code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
"""simple docstring"""
import unittest
from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
@require_sentencepiece
@slow # see https://github.com/huggingface/transformers/issues/11457
class _lowerCAmelCase ( lowercase ,unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : List[Any] = BarthezTokenizer
__UpperCAmelCase : Optional[Any] = BarthezTokenizerFast
__UpperCAmelCase : str = True
__UpperCAmelCase : Optional[int] = True
def _lowercase ( self : Union[str, Any] ):
super().setUp()
__lowercase = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" )
tokenizer.save_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname, legacy_format=UpperCAmelCase__ )
__lowercase = tokenizer
def _lowercase ( self : int ):
__lowercase = "<pad>"
__lowercase = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__ ), UpperCAmelCase__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__ ), UpperCAmelCase__ )
def _lowercase ( self : str ):
__lowercase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0], "<s>" )
self.assertEqual(vocab_keys[1], "<pad>" )
self.assertEqual(vocab_keys[-1], "<mask>" )
self.assertEqual(len(UpperCAmelCase__ ), 1_0_1_1_2_2 )
def _lowercase ( self : Optional[Any] ):
self.assertEqual(self.get_tokenizer().vocab_size, 1_0_1_1_2_2 )
@require_torch
def _lowercase ( self : int ):
__lowercase = ["A long paragraph for summarization.", "Another paragraph for summarization."]
__lowercase = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2]
__lowercase = self.tokenizer(
UpperCAmelCase__, max_length=len(UpperCAmelCase__ ), padding=UpperCAmelCase__, truncation=UpperCAmelCase__, return_tensors="pt" )
self.assertIsInstance(UpperCAmelCase__, UpperCAmelCase__ )
self.assertEqual((2, 6), batch.input_ids.shape )
self.assertEqual((2, 6), batch.attention_mask.shape )
__lowercase = batch.input_ids.tolist()[0]
self.assertListEqual(UpperCAmelCase__, UpperCAmelCase__ )
def _lowercase ( self : Optional[Any] ):
if not self.test_rust_tokenizer:
return
__lowercase = self.get_tokenizer()
__lowercase = self.get_rust_tokenizer()
__lowercase = "I was born in 92000, and this is falsé."
__lowercase = tokenizer.tokenize(UpperCAmelCase__ )
__lowercase = rust_tokenizer.tokenize(UpperCAmelCase__ )
self.assertListEqual(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = tokenizer.encode(UpperCAmelCase__, add_special_tokens=UpperCAmelCase__ )
__lowercase = rust_tokenizer.encode(UpperCAmelCase__, add_special_tokens=UpperCAmelCase__ )
self.assertListEqual(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = self.get_rust_tokenizer()
__lowercase = tokenizer.encode(UpperCAmelCase__ )
__lowercase = rust_tokenizer.encode(UpperCAmelCase__ )
self.assertListEqual(UpperCAmelCase__, UpperCAmelCase__ )
@slow
def _lowercase ( self : Union[str, Any] ):
# fmt: off
__lowercase = {"input_ids": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# moussaKam/mbarthez is a french model. So we also use french texts.
__lowercase = [
"Le transformeur est un modèle d'apprentissage profond introduit en 2017, "
"utilisé principalement dans le domaine du traitement automatique des langues (TAL).",
"À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus "
"pour gérer des données séquentielles, telles que le langage naturel, pour des tâches "
"telles que la traduction et la synthèse de texte.",
]
self.tokenizer_integration_test_util(
expected_encoding=UpperCAmelCase__, model_name="moussaKam/mbarthez", revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6", sequences=UpperCAmelCase__, )
| 17 |
"""simple docstring"""
import unittest
from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available
from transformers.pipelines import pipeline
from transformers.pipelines.document_question_answering import apply_tesseract
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_detectrona,
require_pytesseract,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
from transformers.image_utils import load_image
else:
class _lowerCAmelCase :
"""simple docstring"""
@staticmethod
def _lowercase ( *UpperCAmelCase__ : Tuple, **UpperCAmelCase__ : List[Any] ):
pass
def _A ( UpperCamelCase_ : Union[str, Any]) -> Any:
'''simple docstring'''
return None
# This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace,
# so we can expect it to be available.
_a = (
'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png'
)
@is_pipeline_test
@require_torch
@require_vision
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : Tuple = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING
@require_pytesseract
@require_vision
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Optional[Any] ):
__lowercase = pipeline(
"document-question-answering", model=UpperCAmelCase__, tokenizer=UpperCAmelCase__, image_processor=UpperCAmelCase__ )
__lowercase = INVOICE_URL
__lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) )
__lowercase = "What is the placebo?"
__lowercase = [
{
"image": load_image(UpperCAmelCase__ ),
"question": question,
},
{
"image": image,
"question": question,
},
{
"image": image,
"question": question,
"word_boxes": word_boxes,
},
]
return dqa_pipeline, examples
def _lowercase ( self : int, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Any ):
__lowercase = dqa_pipeline(UpperCAmelCase__, top_k=2 )
self.assertEqual(
UpperCAmelCase__, [
[
{"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ ), "start": ANY(UpperCAmelCase__ ), "end": ANY(UpperCAmelCase__ )},
{"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ ), "start": ANY(UpperCAmelCase__ ), "end": ANY(UpperCAmelCase__ )},
]
]
* 3, )
@require_torch
@require_detectrona
@require_pytesseract
def _lowercase ( self : Dict ):
__lowercase = pipeline("document-question-answering", model="hf-internal-testing/tiny-random-layoutlmv2" )
__lowercase = INVOICE_URL
__lowercase = "How many cats are there?"
__lowercase = [
{"score": 0.0_001, "answer": "oy 2312/2019", "start": 3_8, "end": 3_9},
{"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 3_8, "end": 4_0},
]
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), UpperCAmelCase__ )
__lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), UpperCAmelCase__ )
# This image does not detect ANY text in it, meaning layoutlmv2 should fail.
# Empty answer probably
__lowercase = "./tests/fixtures/tests_samples/COCO/000000039769.png"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(UpperCAmelCase__, [] )
# We can optionnally pass directly the words and bounding boxes
__lowercase = "./tests/fixtures/tests_samples/COCO/000000039769.png"
__lowercase = []
__lowercase = []
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, words=UpperCAmelCase__, boxes=UpperCAmelCase__, top_k=2 )
self.assertEqual(UpperCAmelCase__, [] )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def _lowercase ( self : List[str] ):
__lowercase = pipeline(
"document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
[
{"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6},
],
]
* 2, )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def _lowercase ( self : Dict ):
__lowercase = pipeline(
"document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", max_seq_len=5_0, )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3},
{"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3},
{"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
[
{"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3},
{"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6},
]
]
* 2, )
@slow
@require_torch
@require_pytesseract
@require_vision
def _lowercase ( self : Optional[Any] ):
__lowercase = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=UpperCAmelCase__ )
__lowercase = pipeline(
"document-question-answering", model="impira/layoutlm-document-qa", tokenizer=UpperCAmelCase__, revision="3dc6de3", )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3},
], )
__lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3},
], )
__lowercase = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
[
{"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3},
]
]
* 2, )
__lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) )
# This model should also work if `image` is set to None
__lowercase = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3},
], )
@slow
@require_torch
@require_pytesseract
@require_vision
def _lowercase ( self : Union[str, Any] ):
__lowercase = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=UpperCAmelCase__ )
__lowercase = pipeline(
"document-question-answering", model="impira/layoutlm-document-qa", tokenizer=UpperCAmelCase__, revision="3dc6de3", max_seq_len=5_0, )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
[
{"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6},
]
]
* 2, )
__lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) )
# This model should also work if `image` is set to None
__lowercase = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
@slow
@require_torch
def _lowercase ( self : Dict ):
__lowercase = pipeline(
"document-question-answering", model="naver-clova-ix/donut-base-finetuned-docvqa", tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ), feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa", )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), [{"answer": "us-001"}] )
@require_tf
@unittest.skip("Document question answering not implemented in TF" )
def _lowercase ( self : List[Any] ):
pass
| 17 | 1 |
"""simple docstring"""
def _A ( UpperCamelCase_ : list[list[int]], UpperCamelCase_ : int, UpperCamelCase_ : int, UpperCamelCase_ : list[int]) -> bool:
'''simple docstring'''
if graph[path[curr_ind - 1]][next_ver] == 0:
return False
# 2. Validate that next vertex is not already in path
return not any(vertex == next_ver for vertex in path)
def _A ( UpperCamelCase_ : list[list[int]], UpperCamelCase_ : list[int], UpperCamelCase_ : int) -> bool:
'''simple docstring'''
if curr_ind == len(UpperCamelCase_):
# return whether path exists between current and starting vertices
return graph[path[curr_ind - 1]][path[0]] == 1
# Recursive Step
for next_ver in range(0, len(UpperCamelCase_)):
if valid_connection(UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_):
# Insert current vertex into path as next transition
__lowercase = next_ver
# Validate created path
if util_hamilton_cycle(UpperCamelCase_, UpperCamelCase_, curr_ind + 1):
return True
# Backtrack
__lowercase = -1
return False
def _A ( UpperCamelCase_ : list[list[int]], UpperCamelCase_ : int = 0) -> list[int]:
'''simple docstring'''
__lowercase = [-1] * (len(UpperCamelCase_) + 1)
# initialize start and end of path with starting index
__lowercase = __lowercase = start_index
# evaluate and if we find answer return path either return empty array
return path if util_hamilton_cycle(UpperCamelCase_, UpperCamelCase_, 1) else []
| 17 |
"""simple docstring"""
import argparse
import json
import os
import re
import shutil
import torch
from transformers import BioGptConfig, BioGptForCausalLM
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
from transformers.utils import WEIGHTS_NAME, logging
logging.set_verbosity_warning()
_a = 2
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Dict, *, # begin keyword-only arguments
UpperCAmelCase__ : str="<s>", UpperCAmelCase__ : Tuple="<pad>", UpperCAmelCase__ : str="</s>", UpperCAmelCase__ : Optional[Any]="<unk>", UpperCAmelCase__ : List[Any]=None, ):
__lowercase ,__lowercase ,__lowercase ,__lowercase = bos, unk, pad, eos
__lowercase = []
__lowercase = []
__lowercase = {}
__lowercase = self.add_symbol(UpperCAmelCase__ )
__lowercase = self.add_symbol(UpperCAmelCase__ )
__lowercase = self.add_symbol(UpperCAmelCase__ )
__lowercase = self.add_symbol(UpperCAmelCase__ )
if extra_special_symbols:
for s in extra_special_symbols:
self.add_symbol(UpperCAmelCase__ )
__lowercase = len(self.symbols )
def __eq__( self : List[str], UpperCAmelCase__ : Dict ):
return self.indices == other.indices
def __getitem__( self : Optional[int], UpperCAmelCase__ : List[str] ):
if idx < len(self.symbols ):
return self.symbols[idx]
return self.unk_word
def __len__( self : str ):
return len(self.symbols )
def __contains__( self : Any, UpperCAmelCase__ : Optional[Any] ):
return sym in self.indices
@classmethod
def _lowercase ( cls : List[Any], UpperCAmelCase__ : Optional[Any] ):
__lowercase = cls()
d.add_from_file(UpperCAmelCase__ )
return d
def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[Any]=1, UpperCAmelCase__ : str=False ):
if word in self.indices and not overwrite:
__lowercase = self.indices[word]
__lowercase = self.count[idx] + n
return idx
else:
__lowercase = len(self.symbols )
__lowercase = idx
self.symbols.append(UpperCAmelCase__ )
self.count.append(UpperCAmelCase__ )
return idx
def _lowercase ( self : Any, UpperCAmelCase__ : str ):
return 0
def _lowercase ( self : Tuple, UpperCAmelCase__ : List[Any] ):
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
try:
with open(UpperCAmelCase__, "r", encoding="utf-8" ) as fd:
self.add_from_file(UpperCAmelCase__ )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception("Incorrect encoding detected in {}, please rebuild the dataset".format(UpperCAmelCase__ ) )
return
__lowercase = f.readlines()
__lowercase = self._load_meta(UpperCAmelCase__ )
for line in lines[indices_start_line:]:
try:
__lowercase ,__lowercase = line.rstrip().rsplit(" ", 1 )
if field == "#fairseq:overwrite":
__lowercase = True
__lowercase ,__lowercase = line.rsplit(" ", 1 )
else:
__lowercase = False
__lowercase = int(UpperCAmelCase__ )
__lowercase = line
if word in self and not overwrite:
raise RuntimeError(
"Duplicate word found when loading Dictionary: '{}'. "
"Duplicate words can overwrite earlier ones by adding the "
"#fairseq:overwrite flag at the end of the corresponding row "
"in the dictionary file. If using the Camembert model, please "
"download an updated copy of the model file.".format(UpperCAmelCase__ ) )
self.add_symbol(UpperCAmelCase__, n=UpperCAmelCase__, overwrite=UpperCAmelCase__ )
except ValueError:
raise ValueError("Incorrect dictionary format, expected '<token> <cnt> [flags]'" )
def _A ( UpperCamelCase_ : int) -> str:
'''simple docstring'''
__lowercase = dict((re.sub(r"@@$", "", UpperCamelCase_), v) if k.endswith("@@") else (re.sub(r"$", "</w>", UpperCamelCase_), v) for k, v in d.items())
__lowercase = "<s> <pad> </s> <unk>".split()
# restore the special tokens
for k in keep_keys:
del da[F"""{k}</w>"""]
__lowercase = d[k] # restore
return da
def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str) -> List[Any]:
'''simple docstring'''
if not os.path.exists(UpperCamelCase_):
raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""")
os.makedirs(UpperCamelCase_, exist_ok=UpperCamelCase_)
print(F"""Writing results to {pytorch_dump_folder_path}""")
# handle various types of models
__lowercase = os.path.join(UpperCamelCase_, "checkpoint.pt")
if not os.path.isfile(UpperCamelCase_):
raise ValueError(F"""path to the file {checkpoint_file} does not exist!""")
__lowercase = torch.load(UpperCamelCase_, map_location="cpu")
__lowercase = chkpt["cfg"]["model"]
# dicts
__lowercase = os.path.join(UpperCamelCase_, "dict.txt")
if not os.path.isfile(UpperCamelCase_):
raise ValueError(F"""path to the file {dict_file} does not exist!""")
__lowercase = Dictionary.load(UpperCamelCase_)
__lowercase = rewrite_dict_keys(src_dict.indices)
__lowercase = len(UpperCamelCase_)
__lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["vocab_file"])
print(F"""Generating {src_vocab_file} of {src_vocab_size} records""")
with open(UpperCamelCase_, "w", encoding="utf-8") as f:
f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_))
# merges_file (bpecodes)
__lowercase = os.path.join(UpperCamelCase_, "bpecodes")
if not os.path.isfile(UpperCamelCase_):
raise ValueError(F"""path to the file {bpecodes_file} does not exist!""")
__lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["merges_file"])
shutil.copyfile(UpperCamelCase_, UpperCamelCase_)
# model config
__lowercase = os.path.join(UpperCamelCase_, "config.json")
__lowercase = {
"activation_dropout": args["activation_dropout"],
"architectures": ["BioGptForCausalLM"],
"attention_probs_dropout_prob": args["attention_dropout"],
"bos_token_id": 0,
"eos_token_id": 2,
"hidden_act": args["activation_fn"],
"hidden_dropout_prob": args["dropout"],
"hidden_size": args["decoder_embed_dim"],
"initializer_range": 0.02,
"intermediate_size": args["decoder_ffn_embed_dim"],
"layer_norm_eps": 1E-12,
"layerdrop": args["decoder_layerdrop"],
"max_position_embeddings": args["max_target_positions"],
"model_type": "biogpt",
"num_attention_heads": args["decoder_attention_heads"],
"num_hidden_layers": args["decoder_layers"],
"pad_token_id": 1,
"scale_embedding": not args["no_scale_embedding"],
"tie_word_embeddings": args["share_decoder_input_output_embed"],
"vocab_size": src_vocab_size,
}
# good hparam defaults to start with
print(F"""Generating {biogpt_model_config_file}""")
with open(UpperCamelCase_, "w", encoding="utf-8") as f:
f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_))
# tokenizer config
__lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_)
__lowercase = {
"bos_token": "<s>",
"eos_token": "</s>",
"model_max_length": 1024,
"pad_token": "<pad>",
"special_tokens_map_file": None,
"tokenizer_class": "BioGptTokenizer",
"unk_token": "<unk>",
}
print(F"""Generating {biogpt_tokenizer_config_file}""")
with open(UpperCamelCase_, "w", encoding="utf-8") as f:
f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_))
# model
__lowercase = chkpt["model"]
# remove unneeded keys
__lowercase = [
"decoder.version",
]
for k in ignore_keys:
model_state_dict.pop(UpperCamelCase_, UpperCamelCase_)
__lowercase = list(model_state_dict.keys())
for layer_name in layer_names:
if layer_name.endswith("output_projection.weight"):
__lowercase = model_state_dict.pop(UpperCamelCase_)
else:
__lowercase = model_state_dict.pop(UpperCamelCase_)
__lowercase = BioGptConfig.from_pretrained(UpperCamelCase_)
__lowercase = BioGptForCausalLM(UpperCamelCase_)
# check that it loads ok
model_new.load_state_dict(UpperCamelCase_)
# save
__lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_)
print(F"""Generating {pytorch_weights_dump_path}""")
torch.save(UpperCamelCase_, UpperCamelCase_)
print("Conversion is done!")
if __name__ == "__main__":
_a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--biogpt_checkpoint_path',
default=None,
type=str,
required=True,
help=(
'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,'
' bpecodes, etc.'
),
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
_a = parser.parse_args()
convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
| 17 | 1 |
"""simple docstring"""
from __future__ import annotations
def _A ( UpperCamelCase_ : list) -> float:
'''simple docstring'''
if not nums:
raise ValueError("List is empty")
return sum(UpperCamelCase_) / len(UpperCamelCase_)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 17 |
"""simple docstring"""
from __future__ import annotations
from typing import Any
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Any, UpperCAmelCase__ : int ):
__lowercase = num_of_nodes
__lowercase = []
__lowercase = {}
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : int, UpperCAmelCase__ : int ):
self.m_edges.append([u_node, v_node, weight] )
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : int ):
if self.m_component[u_node] == u_node:
return u_node
return self.find_component(self.m_component[u_node] )
def _lowercase ( self : List[Any], UpperCAmelCase__ : int ):
if self.m_component[u_node] != u_node:
for k in self.m_component:
__lowercase = self.find_component(UpperCAmelCase__ )
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : list[int], UpperCAmelCase__ : int, UpperCAmelCase__ : int ):
if component_size[u_node] <= component_size[v_node]:
__lowercase = v_node
component_size[v_node] += component_size[u_node]
self.set_component(UpperCAmelCase__ )
elif component_size[u_node] >= component_size[v_node]:
__lowercase = self.find_component(UpperCAmelCase__ )
component_size[u_node] += component_size[v_node]
self.set_component(UpperCAmelCase__ )
def _lowercase ( self : Any ):
__lowercase = []
__lowercase = 0
__lowercase = [-1] * self.m_num_of_nodes
# A list of components (initialized to all of the nodes)
for node in range(self.m_num_of_nodes ):
self.m_component.update({node: node} )
component_size.append(1 )
__lowercase = self.m_num_of_nodes
while num_of_components > 1:
for edge in self.m_edges:
__lowercase ,__lowercase ,__lowercase = edge
__lowercase = self.m_component[u]
__lowercase = self.m_component[v]
if u_component != v_component:
for component in (u_component, v_component):
if (
minimum_weight_edge[component] == -1
or minimum_weight_edge[component][2] > w
):
__lowercase = [u, v, w]
for edge in minimum_weight_edge:
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
__lowercase ,__lowercase ,__lowercase = edge
__lowercase = self.m_component[u]
__lowercase = self.m_component[v]
if u_component != v_component:
mst_weight += w
self.union(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" )
num_of_components -= 1
__lowercase = [-1] * self.m_num_of_nodes
print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" )
def _A ( ) -> None:
'''simple docstring'''
if __name__ == "__main__":
import doctest
doctest.testmod()
| 17 | 1 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
_a = logging.get_logger(__name__)
def _A ( UpperCamelCase_ : str) -> List[List[ImageInput]]:
'''simple docstring'''
if isinstance(UpperCamelCase_, (list, tuple)) and isinstance(videos[0], (list, tuple)) and is_valid_image(videos[0][0]):
return videos
elif isinstance(UpperCamelCase_, (list, tuple)) and is_valid_image(videos[0]):
return [videos]
elif is_valid_image(UpperCamelCase_):
return [[videos]]
raise ValueError(F"""Could not make batched video from {videos}""")
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
__UpperCAmelCase : int = ["pixel_values"]
def __init__( self : Optional[int], UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Dict[str, int] = None, UpperCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Dict[str, int] = None, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Union[int, float] = 1 / 2_5_5, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Union[float, List[float]]] = None, UpperCAmelCase__ : Optional[Union[float, List[float]]] = None, **UpperCAmelCase__ : Any, ):
super().__init__(**UpperCAmelCase__ )
__lowercase = size if size is not None else {"shortest_edge": 2_2_4}
__lowercase = get_size_dict(UpperCAmelCase__, default_to_square=UpperCAmelCase__ )
__lowercase = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4}
__lowercase = get_size_dict(UpperCAmelCase__, param_name="crop_size" )
__lowercase = do_resize
__lowercase = size
__lowercase = do_center_crop
__lowercase = crop_size
__lowercase = resample
__lowercase = do_rescale
__lowercase = rescale_factor
__lowercase = do_normalize
__lowercase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__lowercase = image_std if image_std is not None else IMAGENET_STANDARD_STD
def _lowercase ( self : int, UpperCAmelCase__ : np.ndarray, UpperCAmelCase__ : Dict[str, int], UpperCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR, UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None, **UpperCAmelCase__ : Optional[int], ):
__lowercase = get_size_dict(UpperCAmelCase__, default_to_square=UpperCAmelCase__ )
if "shortest_edge" in size:
__lowercase = get_resize_output_image_size(UpperCAmelCase__, size["shortest_edge"], default_to_square=UpperCAmelCase__ )
elif "height" in size and "width" in size:
__lowercase = (size["height"], size["width"])
else:
raise ValueError(F"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" )
return resize(UpperCAmelCase__, size=UpperCAmelCase__, resample=UpperCAmelCase__, data_format=UpperCAmelCase__, **UpperCAmelCase__ )
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : np.ndarray, UpperCAmelCase__ : Dict[str, int], UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None, **UpperCAmelCase__ : int, ):
__lowercase = get_size_dict(UpperCAmelCase__ )
if "height" not in size or "width" not in size:
raise ValueError(F"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" )
return center_crop(UpperCAmelCase__, size=(size["height"], size["width"]), data_format=UpperCAmelCase__, **UpperCAmelCase__ )
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : np.ndarray, UpperCAmelCase__ : Union[int, float], UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None, **UpperCAmelCase__ : Optional[Any], ):
return rescale(UpperCAmelCase__, scale=UpperCAmelCase__, data_format=UpperCAmelCase__, **UpperCAmelCase__ )
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : np.ndarray, UpperCAmelCase__ : Union[float, List[float]], UpperCAmelCase__ : Union[float, List[float]], UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None, **UpperCAmelCase__ : int, ):
return normalize(UpperCAmelCase__, mean=UpperCAmelCase__, std=UpperCAmelCase__, data_format=UpperCAmelCase__, **UpperCAmelCase__ )
def _lowercase ( self : Tuple, UpperCAmelCase__ : ImageInput, UpperCAmelCase__ : bool = None, UpperCAmelCase__ : Dict[str, int] = None, UpperCAmelCase__ : PILImageResampling = None, UpperCAmelCase__ : bool = None, UpperCAmelCase__ : Dict[str, int] = None, UpperCAmelCase__ : bool = None, UpperCAmelCase__ : float = None, UpperCAmelCase__ : bool = None, UpperCAmelCase__ : Optional[Union[float, List[float]]] = None, UpperCAmelCase__ : Optional[Union[float, List[float]]] = None, UpperCAmelCase__ : Optional[ChannelDimension] = ChannelDimension.FIRST, ):
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True." )
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
__lowercase = to_numpy_array(UpperCAmelCase__ )
if do_resize:
__lowercase = self.resize(image=UpperCAmelCase__, size=UpperCAmelCase__, resample=UpperCAmelCase__ )
if do_center_crop:
__lowercase = self.center_crop(UpperCAmelCase__, size=UpperCAmelCase__ )
if do_rescale:
__lowercase = self.rescale(image=UpperCAmelCase__, scale=UpperCAmelCase__ )
if do_normalize:
__lowercase = self.normalize(image=UpperCAmelCase__, mean=UpperCAmelCase__, std=UpperCAmelCase__ )
__lowercase = to_channel_dimension_format(UpperCAmelCase__, UpperCAmelCase__ )
return image
def _lowercase ( self : List[str], UpperCAmelCase__ : ImageInput, UpperCAmelCase__ : bool = None, UpperCAmelCase__ : Dict[str, int] = None, UpperCAmelCase__ : PILImageResampling = None, UpperCAmelCase__ : bool = None, UpperCAmelCase__ : Dict[str, int] = None, UpperCAmelCase__ : bool = None, UpperCAmelCase__ : float = None, UpperCAmelCase__ : bool = None, UpperCAmelCase__ : Optional[Union[float, List[float]]] = None, UpperCAmelCase__ : Optional[Union[float, List[float]]] = None, UpperCAmelCase__ : Optional[Union[str, TensorType]] = None, UpperCAmelCase__ : ChannelDimension = ChannelDimension.FIRST, **UpperCAmelCase__ : Optional[Any], ):
__lowercase = do_resize if do_resize is not None else self.do_resize
__lowercase = resample if resample is not None else self.resample
__lowercase = do_center_crop if do_center_crop is not None else self.do_center_crop
__lowercase = do_rescale if do_rescale is not None else self.do_rescale
__lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor
__lowercase = do_normalize if do_normalize is not None else self.do_normalize
__lowercase = image_mean if image_mean is not None else self.image_mean
__lowercase = image_std if image_std is not None else self.image_std
__lowercase = size if size is not None else self.size
__lowercase = get_size_dict(UpperCAmelCase__, default_to_square=UpperCAmelCase__ )
__lowercase = crop_size if crop_size is not None else self.crop_size
__lowercase = get_size_dict(UpperCAmelCase__, param_name="crop_size" )
if not valid_images(UpperCAmelCase__ ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
__lowercase = make_batched(UpperCAmelCase__ )
__lowercase = [
[
self._preprocess_image(
image=UpperCAmelCase__, do_resize=UpperCAmelCase__, size=UpperCAmelCase__, resample=UpperCAmelCase__, do_center_crop=UpperCAmelCase__, crop_size=UpperCAmelCase__, do_rescale=UpperCAmelCase__, rescale_factor=UpperCAmelCase__, do_normalize=UpperCAmelCase__, image_mean=UpperCAmelCase__, image_std=UpperCAmelCase__, data_format=UpperCAmelCase__, )
for img in video
]
for video in videos
]
__lowercase = {"pixel_values": videos}
return BatchFeature(data=UpperCAmelCase__, tensor_type=UpperCAmelCase__ )
| 17 |
"""simple docstring"""
from math import sqrt
def _A ( UpperCamelCase_ : int) -> int:
'''simple docstring'''
__lowercase = 0
for i in range(1, int(sqrt(UpperCamelCase_) + 1)):
if n % i == 0 and i != sqrt(UpperCamelCase_):
total += i + n // i
elif i == sqrt(UpperCamelCase_):
total += i
return total - n
def _A ( UpperCamelCase_ : int = 10000) -> int:
'''simple docstring'''
__lowercase = sum(
i
for i in range(1, UpperCamelCase_)
if sum_of_divisors(sum_of_divisors(UpperCamelCase_)) == i and sum_of_divisors(UpperCamelCase_) != i)
return total
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 17 | 1 |
"""simple docstring"""
from __future__ import annotations
def _A ( UpperCamelCase_ : list[int | str]) -> None:
'''simple docstring'''
create_state_space_tree(UpperCamelCase_, [], 0, [0 for i in range(len(UpperCamelCase_))])
def _A ( UpperCamelCase_ : list[int | str], UpperCamelCase_ : list[int | str], UpperCamelCase_ : int, UpperCamelCase_ : list[int], ) -> None:
'''simple docstring'''
if index == len(UpperCamelCase_):
print(UpperCamelCase_)
return
for i in range(len(UpperCamelCase_)):
if not index_used[i]:
current_sequence.append(sequence[i])
__lowercase = True
create_state_space_tree(UpperCamelCase_, UpperCamelCase_, index + 1, UpperCamelCase_)
current_sequence.pop()
__lowercase = False
_a = [3, 1, 2, 4]
generate_all_permutations(sequence)
_a = ["A", "B", "C"]
generate_all_permutations(sequence_a)
| 17 |
"""simple docstring"""
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
_a = _symbol_database.Default()
_a = _descriptor_pool.Default().AddSerializedFile(
b'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03'
)
_a = globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals)
if _descriptor._USE_C_DESCRIPTORS is False:
_a = None
_a = b'H\003'
# (generated by protobuf compiler, but `_TRAINERSPEC` is not defined)
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001"
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001"
_a = 45
_a = 15_81
_a = 15_17
_a = 15_70
_a = 15_84
_a = 17_93
_a = 17_95
_a = 19_16
_a = 18_64
_a = 19_05
_a = 19_19
_a = 24_29
_a = 22_08
_a = 24_18
_a = 23_23
_a = 24_07
# @@protoc_insertion_point(module_scope)
| 17 | 1 |
"""simple docstring"""
import collections
import json
import math
import os
import re
import time
from fnmatch import fnmatch
from typing import Dict
import requests
from slack_sdk import WebClient
_a = WebClient(token=os.environ['CI_SLACK_BOT_TOKEN'])
def _A ( UpperCamelCase_ : Any) -> Optional[Any]:
'''simple docstring'''
__lowercase = test_results.split(" ")
__lowercase = 0
__lowercase = 0
# When the output is short enough, the output is surrounded by = signs: "== OUTPUT =="
# When it is too long, those signs are not present.
__lowercase = expressions[-2] if "=" in expressions[-1] else expressions[-1]
for i, expression in enumerate(UpperCamelCase_):
if "failed" in expression:
failed += int(expressions[i - 1])
if "passed" in expression:
success += int(expressions[i - 1])
return failed, success, time_spent
def _A ( UpperCamelCase_ : str) -> Optional[int]:
'''simple docstring'''
__lowercase = {}
__lowercase = None
__lowercase = False
for line in failures_short_lines.split("\n"):
if re.search(r"_ \[doctest\]", UpperCamelCase_):
__lowercase = True
__lowercase = line.split(" ")[2]
elif in_error and not line.split(" ")[0].isdigit():
__lowercase = line
__lowercase = False
return failures
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Dict, UpperCAmelCase__ : str, UpperCAmelCase__ : Dict ):
__lowercase = title
__lowercase = doc_test_results["time_spent"].split("," )[0]
__lowercase = doc_test_results["success"]
__lowercase = doc_test_results["failures"]
__lowercase = self.n_success + self.n_failures
# Failures and success of the modeling tests
__lowercase = doc_test_results
@property
def _lowercase ( self : Optional[Any] ):
__lowercase = [self._time_spent]
__lowercase = 0
for time in time_spent:
__lowercase = time.split(":" )
# Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute.
if len(UpperCAmelCase__ ) == 1:
__lowercase = [0, 0, time_parts[0]]
__lowercase ,__lowercase ,__lowercase = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] )
total_secs += hours * 3_6_0_0 + minutes * 6_0 + seconds
__lowercase ,__lowercase ,__lowercase = total_secs // 3_6_0_0, (total_secs % 3_6_0_0) // 6_0, total_secs % 6_0
return F"""{int(UpperCAmelCase__ )}h{int(UpperCAmelCase__ )}m{int(UpperCAmelCase__ )}s"""
@property
def _lowercase ( self : Any ):
return {"type": "header", "text": {"type": "plain_text", "text": self.title}}
@property
def _lowercase ( self : Tuple ):
return {
"type": "section",
"text": {
"type": "plain_text",
"text": F"""🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.""",
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": F"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""",
},
}
@property
def _lowercase ( self : Tuple ):
return {
"type": "section",
"text": {
"type": "plain_text",
"text": (
F"""There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in"""
F""" {self.time}."""
),
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": F"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""",
},
}
@property
def _lowercase ( self : Optional[Any] ):
__lowercase = 4_0
__lowercase = {k: v["failed"] for k, v in doc_test_results.items() if isinstance(UpperCAmelCase__, UpperCAmelCase__ )}
__lowercase = ""
for category, failures in category_failures.items():
if len(UpperCAmelCase__ ) == 0:
continue
if report != "":
report += "\n\n"
report += F"""*{category} failures*:""".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n"
report += "`"
report += "`\n`".join(UpperCAmelCase__ )
report += "`"
return {
"type": "section",
"text": {
"type": "mrkdwn",
"text": F"""The following examples had failures:\n\n\n{report}\n""",
},
}
@property
def _lowercase ( self : Union[str, Any] ):
__lowercase = [self.header]
if self.n_failures > 0:
blocks.append(self.failures )
if self.n_failures > 0:
blocks.extend([self.category_failures] )
if self.n_failures == 0:
blocks.append(self.no_failures )
return json.dumps(UpperCAmelCase__ )
@staticmethod
def _lowercase ( ):
__lowercase = [
{
"type": "section",
"text": {
"type": "plain_text",
"text": "There was an issue running the tests.",
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": F"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""",
},
}
]
print("Sending the following payload" )
print(json.dumps({"blocks": json.loads(UpperCAmelCase__ )} ) )
client.chat_postMessage(
channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"], text="There was an issue running the tests.", blocks=UpperCAmelCase__, )
def _lowercase ( self : Any ):
print("Sending the following payload" )
print(json.dumps({"blocks": json.loads(self.payload )} ) )
__lowercase = F"""{self.n_failures} failures out of {self.n_tests} tests,""" if self.n_failures else "All tests passed."
__lowercase = client.chat_postMessage(
channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"], blocks=self.payload, text=UpperCAmelCase__, )
def _lowercase ( self : Tuple, UpperCAmelCase__ : str, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Any ):
__lowercase = ""
for key, value in failures.items():
__lowercase = value[:2_0_0] + " [Truncated]" if len(UpperCAmelCase__ ) > 2_5_0 else value
failures_text += F"""*{key}*\n_{value}_\n\n"""
__lowercase = job_name
__lowercase = {"type": "section", "text": {"type": "mrkdwn", "text": text}}
if job_link is not None:
__lowercase = {
"type": "button",
"text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True},
"url": job_link,
}
return [
{"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}},
content,
{"type": "section", "text": {"type": "mrkdwn", "text": failures_text}},
]
def _lowercase ( self : Dict ):
if self.thread_ts is None:
raise ValueError("Can only post reply if a post has been made." )
__lowercase = self.doc_test_results.pop("job_link" )
self.doc_test_results.pop("failures" )
self.doc_test_results.pop("success" )
self.doc_test_results.pop("time_spent" )
__lowercase = sorted(self.doc_test_results.items(), key=lambda UpperCAmelCase__ : t[0] )
for job, job_result in sorted_dict:
if len(job_result["failures"] ):
__lowercase = F"""*Num failures* :{len(job_result["failed"] )} \n"""
__lowercase = job_result["failures"]
__lowercase = self.get_reply_blocks(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, text=UpperCAmelCase__ )
print("Sending the following reply" )
print(json.dumps({"blocks": blocks} ) )
client.chat_postMessage(
channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"], text=F"""Results for {job}""", blocks=UpperCAmelCase__, thread_ts=self.thread_ts["ts"], )
time.sleep(1 )
def _A ( ) -> Tuple:
'''simple docstring'''
__lowercase = os.environ["GITHUB_RUN_ID"]
__lowercase = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100"""
__lowercase = requests.get(UpperCamelCase_).json()
__lowercase = {}
try:
jobs.update({job["name"]: job["html_url"] for job in result["jobs"]})
__lowercase = math.ceil((result["total_count"] - 100) / 100)
for i in range(UpperCamelCase_):
__lowercase = requests.get(url + F"""&page={i + 2}""").json()
jobs.update({job["name"]: job["html_url"] for job in result["jobs"]})
return jobs
except Exception as e:
print("Unknown error, could not fetch links.", UpperCamelCase_)
return {}
def _A ( UpperCamelCase_ : str) -> Union[str, Any]:
'''simple docstring'''
__lowercase = {}
if os.path.exists(UpperCamelCase_):
__lowercase = os.listdir(UpperCamelCase_)
for file in files:
try:
with open(os.path.join(UpperCamelCase_, UpperCamelCase_), encoding="utf-8") as f:
__lowercase = f.read()
except UnicodeDecodeError as e:
raise ValueError(F"""Could not open {os.path.join(UpperCamelCase_, UpperCamelCase_)}.""") from e
return _artifact
def _A ( ) -> Optional[int]:
'''simple docstring'''
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Tuple, UpperCAmelCase__ : str ):
__lowercase = name
__lowercase = []
def __str__( self : Union[str, Any] ):
return self.name
def _lowercase ( self : Tuple, UpperCAmelCase__ : str ):
self.paths.append({"name": self.name, "path": path} )
__lowercase = {}
__lowercase = filter(os.path.isdir, os.listdir())
for directory in directories:
__lowercase = directory
if artifact_name not in _available_artifacts:
__lowercase = Artifact(UpperCamelCase_)
_available_artifacts[artifact_name].add_path(UpperCamelCase_)
return _available_artifacts
if __name__ == "__main__":
_a = get_job_links()
_a = retrieve_available_artifacts()
_a = collections.OrderedDict(
[
('*.py', 'API Examples'),
('*.md', 'MD Examples'),
]
)
# This dict will contain all the information relative to each doc test category:
# - failed: list of failed tests
# - failures: dict in the format 'test': 'error_message'
_a = {
v: {
'failed': [],
'failures': {},
}
for v in docs.values()
}
# Link to the GitHub Action job
_a = github_actions_job_links.get('run_doctests')
_a = available_artifacts['doc_tests_gpu_test_reports'].paths[0]
_a = retrieve_artifact(artifact_path['name'])
if "stats" in artifact:
_a , _a , _a = handle_test_results(artifact['stats'])
_a = failed
_a = success
_a = time_spent[1:-1] + ', '
_a = extract_first_line_failure(artifact['failures_short'])
for line in artifact["summary_short"].split('\n'):
if re.search('FAILED', line):
_a = line.replace('FAILED ', '')
_a = line.split()[0].replace('\n', '')
if "::" in line:
_a , _a = line.split('::')
else:
_a , _a = line, line
for file_regex in docs.keys():
if fnmatch(file_path, file_regex):
_a = docs[file_regex]
doc_test_results[category]["failed"].append(test)
_a = all_failures[test] if test in all_failures else 'N/A'
_a = failure
break
_a = Message('🤗 Results of the doc tests.', doc_test_results)
message.post()
message.post_reply()
| 17 |
"""simple docstring"""
import baseaa
def _A ( UpperCamelCase_ : str) -> bytes:
'''simple docstring'''
return baseaa.baaencode(string.encode("utf-8"))
def _A ( UpperCamelCase_ : bytes) -> str:
'''simple docstring'''
return baseaa.baadecode(UpperCamelCase_).decode("utf-8")
if __name__ == "__main__":
_a = 'Hello World!'
_a = baseaa_encode(test)
print(encoded)
_a = baseaa_decode(encoded)
print(decoded)
| 17 | 1 |
"""simple docstring"""
from __future__ import annotations
import random
import unittest
from transformers import TransfoXLConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFTransfoXLForSequenceClassification,
TFTransfoXLLMHeadModel,
TFTransfoXLModel,
)
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Any, UpperCAmelCase__ : List[Any], ):
__lowercase = parent
__lowercase = 1_3
__lowercase = 7
__lowercase = 3_0
__lowercase = self.seq_length + self.mem_len
__lowercase = 1_5
__lowercase = True
__lowercase = True
__lowercase = 9_9
__lowercase = [1_0, 5_0, 8_0]
__lowercase = 3_2
__lowercase = 3_2
__lowercase = 4
__lowercase = 8
__lowercase = 1_2_8
__lowercase = 2
__lowercase = 2
__lowercase = None
__lowercase = 1
__lowercase = 0
__lowercase = 3
__lowercase = self.vocab_size - 1
__lowercase = 0.01
def _lowercase ( self : List[str] ):
__lowercase = ids_tensor([self.batch_size, self.seq_length], self.vocab_size )
__lowercase = ids_tensor([self.batch_size, self.seq_length], self.vocab_size )
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size, self.seq_length], self.vocab_size )
__lowercase = TransfoXLConfig(
vocab_size=self.vocab_size, mem_len=self.mem_len, clamp_len=self.clamp_len, cutoffs=self.cutoffs, d_model=self.hidden_size, d_embed=self.d_embed, n_head=self.num_attention_heads, d_head=self.d_head, d_inner=self.d_inner, div_val=self.div_val, n_layer=self.num_hidden_layers, eos_token_id=self.eos_token_id, pad_token_id=self.vocab_size - 1, init_range=self.init_range, num_labels=self.num_labels, )
return (config, input_ids_a, input_ids_a, lm_labels)
def _lowercase ( self : List[Any] ):
random.seed(self.seed )
tf.random.set_seed(self.seed )
def _lowercase ( self : int, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : int, UpperCAmelCase__ : Tuple ):
__lowercase = TFTransfoXLModel(UpperCAmelCase__ )
__lowercase ,__lowercase = model(UpperCAmelCase__ ).to_tuple()
__lowercase = {"input_ids": input_ids_a, "mems": mems_a}
__lowercase ,__lowercase = model(UpperCAmelCase__ ).to_tuple()
self.parent.assertEqual(hidden_states_a.shape, (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(hidden_states_a.shape, (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertListEqual(
[mem.shape for mem in mems_a], [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers, )
self.parent.assertListEqual(
[mem.shape for mem in mems_a], [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers, )
def _lowercase ( self : List[str], UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Dict, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : List[str] ):
__lowercase = TFTransfoXLLMHeadModel(UpperCAmelCase__ )
__lowercase ,__lowercase = model(UpperCAmelCase__ ).to_tuple()
__lowercase = {"input_ids": input_ids_a, "labels": lm_labels}
__lowercase ,__lowercase = model(UpperCAmelCase__ ).to_tuple()
__lowercase ,__lowercase = model([input_ids_a, mems_a] ).to_tuple()
__lowercase = {"input_ids": input_ids_a, "mems": mems_a, "labels": lm_labels}
__lowercase ,__lowercase = model(UpperCAmelCase__ ).to_tuple()
self.parent.assertEqual(lm_logits_a.shape, (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertListEqual(
[mem.shape for mem in mems_a], [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers, )
self.parent.assertEqual(lm_logits_a.shape, (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertListEqual(
[mem.shape for mem in mems_a], [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers, )
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : str, UpperCAmelCase__ : str, UpperCAmelCase__ : Optional[int] ):
__lowercase = TFTransfoXLForSequenceClassification(UpperCAmelCase__ )
__lowercase = model(UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) )
def _lowercase ( self : Any ):
__lowercase = self.prepare_config_and_inputs()
((__lowercase) ,(__lowercase) ,(__lowercase) ,(__lowercase)) = config_and_inputs
__lowercase = {"input_ids": input_ids_a}
return config, inputs_dict
@require_tf
class _lowerCAmelCase ( lowercase ,lowercase ,unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = (
(TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else ()
)
__UpperCAmelCase : Union[str, Any] = () if is_tf_available() else ()
__UpperCAmelCase : List[str] = (
{
"feature-extraction": TFTransfoXLModel,
"text-classification": TFTransfoXLForSequenceClassification,
"text-generation": TFTransfoXLLMHeadModel,
"zero-shot": TFTransfoXLForSequenceClassification,
}
if is_tf_available()
else {}
)
# TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented
__UpperCAmelCase : Tuple = False
__UpperCAmelCase : List[str] = False
__UpperCAmelCase : Any = False
__UpperCAmelCase : List[Any] = False
def _lowercase ( self : str, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Any, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : int ):
if pipeline_test_casse_name == "TextGenerationPipelineTests":
# Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`.
# `TransfoXLConfig` was never used in pipeline tests: cannot create a simple
# tokenizer.
return True
return False
def _lowercase ( self : List[str] ):
__lowercase = TFTransfoXLModelTester(self )
__lowercase = ConfigTester(self, config_class=UpperCAmelCase__, d_embed=3_7 )
def _lowercase ( self : int ):
self.config_tester.run_common_tests()
def _lowercase ( self : Union[str, Any] ):
self.model_tester.set_seed()
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_model(*UpperCAmelCase__ )
def _lowercase ( self : Tuple ):
self.model_tester.set_seed()
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_lm_head(*UpperCAmelCase__ )
def _lowercase ( self : Optional[int] ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*UpperCAmelCase__ )
def _lowercase ( self : int ):
__lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common()
__lowercase = [TFTransfoXLForSequenceClassification]
for model_class in self.all_model_classes:
__lowercase = model_class(UpperCAmelCase__ )
assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer )
if model_class in list_other_models_with_output_ebd:
__lowercase = model.get_output_embeddings()
assert isinstance(UpperCAmelCase__, tf.keras.layers.Layer )
__lowercase = model.get_bias()
assert name is None
else:
__lowercase = model.get_output_embeddings()
assert x is None
__lowercase = model.get_bias()
assert name is None
def _lowercase ( self : List[str] ):
# TODO JP: Make TransfoXL XLA compliant
pass
@slow
def _lowercase ( self : Tuple ):
for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowercase = TFTransfoXLModel.from_pretrained(UpperCAmelCase__ )
self.assertIsNotNone(UpperCAmelCase__ )
@unittest.skip(reason="This model doesn't play well with fit() due to not returning a single loss." )
def _lowercase ( self : Any ):
pass
@require_tf
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@unittest.skip("Skip test until #12651 is resolved." )
@slow
def _lowercase ( self : List[str] ):
__lowercase = TFTransfoXLLMHeadModel.from_pretrained("transfo-xl-wt103" )
# fmt: off
__lowercase = tf.convert_to_tensor([[3_3,1_2_9_7,2,1,1_0_0_9,4,1_1_0_9,1_1_7_3_9,4_7_6_2,3_5_8,5,2_5,2_4_5,2_2,1_7_0_6,1_7,2_0_0_9_8,5,3_2_1_5,2_1,3_7,1_1_1_0,3,1_3,1_0_4_1,4,2_4,6_0_3,4_9_0,2,7_1_4_7_7,2_0_0_9_8,1_0_4_4_4_7,2,2_0_9_6_1,1,2_6_0_4,4,1,3_2_9,3,6_2_2_4,8_3_1,1_6_0_0_2,2,8,6_0_3,7_8_9_6_7,2_9_5_4_6,2_3,8_0_3,2_0,2_5,4_1_6,5,8,2_3_2,4,2_7_7,6,1_8_5_5,4_6_0_1,3,2_9_5_4_6,5_4,8,3_6_0_9,5,5_7_2_1_1,4_9,4,1,2_7_7,1_8,8,1_7_5_5,1_5_6_9_1,3,3_4_1,2_5,4_1_6,6_9_3,4_2_5_7_3,7_1,1_7,4_0_1,9_4,3_1,1_7_9_1_9,2,2_9_5_4_6,7_8_7_3,1_8,1,4_3_5,2_3,1_1_0_1_1,7_5_5,5,5_1_6_7,3,7_9_8_3,9_8,8_4,2,2_9_5_4_6,3_2_6_7,8,3_6_0_9,4,1,4_8_6_5,1_0_7_5,2,6_0_8_7,7_1,6,3_4_6,8,5_8_5_4,3,2_9_5_4_6,8_2_4,1_4_0_0,1_8_6_8,2,1_9,1_6_0,2,3_1_1,8,5_4_9_6,2,2_0_9_2_0,1_7,2_5,1_5_0_9_7,3,2_4,2_4,0]], dtype=tf.intaa ) # noqa: E231
# fmt: on
# In 1991 , the remains of Russian Tsar Nicholas II and his family
# ( except for Alexei and Maria ) are discovered .
# The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the
# remainder of the story . 1883 Western Siberia ,
# a young Grigori Rasputin is asked by his father and a group of men to perform magic .
# Rasputin has a vision and denounces one of the men as a horse thief . Although his
# father initially slaps him for making such an accusation , Rasputin watches as the
# man is chased outside and beaten . Twenty years later , Rasputin sees a vision of
# the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous ,
# with people , even a bishop , begging for his blessing . <eod> </s> <eos>
# fmt: off
__lowercase = [3_3,1_2_9_7,2,1,1_0_0_9,4,1_1_0_9,1_1_7_3_9,4_7_6_2,3_5_8,5,2_5,2_4_5,2_2,1_7_0_6,1_7,2_0_0_9_8,5,3_2_1_5,2_1,3_7,1_1_1_0,3,1_3,1_0_4_1,4,2_4,6_0_3,4_9_0,2,7_1_4_7_7,2_0_0_9_8,1_0_4_4_4_7,2,2_0_9_6_1,1,2_6_0_4,4,1,3_2_9,3,6_2_2_4,8_3_1,1_6_0_0_2,2,8,6_0_3,7_8_9_6_7,2_9_5_4_6,2_3,8_0_3,2_0,2_5,4_1_6,5,8,2_3_2,4,2_7_7,6,1_8_5_5,4_6_0_1,3,2_9_5_4_6,5_4,8,3_6_0_9,5,5_7_2_1_1,4_9,4,1,2_7_7,1_8,8,1_7_5_5,1_5_6_9_1,3,3_4_1,2_5,4_1_6,6_9_3,4_2_5_7_3,7_1,1_7,4_0_1,9_4,3_1,1_7_9_1_9,2,2_9_5_4_6,7_8_7_3,1_8,1,4_3_5,2_3,1_1_0_1_1,7_5_5,5,5_1_6_7,3,7_9_8_3,9_8,8_4,2,2_9_5_4_6,3_2_6_7,8,3_6_0_9,4,1,4_8_6_5,1_0_7_5,2,6_0_8_7,7_1,6,3_4_6,8,5_8_5_4,3,2_9_5_4_6,8_2_4,1_4_0_0,1_8_6_8,2,1_9,1_6_0,2,3_1_1,8,5_4_9_6,2,2_0_9_2_0,1_7,2_5,1_5_0_9_7,3,2_4,2_4,0,3_3,1,1_8_5_7,2,1,1_0_0_9,4,1_1_0_9,1_1_7_3_9,4_7_6_2,3_5_8,5,2_5,2_4_5,2_8,1_1_1_0,3,1_3,1_0_4_1,4,2_4,6_0_3,4_9_0,2,7_1_4_7_7,2_0_0_9_8,1_0_4_4_4_7,2,2_0_9_6_1,1,2_6_0_4,4,1,3_2_9,3,0] # noqa: E231
# fmt: on
# In 1991, the remains of Russian Tsar Nicholas II and his family (
# except for Alexei and Maria ) are discovered. The voice of young son,
# Tsarevich Alexei Nikolaevich, narrates the remainder of the story.
# 1883 Western Siberia, a young Grigori Rasputin is asked by his father
# and a group of men to perform magic. Rasputin has a vision and
# denounces one of the men as a horse thief. Although his father initially
# slaps him for making such an accusation, Rasputin watches as the man
# is chased outside and beaten. Twenty years later, Rasputin sees a vision
# of the Virgin Mary, prompting him to become a priest.
# Rasputin quickly becomes famous, with people, even a bishop, begging for
# his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar
# Nicholas II and his family were discovered. The voice of <unk> young son,
# Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos>
__lowercase = model.generate(UpperCAmelCase__, max_length=2_0_0, do_sample=UpperCAmelCase__ )
self.assertListEqual(output_ids[0].numpy().tolist(), UpperCAmelCase__ )
| 17 |
"""simple docstring"""
def _A ( UpperCamelCase_ : Any) -> List[str]:
'''simple docstring'''
__lowercase ,__lowercase = [], []
while len(UpperCamelCase_) > 1:
__lowercase ,__lowercase = min(UpperCamelCase_), max(UpperCamelCase_)
start.append(UpperCamelCase_)
end.append(UpperCamelCase_)
collection.remove(UpperCamelCase_)
collection.remove(UpperCamelCase_)
end.reverse()
return start + collection + end
if __name__ == "__main__":
_a = input('Enter numbers separated by a comma:\n').strip()
_a = [int(item) for item in user_input.split(',')]
print(*merge_sort(unsorted), sep=',')
| 17 | 1 |
"""simple docstring"""
def _A ( UpperCamelCase_ : float, UpperCamelCase_ : float) -> float:
'''simple docstring'''
if mass < 0:
raise ValueError("The mass of a body cannot be negative")
return 0.5 * mass * abs(UpperCamelCase_) * abs(UpperCamelCase_)
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 17 |
"""simple docstring"""
def _A ( UpperCamelCase_ : list[int]) -> float:
'''simple docstring'''
if not nums: # Makes sure that the list is not empty
raise ValueError("List is empty")
__lowercase = sum(UpperCamelCase_) / len(UpperCamelCase_) # Calculate the average
return sum(abs(x - average) for x in nums) / len(UpperCamelCase_)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 17 | 1 |
"""simple docstring"""
import re
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
__UpperCAmelCase : Optional[int] = ["image_processor", "tokenizer"]
__UpperCAmelCase : List[str] = "AutoImageProcessor"
__UpperCAmelCase : List[Any] = "AutoTokenizer"
def __init__( self : List[Any], UpperCAmelCase__ : int=None, UpperCAmelCase__ : Any=None, **UpperCAmelCase__ : Tuple ):
__lowercase = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead.", UpperCAmelCase__, )
__lowercase = kwargs.pop("feature_extractor" )
__lowercase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = self.image_processor
__lowercase = False
def __call__( self : Optional[Any], *UpperCAmelCase__ : int, **UpperCAmelCase__ : Union[str, Any] ):
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*UpperCAmelCase__, **UpperCAmelCase__ )
__lowercase = kwargs.pop("images", UpperCAmelCase__ )
__lowercase = kwargs.pop("text", UpperCAmelCase__ )
if len(UpperCAmelCase__ ) > 0:
__lowercase = args[0]
__lowercase = args[1:]
if images is None and text is None:
raise ValueError("You need to specify either an `images` or `text` input to process." )
if images is not None:
__lowercase = self.image_processor(UpperCAmelCase__, *UpperCAmelCase__, **UpperCAmelCase__ )
if text is not None:
__lowercase = self.tokenizer(UpperCAmelCase__, **UpperCAmelCase__ )
if text is None:
return inputs
elif images is None:
return encodings
else:
__lowercase = encodings["input_ids"]
return inputs
def _lowercase ( self : Union[str, Any], *UpperCAmelCase__ : int, **UpperCAmelCase__ : int ):
return self.tokenizer.batch_decode(*UpperCAmelCase__, **UpperCAmelCase__ )
def _lowercase ( self : Any, *UpperCAmelCase__ : str, **UpperCAmelCase__ : Optional[Any] ):
return self.tokenizer.decode(*UpperCAmelCase__, **UpperCAmelCase__ )
@contextmanager
def _lowercase ( self : str ):
warnings.warn(
"`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your "
"labels by using the argument `text` of the regular `__call__` method (either in the same call as "
"your images inputs, or in a separate call." )
__lowercase = True
__lowercase = self.tokenizer
yield
__lowercase = self.image_processor
__lowercase = False
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[Any]=False, UpperCAmelCase__ : List[Any]=None ):
if added_vocab is None:
__lowercase = self.tokenizer.get_added_vocab()
__lowercase = {}
while tokens:
__lowercase = re.search(r"<s_(.*?)>", UpperCAmelCase__, re.IGNORECASE )
if start_token is None:
break
__lowercase = start_token.group(1 )
__lowercase = re.search(rF"""</s_{key}>""", UpperCAmelCase__, re.IGNORECASE )
__lowercase = start_token.group()
if end_token is None:
__lowercase = tokens.replace(UpperCAmelCase__, "" )
else:
__lowercase = end_token.group()
__lowercase = re.escape(UpperCAmelCase__ )
__lowercase = re.escape(UpperCAmelCase__ )
__lowercase = re.search(F"""{start_token_escaped}(.*?){end_token_escaped}""", UpperCAmelCase__, re.IGNORECASE )
if content is not None:
__lowercase = content.group(1 ).strip()
if r"<s_" in content and r"</s_" in content: # non-leaf node
__lowercase = self.tokenajson(UpperCAmelCase__, is_inner_value=UpperCAmelCase__, added_vocab=UpperCAmelCase__ )
if value:
if len(UpperCAmelCase__ ) == 1:
__lowercase = value[0]
__lowercase = value
else: # leaf nodes
__lowercase = []
for leaf in content.split(r"<sep/>" ):
__lowercase = leaf.strip()
if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>":
__lowercase = leaf[1:-2] # for categorical special tokens
output[key].append(UpperCAmelCase__ )
if len(output[key] ) == 1:
__lowercase = output[key][0]
__lowercase = tokens[tokens.find(UpperCAmelCase__ ) + len(UpperCAmelCase__ ) :].strip()
if tokens[:6] == r"<sep/>": # non-leaf nodes
return [output] + self.tokenajson(tokens[6:], is_inner_value=UpperCAmelCase__, added_vocab=UpperCAmelCase__ )
if len(UpperCAmelCase__ ):
return [output] if is_inner_value else output
else:
return [] if is_inner_value else {"text_sequence": tokens}
@property
def _lowercase ( self : Union[str, Any] ):
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.", UpperCAmelCase__, )
return self.image_processor_class
@property
def _lowercase ( self : List[str] ):
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.", UpperCAmelCase__, )
return self.image_processor
| 17 |
"""simple docstring"""
import inspect
import unittest
import numpy as np
from transformers import BeitConfig
from transformers.testing_utils import require_flax, require_vision, slow
from transformers.utils import cached_property, is_flax_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor
if is_flax_available():
import jax
from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : int=1_0_0, UpperCAmelCase__ : Any=1_3, UpperCAmelCase__ : List[Any]=3_0, UpperCAmelCase__ : Dict=2, UpperCAmelCase__ : Any=3, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[str]=True, UpperCAmelCase__ : Optional[Any]=3_2, UpperCAmelCase__ : Any=5, UpperCAmelCase__ : Any=4, UpperCAmelCase__ : Any=3_7, UpperCAmelCase__ : Optional[int]="gelu", UpperCAmelCase__ : Dict=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Dict=1_0, UpperCAmelCase__ : Tuple=0.02, UpperCAmelCase__ : List[Any]=3, ):
__lowercase = parent
__lowercase = vocab_size
__lowercase = batch_size
__lowercase = image_size
__lowercase = patch_size
__lowercase = num_channels
__lowercase = is_training
__lowercase = use_labels
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = type_sequence_label_size
__lowercase = initializer_range
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
__lowercase = (image_size // patch_size) ** 2
__lowercase = num_patches + 1
def _lowercase ( self : int ):
__lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size], self.type_sequence_label_size )
__lowercase = BeitConfig(
vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=UpperCAmelCase__, initializer_range=self.initializer_range, )
return config, pixel_values, labels
def _lowercase ( self : Any, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[str], UpperCAmelCase__ : List[str] ):
__lowercase = FlaxBeitModel(config=UpperCAmelCase__ )
__lowercase = model(UpperCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : List[Any] ):
__lowercase = FlaxBeitForMaskedImageModeling(config=UpperCAmelCase__ )
__lowercase = model(UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size) )
def _lowercase ( self : Dict, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : Union[str, Any] ):
__lowercase = self.type_sequence_label_size
__lowercase = FlaxBeitForImageClassification(config=UpperCAmelCase__ )
__lowercase = model(UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__lowercase = 1
__lowercase = FlaxBeitForImageClassification(UpperCAmelCase__ )
__lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__lowercase = model(UpperCAmelCase__ )
def _lowercase ( self : List[str] ):
__lowercase = self.prepare_config_and_inputs()
(
(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,
) = config_and_inputs
__lowercase = {"pixel_values": pixel_values}
return config, inputs_dict
@require_flax
class _lowerCAmelCase ( lowercase ,unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : str = (
(FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else ()
)
def _lowercase ( self : List[Any] ):
__lowercase = FlaxBeitModelTester(self )
__lowercase = ConfigTester(self, config_class=UpperCAmelCase__, has_text_modality=UpperCAmelCase__, hidden_size=3_7 )
def _lowercase ( self : Union[str, Any] ):
self.config_tester.run_common_tests()
def _lowercase ( self : Optional[int] ):
__lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowercase = model_class(UpperCAmelCase__ )
__lowercase = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowercase = [*signature.parameters.keys()]
__lowercase = ["pixel_values"]
self.assertListEqual(arg_names[:1], UpperCAmelCase__ )
def _lowercase ( self : Tuple ):
__lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__lowercase = self._prepare_for_class(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = model_class(UpperCAmelCase__ )
@jax.jit
def model_jitted(UpperCAmelCase__ : str, **UpperCAmelCase__ : Dict ):
return model(pixel_values=UpperCAmelCase__, **UpperCAmelCase__ )
with self.subTest("JIT Enabled" ):
__lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
__lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple()
self.assertEqual(len(UpperCAmelCase__ ), len(UpperCAmelCase__ ) )
for jitted_output, output in zip(UpperCAmelCase__, UpperCAmelCase__ ):
self.assertEqual(jitted_output.shape, output.shape )
def _lowercase ( self : List[str] ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase__ )
def _lowercase ( self : int ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ )
def _lowercase ( self : Tuple ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ )
@slow
def _lowercase ( self : Union[str, Any] ):
for model_class_name in self.all_model_classes:
__lowercase = model_class_name.from_pretrained("microsoft/beit-base-patch16-224" )
__lowercase = model(np.ones((1, 3, 2_2_4, 2_2_4) ) )
self.assertIsNotNone(UpperCAmelCase__ )
def _A ( ) -> str:
'''simple docstring'''
__lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_vision
@require_flax
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _lowercase ( self : Optional[int] ):
return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None
@slow
def _lowercase ( self : Any ):
__lowercase = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" )
__lowercase = self.default_image_processor
__lowercase = prepare_img()
__lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ).pixel_values
# prepare bool_masked_pos
__lowercase = np.ones((1, 1_9_6), dtype=UpperCAmelCase__ )
# forward pass
__lowercase = model(pixel_values=UpperCAmelCase__, bool_masked_pos=UpperCAmelCase__ )
__lowercase = outputs.logits
# verify the logits
__lowercase = (1, 1_9_6, 8_1_9_2)
self.assertEqual(logits.shape, UpperCAmelCase__ )
__lowercase = np.array(
[[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] )
self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3], UpperCAmelCase__, atol=1E-2 ) )
@slow
def _lowercase ( self : Any ):
__lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" )
__lowercase = self.default_image_processor
__lowercase = prepare_img()
__lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" )
# forward pass
__lowercase = model(**UpperCAmelCase__ )
__lowercase = outputs.logits
# verify the logits
__lowercase = (1, 1_0_0_0)
self.assertEqual(logits.shape, UpperCAmelCase__ )
__lowercase = np.array([-1.2_385, -1.0_987, -1.0_108] )
self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) )
__lowercase = 2_8_1
self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ )
@slow
def _lowercase ( self : List[str] ):
__lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" )
__lowercase = self.default_image_processor
__lowercase = prepare_img()
__lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" )
# forward pass
__lowercase = model(**UpperCAmelCase__ )
__lowercase = outputs.logits
# verify the logits
__lowercase = (1, 2_1_8_4_1)
self.assertEqual(logits.shape, UpperCAmelCase__ )
__lowercase = np.array([1.6_881, -0.2_787, 0.5_901] )
self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) )
__lowercase = 2_3_9_6
self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ )
| 17 | 1 |
"""simple docstring"""
_a = {
0: '0',
1: '1',
2: '2',
3: '3',
4: '4',
5: '5',
6: '6',
7: '7',
8: '8',
9: '9',
10: 'a',
11: 'b',
12: 'c',
13: 'd',
14: 'e',
15: 'f',
}
def _A ( UpperCamelCase_ : float) -> str:
'''simple docstring'''
assert type(UpperCamelCase_) in (int, float) and decimal == int(UpperCamelCase_)
__lowercase = int(UpperCamelCase_)
__lowercase = ""
__lowercase = False
if decimal < 0:
__lowercase = True
decimal *= -1
while decimal > 0:
__lowercase ,__lowercase = divmod(UpperCamelCase_, 16)
__lowercase = values[remainder] + hexadecimal
__lowercase = "0x" + hexadecimal
if negative:
__lowercase = "-" + hexadecimal
return hexadecimal
if __name__ == "__main__":
import doctest
doctest.testmod()
| 17 |
"""simple docstring"""
import unittest
from transformers import load_tool
from .test_tools_common import ToolTesterMixin
class _lowerCAmelCase ( unittest.TestCase ,lowercase ):
"""simple docstring"""
def _lowercase ( self : List[Any] ):
__lowercase = load_tool("text-classification" )
self.tool.setup()
__lowercase = load_tool("text-classification", remote=UpperCAmelCase__ )
def _lowercase ( self : str ):
__lowercase = self.tool("That's quite cool", ["positive", "negative"] )
self.assertEqual(UpperCAmelCase__, "positive" )
def _lowercase ( self : str ):
__lowercase = self.remote_tool("That's quite cool", ["positive", "negative"] )
self.assertEqual(UpperCAmelCase__, "positive" )
def _lowercase ( self : List[str] ):
__lowercase = self.tool(text="That's quite cool", labels=["positive", "negative"] )
self.assertEqual(UpperCAmelCase__, "positive" )
def _lowercase ( self : Tuple ):
__lowercase = self.remote_tool(text="That's quite cool", labels=["positive", "negative"] )
self.assertEqual(UpperCAmelCase__, "positive" )
| 17 | 1 |
"""simple docstring"""
import os
def _A ( UpperCamelCase_ : int) -> Any:
'''simple docstring'''
__lowercase = len(grid[0])
__lowercase = len(UpperCamelCase_)
__lowercase = 0
__lowercase = 0
__lowercase = 0
# Check vertically, horizontally, diagonally at the same time (only works
# for nxn grid)
for i in range(UpperCamelCase_):
for j in range(n_rows - 3):
__lowercase = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i]
__lowercase = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3]
# Left-to-right diagonal (\) product
if i < n_columns - 3:
__lowercase = (
grid[i][j]
* grid[i + 1][j + 1]
* grid[i + 2][j + 2]
* grid[i + 3][j + 3]
)
# Right-to-left diagonal(/) product
if i > 2:
__lowercase = (
grid[i][j]
* grid[i - 1][j + 1]
* grid[i - 2][j + 2]
* grid[i - 3][j + 3]
)
__lowercase = max(
UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_)
if max_product > largest:
__lowercase = max_product
return largest
def _A ( ) -> Optional[int]:
'''simple docstring'''
__lowercase = []
with open(os.path.dirname(UpperCamelCase_) + "/grid.txt") as file:
for line in file:
grid.append(line.strip("\n").split(" "))
__lowercase = [[int(UpperCamelCase_) for i in grid[j]] for j in range(len(UpperCamelCase_))]
return largest_product(UpperCamelCase_)
if __name__ == "__main__":
print(solution())
| 17 |
"""simple docstring"""
from typing import Any, Callable, Dict, List, Optional, Union
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
_a = 'CompVis/stable-diffusion-v1-1'
_a = 'CompVis/stable-diffusion-v1-2'
_a = 'CompVis/stable-diffusion-v1-3'
_a = 'CompVis/stable-diffusion-v1-4'
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
def __init__( self : Dict, UpperCAmelCase__ : AutoencoderKL, UpperCAmelCase__ : CLIPTextModel, UpperCAmelCase__ : CLIPTokenizer, UpperCAmelCase__ : UNetaDConditionModel, UpperCAmelCase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], UpperCAmelCase__ : StableDiffusionSafetyChecker, UpperCAmelCase__ : CLIPImageProcessor, UpperCAmelCase__ : bool = True, ):
super()._init_()
__lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ )
__lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ )
__lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ )
__lowercase = StableDiffusionPipeline(
vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, tokenizer=UpperCAmelCase__, unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, safety_checker=UpperCAmelCase__, feature_extractor=UpperCAmelCase__, requires_safety_checker=UpperCAmelCase__, )
self.register_modules(pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea )
@property
def _lowercase ( self : List[str] ):
return {k: getattr(self, UpperCAmelCase__ ) for k in self.config.keys() if not k.startswith("_" )}
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ):
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
__lowercase = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(UpperCAmelCase__ )
def _lowercase ( self : List[str] ):
self.enable_attention_slicing(UpperCAmelCase__ )
@torch.no_grad()
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Tuple, ):
return self.pipea(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
@torch.no_grad()
def _lowercase ( self : Tuple, UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : str, ):
return self.pipea(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
@torch.no_grad()
def _lowercase ( self : str, UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Any, ):
return self.pipea(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
@torch.no_grad()
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Optional[int], ):
return self.pipea(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
@torch.no_grad()
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : str, ):
__lowercase = "cuda" if torch.cuda.is_available() else "cpu"
self.to(UpperCAmelCase__ )
# Checks if the height and width are divisible by 8 or not
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" )
# Get first result from Stable Diffusion Checkpoint v1.1
__lowercase = self.textaimg_sda_a(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
# Get first result from Stable Diffusion Checkpoint v1.2
__lowercase = self.textaimg_sda_a(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
# Get first result from Stable Diffusion Checkpoint v1.3
__lowercase = self.textaimg_sda_a(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
# Get first result from Stable Diffusion Checkpoint v1.4
__lowercase = self.textaimg_sda_a(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
# Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result
return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
| 17 | 1 |
"""simple docstring"""
import torch
from diffusers import EulerDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
__UpperCAmelCase : str = (EulerDiscreteScheduler,)
__UpperCAmelCase : Optional[Any] = 1_0
def _lowercase ( self : List[str], **UpperCAmelCase__ : Optional[int] ):
__lowercase = {
"num_train_timesteps": 1_1_0_0,
"beta_start": 0.0_001,
"beta_end": 0.02,
"beta_schedule": "linear",
}
config.update(**UpperCAmelCase__ )
return config
def _lowercase ( self : str ):
for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=UpperCAmelCase__ )
def _lowercase ( self : Dict ):
for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001], [0.0_002, 0.002, 0.02] ):
self.check_over_configs(beta_start=UpperCAmelCase__, beta_end=UpperCAmelCase__ )
def _lowercase ( self : Optional[Any] ):
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=UpperCAmelCase__ )
def _lowercase ( self : int ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=UpperCAmelCase__ )
def _lowercase ( self : Dict ):
__lowercase = self.scheduler_classes[0]
__lowercase = self.get_scheduler_config()
__lowercase = scheduler_class(**UpperCAmelCase__ )
scheduler.set_timesteps(self.num_inference_steps )
__lowercase = torch.manual_seed(0 )
__lowercase = self.dummy_model()
__lowercase = self.dummy_sample_deter * scheduler.init_noise_sigma
__lowercase = sample.to(UpperCAmelCase__ )
for i, t in enumerate(scheduler.timesteps ):
__lowercase = scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = model(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = scheduler.step(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, generator=UpperCAmelCase__ )
__lowercase = output.prev_sample
__lowercase = torch.sum(torch.abs(UpperCAmelCase__ ) )
__lowercase = torch.mean(torch.abs(UpperCAmelCase__ ) )
assert abs(result_sum.item() - 10.0_807 ) < 1E-2
assert abs(result_mean.item() - 0.0_131 ) < 1E-3
def _lowercase ( self : List[Any] ):
__lowercase = self.scheduler_classes[0]
__lowercase = self.get_scheduler_config(prediction_type="v_prediction" )
__lowercase = scheduler_class(**UpperCAmelCase__ )
scheduler.set_timesteps(self.num_inference_steps )
__lowercase = torch.manual_seed(0 )
__lowercase = self.dummy_model()
__lowercase = self.dummy_sample_deter * scheduler.init_noise_sigma
__lowercase = sample.to(UpperCAmelCase__ )
for i, t in enumerate(scheduler.timesteps ):
__lowercase = scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = model(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = scheduler.step(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, generator=UpperCAmelCase__ )
__lowercase = output.prev_sample
__lowercase = torch.sum(torch.abs(UpperCAmelCase__ ) )
__lowercase = torch.mean(torch.abs(UpperCAmelCase__ ) )
assert abs(result_sum.item() - 0.0_002 ) < 1E-2
assert abs(result_mean.item() - 2.2_676E-06 ) < 1E-3
def _lowercase ( self : str ):
__lowercase = self.scheduler_classes[0]
__lowercase = self.get_scheduler_config()
__lowercase = scheduler_class(**UpperCAmelCase__ )
scheduler.set_timesteps(self.num_inference_steps, device=UpperCAmelCase__ )
__lowercase = torch.manual_seed(0 )
__lowercase = self.dummy_model()
__lowercase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
__lowercase = sample.to(UpperCAmelCase__ )
for t in scheduler.timesteps:
__lowercase = scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = model(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = scheduler.step(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, generator=UpperCAmelCase__ )
__lowercase = output.prev_sample
__lowercase = torch.sum(torch.abs(UpperCAmelCase__ ) )
__lowercase = torch.mean(torch.abs(UpperCAmelCase__ ) )
assert abs(result_sum.item() - 10.0_807 ) < 1E-2
assert abs(result_mean.item() - 0.0_131 ) < 1E-3
def _lowercase ( self : str ):
__lowercase = self.scheduler_classes[0]
__lowercase = self.get_scheduler_config()
__lowercase = scheduler_class(**UpperCAmelCase__, use_karras_sigmas=UpperCAmelCase__ )
scheduler.set_timesteps(self.num_inference_steps, device=UpperCAmelCase__ )
__lowercase = torch.manual_seed(0 )
__lowercase = self.dummy_model()
__lowercase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
__lowercase = sample.to(UpperCAmelCase__ )
for t in scheduler.timesteps:
__lowercase = scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = model(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = scheduler.step(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, generator=UpperCAmelCase__ )
__lowercase = output.prev_sample
__lowercase = torch.sum(torch.abs(UpperCAmelCase__ ) )
__lowercase = torch.mean(torch.abs(UpperCAmelCase__ ) )
assert abs(result_sum.item() - 124.52_299_499_511_719 ) < 1E-2
assert abs(result_mean.item() - 0.16_213_932_633_399_963 ) < 1E-3
| 17 |
"""simple docstring"""
import random
import unittest
import numpy as np
import torch
from diffusers import (
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionUpscalePipeline,
PNDMScheduler,
)
from diffusers.utils import floats_tensor
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class _lowerCAmelCase ( lowercase ,unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : str = "ssube/stable-diffusion-x4-upscaler-onnx"
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : List[str]=0 ):
__lowercase = floats_tensor((1, 3, 1_2_8, 1_2_8), rng=random.Random(UpperCAmelCase__ ) )
__lowercase = torch.manual_seed(UpperCAmelCase__ )
__lowercase = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 7.5,
"output_type": "numpy",
}
return inputs
def _lowercase ( self : Any ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1].flatten()
# started as 128, should now be 512
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] )
assert np.abs(image_slice - expected_slice ).max() < 1E-1
def _lowercase ( self : Optional[Any] ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
__lowercase = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.6_898_892, 0.59_240_556, 0.52_499_527, 0.58_866_215, 0.52_258_235, 0.52_572_715, 0.62_414_473, 0.6_174_387, 0.6_214_964] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def _lowercase ( self : int ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
__lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.7_659_278, 0.76_437_664, 0.75_579_107, 0.7_691_116, 0.77_666_986, 0.7_727_672, 0.7_758_664, 0.7_812_226, 0.76_942_515] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def _lowercase ( self : str ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
__lowercase = EulerDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def _lowercase ( self : Any ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
__lowercase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.77_424_496, 0.773_601, 0.7_645_288, 0.7_769_598, 0.7_772_739, 0.7_738_688, 0.78_187_233, 0.77_879_584, 0.767_043] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
@nightly
@require_onnxruntime
@require_torch_gpu
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@property
def _lowercase ( self : Tuple ):
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def _lowercase ( self : Dict ):
__lowercase = ort.SessionOptions()
__lowercase = False
return options
def _lowercase ( self : Dict ):
__lowercase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg" )
__lowercase = init_image.resize((1_2_8, 1_2_8) )
# using the PNDM scheduler by default
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(
"ssube/stable-diffusion-x4-upscaler-onnx", provider=self.gpu_provider, sess_options=self.gpu_options, )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = "A fantasy landscape, trending on artstation"
__lowercase = torch.manual_seed(0 )
__lowercase = pipe(
prompt=UpperCAmelCase__, image=UpperCAmelCase__, guidance_scale=7.5, num_inference_steps=1_0, generator=UpperCAmelCase__, output_type="np", )
__lowercase = output.images
__lowercase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert images.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array([0.4_883, 0.4_947, 0.4_980, 0.4_975, 0.4_982, 0.4_980, 0.5_000, 0.5_006, 0.4_972] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
def _lowercase ( self : str ):
__lowercase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg" )
__lowercase = init_image.resize((1_2_8, 1_2_8) )
__lowercase = LMSDiscreteScheduler.from_pretrained(
"ssube/stable-diffusion-x4-upscaler-onnx", subfolder="scheduler" )
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(
"ssube/stable-diffusion-x4-upscaler-onnx", scheduler=UpperCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = "A fantasy landscape, trending on artstation"
__lowercase = torch.manual_seed(0 )
__lowercase = pipe(
prompt=UpperCAmelCase__, image=UpperCAmelCase__, guidance_scale=7.5, num_inference_steps=2_0, generator=UpperCAmelCase__, output_type="np", )
__lowercase = output.images
__lowercase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert images.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.50_173_753, 0.50_223_356, 0.502_039, 0.50_233_036, 0.5_023_725, 0.5_022_601, 0.5_018_758, 0.50_234_085, 0.50_241_566] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
| 17 | 1 |
"""simple docstring"""
import argparse
import logging
from collections import namedtuple
import torch
from model_bertabs import BertAbsSummarizer
from models.model_builder import AbsSummarizer # The authors' implementation
from transformers import BertTokenizer
logging.basicConfig(level=logging.INFO)
_a = logging.getLogger(__name__)
_a = 'Hello world! cécé herlolip'
_a = namedtuple(
'BertAbsConfig',
[
'temp_dir',
'large',
'use_bert_emb',
'finetune_bert',
'encoder',
'share_emb',
'max_pos',
'enc_layers',
'enc_hidden_size',
'enc_heads',
'enc_ff_size',
'enc_dropout',
'dec_layers',
'dec_hidden_size',
'dec_heads',
'dec_ff_size',
'dec_dropout',
],
)
def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[Any]) -> Dict:
'''simple docstring'''
__lowercase = BertAbsConfig(
temp_dir=".", finetune_bert=UpperCamelCase_, large=UpperCamelCase_, share_emb=UpperCamelCase_, use_bert_emb=UpperCamelCase_, encoder="bert", max_pos=512, enc_layers=6, enc_hidden_size=512, enc_heads=8, enc_ff_size=512, enc_dropout=0.2, dec_layers=6, dec_hidden_size=768, dec_heads=8, dec_ff_size=2048, dec_dropout=0.2, )
__lowercase = torch.load(UpperCamelCase_, lambda UpperCamelCase_, UpperCamelCase_: storage)
__lowercase = AbsSummarizer(UpperCamelCase_, torch.device("cpu"), UpperCamelCase_)
original.eval()
__lowercase = BertAbsSummarizer(UpperCamelCase_, torch.device("cpu"))
new_model.eval()
# -------------------
# Convert the weights
# -------------------
logging.info("convert the model")
new_model.bert.load_state_dict(original.bert.state_dict())
new_model.decoder.load_state_dict(original.decoder.state_dict())
new_model.generator.load_state_dict(original.generator.state_dict())
# ----------------------------------
# Make sure the outpus are identical
# ----------------------------------
logging.info("Make sure that the models' outputs are identical")
__lowercase = BertTokenizer.from_pretrained("bert-base-uncased")
# prepare the model inputs
__lowercase = tokenizer.encode("This is sample éàalj'-.")
encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(UpperCamelCase_)))
__lowercase = torch.tensor(UpperCamelCase_).unsqueeze(0)
__lowercase = tokenizer.encode("This is sample 3 éàalj'-.")
decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(UpperCamelCase_)))
__lowercase = torch.tensor(UpperCamelCase_).unsqueeze(0)
# failsafe to make sure the weights reset does not affect the
# loaded weights.
assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight)) == 0
# forward pass
__lowercase = encoder_input_ids
__lowercase = decoder_input_ids
__lowercase = __lowercase = None
__lowercase = None
__lowercase = __lowercase = None
__lowercase = __lowercase = None
__lowercase = None
# The original model does not apply the geneator layer immediatly but rather in
# the beam search (where it combines softmax + linear layer). Since we already
# apply the softmax in our generation process we only apply the linear layer here.
# We make sure that the outputs of the full stack are identical
__lowercase = original(UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_)[0]
__lowercase = original.generator(UpperCamelCase_)
__lowercase = new_model(
UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_)[0]
__lowercase = new_model.generator(UpperCamelCase_)
__lowercase = torch.max(torch.abs(output_converted_model - output_original_model)).item()
print("Maximum absolute difference beween weights: {:.2f}".format(UpperCamelCase_))
__lowercase = torch.max(torch.abs(output_converted_generator - output_original_generator)).item()
print("Maximum absolute difference beween weights: {:.2f}".format(UpperCamelCase_))
__lowercase = torch.allclose(UpperCamelCase_, UpperCamelCase_, atol=1E-3)
if are_identical:
logging.info("all weights are equal up to 1e-3")
else:
raise ValueError("the weights are different. The new model is likely different from the original one.")
# The model has been saved with torch.save(model) and this is bound to the exact
# directory structure. We save the state_dict instead.
logging.info("saving the model's state dictionary")
torch.save(
new_model.state_dict(), "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin")
if __name__ == "__main__":
_a = argparse.ArgumentParser()
parser.add_argument(
'--bertabs_checkpoint_path',
default=None,
type=str,
required=True,
help='Path the official PyTorch dump.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=True,
help='Path to the output PyTorch model.',
)
_a = parser.parse_args()
convert_bertabs_checkpoints(
args.bertabs_checkpoint_path,
args.pytorch_dump_folder_path,
)
| 17 |
"""simple docstring"""
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
_a = datasets.utils.logging.get_logger(__name__)
_a = ['names', 'prefix']
_a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols']
_a = ['encoding_errors', 'on_bad_lines']
_a = ['date_format']
@dataclass
class _lowerCAmelCase ( datasets.BuilderConfig ):
"""simple docstring"""
__UpperCAmelCase : str = ","
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : Optional[Union[int, List[int], str]] = "infer"
__UpperCAmelCase : Optional[List[str]] = None
__UpperCAmelCase : Optional[List[str]] = None
__UpperCAmelCase : Optional[Union[int, str, List[int], List[str]]] = None
__UpperCAmelCase : Optional[Union[List[int], List[str]]] = None
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : bool = True
__UpperCAmelCase : Optional[Literal["c", "python", "pyarrow"]] = None
__UpperCAmelCase : Dict[Union[int, str], Callable[[Any], Any]] = None
__UpperCAmelCase : Optional[list] = None
__UpperCAmelCase : Optional[list] = None
__UpperCAmelCase : bool = False
__UpperCAmelCase : Optional[Union[int, List[int]]] = None
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : Optional[Union[str, List[str]]] = None
__UpperCAmelCase : bool = True
__UpperCAmelCase : bool = True
__UpperCAmelCase : bool = False
__UpperCAmelCase : bool = True
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : str = "."
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : str = '"'
__UpperCAmelCase : int = 0
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : bool = True
__UpperCAmelCase : bool = True
__UpperCAmelCase : int = 0
__UpperCAmelCase : bool = True
__UpperCAmelCase : bool = False
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : int = 1_0_0_0_0
__UpperCAmelCase : Optional[datasets.Features] = None
__UpperCAmelCase : Optional[str] = "strict"
__UpperCAmelCase : Literal["error", "warn", "skip"] = "error"
__UpperCAmelCase : Optional[str] = None
def _lowercase ( self : Tuple ):
if self.delimiter is not None:
__lowercase = self.delimiter
if self.column_names is not None:
__lowercase = self.column_names
@property
def _lowercase ( self : Union[str, Any] ):
__lowercase = {
"sep": self.sep,
"header": self.header,
"names": self.names,
"index_col": self.index_col,
"usecols": self.usecols,
"prefix": self.prefix,
"mangle_dupe_cols": self.mangle_dupe_cols,
"engine": self.engine,
"converters": self.converters,
"true_values": self.true_values,
"false_values": self.false_values,
"skipinitialspace": self.skipinitialspace,
"skiprows": self.skiprows,
"nrows": self.nrows,
"na_values": self.na_values,
"keep_default_na": self.keep_default_na,
"na_filter": self.na_filter,
"verbose": self.verbose,
"skip_blank_lines": self.skip_blank_lines,
"thousands": self.thousands,
"decimal": self.decimal,
"lineterminator": self.lineterminator,
"quotechar": self.quotechar,
"quoting": self.quoting,
"escapechar": self.escapechar,
"comment": self.comment,
"encoding": self.encoding,
"dialect": self.dialect,
"error_bad_lines": self.error_bad_lines,
"warn_bad_lines": self.warn_bad_lines,
"skipfooter": self.skipfooter,
"doublequote": self.doublequote,
"memory_map": self.memory_map,
"float_precision": self.float_precision,
"chunksize": self.chunksize,
"encoding_errors": self.encoding_errors,
"on_bad_lines": self.on_bad_lines,
"date_format": self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig(), UpperCAmelCase__ ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class _lowerCAmelCase ( datasets.ArrowBasedBuilder ):
"""simple docstring"""
__UpperCAmelCase : Tuple = CsvConfig
def _lowercase ( self : List[str] ):
return datasets.DatasetInfo(features=self.config.features )
def _lowercase ( self : List[Any], UpperCAmelCase__ : Dict ):
if not self.config.data_files:
raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" )
__lowercase = dl_manager.download_and_extract(self.config.data_files )
if isinstance(UpperCAmelCase__, (str, list, tuple) ):
__lowercase = data_files
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
__lowercase = [files]
__lowercase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files} )]
__lowercase = []
for split_name, files in data_files.items():
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
__lowercase = [files]
__lowercase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files]
splits.append(datasets.SplitGenerator(name=UpperCAmelCase__, gen_kwargs={"files": files} ) )
return splits
def _lowercase ( self : Dict, UpperCAmelCase__ : pa.Table ):
if self.config.features is not None:
__lowercase = self.config.features.arrow_schema
if all(not require_storage_cast(UpperCAmelCase__ ) for feature in self.config.features.values() ):
# cheaper cast
__lowercase = pa.Table.from_arrays([pa_table[field.name] for field in schema], schema=UpperCAmelCase__ )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
__lowercase = table_cast(UpperCAmelCase__, UpperCAmelCase__ )
return pa_table
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : List[str] ):
__lowercase = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
__lowercase = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(UpperCAmelCase__ ) else object
for name, dtype, feature in zip(schema.names, schema.types, self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase__ ) ):
__lowercase = pd.read_csv(UpperCAmelCase__, iterator=UpperCAmelCase__, dtype=UpperCAmelCase__, **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(UpperCAmelCase__ ):
__lowercase = pa.Table.from_pandas(UpperCAmelCase__ )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase__ )
except ValueError as e:
logger.error(F"""Failed to read file '{file}' with error {type(UpperCAmelCase__ )}: {e}""" )
raise
| 17 | 1 |
"""simple docstring"""
import inspect
from typing import Optional, Union
import numpy as np
import PIL
import torch
from torch.nn import functional as F
from torchvision import transforms
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
DPMSolverMultistepScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.utils import (
PIL_INTERPOLATION,
randn_tensor,
)
def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str]) -> Optional[int]:
'''simple docstring'''
if isinstance(UpperCamelCase_, torch.Tensor):
return image
elif isinstance(UpperCamelCase_, PIL.Image.Image):
__lowercase = [image]
if isinstance(image[0], PIL.Image.Image):
__lowercase = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image]
__lowercase = np.concatenate(UpperCamelCase_, axis=0)
__lowercase = np.array(UpperCamelCase_).astype(np.floataa) / 255.0
__lowercase = image.transpose(0, 3, 1, 2)
__lowercase = 2.0 * image - 1.0
__lowercase = torch.from_numpy(UpperCamelCase_)
elif isinstance(image[0], torch.Tensor):
__lowercase = torch.cat(UpperCamelCase_, dim=0)
return image
def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : str, UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[Any]=0.9_995) -> int:
'''simple docstring'''
if not isinstance(UpperCamelCase_, np.ndarray):
__lowercase = True
__lowercase = va.device
__lowercase = va.cpu().numpy()
__lowercase = va.cpu().numpy()
__lowercase = np.sum(va * va / (np.linalg.norm(UpperCamelCase_) * np.linalg.norm(UpperCamelCase_)))
if np.abs(UpperCamelCase_) > DOT_THRESHOLD:
__lowercase = (1 - t) * va + t * va
else:
__lowercase = np.arccos(UpperCamelCase_)
__lowercase = np.sin(UpperCamelCase_)
__lowercase = theta_a * t
__lowercase = np.sin(UpperCamelCase_)
__lowercase = np.sin(theta_a - theta_t) / sin_theta_a
__lowercase = sin_theta_t / sin_theta_a
__lowercase = sa * va + sa * va
if inputs_are_torch:
__lowercase = torch.from_numpy(UpperCamelCase_).to(UpperCamelCase_)
return va
def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Union[str, Any]) -> int:
'''simple docstring'''
__lowercase = F.normalize(UpperCamelCase_, dim=-1)
__lowercase = F.normalize(UpperCamelCase_, dim=-1)
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)
def _A ( UpperCamelCase_ : Optional[int], UpperCamelCase_ : str) -> Optional[int]:
'''simple docstring'''
for param in model.parameters():
__lowercase = value
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
def __init__( self : Dict, UpperCAmelCase__ : AutoencoderKL, UpperCAmelCase__ : CLIPTextModel, UpperCAmelCase__ : CLIPModel, UpperCAmelCase__ : CLIPTokenizer, UpperCAmelCase__ : UNetaDConditionModel, UpperCAmelCase__ : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler], UpperCAmelCase__ : CLIPFeatureExtractor, UpperCAmelCase__ : Union[str, Any]=None, UpperCAmelCase__ : List[str]=None, UpperCAmelCase__ : Any=None, ):
super().__init__()
self.register_modules(
vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, clip_model=UpperCAmelCase__, tokenizer=UpperCAmelCase__, unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, feature_extractor=UpperCAmelCase__, coca_model=UpperCAmelCase__, coca_tokenizer=UpperCAmelCase__, coca_transform=UpperCAmelCase__, )
__lowercase = (
feature_extractor.size
if isinstance(feature_extractor.size, UpperCAmelCase__ )
else feature_extractor.size["shortest_edge"]
)
__lowercase = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std )
set_requires_grad(self.text_encoder, UpperCAmelCase__ )
set_requires_grad(self.clip_model, UpperCAmelCase__ )
def _lowercase ( self : Tuple, UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ):
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
__lowercase = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(UpperCAmelCase__ )
def _lowercase ( self : int ):
self.enable_attention_slicing(UpperCAmelCase__ )
def _lowercase ( self : str ):
set_requires_grad(self.vae, UpperCAmelCase__ )
def _lowercase ( self : Any ):
set_requires_grad(self.vae, UpperCAmelCase__ )
def _lowercase ( self : Union[str, Any] ):
set_requires_grad(self.unet, UpperCAmelCase__ )
def _lowercase ( self : Any ):
set_requires_grad(self.unet, UpperCAmelCase__ )
def _lowercase ( self : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : Optional[Any] ):
# get the original timestep using init_timestep
__lowercase = min(int(num_inference_steps * strength ), UpperCAmelCase__ )
__lowercase = max(num_inference_steps - init_timestep, 0 )
__lowercase = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def _lowercase ( self : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : int=None ):
if not isinstance(UpperCAmelCase__, torch.Tensor ):
raise ValueError(F"""`image` has to be of type `torch.Tensor` but is {type(UpperCAmelCase__ )}""" )
__lowercase = image.to(device=UpperCAmelCase__, dtype=UpperCAmelCase__ )
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
__lowercase = [
self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(UpperCAmelCase__ )
]
__lowercase = torch.cat(UpperCAmelCase__, dim=0 )
else:
__lowercase = self.vae.encode(UpperCAmelCase__ ).latent_dist.sample(UpperCAmelCase__ )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
__lowercase = 0.18_215 * init_latents
__lowercase = init_latents.repeat_interleave(UpperCAmelCase__, dim=0 )
__lowercase = randn_tensor(init_latents.shape, generator=UpperCAmelCase__, device=UpperCAmelCase__, dtype=UpperCAmelCase__ )
# get latents
__lowercase = self.scheduler.add_noise(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = init_latents
return latents
def _lowercase ( self : Optional[int], UpperCAmelCase__ : Dict ):
__lowercase = self.coca_transform(UpperCAmelCase__ ).unsqueeze(0 )
with torch.no_grad(), torch.cuda.amp.autocast():
__lowercase = self.coca_model.generate(transformed_image.to(device=self.device, dtype=self.coca_model.dtype ) )
__lowercase = self.coca_tokenizer.decode(generated[0].cpu().numpy() )
return generated.split("<end_of_text>" )[0].replace("<start_of_text>", "" ).rstrip(" .," )
def _lowercase ( self : Tuple, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Tuple ):
__lowercase = self.feature_extractor.preprocess(UpperCAmelCase__ )
__lowercase = torch.from_numpy(clip_image_input["pixel_values"][0] ).unsqueeze(0 ).to(self.device ).half()
__lowercase = self.clip_model.get_image_features(UpperCAmelCase__ )
__lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=UpperCAmelCase__ )
__lowercase = image_embeddings_clip.repeat_interleave(UpperCAmelCase__, dim=0 )
return image_embeddings_clip
@torch.enable_grad()
def _lowercase ( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[int], ):
__lowercase = latents.detach().requires_grad_()
__lowercase = self.scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ )
# predict the noise residual
__lowercase = self.unet(UpperCAmelCase__, UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__ ).sample
if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ):
__lowercase = self.scheduler.alphas_cumprod[timestep]
__lowercase = 1 - alpha_prod_t
# compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
__lowercase = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5
__lowercase = torch.sqrt(UpperCAmelCase__ )
__lowercase = pred_original_sample * (fac) + latents * (1 - fac)
elif isinstance(self.scheduler, UpperCAmelCase__ ):
__lowercase = self.scheduler.sigmas[index]
__lowercase = latents - sigma * noise_pred
else:
raise ValueError(F"""scheduler type {type(self.scheduler )} not supported""" )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
__lowercase = 1 / 0.18_215 * sample
__lowercase = self.vae.decode(UpperCAmelCase__ ).sample
__lowercase = (image / 2 + 0.5).clamp(0, 1 )
__lowercase = transforms.Resize(self.feature_extractor_size )(UpperCAmelCase__ )
__lowercase = self.normalize(UpperCAmelCase__ ).to(latents.dtype )
__lowercase = self.clip_model.get_image_features(UpperCAmelCase__ )
__lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=UpperCAmelCase__ )
__lowercase = spherical_dist_loss(UpperCAmelCase__, UpperCAmelCase__ ).mean() * clip_guidance_scale
__lowercase = -torch.autograd.grad(UpperCAmelCase__, UpperCAmelCase__ )[0]
if isinstance(self.scheduler, UpperCAmelCase__ ):
__lowercase = latents.detach() + grads * (sigma**2)
__lowercase = noise_pred_original
else:
__lowercase = noise_pred_original - torch.sqrt(UpperCAmelCase__ ) * grads
return noise_pred, latents
@torch.no_grad()
def __call__( self : str, UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image], UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image], UpperCAmelCase__ : Optional[str] = None, UpperCAmelCase__ : Optional[str] = None, UpperCAmelCase__ : Optional[int] = 5_1_2, UpperCAmelCase__ : Optional[int] = 5_1_2, UpperCAmelCase__ : float = 0.6, UpperCAmelCase__ : Optional[int] = 5_0, UpperCAmelCase__ : Optional[float] = 7.5, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[float] = 1_0_0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : float = 0.8, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, ):
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and len(UpperCAmelCase__ ) != batch_size:
raise ValueError(F"""You have passed {batch_size} batch_size, but only {len(UpperCAmelCase__ )} generators.""" )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" )
if isinstance(UpperCAmelCase__, torch.Generator ) and batch_size > 1:
__lowercase = [generator] + [None] * (batch_size - 1)
__lowercase = [
("model", self.coca_model is None),
("tokenizer", self.coca_tokenizer is None),
("transform", self.coca_transform is None),
]
__lowercase = [x[0] for x in coca_is_none if x[1]]
__lowercase = ", ".join(UpperCAmelCase__ )
# generate prompts with coca model if prompt is None
if content_prompt is None:
if len(UpperCAmelCase__ ):
raise ValueError(
F"""Content prompt is None and CoCa [{coca_is_none_str}] is None."""
F"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" )
__lowercase = self.get_image_description(UpperCAmelCase__ )
if style_prompt is None:
if len(UpperCAmelCase__ ):
raise ValueError(
F"""Style prompt is None and CoCa [{coca_is_none_str}] is None."""
F""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" )
__lowercase = self.get_image_description(UpperCAmelCase__ )
# get prompt text embeddings for content and style
__lowercase = self.tokenizer(
UpperCAmelCase__, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=UpperCAmelCase__, return_tensors="pt", )
__lowercase = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0]
__lowercase = self.tokenizer(
UpperCAmelCase__, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=UpperCAmelCase__, return_tensors="pt", )
__lowercase = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0]
__lowercase = slerp(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
# duplicate text embeddings for each generation per prompt
__lowercase = text_embeddings.repeat_interleave(UpperCAmelCase__, dim=0 )
# set timesteps
__lowercase = "offset" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() )
__lowercase = {}
if accepts_offset:
__lowercase = 1
self.scheduler.set_timesteps(UpperCAmelCase__, **UpperCAmelCase__ )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
self.scheduler.timesteps.to(self.device )
__lowercase ,__lowercase = self.get_timesteps(UpperCAmelCase__, UpperCAmelCase__, self.device )
__lowercase = timesteps[:1].repeat(UpperCAmelCase__ )
# Preprocess image
__lowercase = preprocess(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = self.prepare_latents(
UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, text_embeddings.dtype, self.device, UpperCAmelCase__ )
__lowercase = preprocess(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = self.prepare_latents(
UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, text_embeddings.dtype, self.device, UpperCAmelCase__ )
__lowercase = slerp(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
if clip_guidance_scale > 0:
__lowercase = self.get_clip_image_embeddings(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = self.get_clip_image_embeddings(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = slerp(
UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
__lowercase = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
__lowercase = content_text_input.input_ids.shape[-1]
__lowercase = self.tokenizer([""], padding="max_length", max_length=UpperCAmelCase__, return_tensors="pt" )
__lowercase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt
__lowercase = uncond_embeddings.repeat_interleave(UpperCAmelCase__, dim=0 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
__lowercase = torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
__lowercase = (batch_size, self.unet.config.in_channels, height // 8, width // 8)
__lowercase = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not work reproducibly on mps
__lowercase = torch.randn(UpperCAmelCase__, generator=UpperCAmelCase__, device="cpu", dtype=UpperCAmelCase__ ).to(
self.device )
else:
__lowercase = torch.randn(UpperCAmelCase__, generator=UpperCAmelCase__, device=self.device, dtype=UpperCAmelCase__ )
else:
if latents.shape != latents_shape:
raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" )
__lowercase = latents.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
__lowercase = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
__lowercase = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
__lowercase = {}
if accepts_eta:
__lowercase = eta
# check if the scheduler accepts generator
__lowercase = "generator" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
if accepts_generator:
__lowercase = generator
with self.progress_bar(total=UpperCAmelCase__ ):
for i, t in enumerate(UpperCAmelCase__ ):
# expand the latents if we are doing classifier free guidance
__lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
__lowercase = self.scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ )
# predict the noise residual
__lowercase = self.unet(UpperCAmelCase__, UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__ ).sample
# perform classifier free guidance
if do_classifier_free_guidance:
__lowercase ,__lowercase = noise_pred.chunk(2 )
__lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# perform clip guidance
if clip_guidance_scale > 0:
__lowercase = (
text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings
)
__lowercase ,__lowercase = self.cond_fn(
UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, )
# compute the previous noisy sample x_t -> x_t-1
__lowercase = self.scheduler.step(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, **UpperCAmelCase__ ).prev_sample
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
__lowercase = 1 / 0.18_215 * latents
__lowercase = self.vae.decode(UpperCAmelCase__ ).sample
__lowercase = (image / 2 + 0.5).clamp(0, 1 )
__lowercase = image.cpu().permute(0, 2, 3, 1 ).numpy()
if output_type == "pil":
__lowercase = self.numpy_to_pil(UpperCAmelCase__ )
if not return_dict:
return (image, None)
return StableDiffusionPipelineOutput(images=UpperCAmelCase__, nsfw_content_detected=UpperCAmelCase__ )
| 17 |
"""simple docstring"""
from scipy.stats import spearmanr
import datasets
_a = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n'
_a = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n'
_a = r'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class _lowerCAmelCase ( datasets.Metric ):
"""simple docstring"""
def _lowercase ( self : Dict ):
return datasets.MetricInfo(
description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features(
{
"predictions": datasets.Value("float" ),
"references": datasets.Value("float" ),
} ), reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"], )
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int]=False ):
__lowercase = spearmanr(UpperCAmelCase__, UpperCAmelCase__ )
if return_pvalue:
return {"spearmanr": results[0], "spearmanr_pvalue": results[1]}
else:
return {"spearmanr": results[0]}
| 17 | 1 |
"""simple docstring"""
import unittest
from transformers.testing_utils import require_bsa
from transformers.utils import is_bsa_available
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin
if is_bsa_available():
from transformers import MarkupLMFeatureExtractor
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Optional[Any], UpperCAmelCase__ : List[str] ):
__lowercase = parent
def _lowercase ( self : Optional[Any] ):
return {}
def _A ( ) -> int:
'''simple docstring'''
__lowercase = "<HTML>\n\n <HEAD>\n <TITLE>sample document</TITLE>\n </HEAD>\n\n <BODY BGCOLOR=\"FFFFFF\">\n <HR>\n <a href=\"http://google.com\">Goog</a>\n <H1>This is one header</H1>\n <H2>This is a another Header</H2>\n <P>Travel from\n <P>\n <B>SFO to JFK</B>\n <BR>\n <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>\n <HR>\n <div style=\"color:#0000FF\">\n <h3>Traveler <b> name </b> is\n <p> John Doe </p>\n </div>"
__lowercase = "\n <!DOCTYPE html>\n <html>\n <body>\n\n <h1>My First Heading</h1>\n <p>My first paragraph.</p>\n\n </body>\n </html>\n "
return [html_string_a, html_string_a]
@require_bsa
class _lowerCAmelCase ( lowercase ,unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : Tuple = MarkupLMFeatureExtractor if is_bsa_available() else None
def _lowercase ( self : List[str] ):
__lowercase = MarkupLMFeatureExtractionTester(self )
@property
def _lowercase ( self : Optional[int] ):
return self.feature_extract_tester.prepare_feat_extract_dict()
def _lowercase ( self : List[Any] ):
# Initialize feature_extractor
__lowercase = self.feature_extraction_class()
# Test not batched input
__lowercase = get_html_strings()[0]
__lowercase = feature_extractor(UpperCAmelCase__ )
# fmt: off
__lowercase = [["sample document", "Goog", "This is one header", "This is a another Header", "Travel from", "SFO to JFK", "on May 2, 2015 at 2:00 pm. For details go to confirm.com", "Traveler", "name", "is", "John Doe"]]
__lowercase = [["/html/head/title", "/html/body/a", "/html/body/h1", "/html/body/h2", "/html/body/p", "/html/body/p/p/b[1]", "/html/body/p/p/b[2]/i", "/html/body/p/p/div/h3", "/html/body/p/p/div/h3/b", "/html/body/p/p/div/h3", "/html/body/p/p/div/h3/p"]]
# fmt: on
self.assertEqual(encoding.nodes, UpperCAmelCase__ )
self.assertEqual(encoding.xpaths, UpperCAmelCase__ )
# Test batched
__lowercase = get_html_strings()
__lowercase = feature_extractor(UpperCAmelCase__ )
# fmt: off
__lowercase = expected_nodes + [["My First Heading", "My first paragraph."]]
__lowercase = expected_xpaths + [["/html/body/h1", "/html/body/p"]]
self.assertEqual(len(encoding.nodes ), 2 )
self.assertEqual(len(encoding.xpaths ), 2 )
self.assertEqual(encoding.nodes, UpperCAmelCase__ )
self.assertEqual(encoding.xpaths, UpperCAmelCase__ )
| 17 |
"""simple docstring"""
from collections.abc import Sequence
def _A ( UpperCamelCase_ : Sequence[float], UpperCamelCase_ : float) -> float:
'''simple docstring'''
return sum(c * (x**i) for i, c in enumerate(UpperCamelCase_))
def _A ( UpperCamelCase_ : Sequence[float], UpperCamelCase_ : float) -> float:
'''simple docstring'''
__lowercase = 0.0
for coeff in reversed(UpperCamelCase_):
__lowercase = result * x + coeff
return result
if __name__ == "__main__":
_a = (0.0, 0.0, 5.0, 9.3, 7.0)
_a = 10.0
print(evaluate_poly(poly, x))
print(horner(poly, x))
| 17 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
_a = {
'configuration_mobilevit': ['MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileViTConfig', 'MobileViTOnnxConfig'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a = ['MobileViTFeatureExtractor']
_a = ['MobileViTImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a = [
'MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'MobileViTForImageClassification',
'MobileViTForSemanticSegmentation',
'MobileViTModel',
'MobileViTPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a = [
'TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFMobileViTForImageClassification',
'TFMobileViTForSemanticSegmentation',
'TFMobileViTModel',
'TFMobileViTPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_mobilevit import MobileViTFeatureExtractor
from .image_processing_mobilevit import MobileViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mobilevit import (
MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTModel,
MobileViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mobilevit import (
TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFMobileViTForImageClassification,
TFMobileViTForSemanticSegmentation,
TFMobileViTModel,
TFMobileViTPreTrainedModel,
)
else:
import sys
_a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 17 |
"""simple docstring"""
import argparse
import pytorch_lightning as pl
import torch
from torch import nn
from transformers import LongformerForQuestionAnswering, LongformerModel
class _lowerCAmelCase ( pl.LightningModule ):
"""simple docstring"""
def __init__( self : Optional[Any], UpperCAmelCase__ : str ):
super().__init__()
__lowercase = model
__lowercase = 2
__lowercase = nn.Linear(self.model.config.hidden_size, self.num_labels )
def _lowercase ( self : Optional[int] ):
pass
def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str, UpperCamelCase_ : str) -> str:
'''simple docstring'''
__lowercase = LongformerModel.from_pretrained(UpperCamelCase_)
__lowercase = LightningModel(UpperCamelCase_)
__lowercase = torch.load(UpperCamelCase_, map_location=torch.device("cpu"))
lightning_model.load_state_dict(ckpt["state_dict"])
# init longformer question answering model
__lowercase = LongformerForQuestionAnswering.from_pretrained(UpperCamelCase_)
# transfer weights
longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict())
longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict())
longformer_for_qa.eval()
# save model
longformer_for_qa.save_pretrained(UpperCamelCase_)
print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""")
if __name__ == "__main__":
_a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--longformer_model',
default=None,
type=str,
required=True,
help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.',
)
parser.add_argument(
'--longformer_question_answering_ckpt_path',
default=None,
type=str,
required=True,
help='Path the official PyTorch Lightning Checkpoint.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
_a = parser.parse_args()
convert_longformer_qa_checkpoint_to_pytorch(
args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path
)
| 17 | 1 |
"""simple docstring"""
from sklearn.metrics import mean_squared_error
import datasets
_a = '\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n'
_a = '\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n'
_a = '\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n "raw_values" : Returns a full set of errors in case of multioutput input.\n\n "uniform_average" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric("mse")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {\'mse\': 0.6123724356957945}\n\n If you\'re using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric("mse", "multilist")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mse\': array([0.41666667, 1. ])}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class _lowerCAmelCase ( datasets.Metric ):
"""simple docstring"""
def _lowercase ( self : Dict ):
return datasets.MetricInfo(
description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features(self._get_feature_types() ), reference_urls=[
"https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html"
], )
def _lowercase ( self : List[Any] ):
if self.config_name == "multilist":
return {
"predictions": datasets.Sequence(datasets.Value("float" ) ),
"references": datasets.Sequence(datasets.Value("float" ) ),
}
else:
return {
"predictions": datasets.Value("float" ),
"references": datasets.Value("float" ),
}
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : int=None, UpperCAmelCase__ : Tuple="uniform_average", UpperCAmelCase__ : List[Any]=True ):
__lowercase = mean_squared_error(
UpperCAmelCase__, UpperCAmelCase__, sample_weight=UpperCAmelCase__, multioutput=UpperCAmelCase__, squared=UpperCAmelCase__ )
return {"mse": mse}
| 17 |
"""simple docstring"""
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("TEST_SAGEMAKER" ,"False" ) ) is not True ,reason="Skipping test because should only be run when releasing minor transformers version" ,)
@pytest.mark.usefixtures("sm_env" )
@parameterized_class(
[
{
"framework": "pytorch",
"script": "run_glue_model_parallelism.py",
"model_name_or_path": "roberta-large",
"instance_type": "ml.p3dn.24xlarge",
"results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2},
},
{
"framework": "pytorch",
"script": "run_glue.py",
"model_name_or_path": "roberta-large",
"instance_type": "ml.p3dn.24xlarge",
"results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2},
},
] )
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def _lowercase ( self : Optional[int] ):
if self.framework == "pytorch":
subprocess.run(
F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split(), encoding="utf-8", check=UpperCAmelCase__, )
assert hasattr(self, "env" )
def _lowercase ( self : str, UpperCAmelCase__ : List[Any] ):
# configuration for running training on smdistributed Model Parallel
__lowercase = {
"enabled": True,
"processes_per_host": 8,
}
__lowercase = {
"enabled": True,
"parameters": {
"microbatches": 4,
"placement_strategy": "spread",
"pipeline": "interleaved",
"optimize": "speed",
"partitions": 4,
"ddp": True,
},
}
__lowercase = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options}
__lowercase = "trainer" if self.script == "run_glue.py" else "smtrainer"
# creates estimator
return HuggingFace(
entry_point=self.script, source_dir=self.env.test_path, role=self.env.role, image_uri=self.env.image_uri, base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""", instance_count=UpperCAmelCase__, instance_type=self.instance_type, debugger_hook_config=UpperCAmelCase__, hyperparameters={
**self.env.hyperparameters,
"model_name_or_path": self.model_name_or_path,
"max_steps": 5_0_0,
}, metric_definitions=self.env.metric_definitions, distribution=UpperCAmelCase__, py_version="py36", )
def _lowercase ( self : Tuple, UpperCAmelCase__ : int ):
TrainingJobAnalytics(UpperCAmelCase__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" )
@parameterized.expand([(1,)] )
def _lowercase ( self : str, UpperCAmelCase__ : Union[str, Any] ):
# create estimator
__lowercase = self.create_estimator(UpperCAmelCase__ )
# run training
estimator.fit()
# result dataframe
__lowercase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
__lowercase = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] )
__lowercase = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
__lowercase = (
Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds", 9_9_9_9_9_9 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy )
assert all(t <= self.results["eval_loss"] for t in eval_loss )
# dump tests result into json file to share in PR
with open(F"""{estimator.latest_training_job.name}.json""", "w" ) as outfile:
json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss}, UpperCAmelCase__ )
| 17 | 1 |
"""simple docstring"""
from manim import *
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
def _lowercase ( self : Any ):
__lowercase = Rectangle(height=0.5, width=0.5 )
__lowercase = Rectangle(height=0.25, width=0.25 )
__lowercase = Rectangle(height=0.46, width=0.46 ).set_stroke(width=0 )
__lowercase = [mem.copy() for i in range(6 )]
__lowercase = [mem.copy() for i in range(6 )]
__lowercase = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__, buff=0 )
__lowercase = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__, buff=0 )
__lowercase = VGroup(UpperCAmelCase__, UpperCAmelCase__ ).arrange(UpperCAmelCase__, buff=0 )
__lowercase = Text("CPU", font_size=2_4 )
__lowercase = Group(UpperCAmelCase__, UpperCAmelCase__ ).arrange(UpperCAmelCase__, buff=0.5, aligned_edge=UpperCAmelCase__ )
cpu.move_to([-2.5, -0.5, 0] )
self.add(UpperCAmelCase__ )
__lowercase = [mem.copy() for i in range(4 )]
__lowercase = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__, buff=0 )
__lowercase = Text("GPU", font_size=2_4 )
__lowercase = Group(UpperCAmelCase__, UpperCAmelCase__ ).arrange(UpperCAmelCase__, buff=0.5, aligned_edge=UpperCAmelCase__ )
gpu.move_to([-1, -1, 0] )
self.add(UpperCAmelCase__ )
__lowercase = [mem.copy() for i in range(6 )]
__lowercase = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__, buff=0 )
__lowercase = Text("Model", font_size=2_4 )
__lowercase = Group(UpperCAmelCase__, UpperCAmelCase__ ).arrange(UpperCAmelCase__, buff=0.5, aligned_edge=UpperCAmelCase__ )
model.move_to([3, -1.0, 0] )
self.add(UpperCAmelCase__ )
__lowercase = []
__lowercase = []
__lowercase = []
for i, rect in enumerate(UpperCAmelCase__ ):
rect.set_stroke(UpperCAmelCase__ )
__lowercase = Rectangle(height=0.46 / 4, width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(UpperCAmelCase__, opacity=0.7 )
if i == 0:
cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ), buff=0.02, direction=UpperCAmelCase__ )
cpu_target.set_x(cpu_target.get_x() + 0.1 )
elif i == 3:
cpu_target.next_to(model_cpu_arr[0], direction=UpperCAmelCase__, buff=0.0 )
else:
cpu_target.next_to(model_cpu_arr[i - 1], direction=UpperCAmelCase__, buff=0.0 )
self.add(UpperCAmelCase__ )
model_cpu_arr.append(UpperCAmelCase__ )
self.add(*UpperCAmelCase__, *UpperCAmelCase__, *UpperCAmelCase__ )
__lowercase = [mem.copy() for i in range(6 )]
__lowercase = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__, buff=0 )
__lowercase = Text("Loaded Checkpoint", font_size=2_4 )
__lowercase = Group(UpperCAmelCase__, UpperCAmelCase__ ).arrange(UpperCAmelCase__, buff=0.5, aligned_edge=UpperCAmelCase__ )
checkpoint.move_to([3, 0.5, 0] )
self.add(UpperCAmelCase__ )
__lowercase = []
__lowercase = []
for i, rect in enumerate(UpperCAmelCase__ ):
__lowercase = fill.copy().set_fill(UpperCAmelCase__, opacity=0.7 )
target.move_to(UpperCAmelCase__ )
ckpt_arr.append(UpperCAmelCase__ )
__lowercase = target.copy()
if i < 5:
cpu_target.move_to(cpu_left_col_base[i + 1] )
else:
cpu_target.move_to(cpu_right_col_base[i - 5] )
ckpt_cpu_arr.append(UpperCAmelCase__ )
self.add(*UpperCAmelCase__, *UpperCAmelCase__ )
__lowercase = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
__lowercase = MarkupText(
F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""", font_size=1_8, )
key_text.move_to([-5, 2.4, 0] )
self.add(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = MarkupText(
F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""", font_size=1_8, )
blue_text.next_to(UpperCAmelCase__, DOWN * 2.4, aligned_edge=key_text.get_left() )
self.add(UpperCAmelCase__ )
__lowercase = MarkupText(
F"""Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.""", font_size=2_4, )
step_a.move_to([2, 2, 0] )
__lowercase = [meta_mem.copy() for i in range(6 )]
__lowercase = [meta_mem.copy() for i in range(6 )]
__lowercase = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__, buff=0 )
__lowercase = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__, buff=0 )
__lowercase = VGroup(UpperCAmelCase__, UpperCAmelCase__ ).arrange(UpperCAmelCase__, buff=0 )
__lowercase = Text("Disk", font_size=2_4 )
__lowercase = Group(UpperCAmelCase__, UpperCAmelCase__ ).arrange(UpperCAmelCase__, buff=0.5, aligned_edge=UpperCAmelCase__ )
disk.move_to([-4.0, -1.25, 0] )
self.play(Write(UpperCAmelCase__, run_time=3 ), Write(UpperCAmelCase__, run_time=1 ), Create(UpperCAmelCase__, run_time=1 ) )
__lowercase = []
for i, rect in enumerate(UpperCAmelCase__ ):
__lowercase = rect.copy()
target.generate_target()
target.target.move_to(disk_left_col_base[i] ).scale(0.5 )
animations.append(MoveToTarget(UpperCAmelCase__, run_time=1.5 ) )
self.play(*UpperCAmelCase__ )
self.play(FadeOut(UpperCAmelCase__ ) )
__lowercase = MarkupText(F"""Then, the checkpoint is removed from memory\nthrough garbage collection.""", font_size=2_4 )
step_a.move_to([2, 2, 0] )
self.play(Write(UpperCAmelCase__, run_time=3 ) )
self.play(
FadeOut(UpperCAmelCase__, UpperCAmelCase__, *UpperCAmelCase__, *UpperCAmelCase__ ), )
self.wait()
| 17 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor
from .base import PipelineTool
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
__UpperCAmelCase : Tuple = "openai/whisper-base"
__UpperCAmelCase : Union[str, Any] = (
"This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the "
"transcribed text."
)
__UpperCAmelCase : List[str] = "transcriber"
__UpperCAmelCase : Optional[Any] = WhisperProcessor
__UpperCAmelCase : str = WhisperForConditionalGeneration
__UpperCAmelCase : List[str] = ["audio"]
__UpperCAmelCase : Tuple = ["text"]
def _lowercase ( self : str, UpperCAmelCase__ : int ):
return self.pre_processor(UpperCAmelCase__, return_tensors="pt" ).input_features
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Any] ):
return self.model.generate(inputs=UpperCAmelCase__ )
def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[int] ):
return self.pre_processor.batch_decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ )[0]
| 17 | 1 |
"""simple docstring"""
def _A ( UpperCamelCase_ : str) -> str:
'''simple docstring'''
return " ".join(
"".join(word[::-1]) if len(UpperCamelCase_) > 4 else word for word in sentence.split())
if __name__ == "__main__":
import doctest
doctest.testmod()
print(reverse_long_words('Hey wollef sroirraw'))
| 17 |
"""simple docstring"""
import inspect
from typing import Optional, Union
import numpy as np
import PIL
import torch
from torch.nn import functional as F
from torchvision import transforms
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
DPMSolverMultistepScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.utils import (
PIL_INTERPOLATION,
randn_tensor,
)
def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str]) -> Optional[int]:
'''simple docstring'''
if isinstance(UpperCamelCase_, torch.Tensor):
return image
elif isinstance(UpperCamelCase_, PIL.Image.Image):
__lowercase = [image]
if isinstance(image[0], PIL.Image.Image):
__lowercase = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image]
__lowercase = np.concatenate(UpperCamelCase_, axis=0)
__lowercase = np.array(UpperCamelCase_).astype(np.floataa) / 255.0
__lowercase = image.transpose(0, 3, 1, 2)
__lowercase = 2.0 * image - 1.0
__lowercase = torch.from_numpy(UpperCamelCase_)
elif isinstance(image[0], torch.Tensor):
__lowercase = torch.cat(UpperCamelCase_, dim=0)
return image
def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : str, UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[Any]=0.9_995) -> int:
'''simple docstring'''
if not isinstance(UpperCamelCase_, np.ndarray):
__lowercase = True
__lowercase = va.device
__lowercase = va.cpu().numpy()
__lowercase = va.cpu().numpy()
__lowercase = np.sum(va * va / (np.linalg.norm(UpperCamelCase_) * np.linalg.norm(UpperCamelCase_)))
if np.abs(UpperCamelCase_) > DOT_THRESHOLD:
__lowercase = (1 - t) * va + t * va
else:
__lowercase = np.arccos(UpperCamelCase_)
__lowercase = np.sin(UpperCamelCase_)
__lowercase = theta_a * t
__lowercase = np.sin(UpperCamelCase_)
__lowercase = np.sin(theta_a - theta_t) / sin_theta_a
__lowercase = sin_theta_t / sin_theta_a
__lowercase = sa * va + sa * va
if inputs_are_torch:
__lowercase = torch.from_numpy(UpperCamelCase_).to(UpperCamelCase_)
return va
def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Union[str, Any]) -> int:
'''simple docstring'''
__lowercase = F.normalize(UpperCamelCase_, dim=-1)
__lowercase = F.normalize(UpperCamelCase_, dim=-1)
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)
def _A ( UpperCamelCase_ : Optional[int], UpperCamelCase_ : str) -> Optional[int]:
'''simple docstring'''
for param in model.parameters():
__lowercase = value
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
def __init__( self : Dict, UpperCAmelCase__ : AutoencoderKL, UpperCAmelCase__ : CLIPTextModel, UpperCAmelCase__ : CLIPModel, UpperCAmelCase__ : CLIPTokenizer, UpperCAmelCase__ : UNetaDConditionModel, UpperCAmelCase__ : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler], UpperCAmelCase__ : CLIPFeatureExtractor, UpperCAmelCase__ : Union[str, Any]=None, UpperCAmelCase__ : List[str]=None, UpperCAmelCase__ : Any=None, ):
super().__init__()
self.register_modules(
vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, clip_model=UpperCAmelCase__, tokenizer=UpperCAmelCase__, unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, feature_extractor=UpperCAmelCase__, coca_model=UpperCAmelCase__, coca_tokenizer=UpperCAmelCase__, coca_transform=UpperCAmelCase__, )
__lowercase = (
feature_extractor.size
if isinstance(feature_extractor.size, UpperCAmelCase__ )
else feature_extractor.size["shortest_edge"]
)
__lowercase = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std )
set_requires_grad(self.text_encoder, UpperCAmelCase__ )
set_requires_grad(self.clip_model, UpperCAmelCase__ )
def _lowercase ( self : Tuple, UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ):
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
__lowercase = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(UpperCAmelCase__ )
def _lowercase ( self : int ):
self.enable_attention_slicing(UpperCAmelCase__ )
def _lowercase ( self : str ):
set_requires_grad(self.vae, UpperCAmelCase__ )
def _lowercase ( self : Any ):
set_requires_grad(self.vae, UpperCAmelCase__ )
def _lowercase ( self : Union[str, Any] ):
set_requires_grad(self.unet, UpperCAmelCase__ )
def _lowercase ( self : Any ):
set_requires_grad(self.unet, UpperCAmelCase__ )
def _lowercase ( self : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : Optional[Any] ):
# get the original timestep using init_timestep
__lowercase = min(int(num_inference_steps * strength ), UpperCAmelCase__ )
__lowercase = max(num_inference_steps - init_timestep, 0 )
__lowercase = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def _lowercase ( self : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : int=None ):
if not isinstance(UpperCAmelCase__, torch.Tensor ):
raise ValueError(F"""`image` has to be of type `torch.Tensor` but is {type(UpperCAmelCase__ )}""" )
__lowercase = image.to(device=UpperCAmelCase__, dtype=UpperCAmelCase__ )
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
__lowercase = [
self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(UpperCAmelCase__ )
]
__lowercase = torch.cat(UpperCAmelCase__, dim=0 )
else:
__lowercase = self.vae.encode(UpperCAmelCase__ ).latent_dist.sample(UpperCAmelCase__ )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
__lowercase = 0.18_215 * init_latents
__lowercase = init_latents.repeat_interleave(UpperCAmelCase__, dim=0 )
__lowercase = randn_tensor(init_latents.shape, generator=UpperCAmelCase__, device=UpperCAmelCase__, dtype=UpperCAmelCase__ )
# get latents
__lowercase = self.scheduler.add_noise(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = init_latents
return latents
def _lowercase ( self : Optional[int], UpperCAmelCase__ : Dict ):
__lowercase = self.coca_transform(UpperCAmelCase__ ).unsqueeze(0 )
with torch.no_grad(), torch.cuda.amp.autocast():
__lowercase = self.coca_model.generate(transformed_image.to(device=self.device, dtype=self.coca_model.dtype ) )
__lowercase = self.coca_tokenizer.decode(generated[0].cpu().numpy() )
return generated.split("<end_of_text>" )[0].replace("<start_of_text>", "" ).rstrip(" .," )
def _lowercase ( self : Tuple, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Tuple ):
__lowercase = self.feature_extractor.preprocess(UpperCAmelCase__ )
__lowercase = torch.from_numpy(clip_image_input["pixel_values"][0] ).unsqueeze(0 ).to(self.device ).half()
__lowercase = self.clip_model.get_image_features(UpperCAmelCase__ )
__lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=UpperCAmelCase__ )
__lowercase = image_embeddings_clip.repeat_interleave(UpperCAmelCase__, dim=0 )
return image_embeddings_clip
@torch.enable_grad()
def _lowercase ( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[int], ):
__lowercase = latents.detach().requires_grad_()
__lowercase = self.scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ )
# predict the noise residual
__lowercase = self.unet(UpperCAmelCase__, UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__ ).sample
if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ):
__lowercase = self.scheduler.alphas_cumprod[timestep]
__lowercase = 1 - alpha_prod_t
# compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
__lowercase = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5
__lowercase = torch.sqrt(UpperCAmelCase__ )
__lowercase = pred_original_sample * (fac) + latents * (1 - fac)
elif isinstance(self.scheduler, UpperCAmelCase__ ):
__lowercase = self.scheduler.sigmas[index]
__lowercase = latents - sigma * noise_pred
else:
raise ValueError(F"""scheduler type {type(self.scheduler )} not supported""" )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
__lowercase = 1 / 0.18_215 * sample
__lowercase = self.vae.decode(UpperCAmelCase__ ).sample
__lowercase = (image / 2 + 0.5).clamp(0, 1 )
__lowercase = transforms.Resize(self.feature_extractor_size )(UpperCAmelCase__ )
__lowercase = self.normalize(UpperCAmelCase__ ).to(latents.dtype )
__lowercase = self.clip_model.get_image_features(UpperCAmelCase__ )
__lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=UpperCAmelCase__ )
__lowercase = spherical_dist_loss(UpperCAmelCase__, UpperCAmelCase__ ).mean() * clip_guidance_scale
__lowercase = -torch.autograd.grad(UpperCAmelCase__, UpperCAmelCase__ )[0]
if isinstance(self.scheduler, UpperCAmelCase__ ):
__lowercase = latents.detach() + grads * (sigma**2)
__lowercase = noise_pred_original
else:
__lowercase = noise_pred_original - torch.sqrt(UpperCAmelCase__ ) * grads
return noise_pred, latents
@torch.no_grad()
def __call__( self : str, UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image], UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image], UpperCAmelCase__ : Optional[str] = None, UpperCAmelCase__ : Optional[str] = None, UpperCAmelCase__ : Optional[int] = 5_1_2, UpperCAmelCase__ : Optional[int] = 5_1_2, UpperCAmelCase__ : float = 0.6, UpperCAmelCase__ : Optional[int] = 5_0, UpperCAmelCase__ : Optional[float] = 7.5, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[float] = 1_0_0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : float = 0.8, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, ):
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and len(UpperCAmelCase__ ) != batch_size:
raise ValueError(F"""You have passed {batch_size} batch_size, but only {len(UpperCAmelCase__ )} generators.""" )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" )
if isinstance(UpperCAmelCase__, torch.Generator ) and batch_size > 1:
__lowercase = [generator] + [None] * (batch_size - 1)
__lowercase = [
("model", self.coca_model is None),
("tokenizer", self.coca_tokenizer is None),
("transform", self.coca_transform is None),
]
__lowercase = [x[0] for x in coca_is_none if x[1]]
__lowercase = ", ".join(UpperCAmelCase__ )
# generate prompts with coca model if prompt is None
if content_prompt is None:
if len(UpperCAmelCase__ ):
raise ValueError(
F"""Content prompt is None and CoCa [{coca_is_none_str}] is None."""
F"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" )
__lowercase = self.get_image_description(UpperCAmelCase__ )
if style_prompt is None:
if len(UpperCAmelCase__ ):
raise ValueError(
F"""Style prompt is None and CoCa [{coca_is_none_str}] is None."""
F""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" )
__lowercase = self.get_image_description(UpperCAmelCase__ )
# get prompt text embeddings for content and style
__lowercase = self.tokenizer(
UpperCAmelCase__, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=UpperCAmelCase__, return_tensors="pt", )
__lowercase = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0]
__lowercase = self.tokenizer(
UpperCAmelCase__, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=UpperCAmelCase__, return_tensors="pt", )
__lowercase = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0]
__lowercase = slerp(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
# duplicate text embeddings for each generation per prompt
__lowercase = text_embeddings.repeat_interleave(UpperCAmelCase__, dim=0 )
# set timesteps
__lowercase = "offset" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() )
__lowercase = {}
if accepts_offset:
__lowercase = 1
self.scheduler.set_timesteps(UpperCAmelCase__, **UpperCAmelCase__ )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
self.scheduler.timesteps.to(self.device )
__lowercase ,__lowercase = self.get_timesteps(UpperCAmelCase__, UpperCAmelCase__, self.device )
__lowercase = timesteps[:1].repeat(UpperCAmelCase__ )
# Preprocess image
__lowercase = preprocess(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = self.prepare_latents(
UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, text_embeddings.dtype, self.device, UpperCAmelCase__ )
__lowercase = preprocess(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = self.prepare_latents(
UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, text_embeddings.dtype, self.device, UpperCAmelCase__ )
__lowercase = slerp(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
if clip_guidance_scale > 0:
__lowercase = self.get_clip_image_embeddings(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = self.get_clip_image_embeddings(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = slerp(
UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
__lowercase = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
__lowercase = content_text_input.input_ids.shape[-1]
__lowercase = self.tokenizer([""], padding="max_length", max_length=UpperCAmelCase__, return_tensors="pt" )
__lowercase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt
__lowercase = uncond_embeddings.repeat_interleave(UpperCAmelCase__, dim=0 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
__lowercase = torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
__lowercase = (batch_size, self.unet.config.in_channels, height // 8, width // 8)
__lowercase = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not work reproducibly on mps
__lowercase = torch.randn(UpperCAmelCase__, generator=UpperCAmelCase__, device="cpu", dtype=UpperCAmelCase__ ).to(
self.device )
else:
__lowercase = torch.randn(UpperCAmelCase__, generator=UpperCAmelCase__, device=self.device, dtype=UpperCAmelCase__ )
else:
if latents.shape != latents_shape:
raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" )
__lowercase = latents.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
__lowercase = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
__lowercase = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
__lowercase = {}
if accepts_eta:
__lowercase = eta
# check if the scheduler accepts generator
__lowercase = "generator" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
if accepts_generator:
__lowercase = generator
with self.progress_bar(total=UpperCAmelCase__ ):
for i, t in enumerate(UpperCAmelCase__ ):
# expand the latents if we are doing classifier free guidance
__lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
__lowercase = self.scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ )
# predict the noise residual
__lowercase = self.unet(UpperCAmelCase__, UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__ ).sample
# perform classifier free guidance
if do_classifier_free_guidance:
__lowercase ,__lowercase = noise_pred.chunk(2 )
__lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# perform clip guidance
if clip_guidance_scale > 0:
__lowercase = (
text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings
)
__lowercase ,__lowercase = self.cond_fn(
UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, )
# compute the previous noisy sample x_t -> x_t-1
__lowercase = self.scheduler.step(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, **UpperCAmelCase__ ).prev_sample
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
__lowercase = 1 / 0.18_215 * latents
__lowercase = self.vae.decode(UpperCAmelCase__ ).sample
__lowercase = (image / 2 + 0.5).clamp(0, 1 )
__lowercase = image.cpu().permute(0, 2, 3, 1 ).numpy()
if output_type == "pil":
__lowercase = self.numpy_to_pil(UpperCAmelCase__ )
if not return_dict:
return (image, None)
return StableDiffusionPipelineOutput(images=UpperCAmelCase__, nsfw_content_detected=UpperCAmelCase__ )
| 17 | 1 |
"""simple docstring"""
from .constants import (
MODEL_NAME,
OPTIMIZER_NAME,
RNG_STATE_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SCALER_NAME,
SCHEDULER_NAME,
TORCH_LAUNCH_PARAMS,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
)
from .dataclasses import (
BnbQuantizationConfig,
ComputeEnvironment,
CustomDtype,
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
DynamoBackend,
FPaRecipeKwargs,
FullyShardedDataParallelPlugin,
GradientAccumulationPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
KwargsHandler,
LoggerType,
MegatronLMPlugin,
PrecisionType,
ProjectConfiguration,
RNGType,
SageMakerDistributedType,
TensorInformation,
TorchDynamoPlugin,
)
from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env
from .imports import (
get_ccl_version,
is_abit_bnb_available,
is_abit_bnb_available,
is_aim_available,
is_bfaa_available,
is_bnb_available,
is_botoa_available,
is_ccl_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_fpa_available,
is_ipex_available,
is_megatron_lm_available,
is_mlflow_available,
is_mps_available,
is_npu_available,
is_rich_available,
is_safetensors_available,
is_sagemaker_available,
is_tensorboard_available,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
from .modeling import (
check_device_map,
check_tied_parameters_in_config,
check_tied_parameters_on_same_device,
compute_module_sizes,
convert_file_size_to_int,
dtype_byte_size,
find_tied_parameters,
get_balanced_memory,
get_max_layer_size,
get_max_memory,
get_mixed_precision_context_manager,
id_tensor_storage,
infer_auto_device_map,
load_checkpoint_in_model,
load_offloaded_weights,
load_state_dict,
named_module_tensors,
retie_parameters,
set_module_tensor_to_device,
shard_checkpoint,
)
from .offload import (
OffloadedWeightsLoader,
PrefixedDataset,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
save_offload_index,
)
from .operations import (
broadcast,
broadcast_object_list,
concatenate,
convert_outputs_to_fpaa,
convert_to_fpaa,
find_batch_size,
find_device,
gather,
gather_object,
get_data_structure,
honor_type,
initialize_tensors,
is_namedtuple,
is_tensor_information,
is_torch_tensor,
listify,
pad_across_processes,
recursively_apply,
reduce,
send_to_device,
slice_tensors,
)
from .versions import compare_versions, is_torch_version
if is_deepspeed_available():
from .deepspeed import (
DeepSpeedEngineWrapper,
DeepSpeedOptimizerWrapper,
DeepSpeedSchedulerWrapper,
DummyOptim,
DummyScheduler,
HfDeepSpeedConfig,
)
from .bnb import has_abit_bnb_layers, load_and_quantize_model
from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer
from .launch import (
PrepareForLaunch,
_filter_args,
prepare_deepspeed_cmd_env,
prepare_multi_gpu_env,
prepare_sagemager_args_inputs,
prepare_simple_launcher_cmd_env,
prepare_tpu,
)
from .megatron_lm import (
AbstractTrainStep,
BertTrainStep,
GPTTrainStep,
MegatronEngine,
MegatronLMDummyDataLoader,
MegatronLMDummyScheduler,
MegatronLMOptimizerWrapper,
MegatronLMSchedulerWrapper,
TaTrainStep,
avg_losses_across_data_parallel_group,
gather_across_data_parallel_groups,
)
from .megatron_lm import initialize as megatron_lm_initialize
from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader
from .megatron_lm import prepare_model as megatron_lm_prepare_model
from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer
from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler
from .memory import find_executable_batch_size, release_memory
from .other import (
extract_model_from_parallel,
get_pretty_name,
is_port_in_use,
merge_dicts,
patch_environment,
save,
wait_for_everyone,
write_basic_config,
)
from .random import set_seed, synchronize_rng_state, synchronize_rng_states
from .torch_xla import install_xla
from .tqdm import tqdm
from .transformer_engine import convert_model, has_transformer_engine_layers
| 17 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class _lowerCAmelCase :
"""simple docstring"""
__UpperCAmelCase : Tuple = XGLMConfig
__UpperCAmelCase : Optional[Any] = {}
__UpperCAmelCase : Union[str, Any] = "gelu"
def __init__( self : Optional[int], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int]=1_4, UpperCAmelCase__ : str=7, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[Any]=True, UpperCAmelCase__ : int=True, UpperCAmelCase__ : List[str]=9_9, UpperCAmelCase__ : Union[str, Any]=3_2, UpperCAmelCase__ : Union[str, Any]=2, UpperCAmelCase__ : Union[str, Any]=4, UpperCAmelCase__ : Tuple=3_7, UpperCAmelCase__ : List[Any]="gelu", UpperCAmelCase__ : List[str]=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Tuple=5_1_2, UpperCAmelCase__ : Optional[Any]=0.02, ):
__lowercase = parent
__lowercase = batch_size
__lowercase = seq_length
__lowercase = is_training
__lowercase = use_input_mask
__lowercase = use_labels
__lowercase = vocab_size
__lowercase = d_model
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = ffn_dim
__lowercase = activation_function
__lowercase = activation_dropout
__lowercase = attention_dropout
__lowercase = max_position_embeddings
__lowercase = initializer_range
__lowercase = None
__lowercase = 0
__lowercase = 2
__lowercase = 1
def _lowercase ( self : Union[str, Any] ):
return XGLMConfig.from_pretrained("facebook/xglm-564M" )
def _lowercase ( self : Tuple ):
__lowercase = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length], self.vocab_size ), clip_value_min=0, clip_value_max=3 )
__lowercase = None
if self.use_input_mask:
__lowercase = random_attention_mask([self.batch_size, self.seq_length] )
__lowercase = self.get_config()
__lowercase = floats_tensor([self.num_hidden_layers, self.num_attention_heads], 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def _lowercase ( self : List[Any] ):
return XGLMConfig(
vocab_size=self.vocab_size, d_model=self.hidden_size, num_layers=self.num_hidden_layers, attention_heads=self.num_attention_heads, ffn_dim=self.ffn_dim, activation_function=self.activation_function, activation_dropout=self.activation_dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, use_cache=UpperCAmelCase__, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, return_dict=UpperCAmelCase__, )
def _lowercase ( self : Dict ):
__lowercase = self.prepare_config_and_inputs()
(
(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,
) = config_and_inputs
__lowercase = {
"input_ids": input_ids,
"head_mask": head_mask,
}
return config, inputs_dict
@require_tf
class _lowerCAmelCase ( lowercase ,lowercase ,unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
__UpperCAmelCase : List[str] = (TFXGLMForCausalLM,) if is_tf_available() else ()
__UpperCAmelCase : Any = (
{"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {}
)
__UpperCAmelCase : Optional[Any] = False
__UpperCAmelCase : List[str] = False
__UpperCAmelCase : int = False
def _lowercase ( self : Optional[Any] ):
__lowercase = TFXGLMModelTester(self )
__lowercase = ConfigTester(self, config_class=UpperCAmelCase__, n_embd=3_7 )
def _lowercase ( self : Any ):
self.config_tester.run_common_tests()
@slow
def _lowercase ( self : List[str] ):
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowercase = TFXGLMModel.from_pretrained(UpperCAmelCase__ )
self.assertIsNotNone(UpperCAmelCase__ )
@unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." )
def _lowercase ( self : int ):
super().test_resize_token_embeddings()
@require_tf
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[int]=True ):
__lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
__lowercase = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]], dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
__lowercase = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1]
# fmt: on
__lowercase = model.generate(UpperCAmelCase__, do_sample=UpperCAmelCase__, num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist(), UpperCAmelCase__ )
@slow
def _lowercase ( self : List[Any] ):
__lowercase = XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
__lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
tf.random.set_seed(0 )
__lowercase = tokenizer("Today is a nice day and", return_tensors="tf" )
__lowercase = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(":/CPU:0" ):
__lowercase = model.generate(UpperCAmelCase__, do_sample=UpperCAmelCase__, seed=[7, 0] )
__lowercase = tokenizer.decode(output_ids[0], skip_special_tokens=UpperCAmelCase__ )
__lowercase = (
"Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due"
)
self.assertEqual(UpperCAmelCase__, UpperCAmelCase__ )
@slow
def _lowercase ( self : Dict ):
__lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
__lowercase = XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
__lowercase = "left"
# use different length sentences to test batching
__lowercase = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When",
"Hello, my dog is a little",
]
__lowercase = tokenizer(UpperCAmelCase__, return_tensors="tf", padding=UpperCAmelCase__ )
__lowercase = inputs["input_ids"]
__lowercase = model.generate(input_ids=UpperCAmelCase__, attention_mask=inputs["attention_mask"], max_new_tokens=1_2 )
__lowercase = tokenizer(sentences[0], return_tensors="tf" ).input_ids
__lowercase = model.generate(input_ids=UpperCAmelCase__, max_new_tokens=1_2 )
__lowercase = tokenizer(sentences[1], return_tensors="tf" ).input_ids
__lowercase = model.generate(input_ids=UpperCAmelCase__, max_new_tokens=1_2 )
__lowercase = tokenizer.batch_decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ )
__lowercase = tokenizer.decode(output_non_padded[0], skip_special_tokens=UpperCAmelCase__ )
__lowercase = tokenizer.decode(output_padded[0], skip_special_tokens=UpperCAmelCase__ )
__lowercase = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When left padding is applied, the sequence will be "
"a single",
"Hello, my dog is a little bit of a shy one, but he is very friendly",
]
self.assertListEqual(UpperCAmelCase__, UpperCAmelCase__ )
self.assertListEqual(UpperCAmelCase__, [non_padded_sentence, padded_sentence] )
| 17 | 1 |
"""simple docstring"""
def _A ( UpperCamelCase_ : Tuple) -> Any:
'''simple docstring'''
__lowercase = len(UpperCamelCase_)
while cur > 1:
# Find the maximum number in arr
__lowercase = arr.index(max(arr[0:cur]))
# Reverse from 0 to mi
__lowercase = arr[mi::-1] + arr[mi + 1 : len(UpperCamelCase_)]
# Reverse whole list
__lowercase = arr[cur - 1 :: -1] + arr[cur : len(UpperCamelCase_)]
cur -= 1
return arr
if __name__ == "__main__":
_a = input('Enter numbers separated by a comma:\n').strip()
_a = [int(item) for item in user_input.split(',')]
print(pancake_sort(unsorted))
| 17 |
"""simple docstring"""
import time
from contextlib import contextmanager
from pathlib import Path
import pytest
import requests
from huggingface_hub.hf_api import HfApi, HfFolder
_a = '__DUMMY_TRANSFORMERS_USER__'
_a = 'Dummy User'
_a = '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'
_a = 'https://hub-ci.huggingface.co'
_a = CI_HUB_ENDPOINT + '/datasets/{repo_id}/resolve/{revision}/{path}'
_a = CI_HUB_ENDPOINT + '/{repo_id}/resolve/{revision}/{filename}'
_a = Path('~/.huggingface/hub_ci_token').expanduser()
@pytest.fixture
def _A ( UpperCamelCase_ : List[Any]) -> Tuple:
'''simple docstring'''
monkeypatch.setattr(
"huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE", UpperCamelCase_)
@pytest.fixture
def _A ( UpperCamelCase_ : int) -> List[Any]:
'''simple docstring'''
monkeypatch.setattr("datasets.config.HF_ENDPOINT", UpperCamelCase_)
monkeypatch.setattr("datasets.config.HUB_DATASETS_URL", UpperCamelCase_)
@pytest.fixture
def _A ( UpperCamelCase_ : str) -> Dict:
'''simple docstring'''
monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token", UpperCamelCase_)
@pytest.fixture
def _A ( UpperCamelCase_ : Optional[Any], UpperCamelCase_ : List[Any]) -> List[str]:
'''simple docstring'''
HfFolder.save_token(UpperCamelCase_)
yield
HfFolder.delete_token()
@pytest.fixture(scope="session")
def _A ( ) -> List[Any]:
'''simple docstring'''
return HfApi(endpoint=UpperCamelCase_)
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : HfApi) -> List[Any]:
'''simple docstring'''
__lowercase = HfFolder.get_token()
HfFolder.save_token(UpperCamelCase_)
yield CI_HUB_USER_TOKEN
if previous_token is not None:
HfFolder.save_token(UpperCamelCase_)
@pytest.fixture
def _A ( UpperCamelCase_ : Dict) -> int:
'''simple docstring'''
def _cleanup_repo(UpperCamelCase_ : Optional[int]):
hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset")
return _cleanup_repo
@pytest.fixture
def _A ( UpperCamelCase_ : str) -> Any:
'''simple docstring'''
@contextmanager
def _temporary_repo(UpperCamelCase_ : Any):
try:
yield repo_id
finally:
cleanup_repo(UpperCamelCase_)
return _temporary_repo
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : str, UpperCamelCase_ : Optional[int]) -> List[Any]:
'''simple docstring'''
__lowercase = F"""repo_txt_data-{int(time.time() * 10E3)}"""
__lowercase = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_)
hf_api.upload_file(
token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data/text_data.txt", repo_id=UpperCamelCase_, repo_type="dataset", )
yield repo_id
try:
hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset")
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : Any, UpperCamelCase_ : Dict) -> Optional[int]:
'''simple docstring'''
return hf_private_dataset_repo_txt_data_
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : int, UpperCamelCase_ : Optional[int]) -> int:
'''simple docstring'''
__lowercase = F"""repo_zipped_txt_data-{int(time.time() * 10E3)}"""
__lowercase = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_)
hf_api.upload_file(
token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data.zip", repo_id=UpperCamelCase_, repo_type="dataset", )
yield repo_id
try:
hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset")
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Dict, UpperCamelCase_ : Any) -> int:
'''simple docstring'''
return hf_private_dataset_repo_zipped_txt_data_
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : List[str], UpperCamelCase_ : List[str]) -> List[Any]:
'''simple docstring'''
__lowercase = F"""repo_zipped_img_data-{int(time.time() * 10E3)}"""
__lowercase = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_)
hf_api.upload_file(
token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data.zip", repo_id=UpperCamelCase_, repo_type="dataset", )
yield repo_id
try:
hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset")
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str], UpperCamelCase_ : List[str]) -> str:
'''simple docstring'''
return hf_private_dataset_repo_zipped_img_data_
| 17 | 1 |
"""simple docstring"""
import os
from math import logaa
def _A ( UpperCamelCase_ : str = "base_exp.txt") -> int:
'''simple docstring'''
__lowercase = 0
__lowercase = 0
for i, line in enumerate(open(os.path.join(os.path.dirname(UpperCamelCase_), UpperCamelCase_))):
__lowercase ,__lowercase = list(map(UpperCamelCase_, line.split(",")))
if x * logaa(UpperCamelCase_) > largest:
__lowercase = x * logaa(UpperCamelCase_)
__lowercase = i + 1
return result
if __name__ == "__main__":
print(solution())
| 17 |
"""simple docstring"""
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_a = logging.get_logger(__name__)
_a = {
'huggingface/time-series-transformer-tourism-monthly': (
'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json'
),
# See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer
}
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
__UpperCAmelCase : int = "time_series_transformer"
__UpperCAmelCase : Any = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
"num_hidden_layers": "encoder_layers",
}
def __init__( self : int, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : str = "student_t", UpperCAmelCase__ : str = "nll", UpperCAmelCase__ : int = 1, UpperCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7], UpperCAmelCase__ : Optional[Union[str, bool]] = "mean", UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : int = 3_2, UpperCAmelCase__ : int = 3_2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : str = "gelu", UpperCAmelCase__ : int = 6_4, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : int = 1_0_0, UpperCAmelCase__ : float = 0.02, UpperCAmelCase__ : Any=True, **UpperCAmelCase__ : List[str], ):
# time series specific configuration
__lowercase = prediction_length
__lowercase = context_length or prediction_length
__lowercase = distribution_output
__lowercase = loss
__lowercase = input_size
__lowercase = num_time_features
__lowercase = lags_sequence
__lowercase = scaling
__lowercase = num_dynamic_real_features
__lowercase = num_static_real_features
__lowercase = num_static_categorical_features
if cardinality and num_static_categorical_features > 0:
if len(UpperCAmelCase__ ) != num_static_categorical_features:
raise ValueError(
"The cardinality should be a list of the same length as `num_static_categorical_features`" )
__lowercase = cardinality
else:
__lowercase = [0]
if embedding_dimension and num_static_categorical_features > 0:
if len(UpperCAmelCase__ ) != num_static_categorical_features:
raise ValueError(
"The embedding dimension should be a list of the same length as `num_static_categorical_features`" )
__lowercase = embedding_dimension
else:
__lowercase = [min(5_0, (cat + 1) // 2 ) for cat in self.cardinality]
__lowercase = num_parallel_samples
# Transformer architecture configuration
__lowercase = input_size * len(UpperCAmelCase__ ) + self._number_of_features
__lowercase = d_model
__lowercase = encoder_attention_heads
__lowercase = decoder_attention_heads
__lowercase = encoder_ffn_dim
__lowercase = decoder_ffn_dim
__lowercase = encoder_layers
__lowercase = decoder_layers
__lowercase = dropout
__lowercase = attention_dropout
__lowercase = activation_dropout
__lowercase = encoder_layerdrop
__lowercase = decoder_layerdrop
__lowercase = activation_function
__lowercase = init_std
__lowercase = use_cache
super().__init__(is_encoder_decoder=UpperCAmelCase__, **UpperCAmelCase__ )
@property
def _lowercase ( self : Optional[Any] ):
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 17 | 1 |
"""simple docstring"""
import baseaa
def _A ( UpperCamelCase_ : str) -> bytes:
'''simple docstring'''
return baseaa.baaencode(string.encode("utf-8"))
def _A ( UpperCamelCase_ : bytes) -> str:
'''simple docstring'''
return baseaa.baadecode(UpperCamelCase_).decode("utf-8")
if __name__ == "__main__":
_a = 'Hello World!'
_a = baseaa_encode(test)
print(encoded)
_a = baseaa_decode(encoded)
print(decoded)
| 17 |
"""simple docstring"""
import unittest
from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available
from transformers.pipelines import pipeline
from transformers.pipelines.document_question_answering import apply_tesseract
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_detectrona,
require_pytesseract,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
from transformers.image_utils import load_image
else:
class _lowerCAmelCase :
"""simple docstring"""
@staticmethod
def _lowercase ( *UpperCAmelCase__ : Tuple, **UpperCAmelCase__ : List[Any] ):
pass
def _A ( UpperCamelCase_ : Union[str, Any]) -> Any:
'''simple docstring'''
return None
# This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace,
# so we can expect it to be available.
_a = (
'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png'
)
@is_pipeline_test
@require_torch
@require_vision
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : Tuple = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING
@require_pytesseract
@require_vision
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Optional[Any] ):
__lowercase = pipeline(
"document-question-answering", model=UpperCAmelCase__, tokenizer=UpperCAmelCase__, image_processor=UpperCAmelCase__ )
__lowercase = INVOICE_URL
__lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) )
__lowercase = "What is the placebo?"
__lowercase = [
{
"image": load_image(UpperCAmelCase__ ),
"question": question,
},
{
"image": image,
"question": question,
},
{
"image": image,
"question": question,
"word_boxes": word_boxes,
},
]
return dqa_pipeline, examples
def _lowercase ( self : int, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Any ):
__lowercase = dqa_pipeline(UpperCAmelCase__, top_k=2 )
self.assertEqual(
UpperCAmelCase__, [
[
{"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ ), "start": ANY(UpperCAmelCase__ ), "end": ANY(UpperCAmelCase__ )},
{"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ ), "start": ANY(UpperCAmelCase__ ), "end": ANY(UpperCAmelCase__ )},
]
]
* 3, )
@require_torch
@require_detectrona
@require_pytesseract
def _lowercase ( self : Dict ):
__lowercase = pipeline("document-question-answering", model="hf-internal-testing/tiny-random-layoutlmv2" )
__lowercase = INVOICE_URL
__lowercase = "How many cats are there?"
__lowercase = [
{"score": 0.0_001, "answer": "oy 2312/2019", "start": 3_8, "end": 3_9},
{"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 3_8, "end": 4_0},
]
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), UpperCAmelCase__ )
__lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), UpperCAmelCase__ )
# This image does not detect ANY text in it, meaning layoutlmv2 should fail.
# Empty answer probably
__lowercase = "./tests/fixtures/tests_samples/COCO/000000039769.png"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(UpperCAmelCase__, [] )
# We can optionnally pass directly the words and bounding boxes
__lowercase = "./tests/fixtures/tests_samples/COCO/000000039769.png"
__lowercase = []
__lowercase = []
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, words=UpperCAmelCase__, boxes=UpperCAmelCase__, top_k=2 )
self.assertEqual(UpperCAmelCase__, [] )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def _lowercase ( self : List[str] ):
__lowercase = pipeline(
"document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
[
{"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6},
],
]
* 2, )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def _lowercase ( self : Dict ):
__lowercase = pipeline(
"document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", max_seq_len=5_0, )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3},
{"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3},
{"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
[
{"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3},
{"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6},
]
]
* 2, )
@slow
@require_torch
@require_pytesseract
@require_vision
def _lowercase ( self : Optional[Any] ):
__lowercase = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=UpperCAmelCase__ )
__lowercase = pipeline(
"document-question-answering", model="impira/layoutlm-document-qa", tokenizer=UpperCAmelCase__, revision="3dc6de3", )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3},
], )
__lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3},
], )
__lowercase = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
[
{"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3},
]
]
* 2, )
__lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) )
# This model should also work if `image` is set to None
__lowercase = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3},
], )
@slow
@require_torch
@require_pytesseract
@require_vision
def _lowercase ( self : Union[str, Any] ):
__lowercase = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=UpperCAmelCase__ )
__lowercase = pipeline(
"document-question-answering", model="impira/layoutlm-document-qa", tokenizer=UpperCAmelCase__, revision="3dc6de3", max_seq_len=5_0, )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
[
{"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6},
]
]
* 2, )
__lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) )
# This model should also work if `image` is set to None
__lowercase = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
@slow
@require_torch
def _lowercase ( self : Dict ):
__lowercase = pipeline(
"document-question-answering", model="naver-clova-ix/donut-base-finetuned-docvqa", tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ), feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa", )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), [{"answer": "us-001"}] )
@require_tf
@unittest.skip("Document question answering not implemented in TF" )
def _lowercase ( self : List[Any] ):
pass
| 17 | 1 |
"""simple docstring"""
import gc
import unittest
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
PriorTransformer,
StableUnCLIPPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class _lowerCAmelCase ( lowercase ,lowercase ,lowercase ,unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : Tuple = StableUnCLIPPipeline
__UpperCAmelCase : List[Any] = TEXT_TO_IMAGE_PARAMS
__UpperCAmelCase : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS
__UpperCAmelCase : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS
__UpperCAmelCase : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS
# TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false
__UpperCAmelCase : int = False
def _lowercase ( self : Union[str, Any] ):
__lowercase = 3_2
__lowercase = embedder_hidden_size
# prior components
torch.manual_seed(0 )
__lowercase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
torch.manual_seed(0 )
__lowercase = CLIPTextModelWithProjection(
CLIPTextConfig(
bos_token_id=0, eos_token_id=2, hidden_size=UpperCAmelCase__, projection_dim=UpperCAmelCase__, intermediate_size=3_7, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_0_0_0, ) )
torch.manual_seed(0 )
__lowercase = PriorTransformer(
num_attention_heads=2, attention_head_dim=1_2, embedding_dim=UpperCAmelCase__, num_layers=1, )
torch.manual_seed(0 )
__lowercase = DDPMScheduler(
variance_type="fixed_small_log", prediction_type="sample", num_train_timesteps=1_0_0_0, clip_sample=UpperCAmelCase__, clip_sample_range=5.0, beta_schedule="squaredcos_cap_v2", )
# regular denoising components
torch.manual_seed(0 )
__lowercase = StableUnCLIPImageNormalizer(embedding_dim=UpperCAmelCase__ )
__lowercase = DDPMScheduler(beta_schedule="squaredcos_cap_v2" )
torch.manual_seed(0 )
__lowercase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
torch.manual_seed(0 )
__lowercase = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0, eos_token_id=2, hidden_size=UpperCAmelCase__, projection_dim=3_2, intermediate_size=3_7, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_0_0_0, ) )
torch.manual_seed(0 )
__lowercase = UNetaDConditionModel(
sample_size=3_2, in_channels=4, out_channels=4, down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"), up_block_types=("UpBlock2D", "CrossAttnUpBlock2D"), block_out_channels=(3_2, 6_4), attention_head_dim=(2, 4), class_embed_type="projection", projection_class_embeddings_input_dim=embedder_projection_dim * 2, cross_attention_dim=UpperCAmelCase__, layers_per_block=1, upcast_attention=UpperCAmelCase__, use_linear_projection=UpperCAmelCase__, )
torch.manual_seed(0 )
__lowercase = DDIMScheduler(
beta_schedule="scaled_linear", beta_start=0.00_085, beta_end=0.012, prediction_type="v_prediction", set_alpha_to_one=UpperCAmelCase__, steps_offset=1, )
torch.manual_seed(0 )
__lowercase = AutoencoderKL()
__lowercase = {
# prior components
"prior_tokenizer": prior_tokenizer,
"prior_text_encoder": prior_text_encoder,
"prior": prior,
"prior_scheduler": prior_scheduler,
# image noising components
"image_normalizer": image_normalizer,
"image_noising_scheduler": image_noising_scheduler,
# regular denoising components
"tokenizer": tokenizer,
"text_encoder": text_encoder,
"unet": unet,
"scheduler": scheduler,
"vae": vae,
}
return components
def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[str]=0 ):
if str(UpperCAmelCase__ ).startswith("mps" ):
__lowercase = torch.manual_seed(UpperCAmelCase__ )
else:
__lowercase = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ )
__lowercase = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"prior_num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
def _lowercase ( self : Tuple ):
__lowercase = torch_device == "cpu"
self._test_attention_slicing_forward_pass(test_max_difference=UpperCAmelCase__ )
def _lowercase ( self : int ):
__lowercase = torch_device in ["cpu", "mps"]
self._test_inference_batch_single_identical(test_max_difference=UpperCAmelCase__ )
@slow
@require_torch_gpu
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def _lowercase ( self : int ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowercase ( self : int ):
__lowercase = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" )
__lowercase = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l", torch_dtype=torch.floataa )
pipe.to(UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__lowercase = torch.Generator(device="cpu" ).manual_seed(0 )
__lowercase = pipe("anime turle", generator=UpperCAmelCase__, output_type="np" )
__lowercase = output.images[0]
assert image.shape == (7_6_8, 7_6_8, 3)
assert_mean_pixel_difference(UpperCAmelCase__, UpperCAmelCase__ )
def _lowercase ( self : Dict ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
__lowercase = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l", torch_dtype=torch.floataa )
__lowercase = pipe.to(UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__lowercase = pipe(
"anime turtle", prior_num_inference_steps=2, num_inference_steps=2, output_type="np", )
__lowercase = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 1_0**9
| 17 |
"""simple docstring"""
import argparse
import json
import os
import re
import shutil
import torch
from transformers import BioGptConfig, BioGptForCausalLM
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
from transformers.utils import WEIGHTS_NAME, logging
logging.set_verbosity_warning()
_a = 2
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Dict, *, # begin keyword-only arguments
UpperCAmelCase__ : str="<s>", UpperCAmelCase__ : Tuple="<pad>", UpperCAmelCase__ : str="</s>", UpperCAmelCase__ : Optional[Any]="<unk>", UpperCAmelCase__ : List[Any]=None, ):
__lowercase ,__lowercase ,__lowercase ,__lowercase = bos, unk, pad, eos
__lowercase = []
__lowercase = []
__lowercase = {}
__lowercase = self.add_symbol(UpperCAmelCase__ )
__lowercase = self.add_symbol(UpperCAmelCase__ )
__lowercase = self.add_symbol(UpperCAmelCase__ )
__lowercase = self.add_symbol(UpperCAmelCase__ )
if extra_special_symbols:
for s in extra_special_symbols:
self.add_symbol(UpperCAmelCase__ )
__lowercase = len(self.symbols )
def __eq__( self : List[str], UpperCAmelCase__ : Dict ):
return self.indices == other.indices
def __getitem__( self : Optional[int], UpperCAmelCase__ : List[str] ):
if idx < len(self.symbols ):
return self.symbols[idx]
return self.unk_word
def __len__( self : str ):
return len(self.symbols )
def __contains__( self : Any, UpperCAmelCase__ : Optional[Any] ):
return sym in self.indices
@classmethod
def _lowercase ( cls : List[Any], UpperCAmelCase__ : Optional[Any] ):
__lowercase = cls()
d.add_from_file(UpperCAmelCase__ )
return d
def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[Any]=1, UpperCAmelCase__ : str=False ):
if word in self.indices and not overwrite:
__lowercase = self.indices[word]
__lowercase = self.count[idx] + n
return idx
else:
__lowercase = len(self.symbols )
__lowercase = idx
self.symbols.append(UpperCAmelCase__ )
self.count.append(UpperCAmelCase__ )
return idx
def _lowercase ( self : Any, UpperCAmelCase__ : str ):
return 0
def _lowercase ( self : Tuple, UpperCAmelCase__ : List[Any] ):
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
try:
with open(UpperCAmelCase__, "r", encoding="utf-8" ) as fd:
self.add_from_file(UpperCAmelCase__ )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception("Incorrect encoding detected in {}, please rebuild the dataset".format(UpperCAmelCase__ ) )
return
__lowercase = f.readlines()
__lowercase = self._load_meta(UpperCAmelCase__ )
for line in lines[indices_start_line:]:
try:
__lowercase ,__lowercase = line.rstrip().rsplit(" ", 1 )
if field == "#fairseq:overwrite":
__lowercase = True
__lowercase ,__lowercase = line.rsplit(" ", 1 )
else:
__lowercase = False
__lowercase = int(UpperCAmelCase__ )
__lowercase = line
if word in self and not overwrite:
raise RuntimeError(
"Duplicate word found when loading Dictionary: '{}'. "
"Duplicate words can overwrite earlier ones by adding the "
"#fairseq:overwrite flag at the end of the corresponding row "
"in the dictionary file. If using the Camembert model, please "
"download an updated copy of the model file.".format(UpperCAmelCase__ ) )
self.add_symbol(UpperCAmelCase__, n=UpperCAmelCase__, overwrite=UpperCAmelCase__ )
except ValueError:
raise ValueError("Incorrect dictionary format, expected '<token> <cnt> [flags]'" )
def _A ( UpperCamelCase_ : int) -> str:
'''simple docstring'''
__lowercase = dict((re.sub(r"@@$", "", UpperCamelCase_), v) if k.endswith("@@") else (re.sub(r"$", "</w>", UpperCamelCase_), v) for k, v in d.items())
__lowercase = "<s> <pad> </s> <unk>".split()
# restore the special tokens
for k in keep_keys:
del da[F"""{k}</w>"""]
__lowercase = d[k] # restore
return da
def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str) -> List[Any]:
'''simple docstring'''
if not os.path.exists(UpperCamelCase_):
raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""")
os.makedirs(UpperCamelCase_, exist_ok=UpperCamelCase_)
print(F"""Writing results to {pytorch_dump_folder_path}""")
# handle various types of models
__lowercase = os.path.join(UpperCamelCase_, "checkpoint.pt")
if not os.path.isfile(UpperCamelCase_):
raise ValueError(F"""path to the file {checkpoint_file} does not exist!""")
__lowercase = torch.load(UpperCamelCase_, map_location="cpu")
__lowercase = chkpt["cfg"]["model"]
# dicts
__lowercase = os.path.join(UpperCamelCase_, "dict.txt")
if not os.path.isfile(UpperCamelCase_):
raise ValueError(F"""path to the file {dict_file} does not exist!""")
__lowercase = Dictionary.load(UpperCamelCase_)
__lowercase = rewrite_dict_keys(src_dict.indices)
__lowercase = len(UpperCamelCase_)
__lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["vocab_file"])
print(F"""Generating {src_vocab_file} of {src_vocab_size} records""")
with open(UpperCamelCase_, "w", encoding="utf-8") as f:
f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_))
# merges_file (bpecodes)
__lowercase = os.path.join(UpperCamelCase_, "bpecodes")
if not os.path.isfile(UpperCamelCase_):
raise ValueError(F"""path to the file {bpecodes_file} does not exist!""")
__lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["merges_file"])
shutil.copyfile(UpperCamelCase_, UpperCamelCase_)
# model config
__lowercase = os.path.join(UpperCamelCase_, "config.json")
__lowercase = {
"activation_dropout": args["activation_dropout"],
"architectures": ["BioGptForCausalLM"],
"attention_probs_dropout_prob": args["attention_dropout"],
"bos_token_id": 0,
"eos_token_id": 2,
"hidden_act": args["activation_fn"],
"hidden_dropout_prob": args["dropout"],
"hidden_size": args["decoder_embed_dim"],
"initializer_range": 0.02,
"intermediate_size": args["decoder_ffn_embed_dim"],
"layer_norm_eps": 1E-12,
"layerdrop": args["decoder_layerdrop"],
"max_position_embeddings": args["max_target_positions"],
"model_type": "biogpt",
"num_attention_heads": args["decoder_attention_heads"],
"num_hidden_layers": args["decoder_layers"],
"pad_token_id": 1,
"scale_embedding": not args["no_scale_embedding"],
"tie_word_embeddings": args["share_decoder_input_output_embed"],
"vocab_size": src_vocab_size,
}
# good hparam defaults to start with
print(F"""Generating {biogpt_model_config_file}""")
with open(UpperCamelCase_, "w", encoding="utf-8") as f:
f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_))
# tokenizer config
__lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_)
__lowercase = {
"bos_token": "<s>",
"eos_token": "</s>",
"model_max_length": 1024,
"pad_token": "<pad>",
"special_tokens_map_file": None,
"tokenizer_class": "BioGptTokenizer",
"unk_token": "<unk>",
}
print(F"""Generating {biogpt_tokenizer_config_file}""")
with open(UpperCamelCase_, "w", encoding="utf-8") as f:
f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_))
# model
__lowercase = chkpt["model"]
# remove unneeded keys
__lowercase = [
"decoder.version",
]
for k in ignore_keys:
model_state_dict.pop(UpperCamelCase_, UpperCamelCase_)
__lowercase = list(model_state_dict.keys())
for layer_name in layer_names:
if layer_name.endswith("output_projection.weight"):
__lowercase = model_state_dict.pop(UpperCamelCase_)
else:
__lowercase = model_state_dict.pop(UpperCamelCase_)
__lowercase = BioGptConfig.from_pretrained(UpperCamelCase_)
__lowercase = BioGptForCausalLM(UpperCamelCase_)
# check that it loads ok
model_new.load_state_dict(UpperCamelCase_)
# save
__lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_)
print(F"""Generating {pytorch_weights_dump_path}""")
torch.save(UpperCamelCase_, UpperCamelCase_)
print("Conversion is done!")
if __name__ == "__main__":
_a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--biogpt_checkpoint_path',
default=None,
type=str,
required=True,
help=(
'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,'
' bpecodes, etc.'
),
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
_a = parser.parse_args()
convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
| 17 | 1 |
"""simple docstring"""
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script dumps information about the environment
import os
import sys
import transformers
_a = '3'
print('Python version:', sys.version)
print('transformers version:', transformers.__version__)
try:
import torch
print('Torch version:', torch.__version__)
print('Cuda available:', torch.cuda.is_available())
print('Cuda version:', torch.version.cuda)
print('CuDNN version:', torch.backends.cudnn.version())
print('Number of GPUs available:', torch.cuda.device_count())
print('NCCL version:', torch.cuda.nccl.version())
except ImportError:
print('Torch version:', None)
try:
import deepspeed
print('DeepSpeed version:', deepspeed.__version__)
except ImportError:
print('DeepSpeed version:', None)
try:
import tensorflow as tf
print('TensorFlow version:', tf.__version__)
print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU')))
print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU')))
except ImportError:
print('TensorFlow version:', None)
| 17 |
"""simple docstring"""
from __future__ import annotations
from typing import Any
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Any, UpperCAmelCase__ : int ):
__lowercase = num_of_nodes
__lowercase = []
__lowercase = {}
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : int, UpperCAmelCase__ : int ):
self.m_edges.append([u_node, v_node, weight] )
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : int ):
if self.m_component[u_node] == u_node:
return u_node
return self.find_component(self.m_component[u_node] )
def _lowercase ( self : List[Any], UpperCAmelCase__ : int ):
if self.m_component[u_node] != u_node:
for k in self.m_component:
__lowercase = self.find_component(UpperCAmelCase__ )
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : list[int], UpperCAmelCase__ : int, UpperCAmelCase__ : int ):
if component_size[u_node] <= component_size[v_node]:
__lowercase = v_node
component_size[v_node] += component_size[u_node]
self.set_component(UpperCAmelCase__ )
elif component_size[u_node] >= component_size[v_node]:
__lowercase = self.find_component(UpperCAmelCase__ )
component_size[u_node] += component_size[v_node]
self.set_component(UpperCAmelCase__ )
def _lowercase ( self : Any ):
__lowercase = []
__lowercase = 0
__lowercase = [-1] * self.m_num_of_nodes
# A list of components (initialized to all of the nodes)
for node in range(self.m_num_of_nodes ):
self.m_component.update({node: node} )
component_size.append(1 )
__lowercase = self.m_num_of_nodes
while num_of_components > 1:
for edge in self.m_edges:
__lowercase ,__lowercase ,__lowercase = edge
__lowercase = self.m_component[u]
__lowercase = self.m_component[v]
if u_component != v_component:
for component in (u_component, v_component):
if (
minimum_weight_edge[component] == -1
or minimum_weight_edge[component][2] > w
):
__lowercase = [u, v, w]
for edge in minimum_weight_edge:
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
__lowercase ,__lowercase ,__lowercase = edge
__lowercase = self.m_component[u]
__lowercase = self.m_component[v]
if u_component != v_component:
mst_weight += w
self.union(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" )
num_of_components -= 1
__lowercase = [-1] * self.m_num_of_nodes
print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" )
def _A ( ) -> None:
'''simple docstring'''
if __name__ == "__main__":
import doctest
doctest.testmod()
| 17 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
_a = {'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a = ['PLBartTokenizer']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a = [
'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST',
'PLBartForCausalLM',
'PLBartForConditionalGeneration',
'PLBartForSequenceClassification',
'PLBartModel',
'PLBartPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_plbart import PLBartTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_plbart import (
PLBART_PRETRAINED_MODEL_ARCHIVE_LIST,
PLBartForCausalLM,
PLBartForConditionalGeneration,
PLBartForSequenceClassification,
PLBartModel,
PLBartPreTrainedModel,
)
else:
import sys
_a = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 17 |
"""simple docstring"""
from math import sqrt
def _A ( UpperCamelCase_ : int) -> int:
'''simple docstring'''
__lowercase = 0
for i in range(1, int(sqrt(UpperCamelCase_) + 1)):
if n % i == 0 and i != sqrt(UpperCamelCase_):
total += i + n // i
elif i == sqrt(UpperCamelCase_):
total += i
return total - n
def _A ( UpperCamelCase_ : int = 10000) -> int:
'''simple docstring'''
__lowercase = sum(
i
for i in range(1, UpperCamelCase_)
if sum_of_divisors(sum_of_divisors(UpperCamelCase_)) == i and sum_of_divisors(UpperCamelCase_) != i)
return total
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 17 | 1 |
"""simple docstring"""
def _A ( UpperCamelCase_ : str) -> str:
'''simple docstring'''
if not all(char in "01" for char in bin_string):
raise ValueError("Non-binary value was passed to the function")
if not bin_string:
raise ValueError("Empty string was passed to the function")
__lowercase = ""
while len(UpperCamelCase_) % 3 != 0:
__lowercase = "0" + bin_string
__lowercase = [
bin_string[index : index + 3]
for index in range(len(UpperCamelCase_))
if index % 3 == 0
]
for bin_group in bin_string_in_3_list:
__lowercase = 0
for index, val in enumerate(UpperCamelCase_):
oct_val += int(2 ** (2 - index) * int(UpperCamelCase_))
oct_string += str(UpperCamelCase_)
return oct_string
if __name__ == "__main__":
from doctest import testmod
testmod()
| 17 |
"""simple docstring"""
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
_a = _symbol_database.Default()
_a = _descriptor_pool.Default().AddSerializedFile(
b'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03'
)
_a = globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals)
if _descriptor._USE_C_DESCRIPTORS is False:
_a = None
_a = b'H\003'
# (generated by protobuf compiler, but `_TRAINERSPEC` is not defined)
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001"
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001"
_a = 45
_a = 15_81
_a = 15_17
_a = 15_70
_a = 15_84
_a = 17_93
_a = 17_95
_a = 19_16
_a = 18_64
_a = 19_05
_a = 19_19
_a = 24_29
_a = 22_08
_a = 24_18
_a = 23_23
_a = 24_07
# @@protoc_insertion_point(module_scope)
| 17 | 1 |
"""simple docstring"""
import unittest
import numpy as np
def _A ( UpperCamelCase_ : np.ndarray, UpperCamelCase_ : np.ndarray, UpperCamelCase_ : np.ndarray, UpperCamelCase_ : np.ndarray | None = None, ) -> np.ndarray:
'''simple docstring'''
__lowercase = np.shape(UpperCamelCase_)
__lowercase = np.shape(UpperCamelCase_)
__lowercase = np.shape(UpperCamelCase_)
if shape_a[0] != shape_b[0]:
__lowercase = (
"Expected the same number of rows for A and B. "
F"""Instead found A of size {shape_a} and B of size {shape_b}"""
)
raise ValueError(UpperCamelCase_)
if shape_b[1] != shape_c[1]:
__lowercase = (
"Expected the same number of columns for B and C. "
F"""Instead found B of size {shape_b} and C of size {shape_c}"""
)
raise ValueError(UpperCamelCase_)
__lowercase = pseudo_inv
if a_inv is None:
try:
__lowercase = np.linalg.inv(UpperCamelCase_)
except np.linalg.LinAlgError:
raise ValueError(
"Input matrix A is not invertible. Cannot compute Schur complement.")
return mat_c - mat_b.T @ a_inv @ mat_b
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def _lowercase ( self : Optional[Any] ):
__lowercase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
__lowercase = np.array([[0, 3], [3, 0], [2, 3]] )
__lowercase = np.array([[2, 1], [6, 3]] )
__lowercase = schur_complement(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = np.block([[a, b], [b.T, c]] )
__lowercase = np.linalg.det(UpperCAmelCase__ )
__lowercase = np.linalg.det(UpperCAmelCase__ )
__lowercase = np.linalg.det(UpperCAmelCase__ )
self.assertAlmostEqual(UpperCAmelCase__, det_a * det_s )
def _lowercase ( self : Any ):
__lowercase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
__lowercase = np.array([[0, 3], [3, 0], [2, 3]] )
__lowercase = np.array([[2, 1], [6, 3]] )
with self.assertRaises(UpperCAmelCase__ ):
schur_complement(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
def _lowercase ( self : Optional[Any] ):
__lowercase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
__lowercase = np.array([[0, 3], [3, 0], [2, 3]] )
__lowercase = np.array([[2, 1, 3], [6, 3, 5]] )
with self.assertRaises(UpperCAmelCase__ ):
schur_complement(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
unittest.main()
| 17 |
"""simple docstring"""
import baseaa
def _A ( UpperCamelCase_ : str) -> bytes:
'''simple docstring'''
return baseaa.baaencode(string.encode("utf-8"))
def _A ( UpperCamelCase_ : bytes) -> str:
'''simple docstring'''
return baseaa.baadecode(UpperCamelCase_).decode("utf-8")
if __name__ == "__main__":
_a = 'Hello World!'
_a = baseaa_encode(test)
print(encoded)
_a = baseaa_decode(encoded)
print(decoded)
| 17 | 1 |
"""simple docstring"""
# Author: OMKAR PATHAK, Nwachukwu Chidiebere
# Use a Python dictionary to construct the graph.
from __future__ import annotations
from pprint import pformat
from typing import Generic, TypeVar
_a = TypeVar('T')
class _lowerCAmelCase ( Generic[T] ):
"""simple docstring"""
def __init__( self : Any, UpperCAmelCase__ : bool = True ):
__lowercase = {} # dictionary of lists
__lowercase = directed
def _lowercase ( self : Dict, UpperCAmelCase__ : T, UpperCAmelCase__ : T ):
if not self.directed: # For undirected graphs
# if both source vertex and destination vertex are both present in the
# adjacency list, add destination vertex to source vertex list of adjacent
# vertices and add source vertex to destination vertex list of adjacent
# vertices.
if source_vertex in self.adj_list and destination_vertex in self.adj_list:
self.adj_list[source_vertex].append(UpperCAmelCase__ )
self.adj_list[destination_vertex].append(UpperCAmelCase__ )
# if only source vertex is present in adjacency list, add destination vertex
# to source vertex list of adjacent vertices, then create a new vertex with
# destination vertex as key and assign a list containing the source vertex
# as it's first adjacent vertex.
elif source_vertex in self.adj_list:
self.adj_list[source_vertex].append(UpperCAmelCase__ )
__lowercase = [source_vertex]
# if only destination vertex is present in adjacency list, add source vertex
# to destination vertex list of adjacent vertices, then create a new vertex
# with source vertex as key and assign a list containing the source vertex
# as it's first adjacent vertex.
elif destination_vertex in self.adj_list:
self.adj_list[destination_vertex].append(UpperCAmelCase__ )
__lowercase = [destination_vertex]
# if both source vertex and destination vertex are not present in adjacency
# list, create a new vertex with source vertex as key and assign a list
# containing the destination vertex as it's first adjacent vertex also
# create a new vertex with destination vertex as key and assign a list
# containing the source vertex as it's first adjacent vertex.
else:
__lowercase = [destination_vertex]
__lowercase = [source_vertex]
else: # For directed graphs
# if both source vertex and destination vertex are present in adjacency
# list, add destination vertex to source vertex list of adjacent vertices.
if source_vertex in self.adj_list and destination_vertex in self.adj_list:
self.adj_list[source_vertex].append(UpperCAmelCase__ )
# if only source vertex is present in adjacency list, add destination
# vertex to source vertex list of adjacent vertices and create a new vertex
# with destination vertex as key, which has no adjacent vertex
elif source_vertex in self.adj_list:
self.adj_list[source_vertex].append(UpperCAmelCase__ )
__lowercase = []
# if only destination vertex is present in adjacency list, create a new
# vertex with source vertex as key and assign a list containing destination
# vertex as first adjacent vertex
elif destination_vertex in self.adj_list:
__lowercase = [destination_vertex]
# if both source vertex and destination vertex are not present in adjacency
# list, create a new vertex with source vertex as key and a list containing
# destination vertex as it's first adjacent vertex. Then create a new vertex
# with destination vertex as key, which has no adjacent vertex
else:
__lowercase = [destination_vertex]
__lowercase = []
return self
def __repr__( self : Any ):
return pformat(self.adj_list )
| 17 |
"""simple docstring"""
def _A ( UpperCamelCase_ : Any) -> List[str]:
'''simple docstring'''
__lowercase ,__lowercase = [], []
while len(UpperCamelCase_) > 1:
__lowercase ,__lowercase = min(UpperCamelCase_), max(UpperCamelCase_)
start.append(UpperCamelCase_)
end.append(UpperCamelCase_)
collection.remove(UpperCamelCase_)
collection.remove(UpperCamelCase_)
end.reverse()
return start + collection + end
if __name__ == "__main__":
_a = input('Enter numbers separated by a comma:\n').strip()
_a = [int(item) for item in user_input.split(',')]
print(*merge_sort(unsorted), sep=',')
| 17 | 1 |
"""simple docstring"""
import unittest
from parameterized import parameterized
from transformers import LlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Dict=1_3, UpperCAmelCase__ : str=7, UpperCAmelCase__ : Dict=True, UpperCAmelCase__ : int=True, UpperCAmelCase__ : Optional[int]=False, UpperCAmelCase__ : Tuple=True, UpperCAmelCase__ : List[str]=9_9, UpperCAmelCase__ : Union[str, Any]=3_2, UpperCAmelCase__ : Union[str, Any]=5, UpperCAmelCase__ : Union[str, Any]=4, UpperCAmelCase__ : Union[str, Any]=3_7, UpperCAmelCase__ : Tuple="gelu", UpperCAmelCase__ : Optional[Any]=0.1, UpperCAmelCase__ : int=0.1, UpperCAmelCase__ : Any=5_1_2, UpperCAmelCase__ : str=1_6, UpperCAmelCase__ : int=2, UpperCAmelCase__ : List[Any]=0.02, UpperCAmelCase__ : str=3, UpperCAmelCase__ : Union[str, Any]=4, UpperCAmelCase__ : Union[str, Any]=None, ):
__lowercase = parent
__lowercase = batch_size
__lowercase = seq_length
__lowercase = is_training
__lowercase = use_input_mask
__lowercase = use_token_type_ids
__lowercase = use_labels
__lowercase = vocab_size
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = max_position_embeddings
__lowercase = type_vocab_size
__lowercase = type_sequence_label_size
__lowercase = initializer_range
__lowercase = num_labels
__lowercase = num_choices
__lowercase = scope
def _lowercase ( self : Tuple ):
__lowercase = ids_tensor([self.batch_size, self.seq_length], self.vocab_size )
__lowercase = None
if self.use_input_mask:
__lowercase = random_attention_mask([self.batch_size, self.seq_length] )
__lowercase = None
if self.use_token_type_ids:
__lowercase = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size )
__lowercase = None
__lowercase = None
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size], self.type_sequence_label_size )
__lowercase = ids_tensor([self.batch_size, self.seq_length], self.num_labels )
__lowercase = ids_tensor([self.batch_size], self.num_choices )
__lowercase = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _lowercase ( self : List[Any] ):
return LlamaConfig(
vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=UpperCAmelCase__, initializer_range=self.initializer_range, )
def _lowercase ( self : Optional[int], UpperCAmelCase__ : Any, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : List[str], UpperCAmelCase__ : int, UpperCAmelCase__ : Tuple ):
__lowercase = LlamaModel(config=UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
__lowercase = model(UpperCAmelCase__, attention_mask=UpperCAmelCase__ )
__lowercase = model(UpperCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
def _lowercase ( self : Any, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : int, UpperCAmelCase__ : Any, UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : List[Any], ):
__lowercase = True
__lowercase = LlamaModel(UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
__lowercase = model(
UpperCAmelCase__, attention_mask=UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__, encoder_attention_mask=UpperCAmelCase__, )
__lowercase = model(
UpperCAmelCase__, attention_mask=UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__, )
__lowercase = model(UpperCAmelCase__, attention_mask=UpperCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
def _lowercase ( self : Any, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : Any, ):
__lowercase = LlamaForCausalLM(config=UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
__lowercase = model(UpperCAmelCase__, attention_mask=UpperCAmelCase__, labels=UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) )
def _lowercase ( self : str, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : Any, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Any, UpperCAmelCase__ : str, UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Tuple, ):
__lowercase = True
__lowercase = True
__lowercase = LlamaForCausalLM(config=UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
# first forward pass
__lowercase = model(
UpperCAmelCase__, attention_mask=UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__, encoder_attention_mask=UpperCAmelCase__, use_cache=UpperCAmelCase__, )
__lowercase = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
__lowercase = ids_tensor((self.batch_size, 3), config.vocab_size )
__lowercase = ids_tensor((self.batch_size, 3), vocab_size=2 )
# append to next input_ids and
__lowercase = torch.cat([input_ids, next_tokens], dim=-1 )
__lowercase = torch.cat([input_mask, next_mask], dim=-1 )
__lowercase = model(
UpperCAmelCase__, attention_mask=UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__, encoder_attention_mask=UpperCAmelCase__, output_hidden_states=UpperCAmelCase__, )["hidden_states"][0]
__lowercase = model(
UpperCAmelCase__, attention_mask=UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__, encoder_attention_mask=UpperCAmelCase__, past_key_values=UpperCAmelCase__, output_hidden_states=UpperCAmelCase__, )["hidden_states"][0]
# select random slice
__lowercase = ids_tensor((1,), output_from_past.shape[-1] ).item()
__lowercase = output_from_no_past[:, -3:, random_slice_idx].detach()
__lowercase = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(UpperCAmelCase__, UpperCAmelCase__, atol=1E-3 ) )
def _lowercase ( self : Dict ):
__lowercase = self.prepare_config_and_inputs()
(
(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,
) = config_and_inputs
__lowercase = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class _lowerCAmelCase ( lowercase ,lowercase ,lowercase ,unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else ()
__UpperCAmelCase : str = (LlamaForCausalLM,) if is_torch_available() else ()
__UpperCAmelCase : Optional[Any] = (
{
"feature-extraction": LlamaModel,
"text-classification": LlamaForSequenceClassification,
"text-generation": LlamaForCausalLM,
"zero-shot": LlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
__UpperCAmelCase : Union[str, Any] = False
__UpperCAmelCase : List[Any] = False
def _lowercase ( self : Optional[Any] ):
__lowercase = LlamaModelTester(self )
__lowercase = ConfigTester(self, config_class=UpperCAmelCase__, hidden_size=3_7 )
def _lowercase ( self : Optional[Any] ):
self.config_tester.run_common_tests()
def _lowercase ( self : str ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase__ )
def _lowercase ( self : Dict ):
__lowercase = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__lowercase = type
self.model_tester.create_and_check_model(*UpperCAmelCase__ )
def _lowercase ( self : Optional[int] ):
__lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common()
__lowercase = 3
__lowercase = input_dict["input_ids"]
__lowercase = input_ids.ne(1 ).to(UpperCAmelCase__ )
__lowercase = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size )
__lowercase = LlamaForSequenceClassification(UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
__lowercase = model(UpperCAmelCase__, attention_mask=UpperCAmelCase__, labels=UpperCAmelCase__ )
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) )
def _lowercase ( self : List[str] ):
__lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common()
__lowercase = 3
__lowercase = "single_label_classification"
__lowercase = input_dict["input_ids"]
__lowercase = input_ids.ne(1 ).to(UpperCAmelCase__ )
__lowercase = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size )
__lowercase = LlamaForSequenceClassification(UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
__lowercase = model(UpperCAmelCase__, attention_mask=UpperCAmelCase__, labels=UpperCAmelCase__ )
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) )
def _lowercase ( self : Any ):
__lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common()
__lowercase = 3
__lowercase = "multi_label_classification"
__lowercase = input_dict["input_ids"]
__lowercase = input_ids.ne(1 ).to(UpperCAmelCase__ )
__lowercase = ids_tensor(
[self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size ).to(torch.float )
__lowercase = LlamaForSequenceClassification(UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
__lowercase = model(UpperCAmelCase__, attention_mask=UpperCAmelCase__, labels=UpperCAmelCase__ )
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) )
@unittest.skip("LLaMA buffers include complex numbers, which breaks this test" )
def _lowercase ( self : str ):
pass
@parameterized.expand([("linear",), ("dynamic",)] )
def _lowercase ( self : Dict, UpperCAmelCase__ : str ):
__lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common()
__lowercase = ids_tensor([1, 1_0], config.vocab_size )
__lowercase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )], config.vocab_size )
set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights
__lowercase = LlamaModel(UpperCAmelCase__ )
original_model.to(UpperCAmelCase__ )
original_model.eval()
__lowercase = original_model(UpperCAmelCase__ ).last_hidden_state
__lowercase = original_model(UpperCAmelCase__ ).last_hidden_state
set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights
__lowercase = {"type": scaling_type, "factor": 10.0}
__lowercase = LlamaModel(UpperCAmelCase__ )
scaled_model.to(UpperCAmelCase__ )
scaled_model.eval()
__lowercase = scaled_model(UpperCAmelCase__ ).last_hidden_state
__lowercase = scaled_model(UpperCAmelCase__ ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(UpperCAmelCase__, UpperCAmelCase__, atol=1E-5 ) )
else:
self.assertFalse(torch.allclose(UpperCAmelCase__, UpperCAmelCase__, atol=1E-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(UpperCAmelCase__, UpperCAmelCase__, atol=1E-5 ) )
@require_torch
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" )
@slow
def _lowercase ( self : Tuple ):
__lowercase = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8]
__lowercase = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf", device_map="auto" )
__lowercase = model(torch.tensor([input_ids] ) )
# Expected mean on dim = -1
__lowercase = torch.tensor([[-6.6_550, -4.1_227, -4.9_859, -3.2_406, 0.8_262, -3.0_033, 1.2_964, -3.3_699]] )
torch.testing.assert_close(out.mean(-1 ), UpperCAmelCase__, atol=1E-2, rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__lowercase = torch.tensor([-12.8_281, -7.4_453, -0.4_639, -8.0_625, -7.2_500, -8.0_000, -6.4_883, -7.7_695, -7.8_438, -7.0_312, -6.2_188, -7.1_328, -1.8_496, 1.9_961, -8.6_250, -6.7_227, -12.8_281, -6.9_492, -7.0_742, -7.7_852, -7.5_820, -7.9_062, -6.9_375, -7.9_805, -8.3_438, -8.1_562, -8.0_469, -7.6_250, -7.7_422, -7.3_398,] )
# fmt: on
torch.testing.assert_close(out[0, 0, :3_0], UpperCAmelCase__, atol=1E-5, rtol=1E-5 )
@unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" )
@slow
def _lowercase ( self : int ):
__lowercase = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8]
__lowercase = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-hf", device_map="auto" )
__lowercase = model(torch.tensor(UpperCAmelCase__ ) )
# Expected mean on dim = -1
__lowercase = torch.tensor([[-2.0_622, -1.2_794, -1.1_638, -0.9_788, -1.4_603, -1.0_238, -1.7_893, -1.4_411]] )
torch.testing.assert_close(out.mean(-1 ), UpperCAmelCase__, atol=1E-2, rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__lowercase = torch.tensor([-8.1_406, -8.0_547, 2.7_461, -1.2_344, -0.1_448, -1.8_262, -1.0_020, -1.8_154, -1.6_895, -1.8_516, -2.3_574, -0.9_277, 3.7_598, 6.5_742, -1.2_998, -0.1_177, -8.1_406, -2.9_688, -2.9_199, -3.1_699, -3.5_254, -2.3_555, -2.7_988, -3.4_141, -2.8_262, -4.5_195, -3.3_379, -3.3_164, -2.7_832, -3.0_273] )
# fmt: on
torch.testing.assert_close(out[0, 0, :3_0], UpperCAmelCase__, atol=1E-5, rtol=1E-5 )
@unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" )
@slow
def _lowercase ( self : Optional[int] ):
__lowercase = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8]
__lowercase = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-chat-hf", device_map="auto" )
__lowercase = model(torch.tensor(UpperCAmelCase__ ) )
# Expected mean on dim = -1
__lowercase = torch.tensor([[-0.8_562, -1.8_520, -0.7_551, -0.4_162, -1.5_161, -1.2_038, -2.4_823, -2.3_254]] )
torch.testing.assert_close(out.mean(-1 ), UpperCAmelCase__, atol=1E-2, rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__lowercase = torch.tensor([-2.2_227, 4.8_828, 0.9_023, -0.4_578, -0.7_871, -0.1_033, -0.6_221, -0.5_786, -0.7_803, -1.0_674, -1.2_920, -0.1_570, 0.8_008, 2.0_723, -0.9_497, 0.2_771, -2.2_227, -0.7_612, -1.4_346, -1.2_061, -1.6_426, -0.3_000, -0.7_139, -1.1_934, -1.8_691, -1.6_973, -1.5_947, -1.2_705, -0.3_523, -0.5_513] )
# fmt: on
torch.testing.assert_close(out.mean(-1 ), UpperCAmelCase__, atol=1E-2, rtol=1E-2 )
@unittest.skip(
"Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test" )
@slow
def _lowercase ( self : Tuple ):
__lowercase = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8]
__lowercase = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-70b-hf", device_map="auto" )
__lowercase = model(torch.tensor(UpperCAmelCase__ ) )
__lowercase = torch.tensor(
[[-4.2_327, -3.3_360, -4.6_665, -4.7_631, -1.8_180, -3.4_170, -1.4_211, -3.1_810]], dtype=torch.floataa )
torch.testing.assert_close(out.mean(-1 ), UpperCAmelCase__, atol=1E-2, rtol=1E-2 )
# fmt: off
__lowercase = torch.tensor([-9.4_922, -3.9_551, 1.7_998, -5.6_758, -5.1_055, -5.8_984, -4.8_320, -6.8_086, -6.5_391, -5.6_172, -5.5_820, -5.5_352, 1.7_881, 3.6_289, -6.5_117, -3.4_785, -9.5_000, -6.0_352, -6.8_125, -6.0_195, -6.6_836, -5.4_727, -6.2_812, -6.0_391, -7.3_398, -7.4_297, -7.4_844, -6.5_820, -5.8_789, -5.5_312] )
# fmt: on
torch.testing.assert_close(out[0, 0, :3_0], UpperCAmelCase__, atol=1E-5, rtol=1E-5 )
@unittest.skip("Model is curently gated" )
@slow
def _lowercase ( self : Any ):
__lowercase = "Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi"
__lowercase = "Simply put, the theory of relativity states that "
__lowercase = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-13b-chat-hf" )
__lowercase = tokenizer.encode(UpperCAmelCase__, return_tensors="pt" )
__lowercase = LlamaForCausalLM.from_pretrained(
"meta-llama/Llama-2-13b-chat-hf", device_map="sequential", use_safetensors=UpperCAmelCase__ )
# greedy generation outputs
__lowercase = model.generate(UpperCAmelCase__, max_new_tokens=6_4, top_p=UpperCAmelCase__, temperature=1, do_sample=UpperCAmelCase__ )
__lowercase = tokenizer.decode(generated_ids[0], skip_special_tokens=UpperCAmelCase__ )
self.assertEqual(UpperCAmelCase__, UpperCAmelCase__ )
| 17 |
"""simple docstring"""
def _A ( UpperCamelCase_ : list[int]) -> float:
'''simple docstring'''
if not nums: # Makes sure that the list is not empty
raise ValueError("List is empty")
__lowercase = sum(UpperCamelCase_) / len(UpperCamelCase_) # Calculate the average
return sum(abs(x - average) for x in nums) / len(UpperCamelCase_)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 17 | 1 |
"""simple docstring"""
import argparse
import torch
from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert
from transformers.utils import logging
logging.set_verbosity_info()
def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[Any], UpperCamelCase_ : Dict) -> Any:
'''simple docstring'''
__lowercase = LxmertConfig.from_json_file(UpperCamelCase_)
print(F"""Building PyTorch model from configuration: {config}""")
__lowercase = LxmertForPreTraining(UpperCamelCase_)
# Load weights from tf checkpoint
load_tf_weights_in_lxmert(UpperCamelCase_, UpperCamelCase_, UpperCamelCase_)
# Save pytorch-model
print(F"""Save PyTorch model to {pytorch_dump_path}""")
torch.save(model.state_dict(), UpperCamelCase_)
if __name__ == "__main__":
_a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.',
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
_a = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
| 17 |
"""simple docstring"""
import inspect
import unittest
import numpy as np
from transformers import BeitConfig
from transformers.testing_utils import require_flax, require_vision, slow
from transformers.utils import cached_property, is_flax_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor
if is_flax_available():
import jax
from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : int=1_0_0, UpperCAmelCase__ : Any=1_3, UpperCAmelCase__ : List[Any]=3_0, UpperCAmelCase__ : Dict=2, UpperCAmelCase__ : Any=3, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[str]=True, UpperCAmelCase__ : Optional[Any]=3_2, UpperCAmelCase__ : Any=5, UpperCAmelCase__ : Any=4, UpperCAmelCase__ : Any=3_7, UpperCAmelCase__ : Optional[int]="gelu", UpperCAmelCase__ : Dict=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Dict=1_0, UpperCAmelCase__ : Tuple=0.02, UpperCAmelCase__ : List[Any]=3, ):
__lowercase = parent
__lowercase = vocab_size
__lowercase = batch_size
__lowercase = image_size
__lowercase = patch_size
__lowercase = num_channels
__lowercase = is_training
__lowercase = use_labels
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = type_sequence_label_size
__lowercase = initializer_range
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
__lowercase = (image_size // patch_size) ** 2
__lowercase = num_patches + 1
def _lowercase ( self : int ):
__lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size], self.type_sequence_label_size )
__lowercase = BeitConfig(
vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=UpperCAmelCase__, initializer_range=self.initializer_range, )
return config, pixel_values, labels
def _lowercase ( self : Any, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[str], UpperCAmelCase__ : List[str] ):
__lowercase = FlaxBeitModel(config=UpperCAmelCase__ )
__lowercase = model(UpperCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : List[Any] ):
__lowercase = FlaxBeitForMaskedImageModeling(config=UpperCAmelCase__ )
__lowercase = model(UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size) )
def _lowercase ( self : Dict, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : Union[str, Any] ):
__lowercase = self.type_sequence_label_size
__lowercase = FlaxBeitForImageClassification(config=UpperCAmelCase__ )
__lowercase = model(UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__lowercase = 1
__lowercase = FlaxBeitForImageClassification(UpperCAmelCase__ )
__lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__lowercase = model(UpperCAmelCase__ )
def _lowercase ( self : List[str] ):
__lowercase = self.prepare_config_and_inputs()
(
(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,
) = config_and_inputs
__lowercase = {"pixel_values": pixel_values}
return config, inputs_dict
@require_flax
class _lowerCAmelCase ( lowercase ,unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : str = (
(FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else ()
)
def _lowercase ( self : List[Any] ):
__lowercase = FlaxBeitModelTester(self )
__lowercase = ConfigTester(self, config_class=UpperCAmelCase__, has_text_modality=UpperCAmelCase__, hidden_size=3_7 )
def _lowercase ( self : Union[str, Any] ):
self.config_tester.run_common_tests()
def _lowercase ( self : Optional[int] ):
__lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowercase = model_class(UpperCAmelCase__ )
__lowercase = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowercase = [*signature.parameters.keys()]
__lowercase = ["pixel_values"]
self.assertListEqual(arg_names[:1], UpperCAmelCase__ )
def _lowercase ( self : Tuple ):
__lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__lowercase = self._prepare_for_class(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = model_class(UpperCAmelCase__ )
@jax.jit
def model_jitted(UpperCAmelCase__ : str, **UpperCAmelCase__ : Dict ):
return model(pixel_values=UpperCAmelCase__, **UpperCAmelCase__ )
with self.subTest("JIT Enabled" ):
__lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
__lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple()
self.assertEqual(len(UpperCAmelCase__ ), len(UpperCAmelCase__ ) )
for jitted_output, output in zip(UpperCAmelCase__, UpperCAmelCase__ ):
self.assertEqual(jitted_output.shape, output.shape )
def _lowercase ( self : List[str] ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase__ )
def _lowercase ( self : int ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ )
def _lowercase ( self : Tuple ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ )
@slow
def _lowercase ( self : Union[str, Any] ):
for model_class_name in self.all_model_classes:
__lowercase = model_class_name.from_pretrained("microsoft/beit-base-patch16-224" )
__lowercase = model(np.ones((1, 3, 2_2_4, 2_2_4) ) )
self.assertIsNotNone(UpperCAmelCase__ )
def _A ( ) -> str:
'''simple docstring'''
__lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_vision
@require_flax
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _lowercase ( self : Optional[int] ):
return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None
@slow
def _lowercase ( self : Any ):
__lowercase = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" )
__lowercase = self.default_image_processor
__lowercase = prepare_img()
__lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ).pixel_values
# prepare bool_masked_pos
__lowercase = np.ones((1, 1_9_6), dtype=UpperCAmelCase__ )
# forward pass
__lowercase = model(pixel_values=UpperCAmelCase__, bool_masked_pos=UpperCAmelCase__ )
__lowercase = outputs.logits
# verify the logits
__lowercase = (1, 1_9_6, 8_1_9_2)
self.assertEqual(logits.shape, UpperCAmelCase__ )
__lowercase = np.array(
[[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] )
self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3], UpperCAmelCase__, atol=1E-2 ) )
@slow
def _lowercase ( self : Any ):
__lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" )
__lowercase = self.default_image_processor
__lowercase = prepare_img()
__lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" )
# forward pass
__lowercase = model(**UpperCAmelCase__ )
__lowercase = outputs.logits
# verify the logits
__lowercase = (1, 1_0_0_0)
self.assertEqual(logits.shape, UpperCAmelCase__ )
__lowercase = np.array([-1.2_385, -1.0_987, -1.0_108] )
self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) )
__lowercase = 2_8_1
self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ )
@slow
def _lowercase ( self : List[str] ):
__lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" )
__lowercase = self.default_image_processor
__lowercase = prepare_img()
__lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" )
# forward pass
__lowercase = model(**UpperCAmelCase__ )
__lowercase = outputs.logits
# verify the logits
__lowercase = (1, 2_1_8_4_1)
self.assertEqual(logits.shape, UpperCAmelCase__ )
__lowercase = np.array([1.6_881, -0.2_787, 0.5_901] )
self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) )
__lowercase = 2_3_9_6
self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ )
| 17 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
_a = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a = ['FNetTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a = ['FNetTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a = [
'FNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'FNetForMaskedLM',
'FNetForMultipleChoice',
'FNetForNextSentencePrediction',
'FNetForPreTraining',
'FNetForQuestionAnswering',
'FNetForSequenceClassification',
'FNetForTokenClassification',
'FNetLayer',
'FNetModel',
'FNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet import FNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet_fast import FNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_fnet import (
FNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FNetForMaskedLM,
FNetForMultipleChoice,
FNetForNextSentencePrediction,
FNetForPreTraining,
FNetForQuestionAnswering,
FNetForSequenceClassification,
FNetForTokenClassification,
FNetLayer,
FNetModel,
FNetPreTrainedModel,
)
else:
import sys
_a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 17 |
"""simple docstring"""
import unittest
from transformers import load_tool
from .test_tools_common import ToolTesterMixin
class _lowerCAmelCase ( unittest.TestCase ,lowercase ):
"""simple docstring"""
def _lowercase ( self : List[Any] ):
__lowercase = load_tool("text-classification" )
self.tool.setup()
__lowercase = load_tool("text-classification", remote=UpperCAmelCase__ )
def _lowercase ( self : str ):
__lowercase = self.tool("That's quite cool", ["positive", "negative"] )
self.assertEqual(UpperCAmelCase__, "positive" )
def _lowercase ( self : str ):
__lowercase = self.remote_tool("That's quite cool", ["positive", "negative"] )
self.assertEqual(UpperCAmelCase__, "positive" )
def _lowercase ( self : List[str] ):
__lowercase = self.tool(text="That's quite cool", labels=["positive", "negative"] )
self.assertEqual(UpperCAmelCase__, "positive" )
def _lowercase ( self : Tuple ):
__lowercase = self.remote_tool(text="That's quite cool", labels=["positive", "negative"] )
self.assertEqual(UpperCAmelCase__, "positive" )
| 17 | 1 |
"""simple docstring"""
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Union[str, Any], UpperCAmelCase__ : str = "", UpperCAmelCase__ : bool = False ):
# Mapping from the first character of the prefix of the node
__lowercase = {}
# A node will be a leaf if the tree contains its word
__lowercase = is_leaf
__lowercase = prefix
def _lowercase ( self : Tuple, UpperCAmelCase__ : str ):
__lowercase = 0
for q, w in zip(self.prefix, UpperCAmelCase__ ):
if q != w:
break
x += 1
return self.prefix[:x], self.prefix[x:], word[x:]
def _lowercase ( self : Any, UpperCAmelCase__ : list[str] ):
for word in words:
self.insert(UpperCAmelCase__ )
def _lowercase ( self : int, UpperCAmelCase__ : str ):
# Case 1: If the word is the prefix of the node
# Solution: We set the current node as leaf
if self.prefix == word:
__lowercase = True
# Case 2: The node has no edges that have a prefix to the word
# Solution: We create an edge from the current node to a new one
# containing the word
elif word[0] not in self.nodes:
__lowercase = RadixNode(prefix=UpperCAmelCase__, is_leaf=UpperCAmelCase__ )
else:
__lowercase = self.nodes[word[0]]
__lowercase ,__lowercase ,__lowercase = incoming_node.match(
UpperCAmelCase__ )
# Case 3: The node prefix is equal to the matching
# Solution: We insert remaining word on the next node
if remaining_prefix == "":
self.nodes[matching_string[0]].insert(UpperCAmelCase__ )
# Case 4: The word is greater equal to the matching
# Solution: Create a node in between both nodes, change
# prefixes and add the new node for the remaining word
else:
__lowercase = remaining_prefix
__lowercase = self.nodes[matching_string[0]]
__lowercase = RadixNode(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = aux_node
if remaining_word == "":
__lowercase = True
else:
self.nodes[matching_string[0]].insert(UpperCAmelCase__ )
def _lowercase ( self : Any, UpperCAmelCase__ : str ):
__lowercase = self.nodes.get(word[0], UpperCAmelCase__ )
if not incoming_node:
return False
else:
__lowercase ,__lowercase ,__lowercase = incoming_node.match(
UpperCAmelCase__ )
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# This applies when the word and the prefix are equal
elif remaining_word == "":
return incoming_node.is_leaf
# We have word remaining so we check the next node
else:
return incoming_node.find(UpperCAmelCase__ )
def _lowercase ( self : List[str], UpperCAmelCase__ : str ):
__lowercase = self.nodes.get(word[0], UpperCAmelCase__ )
if not incoming_node:
return False
else:
__lowercase ,__lowercase ,__lowercase = incoming_node.match(
UpperCAmelCase__ )
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# We have word remaining so we check the next node
elif remaining_word != "":
return incoming_node.delete(UpperCAmelCase__ )
else:
# If it is not a leaf, we don't have to delete
if not incoming_node.is_leaf:
return False
else:
# We delete the nodes if no edges go from it
if len(incoming_node.nodes ) == 0:
del self.nodes[word[0]]
# We merge the current node with its only child
if len(self.nodes ) == 1 and not self.is_leaf:
__lowercase = list(self.nodes.values() )[0]
__lowercase = merging_node.is_leaf
self.prefix += merging_node.prefix
__lowercase = merging_node.nodes
# If there is more than 1 edge, we just mark it as non-leaf
elif len(incoming_node.nodes ) > 1:
__lowercase = False
# If there is 1 edge, we merge it with its child
else:
__lowercase = list(incoming_node.nodes.values() )[0]
__lowercase = merging_node.is_leaf
incoming_node.prefix += merging_node.prefix
__lowercase = merging_node.nodes
return True
def _lowercase ( self : Tuple, UpperCAmelCase__ : int = 0 ):
if self.prefix != "":
print("-" * height, self.prefix, " (leaf)" if self.is_leaf else "" )
for value in self.nodes.values():
value.print_tree(height + 1 )
def _A ( ) -> bool:
'''simple docstring'''
__lowercase = "banana bananas bandana band apple all beast".split()
__lowercase = RadixNode()
root.insert_many(UpperCamelCase_)
assert all(root.find(UpperCamelCase_) for word in words)
assert not root.find("bandanas")
assert not root.find("apps")
root.delete("all")
assert not root.find("all")
root.delete("banana")
assert not root.find("banana")
assert root.find("bananas")
return True
def _A ( ) -> None:
'''simple docstring'''
assert test_trie()
def _A ( ) -> None:
'''simple docstring'''
__lowercase = RadixNode()
__lowercase = "banana bananas bandanas bandana band apple all beast".split()
root.insert_many(UpperCamelCase_)
print("Words:", UpperCamelCase_)
print("Tree:")
root.print_tree()
if __name__ == "__main__":
main()
| 17 |
"""simple docstring"""
from typing import Any, Callable, Dict, List, Optional, Union
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
_a = 'CompVis/stable-diffusion-v1-1'
_a = 'CompVis/stable-diffusion-v1-2'
_a = 'CompVis/stable-diffusion-v1-3'
_a = 'CompVis/stable-diffusion-v1-4'
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
def __init__( self : Dict, UpperCAmelCase__ : AutoencoderKL, UpperCAmelCase__ : CLIPTextModel, UpperCAmelCase__ : CLIPTokenizer, UpperCAmelCase__ : UNetaDConditionModel, UpperCAmelCase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], UpperCAmelCase__ : StableDiffusionSafetyChecker, UpperCAmelCase__ : CLIPImageProcessor, UpperCAmelCase__ : bool = True, ):
super()._init_()
__lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ )
__lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ )
__lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ )
__lowercase = StableDiffusionPipeline(
vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, tokenizer=UpperCAmelCase__, unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, safety_checker=UpperCAmelCase__, feature_extractor=UpperCAmelCase__, requires_safety_checker=UpperCAmelCase__, )
self.register_modules(pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea )
@property
def _lowercase ( self : List[str] ):
return {k: getattr(self, UpperCAmelCase__ ) for k in self.config.keys() if not k.startswith("_" )}
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ):
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
__lowercase = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(UpperCAmelCase__ )
def _lowercase ( self : List[str] ):
self.enable_attention_slicing(UpperCAmelCase__ )
@torch.no_grad()
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Tuple, ):
return self.pipea(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
@torch.no_grad()
def _lowercase ( self : Tuple, UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : str, ):
return self.pipea(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
@torch.no_grad()
def _lowercase ( self : str, UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Any, ):
return self.pipea(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
@torch.no_grad()
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Optional[int], ):
return self.pipea(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
@torch.no_grad()
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : str, ):
__lowercase = "cuda" if torch.cuda.is_available() else "cpu"
self.to(UpperCAmelCase__ )
# Checks if the height and width are divisible by 8 or not
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" )
# Get first result from Stable Diffusion Checkpoint v1.1
__lowercase = self.textaimg_sda_a(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
# Get first result from Stable Diffusion Checkpoint v1.2
__lowercase = self.textaimg_sda_a(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
# Get first result from Stable Diffusion Checkpoint v1.3
__lowercase = self.textaimg_sda_a(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
# Get first result from Stable Diffusion Checkpoint v1.4
__lowercase = self.textaimg_sda_a(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
# Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result
return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
| 17 | 1 |
"""simple docstring"""
import unittest
from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available
from transformers.pipelines import pipeline
from transformers.pipelines.document_question_answering import apply_tesseract
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_detectrona,
require_pytesseract,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
from transformers.image_utils import load_image
else:
class _lowerCAmelCase :
"""simple docstring"""
@staticmethod
def _lowercase ( *UpperCAmelCase__ : Tuple, **UpperCAmelCase__ : List[Any] ):
pass
def _A ( UpperCamelCase_ : Union[str, Any]) -> Any:
'''simple docstring'''
return None
# This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace,
# so we can expect it to be available.
_a = (
'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png'
)
@is_pipeline_test
@require_torch
@require_vision
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : Tuple = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING
@require_pytesseract
@require_vision
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Optional[Any] ):
__lowercase = pipeline(
"document-question-answering", model=UpperCAmelCase__, tokenizer=UpperCAmelCase__, image_processor=UpperCAmelCase__ )
__lowercase = INVOICE_URL
__lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) )
__lowercase = "What is the placebo?"
__lowercase = [
{
"image": load_image(UpperCAmelCase__ ),
"question": question,
},
{
"image": image,
"question": question,
},
{
"image": image,
"question": question,
"word_boxes": word_boxes,
},
]
return dqa_pipeline, examples
def _lowercase ( self : int, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Any ):
__lowercase = dqa_pipeline(UpperCAmelCase__, top_k=2 )
self.assertEqual(
UpperCAmelCase__, [
[
{"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ ), "start": ANY(UpperCAmelCase__ ), "end": ANY(UpperCAmelCase__ )},
{"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ ), "start": ANY(UpperCAmelCase__ ), "end": ANY(UpperCAmelCase__ )},
]
]
* 3, )
@require_torch
@require_detectrona
@require_pytesseract
def _lowercase ( self : Dict ):
__lowercase = pipeline("document-question-answering", model="hf-internal-testing/tiny-random-layoutlmv2" )
__lowercase = INVOICE_URL
__lowercase = "How many cats are there?"
__lowercase = [
{"score": 0.0_001, "answer": "oy 2312/2019", "start": 3_8, "end": 3_9},
{"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 3_8, "end": 4_0},
]
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), UpperCAmelCase__ )
__lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), UpperCAmelCase__ )
# This image does not detect ANY text in it, meaning layoutlmv2 should fail.
# Empty answer probably
__lowercase = "./tests/fixtures/tests_samples/COCO/000000039769.png"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(UpperCAmelCase__, [] )
# We can optionnally pass directly the words and bounding boxes
__lowercase = "./tests/fixtures/tests_samples/COCO/000000039769.png"
__lowercase = []
__lowercase = []
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, words=UpperCAmelCase__, boxes=UpperCAmelCase__, top_k=2 )
self.assertEqual(UpperCAmelCase__, [] )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def _lowercase ( self : List[str] ):
__lowercase = pipeline(
"document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
[
{"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6},
],
]
* 2, )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def _lowercase ( self : Dict ):
__lowercase = pipeline(
"document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", max_seq_len=5_0, )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3},
{"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3},
{"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
[
{"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3},
{"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6},
]
]
* 2, )
@slow
@require_torch
@require_pytesseract
@require_vision
def _lowercase ( self : Optional[Any] ):
__lowercase = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=UpperCAmelCase__ )
__lowercase = pipeline(
"document-question-answering", model="impira/layoutlm-document-qa", tokenizer=UpperCAmelCase__, revision="3dc6de3", )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3},
], )
__lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3},
], )
__lowercase = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
[
{"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3},
]
]
* 2, )
__lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) )
# This model should also work if `image` is set to None
__lowercase = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3},
], )
@slow
@require_torch
@require_pytesseract
@require_vision
def _lowercase ( self : Union[str, Any] ):
__lowercase = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=UpperCAmelCase__ )
__lowercase = pipeline(
"document-question-answering", model="impira/layoutlm-document-qa", tokenizer=UpperCAmelCase__, revision="3dc6de3", max_seq_len=5_0, )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
[
{"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6},
]
]
* 2, )
__lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) )
# This model should also work if `image` is set to None
__lowercase = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
@slow
@require_torch
def _lowercase ( self : Dict ):
__lowercase = pipeline(
"document-question-answering", model="naver-clova-ix/donut-base-finetuned-docvqa", tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ), feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa", )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), [{"answer": "us-001"}] )
@require_tf
@unittest.skip("Document question answering not implemented in TF" )
def _lowercase ( self : List[Any] ):
pass
| 17 |
"""simple docstring"""
import random
import unittest
import numpy as np
import torch
from diffusers import (
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionUpscalePipeline,
PNDMScheduler,
)
from diffusers.utils import floats_tensor
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class _lowerCAmelCase ( lowercase ,unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : str = "ssube/stable-diffusion-x4-upscaler-onnx"
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : List[str]=0 ):
__lowercase = floats_tensor((1, 3, 1_2_8, 1_2_8), rng=random.Random(UpperCAmelCase__ ) )
__lowercase = torch.manual_seed(UpperCAmelCase__ )
__lowercase = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 7.5,
"output_type": "numpy",
}
return inputs
def _lowercase ( self : Any ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1].flatten()
# started as 128, should now be 512
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] )
assert np.abs(image_slice - expected_slice ).max() < 1E-1
def _lowercase ( self : Optional[Any] ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
__lowercase = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.6_898_892, 0.59_240_556, 0.52_499_527, 0.58_866_215, 0.52_258_235, 0.52_572_715, 0.62_414_473, 0.6_174_387, 0.6_214_964] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def _lowercase ( self : int ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
__lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.7_659_278, 0.76_437_664, 0.75_579_107, 0.7_691_116, 0.77_666_986, 0.7_727_672, 0.7_758_664, 0.7_812_226, 0.76_942_515] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def _lowercase ( self : str ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
__lowercase = EulerDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def _lowercase ( self : Any ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
__lowercase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.77_424_496, 0.773_601, 0.7_645_288, 0.7_769_598, 0.7_772_739, 0.7_738_688, 0.78_187_233, 0.77_879_584, 0.767_043] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
@nightly
@require_onnxruntime
@require_torch_gpu
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@property
def _lowercase ( self : Tuple ):
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def _lowercase ( self : Dict ):
__lowercase = ort.SessionOptions()
__lowercase = False
return options
def _lowercase ( self : Dict ):
__lowercase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg" )
__lowercase = init_image.resize((1_2_8, 1_2_8) )
# using the PNDM scheduler by default
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(
"ssube/stable-diffusion-x4-upscaler-onnx", provider=self.gpu_provider, sess_options=self.gpu_options, )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = "A fantasy landscape, trending on artstation"
__lowercase = torch.manual_seed(0 )
__lowercase = pipe(
prompt=UpperCAmelCase__, image=UpperCAmelCase__, guidance_scale=7.5, num_inference_steps=1_0, generator=UpperCAmelCase__, output_type="np", )
__lowercase = output.images
__lowercase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert images.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array([0.4_883, 0.4_947, 0.4_980, 0.4_975, 0.4_982, 0.4_980, 0.5_000, 0.5_006, 0.4_972] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
def _lowercase ( self : str ):
__lowercase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg" )
__lowercase = init_image.resize((1_2_8, 1_2_8) )
__lowercase = LMSDiscreteScheduler.from_pretrained(
"ssube/stable-diffusion-x4-upscaler-onnx", subfolder="scheduler" )
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(
"ssube/stable-diffusion-x4-upscaler-onnx", scheduler=UpperCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = "A fantasy landscape, trending on artstation"
__lowercase = torch.manual_seed(0 )
__lowercase = pipe(
prompt=UpperCAmelCase__, image=UpperCAmelCase__, guidance_scale=7.5, num_inference_steps=2_0, generator=UpperCAmelCase__, output_type="np", )
__lowercase = output.images
__lowercase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert images.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.50_173_753, 0.50_223_356, 0.502_039, 0.50_233_036, 0.5_023_725, 0.5_022_601, 0.5_018_758, 0.50_234_085, 0.50_241_566] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
| 17 | 1 |
"""simple docstring"""
import os
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from torch import nn
from transformers import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
def _A ( UpperCamelCase_ : int, UpperCamelCase_ : Tuple=10) -> str:
'''simple docstring'''
__lowercase = []
for _ in range(UpperCamelCase_):
lrs.append(scheduler.get_lr()[0])
scheduler.step()
return lrs
def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : Tuple=10) -> Union[str, Any]:
'''simple docstring'''
__lowercase = []
for step in range(UpperCamelCase_):
lrs.append(scheduler.get_lr()[0])
scheduler.step()
if step == num_steps // 2:
with tempfile.TemporaryDirectory() as tmpdirname:
__lowercase = os.path.join(UpperCamelCase_, "schedule.bin")
torch.save(scheduler.state_dict(), UpperCamelCase_)
__lowercase = torch.load(UpperCamelCase_)
scheduler.load_state_dict(UpperCamelCase_)
return lrs
@require_torch
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def _lowercase ( self : str, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Optional[Any] ):
self.assertEqual(len(UpperCAmelCase__ ), len(UpperCAmelCase__ ) )
for a, b in zip(UpperCAmelCase__, UpperCAmelCase__ ):
self.assertAlmostEqual(UpperCAmelCase__, UpperCAmelCase__, delta=UpperCAmelCase__ )
def _lowercase ( self : List[Any] ):
__lowercase = torch.tensor([0.1, -0.2, -0.1], requires_grad=UpperCAmelCase__ )
__lowercase = torch.tensor([0.4, 0.2, -0.5] )
__lowercase = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
__lowercase = AdamW(params=[w], lr=2E-1, weight_decay=0.0 )
for _ in range(1_0_0 ):
__lowercase = criterion(UpperCAmelCase__, UpperCAmelCase__ )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist(), [0.4, 0.2, -0.5], tol=1E-2 )
def _lowercase ( self : Tuple ):
__lowercase = torch.tensor([0.1, -0.2, -0.1], requires_grad=UpperCAmelCase__ )
__lowercase = torch.tensor([0.4, 0.2, -0.5] )
__lowercase = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
__lowercase = Adafactor(
params=[w], lr=1E-2, eps=(1E-30, 1E-3), clip_threshold=1.0, decay_rate=-0.8, betaa=UpperCAmelCase__, weight_decay=0.0, relative_step=UpperCAmelCase__, scale_parameter=UpperCAmelCase__, warmup_init=UpperCAmelCase__, )
for _ in range(1_0_0_0 ):
__lowercase = criterion(UpperCAmelCase__, UpperCAmelCase__ )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist(), [0.4, 0.2, -0.5], tol=1E-2 )
@require_torch
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : Any = nn.Linear(5_0 ,5_0 ) if is_torch_available() else None
__UpperCAmelCase : Optional[Any] = AdamW(m.parameters() ,lr=10.0 ) if is_torch_available() else None
__UpperCAmelCase : Tuple = 1_0
def _lowercase ( self : Any, UpperCAmelCase__ : str, UpperCAmelCase__ : Dict, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : str=None ):
self.assertEqual(len(UpperCAmelCase__ ), len(UpperCAmelCase__ ) )
for a, b in zip(UpperCAmelCase__, UpperCAmelCase__ ):
self.assertAlmostEqual(UpperCAmelCase__, UpperCAmelCase__, delta=UpperCAmelCase__, msg=UpperCAmelCase__ )
def _lowercase ( self : Dict ):
__lowercase = {"num_warmup_steps": 2, "num_training_steps": 1_0}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
__lowercase = {
get_constant_schedule: ({}, [10.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{"num_warmup_steps": 4},
[0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, "num_cycles": 2},
[0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46],
),
get_polynomial_decay_schedule_with_warmup: (
{**common_kwargs, "power": 2.0, "lr_end": 1E-7},
[0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156],
),
get_inverse_sqrt_schedule: (
{"num_warmup_steps": 2},
[0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714],
),
}
for scheduler_func, data in scheds.items():
__lowercase ,__lowercase = data
__lowercase = scheduler_func(self.optimizer, **UpperCAmelCase__ )
self.assertEqual(len([scheduler.get_lr()[0]] ), 1 )
__lowercase = unwrap_schedule(UpperCAmelCase__, self.num_steps )
self.assertListAlmostEqual(
UpperCAmelCase__, UpperCAmelCase__, tol=1E-2, msg=F"""failed for {scheduler_func} in normal scheduler""", )
__lowercase = scheduler_func(self.optimizer, **UpperCAmelCase__ )
if scheduler_func.__name__ != "get_constant_schedule":
LambdaScheduleWrapper.wrap_scheduler(UpperCAmelCase__ ) # wrap to test picklability of the schedule
__lowercase = unwrap_and_save_reload_schedule(UpperCAmelCase__, self.num_steps )
self.assertListEqual(UpperCAmelCase__, UpperCAmelCase__, msg=F"""failed for {scheduler_func} in save and reload""" )
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Tuple, UpperCAmelCase__ : Dict ):
__lowercase = fn
def __call__( self : int, *UpperCAmelCase__ : Optional[Any], **UpperCAmelCase__ : List[Any] ):
return self.fn(*UpperCAmelCase__, **UpperCAmelCase__ )
@classmethod
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Dict ):
__lowercase = list(map(self, scheduler.lr_lambdas ) )
| 17 |
"""simple docstring"""
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
_a = datasets.utils.logging.get_logger(__name__)
_a = ['names', 'prefix']
_a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols']
_a = ['encoding_errors', 'on_bad_lines']
_a = ['date_format']
@dataclass
class _lowerCAmelCase ( datasets.BuilderConfig ):
"""simple docstring"""
__UpperCAmelCase : str = ","
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : Optional[Union[int, List[int], str]] = "infer"
__UpperCAmelCase : Optional[List[str]] = None
__UpperCAmelCase : Optional[List[str]] = None
__UpperCAmelCase : Optional[Union[int, str, List[int], List[str]]] = None
__UpperCAmelCase : Optional[Union[List[int], List[str]]] = None
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : bool = True
__UpperCAmelCase : Optional[Literal["c", "python", "pyarrow"]] = None
__UpperCAmelCase : Dict[Union[int, str], Callable[[Any], Any]] = None
__UpperCAmelCase : Optional[list] = None
__UpperCAmelCase : Optional[list] = None
__UpperCAmelCase : bool = False
__UpperCAmelCase : Optional[Union[int, List[int]]] = None
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : Optional[Union[str, List[str]]] = None
__UpperCAmelCase : bool = True
__UpperCAmelCase : bool = True
__UpperCAmelCase : bool = False
__UpperCAmelCase : bool = True
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : str = "."
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : str = '"'
__UpperCAmelCase : int = 0
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : bool = True
__UpperCAmelCase : bool = True
__UpperCAmelCase : int = 0
__UpperCAmelCase : bool = True
__UpperCAmelCase : bool = False
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : int = 1_0_0_0_0
__UpperCAmelCase : Optional[datasets.Features] = None
__UpperCAmelCase : Optional[str] = "strict"
__UpperCAmelCase : Literal["error", "warn", "skip"] = "error"
__UpperCAmelCase : Optional[str] = None
def _lowercase ( self : Tuple ):
if self.delimiter is not None:
__lowercase = self.delimiter
if self.column_names is not None:
__lowercase = self.column_names
@property
def _lowercase ( self : Union[str, Any] ):
__lowercase = {
"sep": self.sep,
"header": self.header,
"names": self.names,
"index_col": self.index_col,
"usecols": self.usecols,
"prefix": self.prefix,
"mangle_dupe_cols": self.mangle_dupe_cols,
"engine": self.engine,
"converters": self.converters,
"true_values": self.true_values,
"false_values": self.false_values,
"skipinitialspace": self.skipinitialspace,
"skiprows": self.skiprows,
"nrows": self.nrows,
"na_values": self.na_values,
"keep_default_na": self.keep_default_na,
"na_filter": self.na_filter,
"verbose": self.verbose,
"skip_blank_lines": self.skip_blank_lines,
"thousands": self.thousands,
"decimal": self.decimal,
"lineterminator": self.lineterminator,
"quotechar": self.quotechar,
"quoting": self.quoting,
"escapechar": self.escapechar,
"comment": self.comment,
"encoding": self.encoding,
"dialect": self.dialect,
"error_bad_lines": self.error_bad_lines,
"warn_bad_lines": self.warn_bad_lines,
"skipfooter": self.skipfooter,
"doublequote": self.doublequote,
"memory_map": self.memory_map,
"float_precision": self.float_precision,
"chunksize": self.chunksize,
"encoding_errors": self.encoding_errors,
"on_bad_lines": self.on_bad_lines,
"date_format": self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig(), UpperCAmelCase__ ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class _lowerCAmelCase ( datasets.ArrowBasedBuilder ):
"""simple docstring"""
__UpperCAmelCase : Tuple = CsvConfig
def _lowercase ( self : List[str] ):
return datasets.DatasetInfo(features=self.config.features )
def _lowercase ( self : List[Any], UpperCAmelCase__ : Dict ):
if not self.config.data_files:
raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" )
__lowercase = dl_manager.download_and_extract(self.config.data_files )
if isinstance(UpperCAmelCase__, (str, list, tuple) ):
__lowercase = data_files
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
__lowercase = [files]
__lowercase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files} )]
__lowercase = []
for split_name, files in data_files.items():
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
__lowercase = [files]
__lowercase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files]
splits.append(datasets.SplitGenerator(name=UpperCAmelCase__, gen_kwargs={"files": files} ) )
return splits
def _lowercase ( self : Dict, UpperCAmelCase__ : pa.Table ):
if self.config.features is not None:
__lowercase = self.config.features.arrow_schema
if all(not require_storage_cast(UpperCAmelCase__ ) for feature in self.config.features.values() ):
# cheaper cast
__lowercase = pa.Table.from_arrays([pa_table[field.name] for field in schema], schema=UpperCAmelCase__ )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
__lowercase = table_cast(UpperCAmelCase__, UpperCAmelCase__ )
return pa_table
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : List[str] ):
__lowercase = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
__lowercase = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(UpperCAmelCase__ ) else object
for name, dtype, feature in zip(schema.names, schema.types, self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase__ ) ):
__lowercase = pd.read_csv(UpperCAmelCase__, iterator=UpperCAmelCase__, dtype=UpperCAmelCase__, **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(UpperCAmelCase__ ):
__lowercase = pa.Table.from_pandas(UpperCAmelCase__ )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase__ )
except ValueError as e:
logger.error(F"""Failed to read file '{file}' with error {type(UpperCAmelCase__ )}: {e}""" )
raise
| 17 | 1 |
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class _lowerCAmelCase ( metaclass=lowercase ):
"""simple docstring"""
__UpperCAmelCase : Tuple = ["torch", "scipy"]
def __init__( self : Any, *UpperCAmelCase__ : Optional[Any], **UpperCAmelCase__ : Dict ):
requires_backends(self, ["torch", "scipy"] )
@classmethod
def _lowercase ( cls : str, *UpperCAmelCase__ : str, **UpperCAmelCase__ : List[str] ):
requires_backends(cls, ["torch", "scipy"] )
@classmethod
def _lowercase ( cls : Tuple, *UpperCAmelCase__ : Dict, **UpperCAmelCase__ : Optional[Any] ):
requires_backends(cls, ["torch", "scipy"] )
| 17 |
"""simple docstring"""
from scipy.stats import spearmanr
import datasets
_a = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n'
_a = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n'
_a = r'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class _lowerCAmelCase ( datasets.Metric ):
"""simple docstring"""
def _lowercase ( self : Dict ):
return datasets.MetricInfo(
description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features(
{
"predictions": datasets.Value("float" ),
"references": datasets.Value("float" ),
} ), reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"], )
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int]=False ):
__lowercase = spearmanr(UpperCAmelCase__, UpperCAmelCase__ )
if return_pvalue:
return {"spearmanr": results[0], "spearmanr_pvalue": results[1]}
else:
return {"spearmanr": results[0]}
| 17 | 1 |
"""simple docstring"""
def _A ( UpperCamelCase_ : int, UpperCamelCase_ : int) -> int:
'''simple docstring'''
return int((input_a, input_a).count(0) == 0)
def _A ( ) -> None:
'''simple docstring'''
assert and_gate(0, 0) == 0
assert and_gate(0, 1) == 0
assert and_gate(1, 0) == 0
assert and_gate(1, 1) == 1
if __name__ == "__main__":
test_and_gate()
print(and_gate(1, 0))
print(and_gate(0, 0))
print(and_gate(0, 1))
print(and_gate(1, 1))
| 17 |
"""simple docstring"""
from collections.abc import Sequence
def _A ( UpperCamelCase_ : Sequence[float], UpperCamelCase_ : float) -> float:
'''simple docstring'''
return sum(c * (x**i) for i, c in enumerate(UpperCamelCase_))
def _A ( UpperCamelCase_ : Sequence[float], UpperCamelCase_ : float) -> float:
'''simple docstring'''
__lowercase = 0.0
for coeff in reversed(UpperCamelCase_):
__lowercase = result * x + coeff
return result
if __name__ == "__main__":
_a = (0.0, 0.0, 5.0, 9.3, 7.0)
_a = 10.0
print(evaluate_poly(poly, x))
print(horner(poly, x))
| 17 | 1 |
"""simple docstring"""
import unittest
from parameterized import parameterized
from transformers import OpenLlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Any, UpperCAmelCase__ : str, UpperCAmelCase__ : Union[str, Any]=1_3, UpperCAmelCase__ : str=7, UpperCAmelCase__ : int=True, UpperCAmelCase__ : Optional[int]=True, UpperCAmelCase__ : Any=False, UpperCAmelCase__ : str=True, UpperCAmelCase__ : Tuple=9_9, UpperCAmelCase__ : Union[str, Any]=3_2, UpperCAmelCase__ : List[str]=5, UpperCAmelCase__ : int=4, UpperCAmelCase__ : str=3_7, UpperCAmelCase__ : Dict="gelu", UpperCAmelCase__ : List[str]=0.1, UpperCAmelCase__ : Tuple=0.1, UpperCAmelCase__ : Dict=5_1_2, UpperCAmelCase__ : List[str]=1_6, UpperCAmelCase__ : Optional[Any]=2, UpperCAmelCase__ : List[Any]=0.02, UpperCAmelCase__ : str=3, UpperCAmelCase__ : Dict=4, UpperCAmelCase__ : Union[str, Any]=None, ):
__lowercase = parent
__lowercase = batch_size
__lowercase = seq_length
__lowercase = is_training
__lowercase = use_input_mask
__lowercase = use_token_type_ids
__lowercase = use_labels
__lowercase = vocab_size
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = max_position_embeddings
__lowercase = type_vocab_size
__lowercase = type_sequence_label_size
__lowercase = initializer_range
__lowercase = num_labels
__lowercase = num_choices
__lowercase = scope
def _lowercase ( self : Optional[Any] ):
__lowercase = ids_tensor([self.batch_size, self.seq_length], self.vocab_size )
__lowercase = None
if self.use_input_mask:
__lowercase = random_attention_mask([self.batch_size, self.seq_length] )
__lowercase = None
if self.use_token_type_ids:
__lowercase = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size )
__lowercase = None
__lowercase = None
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size], self.type_sequence_label_size )
__lowercase = ids_tensor([self.batch_size, self.seq_length], self.num_labels )
__lowercase = ids_tensor([self.batch_size], self.num_choices )
__lowercase = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _lowercase ( self : List[str] ):
return OpenLlamaConfig(
vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=UpperCAmelCase__, initializer_range=self.initializer_range, use_stable_embedding=UpperCAmelCase__, )
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Any, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : int ):
__lowercase = OpenLlamaModel(config=UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
__lowercase = model(UpperCAmelCase__, attention_mask=UpperCAmelCase__ )
__lowercase = model(UpperCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Dict, UpperCAmelCase__ : str, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Optional[Any], ):
__lowercase = True
__lowercase = OpenLlamaModel(UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
__lowercase = model(
UpperCAmelCase__, attention_mask=UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__, encoder_attention_mask=UpperCAmelCase__, )
__lowercase = model(
UpperCAmelCase__, attention_mask=UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__, )
__lowercase = model(UpperCAmelCase__, attention_mask=UpperCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
def _lowercase ( self : List[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : int, UpperCAmelCase__ : Any, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : int, UpperCAmelCase__ : Any, ):
__lowercase = OpenLlamaForCausalLM(config=UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
__lowercase = model(UpperCAmelCase__, attention_mask=UpperCAmelCase__, labels=UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) )
def _lowercase ( self : int, UpperCAmelCase__ : str, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : List[str], UpperCAmelCase__ : int, UpperCAmelCase__ : int, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Tuple, ):
__lowercase = True
__lowercase = True
__lowercase = OpenLlamaForCausalLM(config=UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
# first forward pass
__lowercase = model(
UpperCAmelCase__, attention_mask=UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__, encoder_attention_mask=UpperCAmelCase__, use_cache=UpperCAmelCase__, )
__lowercase = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
__lowercase = ids_tensor((self.batch_size, 3), config.vocab_size )
__lowercase = ids_tensor((self.batch_size, 3), vocab_size=2 )
# append to next input_ids and
__lowercase = torch.cat([input_ids, next_tokens], dim=-1 )
__lowercase = torch.cat([input_mask, next_mask], dim=-1 )
__lowercase = model(
UpperCAmelCase__, attention_mask=UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__, encoder_attention_mask=UpperCAmelCase__, output_hidden_states=UpperCAmelCase__, )["hidden_states"][0]
__lowercase = model(
UpperCAmelCase__, attention_mask=UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__, encoder_attention_mask=UpperCAmelCase__, past_key_values=UpperCAmelCase__, output_hidden_states=UpperCAmelCase__, )["hidden_states"][0]
# select random slice
__lowercase = ids_tensor((1,), output_from_past.shape[-1] ).item()
__lowercase = output_from_no_past[:, -3:, random_slice_idx].detach()
__lowercase = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(UpperCAmelCase__, UpperCAmelCase__, atol=1E-3 ) )
def _lowercase ( self : Any ):
__lowercase = self.prepare_config_and_inputs()
(
(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,
) = config_and_inputs
__lowercase = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class _lowerCAmelCase ( lowercase ,lowercase ,lowercase ,unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : int = (
(OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else ()
)
__UpperCAmelCase : Union[str, Any] = (OpenLlamaForCausalLM,) if is_torch_available() else ()
__UpperCAmelCase : Any = (
{
"feature-extraction": OpenLlamaModel,
"text-classification": OpenLlamaForSequenceClassification,
"text-generation": OpenLlamaForCausalLM,
"zero-shot": OpenLlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
__UpperCAmelCase : List[str] = False
__UpperCAmelCase : Dict = False
def _lowercase ( self : Optional[int] ):
__lowercase = OpenLlamaModelTester(self )
__lowercase = ConfigTester(self, config_class=UpperCAmelCase__, hidden_size=3_7 )
def _lowercase ( self : int ):
self.config_tester.run_common_tests()
def _lowercase ( self : Optional[int] ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase__ )
def _lowercase ( self : Union[str, Any] ):
__lowercase = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__lowercase = type
self.model_tester.create_and_check_model(*UpperCAmelCase__ )
def _lowercase ( self : Union[str, Any] ):
__lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common()
__lowercase = 3
__lowercase = input_dict["input_ids"]
__lowercase = input_ids.ne(1 ).to(UpperCAmelCase__ )
__lowercase = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size )
__lowercase = OpenLlamaForSequenceClassification(UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
__lowercase = model(UpperCAmelCase__, attention_mask=UpperCAmelCase__, labels=UpperCAmelCase__ )
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) )
def _lowercase ( self : List[Any] ):
__lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common()
__lowercase = 3
__lowercase = "single_label_classification"
__lowercase = input_dict["input_ids"]
__lowercase = input_ids.ne(1 ).to(UpperCAmelCase__ )
__lowercase = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size )
__lowercase = OpenLlamaForSequenceClassification(UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
__lowercase = model(UpperCAmelCase__, attention_mask=UpperCAmelCase__, labels=UpperCAmelCase__ )
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) )
def _lowercase ( self : Union[str, Any] ):
__lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common()
__lowercase = 3
__lowercase = "multi_label_classification"
__lowercase = input_dict["input_ids"]
__lowercase = input_ids.ne(1 ).to(UpperCAmelCase__ )
__lowercase = ids_tensor(
[self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size ).to(torch.float )
__lowercase = OpenLlamaForSequenceClassification(UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
__lowercase = model(UpperCAmelCase__, attention_mask=UpperCAmelCase__, labels=UpperCAmelCase__ )
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) )
@unittest.skip("Open-Llama buffers include complex numbers, which breaks this test" )
def _lowercase ( self : Dict ):
pass
@parameterized.expand([("linear",), ("dynamic",)] )
def _lowercase ( self : List[Any], UpperCAmelCase__ : List[Any] ):
__lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common()
__lowercase = ids_tensor([1, 1_0], config.vocab_size )
__lowercase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )], config.vocab_size )
set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights
__lowercase = OpenLlamaModel(UpperCAmelCase__ )
original_model.to(UpperCAmelCase__ )
original_model.eval()
__lowercase = original_model(UpperCAmelCase__ ).last_hidden_state
__lowercase = original_model(UpperCAmelCase__ ).last_hidden_state
set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights
__lowercase = {"type": scaling_type, "factor": 10.0}
__lowercase = OpenLlamaModel(UpperCAmelCase__ )
scaled_model.to(UpperCAmelCase__ )
scaled_model.eval()
__lowercase = scaled_model(UpperCAmelCase__ ).last_hidden_state
__lowercase = scaled_model(UpperCAmelCase__ ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(UpperCAmelCase__, UpperCAmelCase__, atol=1E-5 ) )
else:
self.assertFalse(torch.allclose(UpperCAmelCase__, UpperCAmelCase__, atol=1E-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(UpperCAmelCase__, UpperCAmelCase__, atol=1E-5 ) )
| 17 |
"""simple docstring"""
import argparse
import pytorch_lightning as pl
import torch
from torch import nn
from transformers import LongformerForQuestionAnswering, LongformerModel
class _lowerCAmelCase ( pl.LightningModule ):
"""simple docstring"""
def __init__( self : Optional[Any], UpperCAmelCase__ : str ):
super().__init__()
__lowercase = model
__lowercase = 2
__lowercase = nn.Linear(self.model.config.hidden_size, self.num_labels )
def _lowercase ( self : Optional[int] ):
pass
def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str, UpperCamelCase_ : str) -> str:
'''simple docstring'''
__lowercase = LongformerModel.from_pretrained(UpperCamelCase_)
__lowercase = LightningModel(UpperCamelCase_)
__lowercase = torch.load(UpperCamelCase_, map_location=torch.device("cpu"))
lightning_model.load_state_dict(ckpt["state_dict"])
# init longformer question answering model
__lowercase = LongformerForQuestionAnswering.from_pretrained(UpperCamelCase_)
# transfer weights
longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict())
longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict())
longformer_for_qa.eval()
# save model
longformer_for_qa.save_pretrained(UpperCamelCase_)
print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""")
if __name__ == "__main__":
_a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--longformer_model',
default=None,
type=str,
required=True,
help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.',
)
parser.add_argument(
'--longformer_question_answering_ckpt_path',
default=None,
type=str,
required=True,
help='Path the official PyTorch Lightning Checkpoint.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
_a = parser.parse_args()
convert_longformer_qa_checkpoint_to_pytorch(
args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path
)
| 17 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_a = logging.get_logger(__name__)
_a = {
'facebook/nllb-moe-54B': 'https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json',
}
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
__UpperCAmelCase : Any = "nllb-moe"
__UpperCAmelCase : str = ["past_key_values"]
__UpperCAmelCase : Any = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self : List[Any], UpperCAmelCase__ : str=1_2_8_1_1_2, UpperCAmelCase__ : int=1_0_2_4, UpperCAmelCase__ : Optional[Any]=1_2, UpperCAmelCase__ : List[str]=4_0_9_6, UpperCAmelCase__ : Dict=1_6, UpperCAmelCase__ : Tuple=1_2, UpperCAmelCase__ : Union[str, Any]=4_0_9_6, UpperCAmelCase__ : int=1_6, UpperCAmelCase__ : Optional[int]=0.05, UpperCAmelCase__ : Union[str, Any]=0.05, UpperCAmelCase__ : Optional[int]=True, UpperCAmelCase__ : str=True, UpperCAmelCase__ : Tuple="relu", UpperCAmelCase__ : Optional[int]=1_0_2_4, UpperCAmelCase__ : str=0.1, UpperCAmelCase__ : Any=0.1, UpperCAmelCase__ : Optional[int]=0.0, UpperCAmelCase__ : Dict=0.02, UpperCAmelCase__ : str=2, UpperCAmelCase__ : List[Any]=True, UpperCAmelCase__ : int=False, UpperCAmelCase__ : Dict="float32", UpperCAmelCase__ : List[str]=False, UpperCAmelCase__ : Any=1_2_8, UpperCAmelCase__ : Any=6_4, UpperCAmelCase__ : str=4, UpperCAmelCase__ : Any=4, UpperCAmelCase__ : int=0.001, UpperCAmelCase__ : Optional[int]=0.001, UpperCAmelCase__ : Optional[Any]="all", UpperCAmelCase__ : Optional[int]=False, UpperCAmelCase__ : str=False, UpperCAmelCase__ : Dict=1.0, UpperCAmelCase__ : List[str]=0.2, UpperCAmelCase__ : Any=1, UpperCAmelCase__ : Optional[Any]=0, UpperCAmelCase__ : Dict=2, UpperCAmelCase__ : List[str]=False, **UpperCAmelCase__ : int, ):
__lowercase = vocab_size
__lowercase = max_position_embeddings
__lowercase = d_model
__lowercase = encoder_ffn_dim
__lowercase = encoder_layers
__lowercase = encoder_attention_heads
__lowercase = decoder_ffn_dim
__lowercase = decoder_layers
__lowercase = decoder_attention_heads
__lowercase = dropout
__lowercase = attention_dropout
__lowercase = activation_dropout
__lowercase = activation_function
__lowercase = init_std
__lowercase = encoder_layerdrop
__lowercase = decoder_layerdrop
__lowercase = use_cache
__lowercase = encoder_layers
__lowercase = scale_embedding # scale factor will be sqrt(d_model) if True
__lowercase = router_z_loss_coef
__lowercase = router_aux_loss_coef
__lowercase = decoder_sparse_step
__lowercase = encoder_sparse_step
__lowercase = num_experts
__lowercase = expert_capacity
__lowercase = router_bias
if router_dtype not in ["float32", "float16", "bfloat16"]:
raise ValueError(F"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""" )
__lowercase = router_dtype
__lowercase = router_ignore_padding_tokens
__lowercase = batch_prioritized_routing
__lowercase = second_expert_policy
__lowercase = normalize_router_prob_before_dropping
__lowercase = moe_eval_capacity_token_fraction
__lowercase = moe_token_dropout
__lowercase = output_router_logits
super().__init__(
pad_token_id=UpperCAmelCase__, bos_token_id=UpperCAmelCase__, eos_token_id=UpperCAmelCase__, is_encoder_decoder=UpperCAmelCase__, decoder_start_token_id=UpperCAmelCase__, **UpperCAmelCase__, )
| 17 |
"""simple docstring"""
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("TEST_SAGEMAKER" ,"False" ) ) is not True ,reason="Skipping test because should only be run when releasing minor transformers version" ,)
@pytest.mark.usefixtures("sm_env" )
@parameterized_class(
[
{
"framework": "pytorch",
"script": "run_glue_model_parallelism.py",
"model_name_or_path": "roberta-large",
"instance_type": "ml.p3dn.24xlarge",
"results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2},
},
{
"framework": "pytorch",
"script": "run_glue.py",
"model_name_or_path": "roberta-large",
"instance_type": "ml.p3dn.24xlarge",
"results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2},
},
] )
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def _lowercase ( self : Optional[int] ):
if self.framework == "pytorch":
subprocess.run(
F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split(), encoding="utf-8", check=UpperCAmelCase__, )
assert hasattr(self, "env" )
def _lowercase ( self : str, UpperCAmelCase__ : List[Any] ):
# configuration for running training on smdistributed Model Parallel
__lowercase = {
"enabled": True,
"processes_per_host": 8,
}
__lowercase = {
"enabled": True,
"parameters": {
"microbatches": 4,
"placement_strategy": "spread",
"pipeline": "interleaved",
"optimize": "speed",
"partitions": 4,
"ddp": True,
},
}
__lowercase = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options}
__lowercase = "trainer" if self.script == "run_glue.py" else "smtrainer"
# creates estimator
return HuggingFace(
entry_point=self.script, source_dir=self.env.test_path, role=self.env.role, image_uri=self.env.image_uri, base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""", instance_count=UpperCAmelCase__, instance_type=self.instance_type, debugger_hook_config=UpperCAmelCase__, hyperparameters={
**self.env.hyperparameters,
"model_name_or_path": self.model_name_or_path,
"max_steps": 5_0_0,
}, metric_definitions=self.env.metric_definitions, distribution=UpperCAmelCase__, py_version="py36", )
def _lowercase ( self : Tuple, UpperCAmelCase__ : int ):
TrainingJobAnalytics(UpperCAmelCase__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" )
@parameterized.expand([(1,)] )
def _lowercase ( self : str, UpperCAmelCase__ : Union[str, Any] ):
# create estimator
__lowercase = self.create_estimator(UpperCAmelCase__ )
# run training
estimator.fit()
# result dataframe
__lowercase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
__lowercase = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] )
__lowercase = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
__lowercase = (
Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds", 9_9_9_9_9_9 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy )
assert all(t <= self.results["eval_loss"] for t in eval_loss )
# dump tests result into json file to share in PR
with open(F"""{estimator.latest_training_job.name}.json""", "w" ) as outfile:
json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss}, UpperCAmelCase__ )
| 17 | 1 |
"""simple docstring"""
import argparse
import os
import torch
from transformers import FlavaImageCodebook, FlavaImageCodebookConfig
def _A ( UpperCamelCase_ : Optional[Any], UpperCamelCase_ : Optional[int], UpperCamelCase_ : int, UpperCamelCase_ : Optional[int]) -> List[str]:
'''simple docstring'''
__lowercase = s.rsplit(UpperCamelCase_, UpperCamelCase_)
return new.join(UpperCamelCase_)
def _A ( UpperCamelCase_ : List[str]) -> List[str]:
'''simple docstring'''
return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items())
def _A ( UpperCamelCase_ : str) -> Optional[int]:
'''simple docstring'''
__lowercase = {}
__lowercase = ["group_1", "group_2", "group_3", "group_4"]
for key, value in state_dict.items():
for group_key in group_keys:
if group_key in key:
__lowercase = key.replace(F"""{group_key}.""", F"""{group_key}.group.""")
if "res_path" in key:
__lowercase = key.replace("res_path.", "res_path.path.")
if key.endswith(".w"):
__lowercase = rreplace(UpperCamelCase_, ".w", ".weight", 1)
if key.endswith(".b"):
__lowercase = rreplace(UpperCamelCase_, ".b", ".bias", 1)
__lowercase = value.float()
return upgrade
@torch.no_grad()
def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : Tuple, UpperCamelCase_ : Optional[int]=None, UpperCamelCase_ : int=True) -> str:
'''simple docstring'''
from dall_e import Encoder
__lowercase = Encoder()
if os.path.exists(UpperCamelCase_):
__lowercase = torch.load(UpperCamelCase_)
else:
__lowercase = torch.hub.load_state_dict_from_url(UpperCamelCase_)
if isinstance(UpperCamelCase_, UpperCamelCase_):
__lowercase = ckpt.state_dict()
encoder.load_state_dict(UpperCamelCase_)
if config_path is not None:
__lowercase = FlavaImageCodebookConfig.from_pretrained(UpperCamelCase_)
else:
__lowercase = FlavaImageCodebookConfig()
__lowercase = FlavaImageCodebook(UpperCamelCase_).eval()
__lowercase = encoder.state_dict()
__lowercase = upgrade_state_dict(UpperCamelCase_)
hf_model.load_state_dict(UpperCamelCase_)
__lowercase = hf_model.state_dict()
__lowercase = count_parameters(UpperCamelCase_)
__lowercase = count_parameters(UpperCamelCase_)
assert torch.allclose(UpperCamelCase_, UpperCamelCase_, atol=1E-3)
if save_checkpoint:
hf_model.save_pretrained(UpperCamelCase_)
else:
return hf_state_dict
if __name__ == "__main__":
_a = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
_a = parser.parse_args()
convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
| 17 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor
from .base import PipelineTool
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
__UpperCAmelCase : Tuple = "openai/whisper-base"
__UpperCAmelCase : Union[str, Any] = (
"This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the "
"transcribed text."
)
__UpperCAmelCase : List[str] = "transcriber"
__UpperCAmelCase : Optional[Any] = WhisperProcessor
__UpperCAmelCase : str = WhisperForConditionalGeneration
__UpperCAmelCase : List[str] = ["audio"]
__UpperCAmelCase : Tuple = ["text"]
def _lowercase ( self : str, UpperCAmelCase__ : int ):
return self.pre_processor(UpperCAmelCase__, return_tensors="pt" ).input_features
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Any] ):
return self.model.generate(inputs=UpperCAmelCase__ )
def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[int] ):
return self.pre_processor.batch_decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ )[0]
| 17 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
_a = {
'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'],
'processing_layoutlmv2': ['LayoutLMv2Processor'],
'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a = ['LayoutLMv2TokenizerFast']
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a = ['LayoutLMv2FeatureExtractor']
_a = ['LayoutLMv2ImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a = [
'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST',
'LayoutLMv2ForQuestionAnswering',
'LayoutLMv2ForSequenceClassification',
'LayoutLMv2ForTokenClassification',
'LayoutLMv2Layer',
'LayoutLMv2Model',
'LayoutLMv2PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig
from .processing_layoutlmva import LayoutLMvaProcessor
from .tokenization_layoutlmva import LayoutLMvaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_layoutlmva import (
LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaLayer,
LayoutLMvaModel,
LayoutLMvaPreTrainedModel,
)
else:
import sys
_a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 17 |
"""simple docstring"""
import inspect
from typing import Optional, Union
import numpy as np
import PIL
import torch
from torch.nn import functional as F
from torchvision import transforms
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
DPMSolverMultistepScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.utils import (
PIL_INTERPOLATION,
randn_tensor,
)
def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str]) -> Optional[int]:
'''simple docstring'''
if isinstance(UpperCamelCase_, torch.Tensor):
return image
elif isinstance(UpperCamelCase_, PIL.Image.Image):
__lowercase = [image]
if isinstance(image[0], PIL.Image.Image):
__lowercase = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image]
__lowercase = np.concatenate(UpperCamelCase_, axis=0)
__lowercase = np.array(UpperCamelCase_).astype(np.floataa) / 255.0
__lowercase = image.transpose(0, 3, 1, 2)
__lowercase = 2.0 * image - 1.0
__lowercase = torch.from_numpy(UpperCamelCase_)
elif isinstance(image[0], torch.Tensor):
__lowercase = torch.cat(UpperCamelCase_, dim=0)
return image
def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : str, UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[Any]=0.9_995) -> int:
'''simple docstring'''
if not isinstance(UpperCamelCase_, np.ndarray):
__lowercase = True
__lowercase = va.device
__lowercase = va.cpu().numpy()
__lowercase = va.cpu().numpy()
__lowercase = np.sum(va * va / (np.linalg.norm(UpperCamelCase_) * np.linalg.norm(UpperCamelCase_)))
if np.abs(UpperCamelCase_) > DOT_THRESHOLD:
__lowercase = (1 - t) * va + t * va
else:
__lowercase = np.arccos(UpperCamelCase_)
__lowercase = np.sin(UpperCamelCase_)
__lowercase = theta_a * t
__lowercase = np.sin(UpperCamelCase_)
__lowercase = np.sin(theta_a - theta_t) / sin_theta_a
__lowercase = sin_theta_t / sin_theta_a
__lowercase = sa * va + sa * va
if inputs_are_torch:
__lowercase = torch.from_numpy(UpperCamelCase_).to(UpperCamelCase_)
return va
def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Union[str, Any]) -> int:
'''simple docstring'''
__lowercase = F.normalize(UpperCamelCase_, dim=-1)
__lowercase = F.normalize(UpperCamelCase_, dim=-1)
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)
def _A ( UpperCamelCase_ : Optional[int], UpperCamelCase_ : str) -> Optional[int]:
'''simple docstring'''
for param in model.parameters():
__lowercase = value
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
def __init__( self : Dict, UpperCAmelCase__ : AutoencoderKL, UpperCAmelCase__ : CLIPTextModel, UpperCAmelCase__ : CLIPModel, UpperCAmelCase__ : CLIPTokenizer, UpperCAmelCase__ : UNetaDConditionModel, UpperCAmelCase__ : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler], UpperCAmelCase__ : CLIPFeatureExtractor, UpperCAmelCase__ : Union[str, Any]=None, UpperCAmelCase__ : List[str]=None, UpperCAmelCase__ : Any=None, ):
super().__init__()
self.register_modules(
vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, clip_model=UpperCAmelCase__, tokenizer=UpperCAmelCase__, unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, feature_extractor=UpperCAmelCase__, coca_model=UpperCAmelCase__, coca_tokenizer=UpperCAmelCase__, coca_transform=UpperCAmelCase__, )
__lowercase = (
feature_extractor.size
if isinstance(feature_extractor.size, UpperCAmelCase__ )
else feature_extractor.size["shortest_edge"]
)
__lowercase = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std )
set_requires_grad(self.text_encoder, UpperCAmelCase__ )
set_requires_grad(self.clip_model, UpperCAmelCase__ )
def _lowercase ( self : Tuple, UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ):
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
__lowercase = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(UpperCAmelCase__ )
def _lowercase ( self : int ):
self.enable_attention_slicing(UpperCAmelCase__ )
def _lowercase ( self : str ):
set_requires_grad(self.vae, UpperCAmelCase__ )
def _lowercase ( self : Any ):
set_requires_grad(self.vae, UpperCAmelCase__ )
def _lowercase ( self : Union[str, Any] ):
set_requires_grad(self.unet, UpperCAmelCase__ )
def _lowercase ( self : Any ):
set_requires_grad(self.unet, UpperCAmelCase__ )
def _lowercase ( self : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : Optional[Any] ):
# get the original timestep using init_timestep
__lowercase = min(int(num_inference_steps * strength ), UpperCAmelCase__ )
__lowercase = max(num_inference_steps - init_timestep, 0 )
__lowercase = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def _lowercase ( self : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : int=None ):
if not isinstance(UpperCAmelCase__, torch.Tensor ):
raise ValueError(F"""`image` has to be of type `torch.Tensor` but is {type(UpperCAmelCase__ )}""" )
__lowercase = image.to(device=UpperCAmelCase__, dtype=UpperCAmelCase__ )
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
__lowercase = [
self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(UpperCAmelCase__ )
]
__lowercase = torch.cat(UpperCAmelCase__, dim=0 )
else:
__lowercase = self.vae.encode(UpperCAmelCase__ ).latent_dist.sample(UpperCAmelCase__ )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
__lowercase = 0.18_215 * init_latents
__lowercase = init_latents.repeat_interleave(UpperCAmelCase__, dim=0 )
__lowercase = randn_tensor(init_latents.shape, generator=UpperCAmelCase__, device=UpperCAmelCase__, dtype=UpperCAmelCase__ )
# get latents
__lowercase = self.scheduler.add_noise(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = init_latents
return latents
def _lowercase ( self : Optional[int], UpperCAmelCase__ : Dict ):
__lowercase = self.coca_transform(UpperCAmelCase__ ).unsqueeze(0 )
with torch.no_grad(), torch.cuda.amp.autocast():
__lowercase = self.coca_model.generate(transformed_image.to(device=self.device, dtype=self.coca_model.dtype ) )
__lowercase = self.coca_tokenizer.decode(generated[0].cpu().numpy() )
return generated.split("<end_of_text>" )[0].replace("<start_of_text>", "" ).rstrip(" .," )
def _lowercase ( self : Tuple, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Tuple ):
__lowercase = self.feature_extractor.preprocess(UpperCAmelCase__ )
__lowercase = torch.from_numpy(clip_image_input["pixel_values"][0] ).unsqueeze(0 ).to(self.device ).half()
__lowercase = self.clip_model.get_image_features(UpperCAmelCase__ )
__lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=UpperCAmelCase__ )
__lowercase = image_embeddings_clip.repeat_interleave(UpperCAmelCase__, dim=0 )
return image_embeddings_clip
@torch.enable_grad()
def _lowercase ( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[int], ):
__lowercase = latents.detach().requires_grad_()
__lowercase = self.scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ )
# predict the noise residual
__lowercase = self.unet(UpperCAmelCase__, UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__ ).sample
if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ):
__lowercase = self.scheduler.alphas_cumprod[timestep]
__lowercase = 1 - alpha_prod_t
# compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
__lowercase = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5
__lowercase = torch.sqrt(UpperCAmelCase__ )
__lowercase = pred_original_sample * (fac) + latents * (1 - fac)
elif isinstance(self.scheduler, UpperCAmelCase__ ):
__lowercase = self.scheduler.sigmas[index]
__lowercase = latents - sigma * noise_pred
else:
raise ValueError(F"""scheduler type {type(self.scheduler )} not supported""" )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
__lowercase = 1 / 0.18_215 * sample
__lowercase = self.vae.decode(UpperCAmelCase__ ).sample
__lowercase = (image / 2 + 0.5).clamp(0, 1 )
__lowercase = transforms.Resize(self.feature_extractor_size )(UpperCAmelCase__ )
__lowercase = self.normalize(UpperCAmelCase__ ).to(latents.dtype )
__lowercase = self.clip_model.get_image_features(UpperCAmelCase__ )
__lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=UpperCAmelCase__ )
__lowercase = spherical_dist_loss(UpperCAmelCase__, UpperCAmelCase__ ).mean() * clip_guidance_scale
__lowercase = -torch.autograd.grad(UpperCAmelCase__, UpperCAmelCase__ )[0]
if isinstance(self.scheduler, UpperCAmelCase__ ):
__lowercase = latents.detach() + grads * (sigma**2)
__lowercase = noise_pred_original
else:
__lowercase = noise_pred_original - torch.sqrt(UpperCAmelCase__ ) * grads
return noise_pred, latents
@torch.no_grad()
def __call__( self : str, UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image], UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image], UpperCAmelCase__ : Optional[str] = None, UpperCAmelCase__ : Optional[str] = None, UpperCAmelCase__ : Optional[int] = 5_1_2, UpperCAmelCase__ : Optional[int] = 5_1_2, UpperCAmelCase__ : float = 0.6, UpperCAmelCase__ : Optional[int] = 5_0, UpperCAmelCase__ : Optional[float] = 7.5, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[float] = 1_0_0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : float = 0.8, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, ):
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and len(UpperCAmelCase__ ) != batch_size:
raise ValueError(F"""You have passed {batch_size} batch_size, but only {len(UpperCAmelCase__ )} generators.""" )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" )
if isinstance(UpperCAmelCase__, torch.Generator ) and batch_size > 1:
__lowercase = [generator] + [None] * (batch_size - 1)
__lowercase = [
("model", self.coca_model is None),
("tokenizer", self.coca_tokenizer is None),
("transform", self.coca_transform is None),
]
__lowercase = [x[0] for x in coca_is_none if x[1]]
__lowercase = ", ".join(UpperCAmelCase__ )
# generate prompts with coca model if prompt is None
if content_prompt is None:
if len(UpperCAmelCase__ ):
raise ValueError(
F"""Content prompt is None and CoCa [{coca_is_none_str}] is None."""
F"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" )
__lowercase = self.get_image_description(UpperCAmelCase__ )
if style_prompt is None:
if len(UpperCAmelCase__ ):
raise ValueError(
F"""Style prompt is None and CoCa [{coca_is_none_str}] is None."""
F""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" )
__lowercase = self.get_image_description(UpperCAmelCase__ )
# get prompt text embeddings for content and style
__lowercase = self.tokenizer(
UpperCAmelCase__, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=UpperCAmelCase__, return_tensors="pt", )
__lowercase = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0]
__lowercase = self.tokenizer(
UpperCAmelCase__, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=UpperCAmelCase__, return_tensors="pt", )
__lowercase = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0]
__lowercase = slerp(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
# duplicate text embeddings for each generation per prompt
__lowercase = text_embeddings.repeat_interleave(UpperCAmelCase__, dim=0 )
# set timesteps
__lowercase = "offset" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() )
__lowercase = {}
if accepts_offset:
__lowercase = 1
self.scheduler.set_timesteps(UpperCAmelCase__, **UpperCAmelCase__ )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
self.scheduler.timesteps.to(self.device )
__lowercase ,__lowercase = self.get_timesteps(UpperCAmelCase__, UpperCAmelCase__, self.device )
__lowercase = timesteps[:1].repeat(UpperCAmelCase__ )
# Preprocess image
__lowercase = preprocess(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = self.prepare_latents(
UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, text_embeddings.dtype, self.device, UpperCAmelCase__ )
__lowercase = preprocess(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = self.prepare_latents(
UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, text_embeddings.dtype, self.device, UpperCAmelCase__ )
__lowercase = slerp(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
if clip_guidance_scale > 0:
__lowercase = self.get_clip_image_embeddings(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = self.get_clip_image_embeddings(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = slerp(
UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
__lowercase = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
__lowercase = content_text_input.input_ids.shape[-1]
__lowercase = self.tokenizer([""], padding="max_length", max_length=UpperCAmelCase__, return_tensors="pt" )
__lowercase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt
__lowercase = uncond_embeddings.repeat_interleave(UpperCAmelCase__, dim=0 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
__lowercase = torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
__lowercase = (batch_size, self.unet.config.in_channels, height // 8, width // 8)
__lowercase = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not work reproducibly on mps
__lowercase = torch.randn(UpperCAmelCase__, generator=UpperCAmelCase__, device="cpu", dtype=UpperCAmelCase__ ).to(
self.device )
else:
__lowercase = torch.randn(UpperCAmelCase__, generator=UpperCAmelCase__, device=self.device, dtype=UpperCAmelCase__ )
else:
if latents.shape != latents_shape:
raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" )
__lowercase = latents.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
__lowercase = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
__lowercase = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
__lowercase = {}
if accepts_eta:
__lowercase = eta
# check if the scheduler accepts generator
__lowercase = "generator" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
if accepts_generator:
__lowercase = generator
with self.progress_bar(total=UpperCAmelCase__ ):
for i, t in enumerate(UpperCAmelCase__ ):
# expand the latents if we are doing classifier free guidance
__lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
__lowercase = self.scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ )
# predict the noise residual
__lowercase = self.unet(UpperCAmelCase__, UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__ ).sample
# perform classifier free guidance
if do_classifier_free_guidance:
__lowercase ,__lowercase = noise_pred.chunk(2 )
__lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# perform clip guidance
if clip_guidance_scale > 0:
__lowercase = (
text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings
)
__lowercase ,__lowercase = self.cond_fn(
UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, )
# compute the previous noisy sample x_t -> x_t-1
__lowercase = self.scheduler.step(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, **UpperCAmelCase__ ).prev_sample
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
__lowercase = 1 / 0.18_215 * latents
__lowercase = self.vae.decode(UpperCAmelCase__ ).sample
__lowercase = (image / 2 + 0.5).clamp(0, 1 )
__lowercase = image.cpu().permute(0, 2, 3, 1 ).numpy()
if output_type == "pil":
__lowercase = self.numpy_to_pil(UpperCAmelCase__ )
if not return_dict:
return (image, None)
return StableDiffusionPipelineOutput(images=UpperCAmelCase__, nsfw_content_detected=UpperCAmelCase__ )
| 17 | 1 |
"""simple docstring"""
import os
from collections.abc import Iterator
def _A ( UpperCamelCase_ : str = ".") -> Iterator[str]:
'''simple docstring'''
for dir_path, dir_names, filenames in os.walk(UpperCamelCase_):
__lowercase = [d for d in dir_names if d != "scripts" and d[0] not in "._"]
for filename in filenames:
if filename == "__init__.py":
continue
if os.path.splitext(UpperCamelCase_)[1] in (".py", ".ipynb"):
yield os.path.join(UpperCamelCase_, UpperCamelCase_).lstrip("./")
def _A ( UpperCamelCase_ : Any) -> Union[str, Any]:
'''simple docstring'''
return F"""{i * " "}*""" if i else "\n##"
def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str) -> str:
'''simple docstring'''
__lowercase = old_path.split(os.sep)
for i, new_part in enumerate(new_path.split(os.sep)):
if (i + 1 > len(UpperCamelCase_) or old_parts[i] != new_part) and new_part:
print(F"""{md_prefix(UpperCamelCase_)} {new_part.replace("_", " ").title()}""")
return new_path
def _A ( UpperCamelCase_ : str = ".") -> None:
'''simple docstring'''
__lowercase = ""
for filepath in sorted(good_file_paths(UpperCamelCase_)):
__lowercase ,__lowercase = os.path.split(UpperCamelCase_)
if filepath != old_path:
__lowercase = print_path(UpperCamelCase_, UpperCamelCase_)
__lowercase = (filepath.count(os.sep) + 1) if filepath else 0
__lowercase = F"""{filepath}/{filename}""".replace(" ", "%20")
__lowercase = os.path.splitext(filename.replace("_", " ").title())[0]
print(F"""{md_prefix(UpperCamelCase_)} [{filename}]({url})""")
if __name__ == "__main__":
print_directory_md('.')
| 17 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class _lowerCAmelCase :
"""simple docstring"""
__UpperCAmelCase : Tuple = XGLMConfig
__UpperCAmelCase : Optional[Any] = {}
__UpperCAmelCase : Union[str, Any] = "gelu"
def __init__( self : Optional[int], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int]=1_4, UpperCAmelCase__ : str=7, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[Any]=True, UpperCAmelCase__ : int=True, UpperCAmelCase__ : List[str]=9_9, UpperCAmelCase__ : Union[str, Any]=3_2, UpperCAmelCase__ : Union[str, Any]=2, UpperCAmelCase__ : Union[str, Any]=4, UpperCAmelCase__ : Tuple=3_7, UpperCAmelCase__ : List[Any]="gelu", UpperCAmelCase__ : List[str]=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Tuple=5_1_2, UpperCAmelCase__ : Optional[Any]=0.02, ):
__lowercase = parent
__lowercase = batch_size
__lowercase = seq_length
__lowercase = is_training
__lowercase = use_input_mask
__lowercase = use_labels
__lowercase = vocab_size
__lowercase = d_model
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = ffn_dim
__lowercase = activation_function
__lowercase = activation_dropout
__lowercase = attention_dropout
__lowercase = max_position_embeddings
__lowercase = initializer_range
__lowercase = None
__lowercase = 0
__lowercase = 2
__lowercase = 1
def _lowercase ( self : Union[str, Any] ):
return XGLMConfig.from_pretrained("facebook/xglm-564M" )
def _lowercase ( self : Tuple ):
__lowercase = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length], self.vocab_size ), clip_value_min=0, clip_value_max=3 )
__lowercase = None
if self.use_input_mask:
__lowercase = random_attention_mask([self.batch_size, self.seq_length] )
__lowercase = self.get_config()
__lowercase = floats_tensor([self.num_hidden_layers, self.num_attention_heads], 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def _lowercase ( self : List[Any] ):
return XGLMConfig(
vocab_size=self.vocab_size, d_model=self.hidden_size, num_layers=self.num_hidden_layers, attention_heads=self.num_attention_heads, ffn_dim=self.ffn_dim, activation_function=self.activation_function, activation_dropout=self.activation_dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, use_cache=UpperCAmelCase__, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, return_dict=UpperCAmelCase__, )
def _lowercase ( self : Dict ):
__lowercase = self.prepare_config_and_inputs()
(
(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,
) = config_and_inputs
__lowercase = {
"input_ids": input_ids,
"head_mask": head_mask,
}
return config, inputs_dict
@require_tf
class _lowerCAmelCase ( lowercase ,lowercase ,unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
__UpperCAmelCase : List[str] = (TFXGLMForCausalLM,) if is_tf_available() else ()
__UpperCAmelCase : Any = (
{"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {}
)
__UpperCAmelCase : Optional[Any] = False
__UpperCAmelCase : List[str] = False
__UpperCAmelCase : int = False
def _lowercase ( self : Optional[Any] ):
__lowercase = TFXGLMModelTester(self )
__lowercase = ConfigTester(self, config_class=UpperCAmelCase__, n_embd=3_7 )
def _lowercase ( self : Any ):
self.config_tester.run_common_tests()
@slow
def _lowercase ( self : List[str] ):
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowercase = TFXGLMModel.from_pretrained(UpperCAmelCase__ )
self.assertIsNotNone(UpperCAmelCase__ )
@unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." )
def _lowercase ( self : int ):
super().test_resize_token_embeddings()
@require_tf
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[int]=True ):
__lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
__lowercase = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]], dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
__lowercase = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1]
# fmt: on
__lowercase = model.generate(UpperCAmelCase__, do_sample=UpperCAmelCase__, num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist(), UpperCAmelCase__ )
@slow
def _lowercase ( self : List[Any] ):
__lowercase = XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
__lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
tf.random.set_seed(0 )
__lowercase = tokenizer("Today is a nice day and", return_tensors="tf" )
__lowercase = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(":/CPU:0" ):
__lowercase = model.generate(UpperCAmelCase__, do_sample=UpperCAmelCase__, seed=[7, 0] )
__lowercase = tokenizer.decode(output_ids[0], skip_special_tokens=UpperCAmelCase__ )
__lowercase = (
"Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due"
)
self.assertEqual(UpperCAmelCase__, UpperCAmelCase__ )
@slow
def _lowercase ( self : Dict ):
__lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
__lowercase = XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
__lowercase = "left"
# use different length sentences to test batching
__lowercase = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When",
"Hello, my dog is a little",
]
__lowercase = tokenizer(UpperCAmelCase__, return_tensors="tf", padding=UpperCAmelCase__ )
__lowercase = inputs["input_ids"]
__lowercase = model.generate(input_ids=UpperCAmelCase__, attention_mask=inputs["attention_mask"], max_new_tokens=1_2 )
__lowercase = tokenizer(sentences[0], return_tensors="tf" ).input_ids
__lowercase = model.generate(input_ids=UpperCAmelCase__, max_new_tokens=1_2 )
__lowercase = tokenizer(sentences[1], return_tensors="tf" ).input_ids
__lowercase = model.generate(input_ids=UpperCAmelCase__, max_new_tokens=1_2 )
__lowercase = tokenizer.batch_decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ )
__lowercase = tokenizer.decode(output_non_padded[0], skip_special_tokens=UpperCAmelCase__ )
__lowercase = tokenizer.decode(output_padded[0], skip_special_tokens=UpperCAmelCase__ )
__lowercase = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When left padding is applied, the sequence will be "
"a single",
"Hello, my dog is a little bit of a shy one, but he is very friendly",
]
self.assertListEqual(UpperCAmelCase__, UpperCAmelCase__ )
self.assertListEqual(UpperCAmelCase__, [non_padded_sentence, padded_sentence] )
| 17 | 1 |
"""simple docstring"""
def _A ( UpperCamelCase_ : int, UpperCamelCase_ : int) -> str:
'''simple docstring'''
if not isinstance(UpperCamelCase_, UpperCamelCase_):
raise ValueError("iterations must be defined as integers")
if not isinstance(UpperCamelCase_, UpperCamelCase_) or not number >= 1:
raise ValueError(
"starting number must be\n and integer and be more than 0")
if not iterations >= 1:
raise ValueError("Iterations must be done more than 0 times to play FizzBuzz")
__lowercase = ""
while number <= iterations:
if number % 3 == 0:
out += "Fizz"
if number % 5 == 0:
out += "Buzz"
if 0 not in (number % 3, number % 5):
out += str(UpperCamelCase_)
# print(out)
number += 1
out += " "
return out
if __name__ == "__main__":
import doctest
doctest.testmod()
| 17 |
"""simple docstring"""
import time
from contextlib import contextmanager
from pathlib import Path
import pytest
import requests
from huggingface_hub.hf_api import HfApi, HfFolder
_a = '__DUMMY_TRANSFORMERS_USER__'
_a = 'Dummy User'
_a = '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'
_a = 'https://hub-ci.huggingface.co'
_a = CI_HUB_ENDPOINT + '/datasets/{repo_id}/resolve/{revision}/{path}'
_a = CI_HUB_ENDPOINT + '/{repo_id}/resolve/{revision}/{filename}'
_a = Path('~/.huggingface/hub_ci_token').expanduser()
@pytest.fixture
def _A ( UpperCamelCase_ : List[Any]) -> Tuple:
'''simple docstring'''
monkeypatch.setattr(
"huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE", UpperCamelCase_)
@pytest.fixture
def _A ( UpperCamelCase_ : int) -> List[Any]:
'''simple docstring'''
monkeypatch.setattr("datasets.config.HF_ENDPOINT", UpperCamelCase_)
monkeypatch.setattr("datasets.config.HUB_DATASETS_URL", UpperCamelCase_)
@pytest.fixture
def _A ( UpperCamelCase_ : str) -> Dict:
'''simple docstring'''
monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token", UpperCamelCase_)
@pytest.fixture
def _A ( UpperCamelCase_ : Optional[Any], UpperCamelCase_ : List[Any]) -> List[str]:
'''simple docstring'''
HfFolder.save_token(UpperCamelCase_)
yield
HfFolder.delete_token()
@pytest.fixture(scope="session")
def _A ( ) -> List[Any]:
'''simple docstring'''
return HfApi(endpoint=UpperCamelCase_)
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : HfApi) -> List[Any]:
'''simple docstring'''
__lowercase = HfFolder.get_token()
HfFolder.save_token(UpperCamelCase_)
yield CI_HUB_USER_TOKEN
if previous_token is not None:
HfFolder.save_token(UpperCamelCase_)
@pytest.fixture
def _A ( UpperCamelCase_ : Dict) -> int:
'''simple docstring'''
def _cleanup_repo(UpperCamelCase_ : Optional[int]):
hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset")
return _cleanup_repo
@pytest.fixture
def _A ( UpperCamelCase_ : str) -> Any:
'''simple docstring'''
@contextmanager
def _temporary_repo(UpperCamelCase_ : Any):
try:
yield repo_id
finally:
cleanup_repo(UpperCamelCase_)
return _temporary_repo
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : str, UpperCamelCase_ : Optional[int]) -> List[Any]:
'''simple docstring'''
__lowercase = F"""repo_txt_data-{int(time.time() * 10E3)}"""
__lowercase = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_)
hf_api.upload_file(
token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data/text_data.txt", repo_id=UpperCamelCase_, repo_type="dataset", )
yield repo_id
try:
hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset")
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : Any, UpperCamelCase_ : Dict) -> Optional[int]:
'''simple docstring'''
return hf_private_dataset_repo_txt_data_
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : int, UpperCamelCase_ : Optional[int]) -> int:
'''simple docstring'''
__lowercase = F"""repo_zipped_txt_data-{int(time.time() * 10E3)}"""
__lowercase = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_)
hf_api.upload_file(
token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data.zip", repo_id=UpperCamelCase_, repo_type="dataset", )
yield repo_id
try:
hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset")
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Dict, UpperCamelCase_ : Any) -> int:
'''simple docstring'''
return hf_private_dataset_repo_zipped_txt_data_
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : List[str], UpperCamelCase_ : List[str]) -> List[Any]:
'''simple docstring'''
__lowercase = F"""repo_zipped_img_data-{int(time.time() * 10E3)}"""
__lowercase = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_)
hf_api.upload_file(
token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data.zip", repo_id=UpperCamelCase_, repo_type="dataset", )
yield repo_id
try:
hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset")
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str], UpperCamelCase_ : List[str]) -> str:
'''simple docstring'''
return hf_private_dataset_repo_zipped_img_data_
| 17 | 1 |
"""simple docstring"""
_a = 6_55_21
def _A ( UpperCamelCase_ : str) -> int:
'''simple docstring'''
__lowercase = 1
__lowercase = 0
for plain_chr in plain_text:
__lowercase = (a + ord(UpperCamelCase_)) % MOD_ADLER
__lowercase = (b + a) % MOD_ADLER
return (b << 16) | a
| 17 |
"""simple docstring"""
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_a = logging.get_logger(__name__)
_a = {
'huggingface/time-series-transformer-tourism-monthly': (
'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json'
),
# See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer
}
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
__UpperCAmelCase : int = "time_series_transformer"
__UpperCAmelCase : Any = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
"num_hidden_layers": "encoder_layers",
}
def __init__( self : int, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : str = "student_t", UpperCAmelCase__ : str = "nll", UpperCAmelCase__ : int = 1, UpperCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7], UpperCAmelCase__ : Optional[Union[str, bool]] = "mean", UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : int = 3_2, UpperCAmelCase__ : int = 3_2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : str = "gelu", UpperCAmelCase__ : int = 6_4, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : int = 1_0_0, UpperCAmelCase__ : float = 0.02, UpperCAmelCase__ : Any=True, **UpperCAmelCase__ : List[str], ):
# time series specific configuration
__lowercase = prediction_length
__lowercase = context_length or prediction_length
__lowercase = distribution_output
__lowercase = loss
__lowercase = input_size
__lowercase = num_time_features
__lowercase = lags_sequence
__lowercase = scaling
__lowercase = num_dynamic_real_features
__lowercase = num_static_real_features
__lowercase = num_static_categorical_features
if cardinality and num_static_categorical_features > 0:
if len(UpperCAmelCase__ ) != num_static_categorical_features:
raise ValueError(
"The cardinality should be a list of the same length as `num_static_categorical_features`" )
__lowercase = cardinality
else:
__lowercase = [0]
if embedding_dimension and num_static_categorical_features > 0:
if len(UpperCAmelCase__ ) != num_static_categorical_features:
raise ValueError(
"The embedding dimension should be a list of the same length as `num_static_categorical_features`" )
__lowercase = embedding_dimension
else:
__lowercase = [min(5_0, (cat + 1) // 2 ) for cat in self.cardinality]
__lowercase = num_parallel_samples
# Transformer architecture configuration
__lowercase = input_size * len(UpperCAmelCase__ ) + self._number_of_features
__lowercase = d_model
__lowercase = encoder_attention_heads
__lowercase = decoder_attention_heads
__lowercase = encoder_ffn_dim
__lowercase = decoder_ffn_dim
__lowercase = encoder_layers
__lowercase = decoder_layers
__lowercase = dropout
__lowercase = attention_dropout
__lowercase = activation_dropout
__lowercase = encoder_layerdrop
__lowercase = decoder_layerdrop
__lowercase = activation_function
__lowercase = init_std
__lowercase = use_cache
super().__init__(is_encoder_decoder=UpperCAmelCase__, **UpperCAmelCase__ )
@property
def _lowercase ( self : Optional[Any] ):
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 17 | 1 |
"""simple docstring"""
_a = [
[0, 16, 13, 0, 0, 0],
[0, 0, 10, 12, 0, 0],
[0, 4, 0, 0, 14, 0],
[0, 0, 9, 0, 0, 20],
[0, 0, 0, 7, 0, 4],
[0, 0, 0, 0, 0, 0],
]
def _A ( UpperCamelCase_ : List[Any], UpperCamelCase_ : Optional[Any], UpperCamelCase_ : Tuple, UpperCamelCase_ : str) -> Any:
'''simple docstring'''
__lowercase = [False] * len(UpperCamelCase_)
__lowercase = [s]
__lowercase = True
while queue:
__lowercase = queue.pop(0)
for ind in range(len(graph[u])):
if visited[ind] is False and graph[u][ind] > 0:
queue.append(UpperCamelCase_)
__lowercase = True
__lowercase = u
return visited[t]
def _A ( UpperCamelCase_ : int, UpperCamelCase_ : Tuple, UpperCamelCase_ : List[str]) -> Optional[int]:
'''simple docstring'''
__lowercase = [-1] * (len(UpperCamelCase_))
__lowercase = 0
__lowercase = []
__lowercase = [i[:] for i in graph] # Record original cut, copy.
while bfs(UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_):
__lowercase = float("Inf")
__lowercase = sink
while s != source:
# Find the minimum value in select path
__lowercase = min(UpperCamelCase_, graph[parent[s]][s])
__lowercase = parent[s]
max_flow += path_flow
__lowercase = sink
while v != source:
__lowercase = parent[v]
graph[u][v] -= path_flow
graph[v][u] += path_flow
__lowercase = parent[v]
for i in range(len(UpperCamelCase_)):
for j in range(len(graph[0])):
if graph[i][j] == 0 and temp[i][j] > 0:
res.append((i, j))
return res
if __name__ == "__main__":
print(mincut(test_graph, source=0, sink=5))
| 17 |
"""simple docstring"""
import unittest
from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available
from transformers.pipelines import pipeline
from transformers.pipelines.document_question_answering import apply_tesseract
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_detectrona,
require_pytesseract,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
from transformers.image_utils import load_image
else:
class _lowerCAmelCase :
"""simple docstring"""
@staticmethod
def _lowercase ( *UpperCAmelCase__ : Tuple, **UpperCAmelCase__ : List[Any] ):
pass
def _A ( UpperCamelCase_ : Union[str, Any]) -> Any:
'''simple docstring'''
return None
# This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace,
# so we can expect it to be available.
_a = (
'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png'
)
@is_pipeline_test
@require_torch
@require_vision
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : Tuple = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING
@require_pytesseract
@require_vision
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Optional[Any] ):
__lowercase = pipeline(
"document-question-answering", model=UpperCAmelCase__, tokenizer=UpperCAmelCase__, image_processor=UpperCAmelCase__ )
__lowercase = INVOICE_URL
__lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) )
__lowercase = "What is the placebo?"
__lowercase = [
{
"image": load_image(UpperCAmelCase__ ),
"question": question,
},
{
"image": image,
"question": question,
},
{
"image": image,
"question": question,
"word_boxes": word_boxes,
},
]
return dqa_pipeline, examples
def _lowercase ( self : int, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Any ):
__lowercase = dqa_pipeline(UpperCAmelCase__, top_k=2 )
self.assertEqual(
UpperCAmelCase__, [
[
{"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ ), "start": ANY(UpperCAmelCase__ ), "end": ANY(UpperCAmelCase__ )},
{"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ ), "start": ANY(UpperCAmelCase__ ), "end": ANY(UpperCAmelCase__ )},
]
]
* 3, )
@require_torch
@require_detectrona
@require_pytesseract
def _lowercase ( self : Dict ):
__lowercase = pipeline("document-question-answering", model="hf-internal-testing/tiny-random-layoutlmv2" )
__lowercase = INVOICE_URL
__lowercase = "How many cats are there?"
__lowercase = [
{"score": 0.0_001, "answer": "oy 2312/2019", "start": 3_8, "end": 3_9},
{"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 3_8, "end": 4_0},
]
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), UpperCAmelCase__ )
__lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), UpperCAmelCase__ )
# This image does not detect ANY text in it, meaning layoutlmv2 should fail.
# Empty answer probably
__lowercase = "./tests/fixtures/tests_samples/COCO/000000039769.png"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(UpperCAmelCase__, [] )
# We can optionnally pass directly the words and bounding boxes
__lowercase = "./tests/fixtures/tests_samples/COCO/000000039769.png"
__lowercase = []
__lowercase = []
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, words=UpperCAmelCase__, boxes=UpperCAmelCase__, top_k=2 )
self.assertEqual(UpperCAmelCase__, [] )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def _lowercase ( self : List[str] ):
__lowercase = pipeline(
"document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
[
{"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6},
],
]
* 2, )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def _lowercase ( self : Dict ):
__lowercase = pipeline(
"document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", max_seq_len=5_0, )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3},
{"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3},
{"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
[
{"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3},
{"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6},
]
]
* 2, )
@slow
@require_torch
@require_pytesseract
@require_vision
def _lowercase ( self : Optional[Any] ):
__lowercase = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=UpperCAmelCase__ )
__lowercase = pipeline(
"document-question-answering", model="impira/layoutlm-document-qa", tokenizer=UpperCAmelCase__, revision="3dc6de3", )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3},
], )
__lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3},
], )
__lowercase = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
[
{"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3},
]
]
* 2, )
__lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) )
# This model should also work if `image` is set to None
__lowercase = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3},
], )
@slow
@require_torch
@require_pytesseract
@require_vision
def _lowercase ( self : Union[str, Any] ):
__lowercase = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=UpperCAmelCase__ )
__lowercase = pipeline(
"document-question-answering", model="impira/layoutlm-document-qa", tokenizer=UpperCAmelCase__, revision="3dc6de3", max_seq_len=5_0, )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
[
{"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6},
]
]
* 2, )
__lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) )
# This model should also work if `image` is set to None
__lowercase = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
@slow
@require_torch
def _lowercase ( self : Dict ):
__lowercase = pipeline(
"document-question-answering", model="naver-clova-ix/donut-base-finetuned-docvqa", tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ), feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa", )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), [{"answer": "us-001"}] )
@require_tf
@unittest.skip("Document question answering not implemented in TF" )
def _lowercase ( self : List[Any] ):
pass
| 17 | 1 |
"""simple docstring"""
from scipy.stats import spearmanr
import datasets
_a = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n'
_a = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n'
_a = r'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class _lowerCAmelCase ( datasets.Metric ):
"""simple docstring"""
def _lowercase ( self : Dict ):
return datasets.MetricInfo(
description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features(
{
"predictions": datasets.Value("float" ),
"references": datasets.Value("float" ),
} ), reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"], )
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int]=False ):
__lowercase = spearmanr(UpperCAmelCase__, UpperCAmelCase__ )
if return_pvalue:
return {"spearmanr": results[0], "spearmanr_pvalue": results[1]}
else:
return {"spearmanr": results[0]}
| 17 |
"""simple docstring"""
import argparse
import json
import os
import re
import shutil
import torch
from transformers import BioGptConfig, BioGptForCausalLM
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
from transformers.utils import WEIGHTS_NAME, logging
logging.set_verbosity_warning()
_a = 2
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Dict, *, # begin keyword-only arguments
UpperCAmelCase__ : str="<s>", UpperCAmelCase__ : Tuple="<pad>", UpperCAmelCase__ : str="</s>", UpperCAmelCase__ : Optional[Any]="<unk>", UpperCAmelCase__ : List[Any]=None, ):
__lowercase ,__lowercase ,__lowercase ,__lowercase = bos, unk, pad, eos
__lowercase = []
__lowercase = []
__lowercase = {}
__lowercase = self.add_symbol(UpperCAmelCase__ )
__lowercase = self.add_symbol(UpperCAmelCase__ )
__lowercase = self.add_symbol(UpperCAmelCase__ )
__lowercase = self.add_symbol(UpperCAmelCase__ )
if extra_special_symbols:
for s in extra_special_symbols:
self.add_symbol(UpperCAmelCase__ )
__lowercase = len(self.symbols )
def __eq__( self : List[str], UpperCAmelCase__ : Dict ):
return self.indices == other.indices
def __getitem__( self : Optional[int], UpperCAmelCase__ : List[str] ):
if idx < len(self.symbols ):
return self.symbols[idx]
return self.unk_word
def __len__( self : str ):
return len(self.symbols )
def __contains__( self : Any, UpperCAmelCase__ : Optional[Any] ):
return sym in self.indices
@classmethod
def _lowercase ( cls : List[Any], UpperCAmelCase__ : Optional[Any] ):
__lowercase = cls()
d.add_from_file(UpperCAmelCase__ )
return d
def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[Any]=1, UpperCAmelCase__ : str=False ):
if word in self.indices and not overwrite:
__lowercase = self.indices[word]
__lowercase = self.count[idx] + n
return idx
else:
__lowercase = len(self.symbols )
__lowercase = idx
self.symbols.append(UpperCAmelCase__ )
self.count.append(UpperCAmelCase__ )
return idx
def _lowercase ( self : Any, UpperCAmelCase__ : str ):
return 0
def _lowercase ( self : Tuple, UpperCAmelCase__ : List[Any] ):
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
try:
with open(UpperCAmelCase__, "r", encoding="utf-8" ) as fd:
self.add_from_file(UpperCAmelCase__ )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception("Incorrect encoding detected in {}, please rebuild the dataset".format(UpperCAmelCase__ ) )
return
__lowercase = f.readlines()
__lowercase = self._load_meta(UpperCAmelCase__ )
for line in lines[indices_start_line:]:
try:
__lowercase ,__lowercase = line.rstrip().rsplit(" ", 1 )
if field == "#fairseq:overwrite":
__lowercase = True
__lowercase ,__lowercase = line.rsplit(" ", 1 )
else:
__lowercase = False
__lowercase = int(UpperCAmelCase__ )
__lowercase = line
if word in self and not overwrite:
raise RuntimeError(
"Duplicate word found when loading Dictionary: '{}'. "
"Duplicate words can overwrite earlier ones by adding the "
"#fairseq:overwrite flag at the end of the corresponding row "
"in the dictionary file. If using the Camembert model, please "
"download an updated copy of the model file.".format(UpperCAmelCase__ ) )
self.add_symbol(UpperCAmelCase__, n=UpperCAmelCase__, overwrite=UpperCAmelCase__ )
except ValueError:
raise ValueError("Incorrect dictionary format, expected '<token> <cnt> [flags]'" )
def _A ( UpperCamelCase_ : int) -> str:
'''simple docstring'''
__lowercase = dict((re.sub(r"@@$", "", UpperCamelCase_), v) if k.endswith("@@") else (re.sub(r"$", "</w>", UpperCamelCase_), v) for k, v in d.items())
__lowercase = "<s> <pad> </s> <unk>".split()
# restore the special tokens
for k in keep_keys:
del da[F"""{k}</w>"""]
__lowercase = d[k] # restore
return da
def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str) -> List[Any]:
'''simple docstring'''
if not os.path.exists(UpperCamelCase_):
raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""")
os.makedirs(UpperCamelCase_, exist_ok=UpperCamelCase_)
print(F"""Writing results to {pytorch_dump_folder_path}""")
# handle various types of models
__lowercase = os.path.join(UpperCamelCase_, "checkpoint.pt")
if not os.path.isfile(UpperCamelCase_):
raise ValueError(F"""path to the file {checkpoint_file} does not exist!""")
__lowercase = torch.load(UpperCamelCase_, map_location="cpu")
__lowercase = chkpt["cfg"]["model"]
# dicts
__lowercase = os.path.join(UpperCamelCase_, "dict.txt")
if not os.path.isfile(UpperCamelCase_):
raise ValueError(F"""path to the file {dict_file} does not exist!""")
__lowercase = Dictionary.load(UpperCamelCase_)
__lowercase = rewrite_dict_keys(src_dict.indices)
__lowercase = len(UpperCamelCase_)
__lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["vocab_file"])
print(F"""Generating {src_vocab_file} of {src_vocab_size} records""")
with open(UpperCamelCase_, "w", encoding="utf-8") as f:
f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_))
# merges_file (bpecodes)
__lowercase = os.path.join(UpperCamelCase_, "bpecodes")
if not os.path.isfile(UpperCamelCase_):
raise ValueError(F"""path to the file {bpecodes_file} does not exist!""")
__lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["merges_file"])
shutil.copyfile(UpperCamelCase_, UpperCamelCase_)
# model config
__lowercase = os.path.join(UpperCamelCase_, "config.json")
__lowercase = {
"activation_dropout": args["activation_dropout"],
"architectures": ["BioGptForCausalLM"],
"attention_probs_dropout_prob": args["attention_dropout"],
"bos_token_id": 0,
"eos_token_id": 2,
"hidden_act": args["activation_fn"],
"hidden_dropout_prob": args["dropout"],
"hidden_size": args["decoder_embed_dim"],
"initializer_range": 0.02,
"intermediate_size": args["decoder_ffn_embed_dim"],
"layer_norm_eps": 1E-12,
"layerdrop": args["decoder_layerdrop"],
"max_position_embeddings": args["max_target_positions"],
"model_type": "biogpt",
"num_attention_heads": args["decoder_attention_heads"],
"num_hidden_layers": args["decoder_layers"],
"pad_token_id": 1,
"scale_embedding": not args["no_scale_embedding"],
"tie_word_embeddings": args["share_decoder_input_output_embed"],
"vocab_size": src_vocab_size,
}
# good hparam defaults to start with
print(F"""Generating {biogpt_model_config_file}""")
with open(UpperCamelCase_, "w", encoding="utf-8") as f:
f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_))
# tokenizer config
__lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_)
__lowercase = {
"bos_token": "<s>",
"eos_token": "</s>",
"model_max_length": 1024,
"pad_token": "<pad>",
"special_tokens_map_file": None,
"tokenizer_class": "BioGptTokenizer",
"unk_token": "<unk>",
}
print(F"""Generating {biogpt_tokenizer_config_file}""")
with open(UpperCamelCase_, "w", encoding="utf-8") as f:
f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_))
# model
__lowercase = chkpt["model"]
# remove unneeded keys
__lowercase = [
"decoder.version",
]
for k in ignore_keys:
model_state_dict.pop(UpperCamelCase_, UpperCamelCase_)
__lowercase = list(model_state_dict.keys())
for layer_name in layer_names:
if layer_name.endswith("output_projection.weight"):
__lowercase = model_state_dict.pop(UpperCamelCase_)
else:
__lowercase = model_state_dict.pop(UpperCamelCase_)
__lowercase = BioGptConfig.from_pretrained(UpperCamelCase_)
__lowercase = BioGptForCausalLM(UpperCamelCase_)
# check that it loads ok
model_new.load_state_dict(UpperCamelCase_)
# save
__lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_)
print(F"""Generating {pytorch_weights_dump_path}""")
torch.save(UpperCamelCase_, UpperCamelCase_)
print("Conversion is done!")
if __name__ == "__main__":
_a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--biogpt_checkpoint_path',
default=None,
type=str,
required=True,
help=(
'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,'
' bpecodes, etc.'
),
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
_a = parser.parse_args()
convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
| 17 | 1 |
"""simple docstring"""
from typing import List, Optional, TypeVar
from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .info import DatasetInfo
from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets
from .splits import NamedSplit
from .utils import logging
from .utils.py_utils import Literal
_a = logging.get_logger(__name__)
_a = TypeVar('DatasetType', Dataset, IterableDataset)
def _A ( UpperCamelCase_ : List[DatasetType], UpperCamelCase_ : Optional[List[float]] = None, UpperCamelCase_ : Optional[int] = None, UpperCamelCase_ : Optional[DatasetInfo] = None, UpperCamelCase_ : Optional[NamedSplit] = None, UpperCamelCase_ : Literal["first_exhausted", "all_exhausted"] = "first_exhausted", ) -> DatasetType:
'''simple docstring'''
from .arrow_dataset import Dataset
from .iterable_dataset import IterableDataset
if not datasets:
raise ValueError("Unable to interleave an empty list of datasets.")
for i, dataset in enumerate(UpperCamelCase_):
if not isinstance(UpperCamelCase_, (Dataset, IterableDataset)):
if isinstance(UpperCamelCase_, (DatasetDict, IterableDatasetDict)):
if not dataset:
raise ValueError(
F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """
"is an empty dataset dictionary.")
raise ValueError(
F"""Dataset at position {i} has at least one split: {list(UpperCamelCase_)}\n"""
F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(UpperCamelCase_))}']""")
raise ValueError(
F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCamelCase_).__name__}.""")
if i == 0:
__lowercase ,__lowercase = (
(Dataset, IterableDataset) if isinstance(UpperCamelCase_, UpperCamelCase_) else (IterableDataset, Dataset)
)
elif not isinstance(UpperCamelCase_, UpperCamelCase_):
raise ValueError(
F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""")
if stopping_strategy not in ["first_exhausted", "all_exhausted"]:
raise ValueError(F"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""")
if dataset_type is Dataset:
return _interleave_map_style_datasets(
UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, info=UpperCamelCase_, split=UpperCamelCase_, stopping_strategy=UpperCamelCase_)
else:
return _interleave_iterable_datasets(
UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, info=UpperCamelCase_, split=UpperCamelCase_, stopping_strategy=UpperCamelCase_)
def _A ( UpperCamelCase_ : List[DatasetType], UpperCamelCase_ : Optional[DatasetInfo] = None, UpperCamelCase_ : Optional[NamedSplit] = None, UpperCamelCase_ : int = 0, ) -> DatasetType:
'''simple docstring'''
if not dsets:
raise ValueError("Unable to concatenate an empty list of datasets.")
for i, dataset in enumerate(UpperCamelCase_):
if not isinstance(UpperCamelCase_, (Dataset, IterableDataset)):
if isinstance(UpperCamelCase_, (DatasetDict, IterableDatasetDict)):
if not dataset:
raise ValueError(
F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """
"is an empty dataset dictionary.")
raise ValueError(
F"""Dataset at position {i} has at least one split: {list(UpperCamelCase_)}\n"""
F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(UpperCamelCase_))}']""")
raise ValueError(
F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCamelCase_).__name__}.""")
if i == 0:
__lowercase ,__lowercase = (
(Dataset, IterableDataset) if isinstance(UpperCamelCase_, UpperCamelCase_) else (IterableDataset, Dataset)
)
elif not isinstance(UpperCamelCase_, UpperCamelCase_):
raise ValueError(
F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""")
if dataset_type is Dataset:
return _concatenate_map_style_datasets(UpperCamelCase_, info=UpperCamelCase_, split=UpperCamelCase_, axis=UpperCamelCase_)
else:
return _concatenate_iterable_datasets(UpperCamelCase_, info=UpperCamelCase_, split=UpperCamelCase_, axis=UpperCamelCase_)
| 17 |
"""simple docstring"""
from __future__ import annotations
from typing import Any
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Any, UpperCAmelCase__ : int ):
__lowercase = num_of_nodes
__lowercase = []
__lowercase = {}
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : int, UpperCAmelCase__ : int ):
self.m_edges.append([u_node, v_node, weight] )
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : int ):
if self.m_component[u_node] == u_node:
return u_node
return self.find_component(self.m_component[u_node] )
def _lowercase ( self : List[Any], UpperCAmelCase__ : int ):
if self.m_component[u_node] != u_node:
for k in self.m_component:
__lowercase = self.find_component(UpperCAmelCase__ )
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : list[int], UpperCAmelCase__ : int, UpperCAmelCase__ : int ):
if component_size[u_node] <= component_size[v_node]:
__lowercase = v_node
component_size[v_node] += component_size[u_node]
self.set_component(UpperCAmelCase__ )
elif component_size[u_node] >= component_size[v_node]:
__lowercase = self.find_component(UpperCAmelCase__ )
component_size[u_node] += component_size[v_node]
self.set_component(UpperCAmelCase__ )
def _lowercase ( self : Any ):
__lowercase = []
__lowercase = 0
__lowercase = [-1] * self.m_num_of_nodes
# A list of components (initialized to all of the nodes)
for node in range(self.m_num_of_nodes ):
self.m_component.update({node: node} )
component_size.append(1 )
__lowercase = self.m_num_of_nodes
while num_of_components > 1:
for edge in self.m_edges:
__lowercase ,__lowercase ,__lowercase = edge
__lowercase = self.m_component[u]
__lowercase = self.m_component[v]
if u_component != v_component:
for component in (u_component, v_component):
if (
minimum_weight_edge[component] == -1
or minimum_weight_edge[component][2] > w
):
__lowercase = [u, v, w]
for edge in minimum_weight_edge:
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
__lowercase ,__lowercase ,__lowercase = edge
__lowercase = self.m_component[u]
__lowercase = self.m_component[v]
if u_component != v_component:
mst_weight += w
self.union(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" )
num_of_components -= 1
__lowercase = [-1] * self.m_num_of_nodes
print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" )
def _A ( ) -> None:
'''simple docstring'''
if __name__ == "__main__":
import doctest
doctest.testmod()
| 17 | 1 |
"""simple docstring"""
def _A ( UpperCamelCase_ : list[int]) -> float:
'''simple docstring'''
if not nums: # Makes sure that the list is not empty
raise ValueError("List is empty")
__lowercase = sum(UpperCamelCase_) / len(UpperCamelCase_) # Calculate the average
return sum(abs(x - average) for x in nums) / len(UpperCamelCase_)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 17 |
"""simple docstring"""
from math import sqrt
def _A ( UpperCamelCase_ : int) -> int:
'''simple docstring'''
__lowercase = 0
for i in range(1, int(sqrt(UpperCamelCase_) + 1)):
if n % i == 0 and i != sqrt(UpperCamelCase_):
total += i + n // i
elif i == sqrt(UpperCamelCase_):
total += i
return total - n
def _A ( UpperCamelCase_ : int = 10000) -> int:
'''simple docstring'''
__lowercase = sum(
i
for i in range(1, UpperCamelCase_)
if sum_of_divisors(sum_of_divisors(UpperCamelCase_)) == i and sum_of_divisors(UpperCamelCase_) != i)
return total
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 17 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_a = logging.get_logger(__name__)
_a = {
'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/config.json',
'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/config.json'
# See all FNet models at https://huggingface.co/models?filter=fnet
}
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
__UpperCAmelCase : List[Any] = "fnet"
def __init__( self : Dict, UpperCAmelCase__ : Any=3_2_0_0_0, UpperCAmelCase__ : Any=7_6_8, UpperCAmelCase__ : Tuple=1_2, UpperCAmelCase__ : str=3_0_7_2, UpperCAmelCase__ : Optional[Any]="gelu_new", UpperCAmelCase__ : Dict=0.1, UpperCAmelCase__ : Optional[int]=5_1_2, UpperCAmelCase__ : List[str]=4, UpperCAmelCase__ : int=0.02, UpperCAmelCase__ : str=1E-12, UpperCAmelCase__ : int=False, UpperCAmelCase__ : Any=5_1_2, UpperCAmelCase__ : str=3, UpperCAmelCase__ : Union[str, Any]=1, UpperCAmelCase__ : Optional[Any]=2, **UpperCAmelCase__ : Any, ):
super().__init__(pad_token_id=UpperCAmelCase__, bos_token_id=UpperCAmelCase__, eos_token_id=UpperCAmelCase__, **UpperCAmelCase__ )
__lowercase = vocab_size
__lowercase = max_position_embeddings
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = initializer_range
__lowercase = type_vocab_size
__lowercase = layer_norm_eps
__lowercase = use_tpu_fourier_optimizations
__lowercase = tpu_short_seq_length
| 17 |
"""simple docstring"""
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
_a = _symbol_database.Default()
_a = _descriptor_pool.Default().AddSerializedFile(
b'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03'
)
_a = globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals)
if _descriptor._USE_C_DESCRIPTORS is False:
_a = None
_a = b'H\003'
# (generated by protobuf compiler, but `_TRAINERSPEC` is not defined)
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001"
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001"
_a = 45
_a = 15_81
_a = 15_17
_a = 15_70
_a = 15_84
_a = 17_93
_a = 17_95
_a = 19_16
_a = 18_64
_a = 19_05
_a = 19_19
_a = 24_29
_a = 22_08
_a = 24_18
_a = 23_23
_a = 24_07
# @@protoc_insertion_point(module_scope)
| 17 | 1 |
"""simple docstring"""
import json
import os
import pickle
import shutil
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
from datasets import Dataset
from transformers import is_faiss_available
from transformers.models.bart.configuration_bart import BartConfig
from transformers.models.bart.tokenization_bart import BartTokenizer
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES
from transformers.models.dpr.configuration_dpr import DPRConfig
from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer
from transformers.models.rag.configuration_rag import RagConfig
from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES
from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch
if is_faiss_available():
import faiss
@require_faiss
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
def _lowercase ( self : str ):
__lowercase = tempfile.mkdtemp()
__lowercase = 8
# DPR tok
__lowercase = [
"[UNK]",
"[CLS]",
"[SEP]",
"[PAD]",
"[MASK]",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
__lowercase = os.path.join(self.tmpdirname, "dpr_tokenizer" )
os.makedirs(UpperCAmelCase__, exist_ok=UpperCAmelCase__ )
__lowercase = os.path.join(UpperCAmelCase__, DPR_VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file, "w", encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
# BART tok
__lowercase = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"\u0120",
"\u0120l",
"\u0120n",
"\u0120lo",
"\u0120low",
"er",
"\u0120lowest",
"\u0120newer",
"\u0120wider",
"<unk>",
]
__lowercase = dict(zip(UpperCAmelCase__, range(len(UpperCAmelCase__ ) ) ) )
__lowercase = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
__lowercase = {"unk_token": "<unk>"}
__lowercase = os.path.join(self.tmpdirname, "bart_tokenizer" )
os.makedirs(UpperCAmelCase__, exist_ok=UpperCAmelCase__ )
__lowercase = os.path.join(UpperCAmelCase__, BART_VOCAB_FILES_NAMES["vocab_file"] )
__lowercase = os.path.join(UpperCAmelCase__, BART_VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file, "w", encoding="utf-8" ) as fp:
fp.write(json.dumps(UpperCAmelCase__ ) + "\n" )
with open(self.merges_file, "w", encoding="utf-8" ) as fp:
fp.write("\n".join(UpperCAmelCase__ ) )
def _lowercase ( self : List[str] ):
return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname, "dpr_tokenizer" ) )
def _lowercase ( self : Tuple ):
return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname, "dpr_tokenizer" ) )
def _lowercase ( self : Union[str, Any] ):
return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname, "bart_tokenizer" ) )
def _lowercase ( self : Any ):
shutil.rmtree(self.tmpdirname )
def _lowercase ( self : Union[str, Any] ):
__lowercase = Dataset.from_dict(
{
"id": ["0", "1"],
"text": ["foo", "bar"],
"title": ["Foo", "Bar"],
"embeddings": [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )],
} )
dataset.add_faiss_index("embeddings", string_factory="Flat", metric_type=faiss.METRIC_INNER_PRODUCT )
return dataset
def _lowercase ( self : Dict ):
__lowercase = self.get_dummy_dataset()
__lowercase = RagConfig(
retrieval_vector_size=self.retrieval_vector_size, question_encoder=DPRConfig().to_dict(), generator=BartConfig().to_dict(), )
with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset:
__lowercase = dataset
__lowercase = RagRetriever(
UpperCAmelCase__, question_encoder_tokenizer=self.get_dpr_tokenizer(), generator_tokenizer=self.get_bart_tokenizer(), )
return retriever
def _lowercase ( self : List[str], UpperCAmelCase__ : bool ):
__lowercase = self.get_dummy_dataset()
__lowercase = RagConfig(
retrieval_vector_size=self.retrieval_vector_size, question_encoder=DPRConfig().to_dict(), generator=BartConfig().to_dict(), index_name="custom", )
if from_disk:
__lowercase = os.path.join(self.tmpdirname, "dataset" )
__lowercase = os.path.join(self.tmpdirname, "index.faiss" )
dataset.get_index("embeddings" ).save(os.path.join(self.tmpdirname, "index.faiss" ) )
dataset.drop_index("embeddings" )
dataset.save_to_disk(os.path.join(self.tmpdirname, "dataset" ) )
del dataset
__lowercase = RagRetriever(
UpperCAmelCase__, question_encoder_tokenizer=self.get_dpr_tokenizer(), generator_tokenizer=self.get_bart_tokenizer(), )
else:
__lowercase = RagRetriever(
UpperCAmelCase__, question_encoder_tokenizer=self.get_dpr_tokenizer(), generator_tokenizer=self.get_bart_tokenizer(), index=CustomHFIndex(config.retrieval_vector_size, UpperCAmelCase__ ), )
return retriever
def _lowercase ( self : List[Any] ):
__lowercase = Dataset.from_dict(
{
"id": ["0", "1"],
"text": ["foo", "bar"],
"title": ["Foo", "Bar"],
"embeddings": [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )],
} )
dataset.add_faiss_index("embeddings", string_factory="Flat", metric_type=faiss.METRIC_INNER_PRODUCT )
__lowercase = os.path.join(self.tmpdirname, "hf_bert_base.hnswSQ8_correct_phi_128.c_index" )
dataset.save_faiss_index("embeddings", index_file_name + ".index.dpr" )
pickle.dump(dataset["id"], open(index_file_name + ".index_meta.dpr", "wb" ) )
__lowercase = os.path.join(self.tmpdirname, "psgs_w100.tsv.pkl" )
__lowercase = {sample["id"]: [sample["text"], sample["title"]] for sample in dataset}
pickle.dump(UpperCAmelCase__, open(UpperCAmelCase__, "wb" ) )
__lowercase = RagConfig(
retrieval_vector_size=self.retrieval_vector_size, question_encoder=DPRConfig().to_dict(), generator=BartConfig().to_dict(), index_name="legacy", index_path=self.tmpdirname, )
__lowercase = RagRetriever(
UpperCAmelCase__, question_encoder_tokenizer=self.get_dpr_tokenizer(), generator_tokenizer=self.get_bart_tokenizer() )
return retriever
def _lowercase ( self : List[str] ):
__lowercase = 1
__lowercase = self.get_dummy_canonical_hf_index_retriever()
__lowercase = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa )
__lowercase ,__lowercase ,__lowercase = retriever.retrieve(UpperCAmelCase__, n_docs=UpperCAmelCase__ )
self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(UpperCAmelCase__ ), 2 )
self.assertEqual(sorted(doc_dicts[0] ), ["embeddings", "id", "text", "title"] )
self.assertEqual(len(doc_dicts[0]["id"] ), UpperCAmelCase__ )
self.assertEqual(doc_dicts[0]["id"][0], "1" ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]["id"][0], "0" ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist(), [[1], [0]] )
def _lowercase ( self : Union[str, Any] ):
__lowercase = self.get_dummy_canonical_hf_index_retriever()
with tempfile.TemporaryDirectory() as tmp_dirname:
with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset:
__lowercase = self.get_dummy_dataset()
retriever.save_pretrained(UpperCAmelCase__ )
__lowercase = RagRetriever.from_pretrained(UpperCAmelCase__ )
self.assertIsInstance(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa )
__lowercase = retriever.retrieve(UpperCAmelCase__, n_docs=1 )
self.assertTrue(out is not None )
def _lowercase ( self : List[Any] ):
__lowercase = 1
__lowercase = self.get_dummy_custom_hf_index_retriever(from_disk=UpperCAmelCase__ )
__lowercase = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa )
__lowercase ,__lowercase ,__lowercase = retriever.retrieve(UpperCAmelCase__, n_docs=UpperCAmelCase__ )
self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(UpperCAmelCase__ ), 2 )
self.assertEqual(sorted(doc_dicts[0] ), ["embeddings", "id", "text", "title"] )
self.assertEqual(len(doc_dicts[0]["id"] ), UpperCAmelCase__ )
self.assertEqual(doc_dicts[0]["id"][0], "1" ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]["id"][0], "0" ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist(), [[1], [0]] )
def _lowercase ( self : str ):
__lowercase = self.get_dummy_custom_hf_index_retriever(from_disk=UpperCAmelCase__ )
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(UpperCAmelCase__ )
__lowercase = RagRetriever.from_pretrained(UpperCAmelCase__ )
self.assertIsInstance(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa )
__lowercase = retriever.retrieve(UpperCAmelCase__, n_docs=1 )
self.assertTrue(out is not None )
def _lowercase ( self : List[Any] ):
__lowercase = 1
__lowercase = self.get_dummy_custom_hf_index_retriever(from_disk=UpperCAmelCase__ )
__lowercase = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa )
__lowercase ,__lowercase ,__lowercase = retriever.retrieve(UpperCAmelCase__, n_docs=UpperCAmelCase__ )
self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(UpperCAmelCase__ ), 2 )
self.assertEqual(sorted(doc_dicts[0] ), ["embeddings", "id", "text", "title"] )
self.assertEqual(len(doc_dicts[0]["id"] ), UpperCAmelCase__ )
self.assertEqual(doc_dicts[0]["id"][0], "1" ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]["id"][0], "0" ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist(), [[1], [0]] )
def _lowercase ( self : Any ):
__lowercase = self.get_dummy_custom_hf_index_retriever(from_disk=UpperCAmelCase__ )
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(UpperCAmelCase__ )
__lowercase = RagRetriever.from_pretrained(UpperCAmelCase__ )
self.assertIsInstance(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa )
__lowercase = retriever.retrieve(UpperCAmelCase__, n_docs=1 )
self.assertTrue(out is not None )
def _lowercase ( self : List[Any] ):
__lowercase = 1
__lowercase = self.get_dummy_legacy_index_retriever()
__lowercase = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa )
__lowercase ,__lowercase ,__lowercase = retriever.retrieve(UpperCAmelCase__, n_docs=UpperCAmelCase__ )
self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(UpperCAmelCase__ ), 2 )
self.assertEqual(sorted(doc_dicts[0] ), ["text", "title"] )
self.assertEqual(len(doc_dicts[0]["text"] ), UpperCAmelCase__ )
self.assertEqual(doc_dicts[0]["text"][0], "bar" ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]["text"][0], "foo" ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist(), [[1], [0]] )
def _lowercase ( self : Optional[Any] ):
__lowercase = self.get_dummy_legacy_index_retriever()
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(UpperCAmelCase__ )
__lowercase = RagRetriever.from_pretrained(UpperCAmelCase__ )
self.assertIsInstance(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa )
__lowercase = retriever.retrieve(UpperCAmelCase__, n_docs=1 )
self.assertTrue(out is not None )
@require_torch
@require_tokenizers
@require_sentencepiece
def _lowercase ( self : Tuple ):
import torch
__lowercase = 1
__lowercase = self.get_dummy_canonical_hf_index_retriever()
__lowercase = [[5, 7], [1_0, 1_1]]
__lowercase = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa )
__lowercase = retriever(UpperCAmelCase__, UpperCAmelCase__, prefix=retriever.config.generator.prefix, n_docs=UpperCAmelCase__ )
__lowercase ,__lowercase ,__lowercase = (
out["context_input_ids"],
out["context_attention_mask"],
out["retrieved_doc_embeds"],
)
self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size) )
self.assertIsInstance(UpperCAmelCase__, UpperCAmelCase__ )
self.assertIsInstance(UpperCAmelCase__, UpperCAmelCase__ )
self.assertIsInstance(UpperCAmelCase__, np.ndarray )
__lowercase = retriever(
UpperCAmelCase__, UpperCAmelCase__, prefix=retriever.config.generator.prefix, n_docs=UpperCAmelCase__, return_tensors="pt", )
__lowercase ,__lowercase ,__lowercase ,__lowercase = ( # noqa: F841
out["context_input_ids"],
out["context_attention_mask"],
out["retrieved_doc_embeds"],
out["doc_ids"],
)
self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size) )
self.assertIsInstance(UpperCAmelCase__, torch.Tensor )
self.assertIsInstance(UpperCAmelCase__, torch.Tensor )
self.assertIsInstance(UpperCAmelCase__, torch.Tensor )
@require_torch
@require_tokenizers
@require_sentencepiece
def _lowercase ( self : Any ):
__lowercase = self.get_dpr_ctx_encoder_tokenizer()
__lowercase = 1
__lowercase = self.get_dummy_custom_hf_index_retriever(from_disk=UpperCAmelCase__ )
retriever.set_ctx_encoder_tokenizer(UpperCAmelCase__ )
__lowercase = [[5, 7], [1_0, 1_1]]
__lowercase = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa )
__lowercase = retriever(UpperCAmelCase__, UpperCAmelCase__, prefix=retriever.config.generator.prefix, n_docs=UpperCAmelCase__ )
self.assertEqual(
len(UpperCAmelCase__ ), 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs
self.assertEqual(
all(k in out for k in ("tokenized_doc_ids", "tokenized_doc_attention_mask") ), UpperCAmelCase__ ) # check for doc token related keys in dictionary.
| 17 |
"""simple docstring"""
import baseaa
def _A ( UpperCamelCase_ : str) -> bytes:
'''simple docstring'''
return baseaa.baaencode(string.encode("utf-8"))
def _A ( UpperCamelCase_ : bytes) -> str:
'''simple docstring'''
return baseaa.baadecode(UpperCamelCase_).decode("utf-8")
if __name__ == "__main__":
_a = 'Hello World!'
_a = baseaa_encode(test)
print(encoded)
_a = baseaa_decode(encoded)
print(decoded)
| 17 | 1 |
"""simple docstring"""
from ... import PretrainedConfig
_a = {
'sijunhe/nezha-cn-base': 'https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json',
}
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP
__UpperCAmelCase : Optional[Any] = "nezha"
def __init__( self : Tuple, UpperCAmelCase__ : List[Any]=2_1_1_2_8, UpperCAmelCase__ : Tuple=7_6_8, UpperCAmelCase__ : List[str]=1_2, UpperCAmelCase__ : List[Any]=1_2, UpperCAmelCase__ : str=3_0_7_2, UpperCAmelCase__ : str="gelu", UpperCAmelCase__ : Dict=0.1, UpperCAmelCase__ : int=0.1, UpperCAmelCase__ : List[str]=5_1_2, UpperCAmelCase__ : List[Any]=6_4, UpperCAmelCase__ : Optional[int]=2, UpperCAmelCase__ : str=0.02, UpperCAmelCase__ : Optional[int]=1E-12, UpperCAmelCase__ : int=0.1, UpperCAmelCase__ : str=0, UpperCAmelCase__ : Optional[Any]=2, UpperCAmelCase__ : List[Any]=3, UpperCAmelCase__ : str=True, **UpperCAmelCase__ : int, ):
super().__init__(pad_token_id=UpperCAmelCase__, bos_token_id=UpperCAmelCase__, eos_token_id=UpperCAmelCase__, **UpperCAmelCase__ )
__lowercase = vocab_size
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = hidden_act
__lowercase = intermediate_size
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = max_position_embeddings
__lowercase = max_relative_position
__lowercase = type_vocab_size
__lowercase = initializer_range
__lowercase = layer_norm_eps
__lowercase = classifier_dropout
__lowercase = use_cache
| 17 |
"""simple docstring"""
def _A ( UpperCamelCase_ : Any) -> List[str]:
'''simple docstring'''
__lowercase ,__lowercase = [], []
while len(UpperCamelCase_) > 1:
__lowercase ,__lowercase = min(UpperCamelCase_), max(UpperCamelCase_)
start.append(UpperCamelCase_)
end.append(UpperCamelCase_)
collection.remove(UpperCamelCase_)
collection.remove(UpperCamelCase_)
end.reverse()
return start + collection + end
if __name__ == "__main__":
_a = input('Enter numbers separated by a comma:\n').strip()
_a = [int(item) for item in user_input.split(',')]
print(*merge_sort(unsorted), sep=',')
| 17 | 1 |
"""simple docstring"""
import inspect
import unittest
from transformers import SegformerConfig, is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_MAPPING,
SegformerForImageClassification,
SegformerForSemanticSegmentation,
SegformerModel,
)
from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import SegformerImageProcessor
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
def _lowercase ( self : Dict ):
__lowercase = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(UpperCAmelCase__, "hidden_sizes" ) )
self.parent.assertTrue(hasattr(UpperCAmelCase__, "num_attention_heads" ) )
self.parent.assertTrue(hasattr(UpperCAmelCase__, "num_encoder_blocks" ) )
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Union[str, Any], UpperCAmelCase__ : str, UpperCAmelCase__ : Optional[int]=1_3, UpperCAmelCase__ : Tuple=6_4, UpperCAmelCase__ : Union[str, Any]=3, UpperCAmelCase__ : Tuple=4, UpperCAmelCase__ : List[Any]=[2, 2, 2, 2], UpperCAmelCase__ : Tuple=[8, 4, 2, 1], UpperCAmelCase__ : Dict=[1_6, 3_2, 6_4, 1_2_8], UpperCAmelCase__ : Optional[Any]=[1, 4, 8, 1_6], UpperCAmelCase__ : List[str]=[1, 2, 4, 8], UpperCAmelCase__ : List[Any]=True, UpperCAmelCase__ : List[Any]=True, UpperCAmelCase__ : Dict="gelu", UpperCAmelCase__ : int=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Dict=0.02, UpperCAmelCase__ : str=3, UpperCAmelCase__ : Union[str, Any]=None, ):
__lowercase = parent
__lowercase = batch_size
__lowercase = image_size
__lowercase = num_channels
__lowercase = num_encoder_blocks
__lowercase = sr_ratios
__lowercase = depths
__lowercase = hidden_sizes
__lowercase = downsampling_rates
__lowercase = num_attention_heads
__lowercase = is_training
__lowercase = use_labels
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = initializer_range
__lowercase = num_labels
__lowercase = scope
def _lowercase ( self : List[Any] ):
__lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels )
__lowercase = self.get_config()
return config, pixel_values, labels
def _lowercase ( self : Dict ):
return SegformerConfig(
image_size=self.image_size, num_channels=self.num_channels, num_encoder_blocks=self.num_encoder_blocks, depths=self.depths, hidden_sizes=self.hidden_sizes, num_attention_heads=self.num_attention_heads, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, initializer_range=self.initializer_range, )
def _lowercase ( self : List[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Union[str, Any] ):
__lowercase = SegformerModel(config=UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
__lowercase = model(UpperCAmelCase__ )
__lowercase = __lowercase = self.image_size // (self.downsampling_rates[-1] * 2)
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) )
def _lowercase ( self : List[Any], UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Dict ):
__lowercase = self.num_labels
__lowercase = SegformerForSemanticSegmentation(UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
__lowercase = model(UpperCAmelCase__ )
self.parent.assertEqual(
result.logits.shape, (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) )
__lowercase = model(UpperCAmelCase__, labels=UpperCAmelCase__ )
self.parent.assertEqual(
result.logits.shape, (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) )
self.parent.assertGreater(result.loss, 0.0 )
def _lowercase ( self : Optional[int], UpperCAmelCase__ : str, UpperCAmelCase__ : str, UpperCAmelCase__ : Optional[Any] ):
__lowercase = 1
__lowercase = SegformerForSemanticSegmentation(config=UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
__lowercase = torch.randint(0, 1, (self.batch_size, self.image_size, self.image_size) ).to(UpperCAmelCase__ )
__lowercase = model(UpperCAmelCase__, labels=UpperCAmelCase__ )
self.parent.assertGreater(result.loss, 0.0 )
def _lowercase ( self : Optional[Any] ):
__lowercase = self.prepare_config_and_inputs()
__lowercase ,__lowercase ,__lowercase = config_and_inputs
__lowercase = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class _lowerCAmelCase ( lowercase ,lowercase ,unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : Optional[int] = (
(
SegformerModel,
SegformerForSemanticSegmentation,
SegformerForImageClassification,
)
if is_torch_available()
else ()
)
__UpperCAmelCase : Tuple = (
{
"feature-extraction": SegformerModel,
"image-classification": SegformerForImageClassification,
"image-segmentation": SegformerForSemanticSegmentation,
}
if is_torch_available()
else {}
)
__UpperCAmelCase : Tuple = True
__UpperCAmelCase : str = False
__UpperCAmelCase : Union[str, Any] = False
__UpperCAmelCase : Dict = False
def _lowercase ( self : Any ):
__lowercase = SegformerModelTester(self )
__lowercase = SegformerConfigTester(self, config_class=UpperCAmelCase__ )
def _lowercase ( self : Dict ):
self.config_tester.run_common_tests()
def _lowercase ( self : Any ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase__ )
def _lowercase ( self : int ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_binary_image_segmentation(*UpperCAmelCase__ )
def _lowercase ( self : List[Any] ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_segmentation(*UpperCAmelCase__ )
@unittest.skip("SegFormer does not use inputs_embeds" )
def _lowercase ( self : Optional[int] ):
pass
@unittest.skip("SegFormer does not have get_input_embeddings method and get_output_embeddings methods" )
def _lowercase ( self : int ):
pass
def _lowercase ( self : List[Any] ):
__lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowercase = model_class(UpperCAmelCase__ )
__lowercase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowercase = [*signature.parameters.keys()]
__lowercase = ["pixel_values"]
self.assertListEqual(arg_names[:1], UpperCAmelCase__ )
def _lowercase ( self : Optional[int] ):
__lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common()
__lowercase = True
for model_class in self.all_model_classes:
__lowercase = True
__lowercase = False
__lowercase = True
__lowercase = model_class(UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
with torch.no_grad():
__lowercase = model(**self._prepare_for_class(UpperCAmelCase__, UpperCAmelCase__ ) )
__lowercase = outputs.attentions
__lowercase = sum(self.model_tester.depths )
self.assertEqual(len(UpperCAmelCase__ ), UpperCAmelCase__ )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__lowercase = True
__lowercase = model_class(UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
with torch.no_grad():
__lowercase = model(**self._prepare_for_class(UpperCAmelCase__, UpperCAmelCase__ ) )
__lowercase = outputs.attentions
self.assertEqual(len(UpperCAmelCase__ ), UpperCAmelCase__ )
# verify the first attentions (first block, first layer)
__lowercase = (self.model_tester.image_size // 4) ** 2
__lowercase = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2
self.assertListEqual(
list(attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len], )
# verify the last attentions (last block, last layer)
__lowercase = (self.model_tester.image_size // 3_2) ** 2
__lowercase = (self.model_tester.image_size // (3_2 * self.model_tester.sr_ratios[-1])) ** 2
self.assertListEqual(
list(attentions[-1].shape[-3:] ), [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len], )
__lowercase = len(UpperCAmelCase__ )
# Check attention is always last and order is fine
__lowercase = True
__lowercase = True
__lowercase = model_class(UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
with torch.no_grad():
__lowercase = model(**self._prepare_for_class(UpperCAmelCase__, UpperCAmelCase__ ) )
self.assertEqual(out_len + 1, len(UpperCAmelCase__ ) )
__lowercase = outputs.attentions
self.assertEqual(len(UpperCAmelCase__ ), UpperCAmelCase__ )
# verify the first attentions (first block, first layer)
__lowercase = (self.model_tester.image_size // 4) ** 2
__lowercase = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2
self.assertListEqual(
list(self_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len], )
def _lowercase ( self : Dict ):
def check_hidden_states_output(UpperCAmelCase__ : Tuple, UpperCAmelCase__ : int, UpperCAmelCase__ : Optional[int] ):
__lowercase = model_class(UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
with torch.no_grad():
__lowercase = model(**self._prepare_for_class(UpperCAmelCase__, UpperCAmelCase__ ) )
__lowercase = outputs.hidden_states
__lowercase = self.model_tester.num_encoder_blocks
self.assertEqual(len(UpperCAmelCase__ ), UpperCAmelCase__ )
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-3:] ), [
self.model_tester.hidden_sizes[0],
self.model_tester.image_size // 4,
self.model_tester.image_size // 4,
], )
__lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowercase = True
check_hidden_states_output(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__lowercase = True
check_hidden_states_output(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
def _lowercase ( self : List[Any] ):
if not self.model_tester.is_training:
return
__lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common()
__lowercase = True
for model_class in self.all_model_classes:
if model_class in get_values(UpperCAmelCase__ ):
continue
__lowercase = model_class(UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.train()
__lowercase = self._prepare_for_class(UpperCAmelCase__, UpperCAmelCase__, return_labels=UpperCAmelCase__ )
__lowercase = model(**UpperCAmelCase__ ).loss
loss.backward()
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." )
def _lowercase ( self : Optional[int] ):
pass
@slow
def _lowercase ( self : Tuple ):
for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowercase = SegformerModel.from_pretrained(UpperCAmelCase__ )
self.assertIsNotNone(UpperCAmelCase__ )
def _A ( ) -> Tuple:
'''simple docstring'''
__lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_torch
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def _lowercase ( self : Optional[Any] ):
# only resize + normalize
__lowercase = SegformerImageProcessor(
image_scale=(5_1_2, 5_1_2), keep_ratio=UpperCAmelCase__, align=UpperCAmelCase__, do_random_crop=UpperCAmelCase__ )
__lowercase = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512" ).to(
UpperCAmelCase__ )
__lowercase = prepare_img()
__lowercase = image_processor(images=UpperCAmelCase__, return_tensors="pt" )
__lowercase = encoded_inputs.pixel_values.to(UpperCAmelCase__ )
with torch.no_grad():
__lowercase = model(UpperCAmelCase__ )
__lowercase = torch.Size((1, model.config.num_labels, 1_2_8, 1_2_8) )
self.assertEqual(outputs.logits.shape, UpperCAmelCase__ )
__lowercase = torch.tensor(
[
[[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]],
[[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]],
[[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]],
] ).to(UpperCAmelCase__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3], UpperCAmelCase__, atol=1E-4 ) )
@slow
def _lowercase ( self : Tuple ):
# only resize + normalize
__lowercase = SegformerImageProcessor(
image_scale=(5_1_2, 5_1_2), keep_ratio=UpperCAmelCase__, align=UpperCAmelCase__, do_random_crop=UpperCAmelCase__ )
__lowercase = SegformerForSemanticSegmentation.from_pretrained(
"nvidia/segformer-b1-finetuned-cityscapes-1024-1024" ).to(UpperCAmelCase__ )
__lowercase = prepare_img()
__lowercase = image_processor(images=UpperCAmelCase__, return_tensors="pt" )
__lowercase = encoded_inputs.pixel_values.to(UpperCAmelCase__ )
with torch.no_grad():
__lowercase = model(UpperCAmelCase__ )
__lowercase = torch.Size((1, model.config.num_labels, 1_2_8, 1_2_8) )
self.assertEqual(outputs.logits.shape, UpperCAmelCase__ )
__lowercase = torch.tensor(
[
[[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]],
[[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]],
[[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]],
] ).to(UpperCAmelCase__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3], UpperCAmelCase__, atol=1E-1 ) )
@slow
def _lowercase ( self : Union[str, Any] ):
# only resize + normalize
__lowercase = SegformerImageProcessor(
image_scale=(5_1_2, 5_1_2), keep_ratio=UpperCAmelCase__, align=UpperCAmelCase__, do_random_crop=UpperCAmelCase__ )
__lowercase = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512" ).to(
UpperCAmelCase__ )
__lowercase = prepare_img()
__lowercase = image_processor(images=UpperCAmelCase__, return_tensors="pt" )
__lowercase = encoded_inputs.pixel_values.to(UpperCAmelCase__ )
with torch.no_grad():
__lowercase = model(UpperCAmelCase__ )
__lowercase = outputs.logits.detach().cpu()
__lowercase = image_processor.post_process_semantic_segmentation(outputs=UpperCAmelCase__, target_sizes=[(5_0_0, 3_0_0)] )
__lowercase = torch.Size((5_0_0, 3_0_0) )
self.assertEqual(segmentation[0].shape, UpperCAmelCase__ )
__lowercase = image_processor.post_process_semantic_segmentation(outputs=UpperCAmelCase__ )
__lowercase = torch.Size((1_2_8, 1_2_8) )
self.assertEqual(segmentation[0].shape, UpperCAmelCase__ )
| 17 |
"""simple docstring"""
def _A ( UpperCamelCase_ : list[int]) -> float:
'''simple docstring'''
if not nums: # Makes sure that the list is not empty
raise ValueError("List is empty")
__lowercase = sum(UpperCamelCase_) / len(UpperCamelCase_) # Calculate the average
return sum(abs(x - average) for x in nums) / len(UpperCamelCase_)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 17 | 1 |
"""simple docstring"""
import os
import sys
import unittest
_a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, 'utils'))
import check_dummies # noqa: E402
from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402
# Align TRANSFORMERS_PATH in check_dummies with the current path
_a = os.path.join(git_repo_path, 'src', 'transformers')
_a = '\n{0} = None\n'
_a = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n'
_a = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n'
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def _lowercase ( self : Optional[int] ):
__lowercase = find_backend(" _import_structure[\"models.albert\"].append(\"AlbertTokenizerFast\")" )
self.assertIsNone(UpperCAmelCase__ )
__lowercase = find_backend(" if not is_tokenizers_available():" )
self.assertEqual(UpperCAmelCase__, "tokenizers" )
__lowercase = find_backend(" if not is_tensorflow_text_available():" )
self.assertEqual(UpperCAmelCase__, "tensorflow_text" )
__lowercase = find_backend(" if not (is_sentencepiece_available() and is_tokenizers_available()):" )
self.assertEqual(UpperCAmelCase__, "sentencepiece_and_tokenizers" )
__lowercase = find_backend(
" if not (is_sentencepiece_available() and is_tensorflow_text_available()):" )
self.assertEqual(UpperCAmelCase__, "sentencepiece_and_tensorflow_text" )
__lowercase = find_backend(
" if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):" )
self.assertEqual(UpperCAmelCase__, "sentencepiece_and_tokenizers_and_vision" )
def _lowercase ( self : Tuple ):
__lowercase = read_init()
# We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects
self.assertIn("torch", UpperCAmelCase__ )
self.assertIn("tensorflow_text", UpperCAmelCase__ )
self.assertIn("sentencepiece_and_tokenizers", UpperCAmelCase__ )
# Likewise, we can't assert on the exact content of a key
self.assertIn("BertModel", objects["torch"] )
self.assertIn("TFBertModel", objects["tf"] )
self.assertIn("FlaxBertModel", objects["flax"] )
self.assertIn("BertModel", objects["torch"] )
self.assertIn("TFBertTokenizer", objects["tensorflow_text"] )
self.assertIn("convert_slow_tokenizer", objects["sentencepiece_and_tokenizers"] )
def _lowercase ( self : Optional[Any] ):
__lowercase = create_dummy_object("CONSTANT", "'torch'" )
self.assertEqual(UpperCAmelCase__, "\nCONSTANT = None\n" )
__lowercase = create_dummy_object("function", "'torch'" )
self.assertEqual(
UpperCAmelCase__, "\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" )
__lowercase = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n"
__lowercase = create_dummy_object("FakeClass", "'torch'" )
self.assertEqual(UpperCAmelCase__, UpperCAmelCase__ )
def _lowercase ( self : List[Any] ):
__lowercase = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n"
__lowercase = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} )
self.assertEqual(dummy_files["torch"], UpperCAmelCase__ )
| 17 |
"""simple docstring"""
import inspect
import unittest
import numpy as np
from transformers import BeitConfig
from transformers.testing_utils import require_flax, require_vision, slow
from transformers.utils import cached_property, is_flax_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor
if is_flax_available():
import jax
from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : int=1_0_0, UpperCAmelCase__ : Any=1_3, UpperCAmelCase__ : List[Any]=3_0, UpperCAmelCase__ : Dict=2, UpperCAmelCase__ : Any=3, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[str]=True, UpperCAmelCase__ : Optional[Any]=3_2, UpperCAmelCase__ : Any=5, UpperCAmelCase__ : Any=4, UpperCAmelCase__ : Any=3_7, UpperCAmelCase__ : Optional[int]="gelu", UpperCAmelCase__ : Dict=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Dict=1_0, UpperCAmelCase__ : Tuple=0.02, UpperCAmelCase__ : List[Any]=3, ):
__lowercase = parent
__lowercase = vocab_size
__lowercase = batch_size
__lowercase = image_size
__lowercase = patch_size
__lowercase = num_channels
__lowercase = is_training
__lowercase = use_labels
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = type_sequence_label_size
__lowercase = initializer_range
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
__lowercase = (image_size // patch_size) ** 2
__lowercase = num_patches + 1
def _lowercase ( self : int ):
__lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size], self.type_sequence_label_size )
__lowercase = BeitConfig(
vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=UpperCAmelCase__, initializer_range=self.initializer_range, )
return config, pixel_values, labels
def _lowercase ( self : Any, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[str], UpperCAmelCase__ : List[str] ):
__lowercase = FlaxBeitModel(config=UpperCAmelCase__ )
__lowercase = model(UpperCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : List[Any] ):
__lowercase = FlaxBeitForMaskedImageModeling(config=UpperCAmelCase__ )
__lowercase = model(UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size) )
def _lowercase ( self : Dict, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : Union[str, Any] ):
__lowercase = self.type_sequence_label_size
__lowercase = FlaxBeitForImageClassification(config=UpperCAmelCase__ )
__lowercase = model(UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__lowercase = 1
__lowercase = FlaxBeitForImageClassification(UpperCAmelCase__ )
__lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__lowercase = model(UpperCAmelCase__ )
def _lowercase ( self : List[str] ):
__lowercase = self.prepare_config_and_inputs()
(
(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,
) = config_and_inputs
__lowercase = {"pixel_values": pixel_values}
return config, inputs_dict
@require_flax
class _lowerCAmelCase ( lowercase ,unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : str = (
(FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else ()
)
def _lowercase ( self : List[Any] ):
__lowercase = FlaxBeitModelTester(self )
__lowercase = ConfigTester(self, config_class=UpperCAmelCase__, has_text_modality=UpperCAmelCase__, hidden_size=3_7 )
def _lowercase ( self : Union[str, Any] ):
self.config_tester.run_common_tests()
def _lowercase ( self : Optional[int] ):
__lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowercase = model_class(UpperCAmelCase__ )
__lowercase = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowercase = [*signature.parameters.keys()]
__lowercase = ["pixel_values"]
self.assertListEqual(arg_names[:1], UpperCAmelCase__ )
def _lowercase ( self : Tuple ):
__lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__lowercase = self._prepare_for_class(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = model_class(UpperCAmelCase__ )
@jax.jit
def model_jitted(UpperCAmelCase__ : str, **UpperCAmelCase__ : Dict ):
return model(pixel_values=UpperCAmelCase__, **UpperCAmelCase__ )
with self.subTest("JIT Enabled" ):
__lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
__lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple()
self.assertEqual(len(UpperCAmelCase__ ), len(UpperCAmelCase__ ) )
for jitted_output, output in zip(UpperCAmelCase__, UpperCAmelCase__ ):
self.assertEqual(jitted_output.shape, output.shape )
def _lowercase ( self : List[str] ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase__ )
def _lowercase ( self : int ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ )
def _lowercase ( self : Tuple ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ )
@slow
def _lowercase ( self : Union[str, Any] ):
for model_class_name in self.all_model_classes:
__lowercase = model_class_name.from_pretrained("microsoft/beit-base-patch16-224" )
__lowercase = model(np.ones((1, 3, 2_2_4, 2_2_4) ) )
self.assertIsNotNone(UpperCAmelCase__ )
def _A ( ) -> str:
'''simple docstring'''
__lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_vision
@require_flax
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _lowercase ( self : Optional[int] ):
return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None
@slow
def _lowercase ( self : Any ):
__lowercase = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" )
__lowercase = self.default_image_processor
__lowercase = prepare_img()
__lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ).pixel_values
# prepare bool_masked_pos
__lowercase = np.ones((1, 1_9_6), dtype=UpperCAmelCase__ )
# forward pass
__lowercase = model(pixel_values=UpperCAmelCase__, bool_masked_pos=UpperCAmelCase__ )
__lowercase = outputs.logits
# verify the logits
__lowercase = (1, 1_9_6, 8_1_9_2)
self.assertEqual(logits.shape, UpperCAmelCase__ )
__lowercase = np.array(
[[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] )
self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3], UpperCAmelCase__, atol=1E-2 ) )
@slow
def _lowercase ( self : Any ):
__lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" )
__lowercase = self.default_image_processor
__lowercase = prepare_img()
__lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" )
# forward pass
__lowercase = model(**UpperCAmelCase__ )
__lowercase = outputs.logits
# verify the logits
__lowercase = (1, 1_0_0_0)
self.assertEqual(logits.shape, UpperCAmelCase__ )
__lowercase = np.array([-1.2_385, -1.0_987, -1.0_108] )
self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) )
__lowercase = 2_8_1
self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ )
@slow
def _lowercase ( self : List[str] ):
__lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" )
__lowercase = self.default_image_processor
__lowercase = prepare_img()
__lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" )
# forward pass
__lowercase = model(**UpperCAmelCase__ )
__lowercase = outputs.logits
# verify the logits
__lowercase = (1, 2_1_8_4_1)
self.assertEqual(logits.shape, UpperCAmelCase__ )
__lowercase = np.array([1.6_881, -0.2_787, 0.5_901] )
self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) )
__lowercase = 2_3_9_6
self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ )
| 17 | 1 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
load_numpy,
nightly,
require_torch_gpu,
slow,
torch_device,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class _lowerCAmelCase ( lowercase ,unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : Dict = LDMTextToImagePipeline
__UpperCAmelCase : str = TEXT_TO_IMAGE_PARAMS - {
"negative_prompt",
"negative_prompt_embeds",
"cross_attention_kwargs",
"prompt_embeds",
}
__UpperCAmelCase : Optional[Any] = PipelineTesterMixin.required_optional_params - {
"num_images_per_prompt",
"callback",
"callback_steps",
}
__UpperCAmelCase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS
__UpperCAmelCase : List[str] = False
def _lowercase ( self : str ):
torch.manual_seed(0 )
__lowercase = UNetaDConditionModel(
block_out_channels=(3_2, 6_4), layers_per_block=2, sample_size=3_2, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=3_2, )
__lowercase = DDIMScheduler(
beta_start=0.00_085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=UpperCAmelCase__, set_alpha_to_one=UpperCAmelCase__, )
torch.manual_seed(0 )
__lowercase = AutoencoderKL(
block_out_channels=(3_2, 6_4), in_channels=3, out_channels=3, down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D"), up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D"), latent_channels=4, )
torch.manual_seed(0 )
__lowercase = CLIPTextConfig(
bos_token_id=0, eos_token_id=2, hidden_size=3_2, intermediate_size=3_7, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_0_0_0, )
__lowercase = CLIPTextModel(UpperCAmelCase__ )
__lowercase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
__lowercase = {
"unet": unet,
"scheduler": scheduler,
"vqvae": vae,
"bert": text_encoder,
"tokenizer": tokenizer,
}
return components
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Union[str, Any]=0 ):
if str(UpperCAmelCase__ ).startswith("mps" ):
__lowercase = torch.manual_seed(UpperCAmelCase__ )
else:
__lowercase = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ )
__lowercase = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def _lowercase ( self : int ):
__lowercase = "cpu" # ensure determinism for the device-dependent torch.Generator
__lowercase = self.get_dummy_components()
__lowercase = LDMTextToImagePipeline(**UpperCAmelCase__ )
pipe.to(UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs(UpperCAmelCase__ )
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_6, 1_6, 3)
__lowercase = np.array([0.6_101, 0.6_156, 0.5_622, 0.4_895, 0.6_661, 0.3_804, 0.5_748, 0.6_136, 0.5_014] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
@slow
@require_torch_gpu
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def _lowercase ( self : Dict ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowercase ( self : int, UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Dict=torch.floataa, UpperCAmelCase__ : Dict=0 ):
__lowercase = torch.manual_seed(UpperCAmelCase__ )
__lowercase = np.random.RandomState(UpperCAmelCase__ ).standard_normal((1, 4, 3_2, 3_2) )
__lowercase = torch.from_numpy(UpperCAmelCase__ ).to(device=UpperCAmelCase__, dtype=UpperCAmelCase__ )
__lowercase = {
"prompt": "A painting of a squirrel eating a burger",
"latents": latents,
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def _lowercase ( self : Tuple ):
__lowercase = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256" ).to(UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_inputs(UpperCAmelCase__ )
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 2_5_6, 2_5_6, 3)
__lowercase = np.array([0.51_825, 0.52_850, 0.52_543, 0.54_258, 0.52_304, 0.52_569, 0.54_363, 0.55_276, 0.56_878] )
__lowercase = np.abs(expected_slice - image_slice ).max()
assert max_diff < 1E-3
@nightly
@require_torch_gpu
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def _lowercase ( self : List[str] ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[str]=torch.floataa, UpperCAmelCase__ : List[str]=0 ):
__lowercase = torch.manual_seed(UpperCAmelCase__ )
__lowercase = np.random.RandomState(UpperCAmelCase__ ).standard_normal((1, 4, 3_2, 3_2) )
__lowercase = torch.from_numpy(UpperCAmelCase__ ).to(device=UpperCAmelCase__, dtype=UpperCAmelCase__ )
__lowercase = {
"prompt": "A painting of a squirrel eating a burger",
"latents": latents,
"generator": generator,
"num_inference_steps": 5_0,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def _lowercase ( self : int ):
__lowercase = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256" ).to(UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_inputs(UpperCAmelCase__ )
__lowercase = pipe(**UpperCAmelCase__ ).images[0]
__lowercase = load_numpy(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy" )
__lowercase = np.abs(expected_image - image ).max()
assert max_diff < 1E-3
| 17 |
"""simple docstring"""
import unittest
from transformers import load_tool
from .test_tools_common import ToolTesterMixin
class _lowerCAmelCase ( unittest.TestCase ,lowercase ):
"""simple docstring"""
def _lowercase ( self : List[Any] ):
__lowercase = load_tool("text-classification" )
self.tool.setup()
__lowercase = load_tool("text-classification", remote=UpperCAmelCase__ )
def _lowercase ( self : str ):
__lowercase = self.tool("That's quite cool", ["positive", "negative"] )
self.assertEqual(UpperCAmelCase__, "positive" )
def _lowercase ( self : str ):
__lowercase = self.remote_tool("That's quite cool", ["positive", "negative"] )
self.assertEqual(UpperCAmelCase__, "positive" )
def _lowercase ( self : List[str] ):
__lowercase = self.tool(text="That's quite cool", labels=["positive", "negative"] )
self.assertEqual(UpperCAmelCase__, "positive" )
def _lowercase ( self : Tuple ):
__lowercase = self.remote_tool(text="That's quite cool", labels=["positive", "negative"] )
self.assertEqual(UpperCAmelCase__, "positive" )
| 17 | 1 |
"""simple docstring"""
from __future__ import annotations
from typing import Any
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Any, UpperCAmelCase__ : int ):
__lowercase = num_of_nodes
__lowercase = []
__lowercase = {}
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : int, UpperCAmelCase__ : int ):
self.m_edges.append([u_node, v_node, weight] )
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : int ):
if self.m_component[u_node] == u_node:
return u_node
return self.find_component(self.m_component[u_node] )
def _lowercase ( self : List[Any], UpperCAmelCase__ : int ):
if self.m_component[u_node] != u_node:
for k in self.m_component:
__lowercase = self.find_component(UpperCAmelCase__ )
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : list[int], UpperCAmelCase__ : int, UpperCAmelCase__ : int ):
if component_size[u_node] <= component_size[v_node]:
__lowercase = v_node
component_size[v_node] += component_size[u_node]
self.set_component(UpperCAmelCase__ )
elif component_size[u_node] >= component_size[v_node]:
__lowercase = self.find_component(UpperCAmelCase__ )
component_size[u_node] += component_size[v_node]
self.set_component(UpperCAmelCase__ )
def _lowercase ( self : Any ):
__lowercase = []
__lowercase = 0
__lowercase = [-1] * self.m_num_of_nodes
# A list of components (initialized to all of the nodes)
for node in range(self.m_num_of_nodes ):
self.m_component.update({node: node} )
component_size.append(1 )
__lowercase = self.m_num_of_nodes
while num_of_components > 1:
for edge in self.m_edges:
__lowercase ,__lowercase ,__lowercase = edge
__lowercase = self.m_component[u]
__lowercase = self.m_component[v]
if u_component != v_component:
for component in (u_component, v_component):
if (
minimum_weight_edge[component] == -1
or minimum_weight_edge[component][2] > w
):
__lowercase = [u, v, w]
for edge in minimum_weight_edge:
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
__lowercase ,__lowercase ,__lowercase = edge
__lowercase = self.m_component[u]
__lowercase = self.m_component[v]
if u_component != v_component:
mst_weight += w
self.union(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" )
num_of_components -= 1
__lowercase = [-1] * self.m_num_of_nodes
print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" )
def _A ( ) -> None:
'''simple docstring'''
if __name__ == "__main__":
import doctest
doctest.testmod()
| 17 |
"""simple docstring"""
from typing import Any, Callable, Dict, List, Optional, Union
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
_a = 'CompVis/stable-diffusion-v1-1'
_a = 'CompVis/stable-diffusion-v1-2'
_a = 'CompVis/stable-diffusion-v1-3'
_a = 'CompVis/stable-diffusion-v1-4'
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
def __init__( self : Dict, UpperCAmelCase__ : AutoencoderKL, UpperCAmelCase__ : CLIPTextModel, UpperCAmelCase__ : CLIPTokenizer, UpperCAmelCase__ : UNetaDConditionModel, UpperCAmelCase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], UpperCAmelCase__ : StableDiffusionSafetyChecker, UpperCAmelCase__ : CLIPImageProcessor, UpperCAmelCase__ : bool = True, ):
super()._init_()
__lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ )
__lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ )
__lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ )
__lowercase = StableDiffusionPipeline(
vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, tokenizer=UpperCAmelCase__, unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, safety_checker=UpperCAmelCase__, feature_extractor=UpperCAmelCase__, requires_safety_checker=UpperCAmelCase__, )
self.register_modules(pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea )
@property
def _lowercase ( self : List[str] ):
return {k: getattr(self, UpperCAmelCase__ ) for k in self.config.keys() if not k.startswith("_" )}
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ):
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
__lowercase = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(UpperCAmelCase__ )
def _lowercase ( self : List[str] ):
self.enable_attention_slicing(UpperCAmelCase__ )
@torch.no_grad()
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Tuple, ):
return self.pipea(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
@torch.no_grad()
def _lowercase ( self : Tuple, UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : str, ):
return self.pipea(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
@torch.no_grad()
def _lowercase ( self : str, UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Any, ):
return self.pipea(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
@torch.no_grad()
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Optional[int], ):
return self.pipea(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
@torch.no_grad()
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : str, ):
__lowercase = "cuda" if torch.cuda.is_available() else "cpu"
self.to(UpperCAmelCase__ )
# Checks if the height and width are divisible by 8 or not
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" )
# Get first result from Stable Diffusion Checkpoint v1.1
__lowercase = self.textaimg_sda_a(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
# Get first result from Stable Diffusion Checkpoint v1.2
__lowercase = self.textaimg_sda_a(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
# Get first result from Stable Diffusion Checkpoint v1.3
__lowercase = self.textaimg_sda_a(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
# Get first result from Stable Diffusion Checkpoint v1.4
__lowercase = self.textaimg_sda_a(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
# Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result
return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
| 17 | 1 |
"""simple docstring"""
from collections.abc import Generator
from math import sin
def _A ( UpperCamelCase_ : bytes) -> bytes:
'''simple docstring'''
if len(UpperCamelCase_) != 32:
raise ValueError("Input must be of length 32")
__lowercase = B""
for i in [3, 2, 1, 0]:
little_endian += string_aa[8 * i : 8 * i + 8]
return little_endian
def _A ( UpperCamelCase_ : int) -> bytes:
'''simple docstring'''
if i < 0:
raise ValueError("Input must be non-negative")
__lowercase = format(UpperCamelCase_, "08x")[-8:]
__lowercase = B""
for i in [3, 2, 1, 0]:
little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8")
return little_endian_hex
def _A ( UpperCamelCase_ : bytes) -> bytes:
'''simple docstring'''
__lowercase = B""
for char in message:
bit_string += format(UpperCamelCase_, "08b").encode("utf-8")
__lowercase = format(len(UpperCamelCase_), "064b").encode("utf-8")
# Pad bit_string to a multiple of 512 chars
bit_string += b"1"
while len(UpperCamelCase_) % 512 != 448:
bit_string += b"0"
bit_string += to_little_endian(start_len[32:]) + to_little_endian(start_len[:32])
return bit_string
def _A ( UpperCamelCase_ : bytes) -> Generator[list[int], None, None]:
'''simple docstring'''
if len(UpperCamelCase_) % 512 != 0:
raise ValueError("Input must have length that's a multiple of 512")
for pos in range(0, len(UpperCamelCase_), 512):
__lowercase = bit_string[pos : pos + 512]
__lowercase = []
for i in range(0, 512, 32):
block_words.append(int(to_little_endian(block[i : i + 32]), 2))
yield block_words
def _A ( UpperCamelCase_ : int) -> int:
'''simple docstring'''
if i < 0:
raise ValueError("Input must be non-negative")
__lowercase = format(UpperCamelCase_, "032b")
__lowercase = ""
for c in i_str:
new_str += "1" if c == "0" else "0"
return int(UpperCamelCase_, 2)
def _A ( UpperCamelCase_ : int, UpperCamelCase_ : int) -> int:
'''simple docstring'''
return (a + b) % 2**32
def _A ( UpperCamelCase_ : int, UpperCamelCase_ : int) -> int:
'''simple docstring'''
if i < 0:
raise ValueError("Input must be non-negative")
if shift < 0:
raise ValueError("Shift must be non-negative")
return ((i << shift) ^ (i >> (32 - shift))) % 2**32
def _A ( UpperCamelCase_ : bytes) -> bytes:
'''simple docstring'''
__lowercase = preprocess(UpperCamelCase_)
__lowercase = [int(2**32 * abs(sin(i + 1))) for i in range(64)]
# Starting states
__lowercase = 0x6_7_4_5_2_3_0_1
__lowercase = 0xe_f_c_d_a_b_8_9
__lowercase = 0x9_8_b_a_d_c_f_e
__lowercase = 0x1_0_3_2_5_4_7_6
__lowercase = [
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
]
# Process bit string in chunks, each with 16 32-char words
for block_words in get_block_words(UpperCamelCase_):
__lowercase = aa
__lowercase = ba
__lowercase = ca
__lowercase = da
# Hash current chunk
for i in range(64):
if i <= 15:
# f = (b & c) | (not_32(b) & d) # Alternate definition for f
__lowercase = d ^ (b & (c ^ d))
__lowercase = i
elif i <= 31:
# f = (d & b) | (not_32(d) & c) # Alternate definition for f
__lowercase = c ^ (d & (b ^ c))
__lowercase = (5 * i + 1) % 16
elif i <= 47:
__lowercase = b ^ c ^ d
__lowercase = (3 * i + 5) % 16
else:
__lowercase = c ^ (b | not_aa(UpperCamelCase_))
__lowercase = (7 * i) % 16
__lowercase = (f + a + added_consts[i] + block_words[g]) % 2**32
__lowercase = d
__lowercase = c
__lowercase = b
__lowercase = sum_aa(UpperCamelCase_, left_rotate_aa(UpperCamelCase_, shift_amounts[i]))
# Add hashed chunk to running total
__lowercase = sum_aa(UpperCamelCase_, UpperCamelCase_)
__lowercase = sum_aa(UpperCamelCase_, UpperCamelCase_)
__lowercase = sum_aa(UpperCamelCase_, UpperCamelCase_)
__lowercase = sum_aa(UpperCamelCase_, UpperCamelCase_)
__lowercase = reformat_hex(UpperCamelCase_) + reformat_hex(UpperCamelCase_) + reformat_hex(UpperCamelCase_) + reformat_hex(UpperCamelCase_)
return digest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 17 |
"""simple docstring"""
import random
import unittest
import numpy as np
import torch
from diffusers import (
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionUpscalePipeline,
PNDMScheduler,
)
from diffusers.utils import floats_tensor
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class _lowerCAmelCase ( lowercase ,unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : str = "ssube/stable-diffusion-x4-upscaler-onnx"
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : List[str]=0 ):
__lowercase = floats_tensor((1, 3, 1_2_8, 1_2_8), rng=random.Random(UpperCAmelCase__ ) )
__lowercase = torch.manual_seed(UpperCAmelCase__ )
__lowercase = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 7.5,
"output_type": "numpy",
}
return inputs
def _lowercase ( self : Any ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1].flatten()
# started as 128, should now be 512
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] )
assert np.abs(image_slice - expected_slice ).max() < 1E-1
def _lowercase ( self : Optional[Any] ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
__lowercase = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.6_898_892, 0.59_240_556, 0.52_499_527, 0.58_866_215, 0.52_258_235, 0.52_572_715, 0.62_414_473, 0.6_174_387, 0.6_214_964] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def _lowercase ( self : int ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
__lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.7_659_278, 0.76_437_664, 0.75_579_107, 0.7_691_116, 0.77_666_986, 0.7_727_672, 0.7_758_664, 0.7_812_226, 0.76_942_515] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def _lowercase ( self : str ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
__lowercase = EulerDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def _lowercase ( self : Any ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
__lowercase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.77_424_496, 0.773_601, 0.7_645_288, 0.7_769_598, 0.7_772_739, 0.7_738_688, 0.78_187_233, 0.77_879_584, 0.767_043] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
@nightly
@require_onnxruntime
@require_torch_gpu
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@property
def _lowercase ( self : Tuple ):
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def _lowercase ( self : Dict ):
__lowercase = ort.SessionOptions()
__lowercase = False
return options
def _lowercase ( self : Dict ):
__lowercase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg" )
__lowercase = init_image.resize((1_2_8, 1_2_8) )
# using the PNDM scheduler by default
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(
"ssube/stable-diffusion-x4-upscaler-onnx", provider=self.gpu_provider, sess_options=self.gpu_options, )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = "A fantasy landscape, trending on artstation"
__lowercase = torch.manual_seed(0 )
__lowercase = pipe(
prompt=UpperCAmelCase__, image=UpperCAmelCase__, guidance_scale=7.5, num_inference_steps=1_0, generator=UpperCAmelCase__, output_type="np", )
__lowercase = output.images
__lowercase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert images.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array([0.4_883, 0.4_947, 0.4_980, 0.4_975, 0.4_982, 0.4_980, 0.5_000, 0.5_006, 0.4_972] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
def _lowercase ( self : str ):
__lowercase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg" )
__lowercase = init_image.resize((1_2_8, 1_2_8) )
__lowercase = LMSDiscreteScheduler.from_pretrained(
"ssube/stable-diffusion-x4-upscaler-onnx", subfolder="scheduler" )
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(
"ssube/stable-diffusion-x4-upscaler-onnx", scheduler=UpperCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = "A fantasy landscape, trending on artstation"
__lowercase = torch.manual_seed(0 )
__lowercase = pipe(
prompt=UpperCAmelCase__, image=UpperCAmelCase__, guidance_scale=7.5, num_inference_steps=2_0, generator=UpperCAmelCase__, output_type="np", )
__lowercase = output.images
__lowercase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert images.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.50_173_753, 0.50_223_356, 0.502_039, 0.50_233_036, 0.5_023_725, 0.5_022_601, 0.5_018_758, 0.50_234_085, 0.50_241_566] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
| 17 | 1 |
"""simple docstring"""
def _A ( UpperCamelCase_ : list, UpperCamelCase_ : list) -> float:
'''simple docstring'''
_validate_point(UpperCamelCase_)
_validate_point(UpperCamelCase_)
if len(UpperCamelCase_) != len(UpperCamelCase_):
raise ValueError("Both points must be in the same n-dimensional space")
return float(sum(abs(a - b) for a, b in zip(UpperCamelCase_, UpperCamelCase_)))
def _A ( UpperCamelCase_ : list[float]) -> None:
'''simple docstring'''
if point:
if isinstance(UpperCamelCase_, UpperCamelCase_):
for item in point:
if not isinstance(UpperCamelCase_, (int, float)):
__lowercase = (
"Expected a list of numbers as input, found "
F"""{type(UpperCamelCase_).__name__}"""
)
raise TypeError(UpperCamelCase_)
else:
__lowercase = F"""Expected a list of numbers as input, found {type(UpperCamelCase_).__name__}"""
raise TypeError(UpperCamelCase_)
else:
raise ValueError("Missing an input")
def _A ( UpperCamelCase_ : list, UpperCamelCase_ : list) -> float:
'''simple docstring'''
_validate_point(UpperCamelCase_)
_validate_point(UpperCamelCase_)
if len(UpperCamelCase_) != len(UpperCamelCase_):
raise ValueError("Both points must be in the same n-dimensional space")
return float(sum(abs(x - y) for x, y in zip(UpperCamelCase_, UpperCamelCase_)))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 17 |
"""simple docstring"""
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
_a = datasets.utils.logging.get_logger(__name__)
_a = ['names', 'prefix']
_a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols']
_a = ['encoding_errors', 'on_bad_lines']
_a = ['date_format']
@dataclass
class _lowerCAmelCase ( datasets.BuilderConfig ):
"""simple docstring"""
__UpperCAmelCase : str = ","
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : Optional[Union[int, List[int], str]] = "infer"
__UpperCAmelCase : Optional[List[str]] = None
__UpperCAmelCase : Optional[List[str]] = None
__UpperCAmelCase : Optional[Union[int, str, List[int], List[str]]] = None
__UpperCAmelCase : Optional[Union[List[int], List[str]]] = None
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : bool = True
__UpperCAmelCase : Optional[Literal["c", "python", "pyarrow"]] = None
__UpperCAmelCase : Dict[Union[int, str], Callable[[Any], Any]] = None
__UpperCAmelCase : Optional[list] = None
__UpperCAmelCase : Optional[list] = None
__UpperCAmelCase : bool = False
__UpperCAmelCase : Optional[Union[int, List[int]]] = None
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : Optional[Union[str, List[str]]] = None
__UpperCAmelCase : bool = True
__UpperCAmelCase : bool = True
__UpperCAmelCase : bool = False
__UpperCAmelCase : bool = True
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : str = "."
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : str = '"'
__UpperCAmelCase : int = 0
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : bool = True
__UpperCAmelCase : bool = True
__UpperCAmelCase : int = 0
__UpperCAmelCase : bool = True
__UpperCAmelCase : bool = False
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : int = 1_0_0_0_0
__UpperCAmelCase : Optional[datasets.Features] = None
__UpperCAmelCase : Optional[str] = "strict"
__UpperCAmelCase : Literal["error", "warn", "skip"] = "error"
__UpperCAmelCase : Optional[str] = None
def _lowercase ( self : Tuple ):
if self.delimiter is not None:
__lowercase = self.delimiter
if self.column_names is not None:
__lowercase = self.column_names
@property
def _lowercase ( self : Union[str, Any] ):
__lowercase = {
"sep": self.sep,
"header": self.header,
"names": self.names,
"index_col": self.index_col,
"usecols": self.usecols,
"prefix": self.prefix,
"mangle_dupe_cols": self.mangle_dupe_cols,
"engine": self.engine,
"converters": self.converters,
"true_values": self.true_values,
"false_values": self.false_values,
"skipinitialspace": self.skipinitialspace,
"skiprows": self.skiprows,
"nrows": self.nrows,
"na_values": self.na_values,
"keep_default_na": self.keep_default_na,
"na_filter": self.na_filter,
"verbose": self.verbose,
"skip_blank_lines": self.skip_blank_lines,
"thousands": self.thousands,
"decimal": self.decimal,
"lineterminator": self.lineterminator,
"quotechar": self.quotechar,
"quoting": self.quoting,
"escapechar": self.escapechar,
"comment": self.comment,
"encoding": self.encoding,
"dialect": self.dialect,
"error_bad_lines": self.error_bad_lines,
"warn_bad_lines": self.warn_bad_lines,
"skipfooter": self.skipfooter,
"doublequote": self.doublequote,
"memory_map": self.memory_map,
"float_precision": self.float_precision,
"chunksize": self.chunksize,
"encoding_errors": self.encoding_errors,
"on_bad_lines": self.on_bad_lines,
"date_format": self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig(), UpperCAmelCase__ ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class _lowerCAmelCase ( datasets.ArrowBasedBuilder ):
"""simple docstring"""
__UpperCAmelCase : Tuple = CsvConfig
def _lowercase ( self : List[str] ):
return datasets.DatasetInfo(features=self.config.features )
def _lowercase ( self : List[Any], UpperCAmelCase__ : Dict ):
if not self.config.data_files:
raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" )
__lowercase = dl_manager.download_and_extract(self.config.data_files )
if isinstance(UpperCAmelCase__, (str, list, tuple) ):
__lowercase = data_files
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
__lowercase = [files]
__lowercase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files} )]
__lowercase = []
for split_name, files in data_files.items():
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
__lowercase = [files]
__lowercase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files]
splits.append(datasets.SplitGenerator(name=UpperCAmelCase__, gen_kwargs={"files": files} ) )
return splits
def _lowercase ( self : Dict, UpperCAmelCase__ : pa.Table ):
if self.config.features is not None:
__lowercase = self.config.features.arrow_schema
if all(not require_storage_cast(UpperCAmelCase__ ) for feature in self.config.features.values() ):
# cheaper cast
__lowercase = pa.Table.from_arrays([pa_table[field.name] for field in schema], schema=UpperCAmelCase__ )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
__lowercase = table_cast(UpperCAmelCase__, UpperCAmelCase__ )
return pa_table
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : List[str] ):
__lowercase = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
__lowercase = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(UpperCAmelCase__ ) else object
for name, dtype, feature in zip(schema.names, schema.types, self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase__ ) ):
__lowercase = pd.read_csv(UpperCAmelCase__, iterator=UpperCAmelCase__, dtype=UpperCAmelCase__, **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(UpperCAmelCase__ ):
__lowercase = pa.Table.from_pandas(UpperCAmelCase__ )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase__ )
except ValueError as e:
logger.error(F"""Failed to read file '{file}' with error {type(UpperCAmelCase__ )}: {e}""" )
raise
| 17 | 1 |
"""simple docstring"""
from math import sqrt
def _A ( UpperCamelCase_ : int) -> int:
'''simple docstring'''
__lowercase = 0
for i in range(1, int(sqrt(UpperCamelCase_) + 1)):
if n % i == 0 and i != sqrt(UpperCamelCase_):
total += i + n // i
elif i == sqrt(UpperCamelCase_):
total += i
return total - n
def _A ( UpperCamelCase_ : int = 10000) -> int:
'''simple docstring'''
__lowercase = sum(
i
for i in range(1, UpperCamelCase_)
if sum_of_divisors(sum_of_divisors(UpperCamelCase_)) == i and sum_of_divisors(UpperCamelCase_) != i)
return total
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 17 |
"""simple docstring"""
from scipy.stats import spearmanr
import datasets
_a = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n'
_a = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n'
_a = r'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class _lowerCAmelCase ( datasets.Metric ):
"""simple docstring"""
def _lowercase ( self : Dict ):
return datasets.MetricInfo(
description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features(
{
"predictions": datasets.Value("float" ),
"references": datasets.Value("float" ),
} ), reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"], )
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int]=False ):
__lowercase = spearmanr(UpperCAmelCase__, UpperCAmelCase__ )
if return_pvalue:
return {"spearmanr": results[0], "spearmanr_pvalue": results[1]}
else:
return {"spearmanr": results[0]}
| 17 | 1 |
"""simple docstring"""
from __future__ import annotations
def _A ( UpperCamelCase_ : list[int]) -> int:
'''simple docstring'''
if not nums:
return 0
__lowercase = nums[0]
__lowercase = 0
for num in nums[1:]:
__lowercase ,__lowercase = (
max_excluding + num,
max(UpperCamelCase_, UpperCamelCase_),
)
return max(UpperCamelCase_, UpperCamelCase_)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 17 |
"""simple docstring"""
from collections.abc import Sequence
def _A ( UpperCamelCase_ : Sequence[float], UpperCamelCase_ : float) -> float:
'''simple docstring'''
return sum(c * (x**i) for i, c in enumerate(UpperCamelCase_))
def _A ( UpperCamelCase_ : Sequence[float], UpperCamelCase_ : float) -> float:
'''simple docstring'''
__lowercase = 0.0
for coeff in reversed(UpperCamelCase_):
__lowercase = result * x + coeff
return result
if __name__ == "__main__":
_a = (0.0, 0.0, 5.0, 9.3, 7.0)
_a = 10.0
print(evaluate_poly(poly, x))
print(horner(poly, x))
| 17 | 1 |
"""simple docstring"""
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Image
from .base import TaskTemplate
@dataclass(frozen=lowercase )
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
__UpperCAmelCase : str = field(default="image-classification" ,metadata={"include_in_asdict_even_if_is_default": True} )
__UpperCAmelCase : ClassVar[Features] = Features({"image": Image()} )
__UpperCAmelCase : ClassVar[Features] = Features({"labels": ClassLabel} )
__UpperCAmelCase : str = "image"
__UpperCAmelCase : str = "labels"
def _lowercase ( self : str, UpperCAmelCase__ : Optional[int] ):
if self.label_column not in features:
raise ValueError(F"""Column {self.label_column} is not present in features.""" )
if not isinstance(features[self.label_column], UpperCAmelCase__ ):
raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""" )
__lowercase = copy.deepcopy(self )
__lowercase = self.label_schema.copy()
__lowercase = features[self.label_column]
__lowercase = label_schema
return task_template
@property
def _lowercase ( self : Optional[Any] ):
return {
self.image_column: "image",
self.label_column: "labels",
}
| 17 |
"""simple docstring"""
import argparse
import pytorch_lightning as pl
import torch
from torch import nn
from transformers import LongformerForQuestionAnswering, LongformerModel
class _lowerCAmelCase ( pl.LightningModule ):
"""simple docstring"""
def __init__( self : Optional[Any], UpperCAmelCase__ : str ):
super().__init__()
__lowercase = model
__lowercase = 2
__lowercase = nn.Linear(self.model.config.hidden_size, self.num_labels )
def _lowercase ( self : Optional[int] ):
pass
def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str, UpperCamelCase_ : str) -> str:
'''simple docstring'''
__lowercase = LongformerModel.from_pretrained(UpperCamelCase_)
__lowercase = LightningModel(UpperCamelCase_)
__lowercase = torch.load(UpperCamelCase_, map_location=torch.device("cpu"))
lightning_model.load_state_dict(ckpt["state_dict"])
# init longformer question answering model
__lowercase = LongformerForQuestionAnswering.from_pretrained(UpperCamelCase_)
# transfer weights
longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict())
longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict())
longformer_for_qa.eval()
# save model
longformer_for_qa.save_pretrained(UpperCamelCase_)
print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""")
if __name__ == "__main__":
_a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--longformer_model',
default=None,
type=str,
required=True,
help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.',
)
parser.add_argument(
'--longformer_question_answering_ckpt_path',
default=None,
type=str,
required=True,
help='Path the official PyTorch Lightning Checkpoint.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
_a = parser.parse_args()
convert_longformer_qa_checkpoint_to_pytorch(
args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path
)
| 17 | 1 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaImgaImgPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class _lowerCAmelCase ( lowercase ,unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : int = KandinskyVaaImgaImgPipeline
__UpperCAmelCase : Optional[Any] = ["image_embeds", "negative_image_embeds", "image"]
__UpperCAmelCase : int = [
"image_embeds",
"negative_image_embeds",
"image",
]
__UpperCAmelCase : List[str] = [
"generator",
"height",
"width",
"strength",
"guidance_scale",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
__UpperCAmelCase : List[Any] = False
@property
def _lowercase ( self : Optional[int] ):
return 3_2
@property
def _lowercase ( self : Union[str, Any] ):
return 3_2
@property
def _lowercase ( self : Optional[int] ):
return self.time_input_dim
@property
def _lowercase ( self : Any ):
return self.time_input_dim * 4
@property
def _lowercase ( self : Any ):
return 1_0_0
@property
def _lowercase ( self : Any ):
torch.manual_seed(0 )
__lowercase = {
"in_channels": 4,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "image",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
__lowercase = UNetaDConditionModel(**UpperCAmelCase__ )
return model
@property
def _lowercase ( self : Optional[Any] ):
return {
"block_out_channels": [3_2, 6_4],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 1_2,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def _lowercase ( self : Optional[Any] ):
torch.manual_seed(0 )
__lowercase = VQModel(**self.dummy_movq_kwargs )
return model
def _lowercase ( self : Union[str, Any] ):
__lowercase = self.dummy_unet
__lowercase = self.dummy_movq
__lowercase = {
"num_train_timesteps": 1_0_0_0,
"beta_schedule": "linear",
"beta_start": 0.00_085,
"beta_end": 0.012,
"clip_sample": False,
"set_alpha_to_one": False,
"steps_offset": 0,
"prediction_type": "epsilon",
"thresholding": False,
}
__lowercase = DDIMScheduler(**UpperCAmelCase__ )
__lowercase = {
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[Any]=0 ):
__lowercase = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ )
__lowercase = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1 ) ).to(
UpperCAmelCase__ )
# create init_image
__lowercase = floats_tensor((1, 3, 6_4, 6_4), rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ )
__lowercase = image.cpu().permute(0, 2, 3, 1 )[0]
__lowercase = Image.fromarray(np.uinta(UpperCAmelCase__ ) ).convert("RGB" ).resize((2_5_6, 2_5_6) )
if str(UpperCAmelCase__ ).startswith("mps" ):
__lowercase = torch.manual_seed(UpperCAmelCase__ )
else:
__lowercase = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ )
__lowercase = {
"image": init_image,
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"generator": generator,
"height": 6_4,
"width": 6_4,
"num_inference_steps": 1_0,
"guidance_scale": 7.0,
"strength": 0.2,
"output_type": "np",
}
return inputs
def _lowercase ( self : Optional[Any] ):
__lowercase = "cpu"
__lowercase = self.get_dummy_components()
__lowercase = self.pipeline_class(**UpperCAmelCase__ )
__lowercase = pipe.to(UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = pipe(**self.get_dummy_inputs(UpperCAmelCase__ ) )
__lowercase = output.images
__lowercase = pipe(
**self.get_dummy_inputs(UpperCAmelCase__ ), return_dict=UpperCAmelCase__, )[0]
__lowercase = image[0, -3:, -3:, -1]
__lowercase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
__lowercase = np.array(
[0.6_199_778, 0.63_984_406, 0.46_145_785, 0.62_944_984, 0.5_622_215, 0.47_306_132, 0.47_441_456, 0.4_607_606, 0.48_719_263] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}"""
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"""
@slow
@require_torch_gpu
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def _lowercase ( self : Optional[int] ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowercase ( self : Dict ):
__lowercase = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinskyv22/kandinskyv22_img2img_frog.npy" )
__lowercase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" )
__lowercase = "A red cartoon frog, 4k"
__lowercase = KandinskyVaaPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.floataa )
pipe_prior.to(UpperCAmelCase__ )
__lowercase = KandinskyVaaImgaImgPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.floataa )
__lowercase = pipeline.to(UpperCAmelCase__ )
pipeline.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = torch.Generator(device="cpu" ).manual_seed(0 )
__lowercase ,__lowercase = pipe_prior(
UpperCAmelCase__, generator=UpperCAmelCase__, num_inference_steps=5, negative_prompt="", ).to_tuple()
__lowercase = pipeline(
image=UpperCAmelCase__, image_embeds=UpperCAmelCase__, negative_image_embeds=UpperCAmelCase__, generator=UpperCAmelCase__, num_inference_steps=1_0_0, height=7_6_8, width=7_6_8, strength=0.2, output_type="np", )
__lowercase = output.images[0]
assert image.shape == (7_6_8, 7_6_8, 3)
assert_mean_pixel_difference(UpperCAmelCase__, UpperCAmelCase__ )
| 17 |
"""simple docstring"""
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("TEST_SAGEMAKER" ,"False" ) ) is not True ,reason="Skipping test because should only be run when releasing minor transformers version" ,)
@pytest.mark.usefixtures("sm_env" )
@parameterized_class(
[
{
"framework": "pytorch",
"script": "run_glue_model_parallelism.py",
"model_name_or_path": "roberta-large",
"instance_type": "ml.p3dn.24xlarge",
"results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2},
},
{
"framework": "pytorch",
"script": "run_glue.py",
"model_name_or_path": "roberta-large",
"instance_type": "ml.p3dn.24xlarge",
"results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2},
},
] )
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def _lowercase ( self : Optional[int] ):
if self.framework == "pytorch":
subprocess.run(
F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split(), encoding="utf-8", check=UpperCAmelCase__, )
assert hasattr(self, "env" )
def _lowercase ( self : str, UpperCAmelCase__ : List[Any] ):
# configuration for running training on smdistributed Model Parallel
__lowercase = {
"enabled": True,
"processes_per_host": 8,
}
__lowercase = {
"enabled": True,
"parameters": {
"microbatches": 4,
"placement_strategy": "spread",
"pipeline": "interleaved",
"optimize": "speed",
"partitions": 4,
"ddp": True,
},
}
__lowercase = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options}
__lowercase = "trainer" if self.script == "run_glue.py" else "smtrainer"
# creates estimator
return HuggingFace(
entry_point=self.script, source_dir=self.env.test_path, role=self.env.role, image_uri=self.env.image_uri, base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""", instance_count=UpperCAmelCase__, instance_type=self.instance_type, debugger_hook_config=UpperCAmelCase__, hyperparameters={
**self.env.hyperparameters,
"model_name_or_path": self.model_name_or_path,
"max_steps": 5_0_0,
}, metric_definitions=self.env.metric_definitions, distribution=UpperCAmelCase__, py_version="py36", )
def _lowercase ( self : Tuple, UpperCAmelCase__ : int ):
TrainingJobAnalytics(UpperCAmelCase__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" )
@parameterized.expand([(1,)] )
def _lowercase ( self : str, UpperCAmelCase__ : Union[str, Any] ):
# create estimator
__lowercase = self.create_estimator(UpperCAmelCase__ )
# run training
estimator.fit()
# result dataframe
__lowercase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
__lowercase = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] )
__lowercase = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
__lowercase = (
Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds", 9_9_9_9_9_9 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy )
assert all(t <= self.results["eval_loss"] for t in eval_loss )
# dump tests result into json file to share in PR
with open(F"""{estimator.latest_training_job.name}.json""", "w" ) as outfile:
json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss}, UpperCAmelCase__ )
| 17 | 1 |
"""simple docstring"""
_a = 8.3_144_598
def _A ( UpperCamelCase_ : float, UpperCamelCase_ : float) -> float:
'''simple docstring'''
if temperature < 0:
raise Exception("Temperature cannot be less than 0 K")
if molar_mass <= 0:
raise Exception("Molar mass cannot be less than or equal to 0 kg/mol")
else:
return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
# example
_a = 3_00
_a = 28
_a = rms_speed_of_molecule(temperature, molar_mass)
print(F"Vrms of Nitrogen gas at 300 K is {vrms} m/s")
| 17 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor
from .base import PipelineTool
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
__UpperCAmelCase : Tuple = "openai/whisper-base"
__UpperCAmelCase : Union[str, Any] = (
"This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the "
"transcribed text."
)
__UpperCAmelCase : List[str] = "transcriber"
__UpperCAmelCase : Optional[Any] = WhisperProcessor
__UpperCAmelCase : str = WhisperForConditionalGeneration
__UpperCAmelCase : List[str] = ["audio"]
__UpperCAmelCase : Tuple = ["text"]
def _lowercase ( self : str, UpperCAmelCase__ : int ):
return self.pre_processor(UpperCAmelCase__, return_tensors="pt" ).input_features
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Any] ):
return self.model.generate(inputs=UpperCAmelCase__ )
def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[int] ):
return self.pre_processor.batch_decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ )[0]
| 17 | 1 |
"""simple docstring"""
import argparse
import pytorch_lightning as pl
import torch
from torch import nn
from transformers import LongformerForQuestionAnswering, LongformerModel
class _lowerCAmelCase ( pl.LightningModule ):
"""simple docstring"""
def __init__( self : Optional[Any], UpperCAmelCase__ : str ):
super().__init__()
__lowercase = model
__lowercase = 2
__lowercase = nn.Linear(self.model.config.hidden_size, self.num_labels )
def _lowercase ( self : Optional[int] ):
pass
def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str, UpperCamelCase_ : str) -> str:
'''simple docstring'''
__lowercase = LongformerModel.from_pretrained(UpperCamelCase_)
__lowercase = LightningModel(UpperCamelCase_)
__lowercase = torch.load(UpperCamelCase_, map_location=torch.device("cpu"))
lightning_model.load_state_dict(ckpt["state_dict"])
# init longformer question answering model
__lowercase = LongformerForQuestionAnswering.from_pretrained(UpperCamelCase_)
# transfer weights
longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict())
longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict())
longformer_for_qa.eval()
# save model
longformer_for_qa.save_pretrained(UpperCamelCase_)
print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""")
if __name__ == "__main__":
_a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--longformer_model',
default=None,
type=str,
required=True,
help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.',
)
parser.add_argument(
'--longformer_question_answering_ckpt_path',
default=None,
type=str,
required=True,
help='Path the official PyTorch Lightning Checkpoint.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
_a = parser.parse_args()
convert_longformer_qa_checkpoint_to_pytorch(
args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path
)
| 17 |
"""simple docstring"""
import inspect
from typing import Optional, Union
import numpy as np
import PIL
import torch
from torch.nn import functional as F
from torchvision import transforms
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
DPMSolverMultistepScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.utils import (
PIL_INTERPOLATION,
randn_tensor,
)
def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str]) -> Optional[int]:
'''simple docstring'''
if isinstance(UpperCamelCase_, torch.Tensor):
return image
elif isinstance(UpperCamelCase_, PIL.Image.Image):
__lowercase = [image]
if isinstance(image[0], PIL.Image.Image):
__lowercase = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image]
__lowercase = np.concatenate(UpperCamelCase_, axis=0)
__lowercase = np.array(UpperCamelCase_).astype(np.floataa) / 255.0
__lowercase = image.transpose(0, 3, 1, 2)
__lowercase = 2.0 * image - 1.0
__lowercase = torch.from_numpy(UpperCamelCase_)
elif isinstance(image[0], torch.Tensor):
__lowercase = torch.cat(UpperCamelCase_, dim=0)
return image
def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : str, UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[Any]=0.9_995) -> int:
'''simple docstring'''
if not isinstance(UpperCamelCase_, np.ndarray):
__lowercase = True
__lowercase = va.device
__lowercase = va.cpu().numpy()
__lowercase = va.cpu().numpy()
__lowercase = np.sum(va * va / (np.linalg.norm(UpperCamelCase_) * np.linalg.norm(UpperCamelCase_)))
if np.abs(UpperCamelCase_) > DOT_THRESHOLD:
__lowercase = (1 - t) * va + t * va
else:
__lowercase = np.arccos(UpperCamelCase_)
__lowercase = np.sin(UpperCamelCase_)
__lowercase = theta_a * t
__lowercase = np.sin(UpperCamelCase_)
__lowercase = np.sin(theta_a - theta_t) / sin_theta_a
__lowercase = sin_theta_t / sin_theta_a
__lowercase = sa * va + sa * va
if inputs_are_torch:
__lowercase = torch.from_numpy(UpperCamelCase_).to(UpperCamelCase_)
return va
def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Union[str, Any]) -> int:
'''simple docstring'''
__lowercase = F.normalize(UpperCamelCase_, dim=-1)
__lowercase = F.normalize(UpperCamelCase_, dim=-1)
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)
def _A ( UpperCamelCase_ : Optional[int], UpperCamelCase_ : str) -> Optional[int]:
'''simple docstring'''
for param in model.parameters():
__lowercase = value
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
def __init__( self : Dict, UpperCAmelCase__ : AutoencoderKL, UpperCAmelCase__ : CLIPTextModel, UpperCAmelCase__ : CLIPModel, UpperCAmelCase__ : CLIPTokenizer, UpperCAmelCase__ : UNetaDConditionModel, UpperCAmelCase__ : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler], UpperCAmelCase__ : CLIPFeatureExtractor, UpperCAmelCase__ : Union[str, Any]=None, UpperCAmelCase__ : List[str]=None, UpperCAmelCase__ : Any=None, ):
super().__init__()
self.register_modules(
vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, clip_model=UpperCAmelCase__, tokenizer=UpperCAmelCase__, unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, feature_extractor=UpperCAmelCase__, coca_model=UpperCAmelCase__, coca_tokenizer=UpperCAmelCase__, coca_transform=UpperCAmelCase__, )
__lowercase = (
feature_extractor.size
if isinstance(feature_extractor.size, UpperCAmelCase__ )
else feature_extractor.size["shortest_edge"]
)
__lowercase = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std )
set_requires_grad(self.text_encoder, UpperCAmelCase__ )
set_requires_grad(self.clip_model, UpperCAmelCase__ )
def _lowercase ( self : Tuple, UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ):
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
__lowercase = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(UpperCAmelCase__ )
def _lowercase ( self : int ):
self.enable_attention_slicing(UpperCAmelCase__ )
def _lowercase ( self : str ):
set_requires_grad(self.vae, UpperCAmelCase__ )
def _lowercase ( self : Any ):
set_requires_grad(self.vae, UpperCAmelCase__ )
def _lowercase ( self : Union[str, Any] ):
set_requires_grad(self.unet, UpperCAmelCase__ )
def _lowercase ( self : Any ):
set_requires_grad(self.unet, UpperCAmelCase__ )
def _lowercase ( self : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : Optional[Any] ):
# get the original timestep using init_timestep
__lowercase = min(int(num_inference_steps * strength ), UpperCAmelCase__ )
__lowercase = max(num_inference_steps - init_timestep, 0 )
__lowercase = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def _lowercase ( self : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : int=None ):
if not isinstance(UpperCAmelCase__, torch.Tensor ):
raise ValueError(F"""`image` has to be of type `torch.Tensor` but is {type(UpperCAmelCase__ )}""" )
__lowercase = image.to(device=UpperCAmelCase__, dtype=UpperCAmelCase__ )
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
__lowercase = [
self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(UpperCAmelCase__ )
]
__lowercase = torch.cat(UpperCAmelCase__, dim=0 )
else:
__lowercase = self.vae.encode(UpperCAmelCase__ ).latent_dist.sample(UpperCAmelCase__ )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
__lowercase = 0.18_215 * init_latents
__lowercase = init_latents.repeat_interleave(UpperCAmelCase__, dim=0 )
__lowercase = randn_tensor(init_latents.shape, generator=UpperCAmelCase__, device=UpperCAmelCase__, dtype=UpperCAmelCase__ )
# get latents
__lowercase = self.scheduler.add_noise(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = init_latents
return latents
def _lowercase ( self : Optional[int], UpperCAmelCase__ : Dict ):
__lowercase = self.coca_transform(UpperCAmelCase__ ).unsqueeze(0 )
with torch.no_grad(), torch.cuda.amp.autocast():
__lowercase = self.coca_model.generate(transformed_image.to(device=self.device, dtype=self.coca_model.dtype ) )
__lowercase = self.coca_tokenizer.decode(generated[0].cpu().numpy() )
return generated.split("<end_of_text>" )[0].replace("<start_of_text>", "" ).rstrip(" .," )
def _lowercase ( self : Tuple, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Tuple ):
__lowercase = self.feature_extractor.preprocess(UpperCAmelCase__ )
__lowercase = torch.from_numpy(clip_image_input["pixel_values"][0] ).unsqueeze(0 ).to(self.device ).half()
__lowercase = self.clip_model.get_image_features(UpperCAmelCase__ )
__lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=UpperCAmelCase__ )
__lowercase = image_embeddings_clip.repeat_interleave(UpperCAmelCase__, dim=0 )
return image_embeddings_clip
@torch.enable_grad()
def _lowercase ( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[int], ):
__lowercase = latents.detach().requires_grad_()
__lowercase = self.scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ )
# predict the noise residual
__lowercase = self.unet(UpperCAmelCase__, UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__ ).sample
if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ):
__lowercase = self.scheduler.alphas_cumprod[timestep]
__lowercase = 1 - alpha_prod_t
# compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
__lowercase = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5
__lowercase = torch.sqrt(UpperCAmelCase__ )
__lowercase = pred_original_sample * (fac) + latents * (1 - fac)
elif isinstance(self.scheduler, UpperCAmelCase__ ):
__lowercase = self.scheduler.sigmas[index]
__lowercase = latents - sigma * noise_pred
else:
raise ValueError(F"""scheduler type {type(self.scheduler )} not supported""" )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
__lowercase = 1 / 0.18_215 * sample
__lowercase = self.vae.decode(UpperCAmelCase__ ).sample
__lowercase = (image / 2 + 0.5).clamp(0, 1 )
__lowercase = transforms.Resize(self.feature_extractor_size )(UpperCAmelCase__ )
__lowercase = self.normalize(UpperCAmelCase__ ).to(latents.dtype )
__lowercase = self.clip_model.get_image_features(UpperCAmelCase__ )
__lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=UpperCAmelCase__ )
__lowercase = spherical_dist_loss(UpperCAmelCase__, UpperCAmelCase__ ).mean() * clip_guidance_scale
__lowercase = -torch.autograd.grad(UpperCAmelCase__, UpperCAmelCase__ )[0]
if isinstance(self.scheduler, UpperCAmelCase__ ):
__lowercase = latents.detach() + grads * (sigma**2)
__lowercase = noise_pred_original
else:
__lowercase = noise_pred_original - torch.sqrt(UpperCAmelCase__ ) * grads
return noise_pred, latents
@torch.no_grad()
def __call__( self : str, UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image], UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image], UpperCAmelCase__ : Optional[str] = None, UpperCAmelCase__ : Optional[str] = None, UpperCAmelCase__ : Optional[int] = 5_1_2, UpperCAmelCase__ : Optional[int] = 5_1_2, UpperCAmelCase__ : float = 0.6, UpperCAmelCase__ : Optional[int] = 5_0, UpperCAmelCase__ : Optional[float] = 7.5, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[float] = 1_0_0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : float = 0.8, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, ):
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and len(UpperCAmelCase__ ) != batch_size:
raise ValueError(F"""You have passed {batch_size} batch_size, but only {len(UpperCAmelCase__ )} generators.""" )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" )
if isinstance(UpperCAmelCase__, torch.Generator ) and batch_size > 1:
__lowercase = [generator] + [None] * (batch_size - 1)
__lowercase = [
("model", self.coca_model is None),
("tokenizer", self.coca_tokenizer is None),
("transform", self.coca_transform is None),
]
__lowercase = [x[0] for x in coca_is_none if x[1]]
__lowercase = ", ".join(UpperCAmelCase__ )
# generate prompts with coca model if prompt is None
if content_prompt is None:
if len(UpperCAmelCase__ ):
raise ValueError(
F"""Content prompt is None and CoCa [{coca_is_none_str}] is None."""
F"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" )
__lowercase = self.get_image_description(UpperCAmelCase__ )
if style_prompt is None:
if len(UpperCAmelCase__ ):
raise ValueError(
F"""Style prompt is None and CoCa [{coca_is_none_str}] is None."""
F""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" )
__lowercase = self.get_image_description(UpperCAmelCase__ )
# get prompt text embeddings for content and style
__lowercase = self.tokenizer(
UpperCAmelCase__, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=UpperCAmelCase__, return_tensors="pt", )
__lowercase = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0]
__lowercase = self.tokenizer(
UpperCAmelCase__, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=UpperCAmelCase__, return_tensors="pt", )
__lowercase = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0]
__lowercase = slerp(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
# duplicate text embeddings for each generation per prompt
__lowercase = text_embeddings.repeat_interleave(UpperCAmelCase__, dim=0 )
# set timesteps
__lowercase = "offset" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() )
__lowercase = {}
if accepts_offset:
__lowercase = 1
self.scheduler.set_timesteps(UpperCAmelCase__, **UpperCAmelCase__ )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
self.scheduler.timesteps.to(self.device )
__lowercase ,__lowercase = self.get_timesteps(UpperCAmelCase__, UpperCAmelCase__, self.device )
__lowercase = timesteps[:1].repeat(UpperCAmelCase__ )
# Preprocess image
__lowercase = preprocess(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = self.prepare_latents(
UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, text_embeddings.dtype, self.device, UpperCAmelCase__ )
__lowercase = preprocess(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = self.prepare_latents(
UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, text_embeddings.dtype, self.device, UpperCAmelCase__ )
__lowercase = slerp(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
if clip_guidance_scale > 0:
__lowercase = self.get_clip_image_embeddings(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = self.get_clip_image_embeddings(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = slerp(
UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
__lowercase = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
__lowercase = content_text_input.input_ids.shape[-1]
__lowercase = self.tokenizer([""], padding="max_length", max_length=UpperCAmelCase__, return_tensors="pt" )
__lowercase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt
__lowercase = uncond_embeddings.repeat_interleave(UpperCAmelCase__, dim=0 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
__lowercase = torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
__lowercase = (batch_size, self.unet.config.in_channels, height // 8, width // 8)
__lowercase = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not work reproducibly on mps
__lowercase = torch.randn(UpperCAmelCase__, generator=UpperCAmelCase__, device="cpu", dtype=UpperCAmelCase__ ).to(
self.device )
else:
__lowercase = torch.randn(UpperCAmelCase__, generator=UpperCAmelCase__, device=self.device, dtype=UpperCAmelCase__ )
else:
if latents.shape != latents_shape:
raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" )
__lowercase = latents.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
__lowercase = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
__lowercase = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
__lowercase = {}
if accepts_eta:
__lowercase = eta
# check if the scheduler accepts generator
__lowercase = "generator" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
if accepts_generator:
__lowercase = generator
with self.progress_bar(total=UpperCAmelCase__ ):
for i, t in enumerate(UpperCAmelCase__ ):
# expand the latents if we are doing classifier free guidance
__lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
__lowercase = self.scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ )
# predict the noise residual
__lowercase = self.unet(UpperCAmelCase__, UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__ ).sample
# perform classifier free guidance
if do_classifier_free_guidance:
__lowercase ,__lowercase = noise_pred.chunk(2 )
__lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# perform clip guidance
if clip_guidance_scale > 0:
__lowercase = (
text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings
)
__lowercase ,__lowercase = self.cond_fn(
UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, )
# compute the previous noisy sample x_t -> x_t-1
__lowercase = self.scheduler.step(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, **UpperCAmelCase__ ).prev_sample
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
__lowercase = 1 / 0.18_215 * latents
__lowercase = self.vae.decode(UpperCAmelCase__ ).sample
__lowercase = (image / 2 + 0.5).clamp(0, 1 )
__lowercase = image.cpu().permute(0, 2, 3, 1 ).numpy()
if output_type == "pil":
__lowercase = self.numpy_to_pil(UpperCAmelCase__ )
if not return_dict:
return (image, None)
return StableDiffusionPipelineOutput(images=UpperCAmelCase__, nsfw_content_detected=UpperCAmelCase__ )
| 17 | 1 |
"""simple docstring"""
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import platform
import numpy as np
import psutil
import torch
from accelerate import __version__ as version
from accelerate.commands.config import default_config_file, load_config_from_file
from ..utils import is_npu_available, is_xpu_available
def _A ( UpperCamelCase_ : Tuple=None) -> Dict:
'''simple docstring'''
if subparsers is not None:
__lowercase = subparsers.add_parser("env")
else:
__lowercase = argparse.ArgumentParser("Accelerate env command")
parser.add_argument(
"--config_file", default=UpperCamelCase_, help="The config file to use for the default values in the launching script.")
if subparsers is not None:
parser.set_defaults(func=UpperCamelCase_)
return parser
def _A ( UpperCamelCase_ : Union[str, Any]) -> Tuple:
'''simple docstring'''
__lowercase = torch.__version__
__lowercase = torch.cuda.is_available()
__lowercase = is_xpu_available()
__lowercase = is_npu_available()
__lowercase = "Not found"
# Get the default from the config file.
if args.config_file is not None or os.path.isfile(UpperCamelCase_):
__lowercase = load_config_from_file(args.config_file).to_dict()
__lowercase = {
"`Accelerate` version": version,
"Platform": platform.platform(),
"Python version": platform.python_version(),
"Numpy version": np.__version__,
"PyTorch version (GPU?)": F"""{pt_version} ({pt_cuda_available})""",
"PyTorch XPU available": str(UpperCamelCase_),
"PyTorch NPU available": str(UpperCamelCase_),
"System RAM": F"""{psutil.virtual_memory().total / 1024 ** 3:.2f} GB""",
}
if pt_cuda_available:
__lowercase = torch.cuda.get_device_name()
print("\nCopy-and-paste the text below in your GitHub issue\n")
print("\n".join([F"""- {prop}: {val}""" for prop, val in info.items()]))
print("- `Accelerate` default config:" if args.config_file is None else "- `Accelerate` config passed:")
__lowercase = (
"\n".join([F"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()])
if isinstance(UpperCamelCase_, UpperCamelCase_)
else F"""\t{accelerate_config}"""
)
print(UpperCamelCase_)
__lowercase = accelerate_config
return info
def _A ( ) -> int:
'''simple docstring'''
__lowercase = env_command_parser()
__lowercase = parser.parse_args()
env_command(UpperCamelCase_)
return 0
if __name__ == "__main__":
raise SystemExit(main())
| 17 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class _lowerCAmelCase :
"""simple docstring"""
__UpperCAmelCase : Tuple = XGLMConfig
__UpperCAmelCase : Optional[Any] = {}
__UpperCAmelCase : Union[str, Any] = "gelu"
def __init__( self : Optional[int], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int]=1_4, UpperCAmelCase__ : str=7, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[Any]=True, UpperCAmelCase__ : int=True, UpperCAmelCase__ : List[str]=9_9, UpperCAmelCase__ : Union[str, Any]=3_2, UpperCAmelCase__ : Union[str, Any]=2, UpperCAmelCase__ : Union[str, Any]=4, UpperCAmelCase__ : Tuple=3_7, UpperCAmelCase__ : List[Any]="gelu", UpperCAmelCase__ : List[str]=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Tuple=5_1_2, UpperCAmelCase__ : Optional[Any]=0.02, ):
__lowercase = parent
__lowercase = batch_size
__lowercase = seq_length
__lowercase = is_training
__lowercase = use_input_mask
__lowercase = use_labels
__lowercase = vocab_size
__lowercase = d_model
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = ffn_dim
__lowercase = activation_function
__lowercase = activation_dropout
__lowercase = attention_dropout
__lowercase = max_position_embeddings
__lowercase = initializer_range
__lowercase = None
__lowercase = 0
__lowercase = 2
__lowercase = 1
def _lowercase ( self : Union[str, Any] ):
return XGLMConfig.from_pretrained("facebook/xglm-564M" )
def _lowercase ( self : Tuple ):
__lowercase = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length], self.vocab_size ), clip_value_min=0, clip_value_max=3 )
__lowercase = None
if self.use_input_mask:
__lowercase = random_attention_mask([self.batch_size, self.seq_length] )
__lowercase = self.get_config()
__lowercase = floats_tensor([self.num_hidden_layers, self.num_attention_heads], 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def _lowercase ( self : List[Any] ):
return XGLMConfig(
vocab_size=self.vocab_size, d_model=self.hidden_size, num_layers=self.num_hidden_layers, attention_heads=self.num_attention_heads, ffn_dim=self.ffn_dim, activation_function=self.activation_function, activation_dropout=self.activation_dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, use_cache=UpperCAmelCase__, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, return_dict=UpperCAmelCase__, )
def _lowercase ( self : Dict ):
__lowercase = self.prepare_config_and_inputs()
(
(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,
) = config_and_inputs
__lowercase = {
"input_ids": input_ids,
"head_mask": head_mask,
}
return config, inputs_dict
@require_tf
class _lowerCAmelCase ( lowercase ,lowercase ,unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
__UpperCAmelCase : List[str] = (TFXGLMForCausalLM,) if is_tf_available() else ()
__UpperCAmelCase : Any = (
{"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {}
)
__UpperCAmelCase : Optional[Any] = False
__UpperCAmelCase : List[str] = False
__UpperCAmelCase : int = False
def _lowercase ( self : Optional[Any] ):
__lowercase = TFXGLMModelTester(self )
__lowercase = ConfigTester(self, config_class=UpperCAmelCase__, n_embd=3_7 )
def _lowercase ( self : Any ):
self.config_tester.run_common_tests()
@slow
def _lowercase ( self : List[str] ):
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowercase = TFXGLMModel.from_pretrained(UpperCAmelCase__ )
self.assertIsNotNone(UpperCAmelCase__ )
@unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." )
def _lowercase ( self : int ):
super().test_resize_token_embeddings()
@require_tf
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[int]=True ):
__lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
__lowercase = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]], dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
__lowercase = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1]
# fmt: on
__lowercase = model.generate(UpperCAmelCase__, do_sample=UpperCAmelCase__, num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist(), UpperCAmelCase__ )
@slow
def _lowercase ( self : List[Any] ):
__lowercase = XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
__lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
tf.random.set_seed(0 )
__lowercase = tokenizer("Today is a nice day and", return_tensors="tf" )
__lowercase = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(":/CPU:0" ):
__lowercase = model.generate(UpperCAmelCase__, do_sample=UpperCAmelCase__, seed=[7, 0] )
__lowercase = tokenizer.decode(output_ids[0], skip_special_tokens=UpperCAmelCase__ )
__lowercase = (
"Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due"
)
self.assertEqual(UpperCAmelCase__, UpperCAmelCase__ )
@slow
def _lowercase ( self : Dict ):
__lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
__lowercase = XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
__lowercase = "left"
# use different length sentences to test batching
__lowercase = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When",
"Hello, my dog is a little",
]
__lowercase = tokenizer(UpperCAmelCase__, return_tensors="tf", padding=UpperCAmelCase__ )
__lowercase = inputs["input_ids"]
__lowercase = model.generate(input_ids=UpperCAmelCase__, attention_mask=inputs["attention_mask"], max_new_tokens=1_2 )
__lowercase = tokenizer(sentences[0], return_tensors="tf" ).input_ids
__lowercase = model.generate(input_ids=UpperCAmelCase__, max_new_tokens=1_2 )
__lowercase = tokenizer(sentences[1], return_tensors="tf" ).input_ids
__lowercase = model.generate(input_ids=UpperCAmelCase__, max_new_tokens=1_2 )
__lowercase = tokenizer.batch_decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ )
__lowercase = tokenizer.decode(output_non_padded[0], skip_special_tokens=UpperCAmelCase__ )
__lowercase = tokenizer.decode(output_padded[0], skip_special_tokens=UpperCAmelCase__ )
__lowercase = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When left padding is applied, the sequence will be "
"a single",
"Hello, my dog is a little bit of a shy one, but he is very friendly",
]
self.assertListEqual(UpperCAmelCase__, UpperCAmelCase__ )
self.assertListEqual(UpperCAmelCase__, [non_padded_sentence, padded_sentence] )
| 17 | 1 |
"""simple docstring"""
def _A ( UpperCamelCase_ : float, UpperCamelCase_ : float) -> float:
'''simple docstring'''
if density <= 0:
raise ValueError("Impossible fluid density")
if bulk_modulus <= 0:
raise ValueError("Impossible bulk modulus")
return (bulk_modulus / density) ** 0.5
if __name__ == "__main__":
import doctest
doctest.testmod()
| 17 |
"""simple docstring"""
import time
from contextlib import contextmanager
from pathlib import Path
import pytest
import requests
from huggingface_hub.hf_api import HfApi, HfFolder
_a = '__DUMMY_TRANSFORMERS_USER__'
_a = 'Dummy User'
_a = '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'
_a = 'https://hub-ci.huggingface.co'
_a = CI_HUB_ENDPOINT + '/datasets/{repo_id}/resolve/{revision}/{path}'
_a = CI_HUB_ENDPOINT + '/{repo_id}/resolve/{revision}/{filename}'
_a = Path('~/.huggingface/hub_ci_token').expanduser()
@pytest.fixture
def _A ( UpperCamelCase_ : List[Any]) -> Tuple:
'''simple docstring'''
monkeypatch.setattr(
"huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE", UpperCamelCase_)
@pytest.fixture
def _A ( UpperCamelCase_ : int) -> List[Any]:
'''simple docstring'''
monkeypatch.setattr("datasets.config.HF_ENDPOINT", UpperCamelCase_)
monkeypatch.setattr("datasets.config.HUB_DATASETS_URL", UpperCamelCase_)
@pytest.fixture
def _A ( UpperCamelCase_ : str) -> Dict:
'''simple docstring'''
monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token", UpperCamelCase_)
@pytest.fixture
def _A ( UpperCamelCase_ : Optional[Any], UpperCamelCase_ : List[Any]) -> List[str]:
'''simple docstring'''
HfFolder.save_token(UpperCamelCase_)
yield
HfFolder.delete_token()
@pytest.fixture(scope="session")
def _A ( ) -> List[Any]:
'''simple docstring'''
return HfApi(endpoint=UpperCamelCase_)
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : HfApi) -> List[Any]:
'''simple docstring'''
__lowercase = HfFolder.get_token()
HfFolder.save_token(UpperCamelCase_)
yield CI_HUB_USER_TOKEN
if previous_token is not None:
HfFolder.save_token(UpperCamelCase_)
@pytest.fixture
def _A ( UpperCamelCase_ : Dict) -> int:
'''simple docstring'''
def _cleanup_repo(UpperCamelCase_ : Optional[int]):
hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset")
return _cleanup_repo
@pytest.fixture
def _A ( UpperCamelCase_ : str) -> Any:
'''simple docstring'''
@contextmanager
def _temporary_repo(UpperCamelCase_ : Any):
try:
yield repo_id
finally:
cleanup_repo(UpperCamelCase_)
return _temporary_repo
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : str, UpperCamelCase_ : Optional[int]) -> List[Any]:
'''simple docstring'''
__lowercase = F"""repo_txt_data-{int(time.time() * 10E3)}"""
__lowercase = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_)
hf_api.upload_file(
token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data/text_data.txt", repo_id=UpperCamelCase_, repo_type="dataset", )
yield repo_id
try:
hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset")
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : Any, UpperCamelCase_ : Dict) -> Optional[int]:
'''simple docstring'''
return hf_private_dataset_repo_txt_data_
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : int, UpperCamelCase_ : Optional[int]) -> int:
'''simple docstring'''
__lowercase = F"""repo_zipped_txt_data-{int(time.time() * 10E3)}"""
__lowercase = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_)
hf_api.upload_file(
token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data.zip", repo_id=UpperCamelCase_, repo_type="dataset", )
yield repo_id
try:
hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset")
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Dict, UpperCamelCase_ : Any) -> int:
'''simple docstring'''
return hf_private_dataset_repo_zipped_txt_data_
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : List[str], UpperCamelCase_ : List[str]) -> List[Any]:
'''simple docstring'''
__lowercase = F"""repo_zipped_img_data-{int(time.time() * 10E3)}"""
__lowercase = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_)
hf_api.upload_file(
token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data.zip", repo_id=UpperCamelCase_, repo_type="dataset", )
yield repo_id
try:
hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset")
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str], UpperCamelCase_ : List[str]) -> str:
'''simple docstring'''
return hf_private_dataset_repo_zipped_img_data_
| 17 | 1 |
"""simple docstring"""
from abc import ABC, abstractmethod
from typing import Optional, Union
from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit
from ..utils.typing import NestedDataStructureLike, PathLike
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
def __init__( self : Optional[int], UpperCAmelCase__ : Optional[NestedDataStructureLike[PathLike]] = None, UpperCAmelCase__ : Optional[NamedSplit] = None, UpperCAmelCase__ : Optional[Features] = None, UpperCAmelCase__ : str = None, UpperCAmelCase__ : bool = False, UpperCAmelCase__ : bool = False, UpperCAmelCase__ : Optional[int] = None, **UpperCAmelCase__ : List[Any], ):
__lowercase = path_or_paths
__lowercase = split if split or isinstance(UpperCAmelCase__, UpperCAmelCase__ ) else "train"
__lowercase = features
__lowercase = cache_dir
__lowercase = keep_in_memory
__lowercase = streaming
__lowercase = num_proc
__lowercase = kwargs
@abstractmethod
def _lowercase ( self : Optional[Any] ):
pass
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
def __init__( self : List[str], UpperCAmelCase__ : Optional[Features] = None, UpperCAmelCase__ : str = None, UpperCAmelCase__ : bool = False, UpperCAmelCase__ : bool = False, UpperCAmelCase__ : Optional[int] = None, **UpperCAmelCase__ : str, ):
__lowercase = features
__lowercase = cache_dir
__lowercase = keep_in_memory
__lowercase = streaming
__lowercase = num_proc
__lowercase = kwargs
@abstractmethod
def _lowercase ( self : Any ):
pass
| 17 |
"""simple docstring"""
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_a = logging.get_logger(__name__)
_a = {
'huggingface/time-series-transformer-tourism-monthly': (
'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json'
),
# See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer
}
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
__UpperCAmelCase : int = "time_series_transformer"
__UpperCAmelCase : Any = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
"num_hidden_layers": "encoder_layers",
}
def __init__( self : int, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : str = "student_t", UpperCAmelCase__ : str = "nll", UpperCAmelCase__ : int = 1, UpperCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7], UpperCAmelCase__ : Optional[Union[str, bool]] = "mean", UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : int = 3_2, UpperCAmelCase__ : int = 3_2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : str = "gelu", UpperCAmelCase__ : int = 6_4, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : int = 1_0_0, UpperCAmelCase__ : float = 0.02, UpperCAmelCase__ : Any=True, **UpperCAmelCase__ : List[str], ):
# time series specific configuration
__lowercase = prediction_length
__lowercase = context_length or prediction_length
__lowercase = distribution_output
__lowercase = loss
__lowercase = input_size
__lowercase = num_time_features
__lowercase = lags_sequence
__lowercase = scaling
__lowercase = num_dynamic_real_features
__lowercase = num_static_real_features
__lowercase = num_static_categorical_features
if cardinality and num_static_categorical_features > 0:
if len(UpperCAmelCase__ ) != num_static_categorical_features:
raise ValueError(
"The cardinality should be a list of the same length as `num_static_categorical_features`" )
__lowercase = cardinality
else:
__lowercase = [0]
if embedding_dimension and num_static_categorical_features > 0:
if len(UpperCAmelCase__ ) != num_static_categorical_features:
raise ValueError(
"The embedding dimension should be a list of the same length as `num_static_categorical_features`" )
__lowercase = embedding_dimension
else:
__lowercase = [min(5_0, (cat + 1) // 2 ) for cat in self.cardinality]
__lowercase = num_parallel_samples
# Transformer architecture configuration
__lowercase = input_size * len(UpperCAmelCase__ ) + self._number_of_features
__lowercase = d_model
__lowercase = encoder_attention_heads
__lowercase = decoder_attention_heads
__lowercase = encoder_ffn_dim
__lowercase = decoder_ffn_dim
__lowercase = encoder_layers
__lowercase = decoder_layers
__lowercase = dropout
__lowercase = attention_dropout
__lowercase = activation_dropout
__lowercase = encoder_layerdrop
__lowercase = decoder_layerdrop
__lowercase = activation_function
__lowercase = init_std
__lowercase = use_cache
super().__init__(is_encoder_decoder=UpperCAmelCase__, **UpperCAmelCase__ )
@property
def _lowercase ( self : Optional[Any] ):
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 17 | 1 |
"""simple docstring"""
from __future__ import annotations
def _A ( UpperCamelCase_ : list[int]) -> list[int]:
'''simple docstring'''
if len(UpperCamelCase_) == 0:
return array
__lowercase ,__lowercase = min(UpperCamelCase_), max(UpperCamelCase_)
# Compute the variables
__lowercase = _max - _min + 1
__lowercase ,__lowercase = [0] * holes_range, [0] * holes_range
# Make the sorting.
for i in array:
__lowercase = i - _min
__lowercase = i
holes_repeat[index] += 1
# Makes the array back by replacing the numbers.
__lowercase = 0
for i in range(UpperCamelCase_):
while holes_repeat[i] > 0:
__lowercase = holes[i]
index += 1
holes_repeat[i] -= 1
# Returns the sorted array.
return array
if __name__ == "__main__":
import doctest
doctest.testmod()
_a = input('Enter numbers separated by comma:\n')
_a = [int(x) for x in user_input.split(',')]
print(pigeon_sort(unsorted))
| 17 |
"""simple docstring"""
import unittest
from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available
from transformers.pipelines import pipeline
from transformers.pipelines.document_question_answering import apply_tesseract
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_detectrona,
require_pytesseract,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
from transformers.image_utils import load_image
else:
class _lowerCAmelCase :
"""simple docstring"""
@staticmethod
def _lowercase ( *UpperCAmelCase__ : Tuple, **UpperCAmelCase__ : List[Any] ):
pass
def _A ( UpperCamelCase_ : Union[str, Any]) -> Any:
'''simple docstring'''
return None
# This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace,
# so we can expect it to be available.
_a = (
'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png'
)
@is_pipeline_test
@require_torch
@require_vision
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : Tuple = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING
@require_pytesseract
@require_vision
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Optional[Any] ):
__lowercase = pipeline(
"document-question-answering", model=UpperCAmelCase__, tokenizer=UpperCAmelCase__, image_processor=UpperCAmelCase__ )
__lowercase = INVOICE_URL
__lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) )
__lowercase = "What is the placebo?"
__lowercase = [
{
"image": load_image(UpperCAmelCase__ ),
"question": question,
},
{
"image": image,
"question": question,
},
{
"image": image,
"question": question,
"word_boxes": word_boxes,
},
]
return dqa_pipeline, examples
def _lowercase ( self : int, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Any ):
__lowercase = dqa_pipeline(UpperCAmelCase__, top_k=2 )
self.assertEqual(
UpperCAmelCase__, [
[
{"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ ), "start": ANY(UpperCAmelCase__ ), "end": ANY(UpperCAmelCase__ )},
{"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ ), "start": ANY(UpperCAmelCase__ ), "end": ANY(UpperCAmelCase__ )},
]
]
* 3, )
@require_torch
@require_detectrona
@require_pytesseract
def _lowercase ( self : Dict ):
__lowercase = pipeline("document-question-answering", model="hf-internal-testing/tiny-random-layoutlmv2" )
__lowercase = INVOICE_URL
__lowercase = "How many cats are there?"
__lowercase = [
{"score": 0.0_001, "answer": "oy 2312/2019", "start": 3_8, "end": 3_9},
{"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 3_8, "end": 4_0},
]
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), UpperCAmelCase__ )
__lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), UpperCAmelCase__ )
# This image does not detect ANY text in it, meaning layoutlmv2 should fail.
# Empty answer probably
__lowercase = "./tests/fixtures/tests_samples/COCO/000000039769.png"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(UpperCAmelCase__, [] )
# We can optionnally pass directly the words and bounding boxes
__lowercase = "./tests/fixtures/tests_samples/COCO/000000039769.png"
__lowercase = []
__lowercase = []
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, words=UpperCAmelCase__, boxes=UpperCAmelCase__, top_k=2 )
self.assertEqual(UpperCAmelCase__, [] )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def _lowercase ( self : List[str] ):
__lowercase = pipeline(
"document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
[
{"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6},
],
]
* 2, )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def _lowercase ( self : Dict ):
__lowercase = pipeline(
"document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", max_seq_len=5_0, )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3},
{"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3},
{"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
[
{"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3},
{"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6},
]
]
* 2, )
@slow
@require_torch
@require_pytesseract
@require_vision
def _lowercase ( self : Optional[Any] ):
__lowercase = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=UpperCAmelCase__ )
__lowercase = pipeline(
"document-question-answering", model="impira/layoutlm-document-qa", tokenizer=UpperCAmelCase__, revision="3dc6de3", )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3},
], )
__lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3},
], )
__lowercase = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
[
{"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3},
]
]
* 2, )
__lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) )
# This model should also work if `image` is set to None
__lowercase = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3},
], )
@slow
@require_torch
@require_pytesseract
@require_vision
def _lowercase ( self : Union[str, Any] ):
__lowercase = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=UpperCAmelCase__ )
__lowercase = pipeline(
"document-question-answering", model="impira/layoutlm-document-qa", tokenizer=UpperCAmelCase__, revision="3dc6de3", max_seq_len=5_0, )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
[
{"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6},
]
]
* 2, )
__lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) )
# This model should also work if `image` is set to None
__lowercase = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
@slow
@require_torch
def _lowercase ( self : Dict ):
__lowercase = pipeline(
"document-question-answering", model="naver-clova-ix/donut-base-finetuned-docvqa", tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ), feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa", )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), [{"answer": "us-001"}] )
@require_tf
@unittest.skip("Document question answering not implemented in TF" )
def _lowercase ( self : List[Any] ):
pass
| 17 | 1 |
"""simple docstring"""
from typing import Any, Callable, Dict, List, Optional, Union
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
_a = 'CompVis/stable-diffusion-v1-1'
_a = 'CompVis/stable-diffusion-v1-2'
_a = 'CompVis/stable-diffusion-v1-3'
_a = 'CompVis/stable-diffusion-v1-4'
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
def __init__( self : Dict, UpperCAmelCase__ : AutoencoderKL, UpperCAmelCase__ : CLIPTextModel, UpperCAmelCase__ : CLIPTokenizer, UpperCAmelCase__ : UNetaDConditionModel, UpperCAmelCase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], UpperCAmelCase__ : StableDiffusionSafetyChecker, UpperCAmelCase__ : CLIPImageProcessor, UpperCAmelCase__ : bool = True, ):
super()._init_()
__lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ )
__lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ )
__lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ )
__lowercase = StableDiffusionPipeline(
vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, tokenizer=UpperCAmelCase__, unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, safety_checker=UpperCAmelCase__, feature_extractor=UpperCAmelCase__, requires_safety_checker=UpperCAmelCase__, )
self.register_modules(pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea )
@property
def _lowercase ( self : List[str] ):
return {k: getattr(self, UpperCAmelCase__ ) for k in self.config.keys() if not k.startswith("_" )}
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ):
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
__lowercase = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(UpperCAmelCase__ )
def _lowercase ( self : List[str] ):
self.enable_attention_slicing(UpperCAmelCase__ )
@torch.no_grad()
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Tuple, ):
return self.pipea(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
@torch.no_grad()
def _lowercase ( self : Tuple, UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : str, ):
return self.pipea(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
@torch.no_grad()
def _lowercase ( self : str, UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Any, ):
return self.pipea(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
@torch.no_grad()
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Optional[int], ):
return self.pipea(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
@torch.no_grad()
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : str, ):
__lowercase = "cuda" if torch.cuda.is_available() else "cpu"
self.to(UpperCAmelCase__ )
# Checks if the height and width are divisible by 8 or not
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" )
# Get first result from Stable Diffusion Checkpoint v1.1
__lowercase = self.textaimg_sda_a(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
# Get first result from Stable Diffusion Checkpoint v1.2
__lowercase = self.textaimg_sda_a(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
# Get first result from Stable Diffusion Checkpoint v1.3
__lowercase = self.textaimg_sda_a(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
# Get first result from Stable Diffusion Checkpoint v1.4
__lowercase = self.textaimg_sda_a(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
# Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result
return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
| 17 |
"""simple docstring"""
import argparse
import json
import os
import re
import shutil
import torch
from transformers import BioGptConfig, BioGptForCausalLM
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
from transformers.utils import WEIGHTS_NAME, logging
logging.set_verbosity_warning()
_a = 2
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Dict, *, # begin keyword-only arguments
UpperCAmelCase__ : str="<s>", UpperCAmelCase__ : Tuple="<pad>", UpperCAmelCase__ : str="</s>", UpperCAmelCase__ : Optional[Any]="<unk>", UpperCAmelCase__ : List[Any]=None, ):
__lowercase ,__lowercase ,__lowercase ,__lowercase = bos, unk, pad, eos
__lowercase = []
__lowercase = []
__lowercase = {}
__lowercase = self.add_symbol(UpperCAmelCase__ )
__lowercase = self.add_symbol(UpperCAmelCase__ )
__lowercase = self.add_symbol(UpperCAmelCase__ )
__lowercase = self.add_symbol(UpperCAmelCase__ )
if extra_special_symbols:
for s in extra_special_symbols:
self.add_symbol(UpperCAmelCase__ )
__lowercase = len(self.symbols )
def __eq__( self : List[str], UpperCAmelCase__ : Dict ):
return self.indices == other.indices
def __getitem__( self : Optional[int], UpperCAmelCase__ : List[str] ):
if idx < len(self.symbols ):
return self.symbols[idx]
return self.unk_word
def __len__( self : str ):
return len(self.symbols )
def __contains__( self : Any, UpperCAmelCase__ : Optional[Any] ):
return sym in self.indices
@classmethod
def _lowercase ( cls : List[Any], UpperCAmelCase__ : Optional[Any] ):
__lowercase = cls()
d.add_from_file(UpperCAmelCase__ )
return d
def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[Any]=1, UpperCAmelCase__ : str=False ):
if word in self.indices and not overwrite:
__lowercase = self.indices[word]
__lowercase = self.count[idx] + n
return idx
else:
__lowercase = len(self.symbols )
__lowercase = idx
self.symbols.append(UpperCAmelCase__ )
self.count.append(UpperCAmelCase__ )
return idx
def _lowercase ( self : Any, UpperCAmelCase__ : str ):
return 0
def _lowercase ( self : Tuple, UpperCAmelCase__ : List[Any] ):
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
try:
with open(UpperCAmelCase__, "r", encoding="utf-8" ) as fd:
self.add_from_file(UpperCAmelCase__ )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception("Incorrect encoding detected in {}, please rebuild the dataset".format(UpperCAmelCase__ ) )
return
__lowercase = f.readlines()
__lowercase = self._load_meta(UpperCAmelCase__ )
for line in lines[indices_start_line:]:
try:
__lowercase ,__lowercase = line.rstrip().rsplit(" ", 1 )
if field == "#fairseq:overwrite":
__lowercase = True
__lowercase ,__lowercase = line.rsplit(" ", 1 )
else:
__lowercase = False
__lowercase = int(UpperCAmelCase__ )
__lowercase = line
if word in self and not overwrite:
raise RuntimeError(
"Duplicate word found when loading Dictionary: '{}'. "
"Duplicate words can overwrite earlier ones by adding the "
"#fairseq:overwrite flag at the end of the corresponding row "
"in the dictionary file. If using the Camembert model, please "
"download an updated copy of the model file.".format(UpperCAmelCase__ ) )
self.add_symbol(UpperCAmelCase__, n=UpperCAmelCase__, overwrite=UpperCAmelCase__ )
except ValueError:
raise ValueError("Incorrect dictionary format, expected '<token> <cnt> [flags]'" )
def _A ( UpperCamelCase_ : int) -> str:
'''simple docstring'''
__lowercase = dict((re.sub(r"@@$", "", UpperCamelCase_), v) if k.endswith("@@") else (re.sub(r"$", "</w>", UpperCamelCase_), v) for k, v in d.items())
__lowercase = "<s> <pad> </s> <unk>".split()
# restore the special tokens
for k in keep_keys:
del da[F"""{k}</w>"""]
__lowercase = d[k] # restore
return da
def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str) -> List[Any]:
'''simple docstring'''
if not os.path.exists(UpperCamelCase_):
raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""")
os.makedirs(UpperCamelCase_, exist_ok=UpperCamelCase_)
print(F"""Writing results to {pytorch_dump_folder_path}""")
# handle various types of models
__lowercase = os.path.join(UpperCamelCase_, "checkpoint.pt")
if not os.path.isfile(UpperCamelCase_):
raise ValueError(F"""path to the file {checkpoint_file} does not exist!""")
__lowercase = torch.load(UpperCamelCase_, map_location="cpu")
__lowercase = chkpt["cfg"]["model"]
# dicts
__lowercase = os.path.join(UpperCamelCase_, "dict.txt")
if not os.path.isfile(UpperCamelCase_):
raise ValueError(F"""path to the file {dict_file} does not exist!""")
__lowercase = Dictionary.load(UpperCamelCase_)
__lowercase = rewrite_dict_keys(src_dict.indices)
__lowercase = len(UpperCamelCase_)
__lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["vocab_file"])
print(F"""Generating {src_vocab_file} of {src_vocab_size} records""")
with open(UpperCamelCase_, "w", encoding="utf-8") as f:
f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_))
# merges_file (bpecodes)
__lowercase = os.path.join(UpperCamelCase_, "bpecodes")
if not os.path.isfile(UpperCamelCase_):
raise ValueError(F"""path to the file {bpecodes_file} does not exist!""")
__lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["merges_file"])
shutil.copyfile(UpperCamelCase_, UpperCamelCase_)
# model config
__lowercase = os.path.join(UpperCamelCase_, "config.json")
__lowercase = {
"activation_dropout": args["activation_dropout"],
"architectures": ["BioGptForCausalLM"],
"attention_probs_dropout_prob": args["attention_dropout"],
"bos_token_id": 0,
"eos_token_id": 2,
"hidden_act": args["activation_fn"],
"hidden_dropout_prob": args["dropout"],
"hidden_size": args["decoder_embed_dim"],
"initializer_range": 0.02,
"intermediate_size": args["decoder_ffn_embed_dim"],
"layer_norm_eps": 1E-12,
"layerdrop": args["decoder_layerdrop"],
"max_position_embeddings": args["max_target_positions"],
"model_type": "biogpt",
"num_attention_heads": args["decoder_attention_heads"],
"num_hidden_layers": args["decoder_layers"],
"pad_token_id": 1,
"scale_embedding": not args["no_scale_embedding"],
"tie_word_embeddings": args["share_decoder_input_output_embed"],
"vocab_size": src_vocab_size,
}
# good hparam defaults to start with
print(F"""Generating {biogpt_model_config_file}""")
with open(UpperCamelCase_, "w", encoding="utf-8") as f:
f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_))
# tokenizer config
__lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_)
__lowercase = {
"bos_token": "<s>",
"eos_token": "</s>",
"model_max_length": 1024,
"pad_token": "<pad>",
"special_tokens_map_file": None,
"tokenizer_class": "BioGptTokenizer",
"unk_token": "<unk>",
}
print(F"""Generating {biogpt_tokenizer_config_file}""")
with open(UpperCamelCase_, "w", encoding="utf-8") as f:
f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_))
# model
__lowercase = chkpt["model"]
# remove unneeded keys
__lowercase = [
"decoder.version",
]
for k in ignore_keys:
model_state_dict.pop(UpperCamelCase_, UpperCamelCase_)
__lowercase = list(model_state_dict.keys())
for layer_name in layer_names:
if layer_name.endswith("output_projection.weight"):
__lowercase = model_state_dict.pop(UpperCamelCase_)
else:
__lowercase = model_state_dict.pop(UpperCamelCase_)
__lowercase = BioGptConfig.from_pretrained(UpperCamelCase_)
__lowercase = BioGptForCausalLM(UpperCamelCase_)
# check that it loads ok
model_new.load_state_dict(UpperCamelCase_)
# save
__lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_)
print(F"""Generating {pytorch_weights_dump_path}""")
torch.save(UpperCamelCase_, UpperCamelCase_)
print("Conversion is done!")
if __name__ == "__main__":
_a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--biogpt_checkpoint_path',
default=None,
type=str,
required=True,
help=(
'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,'
' bpecodes, etc.'
),
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
_a = parser.parse_args()
convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
| 17 | 1 |
"""simple docstring"""
from math import factorial
def _A ( UpperCamelCase_ : int = 100) -> int:
'''simple docstring'''
return sum(int(UpperCamelCase_) for x in str(factorial(UpperCamelCase_)))
if __name__ == "__main__":
print(solution(int(input('Enter the Number: ').strip())))
| 17 |
"""simple docstring"""
from __future__ import annotations
from typing import Any
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Any, UpperCAmelCase__ : int ):
__lowercase = num_of_nodes
__lowercase = []
__lowercase = {}
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : int, UpperCAmelCase__ : int ):
self.m_edges.append([u_node, v_node, weight] )
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : int ):
if self.m_component[u_node] == u_node:
return u_node
return self.find_component(self.m_component[u_node] )
def _lowercase ( self : List[Any], UpperCAmelCase__ : int ):
if self.m_component[u_node] != u_node:
for k in self.m_component:
__lowercase = self.find_component(UpperCAmelCase__ )
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : list[int], UpperCAmelCase__ : int, UpperCAmelCase__ : int ):
if component_size[u_node] <= component_size[v_node]:
__lowercase = v_node
component_size[v_node] += component_size[u_node]
self.set_component(UpperCAmelCase__ )
elif component_size[u_node] >= component_size[v_node]:
__lowercase = self.find_component(UpperCAmelCase__ )
component_size[u_node] += component_size[v_node]
self.set_component(UpperCAmelCase__ )
def _lowercase ( self : Any ):
__lowercase = []
__lowercase = 0
__lowercase = [-1] * self.m_num_of_nodes
# A list of components (initialized to all of the nodes)
for node in range(self.m_num_of_nodes ):
self.m_component.update({node: node} )
component_size.append(1 )
__lowercase = self.m_num_of_nodes
while num_of_components > 1:
for edge in self.m_edges:
__lowercase ,__lowercase ,__lowercase = edge
__lowercase = self.m_component[u]
__lowercase = self.m_component[v]
if u_component != v_component:
for component in (u_component, v_component):
if (
minimum_weight_edge[component] == -1
or minimum_weight_edge[component][2] > w
):
__lowercase = [u, v, w]
for edge in minimum_weight_edge:
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
__lowercase ,__lowercase ,__lowercase = edge
__lowercase = self.m_component[u]
__lowercase = self.m_component[v]
if u_component != v_component:
mst_weight += w
self.union(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" )
num_of_components -= 1
__lowercase = [-1] * self.m_num_of_nodes
print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" )
def _A ( ) -> None:
'''simple docstring'''
if __name__ == "__main__":
import doctest
doctest.testmod()
| 17 | 1 |
"""simple docstring"""
import itertools
import string
from collections.abc import Generator, Iterable
def _A ( UpperCamelCase_ : Iterable[str], UpperCamelCase_ : int) -> Generator[tuple[str, ...], None, None]:
'''simple docstring'''
__lowercase = iter(UpperCamelCase_)
while True:
__lowercase = tuple(itertools.islice(UpperCamelCase_, UpperCamelCase_))
if not chunk:
return
yield chunk
def _A ( UpperCamelCase_ : str) -> str:
'''simple docstring'''
__lowercase = "".join([c.upper() for c in dirty if c in string.ascii_letters])
__lowercase = ""
if len(UpperCamelCase_) < 2:
return dirty
for i in range(len(UpperCamelCase_) - 1):
clean += dirty[i]
if dirty[i] == dirty[i + 1]:
clean += "X"
clean += dirty[-1]
if len(UpperCamelCase_) & 1:
clean += "X"
return clean
def _A ( UpperCamelCase_ : str) -> list[str]:
'''simple docstring'''
__lowercase = "ABCDEFGHIKLMNOPQRSTUVWXYZ"
# we're using a list instead of a '2d' array because it makes the math
# for setting up the table and doing the actual encoding/decoding simpler
__lowercase = []
# copy key chars into the table if they are in `alphabet` ignoring duplicates
for char in key.upper():
if char not in table and char in alphabet:
table.append(UpperCamelCase_)
# fill the rest of the table in with the remaining alphabet chars
for char in alphabet:
if char not in table:
table.append(UpperCamelCase_)
return table
def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str) -> str:
'''simple docstring'''
__lowercase = generate_table(UpperCamelCase_)
__lowercase = prepare_input(UpperCamelCase_)
__lowercase = ""
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for chara, chara in chunker(UpperCamelCase_, 2):
__lowercase ,__lowercase = divmod(table.index(UpperCamelCase_), 5)
__lowercase ,__lowercase = divmod(table.index(UpperCamelCase_), 5)
if rowa == rowa:
ciphertext += table[rowa * 5 + (cola + 1) % 5]
ciphertext += table[rowa * 5 + (cola + 1) % 5]
elif cola == cola:
ciphertext += table[((rowa + 1) % 5) * 5 + cola]
ciphertext += table[((rowa + 1) % 5) * 5 + cola]
else: # rectangle
ciphertext += table[rowa * 5 + cola]
ciphertext += table[rowa * 5 + cola]
return ciphertext
def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str) -> str:
'''simple docstring'''
__lowercase = generate_table(UpperCamelCase_)
__lowercase = ""
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for chara, chara in chunker(UpperCamelCase_, 2):
__lowercase ,__lowercase = divmod(table.index(UpperCamelCase_), 5)
__lowercase ,__lowercase = divmod(table.index(UpperCamelCase_), 5)
if rowa == rowa:
plaintext += table[rowa * 5 + (cola - 1) % 5]
plaintext += table[rowa * 5 + (cola - 1) % 5]
elif cola == cola:
plaintext += table[((rowa - 1) % 5) * 5 + cola]
plaintext += table[((rowa - 1) % 5) * 5 + cola]
else: # rectangle
plaintext += table[rowa * 5 + cola]
plaintext += table[rowa * 5 + cola]
return plaintext
| 17 |
"""simple docstring"""
from math import sqrt
def _A ( UpperCamelCase_ : int) -> int:
'''simple docstring'''
__lowercase = 0
for i in range(1, int(sqrt(UpperCamelCase_) + 1)):
if n % i == 0 and i != sqrt(UpperCamelCase_):
total += i + n // i
elif i == sqrt(UpperCamelCase_):
total += i
return total - n
def _A ( UpperCamelCase_ : int = 10000) -> int:
'''simple docstring'''
__lowercase = sum(
i
for i in range(1, UpperCamelCase_)
if sum_of_divisors(sum_of_divisors(UpperCamelCase_)) == i and sum_of_divisors(UpperCamelCase_) != i)
return total
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 17 | 1 |
"""simple docstring"""
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
_a = logging.get_logger(__name__)
_a = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'}
_a = {
'tokenizer_file': {
'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json',
},
}
_a = {
'gpt-neox-20b': 20_48,
}
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
__UpperCAmelCase : List[str] = VOCAB_FILES_NAMES
__UpperCAmelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
__UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCAmelCase : Optional[int] = ["input_ids", "attention_mask"]
def __init__( self : Optional[Any], UpperCAmelCase__ : Any=None, UpperCAmelCase__ : List[Any]=None, UpperCAmelCase__ : Optional[Any]=None, UpperCAmelCase__ : List[Any]="<|endoftext|>", UpperCAmelCase__ : Optional[Any]="<|endoftext|>", UpperCAmelCase__ : Dict="<|endoftext|>", UpperCAmelCase__ : int=False, **UpperCAmelCase__ : Any, ):
super().__init__(
UpperCAmelCase__, UpperCAmelCase__, tokenizer_file=UpperCAmelCase__, unk_token=UpperCAmelCase__, bos_token=UpperCAmelCase__, eos_token=UpperCAmelCase__, add_prefix_space=UpperCAmelCase__, **UpperCAmelCase__, )
__lowercase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("add_prefix_space", UpperCAmelCase__ ) != add_prefix_space:
__lowercase = getattr(UpperCAmelCase__, pre_tok_state.pop("type" ) )
__lowercase = add_prefix_space
__lowercase = pre_tok_class(**UpperCAmelCase__ )
__lowercase = add_prefix_space
def _lowercase ( self : List[str], UpperCAmelCase__ : str, UpperCAmelCase__ : Optional[str] = None ):
__lowercase = self._tokenizer.model.save(UpperCAmelCase__, name=UpperCAmelCase__ )
return tuple(UpperCAmelCase__ )
def _lowercase ( self : List[Any], UpperCAmelCase__ : "Conversation" ):
__lowercase = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(UpperCAmelCase__, add_special_tokens=UpperCAmelCase__ ) + [self.eos_token_id] )
if len(UpperCAmelCase__ ) > self.model_max_length:
__lowercase = input_ids[-self.model_max_length :]
return input_ids
| 17 |
"""simple docstring"""
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
_a = _symbol_database.Default()
_a = _descriptor_pool.Default().AddSerializedFile(
b'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03'
)
_a = globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals)
if _descriptor._USE_C_DESCRIPTORS is False:
_a = None
_a = b'H\003'
# (generated by protobuf compiler, but `_TRAINERSPEC` is not defined)
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001"
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001"
_a = 45
_a = 15_81
_a = 15_17
_a = 15_70
_a = 15_84
_a = 17_93
_a = 17_95
_a = 19_16
_a = 18_64
_a = 19_05
_a = 19_19
_a = 24_29
_a = 22_08
_a = 24_18
_a = 23_23
_a = 24_07
# @@protoc_insertion_point(module_scope)
| 17 | 1 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor
from .base import PipelineTool
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
__UpperCAmelCase : Tuple = "openai/whisper-base"
__UpperCAmelCase : Union[str, Any] = (
"This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the "
"transcribed text."
)
__UpperCAmelCase : List[str] = "transcriber"
__UpperCAmelCase : Optional[Any] = WhisperProcessor
__UpperCAmelCase : str = WhisperForConditionalGeneration
__UpperCAmelCase : List[str] = ["audio"]
__UpperCAmelCase : Tuple = ["text"]
def _lowercase ( self : str, UpperCAmelCase__ : int ):
return self.pre_processor(UpperCAmelCase__, return_tensors="pt" ).input_features
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Any] ):
return self.model.generate(inputs=UpperCAmelCase__ )
def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[int] ):
return self.pre_processor.batch_decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ )[0]
| 17 |
"""simple docstring"""
import baseaa
def _A ( UpperCamelCase_ : str) -> bytes:
'''simple docstring'''
return baseaa.baaencode(string.encode("utf-8"))
def _A ( UpperCamelCase_ : bytes) -> str:
'''simple docstring'''
return baseaa.baadecode(UpperCamelCase_).decode("utf-8")
if __name__ == "__main__":
_a = 'Hello World!'
_a = baseaa_encode(test)
print(encoded)
_a = baseaa_decode(encoded)
print(decoded)
| 17 | 1 |
"""simple docstring"""
import argparse
import json
import os
import re
import shutil
import torch
from transformers import BioGptConfig, BioGptForCausalLM
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
from transformers.utils import WEIGHTS_NAME, logging
logging.set_verbosity_warning()
_a = 2
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Dict, *, # begin keyword-only arguments
UpperCAmelCase__ : str="<s>", UpperCAmelCase__ : Tuple="<pad>", UpperCAmelCase__ : str="</s>", UpperCAmelCase__ : Optional[Any]="<unk>", UpperCAmelCase__ : List[Any]=None, ):
__lowercase ,__lowercase ,__lowercase ,__lowercase = bos, unk, pad, eos
__lowercase = []
__lowercase = []
__lowercase = {}
__lowercase = self.add_symbol(UpperCAmelCase__ )
__lowercase = self.add_symbol(UpperCAmelCase__ )
__lowercase = self.add_symbol(UpperCAmelCase__ )
__lowercase = self.add_symbol(UpperCAmelCase__ )
if extra_special_symbols:
for s in extra_special_symbols:
self.add_symbol(UpperCAmelCase__ )
__lowercase = len(self.symbols )
def __eq__( self : List[str], UpperCAmelCase__ : Dict ):
return self.indices == other.indices
def __getitem__( self : Optional[int], UpperCAmelCase__ : List[str] ):
if idx < len(self.symbols ):
return self.symbols[idx]
return self.unk_word
def __len__( self : str ):
return len(self.symbols )
def __contains__( self : Any, UpperCAmelCase__ : Optional[Any] ):
return sym in self.indices
@classmethod
def _lowercase ( cls : List[Any], UpperCAmelCase__ : Optional[Any] ):
__lowercase = cls()
d.add_from_file(UpperCAmelCase__ )
return d
def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[Any]=1, UpperCAmelCase__ : str=False ):
if word in self.indices and not overwrite:
__lowercase = self.indices[word]
__lowercase = self.count[idx] + n
return idx
else:
__lowercase = len(self.symbols )
__lowercase = idx
self.symbols.append(UpperCAmelCase__ )
self.count.append(UpperCAmelCase__ )
return idx
def _lowercase ( self : Any, UpperCAmelCase__ : str ):
return 0
def _lowercase ( self : Tuple, UpperCAmelCase__ : List[Any] ):
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
try:
with open(UpperCAmelCase__, "r", encoding="utf-8" ) as fd:
self.add_from_file(UpperCAmelCase__ )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception("Incorrect encoding detected in {}, please rebuild the dataset".format(UpperCAmelCase__ ) )
return
__lowercase = f.readlines()
__lowercase = self._load_meta(UpperCAmelCase__ )
for line in lines[indices_start_line:]:
try:
__lowercase ,__lowercase = line.rstrip().rsplit(" ", 1 )
if field == "#fairseq:overwrite":
__lowercase = True
__lowercase ,__lowercase = line.rsplit(" ", 1 )
else:
__lowercase = False
__lowercase = int(UpperCAmelCase__ )
__lowercase = line
if word in self and not overwrite:
raise RuntimeError(
"Duplicate word found when loading Dictionary: '{}'. "
"Duplicate words can overwrite earlier ones by adding the "
"#fairseq:overwrite flag at the end of the corresponding row "
"in the dictionary file. If using the Camembert model, please "
"download an updated copy of the model file.".format(UpperCAmelCase__ ) )
self.add_symbol(UpperCAmelCase__, n=UpperCAmelCase__, overwrite=UpperCAmelCase__ )
except ValueError:
raise ValueError("Incorrect dictionary format, expected '<token> <cnt> [flags]'" )
def _A ( UpperCamelCase_ : int) -> str:
'''simple docstring'''
__lowercase = dict((re.sub(r"@@$", "", UpperCamelCase_), v) if k.endswith("@@") else (re.sub(r"$", "</w>", UpperCamelCase_), v) for k, v in d.items())
__lowercase = "<s> <pad> </s> <unk>".split()
# restore the special tokens
for k in keep_keys:
del da[F"""{k}</w>"""]
__lowercase = d[k] # restore
return da
def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str) -> List[Any]:
'''simple docstring'''
if not os.path.exists(UpperCamelCase_):
raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""")
os.makedirs(UpperCamelCase_, exist_ok=UpperCamelCase_)
print(F"""Writing results to {pytorch_dump_folder_path}""")
# handle various types of models
__lowercase = os.path.join(UpperCamelCase_, "checkpoint.pt")
if not os.path.isfile(UpperCamelCase_):
raise ValueError(F"""path to the file {checkpoint_file} does not exist!""")
__lowercase = torch.load(UpperCamelCase_, map_location="cpu")
__lowercase = chkpt["cfg"]["model"]
# dicts
__lowercase = os.path.join(UpperCamelCase_, "dict.txt")
if not os.path.isfile(UpperCamelCase_):
raise ValueError(F"""path to the file {dict_file} does not exist!""")
__lowercase = Dictionary.load(UpperCamelCase_)
__lowercase = rewrite_dict_keys(src_dict.indices)
__lowercase = len(UpperCamelCase_)
__lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["vocab_file"])
print(F"""Generating {src_vocab_file} of {src_vocab_size} records""")
with open(UpperCamelCase_, "w", encoding="utf-8") as f:
f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_))
# merges_file (bpecodes)
__lowercase = os.path.join(UpperCamelCase_, "bpecodes")
if not os.path.isfile(UpperCamelCase_):
raise ValueError(F"""path to the file {bpecodes_file} does not exist!""")
__lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["merges_file"])
shutil.copyfile(UpperCamelCase_, UpperCamelCase_)
# model config
__lowercase = os.path.join(UpperCamelCase_, "config.json")
__lowercase = {
"activation_dropout": args["activation_dropout"],
"architectures": ["BioGptForCausalLM"],
"attention_probs_dropout_prob": args["attention_dropout"],
"bos_token_id": 0,
"eos_token_id": 2,
"hidden_act": args["activation_fn"],
"hidden_dropout_prob": args["dropout"],
"hidden_size": args["decoder_embed_dim"],
"initializer_range": 0.02,
"intermediate_size": args["decoder_ffn_embed_dim"],
"layer_norm_eps": 1E-12,
"layerdrop": args["decoder_layerdrop"],
"max_position_embeddings": args["max_target_positions"],
"model_type": "biogpt",
"num_attention_heads": args["decoder_attention_heads"],
"num_hidden_layers": args["decoder_layers"],
"pad_token_id": 1,
"scale_embedding": not args["no_scale_embedding"],
"tie_word_embeddings": args["share_decoder_input_output_embed"],
"vocab_size": src_vocab_size,
}
# good hparam defaults to start with
print(F"""Generating {biogpt_model_config_file}""")
with open(UpperCamelCase_, "w", encoding="utf-8") as f:
f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_))
# tokenizer config
__lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_)
__lowercase = {
"bos_token": "<s>",
"eos_token": "</s>",
"model_max_length": 1024,
"pad_token": "<pad>",
"special_tokens_map_file": None,
"tokenizer_class": "BioGptTokenizer",
"unk_token": "<unk>",
}
print(F"""Generating {biogpt_tokenizer_config_file}""")
with open(UpperCamelCase_, "w", encoding="utf-8") as f:
f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_))
# model
__lowercase = chkpt["model"]
# remove unneeded keys
__lowercase = [
"decoder.version",
]
for k in ignore_keys:
model_state_dict.pop(UpperCamelCase_, UpperCamelCase_)
__lowercase = list(model_state_dict.keys())
for layer_name in layer_names:
if layer_name.endswith("output_projection.weight"):
__lowercase = model_state_dict.pop(UpperCamelCase_)
else:
__lowercase = model_state_dict.pop(UpperCamelCase_)
__lowercase = BioGptConfig.from_pretrained(UpperCamelCase_)
__lowercase = BioGptForCausalLM(UpperCamelCase_)
# check that it loads ok
model_new.load_state_dict(UpperCamelCase_)
# save
__lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_)
print(F"""Generating {pytorch_weights_dump_path}""")
torch.save(UpperCamelCase_, UpperCamelCase_)
print("Conversion is done!")
if __name__ == "__main__":
_a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--biogpt_checkpoint_path',
default=None,
type=str,
required=True,
help=(
'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,'
' bpecodes, etc.'
),
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
_a = parser.parse_args()
convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
| 17 |
"""simple docstring"""
def _A ( UpperCamelCase_ : Any) -> List[str]:
'''simple docstring'''
__lowercase ,__lowercase = [], []
while len(UpperCamelCase_) > 1:
__lowercase ,__lowercase = min(UpperCamelCase_), max(UpperCamelCase_)
start.append(UpperCamelCase_)
end.append(UpperCamelCase_)
collection.remove(UpperCamelCase_)
collection.remove(UpperCamelCase_)
end.reverse()
return start + collection + end
if __name__ == "__main__":
_a = input('Enter numbers separated by a comma:\n').strip()
_a = [int(item) for item in user_input.split(',')]
print(*merge_sort(unsorted), sep=',')
| 17 | 1 |
"""simple docstring"""
from __future__ import annotations
from collections.abc import Iterator
from typing import Any
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : List[str], UpperCAmelCase__ : Any ):
__lowercase = data
__lowercase = None
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Union[str, Any] ):
__lowercase = None
__lowercase = None
def __iter__( self : List[Any] ):
__lowercase = self.head
while self.head:
yield node.data
__lowercase = node.next
if node == self.head:
break
def __len__( self : Union[str, Any] ):
return sum(1 for _ in self )
def __repr__( self : List[str] ):
return "->".join(str(UpperCAmelCase__ ) for item in iter(self ) )
def _lowercase ( self : Optional[int], UpperCAmelCase__ : Any ):
self.insert_nth(len(self ), UpperCAmelCase__ )
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Any ):
self.insert_nth(0, UpperCAmelCase__ )
def _lowercase ( self : str, UpperCAmelCase__ : int, UpperCAmelCase__ : Any ):
if index < 0 or index > len(self ):
raise IndexError("list index out of range." )
__lowercase = Node(UpperCAmelCase__ )
if self.head is None:
__lowercase = new_node # first node points itself
__lowercase = __lowercase = new_node
elif index == 0: # insert at head
__lowercase = self.head
__lowercase = __lowercase = new_node
else:
__lowercase = self.head
for _ in range(index - 1 ):
__lowercase = temp.next
__lowercase = temp.next
__lowercase = new_node
if index == len(self ) - 1: # insert at tail
__lowercase = new_node
def _lowercase ( self : List[Any] ):
return self.delete_nth(0 )
def _lowercase ( self : List[Any] ):
return self.delete_nth(len(self ) - 1 )
def _lowercase ( self : List[str], UpperCAmelCase__ : int = 0 ):
if not 0 <= index < len(self ):
raise IndexError("list index out of range." )
__lowercase = self.head
if self.head == self.tail: # just one node
__lowercase = __lowercase = None
elif index == 0: # delete head node
__lowercase = self.tail.next.next
__lowercase = self.head.next
else:
__lowercase = self.head
for _ in range(index - 1 ):
__lowercase = temp.next
__lowercase = temp.next
__lowercase = temp.next.next
if index == len(self ) - 1: # delete at tail
__lowercase = temp
return delete_node.data
def _lowercase ( self : Optional[Any] ):
return len(self ) == 0
def _A ( ) -> None:
'''simple docstring'''
__lowercase = CircularLinkedList()
assert len(UpperCamelCase_) == 0
assert circular_linked_list.is_empty() is True
assert str(UpperCamelCase_) == ""
try:
circular_linked_list.delete_front()
raise AssertionError # This should not happen
except IndexError:
assert True # This should happen
try:
circular_linked_list.delete_tail()
raise AssertionError # This should not happen
except IndexError:
assert True # This should happen
try:
circular_linked_list.delete_nth(-1)
raise AssertionError
except IndexError:
assert True
try:
circular_linked_list.delete_nth(0)
raise AssertionError
except IndexError:
assert True
assert circular_linked_list.is_empty() is True
for i in range(5):
assert len(UpperCamelCase_) == i
circular_linked_list.insert_nth(UpperCamelCase_, i + 1)
assert str(UpperCamelCase_) == "->".join(str(UpperCamelCase_) for i in range(1, 6))
circular_linked_list.insert_tail(6)
assert str(UpperCamelCase_) == "->".join(str(UpperCamelCase_) for i in range(1, 7))
circular_linked_list.insert_head(0)
assert str(UpperCamelCase_) == "->".join(str(UpperCamelCase_) for i in range(0, 7))
assert circular_linked_list.delete_front() == 0
assert circular_linked_list.delete_tail() == 6
assert str(UpperCamelCase_) == "->".join(str(UpperCamelCase_) for i in range(1, 6))
assert circular_linked_list.delete_nth(2) == 3
circular_linked_list.insert_nth(2, 3)
assert str(UpperCamelCase_) == "->".join(str(UpperCamelCase_) for i in range(1, 6))
assert circular_linked_list.is_empty() is False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 17 |
"""simple docstring"""
def _A ( UpperCamelCase_ : list[int]) -> float:
'''simple docstring'''
if not nums: # Makes sure that the list is not empty
raise ValueError("List is empty")
__lowercase = sum(UpperCamelCase_) / len(UpperCamelCase_) # Calculate the average
return sum(abs(x - average) for x in nums) / len(UpperCamelCase_)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 17 | 1 |
"""simple docstring"""
from pathlib import Path
import fire
from tqdm import tqdm
def _A ( UpperCamelCase_ : Optional[Any]="ro", UpperCamelCase_ : str="en", UpperCamelCase_ : Union[str, Any]="wmt16", UpperCamelCase_ : Tuple=None) -> None:
'''simple docstring'''
try:
import datasets
except (ModuleNotFoundError, ImportError):
raise ImportError("run pip install datasets")
__lowercase = F"""{src_lang}-{tgt_lang}"""
print(F"""Converting {dataset}-{pair}""")
__lowercase = datasets.load_dataset(UpperCamelCase_, UpperCamelCase_)
if save_dir is None:
__lowercase = F"""{dataset}-{pair}"""
__lowercase = Path(UpperCamelCase_)
save_dir.mkdir(exist_ok=UpperCamelCase_)
for split in ds.keys():
print(F"""Splitting {split} with {ds[split].num_rows} records""")
# to save to val.source, val.target like summary datasets
__lowercase = "val" if split == "validation" else split
__lowercase = save_dir.joinpath(F"""{fn}.source""")
__lowercase = save_dir.joinpath(F"""{fn}.target""")
__lowercase = src_path.open("w+")
__lowercase = tgt_path.open("w+")
# reader is the bottleneck so writing one record at a time doesn't slow things down
for x in tqdm(ds[split]):
__lowercase = x["translation"]
src_fp.write(ex[src_lang] + "\n")
tgt_fp.write(ex[tgt_lang] + "\n")
print(F"""Saved {dataset} dataset to {save_dir}""")
if __name__ == "__main__":
fire.Fire(download_wmt_dataset)
| 17 |
"""simple docstring"""
import inspect
import unittest
import numpy as np
from transformers import BeitConfig
from transformers.testing_utils import require_flax, require_vision, slow
from transformers.utils import cached_property, is_flax_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor
if is_flax_available():
import jax
from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : int=1_0_0, UpperCAmelCase__ : Any=1_3, UpperCAmelCase__ : List[Any]=3_0, UpperCAmelCase__ : Dict=2, UpperCAmelCase__ : Any=3, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[str]=True, UpperCAmelCase__ : Optional[Any]=3_2, UpperCAmelCase__ : Any=5, UpperCAmelCase__ : Any=4, UpperCAmelCase__ : Any=3_7, UpperCAmelCase__ : Optional[int]="gelu", UpperCAmelCase__ : Dict=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Dict=1_0, UpperCAmelCase__ : Tuple=0.02, UpperCAmelCase__ : List[Any]=3, ):
__lowercase = parent
__lowercase = vocab_size
__lowercase = batch_size
__lowercase = image_size
__lowercase = patch_size
__lowercase = num_channels
__lowercase = is_training
__lowercase = use_labels
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = type_sequence_label_size
__lowercase = initializer_range
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
__lowercase = (image_size // patch_size) ** 2
__lowercase = num_patches + 1
def _lowercase ( self : int ):
__lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size], self.type_sequence_label_size )
__lowercase = BeitConfig(
vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=UpperCAmelCase__, initializer_range=self.initializer_range, )
return config, pixel_values, labels
def _lowercase ( self : Any, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[str], UpperCAmelCase__ : List[str] ):
__lowercase = FlaxBeitModel(config=UpperCAmelCase__ )
__lowercase = model(UpperCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : List[Any] ):
__lowercase = FlaxBeitForMaskedImageModeling(config=UpperCAmelCase__ )
__lowercase = model(UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size) )
def _lowercase ( self : Dict, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : Union[str, Any] ):
__lowercase = self.type_sequence_label_size
__lowercase = FlaxBeitForImageClassification(config=UpperCAmelCase__ )
__lowercase = model(UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__lowercase = 1
__lowercase = FlaxBeitForImageClassification(UpperCAmelCase__ )
__lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__lowercase = model(UpperCAmelCase__ )
def _lowercase ( self : List[str] ):
__lowercase = self.prepare_config_and_inputs()
(
(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,
) = config_and_inputs
__lowercase = {"pixel_values": pixel_values}
return config, inputs_dict
@require_flax
class _lowerCAmelCase ( lowercase ,unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : str = (
(FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else ()
)
def _lowercase ( self : List[Any] ):
__lowercase = FlaxBeitModelTester(self )
__lowercase = ConfigTester(self, config_class=UpperCAmelCase__, has_text_modality=UpperCAmelCase__, hidden_size=3_7 )
def _lowercase ( self : Union[str, Any] ):
self.config_tester.run_common_tests()
def _lowercase ( self : Optional[int] ):
__lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowercase = model_class(UpperCAmelCase__ )
__lowercase = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowercase = [*signature.parameters.keys()]
__lowercase = ["pixel_values"]
self.assertListEqual(arg_names[:1], UpperCAmelCase__ )
def _lowercase ( self : Tuple ):
__lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__lowercase = self._prepare_for_class(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = model_class(UpperCAmelCase__ )
@jax.jit
def model_jitted(UpperCAmelCase__ : str, **UpperCAmelCase__ : Dict ):
return model(pixel_values=UpperCAmelCase__, **UpperCAmelCase__ )
with self.subTest("JIT Enabled" ):
__lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
__lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple()
self.assertEqual(len(UpperCAmelCase__ ), len(UpperCAmelCase__ ) )
for jitted_output, output in zip(UpperCAmelCase__, UpperCAmelCase__ ):
self.assertEqual(jitted_output.shape, output.shape )
def _lowercase ( self : List[str] ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase__ )
def _lowercase ( self : int ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ )
def _lowercase ( self : Tuple ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ )
@slow
def _lowercase ( self : Union[str, Any] ):
for model_class_name in self.all_model_classes:
__lowercase = model_class_name.from_pretrained("microsoft/beit-base-patch16-224" )
__lowercase = model(np.ones((1, 3, 2_2_4, 2_2_4) ) )
self.assertIsNotNone(UpperCAmelCase__ )
def _A ( ) -> str:
'''simple docstring'''
__lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_vision
@require_flax
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _lowercase ( self : Optional[int] ):
return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None
@slow
def _lowercase ( self : Any ):
__lowercase = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" )
__lowercase = self.default_image_processor
__lowercase = prepare_img()
__lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ).pixel_values
# prepare bool_masked_pos
__lowercase = np.ones((1, 1_9_6), dtype=UpperCAmelCase__ )
# forward pass
__lowercase = model(pixel_values=UpperCAmelCase__, bool_masked_pos=UpperCAmelCase__ )
__lowercase = outputs.logits
# verify the logits
__lowercase = (1, 1_9_6, 8_1_9_2)
self.assertEqual(logits.shape, UpperCAmelCase__ )
__lowercase = np.array(
[[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] )
self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3], UpperCAmelCase__, atol=1E-2 ) )
@slow
def _lowercase ( self : Any ):
__lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" )
__lowercase = self.default_image_processor
__lowercase = prepare_img()
__lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" )
# forward pass
__lowercase = model(**UpperCAmelCase__ )
__lowercase = outputs.logits
# verify the logits
__lowercase = (1, 1_0_0_0)
self.assertEqual(logits.shape, UpperCAmelCase__ )
__lowercase = np.array([-1.2_385, -1.0_987, -1.0_108] )
self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) )
__lowercase = 2_8_1
self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ )
@slow
def _lowercase ( self : List[str] ):
__lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" )
__lowercase = self.default_image_processor
__lowercase = prepare_img()
__lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" )
# forward pass
__lowercase = model(**UpperCAmelCase__ )
__lowercase = outputs.logits
# verify the logits
__lowercase = (1, 2_1_8_4_1)
self.assertEqual(logits.shape, UpperCAmelCase__ )
__lowercase = np.array([1.6_881, -0.2_787, 0.5_901] )
self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) )
__lowercase = 2_3_9_6
self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ )
| 17 | 1 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class _lowerCAmelCase ( lowercase ,lowercase ,unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = CycleDiffusionPipeline
__UpperCAmelCase : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {
"negative_prompt",
"height",
"width",
"negative_prompt_embeds",
}
__UpperCAmelCase : Optional[Any] = PipelineTesterMixin.required_optional_params - {"latents"}
__UpperCAmelCase : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"} )
__UpperCAmelCase : Tuple = IMAGE_TO_IMAGE_IMAGE_PARAMS
__UpperCAmelCase : int = IMAGE_TO_IMAGE_IMAGE_PARAMS
def _lowercase ( self : List[str] ):
torch.manual_seed(0 )
__lowercase = UNetaDConditionModel(
block_out_channels=(3_2, 6_4), layers_per_block=2, sample_size=3_2, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=3_2, )
__lowercase = DDIMScheduler(
beta_start=0.00_085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1_0_0_0, clip_sample=UpperCAmelCase__, set_alpha_to_one=UpperCAmelCase__, )
torch.manual_seed(0 )
__lowercase = AutoencoderKL(
block_out_channels=[3_2, 6_4], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, )
torch.manual_seed(0 )
__lowercase = CLIPTextConfig(
bos_token_id=0, eos_token_id=2, hidden_size=3_2, intermediate_size=3_7, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_0_0_0, )
__lowercase = CLIPTextModel(UpperCAmelCase__ )
__lowercase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
__lowercase = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def _lowercase ( self : str, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[Any]=0 ):
__lowercase = floats_tensor((1, 3, 3_2, 3_2), rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ )
__lowercase = image / 2 + 0.5
if str(UpperCAmelCase__ ).startswith("mps" ):
__lowercase = torch.manual_seed(UpperCAmelCase__ )
else:
__lowercase = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ )
__lowercase = {
"prompt": "An astronaut riding an elephant",
"source_prompt": "An astronaut riding a horse",
"image": image,
"generator": generator,
"num_inference_steps": 2,
"eta": 0.1,
"strength": 0.8,
"guidance_scale": 3,
"source_guidance_scale": 1,
"output_type": "numpy",
}
return inputs
def _lowercase ( self : Optional[Any] ):
__lowercase = "cpu" # ensure determinism for the device-dependent torch.Generator
__lowercase = self.get_dummy_components()
__lowercase = CycleDiffusionPipeline(**UpperCAmelCase__ )
__lowercase = pipe.to(UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs(UpperCAmelCase__ )
__lowercase = pipe(**UpperCAmelCase__ )
__lowercase = output.images
__lowercase = images[0, -3:, -3:, -1]
assert images.shape == (1, 3_2, 3_2, 3)
__lowercase = np.array([0.4_459, 0.4_943, 0.4_544, 0.6_643, 0.5_474, 0.4_327, 0.5_701, 0.5_959, 0.5_179] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@unittest.skipIf(torch_device != "cuda", "This test requires a GPU" )
def _lowercase ( self : Any ):
__lowercase = self.get_dummy_components()
for name, module in components.items():
if hasattr(UpperCAmelCase__, "half" ):
__lowercase = module.half()
__lowercase = CycleDiffusionPipeline(**UpperCAmelCase__ )
__lowercase = pipe.to(UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs(UpperCAmelCase__ )
__lowercase = pipe(**UpperCAmelCase__ )
__lowercase = output.images
__lowercase = images[0, -3:, -3:, -1]
assert images.shape == (1, 3_2, 3_2, 3)
__lowercase = np.array([0.3_506, 0.4_543, 0.446, 0.4_575, 0.5_195, 0.4_155, 0.5_273, 0.518, 0.4_116] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@skip_mps
def _lowercase ( self : List[Any] ):
return super().test_save_load_local()
@unittest.skip("non-deterministic pipeline" )
def _lowercase ( self : Dict ):
return super().test_inference_batch_single_identical()
@skip_mps
def _lowercase ( self : Dict ):
return super().test_dict_tuple_outputs_equivalent()
@skip_mps
def _lowercase ( self : Tuple ):
return super().test_save_load_optional_components()
@skip_mps
def _lowercase ( self : Union[str, Any] ):
return super().test_attention_slicing_forward_pass()
@slow
@require_torch_gpu
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def _lowercase ( self : str ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowercase ( self : Union[str, Any] ):
__lowercase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/cycle-diffusion/black_colored_car.png" )
__lowercase = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy" )
__lowercase = init_image.resize((5_1_2, 5_1_2) )
__lowercase = "CompVis/stable-diffusion-v1-4"
__lowercase = DDIMScheduler.from_pretrained(UpperCAmelCase__, subfolder="scheduler" )
__lowercase = CycleDiffusionPipeline.from_pretrained(
UpperCAmelCase__, scheduler=UpperCAmelCase__, safety_checker=UpperCAmelCase__, torch_dtype=torch.floataa, revision="fp16" )
pipe.to(UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
pipe.enable_attention_slicing()
__lowercase = "A black colored car"
__lowercase = "A blue colored car"
__lowercase = torch.manual_seed(0 )
__lowercase = pipe(
prompt=UpperCAmelCase__, source_prompt=UpperCAmelCase__, image=UpperCAmelCase__, num_inference_steps=1_0_0, eta=0.1, strength=0.85, guidance_scale=3, source_guidance_scale=1, generator=UpperCAmelCase__, output_type="np", )
__lowercase = output.images
# the values aren't exactly equal, but the images look the same visually
assert np.abs(image - expected_image ).max() < 5E-1
def _lowercase ( self : Union[str, Any] ):
__lowercase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/cycle-diffusion/black_colored_car.png" )
__lowercase = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy" )
__lowercase = init_image.resize((5_1_2, 5_1_2) )
__lowercase = "CompVis/stable-diffusion-v1-4"
__lowercase = DDIMScheduler.from_pretrained(UpperCAmelCase__, subfolder="scheduler" )
__lowercase = CycleDiffusionPipeline.from_pretrained(UpperCAmelCase__, scheduler=UpperCAmelCase__, safety_checker=UpperCAmelCase__ )
pipe.to(UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
pipe.enable_attention_slicing()
__lowercase = "A black colored car"
__lowercase = "A blue colored car"
__lowercase = torch.manual_seed(0 )
__lowercase = pipe(
prompt=UpperCAmelCase__, source_prompt=UpperCAmelCase__, image=UpperCAmelCase__, num_inference_steps=1_0_0, eta=0.1, strength=0.85, guidance_scale=3, source_guidance_scale=1, generator=UpperCAmelCase__, output_type="np", )
__lowercase = output.images
assert np.abs(image - expected_image ).max() < 2E-2
| 17 |
"""simple docstring"""
import unittest
from transformers import load_tool
from .test_tools_common import ToolTesterMixin
class _lowerCAmelCase ( unittest.TestCase ,lowercase ):
"""simple docstring"""
def _lowercase ( self : List[Any] ):
__lowercase = load_tool("text-classification" )
self.tool.setup()
__lowercase = load_tool("text-classification", remote=UpperCAmelCase__ )
def _lowercase ( self : str ):
__lowercase = self.tool("That's quite cool", ["positive", "negative"] )
self.assertEqual(UpperCAmelCase__, "positive" )
def _lowercase ( self : str ):
__lowercase = self.remote_tool("That's quite cool", ["positive", "negative"] )
self.assertEqual(UpperCAmelCase__, "positive" )
def _lowercase ( self : List[str] ):
__lowercase = self.tool(text="That's quite cool", labels=["positive", "negative"] )
self.assertEqual(UpperCAmelCase__, "positive" )
def _lowercase ( self : Tuple ):
__lowercase = self.remote_tool(text="That's quite cool", labels=["positive", "negative"] )
self.assertEqual(UpperCAmelCase__, "positive" )
| 17 | 1 |
"""simple docstring"""
import argparse
import json
import math
import os
import time
import traceback
import zipfile
from collections import Counter
import requests
def _A ( UpperCamelCase_ : List[Any], UpperCamelCase_ : List[Any]=None) -> int:
'''simple docstring'''
__lowercase = None
if token is not None:
__lowercase = {"Accept": "application/vnd.github+json", "Authorization": F"""Bearer {token}"""}
__lowercase = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100"""
__lowercase = requests.get(UpperCamelCase_, headers=UpperCamelCase_).json()
__lowercase = {}
try:
job_links.update({job["name"]: job["html_url"] for job in result["jobs"]})
__lowercase = math.ceil((result["total_count"] - 100) / 100)
for i in range(UpperCamelCase_):
__lowercase = requests.get(url + F"""&page={i + 2}""", headers=UpperCamelCase_).json()
job_links.update({job["name"]: job["html_url"] for job in result["jobs"]})
return job_links
except Exception:
print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""")
return {}
def _A ( UpperCamelCase_ : Any, UpperCamelCase_ : str=None) -> Tuple:
'''simple docstring'''
__lowercase = None
if token is not None:
__lowercase = {"Accept": "application/vnd.github+json", "Authorization": F"""Bearer {token}"""}
__lowercase = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100"""
__lowercase = requests.get(UpperCamelCase_, headers=UpperCamelCase_).json()
__lowercase = {}
try:
artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]})
__lowercase = math.ceil((result["total_count"] - 100) / 100)
for i in range(UpperCamelCase_):
__lowercase = requests.get(url + F"""&page={i + 2}""", headers=UpperCamelCase_).json()
artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]})
return artifacts
except Exception:
print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""")
return {}
def _A ( UpperCamelCase_ : int, UpperCamelCase_ : Optional[int], UpperCamelCase_ : Tuple, UpperCamelCase_ : str) -> str:
'''simple docstring'''
__lowercase = None
if token is not None:
__lowercase = {"Accept": "application/vnd.github+json", "Authorization": F"""Bearer {token}"""}
__lowercase = requests.get(UpperCamelCase_, headers=UpperCamelCase_, allow_redirects=UpperCamelCase_)
__lowercase = result.headers["Location"]
__lowercase = requests.get(UpperCamelCase_, allow_redirects=UpperCamelCase_)
__lowercase = os.path.join(UpperCamelCase_, F"""{artifact_name}.zip""")
with open(UpperCamelCase_, "wb") as fp:
fp.write(response.content)
def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : str=None) -> List[str]:
'''simple docstring'''
__lowercase = []
__lowercase = []
__lowercase = None
with zipfile.ZipFile(UpperCamelCase_) as z:
for filename in z.namelist():
if not os.path.isdir(UpperCamelCase_):
# read the file
if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]:
with z.open(UpperCamelCase_) as f:
for line in f:
__lowercase = line.decode("UTF-8").strip()
if filename == "failures_line.txt":
try:
# `error_line` is the place where `error` occurs
__lowercase = line[: line.index(": ")]
__lowercase = line[line.index(": ") + len(": ") :]
errors.append([error_line, error])
except Exception:
# skip un-related lines
pass
elif filename == "summary_short.txt" and line.startswith("FAILED "):
# `test` is the test method that failed
__lowercase = line[len("FAILED ") :]
failed_tests.append(UpperCamelCase_)
elif filename == "job_name.txt":
__lowercase = line
if len(UpperCamelCase_) != len(UpperCamelCase_):
raise ValueError(
F"""`errors` and `failed_tests` should have the same number of elements. Got {len(UpperCamelCase_)} for `errors` """
F"""and {len(UpperCamelCase_)} for `failed_tests` instead. The test reports in {artifact_zip_path} have some"""
" problem.")
__lowercase = None
if job_name and job_links:
__lowercase = job_links.get(UpperCamelCase_, UpperCamelCase_)
# A list with elements of the form (line of error, error, failed test)
__lowercase = [x + [y] + [job_link] for x, y in zip(UpperCamelCase_, UpperCamelCase_)]
return result
def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : Any=None) -> Optional[Any]:
'''simple docstring'''
__lowercase = []
__lowercase = [os.path.join(UpperCamelCase_, UpperCamelCase_) for p in os.listdir(UpperCamelCase_) if p.endswith(".zip")]
for p in paths:
errors.extend(get_errors_from_single_artifact(UpperCamelCase_, job_links=UpperCamelCase_))
return errors
def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : List[Any]=None) -> Any:
'''simple docstring'''
__lowercase = Counter()
counter.update([x[1] for x in logs])
__lowercase = counter.most_common()
__lowercase = {}
for error, count in counts:
if error_filter is None or error not in error_filter:
__lowercase = {"count": count, "failed_tests": [(x[2], x[0]) for x in logs if x[1] == error]}
__lowercase = dict(sorted(r.items(), key=lambda UpperCamelCase_: item[1]["count"], reverse=UpperCamelCase_))
return r
def _A ( UpperCamelCase_ : Union[str, Any]) -> Optional[Any]:
'''simple docstring'''
__lowercase = test.split("::")[0]
if test.startswith("tests/models/"):
__lowercase = test.split("/")[2]
else:
__lowercase = None
return test
def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : int=None) -> List[Any]:
'''simple docstring'''
__lowercase = [(x[0], x[1], get_model(x[2])) for x in logs]
__lowercase = [x for x in logs if x[2] is not None]
__lowercase = {x[2] for x in logs}
__lowercase = {}
for test in tests:
__lowercase = Counter()
# count by errors in `test`
counter.update([x[1] for x in logs if x[2] == test])
__lowercase = counter.most_common()
__lowercase = {error: count for error, count in counts if (error_filter is None or error not in error_filter)}
__lowercase = sum(error_counts.values())
if n_errors > 0:
__lowercase = {"count": n_errors, "errors": error_counts}
__lowercase = dict(sorted(r.items(), key=lambda UpperCamelCase_: item[1]["count"], reverse=UpperCamelCase_))
return r
def _A ( UpperCamelCase_ : Any) -> int:
'''simple docstring'''
__lowercase = "| no. | error | status |"
__lowercase = "|-:|:-|:-|"
__lowercase = [header, sep]
for error in reduced_by_error:
__lowercase = reduced_by_error[error]["count"]
__lowercase = F"""| {count} | {error[:100]} | |"""
lines.append(UpperCamelCase_)
return "\n".join(UpperCamelCase_)
def _A ( UpperCamelCase_ : int) -> Union[str, Any]:
'''simple docstring'''
__lowercase = "| model | no. of errors | major error | count |"
__lowercase = "|-:|-:|-:|-:|"
__lowercase = [header, sep]
for model in reduced_by_model:
__lowercase = reduced_by_model[model]["count"]
__lowercase ,__lowercase = list(reduced_by_model[model]["errors"].items())[0]
__lowercase = F"""| {model} | {count} | {error[:60]} | {_count} |"""
lines.append(UpperCamelCase_)
return "\n".join(UpperCamelCase_)
if __name__ == "__main__":
_a = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.')
parser.add_argument(
'--output_dir',
type=str,
required=True,
help='Where to store the downloaded artifacts and other result files.',
)
parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.')
_a = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
_a = get_job_links(args.workflow_run_id, token=args.token)
_a = {}
# To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.
# For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.
if _job_links:
for k, v in _job_links.items():
# This is how GitHub actions combine job names.
if " / " in k:
_a = k.find(' / ')
_a = k[index + len(' / ') :]
_a = v
with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp:
json.dump(job_links, fp, ensure_ascii=False, indent=4)
_a = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
for idx, (name, url) in enumerate(artifacts.items()):
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
_a = get_all_errors(args.output_dir, job_links=job_links)
# `e[1]` is the error
_a = Counter()
counter.update([e[1] for e in errors])
# print the top 30 most common test errors
_a = counter.most_common(30)
for item in most_common:
print(item)
with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp:
json.dump(errors, fp, ensure_ascii=False, indent=4)
_a = reduce_by_error(errors)
_a = reduce_by_model(errors)
_a = make_github_table(reduced_by_error)
_a = make_github_table_per_model(reduced_by_model)
with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp:
fp.write(sa)
with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp:
fp.write(sa)
| 17 |
"""simple docstring"""
from typing import Any, Callable, Dict, List, Optional, Union
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
_a = 'CompVis/stable-diffusion-v1-1'
_a = 'CompVis/stable-diffusion-v1-2'
_a = 'CompVis/stable-diffusion-v1-3'
_a = 'CompVis/stable-diffusion-v1-4'
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
def __init__( self : Dict, UpperCAmelCase__ : AutoencoderKL, UpperCAmelCase__ : CLIPTextModel, UpperCAmelCase__ : CLIPTokenizer, UpperCAmelCase__ : UNetaDConditionModel, UpperCAmelCase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], UpperCAmelCase__ : StableDiffusionSafetyChecker, UpperCAmelCase__ : CLIPImageProcessor, UpperCAmelCase__ : bool = True, ):
super()._init_()
__lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ )
__lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ )
__lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ )
__lowercase = StableDiffusionPipeline(
vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, tokenizer=UpperCAmelCase__, unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, safety_checker=UpperCAmelCase__, feature_extractor=UpperCAmelCase__, requires_safety_checker=UpperCAmelCase__, )
self.register_modules(pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea )
@property
def _lowercase ( self : List[str] ):
return {k: getattr(self, UpperCAmelCase__ ) for k in self.config.keys() if not k.startswith("_" )}
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ):
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
__lowercase = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(UpperCAmelCase__ )
def _lowercase ( self : List[str] ):
self.enable_attention_slicing(UpperCAmelCase__ )
@torch.no_grad()
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Tuple, ):
return self.pipea(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
@torch.no_grad()
def _lowercase ( self : Tuple, UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : str, ):
return self.pipea(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
@torch.no_grad()
def _lowercase ( self : str, UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Any, ):
return self.pipea(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
@torch.no_grad()
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Optional[int], ):
return self.pipea(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
@torch.no_grad()
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : str, ):
__lowercase = "cuda" if torch.cuda.is_available() else "cpu"
self.to(UpperCAmelCase__ )
# Checks if the height and width are divisible by 8 or not
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" )
# Get first result from Stable Diffusion Checkpoint v1.1
__lowercase = self.textaimg_sda_a(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
# Get first result from Stable Diffusion Checkpoint v1.2
__lowercase = self.textaimg_sda_a(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
# Get first result from Stable Diffusion Checkpoint v1.3
__lowercase = self.textaimg_sda_a(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
# Get first result from Stable Diffusion Checkpoint v1.4
__lowercase = self.textaimg_sda_a(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
# Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result
return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
| 17 | 1 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from torch.backends.cuda import sdp_kernel
from diffusers import (
CMStochasticIterativeScheduler,
ConsistencyModelPipeline,
UNetaDModel,
)
from diffusers.utils import randn_tensor, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu
from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class _lowerCAmelCase ( lowercase ,unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : str = ConsistencyModelPipeline
__UpperCAmelCase : Dict = UNCONDITIONAL_IMAGE_GENERATION_PARAMS
__UpperCAmelCase : int = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS
# Override required_optional_params to remove num_images_per_prompt
__UpperCAmelCase : Union[str, Any] = frozenset(
[
"num_inference_steps",
"generator",
"latents",
"output_type",
"return_dict",
"callback",
"callback_steps",
] )
@property
def _lowercase ( self : int ):
__lowercase = UNetaDModel.from_pretrained(
"diffusers/consistency-models-test", subfolder="test_unet", )
return unet
@property
def _lowercase ( self : Tuple ):
__lowercase = UNetaDModel.from_pretrained(
"diffusers/consistency-models-test", subfolder="test_unet_class_cond", )
return unet
def _lowercase ( self : List[Any], UpperCAmelCase__ : Any=False ):
if class_cond:
__lowercase = self.dummy_cond_unet
else:
__lowercase = self.dummy_uncond_unet
# Default to CM multistep sampler
__lowercase = CMStochasticIterativeScheduler(
num_train_timesteps=4_0, sigma_min=0.002, sigma_max=80.0, )
__lowercase = {
"unet": unet,
"scheduler": scheduler,
}
return components
def _lowercase ( self : int, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : str=0 ):
if str(UpperCAmelCase__ ).startswith("mps" ):
__lowercase = torch.manual_seed(UpperCAmelCase__ )
else:
__lowercase = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ )
__lowercase = {
"batch_size": 1,
"num_inference_steps": None,
"timesteps": [2_2, 0],
"generator": generator,
"output_type": "np",
}
return inputs
def _lowercase ( self : List[Any] ):
__lowercase = "cpu" # ensure determinism for the device-dependent torch.Generator
__lowercase = self.get_dummy_components()
__lowercase = ConsistencyModelPipeline(**UpperCAmelCase__ )
__lowercase = pipe.to(UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs(UpperCAmelCase__ )
__lowercase = pipe(**UpperCAmelCase__ ).images
assert image.shape == (1, 3_2, 3_2, 3)
__lowercase = image[0, -3:, -3:, -1]
__lowercase = np.array([0.3_572, 0.6_273, 0.4_031, 0.3_961, 0.4_321, 0.5_730, 0.5_266, 0.4_780, 0.5_004] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def _lowercase ( self : Tuple ):
__lowercase = "cpu" # ensure determinism for the device-dependent torch.Generator
__lowercase = self.get_dummy_components(class_cond=UpperCAmelCase__ )
__lowercase = ConsistencyModelPipeline(**UpperCAmelCase__ )
__lowercase = pipe.to(UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs(UpperCAmelCase__ )
__lowercase = 0
__lowercase = pipe(**UpperCAmelCase__ ).images
assert image.shape == (1, 3_2, 3_2, 3)
__lowercase = image[0, -3:, -3:, -1]
__lowercase = np.array([0.3_572, 0.6_273, 0.4_031, 0.3_961, 0.4_321, 0.5_730, 0.5_266, 0.4_780, 0.5_004] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def _lowercase ( self : List[str] ):
__lowercase = "cpu" # ensure determinism for the device-dependent torch.Generator
__lowercase = self.get_dummy_components()
__lowercase = ConsistencyModelPipeline(**UpperCAmelCase__ )
__lowercase = pipe.to(UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs(UpperCAmelCase__ )
__lowercase = 1
__lowercase = None
__lowercase = pipe(**UpperCAmelCase__ ).images
assert image.shape == (1, 3_2, 3_2, 3)
__lowercase = image[0, -3:, -3:, -1]
__lowercase = np.array([0.5_004, 0.5_004, 0.4_994, 0.5_008, 0.4_976, 0.5_018, 0.4_990, 0.4_982, 0.4_987] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def _lowercase ( self : str ):
__lowercase = "cpu" # ensure determinism for the device-dependent torch.Generator
__lowercase = self.get_dummy_components(class_cond=UpperCAmelCase__ )
__lowercase = ConsistencyModelPipeline(**UpperCAmelCase__ )
__lowercase = pipe.to(UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs(UpperCAmelCase__ )
__lowercase = 1
__lowercase = None
__lowercase = 0
__lowercase = pipe(**UpperCAmelCase__ ).images
assert image.shape == (1, 3_2, 3_2, 3)
__lowercase = image[0, -3:, -3:, -1]
__lowercase = np.array([0.5_004, 0.5_004, 0.4_994, 0.5_008, 0.4_976, 0.5_018, 0.4_990, 0.4_982, 0.4_987] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
@slow
@require_torch_gpu
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def _lowercase ( self : Tuple ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Any=0, UpperCAmelCase__ : int=False, UpperCAmelCase__ : Tuple="cpu", UpperCAmelCase__ : int=torch.floataa, UpperCAmelCase__ : Union[str, Any]=(1, 3, 6_4, 6_4) ):
__lowercase = torch.manual_seed(UpperCAmelCase__ )
__lowercase = {
"num_inference_steps": None,
"timesteps": [2_2, 0],
"class_labels": 0,
"generator": generator,
"output_type": "np",
}
if get_fixed_latents:
__lowercase = self.get_fixed_latents(seed=UpperCAmelCase__, device=UpperCAmelCase__, dtype=UpperCAmelCase__, shape=UpperCAmelCase__ )
__lowercase = latents
return inputs
def _lowercase ( self : Tuple, UpperCAmelCase__ : int=0, UpperCAmelCase__ : List[Any]="cpu", UpperCAmelCase__ : List[Any]=torch.floataa, UpperCAmelCase__ : Any=(1, 3, 6_4, 6_4) ):
if type(UpperCAmelCase__ ) == str:
__lowercase = torch.device(UpperCAmelCase__ )
__lowercase = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ )
__lowercase = randn_tensor(UpperCAmelCase__, generator=UpperCAmelCase__, device=UpperCAmelCase__, dtype=UpperCAmelCase__ )
return latents
def _lowercase ( self : Any ):
__lowercase = UNetaDModel.from_pretrained("diffusers/consistency_models", subfolder="diffusers_cd_imagenet64_l2" )
__lowercase = CMStochasticIterativeScheduler(
num_train_timesteps=4_0, sigma_min=0.002, sigma_max=80.0, )
__lowercase = ConsistencyModelPipeline(unet=UpperCAmelCase__, scheduler=UpperCAmelCase__ )
pipe.to(torch_device=UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
assert image.shape == (1, 6_4, 6_4, 3)
__lowercase = image[0, -3:, -3:, -1]
__lowercase = np.array([0.0_888, 0.0_881, 0.0_666, 0.0_479, 0.0_292, 0.0_195, 0.0_201, 0.0_163, 0.0_254] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
def _lowercase ( self : Dict ):
__lowercase = UNetaDModel.from_pretrained("diffusers/consistency_models", subfolder="diffusers_cd_imagenet64_l2" )
__lowercase = CMStochasticIterativeScheduler(
num_train_timesteps=4_0, sigma_min=0.002, sigma_max=80.0, )
__lowercase = ConsistencyModelPipeline(unet=UpperCAmelCase__, scheduler=UpperCAmelCase__ )
pipe.to(torch_device=UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_inputs()
__lowercase = 1
__lowercase = None
__lowercase = pipe(**UpperCAmelCase__ ).images
assert image.shape == (1, 6_4, 6_4, 3)
__lowercase = image[0, -3:, -3:, -1]
__lowercase = np.array([0.0_340, 0.0_152, 0.0_063, 0.0_267, 0.0_221, 0.0_107, 0.0_416, 0.0_186, 0.0_217] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
@require_torch_a
def _lowercase ( self : Optional[Any] ):
__lowercase = UNetaDModel.from_pretrained("diffusers/consistency_models", subfolder="diffusers_cd_imagenet64_l2" )
__lowercase = CMStochasticIterativeScheduler(
num_train_timesteps=4_0, sigma_min=0.002, sigma_max=80.0, )
__lowercase = ConsistencyModelPipeline(unet=UpperCAmelCase__, scheduler=UpperCAmelCase__ )
pipe.to(torch_device=UpperCAmelCase__, torch_dtype=torch.floataa )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_inputs(get_fixed_latents=UpperCAmelCase__, device=UpperCAmelCase__ )
# Ensure usage of flash attention in torch 2.0
with sdp_kernel(enable_flash=UpperCAmelCase__, enable_math=UpperCAmelCase__, enable_mem_efficient=UpperCAmelCase__ ):
__lowercase = pipe(**UpperCAmelCase__ ).images
assert image.shape == (1, 6_4, 6_4, 3)
__lowercase = image[0, -3:, -3:, -1]
__lowercase = np.array([0.1_875, 0.1_428, 0.1_289, 0.2_151, 0.2_092, 0.1_477, 0.1_877, 0.1_641, 0.1_353] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
@require_torch_a
def _lowercase ( self : Dict ):
__lowercase = UNetaDModel.from_pretrained("diffusers/consistency_models", subfolder="diffusers_cd_imagenet64_l2" )
__lowercase = CMStochasticIterativeScheduler(
num_train_timesteps=4_0, sigma_min=0.002, sigma_max=80.0, )
__lowercase = ConsistencyModelPipeline(unet=UpperCAmelCase__, scheduler=UpperCAmelCase__ )
pipe.to(torch_device=UpperCAmelCase__, torch_dtype=torch.floataa )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_inputs(get_fixed_latents=UpperCAmelCase__, device=UpperCAmelCase__ )
__lowercase = 1
__lowercase = None
# Ensure usage of flash attention in torch 2.0
with sdp_kernel(enable_flash=UpperCAmelCase__, enable_math=UpperCAmelCase__, enable_mem_efficient=UpperCAmelCase__ ):
__lowercase = pipe(**UpperCAmelCase__ ).images
assert image.shape == (1, 6_4, 6_4, 3)
__lowercase = image[0, -3:, -3:, -1]
__lowercase = np.array([0.1_663, 0.1_948, 0.2_275, 0.1_680, 0.1_204, 0.1_245, 0.1_858, 0.1_338, 0.2_095] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
| 17 |
"""simple docstring"""
import random
import unittest
import numpy as np
import torch
from diffusers import (
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionUpscalePipeline,
PNDMScheduler,
)
from diffusers.utils import floats_tensor
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class _lowerCAmelCase ( lowercase ,unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : str = "ssube/stable-diffusion-x4-upscaler-onnx"
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : List[str]=0 ):
__lowercase = floats_tensor((1, 3, 1_2_8, 1_2_8), rng=random.Random(UpperCAmelCase__ ) )
__lowercase = torch.manual_seed(UpperCAmelCase__ )
__lowercase = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 7.5,
"output_type": "numpy",
}
return inputs
def _lowercase ( self : Any ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1].flatten()
# started as 128, should now be 512
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] )
assert np.abs(image_slice - expected_slice ).max() < 1E-1
def _lowercase ( self : Optional[Any] ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
__lowercase = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.6_898_892, 0.59_240_556, 0.52_499_527, 0.58_866_215, 0.52_258_235, 0.52_572_715, 0.62_414_473, 0.6_174_387, 0.6_214_964] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def _lowercase ( self : int ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
__lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.7_659_278, 0.76_437_664, 0.75_579_107, 0.7_691_116, 0.77_666_986, 0.7_727_672, 0.7_758_664, 0.7_812_226, 0.76_942_515] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def _lowercase ( self : str ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
__lowercase = EulerDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def _lowercase ( self : Any ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
__lowercase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.77_424_496, 0.773_601, 0.7_645_288, 0.7_769_598, 0.7_772_739, 0.7_738_688, 0.78_187_233, 0.77_879_584, 0.767_043] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
@nightly
@require_onnxruntime
@require_torch_gpu
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@property
def _lowercase ( self : Tuple ):
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def _lowercase ( self : Dict ):
__lowercase = ort.SessionOptions()
__lowercase = False
return options
def _lowercase ( self : Dict ):
__lowercase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg" )
__lowercase = init_image.resize((1_2_8, 1_2_8) )
# using the PNDM scheduler by default
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(
"ssube/stable-diffusion-x4-upscaler-onnx", provider=self.gpu_provider, sess_options=self.gpu_options, )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = "A fantasy landscape, trending on artstation"
__lowercase = torch.manual_seed(0 )
__lowercase = pipe(
prompt=UpperCAmelCase__, image=UpperCAmelCase__, guidance_scale=7.5, num_inference_steps=1_0, generator=UpperCAmelCase__, output_type="np", )
__lowercase = output.images
__lowercase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert images.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array([0.4_883, 0.4_947, 0.4_980, 0.4_975, 0.4_982, 0.4_980, 0.5_000, 0.5_006, 0.4_972] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
def _lowercase ( self : str ):
__lowercase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg" )
__lowercase = init_image.resize((1_2_8, 1_2_8) )
__lowercase = LMSDiscreteScheduler.from_pretrained(
"ssube/stable-diffusion-x4-upscaler-onnx", subfolder="scheduler" )
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(
"ssube/stable-diffusion-x4-upscaler-onnx", scheduler=UpperCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = "A fantasy landscape, trending on artstation"
__lowercase = torch.manual_seed(0 )
__lowercase = pipe(
prompt=UpperCAmelCase__, image=UpperCAmelCase__, guidance_scale=7.5, num_inference_steps=2_0, generator=UpperCAmelCase__, output_type="np", )
__lowercase = output.images
__lowercase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert images.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.50_173_753, 0.50_223_356, 0.502_039, 0.50_233_036, 0.5_023_725, 0.5_022_601, 0.5_018_758, 0.50_234_085, 0.50_241_566] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
| 17 | 1 |
"""simple docstring"""
from __future__ import annotations
from itertools import permutations
from random import randint
from timeit import repeat
def _A ( ) -> tuple[list[int], int]:
'''simple docstring'''
__lowercase = [randint(-1000, 1000) for i in range(10)]
__lowercase = randint(-5000, 5000)
return (arr, r)
_a = make_dataset()
def _A ( UpperCamelCase_ : list[int], UpperCamelCase_ : int) -> tuple[int, ...]:
'''simple docstring'''
for triplet in permutations(UpperCamelCase_, 3):
if sum(UpperCamelCase_) == target:
return tuple(sorted(UpperCamelCase_))
return (0, 0, 0)
def _A ( UpperCamelCase_ : list[int], UpperCamelCase_ : int) -> tuple[int, int, int]:
'''simple docstring'''
arr.sort()
__lowercase = len(UpperCamelCase_)
for i in range(n - 1):
__lowercase ,__lowercase = i + 1, n - 1
while left < right:
if arr[i] + arr[left] + arr[right] == target:
return (arr[i], arr[left], arr[right])
elif arr[i] + arr[left] + arr[right] < target:
left += 1
elif arr[i] + arr[left] + arr[right] > target:
right -= 1
return (0, 0, 0)
def _A ( ) -> tuple[float, float]:
'''simple docstring'''
__lowercase = "\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n"
__lowercase = "\ntriplet_sum1(*dataset)\n"
__lowercase = "\ntriplet_sum2(*dataset)\n"
__lowercase = repeat(setup=UpperCamelCase_, stmt=UpperCamelCase_, repeat=5, number=10000)
__lowercase = repeat(setup=UpperCamelCase_, stmt=UpperCamelCase_, repeat=5, number=10000)
return (min(UpperCamelCase_), min(UpperCamelCase_))
if __name__ == "__main__":
from doctest import testmod
testmod()
_a = solution_times()
print(F"The time for naive implementation is {times[0]}.")
print(F"The time for optimized implementation is {times[1]}.")
| 17 |
"""simple docstring"""
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
_a = datasets.utils.logging.get_logger(__name__)
_a = ['names', 'prefix']
_a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols']
_a = ['encoding_errors', 'on_bad_lines']
_a = ['date_format']
@dataclass
class _lowerCAmelCase ( datasets.BuilderConfig ):
"""simple docstring"""
__UpperCAmelCase : str = ","
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : Optional[Union[int, List[int], str]] = "infer"
__UpperCAmelCase : Optional[List[str]] = None
__UpperCAmelCase : Optional[List[str]] = None
__UpperCAmelCase : Optional[Union[int, str, List[int], List[str]]] = None
__UpperCAmelCase : Optional[Union[List[int], List[str]]] = None
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : bool = True
__UpperCAmelCase : Optional[Literal["c", "python", "pyarrow"]] = None
__UpperCAmelCase : Dict[Union[int, str], Callable[[Any], Any]] = None
__UpperCAmelCase : Optional[list] = None
__UpperCAmelCase : Optional[list] = None
__UpperCAmelCase : bool = False
__UpperCAmelCase : Optional[Union[int, List[int]]] = None
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : Optional[Union[str, List[str]]] = None
__UpperCAmelCase : bool = True
__UpperCAmelCase : bool = True
__UpperCAmelCase : bool = False
__UpperCAmelCase : bool = True
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : str = "."
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : str = '"'
__UpperCAmelCase : int = 0
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : bool = True
__UpperCAmelCase : bool = True
__UpperCAmelCase : int = 0
__UpperCAmelCase : bool = True
__UpperCAmelCase : bool = False
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : int = 1_0_0_0_0
__UpperCAmelCase : Optional[datasets.Features] = None
__UpperCAmelCase : Optional[str] = "strict"
__UpperCAmelCase : Literal["error", "warn", "skip"] = "error"
__UpperCAmelCase : Optional[str] = None
def _lowercase ( self : Tuple ):
if self.delimiter is not None:
__lowercase = self.delimiter
if self.column_names is not None:
__lowercase = self.column_names
@property
def _lowercase ( self : Union[str, Any] ):
__lowercase = {
"sep": self.sep,
"header": self.header,
"names": self.names,
"index_col": self.index_col,
"usecols": self.usecols,
"prefix": self.prefix,
"mangle_dupe_cols": self.mangle_dupe_cols,
"engine": self.engine,
"converters": self.converters,
"true_values": self.true_values,
"false_values": self.false_values,
"skipinitialspace": self.skipinitialspace,
"skiprows": self.skiprows,
"nrows": self.nrows,
"na_values": self.na_values,
"keep_default_na": self.keep_default_na,
"na_filter": self.na_filter,
"verbose": self.verbose,
"skip_blank_lines": self.skip_blank_lines,
"thousands": self.thousands,
"decimal": self.decimal,
"lineterminator": self.lineterminator,
"quotechar": self.quotechar,
"quoting": self.quoting,
"escapechar": self.escapechar,
"comment": self.comment,
"encoding": self.encoding,
"dialect": self.dialect,
"error_bad_lines": self.error_bad_lines,
"warn_bad_lines": self.warn_bad_lines,
"skipfooter": self.skipfooter,
"doublequote": self.doublequote,
"memory_map": self.memory_map,
"float_precision": self.float_precision,
"chunksize": self.chunksize,
"encoding_errors": self.encoding_errors,
"on_bad_lines": self.on_bad_lines,
"date_format": self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig(), UpperCAmelCase__ ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class _lowerCAmelCase ( datasets.ArrowBasedBuilder ):
"""simple docstring"""
__UpperCAmelCase : Tuple = CsvConfig
def _lowercase ( self : List[str] ):
return datasets.DatasetInfo(features=self.config.features )
def _lowercase ( self : List[Any], UpperCAmelCase__ : Dict ):
if not self.config.data_files:
raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" )
__lowercase = dl_manager.download_and_extract(self.config.data_files )
if isinstance(UpperCAmelCase__, (str, list, tuple) ):
__lowercase = data_files
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
__lowercase = [files]
__lowercase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files} )]
__lowercase = []
for split_name, files in data_files.items():
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
__lowercase = [files]
__lowercase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files]
splits.append(datasets.SplitGenerator(name=UpperCAmelCase__, gen_kwargs={"files": files} ) )
return splits
def _lowercase ( self : Dict, UpperCAmelCase__ : pa.Table ):
if self.config.features is not None:
__lowercase = self.config.features.arrow_schema
if all(not require_storage_cast(UpperCAmelCase__ ) for feature in self.config.features.values() ):
# cheaper cast
__lowercase = pa.Table.from_arrays([pa_table[field.name] for field in schema], schema=UpperCAmelCase__ )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
__lowercase = table_cast(UpperCAmelCase__, UpperCAmelCase__ )
return pa_table
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : List[str] ):
__lowercase = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
__lowercase = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(UpperCAmelCase__ ) else object
for name, dtype, feature in zip(schema.names, schema.types, self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase__ ) ):
__lowercase = pd.read_csv(UpperCAmelCase__, iterator=UpperCAmelCase__, dtype=UpperCAmelCase__, **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(UpperCAmelCase__ ):
__lowercase = pa.Table.from_pandas(UpperCAmelCase__ )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase__ )
except ValueError as e:
logger.error(F"""Failed to read file '{file}' with error {type(UpperCAmelCase__ )}: {e}""" )
raise
| 17 | 1 |
"""simple docstring"""
import argparse
import json
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import Callable, Dict, List, Tuple
import timm
import torch
import torch.nn as nn
from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf
from huggingface_hub import cached_download, hf_hub_url
from torch import Tensor
from vissl.models.model_helpers import get_trunk_forward_outputs
from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel
from transformers.utils import logging
logging.set_verbosity_info()
_a = logging.get_logger()
@dataclass
class _lowerCAmelCase :
"""simple docstring"""
__UpperCAmelCase : nn.Module
__UpperCAmelCase : List[nn.Module] = field(default_factory=lowercase )
__UpperCAmelCase : list = field(default_factory=lowercase )
def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Tensor, UpperCAmelCase__ : Tensor ):
__lowercase = len(list(m.modules() ) ) == 1 or isinstance(UpperCAmelCase__, nn.Convad ) or isinstance(UpperCAmelCase__, nn.BatchNormad )
if has_not_submodules:
self.traced.append(UpperCAmelCase__ )
def __call__( self : Optional[Any], UpperCAmelCase__ : Tensor ):
for m in self.module.modules():
self.handles.append(m.register_forward_hook(self._forward_hook ) )
self.module(UpperCAmelCase__ )
[x.remove() for x in self.handles]
return self
@property
def _lowercase ( self : int ):
# check the len of the state_dict keys to see if we have learnable params
return list(filter(lambda UpperCAmelCase__ : len(list(x.state_dict().keys() ) ) > 0, self.traced ) )
@dataclass
class _lowerCAmelCase :
"""simple docstring"""
__UpperCAmelCase : nn.Module
__UpperCAmelCase : nn.Module
__UpperCAmelCase : int = 1
__UpperCAmelCase : List = field(default_factory=lowercase )
__UpperCAmelCase : List = field(default_factory=lowercase )
__UpperCAmelCase : bool = True
def __call__( self : str, UpperCAmelCase__ : Tensor ):
__lowercase = Tracker(self.dest )(UpperCAmelCase__ ).parametrized
__lowercase = Tracker(self.src )(UpperCAmelCase__ ).parametrized
__lowercase = list(filter(lambda UpperCAmelCase__ : type(UpperCAmelCase__ ) not in self.src_skip, UpperCAmelCase__ ) )
__lowercase = list(filter(lambda UpperCAmelCase__ : type(UpperCAmelCase__ ) not in self.dest_skip, UpperCAmelCase__ ) )
if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ) and self.raise_if_mismatch:
raise Exception(
F"""Numbers of operations are different. Source module has {len(UpperCAmelCase__ )} operations while"""
F""" destination module has {len(UpperCAmelCase__ )}.""" )
for dest_m, src_m in zip(UpperCAmelCase__, UpperCAmelCase__ ):
dest_m.load_state_dict(src_m.state_dict() )
if self.verbose == 1:
print(F"""Transfered from={src_m} to={dest_m}""" )
class _lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : Any, UpperCAmelCase__ : nn.Module ):
super().__init__()
__lowercase = []
# - get the stem
feature_blocks.append(("conv1", model.stem) )
# - get all the feature blocks
for k, v in model.trunk_output.named_children():
assert k.startswith("block" ), F"""Unexpected layer name {k}"""
__lowercase = len(UpperCAmelCase__ ) + 1
feature_blocks.append((F"""res{block_index}""", v) )
__lowercase = nn.ModuleDict(UpperCAmelCase__ )
def _lowercase ( self : Tuple, UpperCAmelCase__ : Tensor ):
return get_trunk_forward_outputs(
UpperCAmelCase__, out_feat_keys=UpperCAmelCase__, feature_blocks=self._feature_blocks, )
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
def _lowercase ( self : Dict, UpperCAmelCase__ : str ):
__lowercase = x.split("-" )
return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] )
def __getitem__( self : List[Any], UpperCAmelCase__ : str ):
# default to timm!
if x not in self:
__lowercase = self.convert_name_to_timm(UpperCAmelCase__ )
__lowercase = partial(lambda: (timm.create_model(UpperCAmelCase__, pretrained=UpperCAmelCase__ ).eval(), None) )
else:
__lowercase = super().__getitem__(UpperCAmelCase__ )
return val
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
def __getitem__( self : str, UpperCAmelCase__ : str ):
if "seer" in x and "in1k" not in x:
__lowercase = RegNetModel
else:
__lowercase = RegNetForImageClassification
return val
def _A ( UpperCamelCase_ : Any, UpperCamelCase_ : Optional[int], UpperCamelCase_ : List[Tuple[str, str]]) -> List[Any]:
'''simple docstring'''
for from_key, to_key in keys:
__lowercase = from_state_dict[from_key].clone()
print(F"""Copied key={from_key} to={to_key}""")
return to_state_dict
def _A ( UpperCamelCase_ : str, UpperCamelCase_ : Callable[[], nn.Module], UpperCamelCase_ : Callable[[], nn.Module], UpperCamelCase_ : RegNetConfig, UpperCamelCase_ : Path, UpperCamelCase_ : bool = True, ) -> Any:
'''simple docstring'''
print(F"""Converting {name}...""")
with torch.no_grad():
__lowercase ,__lowercase = from_model_func()
__lowercase = our_model_func(UpperCamelCase_).eval()
__lowercase = ModuleTransfer(src=UpperCamelCase_, dest=UpperCamelCase_, raise_if_mismatch=UpperCamelCase_)
__lowercase = torch.randn((1, 3, 224, 224))
module_transfer(UpperCamelCase_)
if from_state_dict is not None:
__lowercase = []
# for seer - in1k finetuned we have to manually copy the head
if "seer" in name and "in1k" in name:
__lowercase = [("0.clf.0.weight", "classifier.1.weight"), ("0.clf.0.bias", "classifier.1.bias")]
__lowercase = manually_copy_vissl_head(UpperCamelCase_, our_model.state_dict(), UpperCamelCase_)
our_model.load_state_dict(UpperCamelCase_)
__lowercase = our_model(UpperCamelCase_, output_hidden_states=UpperCamelCase_)
__lowercase = (
our_outputs.logits if isinstance(UpperCamelCase_, UpperCamelCase_) else our_outputs.last_hidden_state
)
__lowercase = from_model(UpperCamelCase_)
__lowercase = from_output[-1] if type(UpperCamelCase_) is list else from_output
# now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state
if "seer" in name and "in1k" in name:
__lowercase = our_outputs.hidden_states[-1]
assert torch.allclose(UpperCamelCase_, UpperCamelCase_), "The model logits don't match the original one."
if push_to_hub:
our_model.push_to_hub(
repo_path_or_name=save_directory / name, commit_message="Add model", use_temp_dir=UpperCamelCase_, )
__lowercase = 224 if "seer" not in name else 384
# we can use the convnext one
__lowercase = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k", size=UpperCamelCase_)
image_processor.push_to_hub(
repo_path_or_name=save_directory / name, commit_message="Add image processor", use_temp_dir=UpperCamelCase_, )
print(F"""Pushed {name}""")
def _A ( UpperCamelCase_ : Path, UpperCamelCase_ : str = None, UpperCamelCase_ : bool = True) -> List[str]:
'''simple docstring'''
__lowercase = "imagenet-1k-id2label.json"
__lowercase = 1000
__lowercase = (1, num_labels)
__lowercase = "huggingface/label-files"
__lowercase = num_labels
__lowercase = json.load(open(cached_download(hf_hub_url(UpperCamelCase_, UpperCamelCase_, repo_type="dataset")), "r"))
__lowercase = {int(UpperCamelCase_): v for k, v in idalabel.items()}
__lowercase = idalabel
__lowercase = {v: k for k, v in idalabel.items()}
__lowercase = partial(UpperCamelCase_, num_labels=UpperCamelCase_, idalabel=UpperCamelCase_, labelaid=UpperCamelCase_)
__lowercase = {
"regnet-x-002": ImageNetPreTrainedConfig(
depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8, layer_type="x"),
"regnet-x-004": ImageNetPreTrainedConfig(
depths=[1, 2, 7, 12], hidden_sizes=[32, 64, 160, 384], groups_width=16, layer_type="x"),
"regnet-x-006": ImageNetPreTrainedConfig(
depths=[1, 3, 5, 7], hidden_sizes=[48, 96, 240, 528], groups_width=24, layer_type="x"),
"regnet-x-008": ImageNetPreTrainedConfig(
depths=[1, 3, 7, 5], hidden_sizes=[64, 128, 288, 672], groups_width=16, layer_type="x"),
"regnet-x-016": ImageNetPreTrainedConfig(
depths=[2, 4, 10, 2], hidden_sizes=[72, 168, 408, 912], groups_width=24, layer_type="x"),
"regnet-x-032": ImageNetPreTrainedConfig(
depths=[2, 6, 15, 2], hidden_sizes=[96, 192, 432, 1008], groups_width=48, layer_type="x"),
"regnet-x-040": ImageNetPreTrainedConfig(
depths=[2, 5, 14, 2], hidden_sizes=[80, 240, 560, 1360], groups_width=40, layer_type="x"),
"regnet-x-064": ImageNetPreTrainedConfig(
depths=[2, 4, 10, 1], hidden_sizes=[168, 392, 784, 1624], groups_width=56, layer_type="x"),
"regnet-x-080": ImageNetPreTrainedConfig(
depths=[2, 5, 15, 1], hidden_sizes=[80, 240, 720, 1920], groups_width=120, layer_type="x"),
"regnet-x-120": ImageNetPreTrainedConfig(
depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112, layer_type="x"),
"regnet-x-160": ImageNetPreTrainedConfig(
depths=[2, 6, 13, 1], hidden_sizes=[256, 512, 896, 2048], groups_width=128, layer_type="x"),
"regnet-x-320": ImageNetPreTrainedConfig(
depths=[2, 7, 13, 1], hidden_sizes=[336, 672, 1344, 2520], groups_width=168, layer_type="x"),
# y variant
"regnet-y-002": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8),
"regnet-y-004": ImageNetPreTrainedConfig(
depths=[1, 3, 6, 6], hidden_sizes=[48, 104, 208, 440], groups_width=8),
"regnet-y-006": ImageNetPreTrainedConfig(
depths=[1, 3, 7, 4], hidden_sizes=[48, 112, 256, 608], groups_width=16),
"regnet-y-008": ImageNetPreTrainedConfig(
depths=[1, 3, 8, 2], hidden_sizes=[64, 128, 320, 768], groups_width=16),
"regnet-y-016": ImageNetPreTrainedConfig(
depths=[2, 6, 17, 2], hidden_sizes=[48, 120, 336, 888], groups_width=24),
"regnet-y-032": ImageNetPreTrainedConfig(
depths=[2, 5, 13, 1], hidden_sizes=[72, 216, 576, 1512], groups_width=24),
"regnet-y-040": ImageNetPreTrainedConfig(
depths=[2, 6, 12, 2], hidden_sizes=[128, 192, 512, 1088], groups_width=64),
"regnet-y-064": ImageNetPreTrainedConfig(
depths=[2, 7, 14, 2], hidden_sizes=[144, 288, 576, 1296], groups_width=72),
"regnet-y-080": ImageNetPreTrainedConfig(
depths=[2, 4, 10, 1], hidden_sizes=[168, 448, 896, 2016], groups_width=56),
"regnet-y-120": ImageNetPreTrainedConfig(
depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112),
"regnet-y-160": ImageNetPreTrainedConfig(
depths=[2, 4, 11, 1], hidden_sizes=[224, 448, 1232, 3024], groups_width=112),
"regnet-y-320": ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232),
# models created by SEER -> https://arxiv.org/abs/2202.08360
"regnet-y-320-seer": RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232),
"regnet-y-640-seer": RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328),
"regnet-y-1280-seer": RegNetConfig(
depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264),
"regnet-y-2560-seer": RegNetConfig(
depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640),
"regnet-y-10b-seer": ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010),
# finetuned on imagenet
"regnet-y-320-seer-in1k": ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232),
"regnet-y-640-seer-in1k": ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328),
"regnet-y-1280-seer-in1k": ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264),
"regnet-y-2560-seer-in1k": ImageNetPreTrainedConfig(
depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640),
"regnet-y-10b-seer-in1k": ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010),
}
__lowercase = NameToOurModelFuncMap()
__lowercase = NameToFromModelFuncMap()
# add seer weights logic
def load_using_classy_vision(UpperCamelCase_ : str, UpperCamelCase_ : Callable[[], nn.Module]) -> Tuple[nn.Module, Dict]:
__lowercase = torch.hub.load_state_dict_from_url(UpperCamelCase_, model_dir=str(UpperCamelCase_), map_location="cpu")
__lowercase = model_func()
# check if we have a head, if yes add it
__lowercase = files["classy_state_dict"]["base_model"]["model"]
__lowercase = model_state_dict["trunk"]
model.load_state_dict(UpperCamelCase_)
return model.eval(), model_state_dict["heads"]
# pretrained
__lowercase = partial(
UpperCamelCase_, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch", lambda: FakeRegNetVisslWrapper(RegNetYaagf()), )
__lowercase = partial(
UpperCamelCase_, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch", lambda: FakeRegNetVisslWrapper(RegNetYaagf()), )
__lowercase = partial(
UpperCamelCase_, "https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch", lambda: FakeRegNetVisslWrapper(RegNetYaaagf()), )
__lowercase = partial(
UpperCamelCase_, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch", lambda: FakeRegNetVisslWrapper(
RegNet(RegNetParams(depth=27, group_width=1010, w_a=1744, w_a=620.83, w_m=2.52))), )
# IN1K finetuned
__lowercase = partial(
UpperCamelCase_, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch", lambda: FakeRegNetVisslWrapper(RegNetYaagf()), )
__lowercase = partial(
UpperCamelCase_, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch", lambda: FakeRegNetVisslWrapper(RegNetYaagf()), )
__lowercase = partial(
UpperCamelCase_, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch", lambda: FakeRegNetVisslWrapper(RegNetYaaagf()), )
__lowercase = partial(
UpperCamelCase_, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch", lambda: FakeRegNetVisslWrapper(
RegNet(RegNetParams(depth=27, group_width=1010, w_a=1744, w_a=620.83, w_m=2.52))), )
if model_name:
convert_weight_and_push(
UpperCamelCase_, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], names_to_config[model_name], UpperCamelCase_, UpperCamelCase_, )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(
UpperCamelCase_, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, )
return config, expected_shape
if __name__ == "__main__":
_a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default=None,
type=str,
help=(
'The name of the model you wish to convert, it must be one of the supported regnet* architecture,'
' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.'
),
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=Path,
required=True,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub',
default=True,
type=bool,
required=False,
help='If True, push model and image processor to the hub.',
)
_a = parser.parse_args()
_a = args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 17 |
"""simple docstring"""
from scipy.stats import spearmanr
import datasets
_a = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n'
_a = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n'
_a = r'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class _lowerCAmelCase ( datasets.Metric ):
"""simple docstring"""
def _lowercase ( self : Dict ):
return datasets.MetricInfo(
description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features(
{
"predictions": datasets.Value("float" ),
"references": datasets.Value("float" ),
} ), reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"], )
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int]=False ):
__lowercase = spearmanr(UpperCAmelCase__, UpperCAmelCase__ )
if return_pvalue:
return {"spearmanr": results[0], "spearmanr_pvalue": results[1]}
else:
return {"spearmanr": results[0]}
| 17 | 1 |
"""simple docstring"""
import warnings
from typing import Dict
import numpy as np
from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available
from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
def _A ( UpperCamelCase_ : str) -> Union[str, Any]:
'''simple docstring'''
return 1.0 / (1.0 + np.exp(-_outputs))
def _A ( UpperCamelCase_ : Tuple) -> Optional[Any]:
'''simple docstring'''
__lowercase = np.max(_outputs, axis=-1, keepdims=UpperCamelCase_)
__lowercase = np.exp(_outputs - maxes)
return shifted_exp / shifted_exp.sum(axis=-1, keepdims=UpperCamelCase_)
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
__UpperCAmelCase : List[str] = "sigmoid"
__UpperCAmelCase : int = "softmax"
__UpperCAmelCase : Tuple = "none"
@add_end_docstrings(
lowercase ,R"\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `\"default\"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `\"default\"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `\"sigmoid\"`: Applies the sigmoid function on the output.\n - `\"softmax\"`: Applies the softmax function on the output.\n - `\"none\"`: Does not apply any function on the output.\n " ,)
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = False
__UpperCAmelCase : int = ClassificationFunction.NONE
def __init__( self : int, **UpperCAmelCase__ : Union[str, Any] ):
super().__init__(**UpperCAmelCase__ )
self.check_model_type(
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if self.framework == "tf"
else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING )
def _lowercase ( self : List[str], UpperCAmelCase__ : str=None, UpperCAmelCase__ : Dict=None, UpperCAmelCase__ : Optional[Any]="", **UpperCAmelCase__ : List[Any] ):
# Using "" as default argument because we're going to use `top_k=None` in user code to declare
# "No top_k"
__lowercase = tokenizer_kwargs
__lowercase = {}
if hasattr(self.model.config, "return_all_scores" ) and return_all_scores is None:
__lowercase = self.model.config.return_all_scores
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ) or top_k is None:
__lowercase = top_k
__lowercase = False
elif return_all_scores is not None:
warnings.warn(
"`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of"
" `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.", UpperCAmelCase__, )
if return_all_scores:
__lowercase = None
else:
__lowercase = 1
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
__lowercase = ClassificationFunction[function_to_apply.upper()]
if function_to_apply is not None:
__lowercase = function_to_apply
return preprocess_params, {}, postprocess_params
def __call__( self : Union[str, Any], *UpperCAmelCase__ : List[Any], **UpperCAmelCase__ : List[str] ):
__lowercase = super().__call__(*UpperCAmelCase__, **UpperCAmelCase__ )
# TODO try and retrieve it in a nicer way from _sanitize_parameters.
__lowercase = "top_k" not in kwargs
if isinstance(args[0], UpperCAmelCase__ ) and _legacy:
# This pipeline is odd, and return a list when single item is run
return [result]
else:
return result
def _lowercase ( self : List[str], UpperCAmelCase__ : str, **UpperCAmelCase__ : Union[str, Any] ):
__lowercase = self.framework
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
return self.tokenizer(**UpperCAmelCase__, return_tensors=UpperCAmelCase__, **UpperCAmelCase__ )
elif isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and len(UpperCAmelCase__ ) == 1 and isinstance(inputs[0], UpperCAmelCase__ ) and len(inputs[0] ) == 2:
# It used to be valid to use a list of list of list for text pairs, keeping this path for BC
return self.tokenizer(
text=inputs[0][0], text_pair=inputs[0][1], return_tensors=UpperCAmelCase__, **UpperCAmelCase__ )
elif isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
# This is likely an invalid usage of the pipeline attempting to pass text pairs.
raise ValueError(
"The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a"
" dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair." )
return self.tokenizer(UpperCAmelCase__, return_tensors=UpperCAmelCase__, **UpperCAmelCase__ )
def _lowercase ( self : List[Any], UpperCAmelCase__ : List[str] ):
return self.model(**UpperCAmelCase__ )
def _lowercase ( self : Optional[int], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[str]=None, UpperCAmelCase__ : List[str]=1, UpperCAmelCase__ : Dict=True ):
# `_legacy` is used to determine if we're running the naked pipeline and in backward
# compatibility mode, or if running the pipeline with `pipeline(..., top_k=1)` we're running
# the more natural result containing the list.
# Default value before `set_parameters`
if function_to_apply is None:
if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1:
__lowercase = ClassificationFunction.SIGMOID
elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1:
__lowercase = ClassificationFunction.SOFTMAX
elif hasattr(self.model.config, "function_to_apply" ) and function_to_apply is None:
__lowercase = self.model.config.function_to_apply
else:
__lowercase = ClassificationFunction.NONE
__lowercase = model_outputs["logits"][0]
__lowercase = outputs.numpy()
if function_to_apply == ClassificationFunction.SIGMOID:
__lowercase = sigmoid(UpperCAmelCase__ )
elif function_to_apply == ClassificationFunction.SOFTMAX:
__lowercase = softmax(UpperCAmelCase__ )
elif function_to_apply == ClassificationFunction.NONE:
__lowercase = outputs
else:
raise ValueError(F"""Unrecognized `function_to_apply` argument: {function_to_apply}""" )
if top_k == 1 and _legacy:
return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()}
__lowercase = [
{"label": self.model.config.idalabel[i], "score": score.item()} for i, score in enumerate(UpperCAmelCase__ )
]
if not _legacy:
dict_scores.sort(key=lambda UpperCAmelCase__ : x["score"], reverse=UpperCAmelCase__ )
if top_k is not None:
__lowercase = dict_scores[:top_k]
return dict_scores
| 17 |
"""simple docstring"""
from collections.abc import Sequence
def _A ( UpperCamelCase_ : Sequence[float], UpperCamelCase_ : float) -> float:
'''simple docstring'''
return sum(c * (x**i) for i, c in enumerate(UpperCamelCase_))
def _A ( UpperCamelCase_ : Sequence[float], UpperCamelCase_ : float) -> float:
'''simple docstring'''
__lowercase = 0.0
for coeff in reversed(UpperCamelCase_):
__lowercase = result * x + coeff
return result
if __name__ == "__main__":
_a = (0.0, 0.0, 5.0, 9.3, 7.0)
_a = 10.0
print(evaluate_poly(poly, x))
print(horner(poly, x))
| 17 | 1 |
"""simple docstring"""
import numpy as np
# Importing the Keras libraries and packages
import tensorflow as tf
from tensorflow.keras import layers, models
if __name__ == "__main__":
# Initialising the CNN
# (Sequential- Building the model layer by layer)
_a = models.Sequential()
# Step 1 - Convolution
# Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel
# (3,3) is the kernel size (filter matrix)
classifier.add(
layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='relu')
)
# Step 2 - Pooling
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Adding a second convolutional layer
classifier.add(layers.ConvaD(32, (3, 3), activation='relu'))
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Step 3 - Flattening
classifier.add(layers.Flatten())
# Step 4 - Full connection
classifier.add(layers.Dense(units=1_28, activation='relu'))
classifier.add(layers.Dense(units=1, activation='sigmoid'))
# Compiling the CNN
classifier.compile(
optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']
)
# Part 2 - Fitting the CNN to the images
# Load Trained model weights
# from keras.models import load_model
# regressor=load_model('cnn.h5')
_a = tf.keras.preprocessing.image.ImageDataGenerator(
rescale=1.0 / 2_55, shear_range=0.2, zoom_range=0.2, horizontal_flip=True
)
_a = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_55)
_a = train_datagen.flow_from_directory(
'dataset/training_set', target_size=(64, 64), batch_size=32, class_mode='binary'
)
_a = test_datagen.flow_from_directory(
'dataset/test_set', target_size=(64, 64), batch_size=32, class_mode='binary'
)
classifier.fit_generator(
training_set, steps_per_epoch=5, epochs=30, validation_data=test_set
)
classifier.save('cnn.h5')
# Part 3 - Making new predictions
_a = tf.keras.preprocessing.image.load_img(
'dataset/single_prediction/image.png', target_size=(64, 64)
)
_a = tf.keras.preprocessing.image.img_to_array(test_image)
_a = np.expand_dims(test_image, axis=0)
_a = classifier.predict(test_image)
# training_set.class_indices
if result[0][0] == 0:
_a = 'Normal'
if result[0][0] == 1:
_a = 'Abnormality detected'
| 17 |
"""simple docstring"""
import argparse
import pytorch_lightning as pl
import torch
from torch import nn
from transformers import LongformerForQuestionAnswering, LongformerModel
class _lowerCAmelCase ( pl.LightningModule ):
"""simple docstring"""
def __init__( self : Optional[Any], UpperCAmelCase__ : str ):
super().__init__()
__lowercase = model
__lowercase = 2
__lowercase = nn.Linear(self.model.config.hidden_size, self.num_labels )
def _lowercase ( self : Optional[int] ):
pass
def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str, UpperCamelCase_ : str) -> str:
'''simple docstring'''
__lowercase = LongformerModel.from_pretrained(UpperCamelCase_)
__lowercase = LightningModel(UpperCamelCase_)
__lowercase = torch.load(UpperCamelCase_, map_location=torch.device("cpu"))
lightning_model.load_state_dict(ckpt["state_dict"])
# init longformer question answering model
__lowercase = LongformerForQuestionAnswering.from_pretrained(UpperCamelCase_)
# transfer weights
longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict())
longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict())
longformer_for_qa.eval()
# save model
longformer_for_qa.save_pretrained(UpperCamelCase_)
print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""")
if __name__ == "__main__":
_a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--longformer_model',
default=None,
type=str,
required=True,
help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.',
)
parser.add_argument(
'--longformer_question_answering_ckpt_path',
default=None,
type=str,
required=True,
help='Path the official PyTorch Lightning Checkpoint.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
_a = parser.parse_args()
convert_longformer_qa_checkpoint_to_pytorch(
args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path
)
| 17 | 1 |
"""simple docstring"""
_a = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n'
_a = [{'type': 'code', 'content': INSTALL_CONTENT}]
_a = {
'{processor_class}': 'FakeProcessorClass',
'{model_class}': 'FakeModelClass',
'{object_class}': 'FakeObjectClass',
}
| 17 |
"""simple docstring"""
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("TEST_SAGEMAKER" ,"False" ) ) is not True ,reason="Skipping test because should only be run when releasing minor transformers version" ,)
@pytest.mark.usefixtures("sm_env" )
@parameterized_class(
[
{
"framework": "pytorch",
"script": "run_glue_model_parallelism.py",
"model_name_or_path": "roberta-large",
"instance_type": "ml.p3dn.24xlarge",
"results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2},
},
{
"framework": "pytorch",
"script": "run_glue.py",
"model_name_or_path": "roberta-large",
"instance_type": "ml.p3dn.24xlarge",
"results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2},
},
] )
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def _lowercase ( self : Optional[int] ):
if self.framework == "pytorch":
subprocess.run(
F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split(), encoding="utf-8", check=UpperCAmelCase__, )
assert hasattr(self, "env" )
def _lowercase ( self : str, UpperCAmelCase__ : List[Any] ):
# configuration for running training on smdistributed Model Parallel
__lowercase = {
"enabled": True,
"processes_per_host": 8,
}
__lowercase = {
"enabled": True,
"parameters": {
"microbatches": 4,
"placement_strategy": "spread",
"pipeline": "interleaved",
"optimize": "speed",
"partitions": 4,
"ddp": True,
},
}
__lowercase = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options}
__lowercase = "trainer" if self.script == "run_glue.py" else "smtrainer"
# creates estimator
return HuggingFace(
entry_point=self.script, source_dir=self.env.test_path, role=self.env.role, image_uri=self.env.image_uri, base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""", instance_count=UpperCAmelCase__, instance_type=self.instance_type, debugger_hook_config=UpperCAmelCase__, hyperparameters={
**self.env.hyperparameters,
"model_name_or_path": self.model_name_or_path,
"max_steps": 5_0_0,
}, metric_definitions=self.env.metric_definitions, distribution=UpperCAmelCase__, py_version="py36", )
def _lowercase ( self : Tuple, UpperCAmelCase__ : int ):
TrainingJobAnalytics(UpperCAmelCase__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" )
@parameterized.expand([(1,)] )
def _lowercase ( self : str, UpperCAmelCase__ : Union[str, Any] ):
# create estimator
__lowercase = self.create_estimator(UpperCAmelCase__ )
# run training
estimator.fit()
# result dataframe
__lowercase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
__lowercase = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] )
__lowercase = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
__lowercase = (
Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds", 9_9_9_9_9_9 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy )
assert all(t <= self.results["eval_loss"] for t in eval_loss )
# dump tests result into json file to share in PR
with open(F"""{estimator.latest_training_job.name}.json""", "w" ) as outfile:
json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss}, UpperCAmelCase__ )
| 17 | 1 |
"""simple docstring"""
import numpy as np
import torch
from torch.nn import CrossEntropyLoss
from transformers import AutoModelForCausalLM, AutoTokenizer
import datasets
from datasets import logging
_a = '\\n\n'
_a = '\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n'
_a = '\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 78.22\n >>> print(round(results["perplexities"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = datasets.load_dataset("wikitext",\n ... "wikitext-2-raw-v1",\n ... split="test")["text"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 60.35\n >>> print(round(results["perplexities"][0], 2))\n 81.12\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class _lowerCAmelCase ( datasets.Metric ):
"""simple docstring"""
def _lowercase ( self : Optional[Any] ):
return datasets.MetricInfo(
description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features(
{
"input_texts": datasets.Value("string" ),
} ), reference_urls=["https://huggingface.co/docs/transformers/perplexity"], )
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : Any, UpperCAmelCase__ : int = 1_6, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Dict=None ):
if device is not None:
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
if device == "gpu":
__lowercase = "cuda"
else:
__lowercase = "cuda" if torch.cuda.is_available() else "cpu"
__lowercase = AutoModelForCausalLM.from_pretrained(UpperCAmelCase__ )
__lowercase = model.to(UpperCAmelCase__ )
__lowercase = AutoTokenizer.from_pretrained(UpperCAmelCase__ )
# if batch_size > 1 (which generally leads to padding being required), and
# if there is not an already assigned pad_token, assign an existing
# special token to also be the padding token
if tokenizer.pad_token is None and batch_size > 1:
__lowercase = list(tokenizer.special_tokens_map_extended.values() )
# check that the model already has at least one special token defined
assert (
len(UpperCAmelCase__ ) > 0
), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1."
# assign one of the special tokens to also be the pad token
tokenizer.add_special_tokens({"pad_token": existing_special_tokens[0]} )
if add_start_token:
# leave room for <BOS> token to be added:
assert (
tokenizer.bos_token is not None
), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False"
__lowercase = model.config.max_length - 1
else:
__lowercase = model.config.max_length
__lowercase = tokenizer(
UpperCAmelCase__, add_special_tokens=UpperCAmelCase__, padding=UpperCAmelCase__, truncation=UpperCAmelCase__, max_length=UpperCAmelCase__, return_tensors="pt", return_attention_mask=UpperCAmelCase__, ).to(UpperCAmelCase__ )
__lowercase = encodings["input_ids"]
__lowercase = encodings["attention_mask"]
# check that each input is long enough:
if add_start_token:
assert torch.all(torch.ge(attn_masks.sum(1 ), 1 ) ), "Each input text must be at least one token long."
else:
assert torch.all(
torch.ge(attn_masks.sum(1 ), 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings."
__lowercase = []
__lowercase = CrossEntropyLoss(reduction="none" )
for start_index in logging.tqdm(range(0, len(UpperCAmelCase__ ), UpperCAmelCase__ ) ):
__lowercase = min(start_index + batch_size, len(UpperCAmelCase__ ) )
__lowercase = encoded_texts[start_index:end_index]
__lowercase = attn_masks[start_index:end_index]
if add_start_token:
__lowercase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(UpperCAmelCase__ )
__lowercase = torch.cat([bos_tokens_tensor, encoded_batch], dim=1 )
__lowercase = torch.cat(
[torch.ones(bos_tokens_tensor.size(), dtype=torch.intaa ).to(UpperCAmelCase__ ), attn_mask], dim=1 )
__lowercase = encoded_batch
with torch.no_grad():
__lowercase = model(UpperCAmelCase__, attention_mask=UpperCAmelCase__ ).logits
__lowercase = out_logits[..., :-1, :].contiguous()
__lowercase = labels[..., 1:].contiguous()
__lowercase = attn_mask[..., 1:].contiguous()
__lowercase = torch.expa(
(loss_fct(shift_logits.transpose(1, 2 ), UpperCAmelCase__ ) * shift_attention_mask_batch).sum(1 )
/ shift_attention_mask_batch.sum(1 ) )
ppls += perplexity_batch.tolist()
return {"perplexities": ppls, "mean_perplexity": np.mean(UpperCAmelCase__ )}
| 17 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor
from .base import PipelineTool
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
__UpperCAmelCase : Tuple = "openai/whisper-base"
__UpperCAmelCase : Union[str, Any] = (
"This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the "
"transcribed text."
)
__UpperCAmelCase : List[str] = "transcriber"
__UpperCAmelCase : Optional[Any] = WhisperProcessor
__UpperCAmelCase : str = WhisperForConditionalGeneration
__UpperCAmelCase : List[str] = ["audio"]
__UpperCAmelCase : Tuple = ["text"]
def _lowercase ( self : str, UpperCAmelCase__ : int ):
return self.pre_processor(UpperCAmelCase__, return_tensors="pt" ).input_features
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Any] ):
return self.model.generate(inputs=UpperCAmelCase__ )
def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[int] ):
return self.pre_processor.batch_decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ )[0]
| 17 | 1 |
"""simple docstring"""
import unittest
import torch
from torch import nn
from diffusers.models.activations import get_activation
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def _lowercase ( self : List[str] ):
__lowercase = get_activation("swish" )
self.assertIsInstance(UpperCAmelCase__, nn.SiLU )
self.assertEqual(act(torch.tensor(-1_0_0, dtype=torch.floataa ) ).item(), 0 )
self.assertNotEqual(act(torch.tensor(-1, dtype=torch.floataa ) ).item(), 0 )
self.assertEqual(act(torch.tensor(0, dtype=torch.floataa ) ).item(), 0 )
self.assertEqual(act(torch.tensor(2_0, dtype=torch.floataa ) ).item(), 2_0 )
def _lowercase ( self : int ):
__lowercase = get_activation("silu" )
self.assertIsInstance(UpperCAmelCase__, nn.SiLU )
self.assertEqual(act(torch.tensor(-1_0_0, dtype=torch.floataa ) ).item(), 0 )
self.assertNotEqual(act(torch.tensor(-1, dtype=torch.floataa ) ).item(), 0 )
self.assertEqual(act(torch.tensor(0, dtype=torch.floataa ) ).item(), 0 )
self.assertEqual(act(torch.tensor(2_0, dtype=torch.floataa ) ).item(), 2_0 )
def _lowercase ( self : int ):
__lowercase = get_activation("mish" )
self.assertIsInstance(UpperCAmelCase__, nn.Mish )
self.assertEqual(act(torch.tensor(-2_0_0, dtype=torch.floataa ) ).item(), 0 )
self.assertNotEqual(act(torch.tensor(-1, dtype=torch.floataa ) ).item(), 0 )
self.assertEqual(act(torch.tensor(0, dtype=torch.floataa ) ).item(), 0 )
self.assertEqual(act(torch.tensor(2_0, dtype=torch.floataa ) ).item(), 2_0 )
def _lowercase ( self : int ):
__lowercase = get_activation("gelu" )
self.assertIsInstance(UpperCAmelCase__, nn.GELU )
self.assertEqual(act(torch.tensor(-1_0_0, dtype=torch.floataa ) ).item(), 0 )
self.assertNotEqual(act(torch.tensor(-1, dtype=torch.floataa ) ).item(), 0 )
self.assertEqual(act(torch.tensor(0, dtype=torch.floataa ) ).item(), 0 )
self.assertEqual(act(torch.tensor(2_0, dtype=torch.floataa ) ).item(), 2_0 )
| 17 |
"""simple docstring"""
import inspect
from typing import Optional, Union
import numpy as np
import PIL
import torch
from torch.nn import functional as F
from torchvision import transforms
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
DPMSolverMultistepScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.utils import (
PIL_INTERPOLATION,
randn_tensor,
)
def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str]) -> Optional[int]:
'''simple docstring'''
if isinstance(UpperCamelCase_, torch.Tensor):
return image
elif isinstance(UpperCamelCase_, PIL.Image.Image):
__lowercase = [image]
if isinstance(image[0], PIL.Image.Image):
__lowercase = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image]
__lowercase = np.concatenate(UpperCamelCase_, axis=0)
__lowercase = np.array(UpperCamelCase_).astype(np.floataa) / 255.0
__lowercase = image.transpose(0, 3, 1, 2)
__lowercase = 2.0 * image - 1.0
__lowercase = torch.from_numpy(UpperCamelCase_)
elif isinstance(image[0], torch.Tensor):
__lowercase = torch.cat(UpperCamelCase_, dim=0)
return image
def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : str, UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[Any]=0.9_995) -> int:
'''simple docstring'''
if not isinstance(UpperCamelCase_, np.ndarray):
__lowercase = True
__lowercase = va.device
__lowercase = va.cpu().numpy()
__lowercase = va.cpu().numpy()
__lowercase = np.sum(va * va / (np.linalg.norm(UpperCamelCase_) * np.linalg.norm(UpperCamelCase_)))
if np.abs(UpperCamelCase_) > DOT_THRESHOLD:
__lowercase = (1 - t) * va + t * va
else:
__lowercase = np.arccos(UpperCamelCase_)
__lowercase = np.sin(UpperCamelCase_)
__lowercase = theta_a * t
__lowercase = np.sin(UpperCamelCase_)
__lowercase = np.sin(theta_a - theta_t) / sin_theta_a
__lowercase = sin_theta_t / sin_theta_a
__lowercase = sa * va + sa * va
if inputs_are_torch:
__lowercase = torch.from_numpy(UpperCamelCase_).to(UpperCamelCase_)
return va
def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Union[str, Any]) -> int:
'''simple docstring'''
__lowercase = F.normalize(UpperCamelCase_, dim=-1)
__lowercase = F.normalize(UpperCamelCase_, dim=-1)
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)
def _A ( UpperCamelCase_ : Optional[int], UpperCamelCase_ : str) -> Optional[int]:
'''simple docstring'''
for param in model.parameters():
__lowercase = value
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
def __init__( self : Dict, UpperCAmelCase__ : AutoencoderKL, UpperCAmelCase__ : CLIPTextModel, UpperCAmelCase__ : CLIPModel, UpperCAmelCase__ : CLIPTokenizer, UpperCAmelCase__ : UNetaDConditionModel, UpperCAmelCase__ : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler], UpperCAmelCase__ : CLIPFeatureExtractor, UpperCAmelCase__ : Union[str, Any]=None, UpperCAmelCase__ : List[str]=None, UpperCAmelCase__ : Any=None, ):
super().__init__()
self.register_modules(
vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, clip_model=UpperCAmelCase__, tokenizer=UpperCAmelCase__, unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, feature_extractor=UpperCAmelCase__, coca_model=UpperCAmelCase__, coca_tokenizer=UpperCAmelCase__, coca_transform=UpperCAmelCase__, )
__lowercase = (
feature_extractor.size
if isinstance(feature_extractor.size, UpperCAmelCase__ )
else feature_extractor.size["shortest_edge"]
)
__lowercase = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std )
set_requires_grad(self.text_encoder, UpperCAmelCase__ )
set_requires_grad(self.clip_model, UpperCAmelCase__ )
def _lowercase ( self : Tuple, UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ):
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
__lowercase = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(UpperCAmelCase__ )
def _lowercase ( self : int ):
self.enable_attention_slicing(UpperCAmelCase__ )
def _lowercase ( self : str ):
set_requires_grad(self.vae, UpperCAmelCase__ )
def _lowercase ( self : Any ):
set_requires_grad(self.vae, UpperCAmelCase__ )
def _lowercase ( self : Union[str, Any] ):
set_requires_grad(self.unet, UpperCAmelCase__ )
def _lowercase ( self : Any ):
set_requires_grad(self.unet, UpperCAmelCase__ )
def _lowercase ( self : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : Optional[Any] ):
# get the original timestep using init_timestep
__lowercase = min(int(num_inference_steps * strength ), UpperCAmelCase__ )
__lowercase = max(num_inference_steps - init_timestep, 0 )
__lowercase = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def _lowercase ( self : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : int=None ):
if not isinstance(UpperCAmelCase__, torch.Tensor ):
raise ValueError(F"""`image` has to be of type `torch.Tensor` but is {type(UpperCAmelCase__ )}""" )
__lowercase = image.to(device=UpperCAmelCase__, dtype=UpperCAmelCase__ )
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
__lowercase = [
self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(UpperCAmelCase__ )
]
__lowercase = torch.cat(UpperCAmelCase__, dim=0 )
else:
__lowercase = self.vae.encode(UpperCAmelCase__ ).latent_dist.sample(UpperCAmelCase__ )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
__lowercase = 0.18_215 * init_latents
__lowercase = init_latents.repeat_interleave(UpperCAmelCase__, dim=0 )
__lowercase = randn_tensor(init_latents.shape, generator=UpperCAmelCase__, device=UpperCAmelCase__, dtype=UpperCAmelCase__ )
# get latents
__lowercase = self.scheduler.add_noise(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = init_latents
return latents
def _lowercase ( self : Optional[int], UpperCAmelCase__ : Dict ):
__lowercase = self.coca_transform(UpperCAmelCase__ ).unsqueeze(0 )
with torch.no_grad(), torch.cuda.amp.autocast():
__lowercase = self.coca_model.generate(transformed_image.to(device=self.device, dtype=self.coca_model.dtype ) )
__lowercase = self.coca_tokenizer.decode(generated[0].cpu().numpy() )
return generated.split("<end_of_text>" )[0].replace("<start_of_text>", "" ).rstrip(" .," )
def _lowercase ( self : Tuple, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Tuple ):
__lowercase = self.feature_extractor.preprocess(UpperCAmelCase__ )
__lowercase = torch.from_numpy(clip_image_input["pixel_values"][0] ).unsqueeze(0 ).to(self.device ).half()
__lowercase = self.clip_model.get_image_features(UpperCAmelCase__ )
__lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=UpperCAmelCase__ )
__lowercase = image_embeddings_clip.repeat_interleave(UpperCAmelCase__, dim=0 )
return image_embeddings_clip
@torch.enable_grad()
def _lowercase ( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[int], ):
__lowercase = latents.detach().requires_grad_()
__lowercase = self.scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ )
# predict the noise residual
__lowercase = self.unet(UpperCAmelCase__, UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__ ).sample
if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ):
__lowercase = self.scheduler.alphas_cumprod[timestep]
__lowercase = 1 - alpha_prod_t
# compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
__lowercase = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5
__lowercase = torch.sqrt(UpperCAmelCase__ )
__lowercase = pred_original_sample * (fac) + latents * (1 - fac)
elif isinstance(self.scheduler, UpperCAmelCase__ ):
__lowercase = self.scheduler.sigmas[index]
__lowercase = latents - sigma * noise_pred
else:
raise ValueError(F"""scheduler type {type(self.scheduler )} not supported""" )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
__lowercase = 1 / 0.18_215 * sample
__lowercase = self.vae.decode(UpperCAmelCase__ ).sample
__lowercase = (image / 2 + 0.5).clamp(0, 1 )
__lowercase = transforms.Resize(self.feature_extractor_size )(UpperCAmelCase__ )
__lowercase = self.normalize(UpperCAmelCase__ ).to(latents.dtype )
__lowercase = self.clip_model.get_image_features(UpperCAmelCase__ )
__lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=UpperCAmelCase__ )
__lowercase = spherical_dist_loss(UpperCAmelCase__, UpperCAmelCase__ ).mean() * clip_guidance_scale
__lowercase = -torch.autograd.grad(UpperCAmelCase__, UpperCAmelCase__ )[0]
if isinstance(self.scheduler, UpperCAmelCase__ ):
__lowercase = latents.detach() + grads * (sigma**2)
__lowercase = noise_pred_original
else:
__lowercase = noise_pred_original - torch.sqrt(UpperCAmelCase__ ) * grads
return noise_pred, latents
@torch.no_grad()
def __call__( self : str, UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image], UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image], UpperCAmelCase__ : Optional[str] = None, UpperCAmelCase__ : Optional[str] = None, UpperCAmelCase__ : Optional[int] = 5_1_2, UpperCAmelCase__ : Optional[int] = 5_1_2, UpperCAmelCase__ : float = 0.6, UpperCAmelCase__ : Optional[int] = 5_0, UpperCAmelCase__ : Optional[float] = 7.5, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[float] = 1_0_0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : float = 0.8, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, ):
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and len(UpperCAmelCase__ ) != batch_size:
raise ValueError(F"""You have passed {batch_size} batch_size, but only {len(UpperCAmelCase__ )} generators.""" )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" )
if isinstance(UpperCAmelCase__, torch.Generator ) and batch_size > 1:
__lowercase = [generator] + [None] * (batch_size - 1)
__lowercase = [
("model", self.coca_model is None),
("tokenizer", self.coca_tokenizer is None),
("transform", self.coca_transform is None),
]
__lowercase = [x[0] for x in coca_is_none if x[1]]
__lowercase = ", ".join(UpperCAmelCase__ )
# generate prompts with coca model if prompt is None
if content_prompt is None:
if len(UpperCAmelCase__ ):
raise ValueError(
F"""Content prompt is None and CoCa [{coca_is_none_str}] is None."""
F"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" )
__lowercase = self.get_image_description(UpperCAmelCase__ )
if style_prompt is None:
if len(UpperCAmelCase__ ):
raise ValueError(
F"""Style prompt is None and CoCa [{coca_is_none_str}] is None."""
F""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" )
__lowercase = self.get_image_description(UpperCAmelCase__ )
# get prompt text embeddings for content and style
__lowercase = self.tokenizer(
UpperCAmelCase__, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=UpperCAmelCase__, return_tensors="pt", )
__lowercase = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0]
__lowercase = self.tokenizer(
UpperCAmelCase__, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=UpperCAmelCase__, return_tensors="pt", )
__lowercase = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0]
__lowercase = slerp(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
# duplicate text embeddings for each generation per prompt
__lowercase = text_embeddings.repeat_interleave(UpperCAmelCase__, dim=0 )
# set timesteps
__lowercase = "offset" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() )
__lowercase = {}
if accepts_offset:
__lowercase = 1
self.scheduler.set_timesteps(UpperCAmelCase__, **UpperCAmelCase__ )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
self.scheduler.timesteps.to(self.device )
__lowercase ,__lowercase = self.get_timesteps(UpperCAmelCase__, UpperCAmelCase__, self.device )
__lowercase = timesteps[:1].repeat(UpperCAmelCase__ )
# Preprocess image
__lowercase = preprocess(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = self.prepare_latents(
UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, text_embeddings.dtype, self.device, UpperCAmelCase__ )
__lowercase = preprocess(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = self.prepare_latents(
UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, text_embeddings.dtype, self.device, UpperCAmelCase__ )
__lowercase = slerp(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
if clip_guidance_scale > 0:
__lowercase = self.get_clip_image_embeddings(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = self.get_clip_image_embeddings(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = slerp(
UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
__lowercase = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
__lowercase = content_text_input.input_ids.shape[-1]
__lowercase = self.tokenizer([""], padding="max_length", max_length=UpperCAmelCase__, return_tensors="pt" )
__lowercase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt
__lowercase = uncond_embeddings.repeat_interleave(UpperCAmelCase__, dim=0 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
__lowercase = torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
__lowercase = (batch_size, self.unet.config.in_channels, height // 8, width // 8)
__lowercase = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not work reproducibly on mps
__lowercase = torch.randn(UpperCAmelCase__, generator=UpperCAmelCase__, device="cpu", dtype=UpperCAmelCase__ ).to(
self.device )
else:
__lowercase = torch.randn(UpperCAmelCase__, generator=UpperCAmelCase__, device=self.device, dtype=UpperCAmelCase__ )
else:
if latents.shape != latents_shape:
raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" )
__lowercase = latents.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
__lowercase = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
__lowercase = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
__lowercase = {}
if accepts_eta:
__lowercase = eta
# check if the scheduler accepts generator
__lowercase = "generator" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
if accepts_generator:
__lowercase = generator
with self.progress_bar(total=UpperCAmelCase__ ):
for i, t in enumerate(UpperCAmelCase__ ):
# expand the latents if we are doing classifier free guidance
__lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
__lowercase = self.scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ )
# predict the noise residual
__lowercase = self.unet(UpperCAmelCase__, UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__ ).sample
# perform classifier free guidance
if do_classifier_free_guidance:
__lowercase ,__lowercase = noise_pred.chunk(2 )
__lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# perform clip guidance
if clip_guidance_scale > 0:
__lowercase = (
text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings
)
__lowercase ,__lowercase = self.cond_fn(
UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, )
# compute the previous noisy sample x_t -> x_t-1
__lowercase = self.scheduler.step(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, **UpperCAmelCase__ ).prev_sample
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
__lowercase = 1 / 0.18_215 * latents
__lowercase = self.vae.decode(UpperCAmelCase__ ).sample
__lowercase = (image / 2 + 0.5).clamp(0, 1 )
__lowercase = image.cpu().permute(0, 2, 3, 1 ).numpy()
if output_type == "pil":
__lowercase = self.numpy_to_pil(UpperCAmelCase__ )
if not return_dict:
return (image, None)
return StableDiffusionPipelineOutput(images=UpperCAmelCase__, nsfw_content_detected=UpperCAmelCase__ )
| 17 | 1 |
"""simple docstring"""
from __future__ import annotations
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Optional[Any], UpperCAmelCase__ : list[list[int]] ):
__lowercase = TypeError(
"Matrices must be formed from a list of zero or more lists containing at "
"least one and the same number of values, each of which must be of type "
"int or float." )
if len(UpperCAmelCase__ ) != 0:
__lowercase = len(rows[0] )
if cols == 0:
raise error
for row in rows:
if len(UpperCAmelCase__ ) != cols:
raise error
for value in row:
if not isinstance(UpperCAmelCase__, (int, float) ):
raise error
__lowercase = rows
else:
__lowercase = []
def _lowercase ( self : int ):
return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )]
@property
def _lowercase ( self : str ):
return len(self.rows )
@property
def _lowercase ( self : str ):
return len(self.rows[0] )
@property
def _lowercase ( self : List[str] ):
return (self.num_rows, self.num_columns)
@property
def _lowercase ( self : int ):
return self.order[0] == self.order[1]
def _lowercase ( self : Union[str, Any] ):
__lowercase = [
[0 if column_num != row_num else 1 for column_num in range(self.num_rows )]
for row_num in range(self.num_rows )
]
return Matrix(UpperCAmelCase__ )
def _lowercase ( self : List[Any] ):
if not self.is_square:
return 0
if self.order == (0, 0):
return 1
if self.order == (1, 1):
return int(self.rows[0][0] )
if self.order == (2, 2):
return int(
(self.rows[0][0] * self.rows[1][1])
- (self.rows[0][1] * self.rows[1][0]) )
else:
return sum(
self.rows[0][column] * self.cofactors().rows[0][column]
for column in range(self.num_columns ) )
def _lowercase ( self : Dict ):
return bool(self.determinant() )
def _lowercase ( self : Tuple, UpperCAmelCase__ : int, UpperCAmelCase__ : int ):
__lowercase = [
[
self.rows[other_row][other_column]
for other_column in range(self.num_columns )
if other_column != column
]
for other_row in range(self.num_rows )
if other_row != row
]
return Matrix(UpperCAmelCase__ ).determinant()
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : int ):
if (row + column) % 2 == 0:
return self.get_minor(UpperCAmelCase__, UpperCAmelCase__ )
return -1 * self.get_minor(UpperCAmelCase__, UpperCAmelCase__ )
def _lowercase ( self : Optional[int] ):
return Matrix(
[
[self.get_minor(UpperCAmelCase__, UpperCAmelCase__ ) for column in range(self.num_columns )]
for row in range(self.num_rows )
] )
def _lowercase ( self : Tuple ):
return Matrix(
[
[
self.minors().rows[row][column]
if (row + column) % 2 == 0
else self.minors().rows[row][column] * -1
for column in range(self.minors().num_columns )
]
for row in range(self.minors().num_rows )
] )
def _lowercase ( self : List[str] ):
__lowercase = [
[self.cofactors().rows[column][row] for column in range(self.num_columns )]
for row in range(self.num_rows )
]
return Matrix(UpperCAmelCase__ )
def _lowercase ( self : str ):
__lowercase = self.determinant()
if not determinant:
raise TypeError("Only matrices with a non-zero determinant have an inverse" )
return self.adjugate() * (1 / determinant)
def __repr__( self : List[str] ):
return str(self.rows )
def __str__( self : int ):
if self.num_rows == 0:
return "[]"
if self.num_rows == 1:
return "[[" + ". ".join(str(self.rows[0] ) ) + "]]"
return (
"["
+ "\n ".join(
[
"[" + ". ".join([str(UpperCAmelCase__ ) for value in row] ) + ".]"
for row in self.rows
] )
+ "]"
)
def _lowercase ( self : List[Any], UpperCAmelCase__ : list[int], UpperCAmelCase__ : int | None = None ):
__lowercase = TypeError("Row must be a list containing all ints and/or floats" )
if not isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
raise type_error
for value in row:
if not isinstance(UpperCAmelCase__, (int, float) ):
raise type_error
if len(UpperCAmelCase__ ) != self.num_columns:
raise ValueError(
"Row must be equal in length to the other rows in the matrix" )
if position is None:
self.rows.append(UpperCAmelCase__ )
else:
__lowercase = self.rows[0:position] + [row] + self.rows[position:]
def _lowercase ( self : List[str], UpperCAmelCase__ : list[int], UpperCAmelCase__ : int | None = None ):
__lowercase = TypeError(
"Column must be a list containing all ints and/or floats" )
if not isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
raise type_error
for value in column:
if not isinstance(UpperCAmelCase__, (int, float) ):
raise type_error
if len(UpperCAmelCase__ ) != self.num_rows:
raise ValueError(
"Column must be equal in length to the other columns in the matrix" )
if position is None:
__lowercase = [self.rows[i] + [column[i]] for i in range(self.num_rows )]
else:
__lowercase = [
self.rows[i][0:position] + [column[i]] + self.rows[i][position:]
for i in range(self.num_rows )
]
def __eq__( self : List[Any], UpperCAmelCase__ : object ):
if not isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
return NotImplemented
return self.rows == other.rows
def __ne__( self : Any, UpperCAmelCase__ : object ):
return not self == other
def __neg__( self : Tuple ):
return self * -1
def __add__( self : List[Any], UpperCAmelCase__ : Matrix ):
if self.order != other.order:
raise ValueError("Addition requires matrices of the same order" )
return Matrix(
[
[self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )]
for i in range(self.num_rows )
] )
def __sub__( self : int, UpperCAmelCase__ : Matrix ):
if self.order != other.order:
raise ValueError("Subtraction requires matrices of the same order" )
return Matrix(
[
[self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )]
for i in range(self.num_rows )
] )
def __mul__( self : str, UpperCAmelCase__ : Matrix | int | float ):
if isinstance(UpperCAmelCase__, (int, float) ):
return Matrix(
[[int(element * other ) for element in row] for row in self.rows] )
elif isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
if self.num_columns != other.num_rows:
raise ValueError(
"The number of columns in the first matrix must "
"be equal to the number of rows in the second" )
return Matrix(
[
[Matrix.dot_product(UpperCAmelCase__, UpperCAmelCase__ ) for column in other.columns()]
for row in self.rows
] )
else:
raise TypeError(
"A Matrix can only be multiplied by an int, float, or another matrix" )
def __pow__( self : Any, UpperCAmelCase__ : int ):
if not isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
raise TypeError("A Matrix can only be raised to the power of an int" )
if not self.is_square:
raise ValueError("Only square matrices can be raised to a power" )
if other == 0:
return self.identity()
if other < 0:
if self.is_invertable():
return self.inverse() ** (-other)
raise ValueError(
"Only invertable matrices can be raised to a negative power" )
__lowercase = self
for _ in range(other - 1 ):
result *= self
return result
@classmethod
def _lowercase ( cls : str, UpperCAmelCase__ : list[int], UpperCAmelCase__ : list[int] ):
return sum(row[i] * column[i] for i in range(len(UpperCAmelCase__ ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 17 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class _lowerCAmelCase :
"""simple docstring"""
__UpperCAmelCase : Tuple = XGLMConfig
__UpperCAmelCase : Optional[Any] = {}
__UpperCAmelCase : Union[str, Any] = "gelu"
def __init__( self : Optional[int], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int]=1_4, UpperCAmelCase__ : str=7, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[Any]=True, UpperCAmelCase__ : int=True, UpperCAmelCase__ : List[str]=9_9, UpperCAmelCase__ : Union[str, Any]=3_2, UpperCAmelCase__ : Union[str, Any]=2, UpperCAmelCase__ : Union[str, Any]=4, UpperCAmelCase__ : Tuple=3_7, UpperCAmelCase__ : List[Any]="gelu", UpperCAmelCase__ : List[str]=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Tuple=5_1_2, UpperCAmelCase__ : Optional[Any]=0.02, ):
__lowercase = parent
__lowercase = batch_size
__lowercase = seq_length
__lowercase = is_training
__lowercase = use_input_mask
__lowercase = use_labels
__lowercase = vocab_size
__lowercase = d_model
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = ffn_dim
__lowercase = activation_function
__lowercase = activation_dropout
__lowercase = attention_dropout
__lowercase = max_position_embeddings
__lowercase = initializer_range
__lowercase = None
__lowercase = 0
__lowercase = 2
__lowercase = 1
def _lowercase ( self : Union[str, Any] ):
return XGLMConfig.from_pretrained("facebook/xglm-564M" )
def _lowercase ( self : Tuple ):
__lowercase = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length], self.vocab_size ), clip_value_min=0, clip_value_max=3 )
__lowercase = None
if self.use_input_mask:
__lowercase = random_attention_mask([self.batch_size, self.seq_length] )
__lowercase = self.get_config()
__lowercase = floats_tensor([self.num_hidden_layers, self.num_attention_heads], 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def _lowercase ( self : List[Any] ):
return XGLMConfig(
vocab_size=self.vocab_size, d_model=self.hidden_size, num_layers=self.num_hidden_layers, attention_heads=self.num_attention_heads, ffn_dim=self.ffn_dim, activation_function=self.activation_function, activation_dropout=self.activation_dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, use_cache=UpperCAmelCase__, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, return_dict=UpperCAmelCase__, )
def _lowercase ( self : Dict ):
__lowercase = self.prepare_config_and_inputs()
(
(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,
) = config_and_inputs
__lowercase = {
"input_ids": input_ids,
"head_mask": head_mask,
}
return config, inputs_dict
@require_tf
class _lowerCAmelCase ( lowercase ,lowercase ,unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
__UpperCAmelCase : List[str] = (TFXGLMForCausalLM,) if is_tf_available() else ()
__UpperCAmelCase : Any = (
{"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {}
)
__UpperCAmelCase : Optional[Any] = False
__UpperCAmelCase : List[str] = False
__UpperCAmelCase : int = False
def _lowercase ( self : Optional[Any] ):
__lowercase = TFXGLMModelTester(self )
__lowercase = ConfigTester(self, config_class=UpperCAmelCase__, n_embd=3_7 )
def _lowercase ( self : Any ):
self.config_tester.run_common_tests()
@slow
def _lowercase ( self : List[str] ):
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowercase = TFXGLMModel.from_pretrained(UpperCAmelCase__ )
self.assertIsNotNone(UpperCAmelCase__ )
@unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." )
def _lowercase ( self : int ):
super().test_resize_token_embeddings()
@require_tf
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[int]=True ):
__lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
__lowercase = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]], dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
__lowercase = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1]
# fmt: on
__lowercase = model.generate(UpperCAmelCase__, do_sample=UpperCAmelCase__, num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist(), UpperCAmelCase__ )
@slow
def _lowercase ( self : List[Any] ):
__lowercase = XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
__lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
tf.random.set_seed(0 )
__lowercase = tokenizer("Today is a nice day and", return_tensors="tf" )
__lowercase = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(":/CPU:0" ):
__lowercase = model.generate(UpperCAmelCase__, do_sample=UpperCAmelCase__, seed=[7, 0] )
__lowercase = tokenizer.decode(output_ids[0], skip_special_tokens=UpperCAmelCase__ )
__lowercase = (
"Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due"
)
self.assertEqual(UpperCAmelCase__, UpperCAmelCase__ )
@slow
def _lowercase ( self : Dict ):
__lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
__lowercase = XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
__lowercase = "left"
# use different length sentences to test batching
__lowercase = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When",
"Hello, my dog is a little",
]
__lowercase = tokenizer(UpperCAmelCase__, return_tensors="tf", padding=UpperCAmelCase__ )
__lowercase = inputs["input_ids"]
__lowercase = model.generate(input_ids=UpperCAmelCase__, attention_mask=inputs["attention_mask"], max_new_tokens=1_2 )
__lowercase = tokenizer(sentences[0], return_tensors="tf" ).input_ids
__lowercase = model.generate(input_ids=UpperCAmelCase__, max_new_tokens=1_2 )
__lowercase = tokenizer(sentences[1], return_tensors="tf" ).input_ids
__lowercase = model.generate(input_ids=UpperCAmelCase__, max_new_tokens=1_2 )
__lowercase = tokenizer.batch_decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ )
__lowercase = tokenizer.decode(output_non_padded[0], skip_special_tokens=UpperCAmelCase__ )
__lowercase = tokenizer.decode(output_padded[0], skip_special_tokens=UpperCAmelCase__ )
__lowercase = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When left padding is applied, the sequence will be "
"a single",
"Hello, my dog is a little bit of a shy one, but he is very friendly",
]
self.assertListEqual(UpperCAmelCase__, UpperCAmelCase__ )
self.assertListEqual(UpperCAmelCase__, [non_padded_sentence, padded_sentence] )
| 17 | 1 |
"""simple docstring"""
from importlib import import_module
from .logging import get_logger
_a = get_logger(__name__)
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Optional[int], UpperCAmelCase__ : Tuple, UpperCAmelCase__ : str=None ):
__lowercase = attrs or []
if module is not None:
for key in module.__dict__:
if key in attrs or not key.startswith("__" ):
setattr(self, UpperCAmelCase__, getattr(UpperCAmelCase__, UpperCAmelCase__ ) )
__lowercase = module._original_module if isinstance(UpperCAmelCase__, _PatchedModuleObj ) else module
class _lowerCAmelCase :
"""simple docstring"""
__UpperCAmelCase : Any = []
def __init__( self : List[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : str, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : int=None ):
__lowercase = obj
__lowercase = target
__lowercase = new
__lowercase = target.split("." )[0]
__lowercase = {}
__lowercase = attrs or []
def __enter__( self : List[str] ):
*__lowercase ,__lowercase = self.target.split("." )
# Patch modules:
# it's used to patch attributes of submodules like "os.path.join";
# in this case we need to patch "os" and "os.path"
for i in range(len(UpperCAmelCase__ ) ):
try:
__lowercase = import_module(".".join(submodules[: i + 1] ) )
except ModuleNotFoundError:
continue
# We iterate over all the globals in self.obj in case we find "os" or "os.path"
for attr in self.obj.__dir__():
__lowercase = getattr(self.obj, UpperCAmelCase__ )
# We don't check for the name of the global, but rather if its value *is* "os" or "os.path".
# This allows to patch renamed modules like "from os import path as ospath".
if obj_attr is submodule or (
(isinstance(UpperCAmelCase__, _PatchedModuleObj ) and obj_attr._original_module is submodule)
):
__lowercase = obj_attr
# patch at top level
setattr(self.obj, UpperCAmelCase__, _PatchedModuleObj(UpperCAmelCase__, attrs=self.attrs ) )
__lowercase = getattr(self.obj, UpperCAmelCase__ )
# construct lower levels patches
for key in submodules[i + 1 :]:
setattr(UpperCAmelCase__, UpperCAmelCase__, _PatchedModuleObj(getattr(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ), attrs=self.attrs ) )
__lowercase = getattr(UpperCAmelCase__, UpperCAmelCase__ )
# finally set the target attribute
setattr(UpperCAmelCase__, UpperCAmelCase__, self.new )
# Patch attribute itself:
# it's used for builtins like "open",
# and also to patch "os.path.join" we may also need to patch "join"
# itself if it was imported as "from os.path import join".
if submodules: # if it's an attribute of a submodule like "os.path.join"
try:
__lowercase = getattr(import_module(".".join(UpperCAmelCase__ ) ), UpperCAmelCase__ )
except (AttributeError, ModuleNotFoundError):
return
# We iterate over all the globals in self.obj in case we find "os.path.join"
for attr in self.obj.__dir__():
# We don't check for the name of the global, but rather if its value *is* "os.path.join".
# This allows to patch renamed attributes like "from os.path import join as pjoin".
if getattr(self.obj, UpperCAmelCase__ ) is attr_value:
__lowercase = getattr(self.obj, UpperCAmelCase__ )
setattr(self.obj, UpperCAmelCase__, self.new )
elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open"
__lowercase = globals()["__builtins__"][target_attr]
setattr(self.obj, UpperCAmelCase__, self.new )
else:
raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""" )
def __exit__( self : str, *UpperCAmelCase__ : Tuple ):
for attr in list(self.original ):
setattr(self.obj, UpperCAmelCase__, self.original.pop(UpperCAmelCase__ ) )
def _lowercase ( self : Optional[int] ):
self.__enter__()
self._active_patches.append(self )
def _lowercase ( self : List[str] ):
try:
self._active_patches.remove(self )
except ValueError:
# If the patch hasn't been started this will fail
return None
return self.__exit__()
| 17 |
"""simple docstring"""
import time
from contextlib import contextmanager
from pathlib import Path
import pytest
import requests
from huggingface_hub.hf_api import HfApi, HfFolder
_a = '__DUMMY_TRANSFORMERS_USER__'
_a = 'Dummy User'
_a = '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'
_a = 'https://hub-ci.huggingface.co'
_a = CI_HUB_ENDPOINT + '/datasets/{repo_id}/resolve/{revision}/{path}'
_a = CI_HUB_ENDPOINT + '/{repo_id}/resolve/{revision}/{filename}'
_a = Path('~/.huggingface/hub_ci_token').expanduser()
@pytest.fixture
def _A ( UpperCamelCase_ : List[Any]) -> Tuple:
'''simple docstring'''
monkeypatch.setattr(
"huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE", UpperCamelCase_)
@pytest.fixture
def _A ( UpperCamelCase_ : int) -> List[Any]:
'''simple docstring'''
monkeypatch.setattr("datasets.config.HF_ENDPOINT", UpperCamelCase_)
monkeypatch.setattr("datasets.config.HUB_DATASETS_URL", UpperCamelCase_)
@pytest.fixture
def _A ( UpperCamelCase_ : str) -> Dict:
'''simple docstring'''
monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token", UpperCamelCase_)
@pytest.fixture
def _A ( UpperCamelCase_ : Optional[Any], UpperCamelCase_ : List[Any]) -> List[str]:
'''simple docstring'''
HfFolder.save_token(UpperCamelCase_)
yield
HfFolder.delete_token()
@pytest.fixture(scope="session")
def _A ( ) -> List[Any]:
'''simple docstring'''
return HfApi(endpoint=UpperCamelCase_)
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : HfApi) -> List[Any]:
'''simple docstring'''
__lowercase = HfFolder.get_token()
HfFolder.save_token(UpperCamelCase_)
yield CI_HUB_USER_TOKEN
if previous_token is not None:
HfFolder.save_token(UpperCamelCase_)
@pytest.fixture
def _A ( UpperCamelCase_ : Dict) -> int:
'''simple docstring'''
def _cleanup_repo(UpperCamelCase_ : Optional[int]):
hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset")
return _cleanup_repo
@pytest.fixture
def _A ( UpperCamelCase_ : str) -> Any:
'''simple docstring'''
@contextmanager
def _temporary_repo(UpperCamelCase_ : Any):
try:
yield repo_id
finally:
cleanup_repo(UpperCamelCase_)
return _temporary_repo
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : str, UpperCamelCase_ : Optional[int]) -> List[Any]:
'''simple docstring'''
__lowercase = F"""repo_txt_data-{int(time.time() * 10E3)}"""
__lowercase = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_)
hf_api.upload_file(
token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data/text_data.txt", repo_id=UpperCamelCase_, repo_type="dataset", )
yield repo_id
try:
hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset")
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : Any, UpperCamelCase_ : Dict) -> Optional[int]:
'''simple docstring'''
return hf_private_dataset_repo_txt_data_
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : int, UpperCamelCase_ : Optional[int]) -> int:
'''simple docstring'''
__lowercase = F"""repo_zipped_txt_data-{int(time.time() * 10E3)}"""
__lowercase = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_)
hf_api.upload_file(
token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data.zip", repo_id=UpperCamelCase_, repo_type="dataset", )
yield repo_id
try:
hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset")
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Dict, UpperCamelCase_ : Any) -> int:
'''simple docstring'''
return hf_private_dataset_repo_zipped_txt_data_
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : List[str], UpperCamelCase_ : List[str]) -> List[Any]:
'''simple docstring'''
__lowercase = F"""repo_zipped_img_data-{int(time.time() * 10E3)}"""
__lowercase = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_)
hf_api.upload_file(
token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data.zip", repo_id=UpperCamelCase_, repo_type="dataset", )
yield repo_id
try:
hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset")
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str], UpperCamelCase_ : List[str]) -> str:
'''simple docstring'''
return hf_private_dataset_repo_zipped_img_data_
| 17 | 1 |
"""simple docstring"""
import functools
import gc
import inspect
import torch
from .imports import is_npu_available, is_xpu_available
def _A ( *UpperCamelCase_ : List[Any]) -> List[str]:
'''simple docstring'''
if not isinstance(UpperCamelCase_, UpperCamelCase_):
__lowercase = list(UpperCamelCase_)
for i in range(len(UpperCamelCase_)):
__lowercase = None
gc.collect()
if is_xpu_available():
torch.xpu.empty_cache()
elif is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
return objects
def _A ( UpperCamelCase_ : Exception) -> bool:
'''simple docstring'''
__lowercase = [
"CUDA out of memory.", # CUDA OOM
"cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.", # CUDNN SNAFU
"DefaultCPUAllocator: can't allocate memory", # CPU OOM
]
if isinstance(UpperCamelCase_, UpperCamelCase_) and len(exception.args) == 1:
return any(err in exception.args[0] for err in _statements)
return False
def _A ( UpperCamelCase_ : callable = None, UpperCamelCase_ : int = 128) -> int:
'''simple docstring'''
if function is None:
return functools.partial(UpperCamelCase_, starting_batch_size=UpperCamelCase_)
__lowercase = starting_batch_size
def decorator(*UpperCamelCase_ : List[str], **UpperCamelCase_ : Optional[Any]):
nonlocal batch_size
gc.collect()
if is_xpu_available():
torch.xpu.empty_cache()
elif is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
__lowercase = list(inspect.signature(UpperCamelCase_).parameters.keys())
# Guard against user error
if len(UpperCamelCase_) < (len(UpperCamelCase_) + 1):
__lowercase = ", ".join([F"""{arg}={value}""" for arg, value in zip(params[1:], args[1:])])
raise TypeError(
F"""Batch size was passed into `{function.__name__}` as the first argument when called."""
F"""Remove this as the decorator already does so: `{function.__name__}({arg_str})`""")
while True:
if batch_size == 0:
raise RuntimeError("No executable batch size found, reached zero.")
try:
return function(UpperCamelCase_, *UpperCamelCase_, **UpperCamelCase_)
except Exception as e:
if should_reduce_batch_size(UpperCamelCase_):
gc.collect()
if is_xpu_available():
torch.xpu.empty_cache()
elif is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
batch_size //= 2
else:
raise
return decorator
| 17 |
"""simple docstring"""
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_a = logging.get_logger(__name__)
_a = {
'huggingface/time-series-transformer-tourism-monthly': (
'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json'
),
# See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer
}
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
__UpperCAmelCase : int = "time_series_transformer"
__UpperCAmelCase : Any = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
"num_hidden_layers": "encoder_layers",
}
def __init__( self : int, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : str = "student_t", UpperCAmelCase__ : str = "nll", UpperCAmelCase__ : int = 1, UpperCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7], UpperCAmelCase__ : Optional[Union[str, bool]] = "mean", UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : int = 3_2, UpperCAmelCase__ : int = 3_2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : str = "gelu", UpperCAmelCase__ : int = 6_4, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : int = 1_0_0, UpperCAmelCase__ : float = 0.02, UpperCAmelCase__ : Any=True, **UpperCAmelCase__ : List[str], ):
# time series specific configuration
__lowercase = prediction_length
__lowercase = context_length or prediction_length
__lowercase = distribution_output
__lowercase = loss
__lowercase = input_size
__lowercase = num_time_features
__lowercase = lags_sequence
__lowercase = scaling
__lowercase = num_dynamic_real_features
__lowercase = num_static_real_features
__lowercase = num_static_categorical_features
if cardinality and num_static_categorical_features > 0:
if len(UpperCAmelCase__ ) != num_static_categorical_features:
raise ValueError(
"The cardinality should be a list of the same length as `num_static_categorical_features`" )
__lowercase = cardinality
else:
__lowercase = [0]
if embedding_dimension and num_static_categorical_features > 0:
if len(UpperCAmelCase__ ) != num_static_categorical_features:
raise ValueError(
"The embedding dimension should be a list of the same length as `num_static_categorical_features`" )
__lowercase = embedding_dimension
else:
__lowercase = [min(5_0, (cat + 1) // 2 ) for cat in self.cardinality]
__lowercase = num_parallel_samples
# Transformer architecture configuration
__lowercase = input_size * len(UpperCAmelCase__ ) + self._number_of_features
__lowercase = d_model
__lowercase = encoder_attention_heads
__lowercase = decoder_attention_heads
__lowercase = encoder_ffn_dim
__lowercase = decoder_ffn_dim
__lowercase = encoder_layers
__lowercase = decoder_layers
__lowercase = dropout
__lowercase = attention_dropout
__lowercase = activation_dropout
__lowercase = encoder_layerdrop
__lowercase = decoder_layerdrop
__lowercase = activation_function
__lowercase = init_std
__lowercase = use_cache
super().__init__(is_encoder_decoder=UpperCAmelCase__, **UpperCAmelCase__ )
@property
def _lowercase ( self : Optional[Any] ):
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 17 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_a = {
'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a = [
'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'GraphormerForGraphClassification',
'GraphormerModel',
'GraphormerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_graphormer import (
GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
GraphormerForGraphClassification,
GraphormerModel,
GraphormerPreTrainedModel,
)
else:
import sys
_a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 17 |
"""simple docstring"""
import unittest
from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available
from transformers.pipelines import pipeline
from transformers.pipelines.document_question_answering import apply_tesseract
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_detectrona,
require_pytesseract,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
from transformers.image_utils import load_image
else:
class _lowerCAmelCase :
"""simple docstring"""
@staticmethod
def _lowercase ( *UpperCAmelCase__ : Tuple, **UpperCAmelCase__ : List[Any] ):
pass
def _A ( UpperCamelCase_ : Union[str, Any]) -> Any:
'''simple docstring'''
return None
# This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace,
# so we can expect it to be available.
_a = (
'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png'
)
@is_pipeline_test
@require_torch
@require_vision
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : Tuple = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING
@require_pytesseract
@require_vision
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Optional[Any] ):
__lowercase = pipeline(
"document-question-answering", model=UpperCAmelCase__, tokenizer=UpperCAmelCase__, image_processor=UpperCAmelCase__ )
__lowercase = INVOICE_URL
__lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) )
__lowercase = "What is the placebo?"
__lowercase = [
{
"image": load_image(UpperCAmelCase__ ),
"question": question,
},
{
"image": image,
"question": question,
},
{
"image": image,
"question": question,
"word_boxes": word_boxes,
},
]
return dqa_pipeline, examples
def _lowercase ( self : int, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Any ):
__lowercase = dqa_pipeline(UpperCAmelCase__, top_k=2 )
self.assertEqual(
UpperCAmelCase__, [
[
{"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ ), "start": ANY(UpperCAmelCase__ ), "end": ANY(UpperCAmelCase__ )},
{"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ ), "start": ANY(UpperCAmelCase__ ), "end": ANY(UpperCAmelCase__ )},
]
]
* 3, )
@require_torch
@require_detectrona
@require_pytesseract
def _lowercase ( self : Dict ):
__lowercase = pipeline("document-question-answering", model="hf-internal-testing/tiny-random-layoutlmv2" )
__lowercase = INVOICE_URL
__lowercase = "How many cats are there?"
__lowercase = [
{"score": 0.0_001, "answer": "oy 2312/2019", "start": 3_8, "end": 3_9},
{"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 3_8, "end": 4_0},
]
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), UpperCAmelCase__ )
__lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), UpperCAmelCase__ )
# This image does not detect ANY text in it, meaning layoutlmv2 should fail.
# Empty answer probably
__lowercase = "./tests/fixtures/tests_samples/COCO/000000039769.png"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(UpperCAmelCase__, [] )
# We can optionnally pass directly the words and bounding boxes
__lowercase = "./tests/fixtures/tests_samples/COCO/000000039769.png"
__lowercase = []
__lowercase = []
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, words=UpperCAmelCase__, boxes=UpperCAmelCase__, top_k=2 )
self.assertEqual(UpperCAmelCase__, [] )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def _lowercase ( self : List[str] ):
__lowercase = pipeline(
"document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
[
{"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6},
],
]
* 2, )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def _lowercase ( self : Dict ):
__lowercase = pipeline(
"document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", max_seq_len=5_0, )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3},
{"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3},
{"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
[
{"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3},
{"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6},
]
]
* 2, )
@slow
@require_torch
@require_pytesseract
@require_vision
def _lowercase ( self : Optional[Any] ):
__lowercase = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=UpperCAmelCase__ )
__lowercase = pipeline(
"document-question-answering", model="impira/layoutlm-document-qa", tokenizer=UpperCAmelCase__, revision="3dc6de3", )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3},
], )
__lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3},
], )
__lowercase = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
[
{"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3},
]
]
* 2, )
__lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) )
# This model should also work if `image` is set to None
__lowercase = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3},
], )
@slow
@require_torch
@require_pytesseract
@require_vision
def _lowercase ( self : Union[str, Any] ):
__lowercase = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=UpperCAmelCase__ )
__lowercase = pipeline(
"document-question-answering", model="impira/layoutlm-document-qa", tokenizer=UpperCAmelCase__, revision="3dc6de3", max_seq_len=5_0, )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
__lowercase = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
[
{"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6},
]
]
* 2, )
__lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) )
# This model should also work if `image` is set to None
__lowercase = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase__, decimals=4 ), [
{"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6},
{"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6},
], )
@slow
@require_torch
def _lowercase ( self : Dict ):
__lowercase = pipeline(
"document-question-answering", model="naver-clova-ix/donut-base-finetuned-docvqa", tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ), feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa", )
__lowercase = INVOICE_URL
__lowercase = "What is the invoice number?"
__lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 )
self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), [{"answer": "us-001"}] )
@require_tf
@unittest.skip("Document question answering not implemented in TF" )
def _lowercase ( self : List[Any] ):
pass
| 17 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_a = {
'configuration_upernet': ['UperNetConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a = [
'UperNetForSemanticSegmentation',
'UperNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_upernet import UperNetConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel
else:
import sys
_a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 17 |
"""simple docstring"""
import argparse
import json
import os
import re
import shutil
import torch
from transformers import BioGptConfig, BioGptForCausalLM
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
from transformers.utils import WEIGHTS_NAME, logging
logging.set_verbosity_warning()
_a = 2
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Dict, *, # begin keyword-only arguments
UpperCAmelCase__ : str="<s>", UpperCAmelCase__ : Tuple="<pad>", UpperCAmelCase__ : str="</s>", UpperCAmelCase__ : Optional[Any]="<unk>", UpperCAmelCase__ : List[Any]=None, ):
__lowercase ,__lowercase ,__lowercase ,__lowercase = bos, unk, pad, eos
__lowercase = []
__lowercase = []
__lowercase = {}
__lowercase = self.add_symbol(UpperCAmelCase__ )
__lowercase = self.add_symbol(UpperCAmelCase__ )
__lowercase = self.add_symbol(UpperCAmelCase__ )
__lowercase = self.add_symbol(UpperCAmelCase__ )
if extra_special_symbols:
for s in extra_special_symbols:
self.add_symbol(UpperCAmelCase__ )
__lowercase = len(self.symbols )
def __eq__( self : List[str], UpperCAmelCase__ : Dict ):
return self.indices == other.indices
def __getitem__( self : Optional[int], UpperCAmelCase__ : List[str] ):
if idx < len(self.symbols ):
return self.symbols[idx]
return self.unk_word
def __len__( self : str ):
return len(self.symbols )
def __contains__( self : Any, UpperCAmelCase__ : Optional[Any] ):
return sym in self.indices
@classmethod
def _lowercase ( cls : List[Any], UpperCAmelCase__ : Optional[Any] ):
__lowercase = cls()
d.add_from_file(UpperCAmelCase__ )
return d
def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[Any]=1, UpperCAmelCase__ : str=False ):
if word in self.indices and not overwrite:
__lowercase = self.indices[word]
__lowercase = self.count[idx] + n
return idx
else:
__lowercase = len(self.symbols )
__lowercase = idx
self.symbols.append(UpperCAmelCase__ )
self.count.append(UpperCAmelCase__ )
return idx
def _lowercase ( self : Any, UpperCAmelCase__ : str ):
return 0
def _lowercase ( self : Tuple, UpperCAmelCase__ : List[Any] ):
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
try:
with open(UpperCAmelCase__, "r", encoding="utf-8" ) as fd:
self.add_from_file(UpperCAmelCase__ )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception("Incorrect encoding detected in {}, please rebuild the dataset".format(UpperCAmelCase__ ) )
return
__lowercase = f.readlines()
__lowercase = self._load_meta(UpperCAmelCase__ )
for line in lines[indices_start_line:]:
try:
__lowercase ,__lowercase = line.rstrip().rsplit(" ", 1 )
if field == "#fairseq:overwrite":
__lowercase = True
__lowercase ,__lowercase = line.rsplit(" ", 1 )
else:
__lowercase = False
__lowercase = int(UpperCAmelCase__ )
__lowercase = line
if word in self and not overwrite:
raise RuntimeError(
"Duplicate word found when loading Dictionary: '{}'. "
"Duplicate words can overwrite earlier ones by adding the "
"#fairseq:overwrite flag at the end of the corresponding row "
"in the dictionary file. If using the Camembert model, please "
"download an updated copy of the model file.".format(UpperCAmelCase__ ) )
self.add_symbol(UpperCAmelCase__, n=UpperCAmelCase__, overwrite=UpperCAmelCase__ )
except ValueError:
raise ValueError("Incorrect dictionary format, expected '<token> <cnt> [flags]'" )
def _A ( UpperCamelCase_ : int) -> str:
'''simple docstring'''
__lowercase = dict((re.sub(r"@@$", "", UpperCamelCase_), v) if k.endswith("@@") else (re.sub(r"$", "</w>", UpperCamelCase_), v) for k, v in d.items())
__lowercase = "<s> <pad> </s> <unk>".split()
# restore the special tokens
for k in keep_keys:
del da[F"""{k}</w>"""]
__lowercase = d[k] # restore
return da
def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str) -> List[Any]:
'''simple docstring'''
if not os.path.exists(UpperCamelCase_):
raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""")
os.makedirs(UpperCamelCase_, exist_ok=UpperCamelCase_)
print(F"""Writing results to {pytorch_dump_folder_path}""")
# handle various types of models
__lowercase = os.path.join(UpperCamelCase_, "checkpoint.pt")
if not os.path.isfile(UpperCamelCase_):
raise ValueError(F"""path to the file {checkpoint_file} does not exist!""")
__lowercase = torch.load(UpperCamelCase_, map_location="cpu")
__lowercase = chkpt["cfg"]["model"]
# dicts
__lowercase = os.path.join(UpperCamelCase_, "dict.txt")
if not os.path.isfile(UpperCamelCase_):
raise ValueError(F"""path to the file {dict_file} does not exist!""")
__lowercase = Dictionary.load(UpperCamelCase_)
__lowercase = rewrite_dict_keys(src_dict.indices)
__lowercase = len(UpperCamelCase_)
__lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["vocab_file"])
print(F"""Generating {src_vocab_file} of {src_vocab_size} records""")
with open(UpperCamelCase_, "w", encoding="utf-8") as f:
f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_))
# merges_file (bpecodes)
__lowercase = os.path.join(UpperCamelCase_, "bpecodes")
if not os.path.isfile(UpperCamelCase_):
raise ValueError(F"""path to the file {bpecodes_file} does not exist!""")
__lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["merges_file"])
shutil.copyfile(UpperCamelCase_, UpperCamelCase_)
# model config
__lowercase = os.path.join(UpperCamelCase_, "config.json")
__lowercase = {
"activation_dropout": args["activation_dropout"],
"architectures": ["BioGptForCausalLM"],
"attention_probs_dropout_prob": args["attention_dropout"],
"bos_token_id": 0,
"eos_token_id": 2,
"hidden_act": args["activation_fn"],
"hidden_dropout_prob": args["dropout"],
"hidden_size": args["decoder_embed_dim"],
"initializer_range": 0.02,
"intermediate_size": args["decoder_ffn_embed_dim"],
"layer_norm_eps": 1E-12,
"layerdrop": args["decoder_layerdrop"],
"max_position_embeddings": args["max_target_positions"],
"model_type": "biogpt",
"num_attention_heads": args["decoder_attention_heads"],
"num_hidden_layers": args["decoder_layers"],
"pad_token_id": 1,
"scale_embedding": not args["no_scale_embedding"],
"tie_word_embeddings": args["share_decoder_input_output_embed"],
"vocab_size": src_vocab_size,
}
# good hparam defaults to start with
print(F"""Generating {biogpt_model_config_file}""")
with open(UpperCamelCase_, "w", encoding="utf-8") as f:
f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_))
# tokenizer config
__lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_)
__lowercase = {
"bos_token": "<s>",
"eos_token": "</s>",
"model_max_length": 1024,
"pad_token": "<pad>",
"special_tokens_map_file": None,
"tokenizer_class": "BioGptTokenizer",
"unk_token": "<unk>",
}
print(F"""Generating {biogpt_tokenizer_config_file}""")
with open(UpperCamelCase_, "w", encoding="utf-8") as f:
f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_))
# model
__lowercase = chkpt["model"]
# remove unneeded keys
__lowercase = [
"decoder.version",
]
for k in ignore_keys:
model_state_dict.pop(UpperCamelCase_, UpperCamelCase_)
__lowercase = list(model_state_dict.keys())
for layer_name in layer_names:
if layer_name.endswith("output_projection.weight"):
__lowercase = model_state_dict.pop(UpperCamelCase_)
else:
__lowercase = model_state_dict.pop(UpperCamelCase_)
__lowercase = BioGptConfig.from_pretrained(UpperCamelCase_)
__lowercase = BioGptForCausalLM(UpperCamelCase_)
# check that it loads ok
model_new.load_state_dict(UpperCamelCase_)
# save
__lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_)
print(F"""Generating {pytorch_weights_dump_path}""")
torch.save(UpperCamelCase_, UpperCamelCase_)
print("Conversion is done!")
if __name__ == "__main__":
_a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--biogpt_checkpoint_path',
default=None,
type=str,
required=True,
help=(
'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,'
' bpecodes, etc.'
),
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
_a = parser.parse_args()
convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
| 17 | 1 |
"""simple docstring"""
import unicodedata
from dataclasses import dataclass
from typing import Optional, Union
import numpy as np
from transformers.data.data_collator import DataCollatorMixin
from transformers.file_utils import PaddingStrategy
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
def _A ( UpperCamelCase_ : int, UpperCamelCase_ : List[Any], UpperCamelCase_ : Any, UpperCamelCase_ : List[str]) -> Optional[int]:
'''simple docstring'''
if isinstance(UpperCamelCase_, UpperCamelCase_):
__lowercase = np.full((len(UpperCamelCase_), sequence_length, 2), UpperCamelCase_)
else:
__lowercase = np.full((len(UpperCamelCase_), sequence_length), UpperCamelCase_)
for i, tensor in enumerate(UpperCamelCase_):
if padding_side == "right":
if isinstance(UpperCamelCase_, UpperCamelCase_):
__lowercase = tensor[:sequence_length]
else:
__lowercase = tensor[:sequence_length]
else:
if isinstance(UpperCamelCase_, UpperCamelCase_):
__lowercase = tensor[:sequence_length]
else:
__lowercase = tensor[:sequence_length]
return out_tensor.tolist()
def _A ( UpperCamelCase_ : Dict) -> str:
'''simple docstring'''
__lowercase = ord(UpperCamelCase_)
if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126):
return True
__lowercase = unicodedata.category(UpperCamelCase_)
if cat.startswith("P"):
return True
return False
@dataclass
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
__UpperCAmelCase : PreTrainedTokenizerBase
__UpperCAmelCase : Union[bool, str, PaddingStrategy] = True
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : int = -1_0_0
__UpperCAmelCase : str = "pt"
def _lowercase ( self : str, UpperCAmelCase__ : List[str] ):
import torch
__lowercase = "label" if "label" in features[0].keys() else "labels"
__lowercase = [feature[label_name] for feature in features] if label_name in features[0].keys() else None
__lowercase = self.tokenizer.pad(
UpperCAmelCase__, padding=self.padding, max_length=self.max_length, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="pt" if labels is None else None, )
if labels is None:
return batch
__lowercase = torch.tensor(batch["entity_ids"] ).shape[1]
__lowercase = self.tokenizer.padding_side
if padding_side == "right":
__lowercase = [
list(UpperCAmelCase__ ) + [self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase__ )) for label in labels
]
else:
__lowercase = [
[self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase__ )) + list(UpperCAmelCase__ ) for label in labels
]
__lowercase = [feature["ner_tags"] for feature in features]
__lowercase = padding_tensor(UpperCAmelCase__, -1, UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = [feature["original_entity_spans"] for feature in features]
__lowercase = padding_tensor(UpperCAmelCase__, (-1, -1), UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = {k: torch.tensor(UpperCAmelCase__, dtype=torch.intaa ) for k, v in batch.items()}
return batch
| 17 |
"""simple docstring"""
from __future__ import annotations
from typing import Any
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Any, UpperCAmelCase__ : int ):
__lowercase = num_of_nodes
__lowercase = []
__lowercase = {}
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : int, UpperCAmelCase__ : int ):
self.m_edges.append([u_node, v_node, weight] )
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : int ):
if self.m_component[u_node] == u_node:
return u_node
return self.find_component(self.m_component[u_node] )
def _lowercase ( self : List[Any], UpperCAmelCase__ : int ):
if self.m_component[u_node] != u_node:
for k in self.m_component:
__lowercase = self.find_component(UpperCAmelCase__ )
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : list[int], UpperCAmelCase__ : int, UpperCAmelCase__ : int ):
if component_size[u_node] <= component_size[v_node]:
__lowercase = v_node
component_size[v_node] += component_size[u_node]
self.set_component(UpperCAmelCase__ )
elif component_size[u_node] >= component_size[v_node]:
__lowercase = self.find_component(UpperCAmelCase__ )
component_size[u_node] += component_size[v_node]
self.set_component(UpperCAmelCase__ )
def _lowercase ( self : Any ):
__lowercase = []
__lowercase = 0
__lowercase = [-1] * self.m_num_of_nodes
# A list of components (initialized to all of the nodes)
for node in range(self.m_num_of_nodes ):
self.m_component.update({node: node} )
component_size.append(1 )
__lowercase = self.m_num_of_nodes
while num_of_components > 1:
for edge in self.m_edges:
__lowercase ,__lowercase ,__lowercase = edge
__lowercase = self.m_component[u]
__lowercase = self.m_component[v]
if u_component != v_component:
for component in (u_component, v_component):
if (
minimum_weight_edge[component] == -1
or minimum_weight_edge[component][2] > w
):
__lowercase = [u, v, w]
for edge in minimum_weight_edge:
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
__lowercase ,__lowercase ,__lowercase = edge
__lowercase = self.m_component[u]
__lowercase = self.m_component[v]
if u_component != v_component:
mst_weight += w
self.union(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" )
num_of_components -= 1
__lowercase = [-1] * self.m_num_of_nodes
print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" )
def _A ( ) -> None:
'''simple docstring'''
if __name__ == "__main__":
import doctest
doctest.testmod()
| 17 | 1 |
"""simple docstring"""
from __future__ import annotations
from collections.abc import Iterable, Iterator
from dataclasses import dataclass
_a = (3, 9, -11, 0, 7, 5, 1, -1)
_a = (4, 6, 2, 0, 8, 10, 3, -2)
@dataclass
class _lowerCAmelCase :
"""simple docstring"""
__UpperCAmelCase : int
__UpperCAmelCase : Node | None
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Optional[int], UpperCAmelCase__ : Iterable[int] ):
__lowercase = None
for i in sorted(UpperCAmelCase__, reverse=UpperCAmelCase__ ):
__lowercase = Node(UpperCAmelCase__, self.head )
def __iter__( self : str ):
__lowercase = self.head
while node:
yield node.data
__lowercase = node.next_node
def __len__( self : Optional[int] ):
return sum(1 for _ in self )
def __str__( self : List[str] ):
return " -> ".join([str(UpperCAmelCase__ ) for node in self] )
def _A ( UpperCamelCase_ : SortedLinkedList, UpperCamelCase_ : SortedLinkedList) -> SortedLinkedList:
'''simple docstring'''
return SortedLinkedList(list(UpperCamelCase_) + list(UpperCamelCase_))
if __name__ == "__main__":
import doctest
doctest.testmod()
_a = SortedLinkedList
print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
| 17 |
"""simple docstring"""
from math import sqrt
def _A ( UpperCamelCase_ : int) -> int:
'''simple docstring'''
__lowercase = 0
for i in range(1, int(sqrt(UpperCamelCase_) + 1)):
if n % i == 0 and i != sqrt(UpperCamelCase_):
total += i + n // i
elif i == sqrt(UpperCamelCase_):
total += i
return total - n
def _A ( UpperCamelCase_ : int = 10000) -> int:
'''simple docstring'''
__lowercase = sum(
i
for i in range(1, UpperCamelCase_)
if sum_of_divisors(sum_of_divisors(UpperCamelCase_)) == i and sum_of_divisors(UpperCamelCase_) != i)
return total
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 17 | 1 |
"""simple docstring"""
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
_a = datasets.utils.logging.get_logger(__name__)
_a = ['names', 'prefix']
_a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols']
_a = ['encoding_errors', 'on_bad_lines']
_a = ['date_format']
@dataclass
class _lowerCAmelCase ( datasets.BuilderConfig ):
"""simple docstring"""
__UpperCAmelCase : str = ","
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : Optional[Union[int, List[int], str]] = "infer"
__UpperCAmelCase : Optional[List[str]] = None
__UpperCAmelCase : Optional[List[str]] = None
__UpperCAmelCase : Optional[Union[int, str, List[int], List[str]]] = None
__UpperCAmelCase : Optional[Union[List[int], List[str]]] = None
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : bool = True
__UpperCAmelCase : Optional[Literal["c", "python", "pyarrow"]] = None
__UpperCAmelCase : Dict[Union[int, str], Callable[[Any], Any]] = None
__UpperCAmelCase : Optional[list] = None
__UpperCAmelCase : Optional[list] = None
__UpperCAmelCase : bool = False
__UpperCAmelCase : Optional[Union[int, List[int]]] = None
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : Optional[Union[str, List[str]]] = None
__UpperCAmelCase : bool = True
__UpperCAmelCase : bool = True
__UpperCAmelCase : bool = False
__UpperCAmelCase : bool = True
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : str = "."
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : str = '"'
__UpperCAmelCase : int = 0
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : bool = True
__UpperCAmelCase : bool = True
__UpperCAmelCase : int = 0
__UpperCAmelCase : bool = True
__UpperCAmelCase : bool = False
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : int = 1_0_0_0_0
__UpperCAmelCase : Optional[datasets.Features] = None
__UpperCAmelCase : Optional[str] = "strict"
__UpperCAmelCase : Literal["error", "warn", "skip"] = "error"
__UpperCAmelCase : Optional[str] = None
def _lowercase ( self : Tuple ):
if self.delimiter is not None:
__lowercase = self.delimiter
if self.column_names is not None:
__lowercase = self.column_names
@property
def _lowercase ( self : Union[str, Any] ):
__lowercase = {
"sep": self.sep,
"header": self.header,
"names": self.names,
"index_col": self.index_col,
"usecols": self.usecols,
"prefix": self.prefix,
"mangle_dupe_cols": self.mangle_dupe_cols,
"engine": self.engine,
"converters": self.converters,
"true_values": self.true_values,
"false_values": self.false_values,
"skipinitialspace": self.skipinitialspace,
"skiprows": self.skiprows,
"nrows": self.nrows,
"na_values": self.na_values,
"keep_default_na": self.keep_default_na,
"na_filter": self.na_filter,
"verbose": self.verbose,
"skip_blank_lines": self.skip_blank_lines,
"thousands": self.thousands,
"decimal": self.decimal,
"lineterminator": self.lineterminator,
"quotechar": self.quotechar,
"quoting": self.quoting,
"escapechar": self.escapechar,
"comment": self.comment,
"encoding": self.encoding,
"dialect": self.dialect,
"error_bad_lines": self.error_bad_lines,
"warn_bad_lines": self.warn_bad_lines,
"skipfooter": self.skipfooter,
"doublequote": self.doublequote,
"memory_map": self.memory_map,
"float_precision": self.float_precision,
"chunksize": self.chunksize,
"encoding_errors": self.encoding_errors,
"on_bad_lines": self.on_bad_lines,
"date_format": self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig(), UpperCAmelCase__ ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class _lowerCAmelCase ( datasets.ArrowBasedBuilder ):
"""simple docstring"""
__UpperCAmelCase : Tuple = CsvConfig
def _lowercase ( self : List[str] ):
return datasets.DatasetInfo(features=self.config.features )
def _lowercase ( self : List[Any], UpperCAmelCase__ : Dict ):
if not self.config.data_files:
raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" )
__lowercase = dl_manager.download_and_extract(self.config.data_files )
if isinstance(UpperCAmelCase__, (str, list, tuple) ):
__lowercase = data_files
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
__lowercase = [files]
__lowercase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files} )]
__lowercase = []
for split_name, files in data_files.items():
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
__lowercase = [files]
__lowercase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files]
splits.append(datasets.SplitGenerator(name=UpperCAmelCase__, gen_kwargs={"files": files} ) )
return splits
def _lowercase ( self : Dict, UpperCAmelCase__ : pa.Table ):
if self.config.features is not None:
__lowercase = self.config.features.arrow_schema
if all(not require_storage_cast(UpperCAmelCase__ ) for feature in self.config.features.values() ):
# cheaper cast
__lowercase = pa.Table.from_arrays([pa_table[field.name] for field in schema], schema=UpperCAmelCase__ )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
__lowercase = table_cast(UpperCAmelCase__, UpperCAmelCase__ )
return pa_table
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : List[str] ):
__lowercase = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
__lowercase = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(UpperCAmelCase__ ) else object
for name, dtype, feature in zip(schema.names, schema.types, self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase__ ) ):
__lowercase = pd.read_csv(UpperCAmelCase__, iterator=UpperCAmelCase__, dtype=UpperCAmelCase__, **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(UpperCAmelCase__ ):
__lowercase = pa.Table.from_pandas(UpperCAmelCase__ )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase__ )
except ValueError as e:
logger.error(F"""Failed to read file '{file}' with error {type(UpperCAmelCase__ )}: {e}""" )
raise
| 17 |
"""simple docstring"""
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
_a = _symbol_database.Default()
_a = _descriptor_pool.Default().AddSerializedFile(
b'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03'
)
_a = globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals)
if _descriptor._USE_C_DESCRIPTORS is False:
_a = None
_a = b'H\003'
# (generated by protobuf compiler, but `_TRAINERSPEC` is not defined)
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001"
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001"
_a = 45
_a = 15_81
_a = 15_17
_a = 15_70
_a = 15_84
_a = 17_93
_a = 17_95
_a = 19_16
_a = 18_64
_a = 19_05
_a = 19_19
_a = 24_29
_a = 22_08
_a = 24_18
_a = 23_23
_a = 24_07
# @@protoc_insertion_point(module_scope)
| 17 | 1 |
"""simple docstring"""
import unittest
import numpy as np
from transformers import is_flax_available
from transformers.testing_utils import require_flax
from ..test_modeling_flax_common import ids_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.generation import (
FlaxForcedBOSTokenLogitsProcessor,
FlaxForcedEOSTokenLogitsProcessor,
FlaxLogitsProcessorList,
FlaxMinLengthLogitsProcessor,
FlaxTemperatureLogitsWarper,
FlaxTopKLogitsWarper,
FlaxTopPLogitsWarper,
)
@require_flax
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def _lowercase ( self : Dict, UpperCAmelCase__ : int, UpperCAmelCase__ : int ):
__lowercase = jnp.ones((batch_size, length) ) / length
return scores
def _lowercase ( self : Union[str, Any] ):
__lowercase = None
__lowercase = 2_0
__lowercase = self._get_uniform_logits(batch_size=2, length=UpperCAmelCase__ )
# tweak scores to not be uniform anymore
__lowercase = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch
__lowercase = scores.at[1, 1_0].set((1 / length) - 0.4 ) # valley, 1st batch
# compute softmax
__lowercase = jax.nn.softmax(UpperCAmelCase__, axis=-1 )
__lowercase = FlaxTemperatureLogitsWarper(temperature=0.5 )
__lowercase = FlaxTemperatureLogitsWarper(temperature=1.3 )
__lowercase = jax.nn.softmax(temp_dist_warper_sharper(UpperCAmelCase__, scores.copy(), cur_len=UpperCAmelCase__ ), axis=-1 )
__lowercase = jax.nn.softmax(temp_dist_warper_smoother(UpperCAmelCase__, scores.copy(), cur_len=UpperCAmelCase__ ), axis=-1 )
# uniform distribution stays uniform
self.assertTrue(jnp.allclose(probs[0, :], warped_prob_sharp[0, :], atol=1E-3 ) )
self.assertTrue(jnp.allclose(probs[0, :], warped_prob_smooth[0, :], atol=1E-3 ) )
# sharp peaks get higher, valleys get lower
self.assertLess(probs[1, :].max(), warped_prob_sharp[1, :].max() )
self.assertGreater(probs[1, :].min(), warped_prob_sharp[1, :].min() )
# smooth peaks get lower, valleys get higher
self.assertGreater(probs[1, :].max(), warped_prob_smooth[1, :].max() )
self.assertLess(probs[1, :].min(), warped_prob_smooth[1, :].min() )
def _lowercase ( self : Union[str, Any] ):
__lowercase = None
__lowercase = 1_0
__lowercase = 2
# create ramp distribution
__lowercase = np.broadcast_to(np.arange(UpperCAmelCase__ )[None, :], (batch_size, vocab_size) ).copy()
__lowercase = ramp_logits[1:, : vocab_size // 2] + vocab_size
__lowercase = FlaxTopKLogitsWarper(3 )
__lowercase = top_k_warp(UpperCAmelCase__, UpperCAmelCase__, cur_len=UpperCAmelCase__ )
# check that correct tokens are filtered
self.assertListEqual(jnp.isinf(scores[0] ).tolist(), 7 * [True] + 3 * [False] )
self.assertListEqual(jnp.isinf(scores[1] ).tolist(), 2 * [True] + 3 * [False] + 5 * [True] )
# check special case
__lowercase = 5
__lowercase = FlaxTopKLogitsWarper(top_k=1, filter_value=0.0, min_tokens_to_keep=3 )
__lowercase = np.broadcast_to(np.arange(UpperCAmelCase__ )[None, :], (batch_size, length) ).copy()
__lowercase = top_k_warp_safety_check(UpperCAmelCase__, UpperCAmelCase__, cur_len=UpperCAmelCase__ )
# min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified
self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist(), [2, 2] )
def _lowercase ( self : Any ):
__lowercase = None
__lowercase = 1_0
__lowercase = 2
# create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper)
__lowercase = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) )
__lowercase = FlaxTopPLogitsWarper(0.8 )
__lowercase = np.exp(top_p_warp(UpperCAmelCase__, UpperCAmelCase__, cur_len=UpperCAmelCase__ ) )
# dist should be filtered to keep min num values so that sum is >= top_p
# exp (-inf) => 0
__lowercase = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] )
self.assertTrue(np.allclose(UpperCAmelCase__, UpperCAmelCase__, atol=1E-3 ) )
# check edge cases with negative and extreme logits
__lowercase = np.broadcast_to(np.arange(UpperCAmelCase__ )[None, :], (batch_size, vocab_size) ).copy() - (
vocab_size // 2
)
# make ramp_logits more extreme
__lowercase = ramp_logits[1] * 100.0
# make sure at least 2 tokens are kept
__lowercase = FlaxTopPLogitsWarper(0.9, min_tokens_to_keep=2, filter_value=0.0 )
__lowercase = top_p_warp(UpperCAmelCase__, UpperCAmelCase__, cur_len=UpperCAmelCase__ )
# first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2.
self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist(), [3, 2] )
def _lowercase ( self : List[Any] ):
__lowercase = 2_0
__lowercase = 4
__lowercase = 0
__lowercase = FlaxMinLengthLogitsProcessor(min_length=1_0, eos_token_id=UpperCAmelCase__ )
# check that min length is applied at length 5
__lowercase = ids_tensor((batch_size, 2_0), vocab_size=2_0 )
__lowercase = 5
__lowercase = self._get_uniform_logits(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = min_dist_processor(UpperCAmelCase__, UpperCAmelCase__, cur_len=UpperCAmelCase__ )
self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist(), 4 * [-float("inf" )] )
# check that min length is not applied anymore at length 15
__lowercase = self._get_uniform_logits(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = 1_5
__lowercase = min_dist_processor(UpperCAmelCase__, UpperCAmelCase__, cur_len=UpperCAmelCase__ )
self.assertFalse(jnp.isinf(UpperCAmelCase__ ).any() )
def _lowercase ( self : Tuple ):
__lowercase = 2_0
__lowercase = 4
__lowercase = 0
__lowercase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase__ )
# check that all scores are -inf except the bos_token_id score
__lowercase = ids_tensor((batch_size, 1), vocab_size=2_0 )
__lowercase = 1
__lowercase = self._get_uniform_logits(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = logits_processor(UpperCAmelCase__, UpperCAmelCase__, cur_len=UpperCAmelCase__ )
self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() )
self.assertListEqual(scores[:, bos_token_id].tolist(), 4 * [0] ) # score for bos_token_id shold be zero
# check that bos_token_id is not forced if current length is greater than 1
__lowercase = 3
__lowercase = self._get_uniform_logits(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = logits_processor(UpperCAmelCase__, UpperCAmelCase__, cur_len=UpperCAmelCase__ )
self.assertFalse(jnp.isinf(UpperCAmelCase__ ).any() )
def _lowercase ( self : List[Any] ):
__lowercase = 2_0
__lowercase = 4
__lowercase = 0
__lowercase = 5
__lowercase = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase__, eos_token_id=UpperCAmelCase__ )
# check that all scores are -inf except the eos_token_id when max_length is reached
__lowercase = ids_tensor((batch_size, 4), vocab_size=2_0 )
__lowercase = 4
__lowercase = self._get_uniform_logits(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = logits_processor(UpperCAmelCase__, UpperCAmelCase__, cur_len=UpperCAmelCase__ )
self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() )
self.assertListEqual(scores[:, eos_token_id].tolist(), 4 * [0] ) # score for eos_token_id should be zero
# check that eos_token_id is not forced if max_length is not reached
__lowercase = 3
__lowercase = self._get_uniform_logits(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = logits_processor(UpperCAmelCase__, UpperCAmelCase__, cur_len=UpperCAmelCase__ )
self.assertFalse(jnp.isinf(UpperCAmelCase__ ).any() )
def _lowercase ( self : Union[str, Any] ):
__lowercase = 4
__lowercase = 1_0
__lowercase = 1_5
__lowercase = 2
__lowercase = 1
__lowercase = 1_5
# dummy input_ids and scores
__lowercase = ids_tensor((batch_size, sequence_length), UpperCAmelCase__ )
__lowercase = input_ids.copy()
__lowercase = self._get_uniform_logits(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = scores.copy()
# instantiate all dist processors
__lowercase = FlaxTemperatureLogitsWarper(temperature=0.5 )
__lowercase = FlaxTopKLogitsWarper(3 )
__lowercase = FlaxTopPLogitsWarper(0.8 )
# instantiate all logits processors
__lowercase = FlaxMinLengthLogitsProcessor(min_length=1_0, eos_token_id=UpperCAmelCase__ )
__lowercase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase__ )
__lowercase = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase__, eos_token_id=UpperCAmelCase__ )
__lowercase = 1_0
# no processor list
__lowercase = temp_dist_warp(UpperCAmelCase__, UpperCAmelCase__, cur_len=UpperCAmelCase__ )
__lowercase = top_k_warp(UpperCAmelCase__, UpperCAmelCase__, cur_len=UpperCAmelCase__ )
__lowercase = top_p_warp(UpperCAmelCase__, UpperCAmelCase__, cur_len=UpperCAmelCase__ )
__lowercase = min_dist_proc(UpperCAmelCase__, UpperCAmelCase__, cur_len=UpperCAmelCase__ )
__lowercase = bos_dist_proc(UpperCAmelCase__, UpperCAmelCase__, cur_len=UpperCAmelCase__ )
__lowercase = eos_dist_proc(UpperCAmelCase__, UpperCAmelCase__, cur_len=UpperCAmelCase__ )
# with processor list
__lowercase = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] )
__lowercase = processor(UpperCAmelCase__, UpperCAmelCase__, cur_len=UpperCAmelCase__ )
# scores should be equal
self.assertTrue(jnp.allclose(UpperCAmelCase__, UpperCAmelCase__, atol=1E-3 ) )
# input_ids should never be changed
self.assertListEqual(input_ids.tolist(), input_ids_comp.tolist() )
def _lowercase ( self : List[Any] ):
__lowercase = 4
__lowercase = 1_0
__lowercase = 1_5
__lowercase = 2
__lowercase = 1
__lowercase = 1_5
# dummy input_ids and scores
__lowercase = ids_tensor((batch_size, sequence_length), UpperCAmelCase__ )
__lowercase = input_ids.copy()
__lowercase = self._get_uniform_logits(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = scores.copy()
# instantiate all dist processors
__lowercase = FlaxTemperatureLogitsWarper(temperature=0.5 )
__lowercase = FlaxTopKLogitsWarper(3 )
__lowercase = FlaxTopPLogitsWarper(0.8 )
# instantiate all logits processors
__lowercase = FlaxMinLengthLogitsProcessor(min_length=1_0, eos_token_id=UpperCAmelCase__ )
__lowercase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase__ )
__lowercase = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase__, eos_token_id=UpperCAmelCase__ )
__lowercase = 1_0
# no processor list
def run_no_processor_list(UpperCAmelCase__ : str, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Any ):
__lowercase = temp_dist_warp(UpperCAmelCase__, UpperCAmelCase__, cur_len=UpperCAmelCase__ )
__lowercase = top_k_warp(UpperCAmelCase__, UpperCAmelCase__, cur_len=UpperCAmelCase__ )
__lowercase = top_p_warp(UpperCAmelCase__, UpperCAmelCase__, cur_len=UpperCAmelCase__ )
__lowercase = min_dist_proc(UpperCAmelCase__, UpperCAmelCase__, cur_len=UpperCAmelCase__ )
__lowercase = bos_dist_proc(UpperCAmelCase__, UpperCAmelCase__, cur_len=UpperCAmelCase__ )
__lowercase = eos_dist_proc(UpperCAmelCase__, UpperCAmelCase__, cur_len=UpperCAmelCase__ )
return scores
# with processor list
def run_processor_list(UpperCAmelCase__ : List[str], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int] ):
__lowercase = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] )
__lowercase = processor(UpperCAmelCase__, UpperCAmelCase__, cur_len=UpperCAmelCase__ )
return scores
__lowercase = jax.jit(UpperCAmelCase__ )
__lowercase = jax.jit(UpperCAmelCase__ )
__lowercase = jitted_run_no_processor_list(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = jitted_run_processor_list(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
# scores should be equal
self.assertTrue(jnp.allclose(UpperCAmelCase__, UpperCAmelCase__, atol=1E-3 ) )
# input_ids should never be changed
self.assertListEqual(input_ids.tolist(), input_ids_comp.tolist() )
| 17 |
"""simple docstring"""
import baseaa
def _A ( UpperCamelCase_ : str) -> bytes:
'''simple docstring'''
return baseaa.baaencode(string.encode("utf-8"))
def _A ( UpperCamelCase_ : bytes) -> str:
'''simple docstring'''
return baseaa.baadecode(UpperCamelCase_).decode("utf-8")
if __name__ == "__main__":
_a = 'Hello World!'
_a = baseaa_encode(test)
print(encoded)
_a = baseaa_decode(encoded)
print(decoded)
| 17 | 1 |
"""simple docstring"""
import random
import unittest
import numpy as np
import torch
from diffusers import (
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionUpscalePipeline,
PNDMScheduler,
)
from diffusers.utils import floats_tensor
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class _lowerCAmelCase ( lowercase ,unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : str = "ssube/stable-diffusion-x4-upscaler-onnx"
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : List[str]=0 ):
__lowercase = floats_tensor((1, 3, 1_2_8, 1_2_8), rng=random.Random(UpperCAmelCase__ ) )
__lowercase = torch.manual_seed(UpperCAmelCase__ )
__lowercase = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 7.5,
"output_type": "numpy",
}
return inputs
def _lowercase ( self : Any ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1].flatten()
# started as 128, should now be 512
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] )
assert np.abs(image_slice - expected_slice ).max() < 1E-1
def _lowercase ( self : Optional[Any] ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
__lowercase = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.6_898_892, 0.59_240_556, 0.52_499_527, 0.58_866_215, 0.52_258_235, 0.52_572_715, 0.62_414_473, 0.6_174_387, 0.6_214_964] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def _lowercase ( self : int ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
__lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.7_659_278, 0.76_437_664, 0.75_579_107, 0.7_691_116, 0.77_666_986, 0.7_727_672, 0.7_758_664, 0.7_812_226, 0.76_942_515] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def _lowercase ( self : str ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
__lowercase = EulerDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def _lowercase ( self : Any ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
__lowercase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.77_424_496, 0.773_601, 0.7_645_288, 0.7_769_598, 0.7_772_739, 0.7_738_688, 0.78_187_233, 0.77_879_584, 0.767_043] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
@nightly
@require_onnxruntime
@require_torch_gpu
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@property
def _lowercase ( self : Tuple ):
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def _lowercase ( self : Dict ):
__lowercase = ort.SessionOptions()
__lowercase = False
return options
def _lowercase ( self : Dict ):
__lowercase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg" )
__lowercase = init_image.resize((1_2_8, 1_2_8) )
# using the PNDM scheduler by default
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(
"ssube/stable-diffusion-x4-upscaler-onnx", provider=self.gpu_provider, sess_options=self.gpu_options, )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = "A fantasy landscape, trending on artstation"
__lowercase = torch.manual_seed(0 )
__lowercase = pipe(
prompt=UpperCAmelCase__, image=UpperCAmelCase__, guidance_scale=7.5, num_inference_steps=1_0, generator=UpperCAmelCase__, output_type="np", )
__lowercase = output.images
__lowercase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert images.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array([0.4_883, 0.4_947, 0.4_980, 0.4_975, 0.4_982, 0.4_980, 0.5_000, 0.5_006, 0.4_972] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
def _lowercase ( self : str ):
__lowercase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg" )
__lowercase = init_image.resize((1_2_8, 1_2_8) )
__lowercase = LMSDiscreteScheduler.from_pretrained(
"ssube/stable-diffusion-x4-upscaler-onnx", subfolder="scheduler" )
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(
"ssube/stable-diffusion-x4-upscaler-onnx", scheduler=UpperCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = "A fantasy landscape, trending on artstation"
__lowercase = torch.manual_seed(0 )
__lowercase = pipe(
prompt=UpperCAmelCase__, image=UpperCAmelCase__, guidance_scale=7.5, num_inference_steps=2_0, generator=UpperCAmelCase__, output_type="np", )
__lowercase = output.images
__lowercase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert images.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.50_173_753, 0.50_223_356, 0.502_039, 0.50_233_036, 0.5_023_725, 0.5_022_601, 0.5_018_758, 0.50_234_085, 0.50_241_566] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
| 17 |
"""simple docstring"""
def _A ( UpperCamelCase_ : Any) -> List[str]:
'''simple docstring'''
__lowercase ,__lowercase = [], []
while len(UpperCamelCase_) > 1:
__lowercase ,__lowercase = min(UpperCamelCase_), max(UpperCamelCase_)
start.append(UpperCamelCase_)
end.append(UpperCamelCase_)
collection.remove(UpperCamelCase_)
collection.remove(UpperCamelCase_)
end.reverse()
return start + collection + end
if __name__ == "__main__":
_a = input('Enter numbers separated by a comma:\n').strip()
_a = [int(item) for item in user_input.split(',')]
print(*merge_sort(unsorted), sep=',')
| 17 | 1 |
"""simple docstring"""
import unittest
from transformers import load_tool
from .test_tools_common import ToolTesterMixin
_a = '\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n'
class _lowerCAmelCase ( unittest.TestCase ,lowercase ):
"""simple docstring"""
def _lowercase ( self : str ):
__lowercase = load_tool("text-question-answering" )
self.tool.setup()
__lowercase = load_tool("text-question-answering", remote=UpperCAmelCase__ )
def _lowercase ( self : Tuple ):
__lowercase = self.tool(UpperCAmelCase__, "What did Hugging Face do in April 2021?" )
self.assertEqual(UpperCAmelCase__, "launched the BigScience Research Workshop" )
def _lowercase ( self : str ):
__lowercase = self.remote_tool(UpperCAmelCase__, "What did Hugging Face do in April 2021?" )
self.assertEqual(UpperCAmelCase__, "launched the BigScience Research Workshop" )
def _lowercase ( self : Optional[Any] ):
__lowercase = self.tool(text=UpperCAmelCase__, question="What did Hugging Face do in April 2021?" )
self.assertEqual(UpperCAmelCase__, "launched the BigScience Research Workshop" )
def _lowercase ( self : Optional[int] ):
__lowercase = self.remote_tool(text=UpperCAmelCase__, question="What did Hugging Face do in April 2021?" )
self.assertEqual(UpperCAmelCase__, "launched the BigScience Research Workshop" )
| 17 |
"""simple docstring"""
def _A ( UpperCamelCase_ : list[int]) -> float:
'''simple docstring'''
if not nums: # Makes sure that the list is not empty
raise ValueError("List is empty")
__lowercase = sum(UpperCamelCase_) / len(UpperCamelCase_) # Calculate the average
return sum(abs(x - average) for x in nums) / len(UpperCamelCase_)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 17 | 1 |
"""simple docstring"""
import time
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers.generation import (
MaxLengthCriteria,
MaxNewTokensCriteria,
MaxTimeCriteria,
StoppingCriteriaList,
validate_stopping_criteria,
)
@require_torch
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : str ):
__lowercase = 3
__lowercase = 2_5_0
__lowercase = ids_tensor((batch_size, length), UpperCAmelCase__ )
__lowercase = torch.ones((batch_size, length), device=UpperCAmelCase__, dtype=torch.float ) / length
return input_ids, scores
def _lowercase ( self : List[Any] ):
__lowercase ,__lowercase = self._get_tensors(5 )
__lowercase = StoppingCriteriaList(
[
MaxLengthCriteria(max_length=1_0 ),
MaxTimeCriteria(max_time=0.1 ),
] )
self.assertFalse(criteria(UpperCAmelCase__, UpperCAmelCase__ ) )
__lowercase ,__lowercase = self._get_tensors(9 )
self.assertFalse(criteria(UpperCAmelCase__, UpperCAmelCase__ ) )
__lowercase ,__lowercase = self._get_tensors(1_0 )
self.assertTrue(criteria(UpperCAmelCase__, UpperCAmelCase__ ) )
def _lowercase ( self : Any ):
__lowercase = MaxLengthCriteria(max_length=1_0 )
__lowercase ,__lowercase = self._get_tensors(5 )
self.assertFalse(criteria(UpperCAmelCase__, UpperCAmelCase__ ) )
__lowercase ,__lowercase = self._get_tensors(9 )
self.assertFalse(criteria(UpperCAmelCase__, UpperCAmelCase__ ) )
__lowercase ,__lowercase = self._get_tensors(1_0 )
self.assertTrue(criteria(UpperCAmelCase__, UpperCAmelCase__ ) )
def _lowercase ( self : List[Any] ):
__lowercase = MaxNewTokensCriteria(start_length=5, max_new_tokens=5 )
__lowercase ,__lowercase = self._get_tensors(5 )
self.assertFalse(criteria(UpperCAmelCase__, UpperCAmelCase__ ) )
__lowercase ,__lowercase = self._get_tensors(9 )
self.assertFalse(criteria(UpperCAmelCase__, UpperCAmelCase__ ) )
__lowercase ,__lowercase = self._get_tensors(1_0 )
self.assertTrue(criteria(UpperCAmelCase__, UpperCAmelCase__ ) )
__lowercase = StoppingCriteriaList([criteria] )
self.assertEqual(criteria_list.max_length, 1_0 )
def _lowercase ( self : Optional[int] ):
__lowercase ,__lowercase = self._get_tensors(5 )
__lowercase = MaxTimeCriteria(max_time=0.1 )
self.assertFalse(criteria(UpperCAmelCase__, UpperCAmelCase__ ) )
__lowercase = MaxTimeCriteria(max_time=0.1, initial_timestamp=time.time() - 0.2 )
self.assertTrue(criteria(UpperCAmelCase__, UpperCAmelCase__ ) )
def _lowercase ( self : int ):
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ), 1_0 )
with self.assertWarns(UpperCAmelCase__ ):
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ), 1_1 )
__lowercase = validate_stopping_criteria(StoppingCriteriaList(), 1_1 )
self.assertEqual(len(UpperCAmelCase__ ), 1 )
| 17 |
"""simple docstring"""
import inspect
import unittest
import numpy as np
from transformers import BeitConfig
from transformers.testing_utils import require_flax, require_vision, slow
from transformers.utils import cached_property, is_flax_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor
if is_flax_available():
import jax
from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : int=1_0_0, UpperCAmelCase__ : Any=1_3, UpperCAmelCase__ : List[Any]=3_0, UpperCAmelCase__ : Dict=2, UpperCAmelCase__ : Any=3, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[str]=True, UpperCAmelCase__ : Optional[Any]=3_2, UpperCAmelCase__ : Any=5, UpperCAmelCase__ : Any=4, UpperCAmelCase__ : Any=3_7, UpperCAmelCase__ : Optional[int]="gelu", UpperCAmelCase__ : Dict=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Dict=1_0, UpperCAmelCase__ : Tuple=0.02, UpperCAmelCase__ : List[Any]=3, ):
__lowercase = parent
__lowercase = vocab_size
__lowercase = batch_size
__lowercase = image_size
__lowercase = patch_size
__lowercase = num_channels
__lowercase = is_training
__lowercase = use_labels
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = type_sequence_label_size
__lowercase = initializer_range
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
__lowercase = (image_size // patch_size) ** 2
__lowercase = num_patches + 1
def _lowercase ( self : int ):
__lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size], self.type_sequence_label_size )
__lowercase = BeitConfig(
vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=UpperCAmelCase__, initializer_range=self.initializer_range, )
return config, pixel_values, labels
def _lowercase ( self : Any, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[str], UpperCAmelCase__ : List[str] ):
__lowercase = FlaxBeitModel(config=UpperCAmelCase__ )
__lowercase = model(UpperCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : List[Any] ):
__lowercase = FlaxBeitForMaskedImageModeling(config=UpperCAmelCase__ )
__lowercase = model(UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size) )
def _lowercase ( self : Dict, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : Union[str, Any] ):
__lowercase = self.type_sequence_label_size
__lowercase = FlaxBeitForImageClassification(config=UpperCAmelCase__ )
__lowercase = model(UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__lowercase = 1
__lowercase = FlaxBeitForImageClassification(UpperCAmelCase__ )
__lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__lowercase = model(UpperCAmelCase__ )
def _lowercase ( self : List[str] ):
__lowercase = self.prepare_config_and_inputs()
(
(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,
) = config_and_inputs
__lowercase = {"pixel_values": pixel_values}
return config, inputs_dict
@require_flax
class _lowerCAmelCase ( lowercase ,unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : str = (
(FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else ()
)
def _lowercase ( self : List[Any] ):
__lowercase = FlaxBeitModelTester(self )
__lowercase = ConfigTester(self, config_class=UpperCAmelCase__, has_text_modality=UpperCAmelCase__, hidden_size=3_7 )
def _lowercase ( self : Union[str, Any] ):
self.config_tester.run_common_tests()
def _lowercase ( self : Optional[int] ):
__lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowercase = model_class(UpperCAmelCase__ )
__lowercase = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowercase = [*signature.parameters.keys()]
__lowercase = ["pixel_values"]
self.assertListEqual(arg_names[:1], UpperCAmelCase__ )
def _lowercase ( self : Tuple ):
__lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__lowercase = self._prepare_for_class(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = model_class(UpperCAmelCase__ )
@jax.jit
def model_jitted(UpperCAmelCase__ : str, **UpperCAmelCase__ : Dict ):
return model(pixel_values=UpperCAmelCase__, **UpperCAmelCase__ )
with self.subTest("JIT Enabled" ):
__lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
__lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple()
self.assertEqual(len(UpperCAmelCase__ ), len(UpperCAmelCase__ ) )
for jitted_output, output in zip(UpperCAmelCase__, UpperCAmelCase__ ):
self.assertEqual(jitted_output.shape, output.shape )
def _lowercase ( self : List[str] ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase__ )
def _lowercase ( self : int ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ )
def _lowercase ( self : Tuple ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ )
@slow
def _lowercase ( self : Union[str, Any] ):
for model_class_name in self.all_model_classes:
__lowercase = model_class_name.from_pretrained("microsoft/beit-base-patch16-224" )
__lowercase = model(np.ones((1, 3, 2_2_4, 2_2_4) ) )
self.assertIsNotNone(UpperCAmelCase__ )
def _A ( ) -> str:
'''simple docstring'''
__lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_vision
@require_flax
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _lowercase ( self : Optional[int] ):
return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None
@slow
def _lowercase ( self : Any ):
__lowercase = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" )
__lowercase = self.default_image_processor
__lowercase = prepare_img()
__lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ).pixel_values
# prepare bool_masked_pos
__lowercase = np.ones((1, 1_9_6), dtype=UpperCAmelCase__ )
# forward pass
__lowercase = model(pixel_values=UpperCAmelCase__, bool_masked_pos=UpperCAmelCase__ )
__lowercase = outputs.logits
# verify the logits
__lowercase = (1, 1_9_6, 8_1_9_2)
self.assertEqual(logits.shape, UpperCAmelCase__ )
__lowercase = np.array(
[[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] )
self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3], UpperCAmelCase__, atol=1E-2 ) )
@slow
def _lowercase ( self : Any ):
__lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" )
__lowercase = self.default_image_processor
__lowercase = prepare_img()
__lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" )
# forward pass
__lowercase = model(**UpperCAmelCase__ )
__lowercase = outputs.logits
# verify the logits
__lowercase = (1, 1_0_0_0)
self.assertEqual(logits.shape, UpperCAmelCase__ )
__lowercase = np.array([-1.2_385, -1.0_987, -1.0_108] )
self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) )
__lowercase = 2_8_1
self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ )
@slow
def _lowercase ( self : List[str] ):
__lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" )
__lowercase = self.default_image_processor
__lowercase = prepare_img()
__lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" )
# forward pass
__lowercase = model(**UpperCAmelCase__ )
__lowercase = outputs.logits
# verify the logits
__lowercase = (1, 2_1_8_4_1)
self.assertEqual(logits.shape, UpperCAmelCase__ )
__lowercase = np.array([1.6_881, -0.2_787, 0.5_901] )
self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) )
__lowercase = 2_3_9_6
self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ )
| 17 | 1 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
StableDiffusionSAGPipeline,
UNetaDConditionModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class _lowerCAmelCase ( lowercase ,lowercase ,unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : List[str] = StableDiffusionSAGPipeline
__UpperCAmelCase : Dict = TEXT_TO_IMAGE_PARAMS
__UpperCAmelCase : int = TEXT_TO_IMAGE_BATCH_PARAMS
__UpperCAmelCase : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS
__UpperCAmelCase : List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS
__UpperCAmelCase : Optional[int] = False
def _lowercase ( self : Any ):
torch.manual_seed(0 )
__lowercase = UNetaDConditionModel(
block_out_channels=(3_2, 6_4), layers_per_block=2, sample_size=3_2, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=3_2, )
__lowercase = DDIMScheduler(
beta_start=0.00_085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=UpperCAmelCase__, set_alpha_to_one=UpperCAmelCase__, )
torch.manual_seed(0 )
__lowercase = AutoencoderKL(
block_out_channels=[3_2, 6_4], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, )
torch.manual_seed(0 )
__lowercase = CLIPTextConfig(
bos_token_id=0, eos_token_id=2, hidden_size=3_2, intermediate_size=3_7, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_0_0_0, )
__lowercase = CLIPTextModel(UpperCAmelCase__ )
__lowercase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
__lowercase = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def _lowercase ( self : Optional[int], UpperCAmelCase__ : str, UpperCAmelCase__ : Optional[int]=0 ):
if str(UpperCAmelCase__ ).startswith("mps" ):
__lowercase = torch.manual_seed(UpperCAmelCase__ )
else:
__lowercase = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ )
__lowercase = {
"prompt": ".",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 1.0,
"sag_scale": 1.0,
"output_type": "numpy",
}
return inputs
def _lowercase ( self : Tuple ):
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def _lowercase ( self : List[Any] ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowercase ( self : int ):
__lowercase = StableDiffusionSAGPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" )
__lowercase = sag_pipe.to(UpperCAmelCase__ )
sag_pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = "."
__lowercase = torch.manual_seed(0 )
__lowercase = sag_pipe(
[prompt], generator=UpperCAmelCase__, guidance_scale=7.5, sag_scale=1.0, num_inference_steps=2_0, output_type="np" )
__lowercase = output.images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array([0.1_568, 0.1_738, 0.1_695, 0.1_693, 0.1_507, 0.1_705, 0.1_547, 0.1_751, 0.1_949] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2
def _lowercase ( self : Union[str, Any] ):
__lowercase = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" )
__lowercase = sag_pipe.to(UpperCAmelCase__ )
sag_pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = "."
__lowercase = torch.manual_seed(0 )
__lowercase = sag_pipe(
[prompt], generator=UpperCAmelCase__, guidance_scale=7.5, sag_scale=1.0, num_inference_steps=2_0, output_type="np" )
__lowercase = output.images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array([0.3_459, 0.2_876, 0.2_537, 0.3_002, 0.2_671, 0.2_160, 0.3_026, 0.2_262, 0.2_371] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2
def _lowercase ( self : int ):
__lowercase = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" )
__lowercase = sag_pipe.to(UpperCAmelCase__ )
sag_pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = "."
__lowercase = torch.manual_seed(0 )
__lowercase = sag_pipe(
[prompt], width=7_6_8, height=5_1_2, generator=UpperCAmelCase__, guidance_scale=7.5, sag_scale=1.0, num_inference_steps=2_0, output_type="np", )
__lowercase = output.images
assert image.shape == (1, 5_1_2, 7_6_8, 3)
| 17 |
"""simple docstring"""
import unittest
from transformers import load_tool
from .test_tools_common import ToolTesterMixin
class _lowerCAmelCase ( unittest.TestCase ,lowercase ):
"""simple docstring"""
def _lowercase ( self : List[Any] ):
__lowercase = load_tool("text-classification" )
self.tool.setup()
__lowercase = load_tool("text-classification", remote=UpperCAmelCase__ )
def _lowercase ( self : str ):
__lowercase = self.tool("That's quite cool", ["positive", "negative"] )
self.assertEqual(UpperCAmelCase__, "positive" )
def _lowercase ( self : str ):
__lowercase = self.remote_tool("That's quite cool", ["positive", "negative"] )
self.assertEqual(UpperCAmelCase__, "positive" )
def _lowercase ( self : List[str] ):
__lowercase = self.tool(text="That's quite cool", labels=["positive", "negative"] )
self.assertEqual(UpperCAmelCase__, "positive" )
def _lowercase ( self : Tuple ):
__lowercase = self.remote_tool(text="That's quite cool", labels=["positive", "negative"] )
self.assertEqual(UpperCAmelCase__, "positive" )
| 17 | 1 |
"""simple docstring"""
def _A ( UpperCamelCase_ : int = 10, UpperCamelCase_ : int = 1000, UpperCamelCase_ : bool = True) -> int:
'''simple docstring'''
assert (
isinstance(UpperCamelCase_, UpperCamelCase_)
and isinstance(UpperCamelCase_, UpperCamelCase_)
and isinstance(UpperCamelCase_, UpperCamelCase_)
), "Invalid type of value(s) specified to function!"
if min_val > max_val:
raise ValueError("Invalid value for min_val or max_val (min_value < max_value)")
return min_val if option else max_val
def _A ( UpperCamelCase_ : int, UpperCamelCase_ : int) -> int:
'''simple docstring'''
return int((number_a + number_a) / 2)
def _A ( UpperCamelCase_ : int, UpperCamelCase_ : int, UpperCamelCase_ : int) -> None:
'''simple docstring'''
assert (
isinstance(UpperCamelCase_, UpperCamelCase_) and isinstance(UpperCamelCase_, UpperCamelCase_) and isinstance(UpperCamelCase_, UpperCamelCase_)
), 'argument values must be type of "int"'
if lower > higher:
raise ValueError("argument value for lower and higher must be(lower > higher)")
if not lower < to_guess < higher:
raise ValueError(
"guess value must be within the range of lower and higher value")
def answer(UpperCamelCase_ : int) -> str:
if number > to_guess:
return "high"
elif number < to_guess:
return "low"
else:
return "same"
print("started...")
__lowercase = lower
__lowercase = higher
__lowercase = []
while True:
__lowercase = get_avg(UpperCamelCase_, UpperCamelCase_)
last_numbers.append(UpperCamelCase_)
if answer(UpperCamelCase_) == "low":
__lowercase = number
elif answer(UpperCamelCase_) == "high":
__lowercase = number
else:
break
print(F"""guess the number : {last_numbers[-1]}""")
print(F"""details : {last_numbers!s}""")
def _A ( ) -> None:
'''simple docstring'''
__lowercase = int(input("Enter lower value : ").strip())
__lowercase = int(input("Enter high value : ").strip())
__lowercase = int(input("Enter value to guess : ").strip())
guess_the_number(UpperCamelCase_, UpperCamelCase_, UpperCamelCase_)
if __name__ == "__main__":
main()
| 17 |
"""simple docstring"""
from typing import Any, Callable, Dict, List, Optional, Union
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
_a = 'CompVis/stable-diffusion-v1-1'
_a = 'CompVis/stable-diffusion-v1-2'
_a = 'CompVis/stable-diffusion-v1-3'
_a = 'CompVis/stable-diffusion-v1-4'
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
def __init__( self : Dict, UpperCAmelCase__ : AutoencoderKL, UpperCAmelCase__ : CLIPTextModel, UpperCAmelCase__ : CLIPTokenizer, UpperCAmelCase__ : UNetaDConditionModel, UpperCAmelCase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], UpperCAmelCase__ : StableDiffusionSafetyChecker, UpperCAmelCase__ : CLIPImageProcessor, UpperCAmelCase__ : bool = True, ):
super()._init_()
__lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ )
__lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ )
__lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ )
__lowercase = StableDiffusionPipeline(
vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, tokenizer=UpperCAmelCase__, unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, safety_checker=UpperCAmelCase__, feature_extractor=UpperCAmelCase__, requires_safety_checker=UpperCAmelCase__, )
self.register_modules(pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea )
@property
def _lowercase ( self : List[str] ):
return {k: getattr(self, UpperCAmelCase__ ) for k in self.config.keys() if not k.startswith("_" )}
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ):
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
__lowercase = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(UpperCAmelCase__ )
def _lowercase ( self : List[str] ):
self.enable_attention_slicing(UpperCAmelCase__ )
@torch.no_grad()
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Tuple, ):
return self.pipea(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
@torch.no_grad()
def _lowercase ( self : Tuple, UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : str, ):
return self.pipea(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
@torch.no_grad()
def _lowercase ( self : str, UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Any, ):
return self.pipea(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
@torch.no_grad()
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Optional[int], ):
return self.pipea(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
@torch.no_grad()
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : str, ):
__lowercase = "cuda" if torch.cuda.is_available() else "cpu"
self.to(UpperCAmelCase__ )
# Checks if the height and width are divisible by 8 or not
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" )
# Get first result from Stable Diffusion Checkpoint v1.1
__lowercase = self.textaimg_sda_a(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
# Get first result from Stable Diffusion Checkpoint v1.2
__lowercase = self.textaimg_sda_a(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
# Get first result from Stable Diffusion Checkpoint v1.3
__lowercase = self.textaimg_sda_a(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
# Get first result from Stable Diffusion Checkpoint v1.4
__lowercase = self.textaimg_sda_a(
prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, )
# Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result
return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
| 17 | 1 |
"""simple docstring"""
from __future__ import annotations
import time
_a = list[tuple[int, int]]
_a = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
_a = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : List[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : int, UpperCAmelCase__ : int, UpperCAmelCase__ : int, UpperCAmelCase__ : Node | None ):
__lowercase = pos_x
__lowercase = pos_y
__lowercase = (pos_y, pos_x)
__lowercase = goal_x
__lowercase = goal_y
__lowercase = parent
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : str, UpperCAmelCase__ : tuple[int, int], UpperCAmelCase__ : tuple[int, int] ):
__lowercase = Node(start[1], start[0], goal[1], goal[0], UpperCAmelCase__ )
__lowercase = Node(goal[1], goal[0], goal[1], goal[0], UpperCAmelCase__ )
__lowercase = [self.start]
__lowercase = False
def _lowercase ( self : Optional[int] ):
while self.node_queue:
__lowercase = self.node_queue.pop(0 )
if current_node.pos == self.target.pos:
__lowercase = True
return self.retrace_path(UpperCAmelCase__ )
__lowercase = self.get_successors(UpperCAmelCase__ )
for node in successors:
self.node_queue.append(UpperCAmelCase__ )
if not self.reached:
return [self.start.pos]
return None
def _lowercase ( self : int, UpperCAmelCase__ : Node ):
__lowercase = []
for action in delta:
__lowercase = parent.pos_x + action[1]
__lowercase = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(UpperCAmelCase__ ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(UpperCAmelCase__, UpperCAmelCase__, self.target.pos_y, self.target.pos_x, UpperCAmelCase__ ) )
return successors
def _lowercase ( self : Tuple, UpperCAmelCase__ : Node | None ):
__lowercase = node
__lowercase = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
__lowercase = current_node.parent
path.reverse()
return path
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Union[str, Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[Any] ):
__lowercase = BreadthFirstSearch(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = BreadthFirstSearch(UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = False
def _lowercase ( self : List[Any] ):
while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue:
__lowercase = self.fwd_bfs.node_queue.pop(0 )
__lowercase = self.bwd_bfs.node_queue.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
__lowercase = True
return self.retrace_bidirectional_path(
UpperCAmelCase__, UpperCAmelCase__ )
__lowercase = current_bwd_node
__lowercase = current_fwd_node
__lowercase = {
self.fwd_bfs: self.fwd_bfs.get_successors(UpperCAmelCase__ ),
self.bwd_bfs: self.bwd_bfs.get_successors(UpperCAmelCase__ ),
}
for bfs in [self.fwd_bfs, self.bwd_bfs]:
for node in successors[bfs]:
bfs.node_queue.append(UpperCAmelCase__ )
if not self.reached:
return [self.fwd_bfs.start.pos]
return None
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Node, UpperCAmelCase__ : Node ):
__lowercase = self.fwd_bfs.retrace_path(UpperCAmelCase__ )
__lowercase = self.bwd_bfs.retrace_path(UpperCAmelCase__ )
bwd_path.pop()
bwd_path.reverse()
__lowercase = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
import doctest
doctest.testmod()
_a = (0, 0)
_a = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
_a = time.time()
_a = BreadthFirstSearch(init, goal)
_a = bfs.search()
_a = time.time() - start_bfs_time
print('Unidirectional BFS computation time : ', bfs_time)
_a = time.time()
_a = BidirectionalBreadthFirstSearch(init, goal)
_a = bd_bfs.search()
_a = time.time() - start_bd_bfs_time
print('Bidirectional BFS computation time : ', bd_bfs_time)
| 17 |
"""simple docstring"""
import random
import unittest
import numpy as np
import torch
from diffusers import (
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionUpscalePipeline,
PNDMScheduler,
)
from diffusers.utils import floats_tensor
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class _lowerCAmelCase ( lowercase ,unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : str = "ssube/stable-diffusion-x4-upscaler-onnx"
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : List[str]=0 ):
__lowercase = floats_tensor((1, 3, 1_2_8, 1_2_8), rng=random.Random(UpperCAmelCase__ ) )
__lowercase = torch.manual_seed(UpperCAmelCase__ )
__lowercase = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 7.5,
"output_type": "numpy",
}
return inputs
def _lowercase ( self : Any ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1].flatten()
# started as 128, should now be 512
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] )
assert np.abs(image_slice - expected_slice ).max() < 1E-1
def _lowercase ( self : Optional[Any] ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
__lowercase = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.6_898_892, 0.59_240_556, 0.52_499_527, 0.58_866_215, 0.52_258_235, 0.52_572_715, 0.62_414_473, 0.6_174_387, 0.6_214_964] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def _lowercase ( self : int ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
__lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.7_659_278, 0.76_437_664, 0.75_579_107, 0.7_691_116, 0.77_666_986, 0.7_727_672, 0.7_758_664, 0.7_812_226, 0.76_942_515] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def _lowercase ( self : str ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
__lowercase = EulerDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def _lowercase ( self : Any ):
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" )
__lowercase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs()
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.77_424_496, 0.773_601, 0.7_645_288, 0.7_769_598, 0.7_772_739, 0.7_738_688, 0.78_187_233, 0.77_879_584, 0.767_043] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
@nightly
@require_onnxruntime
@require_torch_gpu
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@property
def _lowercase ( self : Tuple ):
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def _lowercase ( self : Dict ):
__lowercase = ort.SessionOptions()
__lowercase = False
return options
def _lowercase ( self : Dict ):
__lowercase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg" )
__lowercase = init_image.resize((1_2_8, 1_2_8) )
# using the PNDM scheduler by default
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(
"ssube/stable-diffusion-x4-upscaler-onnx", provider=self.gpu_provider, sess_options=self.gpu_options, )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = "A fantasy landscape, trending on artstation"
__lowercase = torch.manual_seed(0 )
__lowercase = pipe(
prompt=UpperCAmelCase__, image=UpperCAmelCase__, guidance_scale=7.5, num_inference_steps=1_0, generator=UpperCAmelCase__, output_type="np", )
__lowercase = output.images
__lowercase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert images.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array([0.4_883, 0.4_947, 0.4_980, 0.4_975, 0.4_982, 0.4_980, 0.5_000, 0.5_006, 0.4_972] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
def _lowercase ( self : str ):
__lowercase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg" )
__lowercase = init_image.resize((1_2_8, 1_2_8) )
__lowercase = LMSDiscreteScheduler.from_pretrained(
"ssube/stable-diffusion-x4-upscaler-onnx", subfolder="scheduler" )
__lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(
"ssube/stable-diffusion-x4-upscaler-onnx", scheduler=UpperCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = "A fantasy landscape, trending on artstation"
__lowercase = torch.manual_seed(0 )
__lowercase = pipe(
prompt=UpperCAmelCase__, image=UpperCAmelCase__, guidance_scale=7.5, num_inference_steps=2_0, generator=UpperCAmelCase__, output_type="np", )
__lowercase = output.images
__lowercase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert images.shape == (1, 5_1_2, 5_1_2, 3)
__lowercase = np.array(
[0.50_173_753, 0.50_223_356, 0.502_039, 0.50_233_036, 0.5_023_725, 0.5_022_601, 0.5_018_758, 0.50_234_085, 0.50_241_566] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
| 17 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.