretrained(self.tmpdirname, **UpperCAmelCase__ ) def _lowercase ( self : List[Any], UpperCAmelCase__ : Union[str, Any] ): return ( "This is a test", "This is a test", ) def _lowercase ( self : List[Any] ): __lowercase = "</s>" __lowercase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__ ), UpperCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__ ), UpperCAmelCase__ ) def _lowercase ( self : List[str] ): __lowercase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], "</s>" ) self.assertEqual(vocab_keys[1], "<unk>" ) self.assertEqual(vocab_keys[-1], "<pad>" ) self.assertEqual(len(UpperCAmelCase__ ), 9 ) def _lowercase ( self : str ): self.assertEqual(self.get_tokenizer().vocab_size, 9 ) def _lowercase ( self : List[str] ): __lowercase = MarianTokenizer.from_pretrained(F"""{ORG_NAME}opus-mt-en-de""" ) __lowercase = en_de_tokenizer(["I am a small frog"], return_tensors=UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = [3_8, 1_2_1, 1_4, 6_9_7, 3_8_8_4_8, 0] self.assertListEqual(UpperCAmelCase__, batch.input_ids[0] ) __lowercase = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(UpperCAmelCase__ ) __lowercase = [x.name for x in Path(UpperCAmelCase__ ).glob("*" )] self.assertIn("source.spm", UpperCAmelCase__ ) MarianTokenizer.from_pretrained(UpperCAmelCase__ ) def _lowercase ( self : List[Any] ): __lowercase = self.get_tokenizer() __lowercase = tok( ["I am a small frog" * 1_0_0_0, "I am a small frog"], padding=UpperCAmelCase__, truncation=UpperCAmelCase__, return_tensors=UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__, UpperCAmelCase__ ) self.assertEqual(batch.input_ids.shape, (2, 5_1_2) ) def _lowercase ( self : Union[str, Any] ): __lowercase = self.get_tokenizer() __lowercase = tok(["I am a tiny frog", "I am a small frog"], padding=UpperCAmelCase__, return_tensors=UpperCAmelCase__ ) self.assertIsInstance(UpperCAmelCase__, UpperCAmelCase__ ) self.assertEqual(batch_smaller.input_ids.shape, (2, 1_0) ) @slow def _lowercase ( self : List[str] ): # fmt: off __lowercase = {"input_ids": [[4_3_4_9_5, 4_6_2, 2_0, 4_2_1_6_4, 1_3_6_9, 5_2, 4_6_4, 1_3_2, 1_7_0_3, 4_9_2, 1_3, 7_4_9_1, 3_8_9_9_9, 6, 8, 4_6_4, 1_3_2, 1_7_0_3, 4_9_2, 1_3, 4_6_6_9, 3_7_8_6_7, 1_3, 7_5_2_5, 2_7, 1_5_9_3, 9_8_8, 1_3, 3_3_9_7_2, 7_0_2_9, 6, 2_0, 8_2_5_1, 3_8_3, 2, 2_7_0, 5_8_6_6, 3_7_8_8, 2, 2_3_5_3, 8_2_5_1, 1_2_3_3_8, 2, 1_3_9_5_8, 3_8_7, 2, 3_6_2_9, 6_9_5_3, 1_8_8, 2_9_0_0, 2, 1_3_9_5_8, 8_0_1_1, 1_1_5_0_1, 2_3, 8_4_6_0, 4_0_7_3, 3_4_0_0_9, 2_0, 4_3_5, 1_1_4_3_9, 2_7, 8, 8_4_6_0, 4_0_7_3, 6_0_0_4, 2_0, 9_9_8_8, 3_7_5, 2_7, 3_3, 2_6_6, 1_9_4_5, 1_0_7_6, 1_3_5_0, 3_7_8_6_7, 3_2_8_8, 5, 5_7_7, 1_0_7_6, 4_3_7_4, 8, 5_0_8_2, 5, 2_6_4_5_3, 2_5_7, 5_5_6, 4_0_3, 2, 2_4_2, 1_3_2, 3_8_3, 3_1_6, 4_9_2, 8, 1_0_7_6_7, 6, 3_1_6, 3_0_4, 4_2_3_9, 3, 0], [1_4_8, 1_5_7_2_2, 1_9, 1_8_3_9, 1_2, 1_3_5_0, 1_3, 2_2_3_2_7, 5_0_8_2, 5_4_1_8, 4_7_5_6_7, 3_5_9_3_8, 5_9, 3_1_8, 1_9_5_5_2, 1_0_8, 2_1_8_3, 5_4, 1_4_9_7_6, 4_8_3_5, 3_2, 5_4_7, 1_1_1_4, 8, 3_1_5, 2_4_1_7, 5, 9_2, 1_9_0_8_8, 3, 0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0], [3_6, 6_3_9_5, 1_2_5_7_0, 3_9_1_4_7, 1_1_5_9_7, 6, 2_6_6, 4, 4_5_4_0_5, 7_2_9_6, 3, 0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase__, model_name="Helsinki-NLP/opus-mt-en-de", revision="1a8c2263da11e68e50938f97e10cd57820bd504c", decode_kwargs={"use_source_tokenizer": True}, ) def _lowercase ( self : List[str] ): __lowercase = MarianTokenizer.from_pretrained("hf-internal-testing/test-marian-two-vocabs" ) __lowercase = "Tämä on testi" __lowercase = "This is a test" __lowercase = [7_6, 7, 2_0_4_7, 2] __lowercase = [6_9, 1_2, 1_1, 9_4_0, 2] __lowercase = tokenizer(UpperCAmelCase__ ).input_ids self.assertListEqual(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = tokenizer(text_target=UpperCAmelCase__ ).input_ids self.assertListEqual(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = tokenizer.decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__, UpperCAmelCase__ )
17
"""simple docstring""" from collections.abc import Sequence def _A ( UpperCamelCase_ : Sequence[float], UpperCamelCase_ : float) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(UpperCamelCase_)) def _A ( UpperCamelCase_ : Sequence[float], UpperCamelCase_ : float) -> float: '''simple docstring''' __lowercase = 0.0 for coeff in reversed(UpperCamelCase_): __lowercase = result * x + coeff return result if __name__ == "__main__": _a = (0.0, 0.0, 5.0, 9.3, 7.0) _a = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
17
1
"""simple docstring""" import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : Dict=(), UpperCamelCase_ : int=None, UpperCamelCase_ : List[str]="no", UpperCamelCase_ : int="29500") -> Dict: '''simple docstring''' __lowercase = False __lowercase = False if any(key.startswith("KAGGLE") for key in os.environ.keys()): __lowercase = True elif "IPython" in sys.modules: __lowercase = "google.colab" in str(sys.modules["IPython"].get_ipython()) try: __lowercase = PrecisionType(mixed_precision.lower()) except ValueError: raise ValueError( F"""Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.""") if (in_colab or in_kaggle) and (os.environ.get("TPU_NAME", UpperCamelCase_) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state) > 0: raise ValueError( "To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside " "your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`.") if num_processes is None: __lowercase = 8 __lowercase = PrepareForLaunch(UpperCamelCase_, distributed_type="TPU") print(F"""Launching a training on {num_processes} TPU cores.""") xmp.spawn(UpperCamelCase_, args=UpperCamelCase_, nprocs=UpperCamelCase_, start_method="fork") elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print("Launching training on one GPU.") else: print("Launching training on one CPU.") function(*UpperCamelCase_) else: if num_processes is None: raise ValueError( "You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.") if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state) > 0: raise ValueError( "To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized " "inside your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`.") if torch.cuda.is_initialized(): raise ValueError( "To launch a multi-GPU training from your notebook, you need to avoid running any instruction " "using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA " "function.") # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=UpperCamelCase_, master_addr="127.0.01", master_port=UpperCamelCase_, mixed_precision=UpperCamelCase_): __lowercase = PrepareForLaunch(UpperCamelCase_, distributed_type="MULTI_GPU") print(F"""Launching training on {num_processes} GPUs.""") try: start_processes(UpperCamelCase_, args=UpperCamelCase_, nprocs=UpperCamelCase_, start_method="fork") except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( "CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. " "This likely stems from an outside import causing issues once the `notebook_launcher()` is called. " "Please review your imports and test them when running the `notebook_launcher()` to identify " "which one is problematic.") from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): __lowercase = "1" print("Launching training on MPS.") elif torch.cuda.is_available(): print("Launching training on one GPU.") else: print("Launching training on CPU.") function(*UpperCamelCase_) def _A ( UpperCamelCase_ : Optional[Any], UpperCamelCase_ : List[Any]=(), UpperCamelCase_ : Optional[int]=2) -> Optional[Any]: '''simple docstring''' from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=UpperCamelCase_, master_addr="127.0.01", master_port="29500", accelerate_mixed_precision="no", accelerate_debug_rdv_file=tmp_file.name, accelerate_use_cpu="yes", ): __lowercase = PrepareForLaunch(UpperCamelCase_, debug=UpperCamelCase_) start_processes(UpperCamelCase_, args=UpperCamelCase_, nprocs=UpperCamelCase_, start_method="fork")
17
"""simple docstring""" import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class _lowerCAmelCase ( pl.LightningModule ): """simple docstring""" def __init__( self : Optional[Any], UpperCAmelCase__ : str ): super().__init__() __lowercase = model __lowercase = 2 __lowercase = nn.Linear(self.model.config.hidden_size, self.num_labels ) def _lowercase ( self : Optional[int] ): pass def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str, UpperCamelCase_ : str) -> str: '''simple docstring''' __lowercase = LongformerModel.from_pretrained(UpperCamelCase_) __lowercase = LightningModel(UpperCamelCase_) __lowercase = torch.load(UpperCamelCase_, map_location=torch.device("cpu")) lightning_model.load_state_dict(ckpt["state_dict"]) # init longformer question answering model __lowercase = LongformerForQuestionAnswering.from_pretrained(UpperCamelCase_) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict()) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict()) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(UpperCamelCase_) print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""") if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _a = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
17
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a = { 'configuration_jukebox': [ 'JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP', 'JukeboxConfig', 'JukeboxPriorConfig', 'JukeboxVQVAEConfig', ], 'tokenization_jukebox': ['JukeboxTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST', 'JukeboxModel', 'JukeboxPreTrainedModel', 'JukeboxVQVAE', 'JukeboxPrior', ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys _a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
17
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" ,"False" ) ) is not True ,reason="Skipping test because should only be run when releasing minor transformers version" ,) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Optional[int] ): if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split(), encoding="utf-8", check=UpperCAmelCase__, ) assert hasattr(self, "env" ) def _lowercase ( self : str, UpperCAmelCase__ : List[Any] ): # configuration for running training on smdistributed Model Parallel __lowercase = { "enabled": True, "processes_per_host": 8, } __lowercase = { "enabled": True, "parameters": { "microbatches": 4, "placement_strategy": "spread", "pipeline": "interleaved", "optimize": "speed", "partitions": 4, "ddp": True, }, } __lowercase = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options} __lowercase = "trainer" if self.script == "run_glue.py" else "smtrainer" # creates estimator return HuggingFace( entry_point=self.script, source_dir=self.env.test_path, role=self.env.role, image_uri=self.env.image_uri, base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""", instance_count=UpperCAmelCase__, instance_type=self.instance_type, debugger_hook_config=UpperCAmelCase__, hyperparameters={ **self.env.hyperparameters, "model_name_or_path": self.model_name_or_path, "max_steps": 5_0_0, }, metric_definitions=self.env.metric_definitions, distribution=UpperCAmelCase__, py_version="py36", ) def _lowercase ( self : Tuple, UpperCAmelCase__ : int ): TrainingJobAnalytics(UpperCAmelCase__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def _lowercase ( self : str, UpperCAmelCase__ : Union[str, Any] ): # create estimator __lowercase = self.create_estimator(UpperCAmelCase__ ) # run training estimator.fit() # result dataframe __lowercase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __lowercase = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) __lowercase = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __lowercase = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds", 9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""", "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss}, UpperCAmelCase__ )
17
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class _lowerCAmelCase : """simple docstring""" __UpperCAmelCase : Tuple = XGLMConfig __UpperCAmelCase : Optional[Any] = {} __UpperCAmelCase : Union[str, Any] = "gelu" def __init__( self : Optional[int], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int]=1_4, UpperCAmelCase__ : str=7, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[Any]=True, UpperCAmelCase__ : int=True, UpperCAmelCase__ : List[str]=9_9, UpperCAmelCase__ : Union[str, Any]=3_2, UpperCAmelCase__ : Union[str, Any]=2, UpperCAmelCase__ : Union[str, Any]=4, UpperCAmelCase__ : Tuple=3_7, UpperCAmelCase__ : List[Any]="gelu", UpperCAmelCase__ : List[str]=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Tuple=5_1_2, UpperCAmelCase__ : Optional[Any]=0.02, ): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_labels __lowercase = vocab_size __lowercase = d_model __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = ffn_dim __lowercase = activation_function __lowercase = activation_dropout __lowercase = attention_dropout __lowercase = max_position_embeddings __lowercase = initializer_range __lowercase = None __lowercase = 0 __lowercase = 2 __lowercase = 1 def _lowercase ( self : Union[str, Any] ): return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def _lowercase ( self : Tuple ): __lowercase = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length], self.vocab_size ), clip_value_min=0, clip_value_max=3 ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = self.get_config() __lowercase = floats_tensor([self.num_hidden_layers, self.num_attention_heads], 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowercase ( self : List[Any] ): return XGLMConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, num_layers=self.num_hidden_layers, attention_heads=self.num_attention_heads, ffn_dim=self.ffn_dim, activation_function=self.activation_function, activation_dropout=self.activation_dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, use_cache=UpperCAmelCase__, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, return_dict=UpperCAmelCase__, ) def _lowercase ( self : Dict ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) , ) = config_and_inputs __lowercase = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class _lowerCAmelCase ( lowercase ,lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () __UpperCAmelCase : List[str] = (TFXGLMForCausalLM,) if is_tf_available() else () __UpperCAmelCase : Any = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : List[str] = False __UpperCAmelCase : int = False def _lowercase ( self : Optional[Any] ): __lowercase = TFXGLMModelTester(self ) __lowercase = ConfigTester(self, config_class=UpperCAmelCase__, n_embd=3_7 ) def _lowercase ( self : Any ): self.config_tester.run_common_tests() @slow def _lowercase ( self : List[str] ): for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFXGLMModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def _lowercase ( self : int ): super().test_resize_token_embeddings() @require_tf class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[int]=True ): __lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) __lowercase = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]], dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __lowercase = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on __lowercase = model.generate(UpperCAmelCase__, do_sample=UpperCAmelCase__, num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist(), UpperCAmelCase__ ) @slow def _lowercase ( self : List[Any] ): __lowercase = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) __lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) __lowercase = tokenizer("Today is a nice day and", return_tensors="tf" ) __lowercase = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): __lowercase = model.generate(UpperCAmelCase__, do_sample=UpperCAmelCase__, seed=[7, 0] ) __lowercase = tokenizer.decode(output_ids[0], skip_special_tokens=UpperCAmelCase__ ) __lowercase = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(UpperCAmelCase__, UpperCAmelCase__ ) @slow def _lowercase ( self : Dict ): __lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) __lowercase = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) __lowercase = "left" # use different length sentences to test batching __lowercase = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] __lowercase = tokenizer(UpperCAmelCase__, return_tensors="tf", padding=UpperCAmelCase__ ) __lowercase = inputs["input_ids"] __lowercase = model.generate(input_ids=UpperCAmelCase__, attention_mask=inputs["attention_mask"], max_new_tokens=1_2 ) __lowercase = tokenizer(sentences[0], return_tensors="tf" ).input_ids __lowercase = model.generate(input_ids=UpperCAmelCase__, max_new_tokens=1_2 ) __lowercase = tokenizer(sentences[1], return_tensors="tf" ).input_ids __lowercase = model.generate(input_ids=UpperCAmelCase__, max_new_tokens=1_2 ) __lowercase = tokenizer.batch_decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ ) __lowercase = tokenizer.decode(output_non_padded[0], skip_special_tokens=UpperCAmelCase__ ) __lowercase = tokenizer.decode(output_padded[0], skip_special_tokens=UpperCAmelCase__ ) __lowercase = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(UpperCAmelCase__, UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__, [non_padded_sentence, padded_sentence] )
17
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : Tuple = "openai/whisper-base" __UpperCAmelCase : Union[str, Any] = ( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) __UpperCAmelCase : List[str] = "transcriber" __UpperCAmelCase : Optional[Any] = WhisperProcessor __UpperCAmelCase : str = WhisperForConditionalGeneration __UpperCAmelCase : List[str] = ["audio"] __UpperCAmelCase : Tuple = ["text"] def _lowercase ( self : str, UpperCAmelCase__ : int ): return self.pre_processor(UpperCAmelCase__, return_tensors="pt" ).input_features def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Any] ): return self.model.generate(inputs=UpperCAmelCase__ ) def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[int] ): return self.pre_processor.batch_decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ )[0]
17
1
"""simple docstring""" def _A ( UpperCamelCase_ : Any) -> List[str]: '''simple docstring''' __lowercase ,__lowercase = [], [] while len(UpperCamelCase_) > 1: __lowercase ,__lowercase = min(UpperCamelCase_), max(UpperCamelCase_) start.append(UpperCamelCase_) end.append(UpperCamelCase_) collection.remove(UpperCamelCase_) collection.remove(UpperCamelCase_) end.reverse() return start + collection + end if __name__ == "__main__": _a = input('Enter numbers separated by a comma:\n').strip() _a = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
17
"""simple docstring""" import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str]) -> Optional[int]: '''simple docstring''' if isinstance(UpperCamelCase_, torch.Tensor): return image elif isinstance(UpperCamelCase_, PIL.Image.Image): __lowercase = [image] if isinstance(image[0], PIL.Image.Image): __lowercase = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image] __lowercase = np.concatenate(UpperCamelCase_, axis=0) __lowercase = np.array(UpperCamelCase_).astype(np.floataa) / 255.0 __lowercase = image.transpose(0, 3, 1, 2) __lowercase = 2.0 * image - 1.0 __lowercase = torch.from_numpy(UpperCamelCase_) elif isinstance(image[0], torch.Tensor): __lowercase = torch.cat(UpperCamelCase_, dim=0) return image def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : str, UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[Any]=0.9_995) -> int: '''simple docstring''' if not isinstance(UpperCamelCase_, np.ndarray): __lowercase = True __lowercase = va.device __lowercase = va.cpu().numpy() __lowercase = va.cpu().numpy() __lowercase = np.sum(va * va / (np.linalg.norm(UpperCamelCase_) * np.linalg.norm(UpperCamelCase_))) if np.abs(UpperCamelCase_) > DOT_THRESHOLD: __lowercase = (1 - t) * va + t * va else: __lowercase = np.arccos(UpperCamelCase_) __lowercase = np.sin(UpperCamelCase_) __lowercase = theta_a * t __lowercase = np.sin(UpperCamelCase_) __lowercase = np.sin(theta_a - theta_t) / sin_theta_a __lowercase = sin_theta_t / sin_theta_a __lowercase = sa * va + sa * va if inputs_are_torch: __lowercase = torch.from_numpy(UpperCamelCase_).to(UpperCamelCase_) return va def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Union[str, Any]) -> int: '''simple docstring''' __lowercase = F.normalize(UpperCamelCase_, dim=-1) __lowercase = F.normalize(UpperCamelCase_, dim=-1) return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2) def _A ( UpperCamelCase_ : Optional[int], UpperCamelCase_ : str) -> Optional[int]: '''simple docstring''' for param in model.parameters(): __lowercase = value class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : Dict, UpperCAmelCase__ : AutoencoderKL, UpperCAmelCase__ : CLIPTextModel, UpperCAmelCase__ : CLIPModel, UpperCAmelCase__ : CLIPTokenizer, UpperCAmelCase__ : UNetaDConditionModel, UpperCAmelCase__ : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler], UpperCAmelCase__ : CLIPFeatureExtractor, UpperCAmelCase__ : Union[str, Any]=None, UpperCAmelCase__ : List[str]=None, UpperCAmelCase__ : Any=None, ): super().__init__() self.register_modules( vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, clip_model=UpperCAmelCase__, tokenizer=UpperCAmelCase__, unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, feature_extractor=UpperCAmelCase__, coca_model=UpperCAmelCase__, coca_tokenizer=UpperCAmelCase__, coca_transform=UpperCAmelCase__, ) __lowercase = ( feature_extractor.size if isinstance(feature_extractor.size, UpperCAmelCase__ ) else feature_extractor.size["shortest_edge"] ) __lowercase = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std ) set_requires_grad(self.text_encoder, UpperCAmelCase__ ) set_requires_grad(self.clip_model, UpperCAmelCase__ ) def _lowercase ( self : Tuple, UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase__ ) def _lowercase ( self : int ): self.enable_attention_slicing(UpperCAmelCase__ ) def _lowercase ( self : str ): set_requires_grad(self.vae, UpperCAmelCase__ ) def _lowercase ( self : Any ): set_requires_grad(self.vae, UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ): set_requires_grad(self.unet, UpperCAmelCase__ ) def _lowercase ( self : Any ): set_requires_grad(self.unet, UpperCAmelCase__ ) def _lowercase ( self : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : Optional[Any] ): # get the original timestep using init_timestep __lowercase = min(int(num_inference_steps * strength ), UpperCAmelCase__ ) __lowercase = max(num_inference_steps - init_timestep, 0 ) __lowercase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowercase ( self : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : int=None ): if not isinstance(UpperCAmelCase__, torch.Tensor ): raise ValueError(F"""`image` has to be of type `torch.Tensor` but is {type(UpperCAmelCase__ )}""" ) __lowercase = image.to(device=UpperCAmelCase__, dtype=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(UpperCAmelCase__ ) ] __lowercase = torch.cat(UpperCAmelCase__, dim=0 ) else: __lowercase = self.vae.encode(UpperCAmelCase__ ).latent_dist.sample(UpperCAmelCase__ ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowercase = 0.18_215 * init_latents __lowercase = init_latents.repeat_interleave(UpperCAmelCase__, dim=0 ) __lowercase = randn_tensor(init_latents.shape, generator=UpperCAmelCase__, device=UpperCAmelCase__, dtype=UpperCAmelCase__ ) # get latents __lowercase = self.scheduler.add_noise(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = init_latents return latents def _lowercase ( self : Optional[int], UpperCAmelCase__ : Dict ): __lowercase = self.coca_transform(UpperCAmelCase__ ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): __lowercase = self.coca_model.generate(transformed_image.to(device=self.device, dtype=self.coca_model.dtype ) ) __lowercase = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("<end_of_text>" )[0].replace("<start_of_text>", "" ).rstrip(" .," ) def _lowercase ( self : Tuple, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Tuple ): __lowercase = self.feature_extractor.preprocess(UpperCAmelCase__ ) __lowercase = torch.from_numpy(clip_image_input["pixel_values"][0] ).unsqueeze(0 ).to(self.device ).half() __lowercase = self.clip_model.get_image_features(UpperCAmelCase__ ) __lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=UpperCAmelCase__ ) __lowercase = image_embeddings_clip.repeat_interleave(UpperCAmelCase__, dim=0 ) return image_embeddings_clip @torch.enable_grad() def _lowercase ( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[int], ): __lowercase = latents.detach().requires_grad_() __lowercase = self.scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ ) # predict the noise residual __lowercase = self.unet(UpperCAmelCase__, UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__ ).sample if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): __lowercase = self.scheduler.alphas_cumprod[timestep] __lowercase = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowercase = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 __lowercase = torch.sqrt(UpperCAmelCase__ ) __lowercase = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler, UpperCAmelCase__ ): __lowercase = self.scheduler.sigmas[index] __lowercase = latents - sigma * noise_pred else: raise ValueError(F"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowercase = 1 / 0.18_215 * sample __lowercase = self.vae.decode(UpperCAmelCase__ ).sample __lowercase = (image / 2 + 0.5).clamp(0, 1 ) __lowercase = transforms.Resize(self.feature_extractor_size )(UpperCAmelCase__ ) __lowercase = self.normalize(UpperCAmelCase__ ).to(latents.dtype ) __lowercase = self.clip_model.get_image_features(UpperCAmelCase__ ) __lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=UpperCAmelCase__ ) __lowercase = spherical_dist_loss(UpperCAmelCase__, UpperCAmelCase__ ).mean() * clip_guidance_scale __lowercase = -torch.autograd.grad(UpperCAmelCase__, UpperCAmelCase__ )[0] if isinstance(self.scheduler, UpperCAmelCase__ ): __lowercase = latents.detach() + grads * (sigma**2) __lowercase = noise_pred_original else: __lowercase = noise_pred_original - torch.sqrt(UpperCAmelCase__ ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : str, UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image], UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image], UpperCAmelCase__ : Optional[str] = None, UpperCAmelCase__ : Optional[str] = None, UpperCAmelCase__ : Optional[int] = 5_1_2, UpperCAmelCase__ : Optional[int] = 5_1_2, UpperCAmelCase__ : float = 0.6, UpperCAmelCase__ : Optional[int] = 5_0, UpperCAmelCase__ : Optional[float] = 7.5, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[float] = 1_0_0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : float = 0.8, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, ): if isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and len(UpperCAmelCase__ ) != batch_size: raise ValueError(F"""You have passed {batch_size} batch_size, but only {len(UpperCAmelCase__ )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(UpperCAmelCase__, torch.Generator ) and batch_size > 1: __lowercase = [generator] + [None] * (batch_size - 1) __lowercase = [ ("model", self.coca_model is None), ("tokenizer", self.coca_tokenizer is None), ("transform", self.coca_transform is None), ] __lowercase = [x[0] for x in coca_is_none if x[1]] __lowercase = ", ".join(UpperCAmelCase__ ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(UpperCAmelCase__ ): raise ValueError( F"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" F"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) __lowercase = self.get_image_description(UpperCAmelCase__ ) if style_prompt is None: if len(UpperCAmelCase__ ): raise ValueError( F"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" F""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) __lowercase = self.get_image_description(UpperCAmelCase__ ) # get prompt text embeddings for content and style __lowercase = self.tokenizer( UpperCAmelCase__, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=UpperCAmelCase__, return_tensors="pt", ) __lowercase = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] __lowercase = self.tokenizer( UpperCAmelCase__, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=UpperCAmelCase__, return_tensors="pt", ) __lowercase = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] __lowercase = slerp(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # duplicate text embeddings for each generation per prompt __lowercase = text_embeddings.repeat_interleave(UpperCAmelCase__, dim=0 ) # set timesteps __lowercase = "offset" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) __lowercase = {} if accepts_offset: __lowercase = 1 self.scheduler.set_timesteps(UpperCAmelCase__, **UpperCAmelCase__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) __lowercase ,__lowercase = self.get_timesteps(UpperCAmelCase__, UpperCAmelCase__, self.device ) __lowercase = timesteps[:1].repeat(UpperCAmelCase__ ) # Preprocess image __lowercase = preprocess(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = self.prepare_latents( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, text_embeddings.dtype, self.device, UpperCAmelCase__ ) __lowercase = preprocess(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = self.prepare_latents( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, text_embeddings.dtype, self.device, UpperCAmelCase__ ) __lowercase = slerp(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) if clip_guidance_scale > 0: __lowercase = self.get_clip_image_embeddings(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = self.get_clip_image_embeddings(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = slerp( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __lowercase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __lowercase = content_text_input.input_ids.shape[-1] __lowercase = self.tokenizer([""], padding="max_length", max_length=UpperCAmelCase__, return_tensors="pt" ) __lowercase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt __lowercase = uncond_embeddings.repeat_interleave(UpperCAmelCase__, dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowercase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __lowercase = (batch_size, self.unet.config.in_channels, height // 8, width // 8) __lowercase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps __lowercase = torch.randn(UpperCAmelCase__, generator=UpperCAmelCase__, device="cpu", dtype=UpperCAmelCase__ ).to( self.device ) else: __lowercase = torch.randn(UpperCAmelCase__, generator=UpperCAmelCase__, device=self.device, dtype=UpperCAmelCase__ ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) __lowercase = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __lowercase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __lowercase = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __lowercase = {} if accepts_eta: __lowercase = eta # check if the scheduler accepts generator __lowercase = "generator" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: __lowercase = generator with self.progress_bar(total=UpperCAmelCase__ ): for i, t in enumerate(UpperCAmelCase__ ): # expand the latents if we are doing classifier free guidance __lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowercase = self.scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ ) # predict the noise residual __lowercase = self.unet(UpperCAmelCase__, UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__ ).sample # perform classifier free guidance if do_classifier_free_guidance: __lowercase ,__lowercase = noise_pred.chunk(2 ) __lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: __lowercase = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) __lowercase ,__lowercase = self.cond_fn( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) # compute the previous noisy sample x_t -> x_t-1 __lowercase = self.scheduler.step(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, **UpperCAmelCase__ ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowercase = 1 / 0.18_215 * latents __lowercase = self.vae.decode(UpperCAmelCase__ ).sample __lowercase = (image / 2 + 0.5).clamp(0, 1 ) __lowercase = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": __lowercase = self.numpy_to_pil(UpperCAmelCase__ ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=UpperCAmelCase__, nsfw_content_detected=UpperCAmelCase__ )
17
1
"""simple docstring""" import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="session") def _A ( ) -> Any: '''simple docstring''' __lowercase = 10 __lowercase = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string")), "labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"])), "answers": datasets.Sequence( { "text": datasets.Value("string"), "answer_start": datasets.Value("int32"), }), "id": datasets.Value("int64"), }) __lowercase = datasets.Dataset.from_dict( { "tokens": [["foo"] * 5] * n, "labels": [[1] * 5] * n, "answers": [{"answer_start": [97], "text": ["1976"]}] * 10, "id": list(range(UpperCamelCase_)), }, features=UpperCamelCase_, ) return dataset @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : Optional[int]) -> Any: '''simple docstring''' __lowercase = str(tmp_path_factory.mktemp("data") / "file.arrow") dataset.map(cache_file_name=UpperCamelCase_) return filename # FILE_CONTENT + files _a = '\\n Text data.\n Second line of data.' @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Optional[int]) -> List[Any]: '''simple docstring''' __lowercase = tmp_path_factory.mktemp("data") / "file.txt" __lowercase = FILE_CONTENT with open(UpperCamelCase_, "w") as f: f.write(UpperCamelCase_) return filename @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : int) -> Any: '''simple docstring''' import bza __lowercase = tmp_path_factory.mktemp("data") / "file.txt.bz2" __lowercase = bytes(UpperCamelCase_, "utf-8") with bza.open(UpperCamelCase_, "wb") as f: f.write(UpperCamelCase_) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Union[str, Any]) -> Optional[Any]: '''simple docstring''' import gzip __lowercase = str(tmp_path_factory.mktemp("data") / "file.txt.gz") __lowercase = bytes(UpperCamelCase_, "utf-8") with gzip.open(UpperCamelCase_, "wb") as f: f.write(UpperCamelCase_) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Tuple) -> Union[str, Any]: '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame __lowercase = tmp_path_factory.mktemp("data") / "file.txt.lz4" __lowercase = bytes(UpperCamelCase_, "utf-8") with lza.frame.open(UpperCamelCase_, "wb") as f: f.write(UpperCamelCase_) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : str, UpperCamelCase_ : Any) -> Optional[Any]: '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr __lowercase = tmp_path_factory.mktemp("data") / "file.txt.7z" with pyazr.SevenZipFile(UpperCamelCase_, "w") as archive: archive.write(UpperCamelCase_, arcname=os.path.basename(UpperCamelCase_)) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Union[str, Any]) -> Optional[Any]: '''simple docstring''' import tarfile __lowercase = tmp_path_factory.mktemp("data") / "file.txt.tar" with tarfile.TarFile(UpperCamelCase_, "w") as f: f.add(UpperCamelCase_, arcname=os.path.basename(UpperCamelCase_)) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Optional[int]) -> int: '''simple docstring''' import lzma __lowercase = tmp_path_factory.mktemp("data") / "file.txt.xz" __lowercase = bytes(UpperCamelCase_, "utf-8") with lzma.open(UpperCamelCase_, "wb") as f: f.write(UpperCamelCase_) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : Tuple) -> int: '''simple docstring''' import zipfile __lowercase = tmp_path_factory.mktemp("data") / "file.txt.zip" with zipfile.ZipFile(UpperCamelCase_, "w") as f: f.write(UpperCamelCase_, arcname=os.path.basename(UpperCamelCase_)) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : str) -> Union[str, Any]: '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd __lowercase = tmp_path_factory.mktemp("data") / "file.txt.zst" __lowercase = bytes(UpperCamelCase_, "utf-8") with zstd.open(UpperCamelCase_, "wb") as f: f.write(UpperCamelCase_) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : List[Any]) -> Optional[Any]: '''simple docstring''' __lowercase = tmp_path_factory.mktemp("data") / "file.xml" __lowercase = textwrap.dedent( "\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>") with open(UpperCamelCase_, "w") as f: f.write(UpperCamelCase_) return filename _a = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] _a = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] _a = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } _a = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] _a = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope="session") def _A ( ) -> Any: '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Union[str, Any]) -> Optional[Any]: '''simple docstring''' __lowercase = datasets.Dataset.from_dict(UpperCamelCase_) __lowercase = str(tmp_path_factory.mktemp("data") / "dataset.arrow") dataset.map(cache_file_name=UpperCamelCase_) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Optional[Any]) -> Union[str, Any]: '''simple docstring''' __lowercase = str(tmp_path_factory.mktemp("data") / "dataset.sqlite") with contextlib.closing(sqlitea.connect(UpperCamelCase_)) as con: __lowercase = con.cursor() cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)") for item in DATA: cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)", tuple(item.values())) con.commit() return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Any) -> int: '''simple docstring''' __lowercase = str(tmp_path_factory.mktemp("data") / "dataset.csv") with open(UpperCamelCase_, "w", newline="") as f: __lowercase = csv.DictWriter(UpperCamelCase_, fieldnames=["col_1", "col_2", "col_3"]) writer.writeheader() for item in DATA: writer.writerow(UpperCamelCase_) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Dict) -> Dict: '''simple docstring''' __lowercase = str(tmp_path_factory.mktemp("data") / "dataset2.csv") with open(UpperCamelCase_, "w", newline="") as f: __lowercase = csv.DictWriter(UpperCamelCase_, fieldnames=["col_1", "col_2", "col_3"]) writer.writeheader() for item in DATA: writer.writerow(UpperCamelCase_) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : int) -> Optional[Any]: '''simple docstring''' import bza __lowercase = tmp_path_factory.mktemp("data") / "dataset.csv.bz2" with open(UpperCamelCase_, "rb") as f: __lowercase = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(UpperCamelCase_, "wb") as f: f.write(UpperCamelCase_) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : Dict, UpperCamelCase_ : List[str]) -> str: '''simple docstring''' __lowercase = tmp_path_factory.mktemp("data") / "dataset.csv.zip" with zipfile.ZipFile(UpperCamelCase_, "w") as f: f.write(UpperCamelCase_, arcname=os.path.basename(UpperCamelCase_)) f.write(UpperCamelCase_, arcname=os.path.basename(UpperCamelCase_)) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : List[Any], UpperCamelCase_ : str, UpperCamelCase_ : Optional[Any]) -> Union[str, Any]: '''simple docstring''' __lowercase = tmp_path_factory.mktemp("data") / "dataset.csv.zip" with zipfile.ZipFile(UpperCamelCase_, "w") as f: f.write(UpperCamelCase_, arcname=os.path.basename(csv_path.replace(".csv", ".CSV"))) f.write(UpperCamelCase_, arcname=os.path.basename(csva_path.replace(".csv", ".CSV"))) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : int) -> int: '''simple docstring''' __lowercase = tmp_path_factory.mktemp("data") / "dataset_with_dir.csv.zip" with zipfile.ZipFile(UpperCamelCase_, "w") as f: f.write(UpperCamelCase_, arcname=os.path.join("main_dir", os.path.basename(UpperCamelCase_))) f.write(UpperCamelCase_, arcname=os.path.join("main_dir", os.path.basename(UpperCamelCase_))) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : List[str]) -> Union[str, Any]: '''simple docstring''' __lowercase = str(tmp_path_factory.mktemp("data") / "dataset.parquet") __lowercase = pa.schema( { "col_1": pa.string(), "col_2": pa.intaa(), "col_3": pa.floataa(), }) with open(UpperCamelCase_, "wb") as f: __lowercase = pq.ParquetWriter(UpperCamelCase_, schema=UpperCamelCase_) __lowercase = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(UpperCamelCase_))] for k in DATA[0]}, schema=UpperCamelCase_) writer.write_table(UpperCamelCase_) writer.close() return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : str) -> Tuple: '''simple docstring''' __lowercase = str(tmp_path_factory.mktemp("data") / "dataset.json") __lowercase = {"data": DATA} with open(UpperCamelCase_, "w") as f: json.dump(UpperCamelCase_, UpperCamelCase_) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Optional[Any]) -> Any: '''simple docstring''' __lowercase = str(tmp_path_factory.mktemp("data") / "dataset.json") __lowercase = {"data": DATA_DICT_OF_LISTS} with open(UpperCamelCase_, "w") as f: json.dump(UpperCamelCase_, UpperCamelCase_) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : str) -> int: '''simple docstring''' __lowercase = str(tmp_path_factory.mktemp("data") / "dataset.jsonl") with open(UpperCamelCase_, "w") as f: for item in DATA: f.write(json.dumps(UpperCamelCase_) + "\n") return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Optional[int]) -> Tuple: '''simple docstring''' __lowercase = str(tmp_path_factory.mktemp("data") / "dataset2.jsonl") with open(UpperCamelCase_, "w") as f: for item in DATA: f.write(json.dumps(UpperCamelCase_) + "\n") return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : str) -> Any: '''simple docstring''' __lowercase = str(tmp_path_factory.mktemp("data") / "dataset_312.jsonl") with open(UpperCamelCase_, "w") as f: for item in DATA_312: f.write(json.dumps(UpperCamelCase_) + "\n") return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Dict) -> Tuple: '''simple docstring''' __lowercase = str(tmp_path_factory.mktemp("data") / "dataset-str.jsonl") with open(UpperCamelCase_, "w") as f: for item in DATA_STR: f.write(json.dumps(UpperCamelCase_) + "\n") return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : int) -> Union[str, Any]: '''simple docstring''' import gzip __lowercase = str(tmp_path_factory.mktemp("data") / "dataset.txt.gz") with open(UpperCamelCase_, "rb") as orig_file: with gzip.open(UpperCamelCase_, "wb") as zipped_file: zipped_file.writelines(UpperCamelCase_) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : List[str]) -> List[str]: '''simple docstring''' import gzip __lowercase = str(tmp_path_factory.mktemp("data") / "dataset.jsonl.gz") with open(UpperCamelCase_, "rb") as orig_file: with gzip.open(UpperCamelCase_, "wb") as zipped_file: zipped_file.writelines(UpperCamelCase_) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : Any, UpperCamelCase_ : Union[str, Any]) -> Tuple: '''simple docstring''' __lowercase = tmp_path_factory.mktemp("data") / "dataset.jsonl.zip" with zipfile.ZipFile(UpperCamelCase_, "w") as f: f.write(UpperCamelCase_, arcname=os.path.basename(UpperCamelCase_)) f.write(UpperCamelCase_, arcname=os.path.basename(UpperCamelCase_)) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : List[Any], UpperCamelCase_ : Dict, UpperCamelCase_ : List[Any], UpperCamelCase_ : List[str]) -> Union[str, Any]: '''simple docstring''' __lowercase = tmp_path_factory.mktemp("data") / "dataset_nested.jsonl.zip" with zipfile.ZipFile(UpperCamelCase_, "w") as f: f.write(UpperCamelCase_, arcname=os.path.join("nested", os.path.basename(UpperCamelCase_))) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Any, UpperCamelCase_ : List[Any], UpperCamelCase_ : Union[str, Any]) -> Dict: '''simple docstring''' __lowercase = tmp_path_factory.mktemp("data") / "dataset_with_dir.jsonl.zip" with zipfile.ZipFile(UpperCamelCase_, "w") as f: f.write(UpperCamelCase_, arcname=os.path.join("main_dir", os.path.basename(UpperCamelCase_))) f.write(UpperCamelCase_, arcname=os.path.join("main_dir", os.path.basename(UpperCamelCase_))) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Optional[int], UpperCamelCase_ : List[Any], UpperCamelCase_ : Dict) -> Tuple: '''simple docstring''' __lowercase = tmp_path_factory.mktemp("data") / "dataset.jsonl.tar" with tarfile.TarFile(UpperCamelCase_, "w") as f: f.add(UpperCamelCase_, arcname=os.path.basename(UpperCamelCase_)) f.add(UpperCamelCase_, arcname=os.path.basename(UpperCamelCase_)) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : str, UpperCamelCase_ : Optional[Any], UpperCamelCase_ : Optional[int]) -> Optional[Any]: '''simple docstring''' __lowercase = tmp_path_factory.mktemp("data") / "dataset_nested.jsonl.tar" with tarfile.TarFile(UpperCamelCase_, "w") as f: f.add(UpperCamelCase_, arcname=os.path.join("nested", os.path.basename(UpperCamelCase_))) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Any) -> Dict: '''simple docstring''' __lowercase = ["0", "1", "2", "3"] __lowercase = str(tmp_path_factory.mktemp("data") / "dataset.txt") with open(UpperCamelCase_, "w") as f: for item in data: f.write(item + "\n") return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : str) -> str: '''simple docstring''' __lowercase = ["0", "1", "2", "3"] __lowercase = str(tmp_path_factory.mktemp("data") / "dataset2.txt") with open(UpperCamelCase_, "w") as f: for item in data: f.write(item + "\n") return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : str) -> Optional[Any]: '''simple docstring''' __lowercase = ["0", "1", "2", "3"] __lowercase = tmp_path_factory.mktemp("data") / "dataset.abc" with open(UpperCamelCase_, "w") as f: for item in data: f.write(item + "\n") return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : List[Any], UpperCamelCase_ : Optional[Any], UpperCamelCase_ : Union[str, Any]) -> str: '''simple docstring''' __lowercase = tmp_path_factory.mktemp("data") / "dataset.text.zip" with zipfile.ZipFile(UpperCamelCase_, "w") as f: f.write(UpperCamelCase_, arcname=os.path.basename(UpperCamelCase_)) f.write(UpperCamelCase_, arcname=os.path.basename(UpperCamelCase_)) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : str, UpperCamelCase_ : Dict, UpperCamelCase_ : int) -> Tuple: '''simple docstring''' __lowercase = tmp_path_factory.mktemp("data") / "dataset_with_dir.text.zip" with zipfile.ZipFile(UpperCamelCase_, "w") as f: f.write(UpperCamelCase_, arcname=os.path.join("main_dir", os.path.basename(UpperCamelCase_))) f.write(UpperCamelCase_, arcname=os.path.join("main_dir", os.path.basename(UpperCamelCase_))) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : int, UpperCamelCase_ : str, UpperCamelCase_ : Optional[int]) -> Optional[int]: '''simple docstring''' __lowercase = tmp_path_factory.mktemp("data") / "dataset.ext.zip" with zipfile.ZipFile(UpperCamelCase_, "w") as f: f.write(UpperCamelCase_, arcname=os.path.basename("unsupported.ext")) f.write(UpperCamelCase_, arcname=os.path.basename("unsupported_2.ext")) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Dict) -> Union[str, Any]: '''simple docstring''' __lowercase = "\n".join(["First", "Second\u2029with Unicode new line", "Third"]) __lowercase = str(tmp_path_factory.mktemp("data") / "dataset_with_unicode_new_lines.txt") with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write(UpperCamelCase_) return path @pytest.fixture(scope="session") def _A ( ) -> Any: '''simple docstring''' return os.path.join("tests", "features", "data", "test_image_rgb.jpg") @pytest.fixture(scope="session") def _A ( ) -> Union[str, Any]: '''simple docstring''' return os.path.join("tests", "features", "data", "test_audio_44100.wav") @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : List[str]) -> Tuple: '''simple docstring''' __lowercase = tmp_path_factory.mktemp("data") / "dataset.img.zip" with zipfile.ZipFile(UpperCamelCase_, "w") as f: f.write(UpperCamelCase_, arcname=os.path.basename(UpperCamelCase_)) f.write(UpperCamelCase_, arcname=os.path.basename(UpperCamelCase_).replace(".jpg", "2.jpg")) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Union[str, Any]) -> Optional[Any]: '''simple docstring''' __lowercase = tmp_path_factory.mktemp("data_dir") (data_dir / "subdir").mkdir() with open(data_dir / "subdir" / "train.txt", "w") as f: f.write("foo\n" * 10) with open(data_dir / "subdir" / "test.txt", "w") as f: f.write("bar\n" * 10) # hidden file with open(data_dir / "subdir" / ".test.txt", "w") as f: f.write("bar\n" * 10) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / ".subdir" / "train.txt", "w") as f: f.write("foo\n" * 10) with open(data_dir / ".subdir" / "test.txt", "w") as f: f.write("bar\n" * 10) return data_dir
17
"""simple docstring""" from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class _lowerCAmelCase : """simple docstring""" __UpperCAmelCase : Tuple = XGLMConfig __UpperCAmelCase : Optional[Any] = {} __UpperCAmelCase : Union[str, Any] = "gelu" def __init__( self : Optional[int], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int]=1_4, UpperCAmelCase__ : str=7, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[Any]=True, UpperCAmelCase__ : int=True, UpperCAmelCase__ : List[str]=9_9, UpperCAmelCase__ : Union[str, Any]=3_2, UpperCAmelCase__ : Union[str, Any]=2, UpperCAmelCase__ : Union[str, Any]=4, UpperCAmelCase__ : Tuple=3_7, UpperCAmelCase__ : List[Any]="gelu", UpperCAmelCase__ : List[str]=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Tuple=5_1_2, UpperCAmelCase__ : Optional[Any]=0.02, ): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_labels __lowercase = vocab_size __lowercase = d_model __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = ffn_dim __lowercase = activation_function __lowercase = activation_dropout __lowercase = attention_dropout __lowercase = max_position_embeddings __lowercase = initializer_range __lowercase = None __lowercase = 0 __lowercase = 2 __lowercase = 1 def _lowercase ( self : Union[str, Any] ): return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def _lowercase ( self : Tuple ): __lowercase = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length], self.vocab_size ), clip_value_min=0, clip_value_max=3 ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = self.get_config() __lowercase = floats_tensor([self.num_hidden_layers, self.num_attention_heads], 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowercase ( self : List[Any] ): return XGLMConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, num_layers=self.num_hidden_layers, attention_heads=self.num_attention_heads, ffn_dim=self.ffn_dim, activation_function=self.activation_function, activation_dropout=self.activation_dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, use_cache=UpperCAmelCase__, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, return_dict=UpperCAmelCase__, ) def _lowercase ( self : Dict ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) , ) = config_and_inputs __lowercase = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class _lowerCAmelCase ( lowercase ,lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () __UpperCAmelCase : List[str] = (TFXGLMForCausalLM,) if is_tf_available() else () __UpperCAmelCase : Any = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : List[str] = False __UpperCAmelCase : int = False def _lowercase ( self : Optional[Any] ): __lowercase = TFXGLMModelTester(self ) __lowercase = ConfigTester(self, config_class=UpperCAmelCase__, n_embd=3_7 ) def _lowercase ( self : Any ): self.config_tester.run_common_tests() @slow def _lowercase ( self : List[str] ): for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFXGLMModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def _lowercase ( self : int ): super().test_resize_token_embeddings() @require_tf class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[int]=True ): __lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) __lowercase = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]], dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __lowercase = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on __lowercase = model.generate(UpperCAmelCase__, do_sample=UpperCAmelCase__, num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist(), UpperCAmelCase__ ) @slow def _lowercase ( self : List[Any] ): __lowercase = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) __lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) __lowercase = tokenizer("Today is a nice day and", return_tensors="tf" ) __lowercase = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): __lowercase = model.generate(UpperCAmelCase__, do_sample=UpperCAmelCase__, seed=[7, 0] ) __lowercase = tokenizer.decode(output_ids[0], skip_special_tokens=UpperCAmelCase__ ) __lowercase = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(UpperCAmelCase__, UpperCAmelCase__ ) @slow def _lowercase ( self : Dict ): __lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) __lowercase = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) __lowercase = "left" # use different length sentences to test batching __lowercase = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] __lowercase = tokenizer(UpperCAmelCase__, return_tensors="tf", padding=UpperCAmelCase__ ) __lowercase = inputs["input_ids"] __lowercase = model.generate(input_ids=UpperCAmelCase__, attention_mask=inputs["attention_mask"], max_new_tokens=1_2 ) __lowercase = tokenizer(sentences[0], return_tensors="tf" ).input_ids __lowercase = model.generate(input_ids=UpperCAmelCase__, max_new_tokens=1_2 ) __lowercase = tokenizer(sentences[1], return_tensors="tf" ).input_ids __lowercase = model.generate(input_ids=UpperCAmelCase__, max_new_tokens=1_2 ) __lowercase = tokenizer.batch_decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ ) __lowercase = tokenizer.decode(output_non_padded[0], skip_special_tokens=UpperCAmelCase__ ) __lowercase = tokenizer.decode(output_padded[0], skip_special_tokens=UpperCAmelCase__ ) __lowercase = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(UpperCAmelCase__, UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__, [non_padded_sentence, padded_sentence] )
17
1
"""simple docstring""" def _A ( UpperCamelCase_ : list[int]) -> int: '''simple docstring''' if not numbers: return 0 if not isinstance(UpperCamelCase_, (list, tuple)) or not all( isinstance(UpperCamelCase_, UpperCamelCase_) for number in numbers): raise ValueError("numbers must be an iterable of integers") __lowercase = __lowercase = __lowercase = numbers[0] for i in range(1, len(UpperCamelCase_)): # update the maximum and minimum subarray products __lowercase = numbers[i] if number < 0: __lowercase ,__lowercase = min_till_now, max_till_now __lowercase = max(UpperCamelCase_, max_till_now * number) __lowercase = min(UpperCamelCase_, min_till_now * number) # update the maximum product found till now __lowercase = max(UpperCamelCase_, UpperCamelCase_) return max_prod
17
"""simple docstring""" import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder _a = '__DUMMY_TRANSFORMERS_USER__' _a = 'Dummy User' _a = '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' _a = 'https://hub-ci.huggingface.co' _a = CI_HUB_ENDPOINT + '/datasets/{repo_id}/resolve/{revision}/{path}' _a = CI_HUB_ENDPOINT + '/{repo_id}/resolve/{revision}/{filename}' _a = Path('~/.huggingface/hub_ci_token').expanduser() @pytest.fixture def _A ( UpperCamelCase_ : List[Any]) -> Tuple: '''simple docstring''' monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE", UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : int) -> List[Any]: '''simple docstring''' monkeypatch.setattr("datasets.config.HF_ENDPOINT", UpperCamelCase_) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL", UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : str) -> Dict: '''simple docstring''' monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token", UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : Optional[Any], UpperCamelCase_ : List[Any]) -> List[str]: '''simple docstring''' HfFolder.save_token(UpperCamelCase_) yield HfFolder.delete_token() @pytest.fixture(scope="session") def _A ( ) -> List[Any]: '''simple docstring''' return HfApi(endpoint=UpperCamelCase_) @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi) -> List[Any]: '''simple docstring''' __lowercase = HfFolder.get_token() HfFolder.save_token(UpperCamelCase_) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : Dict) -> int: '''simple docstring''' def _cleanup_repo(UpperCamelCase_ : Optional[int]): hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") return _cleanup_repo @pytest.fixture def _A ( UpperCamelCase_ : str) -> Any: '''simple docstring''' @contextmanager def _temporary_repo(UpperCamelCase_ : Any): try: yield repo_id finally: cleanup_repo(UpperCamelCase_) return _temporary_repo @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : str, UpperCamelCase_ : Optional[int]) -> List[Any]: '''simple docstring''' __lowercase = F"""repo_txt_data-{int(time.time() * 10E3)}""" __lowercase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_) hf_api.upload_file( token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data/text_data.txt", repo_id=UpperCamelCase_, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : Any, UpperCamelCase_ : Dict) -> Optional[int]: '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : int, UpperCamelCase_ : Optional[int]) -> int: '''simple docstring''' __lowercase = F"""repo_zipped_txt_data-{int(time.time() * 10E3)}""" __lowercase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_) hf_api.upload_file( token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data.zip", repo_id=UpperCamelCase_, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Dict, UpperCamelCase_ : Any) -> int: '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : List[str], UpperCamelCase_ : List[str]) -> List[Any]: '''simple docstring''' __lowercase = F"""repo_zipped_img_data-{int(time.time() * 10E3)}""" __lowercase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_) hf_api.upload_file( token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data.zip", repo_id=UpperCamelCase_, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str], UpperCamelCase_ : List[str]) -> str: '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
17
1
"""simple docstring""" from math import pi, sqrt def _A ( UpperCamelCase_ : float) -> float: '''simple docstring''' if num <= 0: raise ValueError("math domain error") if num > 171.5: raise OverflowError("math range error") elif num - int(UpperCamelCase_) not in (0, 0.5): raise NotImplementedError("num must be an integer or a half-integer") elif num == 0.5: return sqrt(UpperCamelCase_) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1) def _A ( ) -> None: '''simple docstring''' assert gamma(0.5) == sqrt(UpperCamelCase_) assert gamma(1) == 1.0 assert gamma(2) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() _a = 1.0 while num: _a = float(input('Gamma of: ')) print(F"gamma({num}) = {gamma(num)}") print('\nEnter 0 to exit...')
17
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : int = "time_series_transformer" __UpperCAmelCase : Any = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : int, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : str = "student_t", UpperCAmelCase__ : str = "nll", UpperCAmelCase__ : int = 1, UpperCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7], UpperCAmelCase__ : Optional[Union[str, bool]] = "mean", UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : int = 3_2, UpperCAmelCase__ : int = 3_2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : str = "gelu", UpperCAmelCase__ : int = 6_4, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : int = 1_0_0, UpperCAmelCase__ : float = 0.02, UpperCAmelCase__ : Any=True, **UpperCAmelCase__ : List[str], ): # time series specific configuration __lowercase = prediction_length __lowercase = context_length or prediction_length __lowercase = distribution_output __lowercase = loss __lowercase = input_size __lowercase = num_time_features __lowercase = lags_sequence __lowercase = scaling __lowercase = num_dynamic_real_features __lowercase = num_static_real_features __lowercase = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(UpperCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) __lowercase = cardinality else: __lowercase = [0] if embedding_dimension and num_static_categorical_features > 0: if len(UpperCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) __lowercase = embedding_dimension else: __lowercase = [min(5_0, (cat + 1) // 2 ) for cat in self.cardinality] __lowercase = num_parallel_samples # Transformer architecture configuration __lowercase = input_size * len(UpperCAmelCase__ ) + self._number_of_features __lowercase = d_model __lowercase = encoder_attention_heads __lowercase = decoder_attention_heads __lowercase = encoder_ffn_dim __lowercase = decoder_ffn_dim __lowercase = encoder_layers __lowercase = decoder_layers __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = activation_function __lowercase = init_std __lowercase = use_cache super().__init__(is_encoder_decoder=UpperCAmelCase__, **UpperCAmelCase__ ) @property def _lowercase ( self : Optional[Any] ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
17
1
"""simple docstring""" from __future__ import annotations def _A ( UpperCamelCase_ : list[list[int]]) -> bool: '''simple docstring''' __lowercase = len(UpperCamelCase_) # We need to create solution object to save path. __lowercase = [[0 for _ in range(UpperCamelCase_)] for _ in range(UpperCamelCase_)] __lowercase = run_maze(UpperCamelCase_, 0, 0, UpperCamelCase_) if solved: print("\n".join(str(UpperCamelCase_) for row in solutions)) else: print("No solution exists!") return solved def _A ( UpperCamelCase_ : list[list[int]], UpperCamelCase_ : int, UpperCamelCase_ : int, UpperCamelCase_ : list[list[int]]) -> bool: '''simple docstring''' __lowercase = len(UpperCamelCase_) # Final check point. if i == j == (size - 1): __lowercase = 1 return True __lowercase = (not i < 0) and (not j < 0) # Check lower bounds __lowercase = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. __lowercase = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited __lowercase = 1 # check for directions if ( run_maze(UpperCamelCase_, i + 1, UpperCamelCase_, UpperCamelCase_) or run_maze(UpperCamelCase_, UpperCamelCase_, j + 1, UpperCamelCase_) or run_maze(UpperCamelCase_, i - 1, UpperCamelCase_, UpperCamelCase_) or run_maze(UpperCamelCase_, UpperCamelCase_, j - 1, UpperCamelCase_) ): return True __lowercase = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
17
"""simple docstring""" import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class _lowerCAmelCase : """simple docstring""" @staticmethod def _lowercase ( *UpperCAmelCase__ : Tuple, **UpperCAmelCase__ : List[Any] ): pass def _A ( UpperCamelCase_ : Union[str, Any]) -> Any: '''simple docstring''' return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. _a = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Tuple = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Optional[Any] ): __lowercase = pipeline( "document-question-answering", model=UpperCAmelCase__, tokenizer=UpperCAmelCase__, image_processor=UpperCAmelCase__ ) __lowercase = INVOICE_URL __lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) ) __lowercase = "What is the placebo?" __lowercase = [ { "image": load_image(UpperCAmelCase__ ), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def _lowercase ( self : int, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Any ): __lowercase = dqa_pipeline(UpperCAmelCase__, top_k=2 ) self.assertEqual( UpperCAmelCase__, [ [ {"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ ), "start": ANY(UpperCAmelCase__ ), "end": ANY(UpperCAmelCase__ )}, {"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ ), "start": ANY(UpperCAmelCase__ ), "end": ANY(UpperCAmelCase__ )}, ] ] * 3, ) @require_torch @require_detectrona @require_pytesseract def _lowercase ( self : Dict ): __lowercase = pipeline("document-question-answering", model="hf-internal-testing/tiny-random-layoutlmv2" ) __lowercase = INVOICE_URL __lowercase = "How many cats are there?" __lowercase = [ {"score": 0.0_001, "answer": "oy 2312/2019", "start": 3_8, "end": 3_9}, {"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 3_8, "end": 4_0}, ] __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), UpperCAmelCase__ ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), UpperCAmelCase__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably __lowercase = "./tests/fixtures/tests_samples/COCO/000000039769.png" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual(UpperCAmelCase__, [] ) # We can optionnally pass directly the words and bounding boxes __lowercase = "./tests/fixtures/tests_samples/COCO/000000039769.png" __lowercase = [] __lowercase = [] __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, words=UpperCAmelCase__, boxes=UpperCAmelCase__, top_k=2 ) self.assertEqual(UpperCAmelCase__, [] ) @slow @require_torch @require_detectrona @require_pytesseract def _lowercase ( self : List[str] ): __lowercase = pipeline( "document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ] * 2, ) @slow @require_torch @require_detectrona @require_pytesseract def _lowercase ( self : Dict ): __lowercase = pipeline( "document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", max_seq_len=5_0, ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3}, {"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3}, {"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3}, {"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6}, ] ] * 2, ) @slow @require_torch @require_pytesseract @require_vision def _lowercase ( self : Optional[Any] ): __lowercase = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=UpperCAmelCase__ ) __lowercase = pipeline( "document-question-answering", model="impira/layoutlm-document-qa", tokenizer=UpperCAmelCase__, revision="3dc6de3", ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ], ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ] ] * 2, ) __lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) ) # This model should also work if `image` is set to None __lowercase = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ], ) @slow @require_torch @require_pytesseract @require_vision def _lowercase ( self : Union[str, Any] ): __lowercase = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=UpperCAmelCase__ ) __lowercase = pipeline( "document-question-answering", model="impira/layoutlm-document-qa", tokenizer=UpperCAmelCase__, revision="3dc6de3", max_seq_len=5_0, ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6}, ] ] * 2, ) __lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) ) # This model should also work if `image` is set to None __lowercase = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) @slow @require_torch def _lowercase ( self : Dict ): __lowercase = pipeline( "document-question-answering", model="naver-clova-ix/donut-base-finetuned-docvqa", tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ), feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa", ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def _lowercase ( self : List[Any] ): pass
17
1
"""simple docstring""" import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder _a = '__DUMMY_TRANSFORMERS_USER__' _a = 'Dummy User' _a = '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' _a = 'https://hub-ci.huggingface.co' _a = CI_HUB_ENDPOINT + '/datasets/{repo_id}/resolve/{revision}/{path}' _a = CI_HUB_ENDPOINT + '/{repo_id}/resolve/{revision}/{filename}' _a = Path('~/.huggingface/hub_ci_token').expanduser() @pytest.fixture def _A ( UpperCamelCase_ : List[Any]) -> Tuple: '''simple docstring''' monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE", UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : int) -> List[Any]: '''simple docstring''' monkeypatch.setattr("datasets.config.HF_ENDPOINT", UpperCamelCase_) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL", UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : str) -> Dict: '''simple docstring''' monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token", UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : Optional[Any], UpperCamelCase_ : List[Any]) -> List[str]: '''simple docstring''' HfFolder.save_token(UpperCamelCase_) yield HfFolder.delete_token() @pytest.fixture(scope="session") def _A ( ) -> List[Any]: '''simple docstring''' return HfApi(endpoint=UpperCamelCase_) @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi) -> List[Any]: '''simple docstring''' __lowercase = HfFolder.get_token() HfFolder.save_token(UpperCamelCase_) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : Dict) -> int: '''simple docstring''' def _cleanup_repo(UpperCamelCase_ : Optional[int]): hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") return _cleanup_repo @pytest.fixture def _A ( UpperCamelCase_ : str) -> Any: '''simple docstring''' @contextmanager def _temporary_repo(UpperCamelCase_ : Any): try: yield repo_id finally: cleanup_repo(UpperCamelCase_) return _temporary_repo @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : str, UpperCamelCase_ : Optional[int]) -> List[Any]: '''simple docstring''' __lowercase = F"""repo_txt_data-{int(time.time() * 10E3)}""" __lowercase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_) hf_api.upload_file( token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data/text_data.txt", repo_id=UpperCamelCase_, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : Any, UpperCamelCase_ : Dict) -> Optional[int]: '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : int, UpperCamelCase_ : Optional[int]) -> int: '''simple docstring''' __lowercase = F"""repo_zipped_txt_data-{int(time.time() * 10E3)}""" __lowercase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_) hf_api.upload_file( token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data.zip", repo_id=UpperCamelCase_, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Dict, UpperCamelCase_ : Any) -> int: '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : List[str], UpperCamelCase_ : List[str]) -> List[Any]: '''simple docstring''' __lowercase = F"""repo_zipped_img_data-{int(time.time() * 10E3)}""" __lowercase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_) hf_api.upload_file( token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data.zip", repo_id=UpperCamelCase_, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str], UpperCamelCase_ : List[str]) -> str: '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
17
"""simple docstring""" import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _a = 2 class _lowerCAmelCase : """simple docstring""" def __init__( self : Dict, *, # begin keyword-only arguments UpperCAmelCase__ : str="<s>", UpperCAmelCase__ : Tuple="<pad>", UpperCAmelCase__ : str="</s>", UpperCAmelCase__ : Optional[Any]="<unk>", UpperCAmelCase__ : List[Any]=None, ): __lowercase ,__lowercase ,__lowercase ,__lowercase = bos, unk, pad, eos __lowercase = [] __lowercase = [] __lowercase = {} __lowercase = self.add_symbol(UpperCAmelCase__ ) __lowercase = self.add_symbol(UpperCAmelCase__ ) __lowercase = self.add_symbol(UpperCAmelCase__ ) __lowercase = self.add_symbol(UpperCAmelCase__ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(UpperCAmelCase__ ) __lowercase = len(self.symbols ) def __eq__( self : List[str], UpperCAmelCase__ : Dict ): return self.indices == other.indices def __getitem__( self : Optional[int], UpperCAmelCase__ : List[str] ): if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : str ): return len(self.symbols ) def __contains__( self : Any, UpperCAmelCase__ : Optional[Any] ): return sym in self.indices @classmethod def _lowercase ( cls : List[Any], UpperCAmelCase__ : Optional[Any] ): __lowercase = cls() d.add_from_file(UpperCAmelCase__ ) return d def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[Any]=1, UpperCAmelCase__ : str=False ): if word in self.indices and not overwrite: __lowercase = self.indices[word] __lowercase = self.count[idx] + n return idx else: __lowercase = len(self.symbols ) __lowercase = idx self.symbols.append(UpperCAmelCase__ ) self.count.append(UpperCAmelCase__ ) return idx def _lowercase ( self : Any, UpperCAmelCase__ : str ): return 0 def _lowercase ( self : Tuple, UpperCAmelCase__ : List[Any] ): if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): try: with open(UpperCAmelCase__, "r", encoding="utf-8" ) as fd: self.add_from_file(UpperCAmelCase__ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("Incorrect encoding detected in {}, please rebuild the dataset".format(UpperCAmelCase__ ) ) return __lowercase = f.readlines() __lowercase = self._load_meta(UpperCAmelCase__ ) for line in lines[indices_start_line:]: try: __lowercase ,__lowercase = line.rstrip().rsplit(" ", 1 ) if field == "#fairseq:overwrite": __lowercase = True __lowercase ,__lowercase = line.rsplit(" ", 1 ) else: __lowercase = False __lowercase = int(UpperCAmelCase__ ) __lowercase = line if word in self and not overwrite: raise RuntimeError( "Duplicate word found when loading Dictionary: '{}'. " "Duplicate words can overwrite earlier ones by adding the " "#fairseq:overwrite flag at the end of the corresponding row " "in the dictionary file. If using the Camembert model, please " "download an updated copy of the model file.".format(UpperCAmelCase__ ) ) self.add_symbol(UpperCAmelCase__, n=UpperCAmelCase__, overwrite=UpperCAmelCase__ ) except ValueError: raise ValueError("Incorrect dictionary format, expected '<token> <cnt> [flags]'" ) def _A ( UpperCamelCase_ : int) -> str: '''simple docstring''' __lowercase = dict((re.sub(r"@@$", "", UpperCamelCase_), v) if k.endswith("@@") else (re.sub(r"$", "</w>", UpperCamelCase_), v) for k, v in d.items()) __lowercase = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] __lowercase = d[k] # restore return da def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str) -> List[Any]: '''simple docstring''' if not os.path.exists(UpperCamelCase_): raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""") os.makedirs(UpperCamelCase_, exist_ok=UpperCamelCase_) print(F"""Writing results to {pytorch_dump_folder_path}""") # handle various types of models __lowercase = os.path.join(UpperCamelCase_, "checkpoint.pt") if not os.path.isfile(UpperCamelCase_): raise ValueError(F"""path to the file {checkpoint_file} does not exist!""") __lowercase = torch.load(UpperCamelCase_, map_location="cpu") __lowercase = chkpt["cfg"]["model"] # dicts __lowercase = os.path.join(UpperCamelCase_, "dict.txt") if not os.path.isfile(UpperCamelCase_): raise ValueError(F"""path to the file {dict_file} does not exist!""") __lowercase = Dictionary.load(UpperCamelCase_) __lowercase = rewrite_dict_keys(src_dict.indices) __lowercase = len(UpperCamelCase_) __lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["vocab_file"]) print(F"""Generating {src_vocab_file} of {src_vocab_size} records""") with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_)) # merges_file (bpecodes) __lowercase = os.path.join(UpperCamelCase_, "bpecodes") if not os.path.isfile(UpperCamelCase_): raise ValueError(F"""path to the file {bpecodes_file} does not exist!""") __lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["merges_file"]) shutil.copyfile(UpperCamelCase_, UpperCamelCase_) # model config __lowercase = os.path.join(UpperCamelCase_, "config.json") __lowercase = { "activation_dropout": args["activation_dropout"], "architectures": ["BioGptForCausalLM"], "attention_probs_dropout_prob": args["attention_dropout"], "bos_token_id": 0, "eos_token_id": 2, "hidden_act": args["activation_fn"], "hidden_dropout_prob": args["dropout"], "hidden_size": args["decoder_embed_dim"], "initializer_range": 0.02, "intermediate_size": args["decoder_ffn_embed_dim"], "layer_norm_eps": 1E-12, "layerdrop": args["decoder_layerdrop"], "max_position_embeddings": args["max_target_positions"], "model_type": "biogpt", "num_attention_heads": args["decoder_attention_heads"], "num_hidden_layers": args["decoder_layers"], "pad_token_id": 1, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_decoder_input_output_embed"], "vocab_size": src_vocab_size, } # good hparam defaults to start with print(F"""Generating {biogpt_model_config_file}""") with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_)) # tokenizer config __lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_) __lowercase = { "bos_token": "<s>", "eos_token": "</s>", "model_max_length": 1024, "pad_token": "<pad>", "special_tokens_map_file": None, "tokenizer_class": "BioGptTokenizer", "unk_token": "<unk>", } print(F"""Generating {biogpt_tokenizer_config_file}""") with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_)) # model __lowercase = chkpt["model"] # remove unneeded keys __lowercase = [ "decoder.version", ] for k in ignore_keys: model_state_dict.pop(UpperCamelCase_, UpperCamelCase_) __lowercase = list(model_state_dict.keys()) for layer_name in layer_names: if layer_name.endswith("output_projection.weight"): __lowercase = model_state_dict.pop(UpperCamelCase_) else: __lowercase = model_state_dict.pop(UpperCamelCase_) __lowercase = BioGptConfig.from_pretrained(UpperCamelCase_) __lowercase = BioGptForCausalLM(UpperCamelCase_) # check that it loads ok model_new.load_state_dict(UpperCamelCase_) # save __lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_) print(F"""Generating {pytorch_weights_dump_path}""") torch.save(UpperCamelCase_, UpperCamelCase_) print("Conversion is done!") if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _a = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
17
1
"""simple docstring""" import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def _A ( UpperCamelCase_ : List[Any], UpperCamelCase_ : Tuple=False) -> int: '''simple docstring''' try: __lowercase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __lowercase = default else: # KEY is set, convert it to True or False. try: __lowercase = strtobool(UpperCamelCase_) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""") return _value _a = parse_flag_from_env('RUN_SLOW', default=False) def _A ( UpperCamelCase_ : int) -> Optional[int]: '''simple docstring''' return unittest.skip("Test was skipped")(UpperCamelCase_) def _A ( UpperCamelCase_ : Any) -> Optional[int]: '''simple docstring''' return unittest.skipUnless(_run_slow_tests, "test is slow")(UpperCamelCase_) def _A ( UpperCamelCase_ : Tuple) -> List[Any]: '''simple docstring''' return unittest.skipUnless(not torch.cuda.is_available(), "test requires only a CPU")(UpperCamelCase_) def _A ( UpperCamelCase_ : int) -> Any: '''simple docstring''' return unittest.skipUnless(torch.cuda.is_available(), "test requires a GPU")(UpperCamelCase_) def _A ( UpperCamelCase_ : Optional[int]) -> Tuple: '''simple docstring''' return unittest.skipUnless(is_xpu_available(), "test requires a XPU")(UpperCamelCase_) def _A ( UpperCamelCase_ : Optional[int]) -> Dict: '''simple docstring''' return unittest.skipUnless(is_mps_available(), "test requires a `mps` backend support in `torch`")(UpperCamelCase_) def _A ( UpperCamelCase_ : int) -> List[Any]: '''simple docstring''' return unittest.skipUnless( is_transformers_available() and is_datasets_available(), "test requires the Hugging Face suite")(UpperCamelCase_) def _A ( UpperCamelCase_ : Union[str, Any]) -> Tuple: '''simple docstring''' return unittest.skipUnless(is_bnb_available(), "test requires the bitsandbytes library")(UpperCamelCase_) def _A ( UpperCamelCase_ : Optional[Any]) -> int: '''simple docstring''' return unittest.skipUnless(is_tpu_available(), "test requires TPU")(UpperCamelCase_) def _A ( UpperCamelCase_ : str) -> List[Any]: '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() == 1, "test requires a GPU")(UpperCamelCase_) def _A ( UpperCamelCase_ : Union[str, Any]) -> List[str]: '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() == 1, "test requires a XPU")(UpperCamelCase_) def _A ( UpperCamelCase_ : List[Any]) -> str: '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() > 1, "test requires multiple GPUs")(UpperCamelCase_) def _A ( UpperCamelCase_ : Optional[int]) -> str: '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() > 1, "test requires multiple XPUs")(UpperCamelCase_) def _A ( UpperCamelCase_ : str) -> int: '''simple docstring''' return unittest.skipUnless(is_safetensors_available(), "test requires safetensors")(UpperCamelCase_) def _A ( UpperCamelCase_ : Dict) -> str: '''simple docstring''' return unittest.skipUnless(is_deepspeed_available(), "test requires DeepSpeed")(UpperCamelCase_) def _A ( UpperCamelCase_ : List[str]) -> Dict: '''simple docstring''' return unittest.skipUnless(is_torch_version(">=", "1.12.0"), "test requires torch version >= 1.12.0")(UpperCamelCase_) def _A ( UpperCamelCase_ : Dict=None, UpperCamelCase_ : int=None) -> int: '''simple docstring''' if test_case is None: return partial(UpperCamelCase_, version=UpperCamelCase_) return unittest.skipUnless(is_torch_version(">=", UpperCamelCase_), F"""test requires torch version >= {version}""")(UpperCamelCase_) def _A ( UpperCamelCase_ : List[Any]) -> Any: '''simple docstring''' return unittest.skipUnless(is_tensorboard_available(), "test requires Tensorboard")(UpperCamelCase_) def _A ( UpperCamelCase_ : Optional[Any]) -> Union[str, Any]: '''simple docstring''' return unittest.skipUnless(is_wandb_available(), "test requires wandb")(UpperCamelCase_) def _A ( UpperCamelCase_ : Optional[int]) -> Tuple: '''simple docstring''' return unittest.skipUnless(is_comet_ml_available(), "test requires comet_ml")(UpperCamelCase_) _a = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def _A ( UpperCamelCase_ : List[str]) -> str: '''simple docstring''' return unittest.skipUnless( _atleast_one_tracker_available, "test requires at least one tracker to be available and for `comet_ml` to not be installed", )(UpperCamelCase_) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Tuple = True @classmethod def _lowercase ( cls : Dict ): __lowercase = tempfile.mkdtemp() @classmethod def _lowercase ( cls : List[str] ): if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def _lowercase ( self : Union[str, Any] ): if self.clear_on_setup: for path in Path(self.tmpdir ).glob("**/*" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(UpperCAmelCase__ ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Optional[Any] ): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Optional[int], UpperCAmelCase__ : Union[mock.Mock, List[mock.Mock]] ): __lowercase = mocks if isinstance(UpperCAmelCase__, (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def _A ( UpperCamelCase_ : int) -> int: '''simple docstring''' __lowercase = AcceleratorState() __lowercase = tensor[None].clone().to(state.device) __lowercase = gather(UpperCamelCase_).cpu() __lowercase = tensor[0].cpu() for i in range(tensors.shape[0]): if not torch.equal(tensors[i], UpperCamelCase_): return False return True class _lowerCAmelCase : """simple docstring""" def __init__( self : Union[str, Any], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Tuple ): __lowercase = returncode __lowercase = stdout __lowercase = stderr async def _A ( UpperCamelCase_ : int, UpperCamelCase_ : List[str]) -> Any: '''simple docstring''' while True: __lowercase = await stream.readline() if line: callback(UpperCamelCase_) else: break async def _A ( UpperCamelCase_ : Optional[int], UpperCamelCase_ : List[str]=None, UpperCamelCase_ : Optional[Any]=None, UpperCamelCase_ : List[str]=None, UpperCamelCase_ : Dict=False, UpperCamelCase_ : int=False) -> _RunOutput: '''simple docstring''' if echo: print("\nRunning: ", " ".join(UpperCamelCase_)) __lowercase = await asyncio.create_subprocess_exec( cmd[0], *cmd[1:], stdin=UpperCamelCase_, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE, env=UpperCamelCase_, ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __lowercase = [] __lowercase = [] def tee(UpperCamelCase_ : Any, UpperCamelCase_ : List[Any], UpperCamelCase_ : Dict, UpperCamelCase_ : int=""): __lowercase = line.decode("utf-8").rstrip() sink.append(UpperCamelCase_) if not quiet: print(UpperCamelCase_, UpperCamelCase_, file=UpperCamelCase_) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout, lambda UpperCamelCase_: tee(UpperCamelCase_, UpperCamelCase_, sys.stdout, label="stdout:"))), asyncio.create_task(_read_stream(p.stderr, lambda UpperCamelCase_: tee(UpperCamelCase_, UpperCamelCase_, sys.stderr, label="stderr:"))), ], timeout=UpperCamelCase_, ) return _RunOutput(await p.wait(), UpperCamelCase_, UpperCamelCase_) def _A ( UpperCamelCase_ : str, UpperCamelCase_ : Optional[Any]=None, UpperCamelCase_ : Dict=None, UpperCamelCase_ : str=180, UpperCamelCase_ : Optional[int]=False, UpperCamelCase_ : int=True) -> _RunOutput: '''simple docstring''' __lowercase = asyncio.get_event_loop() __lowercase = loop.run_until_complete( _stream_subprocess(UpperCamelCase_, env=UpperCamelCase_, stdin=UpperCamelCase_, timeout=UpperCamelCase_, quiet=UpperCamelCase_, echo=UpperCamelCase_)) __lowercase = " ".join(UpperCamelCase_) if result.returncode > 0: __lowercase = "\n".join(result.stderr) raise RuntimeError( F"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""") return result class _lowerCAmelCase ( lowercase ): """simple docstring""" pass def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Optional[int]=False) -> Union[str, Any]: '''simple docstring''' try: __lowercase = subprocess.check_output(UpperCamelCase_, stderr=subprocess.STDOUT) if return_stdout: if hasattr(UpperCamelCase_, "decode"): __lowercase = output.decode("utf-8") return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"""Command `{" ".join(UpperCamelCase_)}` failed with the following error:\n\n{e.output.decode()}""") from e
17
"""simple docstring""" from __future__ import annotations from typing import Any class _lowerCAmelCase : """simple docstring""" def __init__( self : Any, UpperCAmelCase__ : int ): __lowercase = num_of_nodes __lowercase = [] __lowercase = {} def _lowercase ( self : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : int, UpperCAmelCase__ : int ): self.m_edges.append([u_node, v_node, weight] ) def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _lowercase ( self : List[Any], UpperCAmelCase__ : int ): if self.m_component[u_node] != u_node: for k in self.m_component: __lowercase = self.find_component(UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : list[int], UpperCAmelCase__ : int, UpperCAmelCase__ : int ): if component_size[u_node] <= component_size[v_node]: __lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(UpperCAmelCase__ ) elif component_size[u_node] >= component_size[v_node]: __lowercase = self.find_component(UpperCAmelCase__ ) component_size[u_node] += component_size[v_node] self.set_component(UpperCAmelCase__ ) def _lowercase ( self : Any ): __lowercase = [] __lowercase = 0 __lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowercase ,__lowercase ,__lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase ,__lowercase ,__lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 __lowercase = [-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def _A ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
17
1
"""simple docstring""" import csv import tweepy # Twitter API credentials _a = '' _a = '' _a = '' _a = '' def _A ( UpperCamelCase_ : str) -> None: '''simple docstring''' __lowercase = tweepy.OAuthHandler(UpperCamelCase_, UpperCamelCase_) auth.set_access_token(UpperCamelCase_, UpperCamelCase_) __lowercase = tweepy.API(UpperCamelCase_) # initialize a list to hold all the tweepy Tweets __lowercase = [] # make initial request for most recent tweets (200 is the maximum allowed count) __lowercase = api.user_timeline(screen_name=UpperCamelCase_, count=200) # save most recent tweets alltweets.extend(UpperCamelCase_) # save the id of the oldest tweet less one __lowercase = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(UpperCamelCase_) > 0: print(F"""getting tweets before {oldest}""") # all subsequent requests use the max_id param to prevent duplicates __lowercase = api.user_timeline( screen_name=UpperCamelCase_, count=200, max_id=UpperCamelCase_) # save most recent tweets alltweets.extend(UpperCamelCase_) # update the id of the oldest tweet less one __lowercase = alltweets[-1].id - 1 print(F"""...{len(UpperCamelCase_)} tweets downloaded so far""") # transform the tweepy tweets into a 2D array that will populate the csv __lowercase = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"""new_{screen_name}_tweets.csv""", "w") as f: __lowercase = csv.writer(UpperCamelCase_) writer.writerow(["id", "created_at", "text"]) writer.writerows(UpperCamelCase_) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('FirePing32')
17
"""simple docstring""" from math import sqrt def _A ( UpperCamelCase_ : int) -> int: '''simple docstring''' __lowercase = 0 for i in range(1, int(sqrt(UpperCamelCase_) + 1)): if n % i == 0 and i != sqrt(UpperCamelCase_): total += i + n // i elif i == sqrt(UpperCamelCase_): total += i return total - n def _A ( UpperCamelCase_ : int = 10000) -> int: '''simple docstring''' __lowercase = sum( i for i in range(1, UpperCamelCase_) if sum_of_divisors(sum_of_divisors(UpperCamelCase_)) == i and sum_of_divisors(UpperCamelCase_) != i) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
17
1
"""simple docstring""" import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _lowerCAmelCase : """simple docstring""" @staticmethod def _lowercase ( *UpperCAmelCase__ : List[Any], **UpperCAmelCase__ : str ): pass @is_pipeline_test @require_vision @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Tuple ): __lowercase = pipeline( "zero-shot-object-detection", model="hf-internal-testing/tiny-random-owlvit-object-detection" ) __lowercase = [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] return object_detector, examples def _lowercase ( self : Tuple, UpperCAmelCase__ : int, UpperCAmelCase__ : Any ): __lowercase = object_detector(examples[0], threshold=0.0 ) __lowercase = len(UpperCAmelCase__ ) self.assertGreater(UpperCAmelCase__, 0 ) self.assertEqual( UpperCAmelCase__, [ { "score": ANY(UpperCAmelCase__ ), "label": ANY(UpperCAmelCase__ ), "box": {"xmin": ANY(UpperCAmelCase__ ), "ymin": ANY(UpperCAmelCase__ ), "xmax": ANY(UpperCAmelCase__ ), "ymax": ANY(UpperCAmelCase__ )}, } for i in range(UpperCAmelCase__ ) ], ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def _lowercase ( self : Optional[Any] ): pass @require_torch def _lowercase ( self : List[Any] ): __lowercase = pipeline( "zero-shot-object-detection", model="hf-internal-testing/tiny-random-owlvit-object-detection" ) __lowercase = object_detector( "./tests/fixtures/tests_samples/COCO/000000039769.png", candidate_labels=["cat", "remote", "couch"], threshold=0.64, ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.7_235, "label": "cat", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.7_218, "label": "remote", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.7_184, "label": "couch", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.6_748, "label": "remote", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6_656, "label": "cat", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6_614, "label": "couch", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6_456, "label": "remote", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}}, {"score": 0.642, "label": "remote", "box": {"xmin": 6_7, "ymin": 2_7_4, "xmax": 9_3, "ymax": 2_9_7}}, {"score": 0.6_419, "label": "cat", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}}, ], ) __lowercase = object_detector( [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ], threshold=0.64, ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.7_235, "label": "cat", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.7_218, "label": "remote", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.7_184, "label": "couch", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.6_748, "label": "remote", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6_656, "label": "cat", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6_614, "label": "couch", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6_456, "label": "remote", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}}, {"score": 0.642, "label": "remote", "box": {"xmin": 6_7, "ymin": 2_7_4, "xmax": 9_3, "ymax": 2_9_7}}, {"score": 0.6_419, "label": "cat", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}}, ] ], ) @require_torch @slow def _lowercase ( self : Any ): __lowercase = pipeline("zero-shot-object-detection" ) __lowercase = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg", candidate_labels=["cat", "remote", "couch"], ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.2_868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, {"score": 0.2_537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}}, {"score": 0.1_474, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}}, {"score": 0.1_208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}}, ], ) __lowercase = object_detector( [ { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, ], ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.2_868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, {"score": 0.2_537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}}, {"score": 0.1_474, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}}, {"score": 0.1_208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}}, ], [ {"score": 0.2_868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, {"score": 0.2_537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}}, {"score": 0.1_474, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}}, {"score": 0.1_208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}}, ], ], ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def _lowercase ( self : List[str] ): pass @require_torch @slow def _lowercase ( self : Optional[int] ): __lowercase = 0.2 __lowercase = pipeline("zero-shot-object-detection" ) __lowercase = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg", candidate_labels=["cat", "remote", "couch"], threshold=UpperCAmelCase__, ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.2_868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, {"score": 0.2_537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}}, ], ) @require_torch @slow def _lowercase ( self : Dict ): __lowercase = 2 __lowercase = pipeline("zero-shot-object-detection" ) __lowercase = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg", candidate_labels=["cat", "remote", "couch"], top_k=UpperCAmelCase__, ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.2_868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, ], )
17
"""simple docstring""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _a = _symbol_database.Default() _a = _descriptor_pool.Default().AddSerializedFile( b'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) _a = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: _a = None _a = b'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" _a = 45 _a = 15_81 _a = 15_17 _a = 15_70 _a = 15_84 _a = 17_93 _a = 17_95 _a = 19_16 _a = 18_64 _a = 19_05 _a = 19_19 _a = 24_29 _a = 22_08 _a = 24_18 _a = 23_23 _a = 24_07 # @@protoc_insertion_point(module_scope)
17
1
"""simple docstring""" from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _A ( ) -> Dict: '''simple docstring''' __lowercase = HfArgumentParser(UpperCamelCase_) __lowercase = parser.parse_args_into_dataclasses()[0] __lowercase = TensorFlowBenchmark(args=UpperCamelCase_) try: __lowercase = parser.parse_args_into_dataclasses()[0] except ValueError as e: __lowercase = "Arg --no_{0} is no longer used, please use --no-{0} instead." __lowercase = " ".join(str(UpperCamelCase_).split(" ")[:-1]) __lowercase = "" __lowercase = eval(str(UpperCamelCase_).split(" ")[-1]) __lowercase = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:]) else: wrong_args.append(UpperCamelCase_) if len(UpperCamelCase_) > 0: __lowercase = full_error_msg + begin_error_msg + str(UpperCamelCase_) raise ValueError(UpperCamelCase_) benchmark.run() if __name__ == "__main__": main()
17
"""simple docstring""" import baseaa def _A ( UpperCamelCase_ : str) -> bytes: '''simple docstring''' return baseaa.baaencode(string.encode("utf-8")) def _A ( UpperCamelCase_ : bytes) -> str: '''simple docstring''' return baseaa.baadecode(UpperCamelCase_).decode("utf-8") if __name__ == "__main__": _a = 'Hello World!' _a = baseaa_encode(test) print(encoded) _a = baseaa_decode(encoded) print(decoded)
17
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def _A ( UpperCamelCase_ : List[str]) -> Optional[Any]: '''simple docstring''' __lowercase = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: __lowercase = [144, 192, 240] __lowercase = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: __lowercase = [96, 120, 144] __lowercase = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: __lowercase = [64, 80, 96] __lowercase = [16, 16, 24, 48, 64, 80, 320] __lowercase = 0.05 __lowercase = 2.0 if mobilevit_name.startswith("deeplabv3_"): __lowercase = 512 __lowercase = 16 __lowercase = 21 __lowercase = "pascal-voc-id2label.json" else: __lowercase = 1000 __lowercase = "imagenet-1k-id2label.json" __lowercase = "huggingface/label-files" __lowercase = json.load(open(hf_hub_download(UpperCamelCase_, UpperCamelCase_, repo_type="dataset"), "r")) __lowercase = {int(UpperCamelCase_): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} return config def _A ( UpperCamelCase_ : int, UpperCamelCase_ : Dict=False) -> Optional[Any]: '''simple docstring''' for i in range(1, 6): if F"""layer_{i}.""" in name: __lowercase = name.replace(F"""layer_{i}.""", F"""encoder.layer.{i - 1}.""") if "conv_1." in name: __lowercase = name.replace("conv_1.", "conv_stem.") if ".block." in name: __lowercase = name.replace(".block.", ".") if "exp_1x1" in name: __lowercase = name.replace("exp_1x1", "expand_1x1") if "red_1x1" in name: __lowercase = name.replace("red_1x1", "reduce_1x1") if ".local_rep.conv_3x3." in name: __lowercase = name.replace(".local_rep.conv_3x3.", ".conv_kxk.") if ".local_rep.conv_1x1." in name: __lowercase = name.replace(".local_rep.conv_1x1.", ".conv_1x1.") if ".norm." in name: __lowercase = name.replace(".norm.", ".normalization.") if ".conv." in name: __lowercase = name.replace(".conv.", ".convolution.") if ".conv_proj." in name: __lowercase = name.replace(".conv_proj.", ".conv_projection.") for i in range(0, 2): for j in range(0, 4): if F""".{i}.{j}.""" in name: __lowercase = name.replace(F""".{i}.{j}.""", F""".{i}.layer.{j}.""") for i in range(2, 6): for j in range(0, 4): if F""".{i}.{j}.""" in name: __lowercase = name.replace(F""".{i}.{j}.""", F""".{i}.""") if "expand_1x1" in name: __lowercase = name.replace("expand_1x1", "downsampling_layer.expand_1x1") if "conv_3x3" in name: __lowercase = name.replace("conv_3x3", "downsampling_layer.conv_3x3") if "reduce_1x1" in name: __lowercase = name.replace("reduce_1x1", "downsampling_layer.reduce_1x1") for i in range(2, 5): if F""".global_rep.{i}.weight""" in name: __lowercase = name.replace(F""".global_rep.{i}.weight""", ".layernorm.weight") if F""".global_rep.{i}.bias""" in name: __lowercase = name.replace(F""".global_rep.{i}.bias""", ".layernorm.bias") if ".global_rep." in name: __lowercase = name.replace(".global_rep.", ".transformer.") if ".pre_norm_mha.0." in name: __lowercase = name.replace(".pre_norm_mha.0.", ".layernorm_before.") if ".pre_norm_mha.1.out_proj." in name: __lowercase = name.replace(".pre_norm_mha.1.out_proj.", ".attention.output.dense.") if ".pre_norm_ffn.0." in name: __lowercase = name.replace(".pre_norm_ffn.0.", ".layernorm_after.") if ".pre_norm_ffn.1." in name: __lowercase = name.replace(".pre_norm_ffn.1.", ".intermediate.dense.") if ".pre_norm_ffn.4." in name: __lowercase = name.replace(".pre_norm_ffn.4.", ".output.dense.") if ".transformer." in name: __lowercase = name.replace(".transformer.", ".transformer.layer.") if ".aspp_layer." in name: __lowercase = name.replace(".aspp_layer.", ".") if ".aspp_pool." in name: __lowercase = name.replace(".aspp_pool.", ".") if "seg_head." in name: __lowercase = name.replace("seg_head.", "segmentation_head.") if "segmentation_head.classifier.classifier." in name: __lowercase = name.replace("segmentation_head.classifier.classifier.", "segmentation_head.classifier.") if "classifier.fc." in name: __lowercase = name.replace("classifier.fc.", "classifier.") elif (not base_model) and ("segmentation_head." not in name): __lowercase = "mobilevit." + name return name def _A ( UpperCamelCase_ : str, UpperCamelCase_ : Dict, UpperCamelCase_ : Any=False) -> Tuple: '''simple docstring''' if base_model: __lowercase = "" else: __lowercase = "mobilevit." for key in orig_state_dict.copy().keys(): __lowercase = orig_state_dict.pop(UpperCamelCase_) if key[:8] == "encoder.": __lowercase = key[8:] if "qkv" in key: __lowercase = key.split(".") __lowercase = int(key_split[0][6:]) - 1 __lowercase = int(key_split[3]) __lowercase = model.get_submodule(F"""{model_prefix}encoder.layer.{layer_num}""") __lowercase = layer.transformer.layer[transformer_num].attention.attention.all_head_size __lowercase = ( F"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.""" ) if "weight" in key: __lowercase = val[:dim, :] __lowercase = val[dim : dim * 2, :] __lowercase = val[-dim:, :] else: __lowercase = val[:dim] __lowercase = val[dim : dim * 2] __lowercase = val[-dim:] else: __lowercase = val return orig_state_dict def _A ( ) -> Tuple: '''simple docstring''' __lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowercase = Image.open(requests.get(UpperCamelCase_, stream=UpperCamelCase_).raw) return im @torch.no_grad() def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : Any, UpperCamelCase_ : Tuple, UpperCamelCase_ : Any=False) -> str: '''simple docstring''' __lowercase = get_mobilevit_config(UpperCamelCase_) # load original state_dict __lowercase = torch.load(UpperCamelCase_, map_location="cpu") # load 🤗 model if mobilevit_name.startswith("deeplabv3_"): __lowercase = MobileViTForSemanticSegmentation(UpperCamelCase_).eval() else: __lowercase = MobileViTForImageClassification(UpperCamelCase_).eval() __lowercase = convert_state_dict(UpperCamelCase_, UpperCamelCase_) model.load_state_dict(UpperCamelCase_) # Check outputs on an image, prepared by MobileViTImageProcessor __lowercase = MobileViTImageProcessor(crop_size=config.image_size, size=config.image_size + 32) __lowercase = image_processor(images=prepare_img(), return_tensors="pt") __lowercase = model(**UpperCamelCase_) __lowercase = outputs.logits if mobilevit_name.startswith("deeplabv3_"): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": __lowercase = torch.tensor( [ [[6.2_065, 6.1_292, 6.2_070], [6.1_079, 6.1_254, 6.1_747], [6.0_042, 6.1_071, 6.1_034]], [[-6.9_253, -6.8_653, -7.0_398], [-7.3_218, -7.3_983, -7.3_670], [-7.1_961, -7.2_482, -7.1_569]], [[-4.4_723, -4.4_348, -4.3_769], [-5.3_629, -5.4_632, -5.4_598], [-5.1_587, -5.3_402, -5.5_059]], ]) elif mobilevit_name == "deeplabv3_mobilevit_xs": __lowercase = torch.tensor( [ [[5.4_449, 5.5_733, 5.6_314], [5.1_815, 5.3_930, 5.5_963], [5.1_656, 5.4_333, 5.4_853]], [[-9.4_423, -9.7_766, -9.6_714], [-9.1_581, -9.5_720, -9.5_519], [-9.1_006, -9.6_458, -9.5_703]], [[-7.7_721, -7.3_716, -7.1_583], [-8.4_599, -8.0_624, -7.7_944], [-8.4_172, -7.8_366, -7.5_025]], ]) elif mobilevit_name == "deeplabv3_mobilevit_xxs": __lowercase = torch.tensor( [ [[6.9_811, 6.9_743, 7.3_123], [7.1_777, 7.1_931, 7.3_938], [7.5_633, 7.8_050, 7.8_901]], [[-10.5_536, -10.2_332, -10.2_924], [-10.2_336, -9.8_624, -9.5_964], [-10.8_840, -10.8_158, -10.6_659]], [[-3.4_938, -3.0_631, -2.8_620], [-3.4_205, -2.8_135, -2.6_875], [-3.4_179, -2.7_945, -2.8_750]], ]) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""") assert torch.allclose(logits[0, :3, :3, :3], UpperCamelCase_, atol=1E-4) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": __lowercase = torch.tensor([-0.9_866, 0.2_392, -1.1_241]) elif mobilevit_name == "mobilevit_xs": __lowercase = torch.tensor([-2.4_761, -0.9_399, -1.9_587]) elif mobilevit_name == "mobilevit_xxs": __lowercase = torch.tensor([-1.9_364, -1.2_327, -0.4_653]) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""") assert torch.allclose(logits[0, :3], UpperCamelCase_, atol=1E-4) Path(UpperCamelCase_).mkdir(exist_ok=UpperCamelCase_) print(F"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""") model.save_pretrained(UpperCamelCase_) print(F"""Saving image processor to {pytorch_dump_folder_path}""") image_processor.save_pretrained(UpperCamelCase_) if push_to_hub: __lowercase = { "mobilevit_s": "mobilevit-small", "mobilevit_xs": "mobilevit-x-small", "mobilevit_xxs": "mobilevit-xx-small", "deeplabv3_mobilevit_s": "deeplabv3-mobilevit-small", "deeplabv3_mobilevit_xs": "deeplabv3-mobilevit-x-small", "deeplabv3_mobilevit_xxs": "deeplabv3-mobilevit-xx-small", } print("Pushing to the hub...") __lowercase = model_mapping[mobilevit_name] image_processor.push_to_hub(UpperCamelCase_, organization="apple") model.push_to_hub(UpperCamelCase_, organization="apple") if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--mobilevit_name', default='mobilevit_s', type=str, help=( 'Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',' ' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.' ), ) parser.add_argument( '--checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).' ) parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _a = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
17
"""simple docstring""" def _A ( UpperCamelCase_ : Any) -> List[str]: '''simple docstring''' __lowercase ,__lowercase = [], [] while len(UpperCamelCase_) > 1: __lowercase ,__lowercase = min(UpperCamelCase_), max(UpperCamelCase_) start.append(UpperCamelCase_) end.append(UpperCamelCase_) collection.remove(UpperCamelCase_) collection.remove(UpperCamelCase_) end.reverse() return start + collection + end if __name__ == "__main__": _a = input('Enter numbers separated by a comma:\n').strip() _a = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
17
1
"""simple docstring""" class _lowerCAmelCase : """simple docstring""" def __init__( self : int ): __lowercase = {} def _lowercase ( self : Optional[Any] ): print(self.vertex ) for i in self.vertex: print(UpperCAmelCase__, " -> ", " -> ".join([str(UpperCAmelCase__ ) for j in self.vertex[i]] ) ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : int ): # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(UpperCAmelCase__ ) else: # else make a new vertex __lowercase = [to_vertex] def _lowercase ( self : Dict ): # visited array for storing already visited nodes __lowercase = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(UpperCAmelCase__, UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : int, UpperCAmelCase__ : list ): # mark start vertex as visited __lowercase = True print(UpperCAmelCase__, end=" " ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(UpperCAmelCase__, UpperCAmelCase__ ) if __name__ == "__main__": _a = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
17
"""simple docstring""" def _A ( UpperCamelCase_ : list[int]) -> float: '''simple docstring''' if not nums: # Makes sure that the list is not empty raise ValueError("List is empty") __lowercase = sum(UpperCamelCase_) / len(UpperCamelCase_) # Calculate the average return sum(abs(x - average) for x in nums) / len(UpperCamelCase_) if __name__ == "__main__": import doctest doctest.testmod()
17
1
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _a = 16 _a = 32 def _A ( UpperCamelCase_ : Accelerator, UpperCamelCase_ : int = 16, UpperCamelCase_ : str = "bert-base-cased") -> List[str]: '''simple docstring''' __lowercase = AutoTokenizer.from_pretrained(UpperCamelCase_) __lowercase = load_dataset("glue", "mrpc") def tokenize_function(UpperCamelCase_ : Optional[Any]): # max_length=None => use the model max length (it's actually the default) __lowercase = tokenizer(examples["sentence1"], examples["sentence2"], truncation=UpperCamelCase_, max_length=UpperCamelCase_) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __lowercase = datasets.map( UpperCamelCase_, batched=UpperCamelCase_, remove_columns=["idx", "sentence1", "sentence2"], load_from_cache_file=UpperCamelCase_) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowercase = tokenized_datasets.rename_column("label", "labels") def collate_fn(UpperCamelCase_ : Tuple): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCamelCase_, padding="max_length", max_length=128, return_tensors="pt") return tokenizer.pad(UpperCamelCase_, padding="longest", return_tensors="pt") # Instantiate dataloaders. __lowercase = DataLoader( tokenized_datasets["train"], shuffle=UpperCamelCase_, collate_fn=UpperCamelCase_, batch_size=UpperCamelCase_) __lowercase = DataLoader( tokenized_datasets["validation"], shuffle=UpperCamelCase_, collate_fn=UpperCamelCase_, batch_size=UpperCamelCase_) return train_dataloader, eval_dataloader def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : Tuple) -> Tuple: '''simple docstring''' __lowercase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowercase = config["lr"] __lowercase = int(config["num_epochs"]) __lowercase = int(config["seed"]) __lowercase = int(config["batch_size"]) __lowercase = args.model_name_or_path set_seed(UpperCamelCase_) __lowercase ,__lowercase = get_dataloaders(UpperCamelCase_, UpperCamelCase_, UpperCamelCase_) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowercase = AutoModelForSequenceClassification.from_pretrained(UpperCamelCase_, return_dict=UpperCamelCase_) # Instantiate optimizer __lowercase = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __lowercase = optimizer_cls(params=model.parameters(), lr=UpperCamelCase_) if accelerator.state.deepspeed_plugin is not None: __lowercase = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: __lowercase = 1 __lowercase = (len(UpperCamelCase_) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __lowercase = get_linear_schedule_with_warmup( optimizer=UpperCamelCase_, num_warmup_steps=0, num_training_steps=UpperCamelCase_, ) else: __lowercase = DummyScheduler(UpperCamelCase_, total_num_steps=UpperCamelCase_, warmup_num_steps=0) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase = accelerator.prepare( UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_) # We need to keep track of how many total steps we have iterated over __lowercase = 0 # We also need to keep track of the stating epoch so files are named properly __lowercase = 0 # Now we train the model __lowercase = evaluate.load("glue", "mrpc") __lowercase = 0 __lowercase = {} for epoch in range(UpperCamelCase_, UpperCamelCase_): model.train() for step, batch in enumerate(UpperCamelCase_): __lowercase = model(**UpperCamelCase_) __lowercase = outputs.loss __lowercase = loss / gradient_accumulation_steps accelerator.backward(UpperCamelCase_) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() __lowercase = 0 for step, batch in enumerate(UpperCamelCase_): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): __lowercase = model(**UpperCamelCase_) __lowercase = outputs.logits.argmax(dim=-1) # It is slightly faster to call this once, than multiple times __lowercase ,__lowercase = accelerator.gather( (predictions, batch["labels"])) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(UpperCamelCase_) - 1: __lowercase = predictions[: len(eval_dataloader.dataset) - samples_seen] __lowercase = references[: len(eval_dataloader.dataset) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=UpperCamelCase_, references=UpperCamelCase_, ) __lowercase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""", UpperCamelCase_) __lowercase = eval_metric["accuracy"] if best_performance < eval_metric["accuracy"]: __lowercase = eval_metric["accuracy"] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}""" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir, "all_results.json"), "w") as f: json.dump(UpperCamelCase_, UpperCamelCase_) def _A ( ) -> List[str]: '''simple docstring''' __lowercase = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage.") parser.add_argument( "--model_name_or_path", type=UpperCamelCase_, default="bert-base-cased", help="Path to pretrained model or model identifier from huggingface.co/models.", required=UpperCamelCase_, ) parser.add_argument( "--output_dir", type=UpperCamelCase_, default=".", help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory.", ) parser.add_argument( "--performance_lower_bound", type=UpperCamelCase_, default=UpperCamelCase_, help="Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.", ) parser.add_argument( "--num_epochs", type=UpperCamelCase_, default=3, help="Number of train epochs.", ) __lowercase = parser.parse_args() __lowercase = {"lr": 2E-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(UpperCamelCase_, UpperCamelCase_) if __name__ == "__main__": main()
17
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : int=1_0_0, UpperCAmelCase__ : Any=1_3, UpperCAmelCase__ : List[Any]=3_0, UpperCAmelCase__ : Dict=2, UpperCAmelCase__ : Any=3, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[str]=True, UpperCAmelCase__ : Optional[Any]=3_2, UpperCAmelCase__ : Any=5, UpperCAmelCase__ : Any=4, UpperCAmelCase__ : Any=3_7, UpperCAmelCase__ : Optional[int]="gelu", UpperCAmelCase__ : Dict=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Dict=1_0, UpperCAmelCase__ : Tuple=0.02, UpperCAmelCase__ : List[Any]=3, ): __lowercase = parent __lowercase = vocab_size __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase = (image_size // patch_size) ** 2 __lowercase = num_patches + 1 def _lowercase ( self : int ): __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size], self.type_sequence_label_size ) __lowercase = BeitConfig( vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=UpperCAmelCase__, initializer_range=self.initializer_range, ) return config, pixel_values, labels def _lowercase ( self : Any, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[str], UpperCAmelCase__ : List[str] ): __lowercase = FlaxBeitModel(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : List[Any] ): __lowercase = FlaxBeitForMaskedImageModeling(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size) ) def _lowercase ( self : Dict, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : Union[str, Any] ): __lowercase = self.type_sequence_label_size __lowercase = FlaxBeitForImageClassification(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowercase = 1 __lowercase = FlaxBeitForImageClassification(UpperCAmelCase__ ) __lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase = model(UpperCAmelCase__ ) def _lowercase ( self : List[str] ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) ,( __lowercase ) ,( __lowercase ) , ) = config_and_inputs __lowercase = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class _lowerCAmelCase ( lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def _lowercase ( self : List[Any] ): __lowercase = FlaxBeitModelTester(self ) __lowercase = ConfigTester(self, config_class=UpperCAmelCase__, has_text_modality=UpperCAmelCase__, hidden_size=3_7 ) def _lowercase ( self : Union[str, Any] ): self.config_tester.run_common_tests() def _lowercase ( self : Optional[int] ): __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(UpperCAmelCase__ ) __lowercase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["pixel_values"] self.assertListEqual(arg_names[:1], UpperCAmelCase__ ) def _lowercase ( self : Tuple ): __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowercase = self._prepare_for_class(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = model_class(UpperCAmelCase__ ) @jax.jit def model_jitted(UpperCAmelCase__ : str, **UpperCAmelCase__ : Dict ): return model(pixel_values=UpperCAmelCase__, **UpperCAmelCase__ ) with self.subTest("JIT Enabled" ): __lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ), len(UpperCAmelCase__ ) ) for jitted_output, output in zip(UpperCAmelCase__, UpperCAmelCase__ ): self.assertEqual(jitted_output.shape, output.shape ) def _lowercase ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def _lowercase ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ ) def _lowercase ( self : Tuple ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ ) @slow def _lowercase ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: __lowercase = model_class_name.from_pretrained("microsoft/beit-base-patch16-224" ) __lowercase = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(UpperCAmelCase__ ) def _A ( ) -> str: '''simple docstring''' __lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_vision @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : Optional[int] ): return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def _lowercase ( self : Any ): __lowercase = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ).pixel_values # prepare bool_masked_pos __lowercase = np.ones((1, 1_9_6), dtype=UpperCAmelCase__ ) # forward pass __lowercase = model(pixel_values=UpperCAmelCase__, bool_masked_pos=UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 1_9_6, 8_1_9_2) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3], UpperCAmelCase__, atol=1E-2 ) ) @slow def _lowercase ( self : Any ): __lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ) # forward pass __lowercase = model(**UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 1_0_0_0) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array([-1.2_385, -1.0_987, -1.0_108] ) self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) ) __lowercase = 2_8_1 self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ ) @slow def _lowercase ( self : List[str] ): __lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ) # forward pass __lowercase = model(**UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 2_1_8_4_1) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array([1.6_881, -0.2_787, 0.5_901] ) self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) ) __lowercase = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ )
17
1
"""simple docstring""" from math import factorial _a = {str(d): factorial(d) for d in range(10)} def _A ( UpperCamelCase_ : int) -> int: '''simple docstring''' return sum(DIGIT_FACTORIAL[d] for d in str(UpperCamelCase_)) def _A ( ) -> int: '''simple docstring''' __lowercase = 7 * factorial(9) + 1 return sum(i for i in range(3, UpperCamelCase_) if sum_of_digit_factorial(UpperCamelCase_) == i) if __name__ == "__main__": print(F"{solution() = }")
17
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class _lowerCAmelCase ( unittest.TestCase ,lowercase ): """simple docstring""" def _lowercase ( self : List[Any] ): __lowercase = load_tool("text-classification" ) self.tool.setup() __lowercase = load_tool("text-classification", remote=UpperCAmelCase__ ) def _lowercase ( self : str ): __lowercase = self.tool("That's quite cool", ["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" ) def _lowercase ( self : str ): __lowercase = self.remote_tool("That's quite cool", ["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" ) def _lowercase ( self : List[str] ): __lowercase = self.tool(text="That's quite cool", labels=["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" ) def _lowercase ( self : Tuple ): __lowercase = self.remote_tool(text="That's quite cool", labels=["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" )
17
1
"""simple docstring""" from __future__ import annotations from math import pow, sqrt def _A ( UpperCamelCase_ : float, UpperCamelCase_ : float, UpperCamelCase_ : float) -> dict[str, float]: '''simple docstring''' if (resistance, reactance, impedance).count(0) != 1: raise ValueError("One and only one argument must be 0") if resistance == 0: return {"resistance": sqrt(pow(UpperCamelCase_, 2) - pow(UpperCamelCase_, 2))} elif reactance == 0: return {"reactance": sqrt(pow(UpperCamelCase_, 2) - pow(UpperCamelCase_, 2))} elif impedance == 0: return {"impedance": sqrt(pow(UpperCamelCase_, 2) + pow(UpperCamelCase_, 2))} else: raise ValueError("Exactly one argument must be 0") if __name__ == "__main__": import doctest doctest.testmod()
17
"""simple docstring""" from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker _a = 'CompVis/stable-diffusion-v1-1' _a = 'CompVis/stable-diffusion-v1-2' _a = 'CompVis/stable-diffusion-v1-3' _a = 'CompVis/stable-diffusion-v1-4' class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : Dict, UpperCAmelCase__ : AutoencoderKL, UpperCAmelCase__ : CLIPTextModel, UpperCAmelCase__ : CLIPTokenizer, UpperCAmelCase__ : UNetaDConditionModel, UpperCAmelCase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], UpperCAmelCase__ : StableDiffusionSafetyChecker, UpperCAmelCase__ : CLIPImageProcessor, UpperCAmelCase__ : bool = True, ): super()._init_() __lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ ) __lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ ) __lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ ) __lowercase = StableDiffusionPipeline( vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, tokenizer=UpperCAmelCase__, unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, safety_checker=UpperCAmelCase__, feature_extractor=UpperCAmelCase__, requires_safety_checker=UpperCAmelCase__, ) self.register_modules(pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea ) @property def _lowercase ( self : List[str] ): return {k: getattr(self, UpperCAmelCase__ ) for k in self.config.keys() if not k.startswith("_" )} def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase__ ) def _lowercase ( self : List[str] ): self.enable_attention_slicing(UpperCAmelCase__ ) @torch.no_grad() def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Tuple, ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : Tuple, UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : str, ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : str, UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Any, ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Optional[int], ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : str, ): __lowercase = "cuda" if torch.cuda.is_available() else "cpu" self.to(UpperCAmelCase__ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" ) # Get first result from Stable Diffusion Checkpoint v1.1 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get first result from Stable Diffusion Checkpoint v1.2 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get first result from Stable Diffusion Checkpoint v1.3 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get first result from Stable Diffusion Checkpoint v1.4 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
17
1
"""simple docstring""" import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib _a = threading.Lock() _a = None _a = { 'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, 'critical': logging.CRITICAL, } _a = logging.WARNING _a = True def _A ( ) -> List[str]: '''simple docstring''' __lowercase = os.getenv("TRANSFORMERS_VERBOSITY", UpperCamelCase_) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F"""Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, """ F"""has to be one of: { ", ".join(log_levels.keys()) }""") return _default_log_level def _A ( ) -> str: '''simple docstring''' return __name__.split(".")[0] def _A ( ) -> logging.Logger: '''simple docstring''' return logging.getLogger(_get_library_name()) def _A ( ) -> None: '''simple docstring''' global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return __lowercase = logging.StreamHandler() # Set sys.stderr as stream. __lowercase = sys.stderr.flush # Apply our default configuration to the library root logger. __lowercase = _get_library_root_logger() library_root_logger.addHandler(_default_handler) library_root_logger.setLevel(_get_default_logging_level()) __lowercase = False def _A ( ) -> None: '''simple docstring''' global _default_handler with _lock: if not _default_handler: return __lowercase = _get_library_root_logger() library_root_logger.removeHandler(_default_handler) library_root_logger.setLevel(logging.NOTSET) __lowercase = None def _A ( ) -> int: '''simple docstring''' return log_levels def _A ( UpperCamelCase_ : Optional[str] = None) -> logging.Logger: '''simple docstring''' if name is None: __lowercase = _get_library_name() _configure_library_root_logger() return logging.getLogger(UpperCamelCase_) def _A ( ) -> int: '''simple docstring''' _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def _A ( UpperCamelCase_ : int) -> None: '''simple docstring''' _configure_library_root_logger() _get_library_root_logger().setLevel(UpperCamelCase_) def _A ( ) -> Union[str, Any]: '''simple docstring''' return set_verbosity(UpperCamelCase_) def _A ( ) -> Optional[Any]: '''simple docstring''' return set_verbosity(UpperCamelCase_) def _A ( ) -> Dict: '''simple docstring''' return set_verbosity(UpperCamelCase_) def _A ( ) -> List[str]: '''simple docstring''' return set_verbosity(UpperCamelCase_) def _A ( ) -> None: '''simple docstring''' _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler) def _A ( ) -> None: '''simple docstring''' _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler) def _A ( UpperCamelCase_ : logging.Handler) -> None: '''simple docstring''' _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(UpperCamelCase_) def _A ( UpperCamelCase_ : logging.Handler) -> None: '''simple docstring''' _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(UpperCamelCase_) def _A ( ) -> None: '''simple docstring''' _configure_library_root_logger() __lowercase = False def _A ( ) -> None: '''simple docstring''' _configure_library_root_logger() __lowercase = True def _A ( ) -> None: '''simple docstring''' __lowercase = _get_library_root_logger().handlers for handler in handlers: __lowercase = logging.Formatter("[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s") handler.setFormatter(UpperCamelCase_) def _A ( ) -> None: '''simple docstring''' __lowercase = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(UpperCamelCase_) def _A ( self : Optional[int], *UpperCamelCase_ : Optional[Any], **UpperCamelCase_ : List[str]) -> Union[str, Any]: '''simple docstring''' __lowercase = os.getenv("TRANSFORMERS_NO_ADVISORY_WARNINGS", UpperCamelCase_) if no_advisory_warnings: return self.warning(*UpperCamelCase_, **UpperCamelCase_) _a = warning_advice @functools.lru_cache(UpperCamelCase_) def _A ( self : Optional[Any], *UpperCamelCase_ : List[str], **UpperCamelCase_ : List[str]) -> Any: '''simple docstring''' self.warning(*UpperCamelCase_, **UpperCamelCase_) _a = warning_once class _lowerCAmelCase : """simple docstring""" def __init__( self : Optional[Any], *UpperCAmelCase__ : int, **UpperCAmelCase__ : Optional[int] ): # pylint: disable=unused-argument __lowercase = args[0] if args else None def __iter__( self : Dict ): return iter(self._iterator ) def __getattr__( self : int, UpperCAmelCase__ : int ): def empty_fn(*UpperCAmelCase__ : Optional[Any], **UpperCAmelCase__ : Tuple ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : List[Any] ): return self def __exit__( self : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Union[str, Any] ): return class _lowerCAmelCase : """simple docstring""" def __call__( self : Union[str, Any], *UpperCAmelCase__ : Dict, **UpperCAmelCase__ : Any ): if _tqdm_active: return tqdm_lib.tqdm(*UpperCAmelCase__, **UpperCAmelCase__ ) else: return EmptyTqdm(*UpperCAmelCase__, **UpperCAmelCase__ ) def _lowercase ( self : Optional[int], *UpperCAmelCase__ : Optional[int], **UpperCAmelCase__ : Union[str, Any] ): __lowercase = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*UpperCAmelCase__, **UpperCAmelCase__ ) def _lowercase ( self : List[str] ): if _tqdm_active: return tqdm_lib.tqdm.get_lock() _a = _tqdm_cls() def _A ( ) -> bool: '''simple docstring''' global _tqdm_active return bool(_tqdm_active) def _A ( ) -> Dict: '''simple docstring''' global _tqdm_active __lowercase = True hf_hub_utils.enable_progress_bars() def _A ( ) -> Tuple: '''simple docstring''' global _tqdm_active __lowercase = False hf_hub_utils.disable_progress_bars()
17
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowerCAmelCase ( lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = "ssube/stable-diffusion-x4-upscaler-onnx" def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : List[str]=0 ): __lowercase = floats_tensor((1, 3, 1_2_8, 1_2_8), rng=random.Random(UpperCAmelCase__ ) ) __lowercase = torch.manual_seed(UpperCAmelCase__ ) __lowercase = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def _lowercase ( self : Any ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def _lowercase ( self : Optional[Any] ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) __lowercase = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.6_898_892, 0.59_240_556, 0.52_499_527, 0.58_866_215, 0.52_258_235, 0.52_572_715, 0.62_414_473, 0.6_174_387, 0.6_214_964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _lowercase ( self : int ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.7_659_278, 0.76_437_664, 0.75_579_107, 0.7_691_116, 0.77_666_986, 0.7_727_672, 0.7_758_664, 0.7_812_226, 0.76_942_515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _lowercase ( self : str ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) __lowercase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _lowercase ( self : Any ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) __lowercase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.77_424_496, 0.773_601, 0.7_645_288, 0.7_769_598, 0.7_772_739, 0.7_738_688, 0.78_187_233, 0.77_879_584, 0.767_043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @property def _lowercase ( self : Tuple ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowercase ( self : Dict ): __lowercase = ort.SessionOptions() __lowercase = False return options def _lowercase ( self : Dict ): __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) __lowercase = init_image.resize((1_2_8, 1_2_8) ) # using the PNDM scheduler by default __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx", provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = "A fantasy landscape, trending on artstation" __lowercase = torch.manual_seed(0 ) __lowercase = pipe( prompt=UpperCAmelCase__, image=UpperCAmelCase__, guidance_scale=7.5, num_inference_steps=1_0, generator=UpperCAmelCase__, output_type="np", ) __lowercase = output.images __lowercase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array([0.4_883, 0.4_947, 0.4_980, 0.4_975, 0.4_982, 0.4_980, 0.5_000, 0.5_006, 0.4_972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def _lowercase ( self : str ): __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) __lowercase = init_image.resize((1_2_8, 1_2_8) ) __lowercase = LMSDiscreteScheduler.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx", subfolder="scheduler" ) __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx", scheduler=UpperCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = "A fantasy landscape, trending on artstation" __lowercase = torch.manual_seed(0 ) __lowercase = pipe( prompt=UpperCAmelCase__, image=UpperCAmelCase__, guidance_scale=7.5, num_inference_steps=2_0, generator=UpperCAmelCase__, output_type="np", ) __lowercase = output.images __lowercase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.50_173_753, 0.50_223_356, 0.502_039, 0.50_233_036, 0.5_023_725, 0.5_022_601, 0.5_018_758, 0.50_234_085, 0.50_241_566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
17
1
"""simple docstring""" import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: _a = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : int, UpperCAmelCase__ : Any, UpperCAmelCase__ : str=7, UpperCAmelCase__ : int=3, UpperCAmelCase__ : List[Any]=1_8, UpperCAmelCase__ : Optional[Any]=3_0, UpperCAmelCase__ : Optional[int]=4_0_0, UpperCAmelCase__ : Optional[Any]=None, UpperCAmelCase__ : Union[str, Any]=True, UpperCAmelCase__ : Dict=True, UpperCAmelCase__ : List[str]=None, ): __lowercase = size if size is not None else {"height": 2_0, "width": 2_0} __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = image_size __lowercase = min_resolution __lowercase = max_resolution __lowercase = size __lowercase = do_normalize __lowercase = do_convert_rgb __lowercase = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] __lowercase = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6} def _lowercase ( self : Tuple ): return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def _lowercase ( self : Any ): __lowercase = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" __lowercase = Image.open(requests.get(UpperCAmelCase__, stream=UpperCAmelCase__ ).raw ).convert("RGB" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 ,reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." ,) @require_torch @require_vision class _lowerCAmelCase ( lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = PixaStructImageProcessor if is_vision_available() else None def _lowercase ( self : Union[str, Any] ): __lowercase = PixaStructImageProcessingTester(self ) @property def _lowercase ( self : Dict ): return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : int ): __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase__, "do_normalize" ) ) self.assertTrue(hasattr(UpperCAmelCase__, "do_convert_rgb" ) ) def _lowercase ( self : int ): __lowercase = self.image_processor_tester.prepare_dummy_image() __lowercase = self.image_processing_class(**self.image_processor_dict ) __lowercase = 2_0_4_8 __lowercase = image_processor(UpperCAmelCase__, return_tensors="pt", max_patches=UpperCAmelCase__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean(), torch.tensor(0.0_606 ), atol=1E-3, rtol=1E-3 ) ) def _lowercase ( self : Dict ): # Initialize image_processor __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__, Image.Image ) # Test not batched input __lowercase = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __lowercase = image_processor( image_inputs[0], return_tensors="pt", max_patches=UpperCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched __lowercase = image_processor( UpperCAmelCase__, return_tensors="pt", max_patches=UpperCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) def _lowercase ( self : Tuple ): # Initialize image_processor __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__, Image.Image ) # Test not batched input __lowercase = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 __lowercase = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(UpperCAmelCase__ ): __lowercase = image_processor( image_inputs[0], return_tensors="pt", max_patches=UpperCAmelCase__ ).flattened_patches __lowercase = "Hello" __lowercase = image_processor( image_inputs[0], return_tensors="pt", max_patches=UpperCAmelCase__, header_text=UpperCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched __lowercase = image_processor( UpperCAmelCase__, return_tensors="pt", max_patches=UpperCAmelCase__, header_text=UpperCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) def _lowercase ( self : Any ): # Initialize image_processor __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCAmelCase__, numpify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__, np.ndarray ) __lowercase = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __lowercase = image_processor( image_inputs[0], return_tensors="pt", max_patches=UpperCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched __lowercase = image_processor( UpperCAmelCase__, return_tensors="pt", max_patches=UpperCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) def _lowercase ( self : Dict ): # Initialize image_processor __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCAmelCase__, torchify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__, torch.Tensor ) # Test not batched input __lowercase = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __lowercase = image_processor( image_inputs[0], return_tensors="pt", max_patches=UpperCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched __lowercase = image_processor( UpperCAmelCase__, return_tensors="pt", max_patches=UpperCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 ,reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." ,) @require_torch @require_vision class _lowerCAmelCase ( lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : List[Any] = PixaStructImageProcessor if is_vision_available() else None def _lowercase ( self : str ): __lowercase = PixaStructImageProcessingTester(self, num_channels=4 ) __lowercase = 3 @property def _lowercase ( self : Optional[int] ): return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : str ): __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase__, "do_normalize" ) ) self.assertTrue(hasattr(UpperCAmelCase__, "do_convert_rgb" ) ) def _lowercase ( self : List[Any] ): # Initialize image_processor __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__, Image.Image ) # Test not batched input __lowercase = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __lowercase = image_processor( image_inputs[0], return_tensors="pt", max_patches=UpperCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched __lowercase = image_processor( UpperCAmelCase__, return_tensors="pt", max_patches=UpperCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), )
17
"""simple docstring""" import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal _a = datasets.utils.logging.get_logger(__name__) _a = ['names', 'prefix'] _a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] _a = ['encoding_errors', 'on_bad_lines'] _a = ['date_format'] @dataclass class _lowerCAmelCase ( datasets.BuilderConfig ): """simple docstring""" __UpperCAmelCase : str = "," __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[Union[int, List[int], str]] = "infer" __UpperCAmelCase : Optional[List[str]] = None __UpperCAmelCase : Optional[List[str]] = None __UpperCAmelCase : Optional[Union[int, str, List[int], List[str]]] = None __UpperCAmelCase : Optional[Union[List[int], List[str]]] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : bool = True __UpperCAmelCase : Optional[Literal["c", "python", "pyarrow"]] = None __UpperCAmelCase : Dict[Union[int, str], Callable[[Any], Any]] = None __UpperCAmelCase : Optional[list] = None __UpperCAmelCase : Optional[list] = None __UpperCAmelCase : bool = False __UpperCAmelCase : Optional[Union[int, List[int]]] = None __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Optional[Union[str, List[str]]] = None __UpperCAmelCase : bool = True __UpperCAmelCase : bool = True __UpperCAmelCase : bool = False __UpperCAmelCase : bool = True __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : str = "." __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : str = '"' __UpperCAmelCase : int = 0 __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : bool = True __UpperCAmelCase : bool = True __UpperCAmelCase : int = 0 __UpperCAmelCase : bool = True __UpperCAmelCase : bool = False __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : int = 1_0_0_0_0 __UpperCAmelCase : Optional[datasets.Features] = None __UpperCAmelCase : Optional[str] = "strict" __UpperCAmelCase : Literal["error", "warn", "skip"] = "error" __UpperCAmelCase : Optional[str] = None def _lowercase ( self : Tuple ): if self.delimiter is not None: __lowercase = self.delimiter if self.column_names is not None: __lowercase = self.column_names @property def _lowercase ( self : Union[str, Any] ): __lowercase = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig(), UpperCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class _lowerCAmelCase ( datasets.ArrowBasedBuilder ): """simple docstring""" __UpperCAmelCase : Tuple = CsvConfig def _lowercase ( self : List[str] ): return datasets.DatasetInfo(features=self.config.features ) def _lowercase ( self : List[Any], UpperCAmelCase__ : Dict ): if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) __lowercase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(UpperCAmelCase__, (str, list, tuple) ): __lowercase = data_files if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = [files] __lowercase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files} )] __lowercase = [] for split_name, files in data_files.items(): if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = [files] __lowercase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=UpperCAmelCase__, gen_kwargs={"files": files} ) ) return splits def _lowercase ( self : Dict, UpperCAmelCase__ : pa.Table ): if self.config.features is not None: __lowercase = self.config.features.arrow_schema if all(not require_storage_cast(UpperCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast __lowercase = pa.Table.from_arrays([pa_table[field.name] for field in schema], schema=UpperCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example __lowercase = table_cast(UpperCAmelCase__, UpperCAmelCase__ ) return pa_table def _lowercase ( self : Optional[Any], UpperCAmelCase__ : List[str] ): __lowercase = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str __lowercase = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(UpperCAmelCase__ ) else object for name, dtype, feature in zip(schema.names, schema.types, self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase__ ) ): __lowercase = pd.read_csv(UpperCAmelCase__, iterator=UpperCAmelCase__, dtype=UpperCAmelCase__, **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(UpperCAmelCase__ ): __lowercase = pa.Table.from_pandas(UpperCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase__ ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(UpperCAmelCase__ )}: {e}""" ) raise
17
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class _lowerCAmelCase : """simple docstring""" __UpperCAmelCase : List[Any] = PegasusConfig __UpperCAmelCase : Optional[int] = {} __UpperCAmelCase : Any = "gelu" def __init__( self : str, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Any=1_3, UpperCAmelCase__ : Optional[int]=7, UpperCAmelCase__ : Tuple=True, UpperCAmelCase__ : Any=False, UpperCAmelCase__ : Dict=9_9, UpperCAmelCase__ : List[str]=3_2, UpperCAmelCase__ : Tuple=2, UpperCAmelCase__ : Any=4, UpperCAmelCase__ : Union[str, Any]=3_7, UpperCAmelCase__ : str=0.1, UpperCAmelCase__ : Optional[Any]=0.1, UpperCAmelCase__ : List[str]=4_0, UpperCAmelCase__ : Union[str, Any]=2, UpperCAmelCase__ : List[str]=1, UpperCAmelCase__ : Tuple=0, ): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = eos_token_id __lowercase = pad_token_id __lowercase = bos_token_id def _lowercase ( self : Tuple ): __lowercase = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size ) __lowercase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ), 1 ) __lowercase = tf.concat([input_ids, eos_tensor], axis=1 ) __lowercase = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) __lowercase = self.config_cls( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_ids=[2], bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.pad_token_id, **self.config_updates, ) __lowercase = prepare_pegasus_inputs_dict(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) return config, inputs_dict def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Tuple ): __lowercase = TFPegasusModel(config=UpperCAmelCase__ ).get_decoder() __lowercase = inputs_dict["input_ids"] __lowercase = input_ids[:1, :] __lowercase = inputs_dict["attention_mask"][:1, :] __lowercase = inputs_dict["head_mask"] __lowercase = 1 # first forward pass __lowercase = model(UpperCAmelCase__, attention_mask=UpperCAmelCase__, head_mask=UpperCAmelCase__, use_cache=UpperCAmelCase__ ) __lowercase ,__lowercase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowercase = ids_tensor((self.batch_size, 3), config.vocab_size ) __lowercase = tf.cast(ids_tensor((self.batch_size, 3), 2 ), tf.inta ) # append to next input_ids and __lowercase = tf.concat([input_ids, next_tokens], axis=-1 ) __lowercase = tf.concat([attention_mask, next_attn_mask], axis=-1 ) __lowercase = model(UpperCAmelCase__, attention_mask=UpperCAmelCase__ )[0] __lowercase = model(UpperCAmelCase__, attention_mask=UpperCAmelCase__, past_key_values=UpperCAmelCase__ )[0] self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1] ) # select random slice __lowercase = int(ids_tensor((1,), output_from_past.shape[-1] ) ) __lowercase = output_from_no_past[:, -3:, random_slice_idx] __lowercase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(UpperCAmelCase__, UpperCAmelCase__, rtol=1E-3 ) def _A ( UpperCamelCase_ : Any, UpperCamelCase_ : Dict, UpperCamelCase_ : Optional[Any], UpperCamelCase_ : Any=None, UpperCamelCase_ : Union[str, Any]=None, UpperCamelCase_ : List[str]=None, UpperCamelCase_ : List[Any]=None, UpperCamelCase_ : Dict=None, ) -> Tuple: '''simple docstring''' if attention_mask is None: __lowercase = tf.cast(tf.math.not_equal(UpperCamelCase_, config.pad_token_id), tf.inta) if decoder_attention_mask is None: __lowercase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id), tf.inta), ], axis=-1, ) if head_mask is None: __lowercase = tf.ones((config.encoder_layers, config.encoder_attention_heads)) if decoder_head_mask is None: __lowercase = tf.ones((config.decoder_layers, config.decoder_attention_heads)) if cross_attn_head_mask is None: __lowercase = tf.ones((config.decoder_layers, config.decoder_attention_heads)) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _lowerCAmelCase ( lowercase ,lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Dict = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () __UpperCAmelCase : str = (TFPegasusForConditionalGeneration,) if is_tf_available() else () __UpperCAmelCase : Optional[int] = ( { "conversational": TFPegasusForConditionalGeneration, "feature-extraction": TFPegasusModel, "summarization": TFPegasusForConditionalGeneration, "text2text-generation": TFPegasusForConditionalGeneration, "translation": TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) __UpperCAmelCase : List[Any] = True __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : Dict = False def _lowercase ( self : Tuple ): __lowercase = TFPegasusModelTester(self ) __lowercase = ConfigTester(self, config_class=UpperCAmelCase__ ) def _lowercase ( self : Optional[Any] ): self.config_tester.run_common_tests() def _lowercase ( self : Tuple ): __lowercase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCAmelCase__ ) @require_sentencepiece @require_tokenizers @require_tf class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Tuple = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] __UpperCAmelCase : List[str] = [ "California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to" " reduce the risk of wildfires.", "N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.", ] # differs slightly from pytorch, likely due to numerical differences in linear layers __UpperCAmelCase : Dict = "google/pegasus-xsum" @cached_property def _lowercase ( self : int ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _lowercase ( self : int ): __lowercase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _lowercase ( self : str, **UpperCAmelCase__ : Tuple ): __lowercase = self.translate_src_text(**UpperCAmelCase__ ) assert self.expected_text == generated_words def _lowercase ( self : Tuple, **UpperCAmelCase__ : Any ): __lowercase = self.tokenizer(self.src_text, **UpperCAmelCase__, padding=UpperCAmelCase__, return_tensors="tf" ) __lowercase = self.model.generate( model_inputs.input_ids, attention_mask=model_inputs.attention_mask, num_beams=2, use_cache=UpperCAmelCase__, ) __lowercase = self.tokenizer.batch_decode(generated_ids.numpy(), skip_special_tokens=UpperCAmelCase__ ) return generated_words @slow def _lowercase ( self : Dict ): self._assert_generated_batch_equal_expected()
17
"""simple docstring""" from scipy.stats import spearmanr import datasets _a = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n' _a = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n' _a = r'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def _lowercase ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ), reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"], ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int]=False ): __lowercase = spearmanr(UpperCAmelCase__, UpperCAmelCase__ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
17
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a = { 'configuration_luke': ['LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LukeConfig'], 'tokenization_luke': ['LukeTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'LUKE_PRETRAINED_MODEL_ARCHIVE_LIST', 'LukeForEntityClassification', 'LukeForEntityPairClassification', 'LukeForEntitySpanClassification', 'LukeForMultipleChoice', 'LukeForQuestionAnswering', 'LukeForSequenceClassification', 'LukeForTokenClassification', 'LukeForMaskedLM', 'LukeModel', 'LukePreTrainedModel', ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
17
"""simple docstring""" from collections.abc import Sequence def _A ( UpperCamelCase_ : Sequence[float], UpperCamelCase_ : float) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(UpperCamelCase_)) def _A ( UpperCamelCase_ : Sequence[float], UpperCamelCase_ : float) -> float: '''simple docstring''' __lowercase = 0.0 for coeff in reversed(UpperCamelCase_): __lowercase = result * x + coeff return result if __name__ == "__main__": _a = (0.0, 0.0, 5.0, 9.3, 7.0) _a = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
17
1
"""simple docstring""" import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class _lowerCAmelCase : """simple docstring""" def __init__( self : List[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : int=1_3, UpperCAmelCase__ : int=7, UpperCAmelCase__ : Optional[Any]=6, UpperCAmelCase__ : List[str]=1_7, UpperCAmelCase__ : List[str]=2_3, UpperCAmelCase__ : Any=1_1, UpperCAmelCase__ : Dict=True, ): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = act_dim __lowercase = state_dim __lowercase = hidden_size __lowercase = max_length __lowercase = is_training def _lowercase ( self : Any ): __lowercase = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) __lowercase = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) __lowercase = floats_tensor((self.batch_size, self.seq_length, 1) ) __lowercase = floats_tensor((self.batch_size, self.seq_length, 1) ) __lowercase = ids_tensor((self.batch_size, self.seq_length), vocab_size=1_0_0_0 ) __lowercase = random_attention_mask((self.batch_size, self.seq_length) ) __lowercase = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def _lowercase ( self : Dict ): return DecisionTransformerConfig( batch_size=self.batch_size, seq_length=self.seq_length, act_dim=self.act_dim, state_dim=self.state_dim, hidden_size=self.hidden_size, max_length=self.max_length, ) def _lowercase ( self : str, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Any, UpperCAmelCase__ : int, UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : List[Any], ): __lowercase = DecisionTransformerModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowercase = model(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) self.parent.assertEqual(result.state_preds.shape, states.shape ) self.parent.assertEqual(result.action_preds.shape, actions.shape ) self.parent.assertEqual(result.return_preds.shape, returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def _lowercase ( self : int ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) , ) = config_and_inputs __lowercase = { "states": states, "actions": actions, "rewards": rewards, "returns_to_go": returns_to_go, "timesteps": timesteps, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class _lowerCAmelCase ( lowercase ,lowercase ,lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Tuple = (DecisionTransformerModel,) if is_torch_available() else () __UpperCAmelCase : int = () __UpperCAmelCase : Tuple = {"feature-extraction": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids __UpperCAmelCase : str = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features __UpperCAmelCase : str = False __UpperCAmelCase : str = False __UpperCAmelCase : int = False __UpperCAmelCase : Any = False __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : List[Any] = False __UpperCAmelCase : Any = False __UpperCAmelCase : Any = False __UpperCAmelCase : Optional[int] = False def _lowercase ( self : Dict ): __lowercase = DecisionTransformerModelTester(self ) __lowercase = ConfigTester(self, config_class=UpperCAmelCase__, hidden_size=3_7 ) def _lowercase ( self : str ): self.config_tester.run_common_tests() def _lowercase ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) @slow def _lowercase ( self : int ): for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = DecisionTransformerModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) def _lowercase ( self : Any ): __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(UpperCAmelCase__ ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = [ "states", "actions", "rewards", "returns_to_go", "timesteps", "attention_mask", ] self.assertListEqual(arg_names[: len(UpperCAmelCase__ )], UpperCAmelCase__ ) @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : Union[str, Any] ): __lowercase = 2 # number of steps of autoregressive prediction we will perform __lowercase = 1_0 # defined by the RL environment, may be normalized __lowercase = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" ) __lowercase = model.to(UpperCAmelCase__ ) __lowercase = model.config torch.manual_seed(0 ) __lowercase = torch.randn(1, 1, config.state_dim ).to(device=UpperCAmelCase__, dtype=torch.floataa ) # env.reset() __lowercase = torch.tensor( [[0.242_793, -0.28_693_074, 0.8_742_613], [0.67_815_274, -0.08_101_085, -0.12_952_147]], device=UpperCAmelCase__ ) __lowercase = torch.tensor(UpperCAmelCase__, device=UpperCAmelCase__, dtype=torch.floataa ).reshape(1, 1, 1 ) __lowercase = state __lowercase = torch.zeros(1, 0, config.act_dim, device=UpperCAmelCase__, dtype=torch.floataa ) __lowercase = torch.zeros(1, 0, device=UpperCAmelCase__, dtype=torch.floataa ) __lowercase = torch.tensor(0, device=UpperCAmelCase__, dtype=torch.long ).reshape(1, 1 ) for step in range(UpperCAmelCase__ ): __lowercase = torch.cat([actions, torch.zeros(1, 1, config.act_dim, device=UpperCAmelCase__ )], dim=1 ) __lowercase = torch.cat([rewards, torch.zeros(1, 1, device=UpperCAmelCase__ )], dim=1 ) __lowercase = torch.ones(1, states.shape[1] ).to(dtype=torch.long, device=states.device ) with torch.no_grad(): __lowercase ,__lowercase ,__lowercase = model( states=UpperCAmelCase__, actions=UpperCAmelCase__, rewards=UpperCAmelCase__, returns_to_go=UpperCAmelCase__, timesteps=UpperCAmelCase__, attention_mask=UpperCAmelCase__, return_dict=UpperCAmelCase__, ) self.assertEqual(action_pred.shape, actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1], expected_outputs[step], atol=1E-4 ) ) __lowercase ,__lowercase ,__lowercase ,__lowercase = ( # env.step(action) torch.randn(1, 1, config.state_dim ).to(device=UpperCAmelCase__, dtype=torch.floataa ), 1.0, False, {}, ) __lowercase = action_pred[0, -1] __lowercase = torch.cat([states, state], dim=1 ) __lowercase = returns_to_go[0, -1] - reward __lowercase = torch.cat([returns_to_go, pred_return.reshape(1, 1, 1 )], dim=1 ) __lowercase = torch.cat( [timesteps, torch.ones((1, 1), device=UpperCAmelCase__, dtype=torch.long ) * (step + 1)], dim=1 )
17
"""simple docstring""" import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class _lowerCAmelCase ( pl.LightningModule ): """simple docstring""" def __init__( self : Optional[Any], UpperCAmelCase__ : str ): super().__init__() __lowercase = model __lowercase = 2 __lowercase = nn.Linear(self.model.config.hidden_size, self.num_labels ) def _lowercase ( self : Optional[int] ): pass def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str, UpperCamelCase_ : str) -> str: '''simple docstring''' __lowercase = LongformerModel.from_pretrained(UpperCamelCase_) __lowercase = LightningModel(UpperCamelCase_) __lowercase = torch.load(UpperCamelCase_, map_location=torch.device("cpu")) lightning_model.load_state_dict(ckpt["state_dict"]) # init longformer question answering model __lowercase = LongformerForQuestionAnswering.from_pretrained(UpperCamelCase_) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict()) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict()) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(UpperCamelCase_) print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""") if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _a = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
17
1
"""simple docstring""" import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class _lowerCAmelCase : """simple docstring""" def __init__( self : List[Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : List[Any]=1_3, UpperCAmelCase__ : Union[str, Any]=7, UpperCAmelCase__ : Tuple=True, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : Optional[int]=False, UpperCAmelCase__ : Union[str, Any]=True, UpperCAmelCase__ : Tuple=9_9, UpperCAmelCase__ : Optional[Any]=6_4, UpperCAmelCase__ : str=5, UpperCAmelCase__ : Optional[Any]=4, UpperCAmelCase__ : List[str]=6_4, UpperCAmelCase__ : Any="gelu", UpperCAmelCase__ : int=0.1, UpperCAmelCase__ : Tuple=0.1, UpperCAmelCase__ : Optional[Any]=5_1_2, UpperCAmelCase__ : Union[str, Any]=1_6, UpperCAmelCase__ : List[Any]=2, UpperCAmelCase__ : Tuple=0.02, UpperCAmelCase__ : str=3, UpperCAmelCase__ : List[str]=4, UpperCAmelCase__ : Dict=None, ): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def _lowercase ( self : List[str] ): return MPNetConfig.from_pretrained("microsoft/mpnet-base" ) def _lowercase ( self : Union[str, Any] ): __lowercase = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size], self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) __lowercase = ids_tensor([self.batch_size], self.num_choices ) __lowercase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self : Dict ): return MPNetConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, ) def _lowercase ( self : Optional[int], UpperCAmelCase__ : str, UpperCAmelCase__ : Any, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Optional[Any] ): __lowercase = MPNetModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowercase = model(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size) ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : str, UpperCAmelCase__ : Any, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : int, UpperCAmelCase__ : str ): __lowercase = MPNetForQuestionAnswering(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowercase = model( UpperCAmelCase__, attention_mask=UpperCAmelCase__, start_positions=UpperCAmelCase__, end_positions=UpperCAmelCase__, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : int, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : List[str] ): __lowercase = self.num_labels __lowercase = MPNetForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowercase = model(UpperCAmelCase__, attention_mask=UpperCAmelCase__, labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def _lowercase ( self : int, UpperCAmelCase__ : int, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Any, UpperCAmelCase__ : Any, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : List[str] ): __lowercase = self.num_choices __lowercase = MPNetForMultipleChoice(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() __lowercase = model( UpperCAmelCase__, attention_mask=UpperCAmelCase__, labels=UpperCAmelCase__, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def _lowercase ( self : Optional[int], UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : int, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Any, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[Any] ): __lowercase = self.num_labels __lowercase = MPNetForTokenClassification(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowercase = model(UpperCAmelCase__, attention_mask=UpperCAmelCase__, labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self : int ): __lowercase = self.prepare_config_and_inputs() ((__lowercase) ,(__lowercase) ,(__lowercase) ,(__lowercase) ,(__lowercase) ,(__lowercase)) = config_and_inputs __lowercase = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( lowercase ,lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) __UpperCAmelCase : Optional[int] = ( { "feature-extraction": MPNetModel, "fill-mask": MPNetForMaskedLM, "question-answering": MPNetForQuestionAnswering, "text-classification": MPNetForSequenceClassification, "token-classification": MPNetForTokenClassification, "zero-shot": MPNetForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase : Any = False __UpperCAmelCase : List[Any] = True def _lowercase ( self : int ): __lowercase = MPNetModelTester(self ) __lowercase = ConfigTester(self, config_class=UpperCAmelCase__, hidden_size=3_7 ) def _lowercase ( self : Dict ): self.config_tester.run_common_tests() def _lowercase ( self : Union[str, Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*UpperCAmelCase__ ) def _lowercase ( self : Optional[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*UpperCAmelCase__ ) def _lowercase ( self : Optional[int] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*UpperCAmelCase__ ) def _lowercase ( self : Optional[int] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*UpperCAmelCase__ ) @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : Dict ): __lowercase = MPNetModel.from_pretrained("microsoft/mpnet-base" ) __lowercase = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) __lowercase = model(UpperCAmelCase__ )[0] __lowercase = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape, UpperCAmelCase__ ) __lowercase = torch.tensor( [[[-0.0_550, 0.1_943, -0.0_740], [-0.0_562, 0.2_211, -0.0_579], [-0.0_437, 0.3_337, -0.0_641]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3], UpperCAmelCase__, atol=1E-4 ) )
17
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" ,"False" ) ) is not True ,reason="Skipping test because should only be run when releasing minor transformers version" ,) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Optional[int] ): if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split(), encoding="utf-8", check=UpperCAmelCase__, ) assert hasattr(self, "env" ) def _lowercase ( self : str, UpperCAmelCase__ : List[Any] ): # configuration for running training on smdistributed Model Parallel __lowercase = { "enabled": True, "processes_per_host": 8, } __lowercase = { "enabled": True, "parameters": { "microbatches": 4, "placement_strategy": "spread", "pipeline": "interleaved", "optimize": "speed", "partitions": 4, "ddp": True, }, } __lowercase = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options} __lowercase = "trainer" if self.script == "run_glue.py" else "smtrainer" # creates estimator return HuggingFace( entry_point=self.script, source_dir=self.env.test_path, role=self.env.role, image_uri=self.env.image_uri, base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""", instance_count=UpperCAmelCase__, instance_type=self.instance_type, debugger_hook_config=UpperCAmelCase__, hyperparameters={ **self.env.hyperparameters, "model_name_or_path": self.model_name_or_path, "max_steps": 5_0_0, }, metric_definitions=self.env.metric_definitions, distribution=UpperCAmelCase__, py_version="py36", ) def _lowercase ( self : Tuple, UpperCAmelCase__ : int ): TrainingJobAnalytics(UpperCAmelCase__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def _lowercase ( self : str, UpperCAmelCase__ : Union[str, Any] ): # create estimator __lowercase = self.create_estimator(UpperCAmelCase__ ) # run training estimator.fit() # result dataframe __lowercase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __lowercase = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) __lowercase = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __lowercase = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds", 9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""", "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss}, UpperCAmelCase__ )
17
1
"""simple docstring""" import datasets from .evaluate import evaluate _a = '\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n' _a = '\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n' _a = '\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def _lowercase ( self : Optional[Any] ): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": {"id": datasets.Value("string" ), "prediction_text": datasets.Value("string" )}, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ), codebase_urls=["https://rajpurkar.github.io/SQuAD-explorer/"], reference_urls=["https://rajpurkar.github.io/SQuAD-explorer/"], ) def _lowercase ( self : Optional[int], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : int ): __lowercase = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} __lowercase = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] __lowercase = evaluate(dataset=UpperCAmelCase__, predictions=UpperCAmelCase__ ) return score
17
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : Tuple = "openai/whisper-base" __UpperCAmelCase : Union[str, Any] = ( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) __UpperCAmelCase : List[str] = "transcriber" __UpperCAmelCase : Optional[Any] = WhisperProcessor __UpperCAmelCase : str = WhisperForConditionalGeneration __UpperCAmelCase : List[str] = ["audio"] __UpperCAmelCase : Tuple = ["text"] def _lowercase ( self : str, UpperCAmelCase__ : int ): return self.pre_processor(UpperCAmelCase__, return_tensors="pt" ).input_features def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Any] ): return self.model.generate(inputs=UpperCAmelCase__ ) def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[int] ): return self.pre_processor.batch_decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ )[0]
17
1
"""simple docstring""" from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def _A ( UpperCamelCase_ : int) -> Optional[int]: '''simple docstring''' def is_in_circle(UpperCamelCase_ : float, UpperCamelCase_ : float) -> bool: __lowercase = sqrt((x**2) + (y**2)) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle __lowercase = mean( int(is_in_circle(uniform(-1.0, 1.0), uniform(-1.0, 1.0))) for _ in range(UpperCamelCase_)) # The ratio of the area for circle to square is pi/4. __lowercase = proportion * 4 print(F"""The estimated value of pi is {pi_estimate}""") print(F"""The numpy value of pi is {pi}""") print(F"""The total error is {abs(pi - pi_estimate)}""") def _A ( UpperCamelCase_ : int, UpperCamelCase_ : Callable[[float], float], UpperCamelCase_ : float = 0.0, UpperCamelCase_ : float = 1.0, ) -> float: '''simple docstring''' return mean( function_to_integrate(uniform(UpperCamelCase_, UpperCamelCase_)) for _ in range(UpperCamelCase_)) * (max_value - min_value) def _A ( UpperCamelCase_ : int, UpperCamelCase_ : float = 0.0, UpperCamelCase_ : float = 1.0) -> None: '''simple docstring''' def identity_function(UpperCamelCase_ : float) -> float: return x __lowercase = area_under_curve_estimator( UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_) __lowercase = (max_value * max_value - min_value * min_value) / 2 print("******************") print(F"""Estimating area under y=x where x varies from {min_value} to {max_value}""") print(F"""Estimated value is {estimated_value}""") print(F"""Expected value is {expected_value}""") print(F"""Total error is {abs(estimated_value - expected_value)}""") print("******************") def _A ( UpperCamelCase_ : int) -> None: '''simple docstring''' def function_to_integrate(UpperCamelCase_ : float) -> float: return sqrt(4.0 - x * x) __lowercase = area_under_curve_estimator( UpperCamelCase_, UpperCamelCase_, 0.0, 2.0) print("******************") print("Estimating pi using area_under_curve_estimator") print(F"""Estimated value is {estimated_value}""") print(F"""Expected value is {pi}""") print(F"""Total error is {abs(estimated_value - pi)}""") print("******************") if __name__ == "__main__": import doctest doctest.testmod()
17
"""simple docstring""" import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str]) -> Optional[int]: '''simple docstring''' if isinstance(UpperCamelCase_, torch.Tensor): return image elif isinstance(UpperCamelCase_, PIL.Image.Image): __lowercase = [image] if isinstance(image[0], PIL.Image.Image): __lowercase = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image] __lowercase = np.concatenate(UpperCamelCase_, axis=0) __lowercase = np.array(UpperCamelCase_).astype(np.floataa) / 255.0 __lowercase = image.transpose(0, 3, 1, 2) __lowercase = 2.0 * image - 1.0 __lowercase = torch.from_numpy(UpperCamelCase_) elif isinstance(image[0], torch.Tensor): __lowercase = torch.cat(UpperCamelCase_, dim=0) return image def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : str, UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[Any]=0.9_995) -> int: '''simple docstring''' if not isinstance(UpperCamelCase_, np.ndarray): __lowercase = True __lowercase = va.device __lowercase = va.cpu().numpy() __lowercase = va.cpu().numpy() __lowercase = np.sum(va * va / (np.linalg.norm(UpperCamelCase_) * np.linalg.norm(UpperCamelCase_))) if np.abs(UpperCamelCase_) > DOT_THRESHOLD: __lowercase = (1 - t) * va + t * va else: __lowercase = np.arccos(UpperCamelCase_) __lowercase = np.sin(UpperCamelCase_) __lowercase = theta_a * t __lowercase = np.sin(UpperCamelCase_) __lowercase = np.sin(theta_a - theta_t) / sin_theta_a __lowercase = sin_theta_t / sin_theta_a __lowercase = sa * va + sa * va if inputs_are_torch: __lowercase = torch.from_numpy(UpperCamelCase_).to(UpperCamelCase_) return va def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Union[str, Any]) -> int: '''simple docstring''' __lowercase = F.normalize(UpperCamelCase_, dim=-1) __lowercase = F.normalize(UpperCamelCase_, dim=-1) return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2) def _A ( UpperCamelCase_ : Optional[int], UpperCamelCase_ : str) -> Optional[int]: '''simple docstring''' for param in model.parameters(): __lowercase = value class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : Dict, UpperCAmelCase__ : AutoencoderKL, UpperCAmelCase__ : CLIPTextModel, UpperCAmelCase__ : CLIPModel, UpperCAmelCase__ : CLIPTokenizer, UpperCAmelCase__ : UNetaDConditionModel, UpperCAmelCase__ : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler], UpperCAmelCase__ : CLIPFeatureExtractor, UpperCAmelCase__ : Union[str, Any]=None, UpperCAmelCase__ : List[str]=None, UpperCAmelCase__ : Any=None, ): super().__init__() self.register_modules( vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, clip_model=UpperCAmelCase__, tokenizer=UpperCAmelCase__, unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, feature_extractor=UpperCAmelCase__, coca_model=UpperCAmelCase__, coca_tokenizer=UpperCAmelCase__, coca_transform=UpperCAmelCase__, ) __lowercase = ( feature_extractor.size if isinstance(feature_extractor.size, UpperCAmelCase__ ) else feature_extractor.size["shortest_edge"] ) __lowercase = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std ) set_requires_grad(self.text_encoder, UpperCAmelCase__ ) set_requires_grad(self.clip_model, UpperCAmelCase__ ) def _lowercase ( self : Tuple, UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase__ ) def _lowercase ( self : int ): self.enable_attention_slicing(UpperCAmelCase__ ) def _lowercase ( self : str ): set_requires_grad(self.vae, UpperCAmelCase__ ) def _lowercase ( self : Any ): set_requires_grad(self.vae, UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ): set_requires_grad(self.unet, UpperCAmelCase__ ) def _lowercase ( self : Any ): set_requires_grad(self.unet, UpperCAmelCase__ ) def _lowercase ( self : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : Optional[Any] ): # get the original timestep using init_timestep __lowercase = min(int(num_inference_steps * strength ), UpperCAmelCase__ ) __lowercase = max(num_inference_steps - init_timestep, 0 ) __lowercase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowercase ( self : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : int=None ): if not isinstance(UpperCAmelCase__, torch.Tensor ): raise ValueError(F"""`image` has to be of type `torch.Tensor` but is {type(UpperCAmelCase__ )}""" ) __lowercase = image.to(device=UpperCAmelCase__, dtype=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(UpperCAmelCase__ ) ] __lowercase = torch.cat(UpperCAmelCase__, dim=0 ) else: __lowercase = self.vae.encode(UpperCAmelCase__ ).latent_dist.sample(UpperCAmelCase__ ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowercase = 0.18_215 * init_latents __lowercase = init_latents.repeat_interleave(UpperCAmelCase__, dim=0 ) __lowercase = randn_tensor(init_latents.shape, generator=UpperCAmelCase__, device=UpperCAmelCase__, dtype=UpperCAmelCase__ ) # get latents __lowercase = self.scheduler.add_noise(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = init_latents return latents def _lowercase ( self : Optional[int], UpperCAmelCase__ : Dict ): __lowercase = self.coca_transform(UpperCAmelCase__ ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): __lowercase = self.coca_model.generate(transformed_image.to(device=self.device, dtype=self.coca_model.dtype ) ) __lowercase = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("<end_of_text>" )[0].replace("<start_of_text>", "" ).rstrip(" .," ) def _lowercase ( self : Tuple, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Tuple ): __lowercase = self.feature_extractor.preprocess(UpperCAmelCase__ ) __lowercase = torch.from_numpy(clip_image_input["pixel_values"][0] ).unsqueeze(0 ).to(self.device ).half() __lowercase = self.clip_model.get_image_features(UpperCAmelCase__ ) __lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=UpperCAmelCase__ ) __lowercase = image_embeddings_clip.repeat_interleave(UpperCAmelCase__, dim=0 ) return image_embeddings_clip @torch.enable_grad() def _lowercase ( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[int], ): __lowercase = latents.detach().requires_grad_() __lowercase = self.scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ ) # predict the noise residual __lowercase = self.unet(UpperCAmelCase__, UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__ ).sample if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): __lowercase = self.scheduler.alphas_cumprod[timestep] __lowercase = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowercase = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 __lowercase = torch.sqrt(UpperCAmelCase__ ) __lowercase = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler, UpperCAmelCase__ ): __lowercase = self.scheduler.sigmas[index] __lowercase = latents - sigma * noise_pred else: raise ValueError(F"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowercase = 1 / 0.18_215 * sample __lowercase = self.vae.decode(UpperCAmelCase__ ).sample __lowercase = (image / 2 + 0.5).clamp(0, 1 ) __lowercase = transforms.Resize(self.feature_extractor_size )(UpperCAmelCase__ ) __lowercase = self.normalize(UpperCAmelCase__ ).to(latents.dtype ) __lowercase = self.clip_model.get_image_features(UpperCAmelCase__ ) __lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=UpperCAmelCase__ ) __lowercase = spherical_dist_loss(UpperCAmelCase__, UpperCAmelCase__ ).mean() * clip_guidance_scale __lowercase = -torch.autograd.grad(UpperCAmelCase__, UpperCAmelCase__ )[0] if isinstance(self.scheduler, UpperCAmelCase__ ): __lowercase = latents.detach() + grads * (sigma**2) __lowercase = noise_pred_original else: __lowercase = noise_pred_original - torch.sqrt(UpperCAmelCase__ ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : str, UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image], UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image], UpperCAmelCase__ : Optional[str] = None, UpperCAmelCase__ : Optional[str] = None, UpperCAmelCase__ : Optional[int] = 5_1_2, UpperCAmelCase__ : Optional[int] = 5_1_2, UpperCAmelCase__ : float = 0.6, UpperCAmelCase__ : Optional[int] = 5_0, UpperCAmelCase__ : Optional[float] = 7.5, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[float] = 1_0_0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : float = 0.8, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, ): if isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and len(UpperCAmelCase__ ) != batch_size: raise ValueError(F"""You have passed {batch_size} batch_size, but only {len(UpperCAmelCase__ )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(UpperCAmelCase__, torch.Generator ) and batch_size > 1: __lowercase = [generator] + [None] * (batch_size - 1) __lowercase = [ ("model", self.coca_model is None), ("tokenizer", self.coca_tokenizer is None), ("transform", self.coca_transform is None), ] __lowercase = [x[0] for x in coca_is_none if x[1]] __lowercase = ", ".join(UpperCAmelCase__ ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(UpperCAmelCase__ ): raise ValueError( F"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" F"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) __lowercase = self.get_image_description(UpperCAmelCase__ ) if style_prompt is None: if len(UpperCAmelCase__ ): raise ValueError( F"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" F""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) __lowercase = self.get_image_description(UpperCAmelCase__ ) # get prompt text embeddings for content and style __lowercase = self.tokenizer( UpperCAmelCase__, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=UpperCAmelCase__, return_tensors="pt", ) __lowercase = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] __lowercase = self.tokenizer( UpperCAmelCase__, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=UpperCAmelCase__, return_tensors="pt", ) __lowercase = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] __lowercase = slerp(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # duplicate text embeddings for each generation per prompt __lowercase = text_embeddings.repeat_interleave(UpperCAmelCase__, dim=0 ) # set timesteps __lowercase = "offset" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) __lowercase = {} if accepts_offset: __lowercase = 1 self.scheduler.set_timesteps(UpperCAmelCase__, **UpperCAmelCase__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) __lowercase ,__lowercase = self.get_timesteps(UpperCAmelCase__, UpperCAmelCase__, self.device ) __lowercase = timesteps[:1].repeat(UpperCAmelCase__ ) # Preprocess image __lowercase = preprocess(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = self.prepare_latents( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, text_embeddings.dtype, self.device, UpperCAmelCase__ ) __lowercase = preprocess(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = self.prepare_latents( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, text_embeddings.dtype, self.device, UpperCAmelCase__ ) __lowercase = slerp(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) if clip_guidance_scale > 0: __lowercase = self.get_clip_image_embeddings(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = self.get_clip_image_embeddings(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = slerp( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __lowercase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __lowercase = content_text_input.input_ids.shape[-1] __lowercase = self.tokenizer([""], padding="max_length", max_length=UpperCAmelCase__, return_tensors="pt" ) __lowercase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt __lowercase = uncond_embeddings.repeat_interleave(UpperCAmelCase__, dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowercase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __lowercase = (batch_size, self.unet.config.in_channels, height // 8, width // 8) __lowercase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps __lowercase = torch.randn(UpperCAmelCase__, generator=UpperCAmelCase__, device="cpu", dtype=UpperCAmelCase__ ).to( self.device ) else: __lowercase = torch.randn(UpperCAmelCase__, generator=UpperCAmelCase__, device=self.device, dtype=UpperCAmelCase__ ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) __lowercase = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __lowercase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __lowercase = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __lowercase = {} if accepts_eta: __lowercase = eta # check if the scheduler accepts generator __lowercase = "generator" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: __lowercase = generator with self.progress_bar(total=UpperCAmelCase__ ): for i, t in enumerate(UpperCAmelCase__ ): # expand the latents if we are doing classifier free guidance __lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowercase = self.scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ ) # predict the noise residual __lowercase = self.unet(UpperCAmelCase__, UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__ ).sample # perform classifier free guidance if do_classifier_free_guidance: __lowercase ,__lowercase = noise_pred.chunk(2 ) __lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: __lowercase = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) __lowercase ,__lowercase = self.cond_fn( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) # compute the previous noisy sample x_t -> x_t-1 __lowercase = self.scheduler.step(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, **UpperCAmelCase__ ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowercase = 1 / 0.18_215 * latents __lowercase = self.vae.decode(UpperCAmelCase__ ).sample __lowercase = (image / 2 + 0.5).clamp(0, 1 ) __lowercase = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": __lowercase = self.numpy_to_pil(UpperCAmelCase__ ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=UpperCAmelCase__, nsfw_content_detected=UpperCAmelCase__ )
17
1
"""simple docstring""" import sys from collections import defaultdict class _lowerCAmelCase : """simple docstring""" def __init__( self : List[str] ): __lowercase = [] def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Any] ): return self.node_position[vertex] def _lowercase ( self : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : str ): __lowercase = pos def _lowercase ( self : List[str], UpperCAmelCase__ : int, UpperCAmelCase__ : Dict, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Any ): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __lowercase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __lowercase = 2 * start + 1 else: __lowercase = 2 * start + 2 if heap[smallest_child] < heap[start]: __lowercase ,__lowercase = heap[smallest_child], positions[smallest_child] __lowercase ,__lowercase = ( heap[start], positions[start], ) __lowercase ,__lowercase = temp, tempa __lowercase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child], self.get_position(positions[start] ) ) self.set_position(positions[start], UpperCAmelCase__ ) self.top_to_bottom(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) def _lowercase ( self : List[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : str, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Tuple ): __lowercase = position[index] while index != 0: __lowercase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __lowercase = heap[parent] __lowercase = position[parent] self.set_position(position[parent], UpperCAmelCase__ ) else: __lowercase = val __lowercase = temp self.set_position(UpperCAmelCase__, UpperCAmelCase__ ) break __lowercase = parent else: __lowercase = val __lowercase = temp self.set_position(UpperCAmelCase__, 0 ) def _lowercase ( self : Optional[int], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Any ): __lowercase = len(UpperCAmelCase__ ) // 2 - 1 for i in range(UpperCAmelCase__, -1, -1 ): self.top_to_bottom(UpperCAmelCase__, UpperCAmelCase__, len(UpperCAmelCase__ ), UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[Any] ): __lowercase = positions[0] __lowercase = sys.maxsize self.top_to_bottom(UpperCAmelCase__, 0, len(UpperCAmelCase__ ), UpperCAmelCase__ ) return temp def _A ( UpperCamelCase_ : Dict) -> Optional[Any]: '''simple docstring''' __lowercase = Heap() __lowercase = [0] * len(UpperCamelCase_) __lowercase = [-1] * len(UpperCamelCase_) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __lowercase = [] # Heap of Distance of vertices from their neighboring vertex __lowercase = [] for vertex in range(len(UpperCamelCase_)): distance_tv.append(sys.maxsize) positions.append(UpperCamelCase_) heap.node_position.append(UpperCamelCase_) __lowercase = [] __lowercase = 1 __lowercase = sys.maxsize for neighbor, distance in adjacency_list[0]: __lowercase = 0 __lowercase = distance heap.heapify(UpperCamelCase_, UpperCamelCase_) for _ in range(1, len(UpperCamelCase_)): __lowercase = heap.delete_minimum(UpperCamelCase_, UpperCamelCase_) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex)) __lowercase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCamelCase_)] ): __lowercase = distance heap.bottom_to_top( UpperCamelCase_, heap.get_position(UpperCamelCase_), UpperCamelCase_, UpperCamelCase_) __lowercase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _a = int(input('Enter number of edges: ').strip()) _a = defaultdict(list) for _ in range(edges_number): _a = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
17
"""simple docstring""" from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class _lowerCAmelCase : """simple docstring""" __UpperCAmelCase : Tuple = XGLMConfig __UpperCAmelCase : Optional[Any] = {} __UpperCAmelCase : Union[str, Any] = "gelu" def __init__( self : Optional[int], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int]=1_4, UpperCAmelCase__ : str=7, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[Any]=True, UpperCAmelCase__ : int=True, UpperCAmelCase__ : List[str]=9_9, UpperCAmelCase__ : Union[str, Any]=3_2, UpperCAmelCase__ : Union[str, Any]=2, UpperCAmelCase__ : Union[str, Any]=4, UpperCAmelCase__ : Tuple=3_7, UpperCAmelCase__ : List[Any]="gelu", UpperCAmelCase__ : List[str]=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Tuple=5_1_2, UpperCAmelCase__ : Optional[Any]=0.02, ): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_labels __lowercase = vocab_size __lowercase = d_model __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = ffn_dim __lowercase = activation_function __lowercase = activation_dropout __lowercase = attention_dropout __lowercase = max_position_embeddings __lowercase = initializer_range __lowercase = None __lowercase = 0 __lowercase = 2 __lowercase = 1 def _lowercase ( self : Union[str, Any] ): return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def _lowercase ( self : Tuple ): __lowercase = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length], self.vocab_size ), clip_value_min=0, clip_value_max=3 ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = self.get_config() __lowercase = floats_tensor([self.num_hidden_layers, self.num_attention_heads], 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowercase ( self : List[Any] ): return XGLMConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, num_layers=self.num_hidden_layers, attention_heads=self.num_attention_heads, ffn_dim=self.ffn_dim, activation_function=self.activation_function, activation_dropout=self.activation_dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, use_cache=UpperCAmelCase__, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, return_dict=UpperCAmelCase__, ) def _lowercase ( self : Dict ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) , ) = config_and_inputs __lowercase = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class _lowerCAmelCase ( lowercase ,lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () __UpperCAmelCase : List[str] = (TFXGLMForCausalLM,) if is_tf_available() else () __UpperCAmelCase : Any = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : List[str] = False __UpperCAmelCase : int = False def _lowercase ( self : Optional[Any] ): __lowercase = TFXGLMModelTester(self ) __lowercase = ConfigTester(self, config_class=UpperCAmelCase__, n_embd=3_7 ) def _lowercase ( self : Any ): self.config_tester.run_common_tests() @slow def _lowercase ( self : List[str] ): for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFXGLMModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def _lowercase ( self : int ): super().test_resize_token_embeddings() @require_tf class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[int]=True ): __lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) __lowercase = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]], dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __lowercase = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on __lowercase = model.generate(UpperCAmelCase__, do_sample=UpperCAmelCase__, num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist(), UpperCAmelCase__ ) @slow def _lowercase ( self : List[Any] ): __lowercase = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) __lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) __lowercase = tokenizer("Today is a nice day and", return_tensors="tf" ) __lowercase = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): __lowercase = model.generate(UpperCAmelCase__, do_sample=UpperCAmelCase__, seed=[7, 0] ) __lowercase = tokenizer.decode(output_ids[0], skip_special_tokens=UpperCAmelCase__ ) __lowercase = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(UpperCAmelCase__, UpperCAmelCase__ ) @slow def _lowercase ( self : Dict ): __lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) __lowercase = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) __lowercase = "left" # use different length sentences to test batching __lowercase = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] __lowercase = tokenizer(UpperCAmelCase__, return_tensors="tf", padding=UpperCAmelCase__ ) __lowercase = inputs["input_ids"] __lowercase = model.generate(input_ids=UpperCAmelCase__, attention_mask=inputs["attention_mask"], max_new_tokens=1_2 ) __lowercase = tokenizer(sentences[0], return_tensors="tf" ).input_ids __lowercase = model.generate(input_ids=UpperCAmelCase__, max_new_tokens=1_2 ) __lowercase = tokenizer(sentences[1], return_tensors="tf" ).input_ids __lowercase = model.generate(input_ids=UpperCAmelCase__, max_new_tokens=1_2 ) __lowercase = tokenizer.batch_decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ ) __lowercase = tokenizer.decode(output_non_padded[0], skip_special_tokens=UpperCAmelCase__ ) __lowercase = tokenizer.decode(output_padded[0], skip_special_tokens=UpperCAmelCase__ ) __lowercase = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(UpperCAmelCase__, UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__, [non_padded_sentence, padded_sentence] )
17
1
"""simple docstring""" import math _a = 10 _a = 7 _a = BALLS_PER_COLOUR * NUM_COLOURS def _A ( UpperCamelCase_ : int = 20) -> str: '''simple docstring''' __lowercase = math.comb(UpperCamelCase_, UpperCamelCase_) __lowercase = math.comb(NUM_BALLS - BALLS_PER_COLOUR, UpperCamelCase_) __lowercase = NUM_COLOURS * (1 - missing_colour / total) return F"""{result:.9f}""" if __name__ == "__main__": print(solution(20))
17
"""simple docstring""" import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder _a = '__DUMMY_TRANSFORMERS_USER__' _a = 'Dummy User' _a = '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' _a = 'https://hub-ci.huggingface.co' _a = CI_HUB_ENDPOINT + '/datasets/{repo_id}/resolve/{revision}/{path}' _a = CI_HUB_ENDPOINT + '/{repo_id}/resolve/{revision}/{filename}' _a = Path('~/.huggingface/hub_ci_token').expanduser() @pytest.fixture def _A ( UpperCamelCase_ : List[Any]) -> Tuple: '''simple docstring''' monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE", UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : int) -> List[Any]: '''simple docstring''' monkeypatch.setattr("datasets.config.HF_ENDPOINT", UpperCamelCase_) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL", UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : str) -> Dict: '''simple docstring''' monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token", UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : Optional[Any], UpperCamelCase_ : List[Any]) -> List[str]: '''simple docstring''' HfFolder.save_token(UpperCamelCase_) yield HfFolder.delete_token() @pytest.fixture(scope="session") def _A ( ) -> List[Any]: '''simple docstring''' return HfApi(endpoint=UpperCamelCase_) @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi) -> List[Any]: '''simple docstring''' __lowercase = HfFolder.get_token() HfFolder.save_token(UpperCamelCase_) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : Dict) -> int: '''simple docstring''' def _cleanup_repo(UpperCamelCase_ : Optional[int]): hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") return _cleanup_repo @pytest.fixture def _A ( UpperCamelCase_ : str) -> Any: '''simple docstring''' @contextmanager def _temporary_repo(UpperCamelCase_ : Any): try: yield repo_id finally: cleanup_repo(UpperCamelCase_) return _temporary_repo @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : str, UpperCamelCase_ : Optional[int]) -> List[Any]: '''simple docstring''' __lowercase = F"""repo_txt_data-{int(time.time() * 10E3)}""" __lowercase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_) hf_api.upload_file( token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data/text_data.txt", repo_id=UpperCamelCase_, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : Any, UpperCamelCase_ : Dict) -> Optional[int]: '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : int, UpperCamelCase_ : Optional[int]) -> int: '''simple docstring''' __lowercase = F"""repo_zipped_txt_data-{int(time.time() * 10E3)}""" __lowercase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_) hf_api.upload_file( token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data.zip", repo_id=UpperCamelCase_, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Dict, UpperCamelCase_ : Any) -> int: '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : List[str], UpperCamelCase_ : List[str]) -> List[Any]: '''simple docstring''' __lowercase = F"""repo_zipped_img_data-{int(time.time() * 10E3)}""" __lowercase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_) hf_api.upload_file( token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data.zip", repo_id=UpperCamelCase_, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str], UpperCamelCase_ : List[str]) -> str: '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
17
1
"""simple docstring""" from typing import TYPE_CHECKING from ..utils import _LazyModule _a = { 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys _a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
17
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : int = "time_series_transformer" __UpperCAmelCase : Any = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : int, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : str = "student_t", UpperCAmelCase__ : str = "nll", UpperCAmelCase__ : int = 1, UpperCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7], UpperCAmelCase__ : Optional[Union[str, bool]] = "mean", UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : int = 3_2, UpperCAmelCase__ : int = 3_2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : str = "gelu", UpperCAmelCase__ : int = 6_4, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : int = 1_0_0, UpperCAmelCase__ : float = 0.02, UpperCAmelCase__ : Any=True, **UpperCAmelCase__ : List[str], ): # time series specific configuration __lowercase = prediction_length __lowercase = context_length or prediction_length __lowercase = distribution_output __lowercase = loss __lowercase = input_size __lowercase = num_time_features __lowercase = lags_sequence __lowercase = scaling __lowercase = num_dynamic_real_features __lowercase = num_static_real_features __lowercase = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(UpperCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) __lowercase = cardinality else: __lowercase = [0] if embedding_dimension and num_static_categorical_features > 0: if len(UpperCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) __lowercase = embedding_dimension else: __lowercase = [min(5_0, (cat + 1) // 2 ) for cat in self.cardinality] __lowercase = num_parallel_samples # Transformer architecture configuration __lowercase = input_size * len(UpperCAmelCase__ ) + self._number_of_features __lowercase = d_model __lowercase = encoder_attention_heads __lowercase = decoder_attention_heads __lowercase = encoder_ffn_dim __lowercase = decoder_ffn_dim __lowercase = encoder_layers __lowercase = decoder_layers __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = activation_function __lowercase = init_std __lowercase = use_cache super().__init__(is_encoder_decoder=UpperCAmelCase__, **UpperCAmelCase__ ) @property def _lowercase ( self : Optional[Any] ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
17
1
"""simple docstring""" from __future__ import annotations _a = 'Muhammad Umer Farooq' _a = 'MIT' _a = '1.0.0' _a = 'Muhammad Umer Farooq' _a = '[email protected]' _a = 'Alpha' import re from html.parser import HTMLParser from urllib import parse import requests class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : Dict, UpperCAmelCase__ : str ): super().__init__() __lowercase = [] __lowercase = domain def _lowercase ( self : List[str], UpperCAmelCase__ : str, UpperCAmelCase__ : list[tuple[str, str | None]] ): # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: __lowercase = parse.urljoin(self.domain, UpperCAmelCase__ ) self.urls.append(UpperCAmelCase__ ) def _A ( UpperCamelCase_ : str) -> str: '''simple docstring''' return ".".join(get_sub_domain_name(UpperCamelCase_).split(".")[-2:]) def _A ( UpperCamelCase_ : str) -> str: '''simple docstring''' return parse.urlparse(UpperCamelCase_).netloc def _A ( UpperCamelCase_ : str = "https://github.com") -> list[str]: '''simple docstring''' __lowercase = get_domain_name(UpperCamelCase_) # Initialize the parser __lowercase = Parser(UpperCamelCase_) try: # Open URL __lowercase = requests.get(UpperCamelCase_) # pass the raw HTML to the parser to get links parser.feed(r.text) # Get links and loop through __lowercase = set() for link in parser.urls: # open URL. # read = requests.get(link) try: __lowercase = requests.get(UpperCamelCase_) # Get the valid email. __lowercase = re.findall("[a-zA-Z0-9]+@" + domain, read.text) # If not in list then append it. for email in emails: valid_emails.add(UpperCamelCase_) except ValueError: pass except ValueError: raise SystemExit(1) # Finally return a sorted list of email addresses with no duplicates. return sorted(UpperCamelCase_) if __name__ == "__main__": _a = emails_from_url('https://github.com') print(F"{len(emails)} emails found:") print('\n'.join(sorted(emails)))
17
"""simple docstring""" import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class _lowerCAmelCase : """simple docstring""" @staticmethod def _lowercase ( *UpperCAmelCase__ : Tuple, **UpperCAmelCase__ : List[Any] ): pass def _A ( UpperCamelCase_ : Union[str, Any]) -> Any: '''simple docstring''' return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. _a = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Tuple = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Optional[Any] ): __lowercase = pipeline( "document-question-answering", model=UpperCAmelCase__, tokenizer=UpperCAmelCase__, image_processor=UpperCAmelCase__ ) __lowercase = INVOICE_URL __lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) ) __lowercase = "What is the placebo?" __lowercase = [ { "image": load_image(UpperCAmelCase__ ), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def _lowercase ( self : int, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Any ): __lowercase = dqa_pipeline(UpperCAmelCase__, top_k=2 ) self.assertEqual( UpperCAmelCase__, [ [ {"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ ), "start": ANY(UpperCAmelCase__ ), "end": ANY(UpperCAmelCase__ )}, {"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ ), "start": ANY(UpperCAmelCase__ ), "end": ANY(UpperCAmelCase__ )}, ] ] * 3, ) @require_torch @require_detectrona @require_pytesseract def _lowercase ( self : Dict ): __lowercase = pipeline("document-question-answering", model="hf-internal-testing/tiny-random-layoutlmv2" ) __lowercase = INVOICE_URL __lowercase = "How many cats are there?" __lowercase = [ {"score": 0.0_001, "answer": "oy 2312/2019", "start": 3_8, "end": 3_9}, {"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 3_8, "end": 4_0}, ] __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), UpperCAmelCase__ ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), UpperCAmelCase__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably __lowercase = "./tests/fixtures/tests_samples/COCO/000000039769.png" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual(UpperCAmelCase__, [] ) # We can optionnally pass directly the words and bounding boxes __lowercase = "./tests/fixtures/tests_samples/COCO/000000039769.png" __lowercase = [] __lowercase = [] __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, words=UpperCAmelCase__, boxes=UpperCAmelCase__, top_k=2 ) self.assertEqual(UpperCAmelCase__, [] ) @slow @require_torch @require_detectrona @require_pytesseract def _lowercase ( self : List[str] ): __lowercase = pipeline( "document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ] * 2, ) @slow @require_torch @require_detectrona @require_pytesseract def _lowercase ( self : Dict ): __lowercase = pipeline( "document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", max_seq_len=5_0, ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3}, {"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3}, {"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3}, {"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6}, ] ] * 2, ) @slow @require_torch @require_pytesseract @require_vision def _lowercase ( self : Optional[Any] ): __lowercase = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=UpperCAmelCase__ ) __lowercase = pipeline( "document-question-answering", model="impira/layoutlm-document-qa", tokenizer=UpperCAmelCase__, revision="3dc6de3", ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ], ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ] ] * 2, ) __lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) ) # This model should also work if `image` is set to None __lowercase = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ], ) @slow @require_torch @require_pytesseract @require_vision def _lowercase ( self : Union[str, Any] ): __lowercase = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=UpperCAmelCase__ ) __lowercase = pipeline( "document-question-answering", model="impira/layoutlm-document-qa", tokenizer=UpperCAmelCase__, revision="3dc6de3", max_seq_len=5_0, ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6}, ] ] * 2, ) __lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) ) # This model should also work if `image` is set to None __lowercase = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) @slow @require_torch def _lowercase ( self : Dict ): __lowercase = pipeline( "document-question-answering", model="naver-clova-ix/donut-base-finetuned-docvqa", tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ), feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa", ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def _lowercase ( self : List[Any] ): pass
17
1
"""simple docstring""" import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : Optional[int], UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[str]=1_3, UpperCAmelCase__ : Union[str, Any]=7, UpperCAmelCase__ : Optional[int]=True, UpperCAmelCase__ : List[str]=True, UpperCAmelCase__ : Optional[Any]=False, UpperCAmelCase__ : Union[str, Any]=True, UpperCAmelCase__ : Any=9_9, UpperCAmelCase__ : List[Any]=3_2, UpperCAmelCase__ : int=5, UpperCAmelCase__ : Dict=4, UpperCAmelCase__ : Dict=3_7, UpperCAmelCase__ : List[str]="gelu", UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Optional[Any]=0.1, UpperCAmelCase__ : Union[str, Any]=5_1_2, UpperCAmelCase__ : int=1_6, UpperCAmelCase__ : int=2, UpperCAmelCase__ : Optional[Any]=0.02, UpperCAmelCase__ : Optional[int]=3, UpperCAmelCase__ : Tuple=4, UpperCAmelCase__ : List[str]=None, ): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def _lowercase ( self : Any ): __lowercase = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size], self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) __lowercase = ids_tensor([self.batch_size], self.num_choices ) __lowercase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self : str ): return DistilBertConfig( vocab_size=self.vocab_size, dim=self.hidden_size, n_layers=self.num_hidden_layers, n_heads=self.num_attention_heads, hidden_dim=self.intermediate_size, hidden_act=self.hidden_act, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, ) def _lowercase ( self : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : str, UpperCAmelCase__ : Any, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : str ): __lowercase = DistilBertModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowercase = model(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Optional[int], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : List[str], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[Any] ): __lowercase = DistilBertForMaskedLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowercase = model(UpperCAmelCase__, attention_mask=UpperCAmelCase__, labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self : Optional[int], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Optional[Any] ): __lowercase = DistilBertForQuestionAnswering(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowercase = model( UpperCAmelCase__, attention_mask=UpperCAmelCase__, start_positions=UpperCAmelCase__, end_positions=UpperCAmelCase__ ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Tuple ): __lowercase = self.num_labels __lowercase = DistilBertForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowercase = model(UpperCAmelCase__, attention_mask=UpperCAmelCase__, labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def _lowercase ( self : Any, UpperCAmelCase__ : Any, UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : int, UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : int ): __lowercase = self.num_labels __lowercase = DistilBertForTokenClassification(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowercase = model(UpperCAmelCase__, attention_mask=UpperCAmelCase__, labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self : Optional[int], UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Any ): __lowercase = self.num_choices __lowercase = DistilBertForMultipleChoice(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() __lowercase = model( UpperCAmelCase__, attention_mask=UpperCAmelCase__, labels=UpperCAmelCase__, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def _lowercase ( self : Optional[Any] ): __lowercase = self.prepare_config_and_inputs() ((__lowercase) ,(__lowercase) ,(__lowercase) ,(__lowercase) ,(__lowercase) ,(__lowercase)) = config_and_inputs __lowercase = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( lowercase ,lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : int = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) __UpperCAmelCase : List[Any] = ( { "feature-extraction": DistilBertModel, "fill-mask": DistilBertForMaskedLM, "question-answering": DistilBertForQuestionAnswering, "text-classification": DistilBertForSequenceClassification, "token-classification": DistilBertForTokenClassification, "zero-shot": DistilBertForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase : Union[str, Any] = True __UpperCAmelCase : Optional[Any] = True __UpperCAmelCase : Union[str, Any] = True __UpperCAmelCase : str = True def _lowercase ( self : Tuple ): __lowercase = DistilBertModelTester(self ) __lowercase = ConfigTester(self, config_class=UpperCAmelCase__, dim=3_7 ) def _lowercase ( self : Optional[int] ): self.config_tester.run_common_tests() def _lowercase ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*UpperCAmelCase__ ) def _lowercase ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCAmelCase__ ) def _lowercase ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCAmelCase__ ) def _lowercase ( self : str ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCAmelCase__ ) def _lowercase ( self : str ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCAmelCase__ ) def _lowercase ( self : Optional[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCAmelCase__ ) @slow def _lowercase ( self : List[str] ): for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = DistilBertModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @slow @require_torch_gpu def _lowercase ( self : Any ): __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __lowercase = True __lowercase = model_class(config=UpperCAmelCase__ ) __lowercase = self._prepare_for_class(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = torch.jit.trace( UpperCAmelCase__, (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(UpperCAmelCase__, os.path.join(UpperCAmelCase__, "traced_model.pt" ) ) __lowercase = torch.jit.load(os.path.join(UpperCAmelCase__, "traced_model.pt" ), map_location=UpperCAmelCase__ ) loaded(inputs_dict["input_ids"].to(UpperCAmelCase__ ), inputs_dict["attention_mask"].to(UpperCAmelCase__ ) ) @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : List[str] ): __lowercase = DistilBertModel.from_pretrained("distilbert-base-uncased" ) __lowercase = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) __lowercase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(UpperCAmelCase__, attention_mask=UpperCAmelCase__ )[0] __lowercase = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape, UpperCAmelCase__ ) __lowercase = torch.tensor( [[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4], UpperCAmelCase__, atol=1E-4 ) )
17
"""simple docstring""" import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _a = 2 class _lowerCAmelCase : """simple docstring""" def __init__( self : Dict, *, # begin keyword-only arguments UpperCAmelCase__ : str="<s>", UpperCAmelCase__ : Tuple="<pad>", UpperCAmelCase__ : str="</s>", UpperCAmelCase__ : Optional[Any]="<unk>", UpperCAmelCase__ : List[Any]=None, ): __lowercase ,__lowercase ,__lowercase ,__lowercase = bos, unk, pad, eos __lowercase = [] __lowercase = [] __lowercase = {} __lowercase = self.add_symbol(UpperCAmelCase__ ) __lowercase = self.add_symbol(UpperCAmelCase__ ) __lowercase = self.add_symbol(UpperCAmelCase__ ) __lowercase = self.add_symbol(UpperCAmelCase__ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(UpperCAmelCase__ ) __lowercase = len(self.symbols ) def __eq__( self : List[str], UpperCAmelCase__ : Dict ): return self.indices == other.indices def __getitem__( self : Optional[int], UpperCAmelCase__ : List[str] ): if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : str ): return len(self.symbols ) def __contains__( self : Any, UpperCAmelCase__ : Optional[Any] ): return sym in self.indices @classmethod def _lowercase ( cls : List[Any], UpperCAmelCase__ : Optional[Any] ): __lowercase = cls() d.add_from_file(UpperCAmelCase__ ) return d def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[Any]=1, UpperCAmelCase__ : str=False ): if word in self.indices and not overwrite: __lowercase = self.indices[word] __lowercase = self.count[idx] + n return idx else: __lowercase = len(self.symbols ) __lowercase = idx self.symbols.append(UpperCAmelCase__ ) self.count.append(UpperCAmelCase__ ) return idx def _lowercase ( self : Any, UpperCAmelCase__ : str ): return 0 def _lowercase ( self : Tuple, UpperCAmelCase__ : List[Any] ): if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): try: with open(UpperCAmelCase__, "r", encoding="utf-8" ) as fd: self.add_from_file(UpperCAmelCase__ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("Incorrect encoding detected in {}, please rebuild the dataset".format(UpperCAmelCase__ ) ) return __lowercase = f.readlines() __lowercase = self._load_meta(UpperCAmelCase__ ) for line in lines[indices_start_line:]: try: __lowercase ,__lowercase = line.rstrip().rsplit(" ", 1 ) if field == "#fairseq:overwrite": __lowercase = True __lowercase ,__lowercase = line.rsplit(" ", 1 ) else: __lowercase = False __lowercase = int(UpperCAmelCase__ ) __lowercase = line if word in self and not overwrite: raise RuntimeError( "Duplicate word found when loading Dictionary: '{}'. " "Duplicate words can overwrite earlier ones by adding the " "#fairseq:overwrite flag at the end of the corresponding row " "in the dictionary file. If using the Camembert model, please " "download an updated copy of the model file.".format(UpperCAmelCase__ ) ) self.add_symbol(UpperCAmelCase__, n=UpperCAmelCase__, overwrite=UpperCAmelCase__ ) except ValueError: raise ValueError("Incorrect dictionary format, expected '<token> <cnt> [flags]'" ) def _A ( UpperCamelCase_ : int) -> str: '''simple docstring''' __lowercase = dict((re.sub(r"@@$", "", UpperCamelCase_), v) if k.endswith("@@") else (re.sub(r"$", "</w>", UpperCamelCase_), v) for k, v in d.items()) __lowercase = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] __lowercase = d[k] # restore return da def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str) -> List[Any]: '''simple docstring''' if not os.path.exists(UpperCamelCase_): raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""") os.makedirs(UpperCamelCase_, exist_ok=UpperCamelCase_) print(F"""Writing results to {pytorch_dump_folder_path}""") # handle various types of models __lowercase = os.path.join(UpperCamelCase_, "checkpoint.pt") if not os.path.isfile(UpperCamelCase_): raise ValueError(F"""path to the file {checkpoint_file} does not exist!""") __lowercase = torch.load(UpperCamelCase_, map_location="cpu") __lowercase = chkpt["cfg"]["model"] # dicts __lowercase = os.path.join(UpperCamelCase_, "dict.txt") if not os.path.isfile(UpperCamelCase_): raise ValueError(F"""path to the file {dict_file} does not exist!""") __lowercase = Dictionary.load(UpperCamelCase_) __lowercase = rewrite_dict_keys(src_dict.indices) __lowercase = len(UpperCamelCase_) __lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["vocab_file"]) print(F"""Generating {src_vocab_file} of {src_vocab_size} records""") with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_)) # merges_file (bpecodes) __lowercase = os.path.join(UpperCamelCase_, "bpecodes") if not os.path.isfile(UpperCamelCase_): raise ValueError(F"""path to the file {bpecodes_file} does not exist!""") __lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["merges_file"]) shutil.copyfile(UpperCamelCase_, UpperCamelCase_) # model config __lowercase = os.path.join(UpperCamelCase_, "config.json") __lowercase = { "activation_dropout": args["activation_dropout"], "architectures": ["BioGptForCausalLM"], "attention_probs_dropout_prob": args["attention_dropout"], "bos_token_id": 0, "eos_token_id": 2, "hidden_act": args["activation_fn"], "hidden_dropout_prob": args["dropout"], "hidden_size": args["decoder_embed_dim"], "initializer_range": 0.02, "intermediate_size": args["decoder_ffn_embed_dim"], "layer_norm_eps": 1E-12, "layerdrop": args["decoder_layerdrop"], "max_position_embeddings": args["max_target_positions"], "model_type": "biogpt", "num_attention_heads": args["decoder_attention_heads"], "num_hidden_layers": args["decoder_layers"], "pad_token_id": 1, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_decoder_input_output_embed"], "vocab_size": src_vocab_size, } # good hparam defaults to start with print(F"""Generating {biogpt_model_config_file}""") with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_)) # tokenizer config __lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_) __lowercase = { "bos_token": "<s>", "eos_token": "</s>", "model_max_length": 1024, "pad_token": "<pad>", "special_tokens_map_file": None, "tokenizer_class": "BioGptTokenizer", "unk_token": "<unk>", } print(F"""Generating {biogpt_tokenizer_config_file}""") with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_)) # model __lowercase = chkpt["model"] # remove unneeded keys __lowercase = [ "decoder.version", ] for k in ignore_keys: model_state_dict.pop(UpperCamelCase_, UpperCamelCase_) __lowercase = list(model_state_dict.keys()) for layer_name in layer_names: if layer_name.endswith("output_projection.weight"): __lowercase = model_state_dict.pop(UpperCamelCase_) else: __lowercase = model_state_dict.pop(UpperCamelCase_) __lowercase = BioGptConfig.from_pretrained(UpperCamelCase_) __lowercase = BioGptForCausalLM(UpperCamelCase_) # check that it loads ok model_new.load_state_dict(UpperCamelCase_) # save __lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_) print(F"""Generating {pytorch_weights_dump_path}""") torch.save(UpperCamelCase_, UpperCamelCase_) print("Conversion is done!") if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _a = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
17
1