code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor UpperCAmelCase__ = logging.get_logger(__name__) class lowercase_ ( lowercase ): '''simple docstring''' def __init__( self : int , *__UpperCAmelCase : Any , **__UpperCAmelCase : Optional[int] ) ->None: """simple docstring""" warnings.warn( '''The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PoolFormerImageProcessor instead.''' , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
0
"""simple docstring""" from __future__ import annotations from typing import Any class _lowerCAmelCase : """simple docstring""" def __init__( self : Any, UpperCAmelCase__ : int ): __lowercase = num_of_nodes __lowercase = [] __lowercase = {} def _lowercase ( self : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : int, UpperCAmelCase__ : int ): self.m_edges.append([u_node, v_node, weight] ) def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _lowercase ( self : List[Any], UpperCAmelCase__ : int ): if self.m_component[u_node] != u_node: for k in self.m_component: __lowercase = self.find_component(UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : list[int], UpperCAmelCase__ : int, UpperCAmelCase__ : int ): if component_size[u_node] <= component_size[v_node]: __lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(UpperCAmelCase__ ) elif component_size[u_node] >= component_size[v_node]: __lowercase = self.find_component(UpperCAmelCase__ ) component_size[u_node] += component_size[v_node] self.set_component(UpperCAmelCase__ ) def _lowercase ( self : Any ): __lowercase = [] __lowercase = 0 __lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowercase ,__lowercase ,__lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase ,__lowercase ,__lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 __lowercase = [-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def _A ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
17
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class __A ( UpperCamelCase__ ): a__ : Optional[int] = """philschmid/bart-large-cnn-samsum""" a__ : str = ( """This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, """ """and returns a summary of the text.""" ) a__ : Optional[int] = """summarizer""" a__ : str = AutoTokenizer a__ : Optional[int] = AutoModelForSeqaSeqLM a__ : Optional[int] = ["""text"""] a__ : Optional[int] = ["""text"""] def _lowercase (self : Dict , __a : int ): return self.pre_processor(__a , return_tensors="pt" , truncation=__a ) def _lowercase (self : Optional[Any] , __a : Optional[int] ): return self.model.generate(**__a )[0] def _lowercase (self : List[str] , __a : Any ): return self.pre_processor.decode(__a , skip_special_tokens=__a , clean_up_tokenization_spaces=__a )
1
"""simple docstring""" from math import sqrt def _A ( UpperCamelCase_ : int) -> int: '''simple docstring''' __lowercase = 0 for i in range(1, int(sqrt(UpperCamelCase_) + 1)): if n % i == 0 and i != sqrt(UpperCamelCase_): total += i + n // i elif i == sqrt(UpperCamelCase_): total += i return total - n def _A ( UpperCamelCase_ : int = 10000) -> int: '''simple docstring''' __lowercase = sum( i for i in range(1, UpperCamelCase_) if sum_of_divisors(sum_of_divisors(UpperCamelCase_)) == i and sum_of_divisors(UpperCamelCase_) != i) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
17
0
'''simple docstring''' import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights lowercase__ = FlaxDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=UpperCamelCase , cache_dir=UpperCamelCase ) lowercase__ = [t[-1] for t in os.walk(os.path.join(UpperCamelCase , os.listdir(UpperCamelCase )[0] , '''snapshots''' ) )] lowercase__ = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('''.bin''' ) for f in files ) @slow @require_flax class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self : Tuple ): '''simple docstring''' lowercase__ ,lowercase__ = FlaxStableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=UpperCamelCase ) lowercase__ = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) lowercase__ = jax.random.PRNGKey(0 ) lowercase__ = 4 lowercase__ = jax.device_count() lowercase__ = num_samples * [prompt] lowercase__ = pipeline.prepare_inputs(UpperCamelCase ) # shard inputs and rng lowercase__ = replicate(UpperCamelCase ) lowercase__ = jax.random.split(UpperCamelCase , UpperCamelCase ) lowercase__ = shard(UpperCamelCase ) lowercase__ = pipeline(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , jit=UpperCamelCase ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1E-3 assert np.abs(np.abs(UpperCamelCase , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5E-1 lowercase__ = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(UpperCamelCase ) == num_samples def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' lowercase__ ,lowercase__ = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''flax''' , safety_checker=UpperCamelCase ) lowercase__ = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) lowercase__ = jax.random.PRNGKey(0 ) lowercase__ = 50 lowercase__ = jax.device_count() lowercase__ = num_samples * [prompt] lowercase__ = pipeline.prepare_inputs(UpperCamelCase ) # shard inputs and rng lowercase__ = replicate(UpperCamelCase ) lowercase__ = jax.random.split(UpperCamelCase , UpperCamelCase ) lowercase__ = shard(UpperCamelCase ) lowercase__ = pipeline(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , jit=UpperCamelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1E-3 assert np.abs((np.abs(UpperCamelCase , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5E-1 def UpperCamelCase__ (self : str ): '''simple docstring''' lowercase__ ,lowercase__ = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=UpperCamelCase ) lowercase__ = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) lowercase__ = jax.random.PRNGKey(0 ) lowercase__ = 50 lowercase__ = jax.device_count() lowercase__ = num_samples * [prompt] lowercase__ = pipeline.prepare_inputs(UpperCamelCase ) # shard inputs and rng lowercase__ = replicate(UpperCamelCase ) lowercase__ = jax.random.split(UpperCamelCase , UpperCamelCase ) lowercase__ = shard(UpperCamelCase ) lowercase__ = pipeline(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , jit=UpperCamelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(UpperCamelCase , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def UpperCamelCase__ (self : str ): '''simple docstring''' lowercase__ ,lowercase__ = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa ) lowercase__ = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) lowercase__ = jax.random.PRNGKey(0 ) lowercase__ = 50 lowercase__ = jax.device_count() lowercase__ = num_samples * [prompt] lowercase__ = pipeline.prepare_inputs(UpperCamelCase ) # shard inputs and rng lowercase__ = replicate(UpperCamelCase ) lowercase__ = jax.random.split(UpperCamelCase , UpperCamelCase ) lowercase__ = shard(UpperCamelCase ) lowercase__ = pipeline(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , jit=UpperCamelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(UpperCamelCase , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , set_alpha_to_one=UpperCamelCase , steps_offset=1 , ) lowercase__ ,lowercase__ = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , scheduler=UpperCamelCase , safety_checker=UpperCamelCase , ) lowercase__ = scheduler.create_state() lowercase__ = scheduler_state lowercase__ = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) lowercase__ = jax.random.PRNGKey(0 ) lowercase__ = 50 lowercase__ = jax.device_count() lowercase__ = num_samples * [prompt] lowercase__ = pipeline.prepare_inputs(UpperCamelCase ) # shard inputs and rng lowercase__ = replicate(UpperCamelCase ) lowercase__ = jax.random.split(UpperCamelCase , UpperCamelCase ) lowercase__ = shard(UpperCamelCase ) lowercase__ = pipeline(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , jit=UpperCamelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1E-3 assert np.abs((np.abs(UpperCamelCase , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5E-1 def UpperCamelCase__ (self : str ): '''simple docstring''' lowercase__ = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) lowercase__ = jax.device_count() lowercase__ = num_samples * [prompt] lowercase__ = jax.random.split(jax.random.PRNGKey(0 ) , UpperCamelCase ) lowercase__ ,lowercase__ = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=UpperCamelCase , ) lowercase__ = replicate(UpperCamelCase ) lowercase__ = pipeline.prepare_inputs(UpperCamelCase ) lowercase__ = shard(UpperCamelCase ) lowercase__ = pipeline(UpperCamelCase , UpperCamelCase , UpperCamelCase , jit=UpperCamelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) lowercase__ = images[2, 0, 256, 10:17, 1] # With memory efficient attention lowercase__ ,lowercase__ = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=UpperCamelCase , use_memory_efficient_attention=UpperCamelCase , ) lowercase__ = replicate(UpperCamelCase ) lowercase__ = pipeline.prepare_inputs(UpperCamelCase ) lowercase__ = shard(UpperCamelCase ) lowercase__ = pipeline(UpperCamelCase , UpperCamelCase , UpperCamelCase , jit=UpperCamelCase ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) lowercase__ = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
2
"""simple docstring""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _a = _symbol_database.Default() _a = _descriptor_pool.Default().AddSerializedFile( b'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) _a = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: _a = None _a = b'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" _a = 45 _a = 15_81 _a = 15_17 _a = 15_70 _a = 15_84 _a = 17_93 _a = 17_95 _a = 19_16 _a = 18_64 _a = 19_05 _a = 19_19 _a = 24_29 _a = 22_08 _a = 24_18 _a = 23_23 _a = 24_07 # @@protoc_insertion_point(module_scope)
17
0
'''simple docstring''' import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' A : List[str] = MobileBertConfig.from_json_file(snake_case__ ) print(F'Building PyTorch model from configuration: {config}' ) A : Optional[Any] = MobileBertForPreTraining(snake_case__ ) # Load weights from tf checkpoint A : Optional[int] = load_tf_weights_in_mobilebert(snake_case__ , snake_case__ , snake_case__ ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , snake_case__ ) if __name__ == "__main__": lowercase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--mobilebert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained MobileBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowercase : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
3
"""simple docstring""" import baseaa def _A ( UpperCamelCase_ : str) -> bytes: '''simple docstring''' return baseaa.baaencode(string.encode("utf-8")) def _A ( UpperCamelCase_ : bytes) -> str: '''simple docstring''' return baseaa.baadecode(UpperCamelCase_).decode("utf-8") if __name__ == "__main__": _a = 'Hello World!' _a = baseaa_encode(test) print(encoded) _a = baseaa_decode(encoded) print(decoded)
17
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case =logging.get_logger(__name__) __snake_case ={ """facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""", # See all LeViT models at https://huggingface.co/models?filter=levit } class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Tuple = '''levit''' def __init__( self : Tuple , UpperCAmelCase__ : Optional[Any]=2_2_4 , UpperCAmelCase__ : int=3 , UpperCAmelCase__ : List[Any]=3 , UpperCAmelCase__ : int=2 , UpperCAmelCase__ : Any=1 , UpperCAmelCase__ : Dict=1_6 , UpperCAmelCase__ : int=[1_2_8, 2_5_6, 3_8_4] , UpperCAmelCase__ : str=[4, 8, 1_2] , UpperCAmelCase__ : Optional[int]=[4, 4, 4] , UpperCAmelCase__ : Optional[Any]=[1_6, 1_6, 1_6] , UpperCAmelCase__ : Any=0 , UpperCAmelCase__ : Dict=[2, 2, 2] , UpperCAmelCase__ : List[str]=[2, 2, 2] , UpperCAmelCase__ : Dict=0.02 , **UpperCAmelCase__ : Optional[int] , ) -> Optional[Any]: super().__init__(**UpperCAmelCase__ ) lowerCAmelCase = image_size lowerCAmelCase = num_channels lowerCAmelCase = kernel_size lowerCAmelCase = stride lowerCAmelCase = padding lowerCAmelCase = hidden_sizes lowerCAmelCase = num_attention_heads lowerCAmelCase = depths lowerCAmelCase = key_dim lowerCAmelCase = drop_path_rate lowerCAmelCase = patch_size lowerCAmelCase = attention_ratio lowerCAmelCase = mlp_ratio lowerCAmelCase = initializer_range lowerCAmelCase = [ ['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : int = version.parse('''1.11''' ) @property def __UpperCAmelCase ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __UpperCAmelCase ( self : Dict ) -> float: return 1E-4
4
"""simple docstring""" def _A ( UpperCamelCase_ : Any) -> List[str]: '''simple docstring''' __lowercase ,__lowercase = [], [] while len(UpperCamelCase_) > 1: __lowercase ,__lowercase = min(UpperCamelCase_), max(UpperCamelCase_) start.append(UpperCamelCase_) end.append(UpperCamelCase_) collection.remove(UpperCamelCase_) collection.remove(UpperCamelCase_) end.reverse() return start + collection + end if __name__ == "__main__": _a = input('Enter numbers separated by a comma:\n').strip() _a = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
17
0
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def UpperCAmelCase_ ( __snake_case ) -> Any: """simple docstring""" _lowercase =[False] * len(__snake_case ) _lowercase =[-1] * len(__snake_case ) def dfs(__snake_case , __snake_case ): _lowercase =True _lowercase =c for u in graph[v]: if not visited[u]: dfs(__snake_case , 1 - c ) for i in range(len(__snake_case ) ): if not visited[i]: dfs(__snake_case , 0 ) for i in range(len(__snake_case ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph UpperCAmelCase__ = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
5
"""simple docstring""" def _A ( UpperCamelCase_ : list[int]) -> float: '''simple docstring''' if not nums: # Makes sure that the list is not empty raise ValueError("List is empty") __lowercase = sum(UpperCamelCase_) / len(UpperCamelCase_) # Calculate the average return sum(abs(x - average) for x in nums) / len(UpperCamelCase_) if __name__ == "__main__": import doctest doctest.testmod()
17
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin A : List[Any] = False @skip_mps class __A( a , a , a , unittest.TestCase ): snake_case_ = StableDiffusionAttendAndExcitePipeline snake_case_ = False snake_case_ = TEXT_TO_IMAGE_PARAMS snake_case_ = TEXT_TO_IMAGE_BATCH_PARAMS.union({'''token_indices'''} ) snake_case_ = TEXT_TO_IMAGE_IMAGE_PARAMS snake_case_ = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def SCREAMING_SNAKE_CASE_ ( cls ) -> List[str]: '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(_snake_case ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls ) -> int: '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) __a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_snake_case , ) __a = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_snake_case , set_alpha_to_one=_snake_case , ) torch.manual_seed(0 ) __a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=512 , ) __a = CLIPTextModel(_snake_case ) __a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __a = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case=0 ) -> Any: '''simple docstring''' if str(_snake_case ).startswith('''mps''' ): __a = torch.manual_seed(_snake_case ) else: __a = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) __a = __a = { '''prompt''': '''a cat and a frog''', '''token_indices''': [2, 5], '''generator''': generator, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''max_iter_to_alter''': 2, '''thresholds''': {0: 0.7}, } return inputs def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' __a = '''cpu''' __a = self.get_dummy_components() __a = self.pipeline_class(**_snake_case ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) __a = self.get_dummy_inputs(_snake_case ) __a = pipe(**_snake_case ).images __a = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) __a = np.array( [0.6390_5364, 0.6289_7307, 0.4859_9017, 0.513_3624, 0.555_0048, 0.4576_9516, 0.5032_6973, 0.502_3139, 0.4538_4496] ) __a = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_snake_case , 1E-3 ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=5E-4 ) def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7E-4 ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4 ) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' super().test_save_load_local(expected_max_difference=5E-4 ) def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=4E-4 ) @require_torch_gpu @slow class __A( unittest.TestCase ): @classmethod def SCREAMING_SNAKE_CASE_ ( cls ) -> Dict: '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(_snake_case ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls ) -> Union[str, Any]: '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' __a = torch.manual_seed(51 ) __a = StableDiffusionAttendAndExcitePipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , safety_checker=_snake_case , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) __a = '''a painting of an elephant with glasses''' __a = [5, 7] __a = pipe( prompt=_snake_case , token_indices=_snake_case , guidance_scale=7.5 , generator=_snake_case , num_inference_steps=5 , max_iter_to_alter=5 , output_type='''numpy''' , ).images[0] __a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy''' ) assert np.abs((expected_image - image).max() ) < 5E-1
6
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : int=1_0_0, UpperCAmelCase__ : Any=1_3, UpperCAmelCase__ : List[Any]=3_0, UpperCAmelCase__ : Dict=2, UpperCAmelCase__ : Any=3, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[str]=True, UpperCAmelCase__ : Optional[Any]=3_2, UpperCAmelCase__ : Any=5, UpperCAmelCase__ : Any=4, UpperCAmelCase__ : Any=3_7, UpperCAmelCase__ : Optional[int]="gelu", UpperCAmelCase__ : Dict=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Dict=1_0, UpperCAmelCase__ : Tuple=0.02, UpperCAmelCase__ : List[Any]=3, ): __lowercase = parent __lowercase = vocab_size __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase = (image_size // patch_size) ** 2 __lowercase = num_patches + 1 def _lowercase ( self : int ): __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size], self.type_sequence_label_size ) __lowercase = BeitConfig( vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=UpperCAmelCase__, initializer_range=self.initializer_range, ) return config, pixel_values, labels def _lowercase ( self : Any, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[str], UpperCAmelCase__ : List[str] ): __lowercase = FlaxBeitModel(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : List[Any] ): __lowercase = FlaxBeitForMaskedImageModeling(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size) ) def _lowercase ( self : Dict, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : Union[str, Any] ): __lowercase = self.type_sequence_label_size __lowercase = FlaxBeitForImageClassification(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowercase = 1 __lowercase = FlaxBeitForImageClassification(UpperCAmelCase__ ) __lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase = model(UpperCAmelCase__ ) def _lowercase ( self : List[str] ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) ,( __lowercase ) ,( __lowercase ) , ) = config_and_inputs __lowercase = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class _lowerCAmelCase ( lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def _lowercase ( self : List[Any] ): __lowercase = FlaxBeitModelTester(self ) __lowercase = ConfigTester(self, config_class=UpperCAmelCase__, has_text_modality=UpperCAmelCase__, hidden_size=3_7 ) def _lowercase ( self : Union[str, Any] ): self.config_tester.run_common_tests() def _lowercase ( self : Optional[int] ): __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(UpperCAmelCase__ ) __lowercase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["pixel_values"] self.assertListEqual(arg_names[:1], UpperCAmelCase__ ) def _lowercase ( self : Tuple ): __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowercase = self._prepare_for_class(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = model_class(UpperCAmelCase__ ) @jax.jit def model_jitted(UpperCAmelCase__ : str, **UpperCAmelCase__ : Dict ): return model(pixel_values=UpperCAmelCase__, **UpperCAmelCase__ ) with self.subTest("JIT Enabled" ): __lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ), len(UpperCAmelCase__ ) ) for jitted_output, output in zip(UpperCAmelCase__, UpperCAmelCase__ ): self.assertEqual(jitted_output.shape, output.shape ) def _lowercase ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def _lowercase ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ ) def _lowercase ( self : Tuple ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ ) @slow def _lowercase ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: __lowercase = model_class_name.from_pretrained("microsoft/beit-base-patch16-224" ) __lowercase = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(UpperCAmelCase__ ) def _A ( ) -> str: '''simple docstring''' __lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_vision @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : Optional[int] ): return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def _lowercase ( self : Any ): __lowercase = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ).pixel_values # prepare bool_masked_pos __lowercase = np.ones((1, 1_9_6), dtype=UpperCAmelCase__ ) # forward pass __lowercase = model(pixel_values=UpperCAmelCase__, bool_masked_pos=UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 1_9_6, 8_1_9_2) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3], UpperCAmelCase__, atol=1E-2 ) ) @slow def _lowercase ( self : Any ): __lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ) # forward pass __lowercase = model(**UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 1_0_0_0) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array([-1.2_385, -1.0_987, -1.0_108] ) self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) ) __lowercase = 2_8_1 self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ ) @slow def _lowercase ( self : List[str] ): __lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ) # forward pass __lowercase = model(**UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 2_1_8_4_1) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array([1.6_881, -0.2_787, 0.5_901] ) self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) ) __lowercase = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ )
17
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "spiece.model"} lowercase_ = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", } } lowercase_ = { "xlnet-base-cased": None, "xlnet-large-cased": None, } # Segments (not really needed) lowercase_ = 0 lowercase_ = 1 lowercase_ = 2 lowercase_ = 3 lowercase_ = 4 class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = VOCAB_FILES_NAMES lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase = 'left' def __init__( self : Dict,lowercase_ : List[Any],lowercase_ : Dict=False,lowercase_ : List[str]=True,lowercase_ : Any=False,lowercase_ : Optional[int]="<s>",lowercase_ : List[str]="</s>",lowercase_ : List[str]="<unk>",lowercase_ : str="<sep>",lowercase_ : str="<pad>",lowercase_ : List[str]="<cls>",lowercase_ : Dict="<mask>",lowercase_ : Tuple=["<eop>", "<eod>"],lowercase_ : Optional[Dict[str, Any]] = None,**lowercase_ : Optional[Any],)-> None: '''simple docstring''' A__ = AddedToken(lowercase_,lstrip=lowercase_,rstrip=lowercase_ ) if isinstance(lowercase_,lowercase_ ) else mask_token A__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowercase_,remove_space=lowercase_,keep_accents=lowercase_,bos_token=lowercase_,eos_token=lowercase_,unk_token=lowercase_,sep_token=lowercase_,pad_token=lowercase_,cls_token=lowercase_,mask_token=lowercase_,additional_special_tokens=lowercase_,sp_model_kwargs=self.sp_model_kwargs,**lowercase_,) A__ = 3 A__ = do_lower_case A__ = remove_space A__ = keep_accents A__ = vocab_file A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase_ ) @property def snake_case__ ( self : List[str] )-> Optional[Any]: '''simple docstring''' return len(self.sp_model ) def snake_case__ ( self : Union[str, Any] )-> Union[str, Any]: '''simple docstring''' A__ = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] )-> Union[str, Any]: '''simple docstring''' A__ = self.__dict__.copy() A__ = None return state def __setstate__( self : Optional[Any],lowercase_ : Optional[int] )-> Union[str, Any]: '''simple docstring''' A__ = d # for backward compatibility if not hasattr(self,'sp_model_kwargs' ): A__ = {} A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case__ ( self : int,lowercase_ : List[Any] )-> List[Any]: '''simple docstring''' if self.remove_space: A__ = ' '.join(inputs.strip().split() ) else: A__ = inputs A__ = outputs.replace('``','"' ).replace('\'\'','"' ) if not self.keep_accents: A__ = unicodedata.normalize('NFKD',lowercase_ ) A__ = ''.join([c for c in outputs if not unicodedata.combining(lowercase_ )] ) if self.do_lower_case: A__ = outputs.lower() return outputs def snake_case__ ( self : Optional[Any],lowercase_ : str )-> List[str]: '''simple docstring''' A__ = self.preprocess_text(lowercase_ ) A__ = self.sp_model.encode(lowercase_,out_type=lowercase_ ) A__ = [] for piece in pieces: if len(lowercase_ ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): A__ = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowercase_,'' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: A__ = cur_pieces[1:] else: A__ = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(lowercase_ ) else: new_pieces.append(lowercase_ ) return new_pieces def snake_case__ ( self : Dict,lowercase_ : Any )-> Optional[Any]: '''simple docstring''' return self.sp_model.PieceToId(lowercase_ ) def snake_case__ ( self : Optional[Any],lowercase_ : Any )-> Optional[int]: '''simple docstring''' return self.sp_model.IdToPiece(lowercase_ ) def snake_case__ ( self : Optional[Any],lowercase_ : str )-> Union[str, Any]: '''simple docstring''' A__ = ''.join(lowercase_ ).replace(lowercase_,' ' ).strip() return out_string def snake_case__ ( self : Union[str, Any],lowercase_ : List[int],lowercase_ : bool = False,lowercase_ : bool = None,lowercase_ : bool = True,**lowercase_ : List[str],)-> str: '''simple docstring''' A__ = kwargs.pop('use_source_tokenizer',lowercase_ ) A__ = self.convert_ids_to_tokens(lowercase_,skip_special_tokens=lowercase_ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 A__ = [] A__ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowercase_ ) ) A__ = [] sub_texts.append(lowercase_ ) else: current_sub_text.append(lowercase_ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowercase_ ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens A__ = ''.join(lowercase_ ) A__ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: A__ = self.clean_up_tokenization(lowercase_ ) return clean_text else: return text def snake_case__ ( self : List[Any],lowercase_ : List[int],lowercase_ : Optional[List[int]] = None )-> List[int]: '''simple docstring''' A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def snake_case__ ( self : str,lowercase_ : List[int],lowercase_ : Optional[List[int]] = None,lowercase_ : bool = False )-> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_,token_ids_a=lowercase_,already_has_special_tokens=lowercase_ ) if token_ids_a is not None: return ([0] * len(lowercase_ )) + [1] + ([0] * len(lowercase_ )) + [1, 1] return ([0] * len(lowercase_ )) + [1, 1] def snake_case__ ( self : List[str],lowercase_ : List[int],lowercase_ : Optional[List[int]] = None )-> List[int]: '''simple docstring''' A__ = [self.sep_token_id] A__ = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def snake_case__ ( self : List[Any],lowercase_ : str,lowercase_ : Optional[str] = None )-> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowercase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A__ = os.path.join( lowercase_,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file,lowercase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase_,'wb' ) as fi: A__ = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (out_vocab_file,)
7
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class _lowerCAmelCase ( unittest.TestCase ,lowercase ): """simple docstring""" def _lowercase ( self : List[Any] ): __lowercase = load_tool("text-classification" ) self.tool.setup() __lowercase = load_tool("text-classification", remote=UpperCAmelCase__ ) def _lowercase ( self : str ): __lowercase = self.tool("That's quite cool", ["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" ) def _lowercase ( self : str ): __lowercase = self.remote_tool("That's quite cool", ["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" ) def _lowercase ( self : List[str] ): __lowercase = self.tool(text="That's quite cool", labels=["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" ) def _lowercase ( self : Tuple ): __lowercase = self.remote_tool(text="That's quite cool", labels=["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" )
17
0
import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: snake_case_ = 128 elif "12-12" in model_name: snake_case_ = 12 snake_case_ = 12 elif "14-14" in model_name: snake_case_ = 14 snake_case_ = 14 elif "16-16" in model_name: snake_case_ = 16 snake_case_ = 16 else: raise ValueError('''Model not supported''' ) snake_case_ = '''huggingface/label-files''' if "speech-commands" in model_name: snake_case_ = 35 snake_case_ = '''speech-commands-v2-id2label.json''' else: snake_case_ = 527 snake_case_ = '''audioset-id2label.json''' snake_case_ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' ) , '''r''' ) ) snake_case_ = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} return config def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if "module.v" in name: snake_case_ = name.replace('''module.v''' , '''audio_spectrogram_transformer''' ) if "cls_token" in name: snake_case_ = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "dist_token" in name: snake_case_ = name.replace('''dist_token''' , '''embeddings.distillation_token''' ) if "pos_embed" in name: snake_case_ = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: snake_case_ = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) # transformer blocks if "blocks" in name: snake_case_ = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: snake_case_ = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: snake_case_ = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: snake_case_ = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: snake_case_ = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: snake_case_ = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: snake_case_ = name.replace('''mlp.fc2''' , '''output.dense''' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: snake_case_ = name.replace('''audio_spectrogram_transformer.norm''' , '''audio_spectrogram_transformer.layernorm''' ) # classifier head if "module.mlp_head.0" in name: snake_case_ = name.replace('''module.mlp_head.0''' , '''classifier.layernorm''' ) if "module.mlp_head.1" in name: snake_case_ = name.replace('''module.mlp_head.1''' , '''classifier.dense''' ) return name def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): for key in orig_state_dict.copy().keys(): snake_case_ = orig_state_dict.pop(SCREAMING_SNAKE_CASE__ ) if "qkv" in key: snake_case_ = key.split('''.''' ) snake_case_ = int(key_split[3] ) snake_case_ = config.hidden_size if "weight" in key: snake_case_ = val[:dim, :] snake_case_ = val[dim : dim * 2, :] snake_case_ = val[-dim:, :] else: snake_case_ = val[:dim] snake_case_ = val[dim : dim * 2] snake_case_ = val[-dim:] else: snake_case_ = val return orig_state_dict def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = [ '''module.v.head.weight''', '''module.v.head.bias''', '''module.v.head_dist.weight''', '''module.v.head_dist.bias''', ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ): snake_case_ = get_audio_spectrogram_transformer_config(SCREAMING_SNAKE_CASE__ ) snake_case_ = { '''ast-finetuned-audioset-10-10-0.4593''': ( '''https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.450''': ( '''https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448''': ( '''https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448-v2''': ( '''https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1''' ), '''ast-finetuned-audioset-12-12-0.447''': ( '''https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1''' ), '''ast-finetuned-audioset-14-14-0.443''': ( '''https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1''' ), '''ast-finetuned-audioset-16-16-0.442''': ( '''https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1''' ), '''ast-finetuned-speech-commands-v2''': ( '''https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1''' ), } # load original state_dict snake_case_ = model_name_to_url[model_name] snake_case_ = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ , map_location='''cpu''' ) # remove some keys remove_keys(SCREAMING_SNAKE_CASE__ ) # rename some keys snake_case_ = convert_state_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # load 🤗 model snake_case_ = ASTForAudioClassification(SCREAMING_SNAKE_CASE__ ) model.eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 snake_case_ = -4.267_7393 if '''speech-commands''' not in model_name else -6.84_5978 snake_case_ = 4.568_9974 if '''speech-commands''' not in model_name else 5.565_4526 snake_case_ = 1024 if '''speech-commands''' not in model_name else 128 snake_case_ = ASTFeatureExtractor(mean=SCREAMING_SNAKE_CASE__ , std=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ ) if "speech-commands" in model_name: snake_case_ = load_dataset('''speech_commands''' , '''v0.02''' , split='''validation''' ) snake_case_ = dataset[0]['''audio''']['''array'''] else: snake_case_ = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' , ) snake_case_, snake_case_ = torchaudio.load(SCREAMING_SNAKE_CASE__ ) snake_case_ = waveform.squeeze().numpy() snake_case_ = feature_extractor(SCREAMING_SNAKE_CASE__ , sampling_rate=16000 , return_tensors='''pt''' ) # forward pass snake_case_ = model(**SCREAMING_SNAKE_CASE__ ) snake_case_ = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": snake_case_ = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": snake_case_ = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": snake_case_ = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": snake_case_ = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": snake_case_ = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": snake_case_ = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": snake_case_ = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": snake_case_ = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError('''Unknown model name''' ) if not torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ): raise ValueError('''Logits don\'t match''' ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(F'''Saving feature extractor to {pytorch_dump_folder_path}''' ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: print('''Pushing model and feature extractor to the hub...''' ) model.push_to_hub(F'''MIT/{model_name}''' ) feature_extractor.push_to_hub(F'''MIT/{model_name}''' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''ast-finetuned-audioset-10-10-0.4593''', type=str, help='''Name of the Audio Spectrogram Transformer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowerCAmelCase_ = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
8
"""simple docstring""" from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker _a = 'CompVis/stable-diffusion-v1-1' _a = 'CompVis/stable-diffusion-v1-2' _a = 'CompVis/stable-diffusion-v1-3' _a = 'CompVis/stable-diffusion-v1-4' class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : Dict, UpperCAmelCase__ : AutoencoderKL, UpperCAmelCase__ : CLIPTextModel, UpperCAmelCase__ : CLIPTokenizer, UpperCAmelCase__ : UNetaDConditionModel, UpperCAmelCase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], UpperCAmelCase__ : StableDiffusionSafetyChecker, UpperCAmelCase__ : CLIPImageProcessor, UpperCAmelCase__ : bool = True, ): super()._init_() __lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ ) __lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ ) __lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ ) __lowercase = StableDiffusionPipeline( vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, tokenizer=UpperCAmelCase__, unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, safety_checker=UpperCAmelCase__, feature_extractor=UpperCAmelCase__, requires_safety_checker=UpperCAmelCase__, ) self.register_modules(pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea ) @property def _lowercase ( self : List[str] ): return {k: getattr(self, UpperCAmelCase__ ) for k in self.config.keys() if not k.startswith("_" )} def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase__ ) def _lowercase ( self : List[str] ): self.enable_attention_slicing(UpperCAmelCase__ ) @torch.no_grad() def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Tuple, ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : Tuple, UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : str, ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : str, UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Any, ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Optional[int], ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : str, ): __lowercase = "cuda" if torch.cuda.is_available() else "cpu" self.to(UpperCAmelCase__ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" ) # Get first result from Stable Diffusion Checkpoint v1.1 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get first result from Stable Diffusion Checkpoint v1.2 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get first result from Stable Diffusion Checkpoint v1.3 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get first result from Stable Diffusion Checkpoint v1.4 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
17
0
from PIL import Image def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = image.size __SCREAMING_SNAKE_CASE : Optional[int] = 0 __SCREAMING_SNAKE_CASE : Optional[Any] = image.load() for i in range(lowercase__ ): for j in range(lowercase__ ): __SCREAMING_SNAKE_CASE : Tuple = pixels[j, i] mean += pixel mean //= width * height for j in range(lowercase__ ): for i in range(lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[int] = 255 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": __lowerCAmelCase : Dict =mean_threshold(Image.open('path_to_image').convert('L')) image.save('output_image_path')
9
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowerCAmelCase ( lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = "ssube/stable-diffusion-x4-upscaler-onnx" def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : List[str]=0 ): __lowercase = floats_tensor((1, 3, 1_2_8, 1_2_8), rng=random.Random(UpperCAmelCase__ ) ) __lowercase = torch.manual_seed(UpperCAmelCase__ ) __lowercase = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def _lowercase ( self : Any ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def _lowercase ( self : Optional[Any] ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) __lowercase = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.6_898_892, 0.59_240_556, 0.52_499_527, 0.58_866_215, 0.52_258_235, 0.52_572_715, 0.62_414_473, 0.6_174_387, 0.6_214_964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _lowercase ( self : int ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.7_659_278, 0.76_437_664, 0.75_579_107, 0.7_691_116, 0.77_666_986, 0.7_727_672, 0.7_758_664, 0.7_812_226, 0.76_942_515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _lowercase ( self : str ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) __lowercase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _lowercase ( self : Any ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) __lowercase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.77_424_496, 0.773_601, 0.7_645_288, 0.7_769_598, 0.7_772_739, 0.7_738_688, 0.78_187_233, 0.77_879_584, 0.767_043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @property def _lowercase ( self : Tuple ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowercase ( self : Dict ): __lowercase = ort.SessionOptions() __lowercase = False return options def _lowercase ( self : Dict ): __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) __lowercase = init_image.resize((1_2_8, 1_2_8) ) # using the PNDM scheduler by default __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx", provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = "A fantasy landscape, trending on artstation" __lowercase = torch.manual_seed(0 ) __lowercase = pipe( prompt=UpperCAmelCase__, image=UpperCAmelCase__, guidance_scale=7.5, num_inference_steps=1_0, generator=UpperCAmelCase__, output_type="np", ) __lowercase = output.images __lowercase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array([0.4_883, 0.4_947, 0.4_980, 0.4_975, 0.4_982, 0.4_980, 0.5_000, 0.5_006, 0.4_972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def _lowercase ( self : str ): __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) __lowercase = init_image.resize((1_2_8, 1_2_8) ) __lowercase = LMSDiscreteScheduler.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx", subfolder="scheduler" ) __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx", scheduler=UpperCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = "A fantasy landscape, trending on artstation" __lowercase = torch.manual_seed(0 ) __lowercase = pipe( prompt=UpperCAmelCase__, image=UpperCAmelCase__, guidance_scale=7.5, num_inference_steps=2_0, generator=UpperCAmelCase__, output_type="np", ) __lowercase = output.images __lowercase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.50_173_753, 0.50_223_356, 0.502_039, 0.50_233_036, 0.5_023_725, 0.5_022_601, 0.5_018_758, 0.50_234_085, 0.50_241_566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
17
0
import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) __A = "hf-internal-testing/tiny-random-bert" __A = os.path.join(TRANSFORMERS_CACHE, "models--hf-internal-testing--tiny-random-bert") __A = "9b8c223d42b2188cb49d29af482996f9d0f3e5a6" class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : List[str]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Any =cached_file(UpperCAmelCase_ , UpperCAmelCase_) # Should have downloaded the file in here self.assertTrue(os.path.isdir(UpperCAmelCase_)) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(UpperCAmelCase_ , UpperCAmelCase_))) with open(os.path.join(UpperCAmelCase_ , "refs" , "main")) as f: lowerCamelCase__: List[Any] =f.read() self.assertEqual(UpperCAmelCase_ , os.path.join(UpperCAmelCase_ , "snapshots" , UpperCAmelCase_ , UpperCAmelCase_)) self.assertTrue(os.path.isfile(UpperCAmelCase_)) # File is cached at the same place the second time. lowerCamelCase__: Optional[Any] =cached_file(UpperCAmelCase_ , UpperCAmelCase_) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_) # Using a specific revision to test the full commit hash. lowerCamelCase__: str =cached_file(UpperCAmelCase_ , UpperCAmelCase_ , revision="9b8c223") self.assertEqual(UpperCAmelCase_ , os.path.join(UpperCAmelCase_ , "snapshots" , UpperCAmelCase_ , UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->str: '''simple docstring''' with self.assertRaisesRegex(UpperCAmelCase_ , "is not a valid model identifier"): lowerCamelCase__: List[Any] =cached_file("tiny-random-bert" , UpperCAmelCase_) with self.assertRaisesRegex(UpperCAmelCase_ , "is not a valid git identifier"): lowerCamelCase__: List[str] =cached_file(UpperCAmelCase_ , UpperCAmelCase_ , revision="aaaa") with self.assertRaisesRegex(UpperCAmelCase_ , "does not appear to have a file named"): lowerCamelCase__: Optional[Any] =cached_file(UpperCAmelCase_ , "conf") def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->List[str]: '''simple docstring''' with self.assertRaisesRegex(UpperCAmelCase_ , "does not appear to have a file named"): lowerCamelCase__: Dict =cached_file(UpperCAmelCase_ , "conf") with open(os.path.join(UpperCAmelCase_ , "refs" , "main")) as f: lowerCamelCase__: List[str] =f.read() self.assertTrue(os.path.isfile(os.path.join(UpperCAmelCase_ , ".no_exist" , UpperCAmelCase_ , "conf"))) lowerCamelCase__: Union[str, Any] =cached_file(UpperCAmelCase_ , "conf" , _raise_exceptions_for_missing_entries=UpperCAmelCase_) self.assertIsNone(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =cached_file(UpperCAmelCase_ , "conf" , local_files_only=UpperCAmelCase_ , _raise_exceptions_for_missing_entries=UpperCAmelCase_) self.assertIsNone(UpperCAmelCase_) lowerCamelCase__: List[Any] =mock.Mock() lowerCamelCase__: int =500 lowerCamelCase__: Union[str, Any] ={} lowerCamelCase__: Any =HTTPError lowerCamelCase__: List[Any] ={} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=UpperCAmelCase_) as mock_head: lowerCamelCase__: int =cached_file(UpperCAmelCase_ , "conf" , _raise_exceptions_for_connection_errors=UpperCAmelCase_) self.assertIsNone(UpperCAmelCase_) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Tuple: '''simple docstring''' self.assertTrue(has_file("hf-internal-testing/tiny-bert-pt-only" , UpperCAmelCase_)) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , UpperCAmelCase_)) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ (self : Dict) ->List[str]: '''simple docstring''' self.assertIsNone(get_file_from_repo("bert-base-cased" , "ahah.txt")) # The function raises if the repository does not exist. with self.assertRaisesRegex(UpperCAmelCase_ , "is not a valid model identifier"): get_file_from_repo("bert-base-case" , UpperCAmelCase_) # The function raises if the revision does not exist. with self.assertRaisesRegex(UpperCAmelCase_ , "is not a valid git identifier"): get_file_from_repo("bert-base-cased" , UpperCAmelCase_ , revision="ahaha") lowerCamelCase__: List[str] =get_file_from_repo("bert-base-cased" , UpperCAmelCase_) # The name is the cached name which is not very easy to test, so instead we load the content. lowerCamelCase__: List[str] =json.loads(open(UpperCAmelCase_ , "r").read()) self.assertEqual(config["hidden_size"] , 768) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__: List[Any] =Path(UpperCAmelCase_) / "a.txt" filename.touch() self.assertEqual(get_file_from_repo(UpperCAmelCase_ , "a.txt") , str(UpperCAmelCase_)) self.assertIsNone(get_file_from_repo(UpperCAmelCase_ , "b.txt"))
10
"""simple docstring""" import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal _a = datasets.utils.logging.get_logger(__name__) _a = ['names', 'prefix'] _a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] _a = ['encoding_errors', 'on_bad_lines'] _a = ['date_format'] @dataclass class _lowerCAmelCase ( datasets.BuilderConfig ): """simple docstring""" __UpperCAmelCase : str = "," __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[Union[int, List[int], str]] = "infer" __UpperCAmelCase : Optional[List[str]] = None __UpperCAmelCase : Optional[List[str]] = None __UpperCAmelCase : Optional[Union[int, str, List[int], List[str]]] = None __UpperCAmelCase : Optional[Union[List[int], List[str]]] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : bool = True __UpperCAmelCase : Optional[Literal["c", "python", "pyarrow"]] = None __UpperCAmelCase : Dict[Union[int, str], Callable[[Any], Any]] = None __UpperCAmelCase : Optional[list] = None __UpperCAmelCase : Optional[list] = None __UpperCAmelCase : bool = False __UpperCAmelCase : Optional[Union[int, List[int]]] = None __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Optional[Union[str, List[str]]] = None __UpperCAmelCase : bool = True __UpperCAmelCase : bool = True __UpperCAmelCase : bool = False __UpperCAmelCase : bool = True __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : str = "." __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : str = '"' __UpperCAmelCase : int = 0 __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : bool = True __UpperCAmelCase : bool = True __UpperCAmelCase : int = 0 __UpperCAmelCase : bool = True __UpperCAmelCase : bool = False __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : int = 1_0_0_0_0 __UpperCAmelCase : Optional[datasets.Features] = None __UpperCAmelCase : Optional[str] = "strict" __UpperCAmelCase : Literal["error", "warn", "skip"] = "error" __UpperCAmelCase : Optional[str] = None def _lowercase ( self : Tuple ): if self.delimiter is not None: __lowercase = self.delimiter if self.column_names is not None: __lowercase = self.column_names @property def _lowercase ( self : Union[str, Any] ): __lowercase = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig(), UpperCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class _lowerCAmelCase ( datasets.ArrowBasedBuilder ): """simple docstring""" __UpperCAmelCase : Tuple = CsvConfig def _lowercase ( self : List[str] ): return datasets.DatasetInfo(features=self.config.features ) def _lowercase ( self : List[Any], UpperCAmelCase__ : Dict ): if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) __lowercase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(UpperCAmelCase__, (str, list, tuple) ): __lowercase = data_files if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = [files] __lowercase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files} )] __lowercase = [] for split_name, files in data_files.items(): if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = [files] __lowercase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=UpperCAmelCase__, gen_kwargs={"files": files} ) ) return splits def _lowercase ( self : Dict, UpperCAmelCase__ : pa.Table ): if self.config.features is not None: __lowercase = self.config.features.arrow_schema if all(not require_storage_cast(UpperCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast __lowercase = pa.Table.from_arrays([pa_table[field.name] for field in schema], schema=UpperCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example __lowercase = table_cast(UpperCAmelCase__, UpperCAmelCase__ ) return pa_table def _lowercase ( self : Optional[Any], UpperCAmelCase__ : List[str] ): __lowercase = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str __lowercase = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(UpperCAmelCase__ ) else object for name, dtype, feature in zip(schema.names, schema.types, self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase__ ) ): __lowercase = pd.read_csv(UpperCAmelCase__, iterator=UpperCAmelCase__, dtype=UpperCAmelCase__, **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(UpperCAmelCase__ ): __lowercase = pa.Table.from_pandas(UpperCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase__ ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(UpperCAmelCase__ )}: {e}""" ) raise
17
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = ( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) __SCREAMING_SNAKE_CASE = "CIDAS/clipseg-rd64-refined" __SCREAMING_SNAKE_CASE = "image_segmenter" __SCREAMING_SNAKE_CASE = CLIPSegForImageSegmentation __SCREAMING_SNAKE_CASE = ["image", "text"] __SCREAMING_SNAKE_CASE = ["image"] def __init__( self , *__lowerCamelCase , **__lowerCamelCase) -> str: requires_backends(self , ["vision"]) super().__init__(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> List[Any]: return self.pre_processor(text=[label] , images=[image] , padding=__lowerCamelCase , return_tensors="pt") def _lowerCamelCase ( self , __lowerCamelCase) -> Optional[int]: with torch.no_grad(): _A : Dict = self.model(**__lowerCamelCase).logits return logits def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: _A : Any = outputs.cpu().detach().numpy() _A : int = 0 _A : List[Any] = 1 return Image.fromarray((array * 2_5_5).astype(np.uinta))
11
"""simple docstring""" from scipy.stats import spearmanr import datasets _a = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n' _a = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n' _a = r'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def _lowercase ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ), reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"], ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int]=False ): __lowercase = spearmanr(UpperCAmelCase__, UpperCAmelCase__ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
17
0
import os import sys UpperCAmelCase_ = os.path.join(os.path.dirname(__file__), 'src') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) UpperCAmelCase_ = [ 'torch', 'numpy', 'tokenizers', 'filelock', 'requests', 'tqdm', 'regex', 'sentencepiece', 'sacremoses', 'importlib_metadata', 'huggingface_hub', ] @add_start_docstrings(AutoConfig.__doc__ ) def lowerCamelCase__ ( *A__ : Optional[int] , **A__ : Optional[Any] ): '''simple docstring''' return AutoConfig.from_pretrained(*A__ , **A__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def lowerCamelCase__ ( *A__ : Dict , **A__ : str ): '''simple docstring''' return AutoTokenizer.from_pretrained(*A__ , **A__ ) @add_start_docstrings(AutoModel.__doc__ ) def lowerCamelCase__ ( *A__ : Optional[int] , **A__ : Any ): '''simple docstring''' return AutoModel.from_pretrained(*A__ , **A__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def lowerCamelCase__ ( *A__ : List[str] , **A__ : List[str] ): '''simple docstring''' return AutoModelForCausalLM.from_pretrained(*A__ , **A__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def lowerCamelCase__ ( *A__ : Union[str, Any] , **A__ : int ): '''simple docstring''' return AutoModelForMaskedLM.from_pretrained(*A__ , **A__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def lowerCamelCase__ ( *A__ : Optional[int] , **A__ : List[Any] ): '''simple docstring''' return AutoModelForSequenceClassification.from_pretrained(*A__ , **A__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def lowerCamelCase__ ( *A__ : Optional[int] , **A__ : int ): '''simple docstring''' return AutoModelForQuestionAnswering.from_pretrained(*A__ , **A__ )
12
"""simple docstring""" from collections.abc import Sequence def _A ( UpperCamelCase_ : Sequence[float], UpperCamelCase_ : float) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(UpperCamelCase_)) def _A ( UpperCamelCase_ : Sequence[float], UpperCamelCase_ : float) -> float: '''simple docstring''' __lowercase = 0.0 for coeff in reversed(UpperCamelCase_): __lowercase = result * x + coeff return result if __name__ == "__main__": _a = (0.0, 0.0, 5.0, 9.3, 7.0) _a = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
17
0
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": lowerCAmelCase : Tuple = input("""Enter image url: """).strip() print(f'''Downloading image from {url} ...''') lowerCAmelCase : Dict = BeautifulSoup(requests.get(url).content, """html.parser""") # The image URL is in the content field of the first meta tag with property og:image lowerCAmelCase : List[str] = soup.find("""meta""", {"""property""": """og:image"""})["""content"""] lowerCAmelCase : List[Any] = requests.get(image_url).content lowerCAmelCase : List[str] = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg''' with open(file_name, """wb""") as fp: fp.write(image_data) print(f'''Done. Image saved to disk as {file_name}.''')
13
"""simple docstring""" import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class _lowerCAmelCase ( pl.LightningModule ): """simple docstring""" def __init__( self : Optional[Any], UpperCAmelCase__ : str ): super().__init__() __lowercase = model __lowercase = 2 __lowercase = nn.Linear(self.model.config.hidden_size, self.num_labels ) def _lowercase ( self : Optional[int] ): pass def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str, UpperCamelCase_ : str) -> str: '''simple docstring''' __lowercase = LongformerModel.from_pretrained(UpperCamelCase_) __lowercase = LightningModel(UpperCamelCase_) __lowercase = torch.load(UpperCamelCase_, map_location=torch.device("cpu")) lightning_model.load_state_dict(ckpt["state_dict"]) # init longformer question answering model __lowercase = LongformerForQuestionAnswering.from_pretrained(UpperCamelCase_) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict()) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict()) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(UpperCamelCase_) print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""") if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _a = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
17
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) _lowerCamelCase : List[str] = """▁""" _lowerCamelCase : List[Any] = {"""vocab_file""": """spiece.model"""} _lowerCamelCase : List[str] = { """vocab_file""": { """google/reformer-crime-and-punishment""": ( """https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model""" ) } } _lowerCamelCase : Optional[int] = { """google/reformer-crime-and-punishment""": 524288, } class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = ['''input_ids''', '''attention_mask'''] def __init__( self : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str]="</s>" , UpperCAmelCase__ : Optional[Any]="<unk>" , UpperCAmelCase__ : List[str]=[] , UpperCAmelCase__ : Optional[Dict[str, Any]] = None , **UpperCAmelCase__ : Dict , ) ->None: '''simple docstring''' A__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase__ , ) A__ = vocab_file A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(UpperCAmelCase__) @property def SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[str]: '''simple docstring''' return self.sp_model.get_piece_size() def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict[str, int]: '''simple docstring''' A__ = {self.convert_ids_to_tokens(UpperCAmelCase__): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : Any) ->Dict: '''simple docstring''' A__ = self.__dict__.copy() A__ = None return state def __setstate__( self : int , UpperCAmelCase__ : List[str]) ->Dict: '''simple docstring''' A__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): A__ = {} A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : str) ->List[str]: '''simple docstring''' return self.sp_model.encode(UpperCAmelCase__ , out_type=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : Any) ->int: '''simple docstring''' return self.sp_model.piece_to_id(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : List[str]) ->Tuple: '''simple docstring''' if index < self.sp_model.get_piece_size(): A__ = self.sp_model.IdToPiece(UpperCAmelCase__) return token def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : Dict) ->Tuple: '''simple docstring''' A__ = [] A__ = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(UpperCAmelCase__) + token A__ = [] else: current_sub_tokens.append(UpperCAmelCase__) out_string += self.sp_model.decode(UpperCAmelCase__) return out_string.strip() def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase__): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""") return A__ = os.path.join( UpperCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase__) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , UpperCAmelCase__) elif not os.path.isfile(self.vocab_file): with open(UpperCAmelCase__ , '''wb''') as fi: A__ = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase__) return (out_vocab_file,)
14
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" ,"False" ) ) is not True ,reason="Skipping test because should only be run when releasing minor transformers version" ,) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Optional[int] ): if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split(), encoding="utf-8", check=UpperCAmelCase__, ) assert hasattr(self, "env" ) def _lowercase ( self : str, UpperCAmelCase__ : List[Any] ): # configuration for running training on smdistributed Model Parallel __lowercase = { "enabled": True, "processes_per_host": 8, } __lowercase = { "enabled": True, "parameters": { "microbatches": 4, "placement_strategy": "spread", "pipeline": "interleaved", "optimize": "speed", "partitions": 4, "ddp": True, }, } __lowercase = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options} __lowercase = "trainer" if self.script == "run_glue.py" else "smtrainer" # creates estimator return HuggingFace( entry_point=self.script, source_dir=self.env.test_path, role=self.env.role, image_uri=self.env.image_uri, base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""", instance_count=UpperCAmelCase__, instance_type=self.instance_type, debugger_hook_config=UpperCAmelCase__, hyperparameters={ **self.env.hyperparameters, "model_name_or_path": self.model_name_or_path, "max_steps": 5_0_0, }, metric_definitions=self.env.metric_definitions, distribution=UpperCAmelCase__, py_version="py36", ) def _lowercase ( self : Tuple, UpperCAmelCase__ : int ): TrainingJobAnalytics(UpperCAmelCase__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def _lowercase ( self : str, UpperCAmelCase__ : Union[str, Any] ): # create estimator __lowercase = self.create_estimator(UpperCAmelCase__ ) # run training estimator.fit() # result dataframe __lowercase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __lowercase = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) __lowercase = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __lowercase = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds", 9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""", "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss}, UpperCAmelCase__ )
17
0
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = MobileBertTokenizer snake_case_ = MobileBertTokenizerFast snake_case_ = True snake_case_ = True snake_case_ = filter_non_english snake_case_ = "google/mobilebert-uncased" def UpperCamelCase_ ( self : Optional[Any] ): super().setUp() __A = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) __A = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def UpperCamelCase_ ( self : Tuple ,A : List[str] ): __A = "UNwant\u00E9d,running" __A = "unwanted, running" return input_text, output_text def UpperCamelCase_ ( self : str ): __A = self.tokenizer_class(self.vocab_file ) __A = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(A ,["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) ,[9, 6, 7, 12, 10, 11] ) def UpperCamelCase_ ( self : List[Any] ): if not self.test_rust_tokenizer: return __A = self.get_tokenizer() __A = self.get_rust_tokenizer() __A = "UNwant\u00E9d,running" __A = tokenizer.tokenize(A ) __A = rust_tokenizer.tokenize(A ) self.assertListEqual(A ,A ) __A = tokenizer.encode(A ,add_special_tokens=A ) __A = rust_tokenizer.encode(A ,add_special_tokens=A ) self.assertListEqual(A ,A ) __A = self.get_rust_tokenizer() __A = tokenizer.encode(A ) __A = rust_tokenizer.encode(A ) self.assertListEqual(A ,A ) # With lower casing __A = self.get_tokenizer(do_lower_case=A ) __A = self.get_rust_tokenizer(do_lower_case=A ) __A = "UNwant\u00E9d,running" __A = tokenizer.tokenize(A ) __A = rust_tokenizer.tokenize(A ) self.assertListEqual(A ,A ) __A = tokenizer.encode(A ,add_special_tokens=A ) __A = rust_tokenizer.encode(A ,add_special_tokens=A ) self.assertListEqual(A ,A ) __A = self.get_rust_tokenizer() __A = tokenizer.encode(A ) __A = rust_tokenizer.encode(A ) self.assertListEqual(A ,A ) def UpperCamelCase_ ( self : List[str] ): __A = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) ,["ah", "\u535A", "\u63A8", "zz"] ) def UpperCamelCase_ ( self : int ): __A = BasicTokenizer(do_lower_case=A ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) ,["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) ,["hello"] ) def UpperCamelCase_ ( self : Tuple ): __A = BasicTokenizer(do_lower_case=A ,strip_accents=A ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) ,["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) ,["h\u00E9llo"] ) def UpperCamelCase_ ( self : List[Any] ): __A = BasicTokenizer(do_lower_case=A ,strip_accents=A ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) ,["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) ,["hello"] ) def UpperCamelCase_ ( self : str ): __A = BasicTokenizer(do_lower_case=A ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) ,["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) ,["hello"] ) def UpperCamelCase_ ( self : List[str] ): __A = BasicTokenizer(do_lower_case=A ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) ,["HeLLo", "!", "how", "Are", "yoU", "?"] ) def UpperCamelCase_ ( self : Tuple ): __A = BasicTokenizer(do_lower_case=A ,strip_accents=A ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) ,["HäLLo", "!", "how", "Are", "yoU", "?"] ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = BasicTokenizer(do_lower_case=A ,strip_accents=A ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) ,["HaLLo", "!", "how", "Are", "yoU", "?"] ) def UpperCamelCase_ ( self : str ): __A = BasicTokenizer(do_lower_case=A ,never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) ,["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] __A = {} for i, token in enumerate(A ): __A = i __A = WordpieceTokenizer(vocab=A ,unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) ,[] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) ,["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) ,["[UNK]", "runn", "##ing"] ) def UpperCamelCase_ ( self : Union[str, Any] ): self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def UpperCamelCase_ ( self : Union[str, Any] ): self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def UpperCamelCase_ ( self : Optional[int] ): self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def UpperCamelCase_ ( self : List[Any] ): __A = self.get_tokenizer() __A = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A ) for t in ["Test", "\xad", "test"]] ,[["[UNK]"], [], ["[UNK]"]] ) self.assertListEqual( [rust_tokenizer.tokenize(A ) for t in ["Test", "\xad", "test"]] ,[["[UNK]"], [], ["[UNK]"]] ) @slow def UpperCamelCase_ ( self : Any ): __A = self.tokenizer_class.from_pretrained("google/mobilebert-uncased" ) __A = tokenizer.encode("sequence builders" ,add_special_tokens=A ) __A = tokenizer.encode("multi-sequence build" ,add_special_tokens=A ) __A = tokenizer.build_inputs_with_special_tokens(A ) __A = tokenizer.build_inputs_with_special_tokens(A ,A ) assert encoded_sentence == [1_01] + text + [1_02] assert encoded_pair == [1_01] + text + [1_02] + text_a + [1_02] def UpperCamelCase_ ( self : str ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __A = self.rust_tokenizer_class.from_pretrained(A ,**A ) __A = f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' __A = tokenizer_r.encode_plus( A ,return_attention_mask=A ,return_token_type_ids=A ,return_offsets_mapping=A ,add_special_tokens=A ,) __A = tokenizer_r.do_lower_case if hasattr(A ,"do_lower_case" ) else False __A = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] ,tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] ,tokens["offset_mapping"] ) def UpperCamelCase_ ( self : Optional[int] ): __A = ["的", "人", "有"] __A = "".join(A ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __A = True __A = self.tokenizer_class.from_pretrained(A ,**A ) __A = self.rust_tokenizer_class.from_pretrained(A ,**A ) __A = tokenizer_p.encode(A ,add_special_tokens=A ) __A = tokenizer_r.encode(A ,add_special_tokens=A ) __A = tokenizer_r.convert_ids_to_tokens(A ) __A = tokenizer_p.convert_ids_to_tokens(A ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A ,A ) self.assertListEqual(A ,A ) __A = False __A = self.rust_tokenizer_class.from_pretrained(A ,**A ) __A = self.tokenizer_class.from_pretrained(A ,**A ) __A = tokenizer_r.encode(A ,add_special_tokens=A ) __A = tokenizer_p.encode(A ,add_special_tokens=A ) __A = tokenizer_r.convert_ids_to_tokens(A ) __A = tokenizer_p.convert_ids_to_tokens(A ) # it is expected that only the first Chinese character is not preceded by "##". __A = [ f'''##{token}''' if idx != 0 else token for idx, token in enumerate(A ) ] self.assertListEqual(A ,A ) self.assertListEqual(A ,A )
15
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : Tuple = "openai/whisper-base" __UpperCAmelCase : Union[str, Any] = ( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) __UpperCAmelCase : List[str] = "transcriber" __UpperCAmelCase : Optional[Any] = WhisperProcessor __UpperCAmelCase : str = WhisperForConditionalGeneration __UpperCAmelCase : List[str] = ["audio"] __UpperCAmelCase : Tuple = ["text"] def _lowercase ( self : str, UpperCAmelCase__ : int ): return self.pre_processor(UpperCAmelCase__, return_tensors="pt" ).input_features def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Any] ): return self.model.generate(inputs=UpperCAmelCase__ ) def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[int] ): return self.pre_processor.batch_decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ )[0]
17
0
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" lowercase__ : List[Any] = inspect.getfile(accelerate.test_utils ) lowercase__ : Tuple = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) lowercase__ : Tuple = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_distributed_data_loop.py'''] ) lowercase__ : Any = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_ops.py'''] ) @require_multi_gpu def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" print(f"""Found {torch.cuda.device_count()} devices.""" ) lowercase__ : Any = ['''torchrun''', f"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_snake_case ,env=os.environ.copy() ) @require_multi_gpu def UpperCAmelCase ( self : str ) -> List[Any]: """simple docstring""" print(f"""Found {torch.cuda.device_count()} devices.""" ) lowercase__ : Dict = ['''torchrun''', f"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path] print(f"""Command: {cmd}""" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_snake_case ,env=os.environ.copy() ) @require_multi_gpu def UpperCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" lowercase__ : Any = ['''torchrun''', f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_snake_case ,env=os.environ.copy() ) @require_multi_gpu def UpperCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" print(f"""Found {torch.cuda.device_count()} devices, using 2 devices only""" ) lowercase__ : str = ['''torchrun''', f"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path] with patch_environment(omp_num_threads=1 ,cuda_visible_devices='''0,1''' ): execute_subprocess_async(_snake_case ,env=os.environ.copy() ) if __name__ == "__main__": lowerCAmelCase_ = Accelerator() lowerCAmelCase_ = (accelerator.state.process_index + 2, 10) lowerCAmelCase_ = torch.randint(0, 10, shape).to(accelerator.device) lowerCAmelCase_ = '' lowerCAmelCase_ = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." lowerCAmelCase_ = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." lowerCAmelCase_ = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
16
"""simple docstring""" import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str]) -> Optional[int]: '''simple docstring''' if isinstance(UpperCamelCase_, torch.Tensor): return image elif isinstance(UpperCamelCase_, PIL.Image.Image): __lowercase = [image] if isinstance(image[0], PIL.Image.Image): __lowercase = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image] __lowercase = np.concatenate(UpperCamelCase_, axis=0) __lowercase = np.array(UpperCamelCase_).astype(np.floataa) / 255.0 __lowercase = image.transpose(0, 3, 1, 2) __lowercase = 2.0 * image - 1.0 __lowercase = torch.from_numpy(UpperCamelCase_) elif isinstance(image[0], torch.Tensor): __lowercase = torch.cat(UpperCamelCase_, dim=0) return image def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : str, UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[Any]=0.9_995) -> int: '''simple docstring''' if not isinstance(UpperCamelCase_, np.ndarray): __lowercase = True __lowercase = va.device __lowercase = va.cpu().numpy() __lowercase = va.cpu().numpy() __lowercase = np.sum(va * va / (np.linalg.norm(UpperCamelCase_) * np.linalg.norm(UpperCamelCase_))) if np.abs(UpperCamelCase_) > DOT_THRESHOLD: __lowercase = (1 - t) * va + t * va else: __lowercase = np.arccos(UpperCamelCase_) __lowercase = np.sin(UpperCamelCase_) __lowercase = theta_a * t __lowercase = np.sin(UpperCamelCase_) __lowercase = np.sin(theta_a - theta_t) / sin_theta_a __lowercase = sin_theta_t / sin_theta_a __lowercase = sa * va + sa * va if inputs_are_torch: __lowercase = torch.from_numpy(UpperCamelCase_).to(UpperCamelCase_) return va def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Union[str, Any]) -> int: '''simple docstring''' __lowercase = F.normalize(UpperCamelCase_, dim=-1) __lowercase = F.normalize(UpperCamelCase_, dim=-1) return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2) def _A ( UpperCamelCase_ : Optional[int], UpperCamelCase_ : str) -> Optional[int]: '''simple docstring''' for param in model.parameters(): __lowercase = value class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : Dict, UpperCAmelCase__ : AutoencoderKL, UpperCAmelCase__ : CLIPTextModel, UpperCAmelCase__ : CLIPModel, UpperCAmelCase__ : CLIPTokenizer, UpperCAmelCase__ : UNetaDConditionModel, UpperCAmelCase__ : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler], UpperCAmelCase__ : CLIPFeatureExtractor, UpperCAmelCase__ : Union[str, Any]=None, UpperCAmelCase__ : List[str]=None, UpperCAmelCase__ : Any=None, ): super().__init__() self.register_modules( vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, clip_model=UpperCAmelCase__, tokenizer=UpperCAmelCase__, unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, feature_extractor=UpperCAmelCase__, coca_model=UpperCAmelCase__, coca_tokenizer=UpperCAmelCase__, coca_transform=UpperCAmelCase__, ) __lowercase = ( feature_extractor.size if isinstance(feature_extractor.size, UpperCAmelCase__ ) else feature_extractor.size["shortest_edge"] ) __lowercase = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std ) set_requires_grad(self.text_encoder, UpperCAmelCase__ ) set_requires_grad(self.clip_model, UpperCAmelCase__ ) def _lowercase ( self : Tuple, UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase__ ) def _lowercase ( self : int ): self.enable_attention_slicing(UpperCAmelCase__ ) def _lowercase ( self : str ): set_requires_grad(self.vae, UpperCAmelCase__ ) def _lowercase ( self : Any ): set_requires_grad(self.vae, UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ): set_requires_grad(self.unet, UpperCAmelCase__ ) def _lowercase ( self : Any ): set_requires_grad(self.unet, UpperCAmelCase__ ) def _lowercase ( self : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : Optional[Any] ): # get the original timestep using init_timestep __lowercase = min(int(num_inference_steps * strength ), UpperCAmelCase__ ) __lowercase = max(num_inference_steps - init_timestep, 0 ) __lowercase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowercase ( self : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : int=None ): if not isinstance(UpperCAmelCase__, torch.Tensor ): raise ValueError(F"""`image` has to be of type `torch.Tensor` but is {type(UpperCAmelCase__ )}""" ) __lowercase = image.to(device=UpperCAmelCase__, dtype=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(UpperCAmelCase__ ) ] __lowercase = torch.cat(UpperCAmelCase__, dim=0 ) else: __lowercase = self.vae.encode(UpperCAmelCase__ ).latent_dist.sample(UpperCAmelCase__ ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowercase = 0.18_215 * init_latents __lowercase = init_latents.repeat_interleave(UpperCAmelCase__, dim=0 ) __lowercase = randn_tensor(init_latents.shape, generator=UpperCAmelCase__, device=UpperCAmelCase__, dtype=UpperCAmelCase__ ) # get latents __lowercase = self.scheduler.add_noise(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = init_latents return latents def _lowercase ( self : Optional[int], UpperCAmelCase__ : Dict ): __lowercase = self.coca_transform(UpperCAmelCase__ ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): __lowercase = self.coca_model.generate(transformed_image.to(device=self.device, dtype=self.coca_model.dtype ) ) __lowercase = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("<end_of_text>" )[0].replace("<start_of_text>", "" ).rstrip(" .," ) def _lowercase ( self : Tuple, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Tuple ): __lowercase = self.feature_extractor.preprocess(UpperCAmelCase__ ) __lowercase = torch.from_numpy(clip_image_input["pixel_values"][0] ).unsqueeze(0 ).to(self.device ).half() __lowercase = self.clip_model.get_image_features(UpperCAmelCase__ ) __lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=UpperCAmelCase__ ) __lowercase = image_embeddings_clip.repeat_interleave(UpperCAmelCase__, dim=0 ) return image_embeddings_clip @torch.enable_grad() def _lowercase ( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[int], ): __lowercase = latents.detach().requires_grad_() __lowercase = self.scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ ) # predict the noise residual __lowercase = self.unet(UpperCAmelCase__, UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__ ).sample if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): __lowercase = self.scheduler.alphas_cumprod[timestep] __lowercase = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowercase = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 __lowercase = torch.sqrt(UpperCAmelCase__ ) __lowercase = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler, UpperCAmelCase__ ): __lowercase = self.scheduler.sigmas[index] __lowercase = latents - sigma * noise_pred else: raise ValueError(F"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowercase = 1 / 0.18_215 * sample __lowercase = self.vae.decode(UpperCAmelCase__ ).sample __lowercase = (image / 2 + 0.5).clamp(0, 1 ) __lowercase = transforms.Resize(self.feature_extractor_size )(UpperCAmelCase__ ) __lowercase = self.normalize(UpperCAmelCase__ ).to(latents.dtype ) __lowercase = self.clip_model.get_image_features(UpperCAmelCase__ ) __lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=UpperCAmelCase__ ) __lowercase = spherical_dist_loss(UpperCAmelCase__, UpperCAmelCase__ ).mean() * clip_guidance_scale __lowercase = -torch.autograd.grad(UpperCAmelCase__, UpperCAmelCase__ )[0] if isinstance(self.scheduler, UpperCAmelCase__ ): __lowercase = latents.detach() + grads * (sigma**2) __lowercase = noise_pred_original else: __lowercase = noise_pred_original - torch.sqrt(UpperCAmelCase__ ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : str, UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image], UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image], UpperCAmelCase__ : Optional[str] = None, UpperCAmelCase__ : Optional[str] = None, UpperCAmelCase__ : Optional[int] = 5_1_2, UpperCAmelCase__ : Optional[int] = 5_1_2, UpperCAmelCase__ : float = 0.6, UpperCAmelCase__ : Optional[int] = 5_0, UpperCAmelCase__ : Optional[float] = 7.5, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[float] = 1_0_0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : float = 0.8, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, ): if isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and len(UpperCAmelCase__ ) != batch_size: raise ValueError(F"""You have passed {batch_size} batch_size, but only {len(UpperCAmelCase__ )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(UpperCAmelCase__, torch.Generator ) and batch_size > 1: __lowercase = [generator] + [None] * (batch_size - 1) __lowercase = [ ("model", self.coca_model is None), ("tokenizer", self.coca_tokenizer is None), ("transform", self.coca_transform is None), ] __lowercase = [x[0] for x in coca_is_none if x[1]] __lowercase = ", ".join(UpperCAmelCase__ ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(UpperCAmelCase__ ): raise ValueError( F"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" F"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) __lowercase = self.get_image_description(UpperCAmelCase__ ) if style_prompt is None: if len(UpperCAmelCase__ ): raise ValueError( F"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" F""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) __lowercase = self.get_image_description(UpperCAmelCase__ ) # get prompt text embeddings for content and style __lowercase = self.tokenizer( UpperCAmelCase__, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=UpperCAmelCase__, return_tensors="pt", ) __lowercase = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] __lowercase = self.tokenizer( UpperCAmelCase__, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=UpperCAmelCase__, return_tensors="pt", ) __lowercase = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] __lowercase = slerp(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # duplicate text embeddings for each generation per prompt __lowercase = text_embeddings.repeat_interleave(UpperCAmelCase__, dim=0 ) # set timesteps __lowercase = "offset" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) __lowercase = {} if accepts_offset: __lowercase = 1 self.scheduler.set_timesteps(UpperCAmelCase__, **UpperCAmelCase__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) __lowercase ,__lowercase = self.get_timesteps(UpperCAmelCase__, UpperCAmelCase__, self.device ) __lowercase = timesteps[:1].repeat(UpperCAmelCase__ ) # Preprocess image __lowercase = preprocess(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = self.prepare_latents( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, text_embeddings.dtype, self.device, UpperCAmelCase__ ) __lowercase = preprocess(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = self.prepare_latents( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, text_embeddings.dtype, self.device, UpperCAmelCase__ ) __lowercase = slerp(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) if clip_guidance_scale > 0: __lowercase = self.get_clip_image_embeddings(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = self.get_clip_image_embeddings(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = slerp( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __lowercase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __lowercase = content_text_input.input_ids.shape[-1] __lowercase = self.tokenizer([""], padding="max_length", max_length=UpperCAmelCase__, return_tensors="pt" ) __lowercase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt __lowercase = uncond_embeddings.repeat_interleave(UpperCAmelCase__, dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowercase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __lowercase = (batch_size, self.unet.config.in_channels, height // 8, width // 8) __lowercase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps __lowercase = torch.randn(UpperCAmelCase__, generator=UpperCAmelCase__, device="cpu", dtype=UpperCAmelCase__ ).to( self.device ) else: __lowercase = torch.randn(UpperCAmelCase__, generator=UpperCAmelCase__, device=self.device, dtype=UpperCAmelCase__ ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) __lowercase = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __lowercase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __lowercase = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __lowercase = {} if accepts_eta: __lowercase = eta # check if the scheduler accepts generator __lowercase = "generator" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: __lowercase = generator with self.progress_bar(total=UpperCAmelCase__ ): for i, t in enumerate(UpperCAmelCase__ ): # expand the latents if we are doing classifier free guidance __lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowercase = self.scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ ) # predict the noise residual __lowercase = self.unet(UpperCAmelCase__, UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__ ).sample # perform classifier free guidance if do_classifier_free_guidance: __lowercase ,__lowercase = noise_pred.chunk(2 ) __lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: __lowercase = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) __lowercase ,__lowercase = self.cond_fn( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) # compute the previous noisy sample x_t -> x_t-1 __lowercase = self.scheduler.step(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, **UpperCAmelCase__ ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowercase = 1 / 0.18_215 * latents __lowercase = self.vae.decode(UpperCAmelCase__ ).sample __lowercase = (image / 2 + 0.5).clamp(0, 1 ) __lowercase = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": __lowercase = self.numpy_to_pil(UpperCAmelCase__ ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=UpperCAmelCase__, nsfw_content_detected=UpperCAmelCase__ )
17
0
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def _snake_case ( lowerCAmelCase : Features ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.inf def set_batch_size(lowerCAmelCase : FeatureType ) -> None: nonlocal batch_size if isinstance(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : int = min(lowerCAmelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = min(lowerCAmelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(lowerCAmelCase , lowerCAmelCase ) and feature.dtype == "binary": SCREAMING_SNAKE_CASE_ : Union[str, Any] = min(lowerCAmelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(lowerCAmelCase , lowerCAmelCase ) return None if batch_size is np.inf else batch_size class a__ ( A__ ): def __init__( self : List[str],_A : NestedDataStructureLike[PathLike],_A : Optional[NamedSplit] = None,_A : Optional[Features] = None,_A : str = None,_A : bool = False,_A : bool = False,_A : Optional[int] = None,**_A : int,): """simple docstring""" super().__init__( _A,split=_A,features=_A,cache_dir=_A,keep_in_memory=_A,streaming=_A,num_proc=_A,**_A,) SCREAMING_SNAKE_CASE_ : int = path_or_paths if isinstance(_A,_A ) else {self.split: path_or_paths} SCREAMING_SNAKE_CASE_ : Tuple = _PACKAGED_DATASETS_MODULES["parquet"][1] SCREAMING_SNAKE_CASE_ : Optional[Any] = Parquet( cache_dir=_A,data_files=_A,features=_A,hash=_A,**_A,) def __UpperCamelCase ( self : str ): """simple docstring""" if self.streaming: SCREAMING_SNAKE_CASE_ : str = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: SCREAMING_SNAKE_CASE_ : Optional[int] = None SCREAMING_SNAKE_CASE_ : int = None SCREAMING_SNAKE_CASE_ : List[Any] = None SCREAMING_SNAKE_CASE_ : Any = None self.builder.download_and_prepare( download_config=_A,download_mode=_A,verification_mode=_A,base_path=_A,num_proc=self.num_proc,) SCREAMING_SNAKE_CASE_ : List[Any] = self.builder.as_dataset( split=self.split,verification_mode=_A,in_memory=self.keep_in_memory ) return dataset class a__ : def __init__( self : int,_A : Dataset,_A : Union[PathLike, BinaryIO],_A : Optional[int] = None,**_A : str,): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = dataset SCREAMING_SNAKE_CASE_ : Union[str, Any] = path_or_buf SCREAMING_SNAKE_CASE_ : int = batch_size or get_writer_batch_size(dataset.features ) SCREAMING_SNAKE_CASE_ : List[Any] = parquet_writer_kwargs def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf,(str, bytes, os.PathLike) ): with open(self.path_or_buf,"wb+" ) as buffer: SCREAMING_SNAKE_CASE_ : Any = self._write(file_obj=_A,batch_size=_A,**self.parquet_writer_kwargs ) else: SCREAMING_SNAKE_CASE_ : Dict = self._write(file_obj=self.path_or_buf,batch_size=_A,**self.parquet_writer_kwargs ) return written def __UpperCamelCase ( self : str,_A : BinaryIO,_A : int,**_A : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = 0 SCREAMING_SNAKE_CASE_ : Any = parquet_writer_kwargs.pop("path_or_buf",_A ) SCREAMING_SNAKE_CASE_ : Tuple = self.dataset.features.arrow_schema SCREAMING_SNAKE_CASE_ : List[str] = pq.ParquetWriter(_A,schema=_A,**_A ) for offset in logging.tqdm( range(0,len(self.dataset ),_A ),unit="ba",disable=not logging.is_progress_bar_enabled(),desc="Creating parquet from Arrow format",): SCREAMING_SNAKE_CASE_ : Any = query_table( table=self.dataset._data,key=slice(_A,offset + batch_size ),indices=self.dataset._indices if self.dataset._indices is not None else None,) writer.write_table(_A ) written += batch.nbytes writer.close() return written
18
"""simple docstring""" from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class _lowerCAmelCase : """simple docstring""" __UpperCAmelCase : Tuple = XGLMConfig __UpperCAmelCase : Optional[Any] = {} __UpperCAmelCase : Union[str, Any] = "gelu" def __init__( self : Optional[int], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int]=1_4, UpperCAmelCase__ : str=7, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[Any]=True, UpperCAmelCase__ : int=True, UpperCAmelCase__ : List[str]=9_9, UpperCAmelCase__ : Union[str, Any]=3_2, UpperCAmelCase__ : Union[str, Any]=2, UpperCAmelCase__ : Union[str, Any]=4, UpperCAmelCase__ : Tuple=3_7, UpperCAmelCase__ : List[Any]="gelu", UpperCAmelCase__ : List[str]=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Tuple=5_1_2, UpperCAmelCase__ : Optional[Any]=0.02, ): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_labels __lowercase = vocab_size __lowercase = d_model __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = ffn_dim __lowercase = activation_function __lowercase = activation_dropout __lowercase = attention_dropout __lowercase = max_position_embeddings __lowercase = initializer_range __lowercase = None __lowercase = 0 __lowercase = 2 __lowercase = 1 def _lowercase ( self : Union[str, Any] ): return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def _lowercase ( self : Tuple ): __lowercase = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length], self.vocab_size ), clip_value_min=0, clip_value_max=3 ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = self.get_config() __lowercase = floats_tensor([self.num_hidden_layers, self.num_attention_heads], 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowercase ( self : List[Any] ): return XGLMConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, num_layers=self.num_hidden_layers, attention_heads=self.num_attention_heads, ffn_dim=self.ffn_dim, activation_function=self.activation_function, activation_dropout=self.activation_dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, use_cache=UpperCAmelCase__, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, return_dict=UpperCAmelCase__, ) def _lowercase ( self : Dict ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) , ) = config_and_inputs __lowercase = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class _lowerCAmelCase ( lowercase ,lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () __UpperCAmelCase : List[str] = (TFXGLMForCausalLM,) if is_tf_available() else () __UpperCAmelCase : Any = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : List[str] = False __UpperCAmelCase : int = False def _lowercase ( self : Optional[Any] ): __lowercase = TFXGLMModelTester(self ) __lowercase = ConfigTester(self, config_class=UpperCAmelCase__, n_embd=3_7 ) def _lowercase ( self : Any ): self.config_tester.run_common_tests() @slow def _lowercase ( self : List[str] ): for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFXGLMModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def _lowercase ( self : int ): super().test_resize_token_embeddings() @require_tf class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[int]=True ): __lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) __lowercase = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]], dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __lowercase = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on __lowercase = model.generate(UpperCAmelCase__, do_sample=UpperCAmelCase__, num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist(), UpperCAmelCase__ ) @slow def _lowercase ( self : List[Any] ): __lowercase = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) __lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) __lowercase = tokenizer("Today is a nice day and", return_tensors="tf" ) __lowercase = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): __lowercase = model.generate(UpperCAmelCase__, do_sample=UpperCAmelCase__, seed=[7, 0] ) __lowercase = tokenizer.decode(output_ids[0], skip_special_tokens=UpperCAmelCase__ ) __lowercase = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(UpperCAmelCase__, UpperCAmelCase__ ) @slow def _lowercase ( self : Dict ): __lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) __lowercase = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) __lowercase = "left" # use different length sentences to test batching __lowercase = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] __lowercase = tokenizer(UpperCAmelCase__, return_tensors="tf", padding=UpperCAmelCase__ ) __lowercase = inputs["input_ids"] __lowercase = model.generate(input_ids=UpperCAmelCase__, attention_mask=inputs["attention_mask"], max_new_tokens=1_2 ) __lowercase = tokenizer(sentences[0], return_tensors="tf" ).input_ids __lowercase = model.generate(input_ids=UpperCAmelCase__, max_new_tokens=1_2 ) __lowercase = tokenizer(sentences[1], return_tensors="tf" ).input_ids __lowercase = model.generate(input_ids=UpperCAmelCase__, max_new_tokens=1_2 ) __lowercase = tokenizer.batch_decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ ) __lowercase = tokenizer.decode(output_non_padded[0], skip_special_tokens=UpperCAmelCase__ ) __lowercase = tokenizer.decode(output_padded[0], skip_special_tokens=UpperCAmelCase__ ) __lowercase = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(UpperCAmelCase__, UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__, [non_padded_sentence, padded_sentence] )
17
0
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowerCamelCase_ ( ): lowerCamelCase_ , lowerCamelCase_ = 9, 1_4 # noqa: F841 lowerCamelCase_ = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 1_4], [3, 4, 9], [5, 4, 1_0], [1, 7, 1_1], ] lowerCamelCase_ = defaultdict(lowerCamelCase__ ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) lowerCamelCase_ = mst(lowerCamelCase__ ) lowerCamelCase_ = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: lowerCamelCase_ = tuple(answer[:2] ) lowerCamelCase_ = tuple(edge[::-1] ) assert edge in result or reverse in result
19
"""simple docstring""" import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder _a = '__DUMMY_TRANSFORMERS_USER__' _a = 'Dummy User' _a = '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' _a = 'https://hub-ci.huggingface.co' _a = CI_HUB_ENDPOINT + '/datasets/{repo_id}/resolve/{revision}/{path}' _a = CI_HUB_ENDPOINT + '/{repo_id}/resolve/{revision}/{filename}' _a = Path('~/.huggingface/hub_ci_token').expanduser() @pytest.fixture def _A ( UpperCamelCase_ : List[Any]) -> Tuple: '''simple docstring''' monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE", UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : int) -> List[Any]: '''simple docstring''' monkeypatch.setattr("datasets.config.HF_ENDPOINT", UpperCamelCase_) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL", UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : str) -> Dict: '''simple docstring''' monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token", UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : Optional[Any], UpperCamelCase_ : List[Any]) -> List[str]: '''simple docstring''' HfFolder.save_token(UpperCamelCase_) yield HfFolder.delete_token() @pytest.fixture(scope="session") def _A ( ) -> List[Any]: '''simple docstring''' return HfApi(endpoint=UpperCamelCase_) @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi) -> List[Any]: '''simple docstring''' __lowercase = HfFolder.get_token() HfFolder.save_token(UpperCamelCase_) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : Dict) -> int: '''simple docstring''' def _cleanup_repo(UpperCamelCase_ : Optional[int]): hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") return _cleanup_repo @pytest.fixture def _A ( UpperCamelCase_ : str) -> Any: '''simple docstring''' @contextmanager def _temporary_repo(UpperCamelCase_ : Any): try: yield repo_id finally: cleanup_repo(UpperCamelCase_) return _temporary_repo @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : str, UpperCamelCase_ : Optional[int]) -> List[Any]: '''simple docstring''' __lowercase = F"""repo_txt_data-{int(time.time() * 10E3)}""" __lowercase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_) hf_api.upload_file( token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data/text_data.txt", repo_id=UpperCamelCase_, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : Any, UpperCamelCase_ : Dict) -> Optional[int]: '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : int, UpperCamelCase_ : Optional[int]) -> int: '''simple docstring''' __lowercase = F"""repo_zipped_txt_data-{int(time.time() * 10E3)}""" __lowercase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_) hf_api.upload_file( token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data.zip", repo_id=UpperCamelCase_, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Dict, UpperCamelCase_ : Any) -> int: '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : List[str], UpperCamelCase_ : List[str]) -> List[Any]: '''simple docstring''' __lowercase = F"""repo_zipped_img_data-{int(time.time() * 10E3)}""" __lowercase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_) hf_api.upload_file( token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data.zip", repo_id=UpperCamelCase_, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str], UpperCamelCase_ : List[str]) -> str: '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
17
0
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( """kwargs, expected""" , [ ({"""num_shards""": 0, """max_num_jobs""": 1}, []), ({"""num_shards""": 10, """max_num_jobs""": 1}, [range(10 )]), ({"""num_shards""": 10, """max_num_jobs""": 10}, [range(SCREAMING_SNAKE_CASE__ , i + 1 ) for i in range(10 )]), ({"""num_shards""": 1, """max_num_jobs""": 10}, [range(1 )]), ({"""num_shards""": 10, """max_num_jobs""": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({"""num_shards""": 3, """max_num_jobs""": 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: lowercase : Tuple = _distribute_shards(**SCREAMING_SNAKE_CASE__ ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, max_num_jobs, expected""" , [ ({"""foo""": 0}, 10, [{"""foo""": 0}]), ({"""shards""": [0, 1, 2, 3]}, 1, [{"""shards""": [0, 1, 2, 3]}]), ({"""shards""": [0, 1, 2, 3]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}, {"""shards""": [2]}, {"""shards""": [3]}]), ({"""shards""": [0, 1]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}]), ({"""shards""": [0, 1, 2, 3]}, 2, [{"""shards""": [0, 1]}, {"""shards""": [2, 3]}]), ] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: lowercase : Optional[int] = _split_gen_kwargs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, expected""" , [ ({"""foo""": 0}, 1), ({"""shards""": [0]}, 1), ({"""shards""": [0, 1, 2, 3]}, 4), ({"""shards""": [0, 1, 2, 3], """foo""": 0}, 4), ({"""shards""": [0, 1, 2, 3], """other""": (0, 1)}, 4), ({"""shards""": [0, 1, 2, 3], """shards2""": [0, 1]}, RuntimeError), ] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: if expected is RuntimeError: with pytest.raises(SCREAMING_SNAKE_CASE__ ): _number_of_shards_in_gen_kwargs(SCREAMING_SNAKE_CASE__ ) else: lowercase : str = _number_of_shards_in_gen_kwargs(SCREAMING_SNAKE_CASE__ ) assert out == expected
20
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : int = "time_series_transformer" __UpperCAmelCase : Any = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : int, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : str = "student_t", UpperCAmelCase__ : str = "nll", UpperCAmelCase__ : int = 1, UpperCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7], UpperCAmelCase__ : Optional[Union[str, bool]] = "mean", UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : int = 3_2, UpperCAmelCase__ : int = 3_2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : str = "gelu", UpperCAmelCase__ : int = 6_4, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : int = 1_0_0, UpperCAmelCase__ : float = 0.02, UpperCAmelCase__ : Any=True, **UpperCAmelCase__ : List[str], ): # time series specific configuration __lowercase = prediction_length __lowercase = context_length or prediction_length __lowercase = distribution_output __lowercase = loss __lowercase = input_size __lowercase = num_time_features __lowercase = lags_sequence __lowercase = scaling __lowercase = num_dynamic_real_features __lowercase = num_static_real_features __lowercase = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(UpperCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) __lowercase = cardinality else: __lowercase = [0] if embedding_dimension and num_static_categorical_features > 0: if len(UpperCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) __lowercase = embedding_dimension else: __lowercase = [min(5_0, (cat + 1) // 2 ) for cat in self.cardinality] __lowercase = num_parallel_samples # Transformer architecture configuration __lowercase = input_size * len(UpperCAmelCase__ ) + self._number_of_features __lowercase = d_model __lowercase = encoder_attention_heads __lowercase = decoder_attention_heads __lowercase = encoder_ffn_dim __lowercase = decoder_ffn_dim __lowercase = encoder_layers __lowercase = decoder_layers __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = activation_function __lowercase = init_std __lowercase = use_cache super().__init__(is_encoder_decoder=UpperCAmelCase__, **UpperCAmelCase__ ) @property def _lowercase ( self : Optional[Any] ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
17
0
def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> List[Any]: _lowercase : Optional[Any] = [1] for i in range(2 , lowerCamelCase_ ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" _lowercase : int = [] _lowercase : Union[str, Any] = list(range(lowerCamelCase_ ) ) # Find permutation while factorials: _lowercase : Dict = factorials.pop() _lowercase , _lowercase : Any = divmod(lowerCamelCase_ , lowerCamelCase_ ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
21
"""simple docstring""" import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class _lowerCAmelCase : """simple docstring""" @staticmethod def _lowercase ( *UpperCAmelCase__ : Tuple, **UpperCAmelCase__ : List[Any] ): pass def _A ( UpperCamelCase_ : Union[str, Any]) -> Any: '''simple docstring''' return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. _a = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Tuple = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Optional[Any] ): __lowercase = pipeline( "document-question-answering", model=UpperCAmelCase__, tokenizer=UpperCAmelCase__, image_processor=UpperCAmelCase__ ) __lowercase = INVOICE_URL __lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) ) __lowercase = "What is the placebo?" __lowercase = [ { "image": load_image(UpperCAmelCase__ ), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def _lowercase ( self : int, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Any ): __lowercase = dqa_pipeline(UpperCAmelCase__, top_k=2 ) self.assertEqual( UpperCAmelCase__, [ [ {"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ ), "start": ANY(UpperCAmelCase__ ), "end": ANY(UpperCAmelCase__ )}, {"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ ), "start": ANY(UpperCAmelCase__ ), "end": ANY(UpperCAmelCase__ )}, ] ] * 3, ) @require_torch @require_detectrona @require_pytesseract def _lowercase ( self : Dict ): __lowercase = pipeline("document-question-answering", model="hf-internal-testing/tiny-random-layoutlmv2" ) __lowercase = INVOICE_URL __lowercase = "How many cats are there?" __lowercase = [ {"score": 0.0_001, "answer": "oy 2312/2019", "start": 3_8, "end": 3_9}, {"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 3_8, "end": 4_0}, ] __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), UpperCAmelCase__ ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), UpperCAmelCase__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably __lowercase = "./tests/fixtures/tests_samples/COCO/000000039769.png" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual(UpperCAmelCase__, [] ) # We can optionnally pass directly the words and bounding boxes __lowercase = "./tests/fixtures/tests_samples/COCO/000000039769.png" __lowercase = [] __lowercase = [] __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, words=UpperCAmelCase__, boxes=UpperCAmelCase__, top_k=2 ) self.assertEqual(UpperCAmelCase__, [] ) @slow @require_torch @require_detectrona @require_pytesseract def _lowercase ( self : List[str] ): __lowercase = pipeline( "document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ] * 2, ) @slow @require_torch @require_detectrona @require_pytesseract def _lowercase ( self : Dict ): __lowercase = pipeline( "document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", max_seq_len=5_0, ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3}, {"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3}, {"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3}, {"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6}, ] ] * 2, ) @slow @require_torch @require_pytesseract @require_vision def _lowercase ( self : Optional[Any] ): __lowercase = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=UpperCAmelCase__ ) __lowercase = pipeline( "document-question-answering", model="impira/layoutlm-document-qa", tokenizer=UpperCAmelCase__, revision="3dc6de3", ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ], ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ] ] * 2, ) __lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) ) # This model should also work if `image` is set to None __lowercase = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ], ) @slow @require_torch @require_pytesseract @require_vision def _lowercase ( self : Union[str, Any] ): __lowercase = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=UpperCAmelCase__ ) __lowercase = pipeline( "document-question-answering", model="impira/layoutlm-document-qa", tokenizer=UpperCAmelCase__, revision="3dc6de3", max_seq_len=5_0, ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6}, ] ] * 2, ) __lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) ) # This model should also work if `image` is set to None __lowercase = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) @slow @require_torch def _lowercase ( self : Dict ): __lowercase = pipeline( "document-question-answering", model="naver-clova-ix/donut-base-finetuned-docvqa", tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ), feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa", ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def _lowercase ( self : List[Any] ): pass
17
0
'''simple docstring''' import string from math import logaa def UpperCAmelCase_ ( __lowercase : str , __lowercase : str ) -> int: '''simple docstring''' _UpperCAmelCase = document.translate( str.maketrans("" , "" , string.punctuation ) ).replace("\n" , "" ) _UpperCAmelCase = document_without_punctuation.split(" " ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def UpperCAmelCase_ ( __lowercase : str , __lowercase : str ) -> tuple[int, int]: '''simple docstring''' _UpperCAmelCase = corpus.lower().translate( str.maketrans("" , "" , string.punctuation ) ) # strip all punctuation and replace it with '' _UpperCAmelCase = corpus_without_punctuation.split("\n" ) _UpperCAmelCase = term.lower() return (len([doc for doc in docs if term in doc] ), len(__lowercase )) def UpperCAmelCase_ ( __lowercase : int , __lowercase : int , __lowercase : Union[str, Any]=False ) -> float: '''simple docstring''' if smoothing: if n == 0: raise ValueError("log10(0) is undefined." ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("df must be > 0" ) elif n == 0: raise ValueError("log10(0) is undefined." ) return round(logaa(n / df ) , 3 ) def UpperCAmelCase_ ( __lowercase : int , __lowercase : int ) -> float: '''simple docstring''' return round(tf * idf , 3 )
22
"""simple docstring""" import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _a = 2 class _lowerCAmelCase : """simple docstring""" def __init__( self : Dict, *, # begin keyword-only arguments UpperCAmelCase__ : str="<s>", UpperCAmelCase__ : Tuple="<pad>", UpperCAmelCase__ : str="</s>", UpperCAmelCase__ : Optional[Any]="<unk>", UpperCAmelCase__ : List[Any]=None, ): __lowercase ,__lowercase ,__lowercase ,__lowercase = bos, unk, pad, eos __lowercase = [] __lowercase = [] __lowercase = {} __lowercase = self.add_symbol(UpperCAmelCase__ ) __lowercase = self.add_symbol(UpperCAmelCase__ ) __lowercase = self.add_symbol(UpperCAmelCase__ ) __lowercase = self.add_symbol(UpperCAmelCase__ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(UpperCAmelCase__ ) __lowercase = len(self.symbols ) def __eq__( self : List[str], UpperCAmelCase__ : Dict ): return self.indices == other.indices def __getitem__( self : Optional[int], UpperCAmelCase__ : List[str] ): if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : str ): return len(self.symbols ) def __contains__( self : Any, UpperCAmelCase__ : Optional[Any] ): return sym in self.indices @classmethod def _lowercase ( cls : List[Any], UpperCAmelCase__ : Optional[Any] ): __lowercase = cls() d.add_from_file(UpperCAmelCase__ ) return d def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[Any]=1, UpperCAmelCase__ : str=False ): if word in self.indices and not overwrite: __lowercase = self.indices[word] __lowercase = self.count[idx] + n return idx else: __lowercase = len(self.symbols ) __lowercase = idx self.symbols.append(UpperCAmelCase__ ) self.count.append(UpperCAmelCase__ ) return idx def _lowercase ( self : Any, UpperCAmelCase__ : str ): return 0 def _lowercase ( self : Tuple, UpperCAmelCase__ : List[Any] ): if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): try: with open(UpperCAmelCase__, "r", encoding="utf-8" ) as fd: self.add_from_file(UpperCAmelCase__ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("Incorrect encoding detected in {}, please rebuild the dataset".format(UpperCAmelCase__ ) ) return __lowercase = f.readlines() __lowercase = self._load_meta(UpperCAmelCase__ ) for line in lines[indices_start_line:]: try: __lowercase ,__lowercase = line.rstrip().rsplit(" ", 1 ) if field == "#fairseq:overwrite": __lowercase = True __lowercase ,__lowercase = line.rsplit(" ", 1 ) else: __lowercase = False __lowercase = int(UpperCAmelCase__ ) __lowercase = line if word in self and not overwrite: raise RuntimeError( "Duplicate word found when loading Dictionary: '{}'. " "Duplicate words can overwrite earlier ones by adding the " "#fairseq:overwrite flag at the end of the corresponding row " "in the dictionary file. If using the Camembert model, please " "download an updated copy of the model file.".format(UpperCAmelCase__ ) ) self.add_symbol(UpperCAmelCase__, n=UpperCAmelCase__, overwrite=UpperCAmelCase__ ) except ValueError: raise ValueError("Incorrect dictionary format, expected '<token> <cnt> [flags]'" ) def _A ( UpperCamelCase_ : int) -> str: '''simple docstring''' __lowercase = dict((re.sub(r"@@$", "", UpperCamelCase_), v) if k.endswith("@@") else (re.sub(r"$", "</w>", UpperCamelCase_), v) for k, v in d.items()) __lowercase = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] __lowercase = d[k] # restore return da def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str) -> List[Any]: '''simple docstring''' if not os.path.exists(UpperCamelCase_): raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""") os.makedirs(UpperCamelCase_, exist_ok=UpperCamelCase_) print(F"""Writing results to {pytorch_dump_folder_path}""") # handle various types of models __lowercase = os.path.join(UpperCamelCase_, "checkpoint.pt") if not os.path.isfile(UpperCamelCase_): raise ValueError(F"""path to the file {checkpoint_file} does not exist!""") __lowercase = torch.load(UpperCamelCase_, map_location="cpu") __lowercase = chkpt["cfg"]["model"] # dicts __lowercase = os.path.join(UpperCamelCase_, "dict.txt") if not os.path.isfile(UpperCamelCase_): raise ValueError(F"""path to the file {dict_file} does not exist!""") __lowercase = Dictionary.load(UpperCamelCase_) __lowercase = rewrite_dict_keys(src_dict.indices) __lowercase = len(UpperCamelCase_) __lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["vocab_file"]) print(F"""Generating {src_vocab_file} of {src_vocab_size} records""") with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_)) # merges_file (bpecodes) __lowercase = os.path.join(UpperCamelCase_, "bpecodes") if not os.path.isfile(UpperCamelCase_): raise ValueError(F"""path to the file {bpecodes_file} does not exist!""") __lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["merges_file"]) shutil.copyfile(UpperCamelCase_, UpperCamelCase_) # model config __lowercase = os.path.join(UpperCamelCase_, "config.json") __lowercase = { "activation_dropout": args["activation_dropout"], "architectures": ["BioGptForCausalLM"], "attention_probs_dropout_prob": args["attention_dropout"], "bos_token_id": 0, "eos_token_id": 2, "hidden_act": args["activation_fn"], "hidden_dropout_prob": args["dropout"], "hidden_size": args["decoder_embed_dim"], "initializer_range": 0.02, "intermediate_size": args["decoder_ffn_embed_dim"], "layer_norm_eps": 1E-12, "layerdrop": args["decoder_layerdrop"], "max_position_embeddings": args["max_target_positions"], "model_type": "biogpt", "num_attention_heads": args["decoder_attention_heads"], "num_hidden_layers": args["decoder_layers"], "pad_token_id": 1, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_decoder_input_output_embed"], "vocab_size": src_vocab_size, } # good hparam defaults to start with print(F"""Generating {biogpt_model_config_file}""") with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_)) # tokenizer config __lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_) __lowercase = { "bos_token": "<s>", "eos_token": "</s>", "model_max_length": 1024, "pad_token": "<pad>", "special_tokens_map_file": None, "tokenizer_class": "BioGptTokenizer", "unk_token": "<unk>", } print(F"""Generating {biogpt_tokenizer_config_file}""") with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_)) # model __lowercase = chkpt["model"] # remove unneeded keys __lowercase = [ "decoder.version", ] for k in ignore_keys: model_state_dict.pop(UpperCamelCase_, UpperCamelCase_) __lowercase = list(model_state_dict.keys()) for layer_name in layer_names: if layer_name.endswith("output_projection.weight"): __lowercase = model_state_dict.pop(UpperCamelCase_) else: __lowercase = model_state_dict.pop(UpperCamelCase_) __lowercase = BioGptConfig.from_pretrained(UpperCamelCase_) __lowercase = BioGptForCausalLM(UpperCamelCase_) # check that it loads ok model_new.load_state_dict(UpperCamelCase_) # save __lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_) print(F"""Generating {pytorch_weights_dump_path}""") torch.save(UpperCamelCase_, UpperCamelCase_) print("Conversion is done!") if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _a = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
17
0
'''simple docstring''' import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" lowerCamelCase__ = MODEL_FOR_MASKED_LM_MAPPING lowerCamelCase__ = TF_MODEL_FOR_MASKED_LM_MAPPING def A ( self : List[str] ) -> List[Any]: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def A ( self : List[str] ) -> List[Any]: UpperCAmelCase : Tuple = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''tf''' ) UpperCAmelCase : str = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ {'''sequence''': '''My name is grouped''', '''score''': 2.1E-05, '''token''': 38015, '''token_str''': ''' grouped'''}, {'''sequence''': '''My name is accuser''', '''score''': 2.1E-05, '''token''': 25506, '''token_str''': ''' accuser'''}, ] , ) UpperCAmelCase : Optional[Any] = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ { '''sequence''': '''The largest city in France is grouped''', '''score''': 2.1E-05, '''token''': 38015, '''token_str''': ''' grouped''', }, { '''sequence''': '''The largest city in France is accuser''', '''score''': 2.1E-05, '''token''': 25506, '''token_str''': ''' accuser''', }, ] , ) UpperCAmelCase : Any = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ {'''sequence''': '''My name is Clara''', '''score''': 2E-05, '''token''': 13606, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Patrick''', '''score''': 2E-05, '''token''': 3499, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 1.9E-05, '''token''': 2941, '''token_str''': ''' Te'''}, ] , ) @require_torch def A ( self : Optional[Any] ) -> List[Any]: UpperCAmelCase : Union[str, Any] = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''pt''' ) UpperCAmelCase : List[Any] = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ {'''sequence''': '''My name is Maul''', '''score''': 2.2E-05, '''token''': 35676, '''token_str''': ''' Maul'''}, {'''sequence''': '''My name isELS''', '''score''': 2.2E-05, '''token''': 16416, '''token_str''': '''ELS'''}, ] , ) UpperCAmelCase : int = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ { '''sequence''': '''The largest city in France is Maul''', '''score''': 2.2E-05, '''token''': 35676, '''token_str''': ''' Maul''', }, {'''sequence''': '''The largest city in France isELS''', '''score''': 2.2E-05, '''token''': 16416, '''token_str''': '''ELS'''}, ] , ) UpperCAmelCase : Tuple = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ {'''sequence''': '''My name is Patrick''', '''score''': 2.1E-05, '''token''': 3499, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 2E-05, '''token''': 2941, '''token_str''': ''' Te'''}, {'''sequence''': '''My name is Clara''', '''score''': 2E-05, '''token''': 13606, '''token_str''': ''' Clara'''}, ] , ) UpperCAmelCase : int = unmasker('''My name is <mask> <mask>''' , top_k=2 ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ [ { '''score''': 2.2E-05, '''token''': 35676, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is Maul<mask></s>''', }, {'''score''': 2.2E-05, '''token''': 16416, '''token_str''': '''ELS''', '''sequence''': '''<s>My name isELS<mask></s>'''}, ], [ { '''score''': 2.2E-05, '''token''': 35676, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is<mask> Maul</s>''', }, {'''score''': 2.2E-05, '''token''': 16416, '''token_str''': '''ELS''', '''sequence''': '''<s>My name is<mask>ELS</s>'''}, ], ] , ) @require_torch_gpu def A ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase : List[Any] = pipeline('''fill-mask''' , model='''hf-internal-testing/tiny-random-distilbert''' , device=0 , framework='''pt''' ) # convert model to fp16 pipe.model.half() UpperCAmelCase : List[Any] = pipe('''Paris is the [MASK] of France.''' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(__snake_case , __snake_case ) @slow @require_torch def A ( self : Optional[Any] ) -> int: UpperCAmelCase : Tuple = pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''pt''' ) self.run_large_test(__snake_case ) @slow @require_tf def A ( self : Dict ) -> Optional[int]: UpperCAmelCase : Tuple = pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''tf''' ) self.run_large_test(__snake_case ) def A ( self : Dict , __snake_case : Any ) -> str: UpperCAmelCase : List[str] = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(__snake_case ) , [ {'''sequence''': '''My name is John''', '''score''': 0.0_08, '''token''': 610, '''token_str''': ''' John'''}, {'''sequence''': '''My name is Chris''', '''score''': 0.0_07, '''token''': 1573, '''token_str''': ''' Chris'''}, ] , ) UpperCAmelCase : Optional[int] = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(__snake_case ) , [ { '''sequence''': '''The largest city in France is Paris''', '''score''': 0.2_51, '''token''': 2201, '''token_str''': ''' Paris''', }, { '''sequence''': '''The largest city in France is Lyon''', '''score''': 0.2_14, '''token''': 12790, '''token_str''': ''' Lyon''', }, ] , ) UpperCAmelCase : Tuple = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(__snake_case ) , [ {'''sequence''': '''My name is Patrick''', '''score''': 0.0_05, '''token''': 3499, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Clara''', '''score''': 0.0_00, '''token''': 13606, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Te''', '''score''': 0.0_00, '''token''': 2941, '''token_str''': ''' Te'''}, ] , ) @require_torch def A ( self : Union[str, Any] ) -> Dict: UpperCAmelCase : List[str] = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''pt''' ) UpperCAmelCase : Optional[Any] = None UpperCAmelCase : Union[str, Any] = None self.run_pipeline_test(__snake_case , [] ) @require_tf def A ( self : Dict ) -> List[Any]: UpperCAmelCase : List[str] = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''tf''' ) UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = None self.run_pipeline_test(__snake_case , [] ) def A ( self : Union[str, Any] , __snake_case : Optional[int] , __snake_case : int , __snake_case : Optional[int] ) -> Union[str, Any]: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('''The provided tokenizer has no mask token, (probably reformer or wav2vec2)''' ) UpperCAmelCase : Union[str, Any] = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case ) UpperCAmelCase : Optional[Any] = [ F"""This is another {tokenizer.mask_token} test""", ] return fill_masker, examples def A ( self : List[str] , __snake_case : Any , __snake_case : str ) -> str: UpperCAmelCase : int = fill_masker.tokenizer UpperCAmelCase : Tuple = fill_masker.model UpperCAmelCase : Optional[Any] = fill_masker( F"""This is a {tokenizer.mask_token}""" , ) self.assertEqual( __snake_case , [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ] , ) UpperCAmelCase : int = fill_masker([F"""This is a {tokenizer.mask_token}"""] ) self.assertEqual( __snake_case , [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ] , ) UpperCAmelCase : Union[str, Any] = fill_masker([F"""This is a {tokenizer.mask_token}""", F"""Another {tokenizer.mask_token} great test."""] ) self.assertEqual( __snake_case , [ [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ], [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ], ] , ) with self.assertRaises(__snake_case ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(__snake_case ): fill_masker('''This is''' ) self.run_test_top_k(__snake_case , __snake_case ) self.run_test_targets(__snake_case , __snake_case ) self.run_test_top_k_targets(__snake_case , __snake_case ) self.fill_mask_with_duplicate_targets_and_top_k(__snake_case , __snake_case ) self.fill_mask_with_multiple_masks(__snake_case , __snake_case ) def A ( self : Any , __snake_case : Any , __snake_case : List[Any] ) -> List[Any]: UpperCAmelCase : Tuple = tokenizer.get_vocab() UpperCAmelCase : List[str] = sorted(vocab.keys() )[:2] # Pipeline argument UpperCAmelCase : Any = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case , targets=__snake_case ) UpperCAmelCase : Dict = fill_masker(F"""This is a {tokenizer.mask_token}""" ) self.assertEqual( __snake_case , [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ] , ) UpperCAmelCase : Any = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} , __snake_case ) UpperCAmelCase : int = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} , set(__snake_case ) ) # Call argument UpperCAmelCase : List[Any] = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case ) UpperCAmelCase : Union[str, Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=__snake_case ) self.assertEqual( __snake_case , [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ] , ) UpperCAmelCase : Tuple = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} , __snake_case ) UpperCAmelCase : Union[str, Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} , set(__snake_case ) ) # Score equivalence UpperCAmelCase : int = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=__snake_case ) UpperCAmelCase : int = [top_mask['''token_str'''] for top_mask in outputs] UpperCAmelCase : Optional[int] = [top_mask['''score'''] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__snake_case ) == set(__snake_case ): UpperCAmelCase : List[str] = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=__snake_case ) UpperCAmelCase : str = [top_mask['''score'''] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(__snake_case ) , nested_simplify(__snake_case ) ) # Raises with invalid with self.assertRaises(__snake_case ): UpperCAmelCase : Any = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(__snake_case ): UpperCAmelCase : Union[str, Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=[''''''] ) with self.assertRaises(__snake_case ): UpperCAmelCase : Any = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets='''''' ) def A ( self : Optional[Any] , __snake_case : Any , __snake_case : Optional[int] ) -> Optional[Any]: UpperCAmelCase : List[Any] = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case , top_k=2 ) UpperCAmelCase : Optional[int] = fill_masker(F"""This is a {tokenizer.mask_token}""" ) self.assertEqual( __snake_case , [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ] , ) UpperCAmelCase : Union[str, Any] = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case ) UpperCAmelCase : Tuple = fill_masker(F"""This is a {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( __snake_case , [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ] , ) self.assertEqual(nested_simplify(__snake_case ) , nested_simplify(__snake_case ) ) def A ( self : Dict , __snake_case : List[Any] , __snake_case : Tuple ) -> int: UpperCAmelCase : List[str] = tokenizer.get_vocab() UpperCAmelCase : Optional[int] = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case ) # top_k=2, ntargets=3 UpperCAmelCase : Union[str, Any] = sorted(vocab.keys() )[:3] UpperCAmelCase : Any = fill_masker(F"""This is a {tokenizer.mask_token}""" , top_k=2 , targets=__snake_case ) # If we use the most probably targets, and filter differently, we should still # have the same results UpperCAmelCase : Union[str, Any] = [el['''token_str'''] for el in sorted(__snake_case , key=lambda __snake_case : x["score"] , reverse=__snake_case )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__snake_case ).issubset(__snake_case ): UpperCAmelCase : Tuple = fill_masker(F"""This is a {tokenizer.mask_token}""" , top_k=3 , targets=__snake_case ) # They should yield exactly the same result self.assertEqual(nested_simplify(__snake_case ) , nested_simplify(__snake_case ) ) def A ( self : Tuple , __snake_case : Dict , __snake_case : Dict ) -> Union[str, Any]: UpperCAmelCase : List[str] = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case ) UpperCAmelCase : str = tokenizer.get_vocab() # String duplicates + id duplicates UpperCAmelCase : Optional[int] = sorted(vocab.keys() )[:3] UpperCAmelCase : Union[str, Any] = [targets[0], targets[1], targets[0], targets[2], targets[1]] UpperCAmelCase : List[Any] = fill_masker(F"""My name is {tokenizer.mask_token}""" , targets=__snake_case , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(__snake_case ) , 3 ) def A ( self : Tuple , __snake_case : Optional[Any] , __snake_case : Union[str, Any] ) -> Optional[int]: UpperCAmelCase : List[Any] = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case ) UpperCAmelCase : Optional[Any] = fill_masker( F"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( __snake_case , [ [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ], [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ], [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ], ] , )
23
"""simple docstring""" from __future__ import annotations from typing import Any class _lowerCAmelCase : """simple docstring""" def __init__( self : Any, UpperCAmelCase__ : int ): __lowercase = num_of_nodes __lowercase = [] __lowercase = {} def _lowercase ( self : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : int, UpperCAmelCase__ : int ): self.m_edges.append([u_node, v_node, weight] ) def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _lowercase ( self : List[Any], UpperCAmelCase__ : int ): if self.m_component[u_node] != u_node: for k in self.m_component: __lowercase = self.find_component(UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : list[int], UpperCAmelCase__ : int, UpperCAmelCase__ : int ): if component_size[u_node] <= component_size[v_node]: __lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(UpperCAmelCase__ ) elif component_size[u_node] >= component_size[v_node]: __lowercase = self.find_component(UpperCAmelCase__ ) component_size[u_node] += component_size[v_node] self.set_component(UpperCAmelCase__ ) def _lowercase ( self : Any ): __lowercase = [] __lowercase = 0 __lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowercase ,__lowercase ,__lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase ,__lowercase ,__lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 __lowercase = [-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def _A ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
17
0
def lowerCamelCase__ ( ) -> int: return [ a * b * (1000 - a - b) for a in range(1 , 999 ) for b in range(snake_case_ , 999 ) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F'{solution() = }')
24
"""simple docstring""" from math import sqrt def _A ( UpperCamelCase_ : int) -> int: '''simple docstring''' __lowercase = 0 for i in range(1, int(sqrt(UpperCamelCase_) + 1)): if n % i == 0 and i != sqrt(UpperCamelCase_): total += i + n // i elif i == sqrt(UpperCamelCase_): total += i return total - n def _A ( UpperCamelCase_ : int = 10000) -> int: '''simple docstring''' __lowercase = sum( i for i in range(1, UpperCamelCase_) if sum_of_divisors(sum_of_divisors(UpperCamelCase_)) == i and sum_of_divisors(UpperCamelCase_) != i) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
17
0
"""simple docstring""" import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration UpperCAmelCase__ : str = 5_0_0_0_0 UpperCAmelCase__ : List[str] = 5_0_0_0 UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = os.path.split(__file__) UpperCAmelCase__ : Optional[Any] = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def lowercase_ ( _snake_case ,_snake_case ): for i in range(_snake_case ): SCREAMING_SNAKE_CASE__ : Dict = dataset[i] @get_duration def lowercase_ ( _snake_case ,_snake_case ,_snake_case ): for i in range(0 ,len(_snake_case ) ,_snake_case ): SCREAMING_SNAKE_CASE__ : List[Any] = dataset[i : i + batch_size] @get_duration def lowercase_ ( _snake_case ,_snake_case ,_snake_case ): with dataset.formatted_as(type=_snake_case ): for i in range(_snake_case ): SCREAMING_SNAKE_CASE__ : Dict = dataset[i] @get_duration def lowercase_ ( _snake_case ,_snake_case ,_snake_case ,_snake_case ): with dataset.formatted_as(type=_snake_case ): for i in range(0 ,_snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : int = dataset[i : i + batch_size] def lowercase_ ( ): SCREAMING_SNAKE_CASE__ : List[Any] = {"""num examples""": SPEED_TEST_N_EXAMPLES} SCREAMING_SNAKE_CASE__ : Optional[Any] = [ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 100}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_000}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """pandas""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """torch""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """tensorflow""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1_000}), ] SCREAMING_SNAKE_CASE__ : Optional[int] = [ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 100}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_000}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1_000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print("""generating dataset""" ) SCREAMING_SNAKE_CASE__ : Optional[int] = datasets.Features( {"""list""": datasets.Sequence(datasets.Value("""float32""" ) ), """numbers""": datasets.Value("""float32""" )} ) SCREAMING_SNAKE_CASE__ : str = generate_example_dataset( os.path.join(_snake_case ,"""dataset.arrow""" ) ,_snake_case ,num_examples=_snake_case ,seq_shapes={"""list""": (100,)} ,) print("""first set of iterations""" ) for func, kwargs in functions: print(func.__name__ ,str(_snake_case ) ) SCREAMING_SNAKE_CASE__ : str = func(_snake_case ,**_snake_case ) print("""shuffling dataset""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = dataset.shuffle() print("""Second set of iterations (after shuffling""" ) for func, kwargs in functions_shuffled: print("""shuffled """ ,func.__name__ ,str(_snake_case ) ) SCREAMING_SNAKE_CASE__ : Tuple = func( _snake_case ,**_snake_case ) with open(_snake_case ,"""wb""" ) as f: f.write(json.dumps(_snake_case ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
25
"""simple docstring""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _a = _symbol_database.Default() _a = _descriptor_pool.Default().AddSerializedFile( b'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) _a = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: _a = None _a = b'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" _a = 45 _a = 15_81 _a = 15_17 _a = 15_70 _a = 15_84 _a = 17_93 _a = 17_95 _a = 19_16 _a = 18_64 _a = 19_05 _a = 19_19 _a = 24_29 _a = 22_08 _a = 24_18 _a = 23_23 _a = 24_07 # @@protoc_insertion_point(module_scope)
17
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { "configuration_table_transformer": [ "TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TableTransformerConfig", "TableTransformerOnnxConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TableTransformerForObjectDetection", "TableTransformerModel", "TableTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
"""simple docstring""" import baseaa def _A ( UpperCamelCase_ : str) -> bytes: '''simple docstring''' return baseaa.baaencode(string.encode("utf-8")) def _A ( UpperCamelCase_ : bytes) -> str: '''simple docstring''' return baseaa.baadecode(UpperCamelCase_).decode("utf-8") if __name__ == "__main__": _a = 'Hello World!' _a = baseaa_encode(test) print(encoded) _a = baseaa_decode(encoded) print(decoded)
17
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class __UpperCamelCase ( lowerCAmelCase_ ): A_ = "naver-clova-ix/donut-base-finetuned-docvqa" A_ = ( "This is a tool that answers a question about an document (pdf). It takes an input named `document` which " "should be the document containing the information, as well as a `question` that is the question about the " "document. It returns a text that contains the answer to the question." ) A_ = "document_qa" A_ = AutoProcessor A_ = VisionEncoderDecoderModel A_ = ["image", "text"] A_ = ["text"] def __init__( self , *__a , **__a ): '''simple docstring''' if not is_vision_available(): raise ValueError('Pillow must be installed to use the DocumentQuestionAnsweringTool.' ) super().__init__(*__a , **__a ) def __UpperCAmelCase ( self , __a , __a ): '''simple docstring''' __a : List[str] = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' __a : Any = task_prompt.replace('{user_input}' , __a ) __a : Optional[Any] = self.pre_processor.tokenizer( __a , add_special_tokens=__a , return_tensors='pt' ).input_ids __a : Optional[int] = self.pre_processor(__a , return_tensors='pt' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def __UpperCAmelCase ( self , __a ): '''simple docstring''' return self.model.generate( inputs['pixel_values'].to(self.device ) , decoder_input_ids=inputs['decoder_input_ids'].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__a , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__a , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__a , ).sequences def __UpperCAmelCase ( self , __a ): '''simple docstring''' __a : Union[str, Any] = self.pre_processor.batch_decode(__a )[0] __a : str = sequence.replace(self.pre_processor.tokenizer.eos_token , '' ) __a : List[str] = sequence.replace(self.pre_processor.tokenizer.pad_token , '' ) __a : Any = re.sub(r'<.*?>' , '' , __a , count=1 ).strip() # remove first task start token __a : Tuple = self.pre_processor.tokenajson(__a ) return sequence["answer"]
27
"""simple docstring""" def _A ( UpperCamelCase_ : Any) -> List[str]: '''simple docstring''' __lowercase ,__lowercase = [], [] while len(UpperCamelCase_) > 1: __lowercase ,__lowercase = min(UpperCamelCase_), max(UpperCamelCase_) start.append(UpperCamelCase_) end.append(UpperCamelCase_) collection.remove(UpperCamelCase_) collection.remove(UpperCamelCase_) end.reverse() return start + collection + end if __name__ == "__main__": _a = input('Enter numbers separated by a comma:\n').strip() _a = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
17
0
'''simple docstring''' from torch import nn def __lowerCamelCase ( A__ ) -> Any: """simple docstring""" if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F"""Unsupported activation function: {act_fn}""" )
28
"""simple docstring""" def _A ( UpperCamelCase_ : list[int]) -> float: '''simple docstring''' if not nums: # Makes sure that the list is not empty raise ValueError("List is empty") __lowercase = sum(UpperCamelCase_) / len(UpperCamelCase_) # Calculate the average return sum(abs(x - average) for x in nums) / len(UpperCamelCase_) if __name__ == "__main__": import doctest doctest.testmod()
17
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = '▁' __UpperCAmelCase = {'vocab_file': 'sentencepiece.bpe.model'} __UpperCAmelCase = { 'vocab_file': { 'facebook/mbart-large-50-one-to-many-mmt': ( 'https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model' ), } } __UpperCAmelCase = { 'facebook/mbart-large-50-one-to-many-mmt': 1024, } # fmt: off __UpperCAmelCase = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN', 'af_ZA', 'az_AZ', 'bn_IN', 'fa_IR', 'he_IL', 'hr_HR', 'id_ID', 'ka_GE', 'km_KH', 'mk_MK', 'ml_IN', 'mn_MN', 'mr_IN', 'pl_PL', 'ps_AF', 'pt_XX', 'sv_SE', 'sw_KE', 'ta_IN', 'te_IN', 'th_TH', 'tl_XX', 'uk_UA', 'ur_PK', 'xh_ZA', 'gl_ES', 'sl_SI'] class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : Union[str, Any] = VOCAB_FILES_NAMES _snake_case : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : str = PRETRAINED_VOCAB_FILES_MAP _snake_case : Union[str, Any] = ['''input_ids''', '''attention_mask'''] _snake_case : List[int] = [] _snake_case : List[int] = [] def __init__( self , _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase="</s>" , _UpperCamelCase="</s>" , _UpperCamelCase="<s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<pad>" , _UpperCamelCase="<mask>" , _UpperCamelCase = None , **_UpperCamelCase , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ : List[str] = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else mask_token UpperCAmelCase_ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase_ : str = kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=_UpperCamelCase , tgt_lang=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , cls_token=_UpperCamelCase , pad_token=_UpperCamelCase , mask_token=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) UpperCAmelCase_ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_UpperCamelCase ) ) UpperCAmelCase_ : str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase_ : Optional[int] = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase_ : Union[str, Any] = 1 UpperCAmelCase_ : Union[str, Any] = len(self.sp_model ) UpperCAmelCase_ : Optional[Any] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_UpperCamelCase ) } UpperCAmelCase_ : int = {v: k for k, v in self.lang_code_to_id.items()} UpperCAmelCase_ : Optional[int] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCAmelCase_ : Optional[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCAmelCase_ : Optional[int] = src_lang if src_lang is not None else 'en_XX' UpperCAmelCase_ : Tuple = self.lang_code_to_id[self._src_lang] UpperCAmelCase_ : Any = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __UpperCAmelCase ( self ) -> int: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __UpperCAmelCase ( self ) -> str: return self._src_lang @src_lang.setter def __UpperCAmelCase ( self , _UpperCamelCase ) -> None: UpperCAmelCase_ : Optional[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) -> Dict: UpperCAmelCase_ : List[str] = self.__dict__.copy() UpperCAmelCase_ : str = None return state def __setstate__( self , _UpperCamelCase ) -> None: UpperCAmelCase_ : Optional[int] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCAmelCase_ : List[str] = {} UpperCAmelCase_ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase_ : List[str] = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __UpperCAmelCase ( self , _UpperCamelCase ) -> List[str]: return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> int: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase_ : int = self.sp_model.PieceToId(_UpperCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __UpperCAmelCase ( self , _UpperCamelCase ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> Tuple: UpperCAmelCase_ : Union[str, Any] = [] UpperCAmelCase_ : List[Any] = '' UpperCAmelCase_ : Optional[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCamelCase ) + token UpperCAmelCase_ : Optional[Any] = True UpperCAmelCase_ : Union[str, Any] = [] else: current_sub_tokens.append(_UpperCamelCase ) UpperCAmelCase_ : Optional[int] = False out_string += self.sp_model.decode(_UpperCamelCase ) return out_string.strip() def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None ) -> Tuple[str]: if not os.path.isdir(_UpperCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return UpperCAmelCase_ : Tuple = os.path.join( _UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , 'wb' ) as fi: UpperCAmelCase_ : Tuple = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) UpperCAmelCase_ : List[str] = [1] * len(self.prefix_tokens ) UpperCAmelCase_ : Optional[int] = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_UpperCamelCase )) + suffix_ones return prefix_ones + ([0] * len(_UpperCamelCase )) + ([0] * len(_UpperCamelCase )) + suffix_ones def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ) -> List[str]: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) UpperCAmelCase_ : str = src_lang UpperCAmelCase_ : Any = self(_UpperCamelCase , add_special_tokens=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase ) UpperCAmelCase_ : List[Any] = self.convert_tokens_to_ids(_UpperCamelCase ) UpperCAmelCase_ : Any = tgt_lang_id return inputs def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = "en_XX" , _UpperCamelCase = None , _UpperCamelCase = "ro_RO" , **_UpperCamelCase , ) -> BatchEncoding: UpperCAmelCase_ : Optional[int] = src_lang UpperCAmelCase_ : Optional[Any] = tgt_lang return super().prepare_seqaseq_batch(_UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ) def __UpperCAmelCase ( self ) -> Union[str, Any]: return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCAmelCase ( self ) -> Tuple: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> None: UpperCAmelCase_ : str = self.lang_code_to_id[src_lang] UpperCAmelCase_ : Union[str, Any] = [self.cur_lang_code_id] UpperCAmelCase_ : Union[str, Any] = [self.eos_token_id] def __UpperCAmelCase ( self , _UpperCamelCase ) -> None: UpperCAmelCase_ : int = self.lang_code_to_id[tgt_lang] UpperCAmelCase_ : str = [self.cur_lang_code_id] UpperCAmelCase_ : List[str] = [self.eos_token_id]
29
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : int=1_0_0, UpperCAmelCase__ : Any=1_3, UpperCAmelCase__ : List[Any]=3_0, UpperCAmelCase__ : Dict=2, UpperCAmelCase__ : Any=3, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[str]=True, UpperCAmelCase__ : Optional[Any]=3_2, UpperCAmelCase__ : Any=5, UpperCAmelCase__ : Any=4, UpperCAmelCase__ : Any=3_7, UpperCAmelCase__ : Optional[int]="gelu", UpperCAmelCase__ : Dict=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Dict=1_0, UpperCAmelCase__ : Tuple=0.02, UpperCAmelCase__ : List[Any]=3, ): __lowercase = parent __lowercase = vocab_size __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase = (image_size // patch_size) ** 2 __lowercase = num_patches + 1 def _lowercase ( self : int ): __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size], self.type_sequence_label_size ) __lowercase = BeitConfig( vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=UpperCAmelCase__, initializer_range=self.initializer_range, ) return config, pixel_values, labels def _lowercase ( self : Any, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[str], UpperCAmelCase__ : List[str] ): __lowercase = FlaxBeitModel(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : List[Any] ): __lowercase = FlaxBeitForMaskedImageModeling(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size) ) def _lowercase ( self : Dict, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : Union[str, Any] ): __lowercase = self.type_sequence_label_size __lowercase = FlaxBeitForImageClassification(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowercase = 1 __lowercase = FlaxBeitForImageClassification(UpperCAmelCase__ ) __lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase = model(UpperCAmelCase__ ) def _lowercase ( self : List[str] ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) ,( __lowercase ) ,( __lowercase ) , ) = config_and_inputs __lowercase = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class _lowerCAmelCase ( lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def _lowercase ( self : List[Any] ): __lowercase = FlaxBeitModelTester(self ) __lowercase = ConfigTester(self, config_class=UpperCAmelCase__, has_text_modality=UpperCAmelCase__, hidden_size=3_7 ) def _lowercase ( self : Union[str, Any] ): self.config_tester.run_common_tests() def _lowercase ( self : Optional[int] ): __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(UpperCAmelCase__ ) __lowercase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["pixel_values"] self.assertListEqual(arg_names[:1], UpperCAmelCase__ ) def _lowercase ( self : Tuple ): __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowercase = self._prepare_for_class(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = model_class(UpperCAmelCase__ ) @jax.jit def model_jitted(UpperCAmelCase__ : str, **UpperCAmelCase__ : Dict ): return model(pixel_values=UpperCAmelCase__, **UpperCAmelCase__ ) with self.subTest("JIT Enabled" ): __lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ), len(UpperCAmelCase__ ) ) for jitted_output, output in zip(UpperCAmelCase__, UpperCAmelCase__ ): self.assertEqual(jitted_output.shape, output.shape ) def _lowercase ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def _lowercase ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ ) def _lowercase ( self : Tuple ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ ) @slow def _lowercase ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: __lowercase = model_class_name.from_pretrained("microsoft/beit-base-patch16-224" ) __lowercase = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(UpperCAmelCase__ ) def _A ( ) -> str: '''simple docstring''' __lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_vision @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : Optional[int] ): return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def _lowercase ( self : Any ): __lowercase = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ).pixel_values # prepare bool_masked_pos __lowercase = np.ones((1, 1_9_6), dtype=UpperCAmelCase__ ) # forward pass __lowercase = model(pixel_values=UpperCAmelCase__, bool_masked_pos=UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 1_9_6, 8_1_9_2) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3], UpperCAmelCase__, atol=1E-2 ) ) @slow def _lowercase ( self : Any ): __lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ) # forward pass __lowercase = model(**UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 1_0_0_0) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array([-1.2_385, -1.0_987, -1.0_108] ) self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) ) __lowercase = 2_8_1 self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ ) @slow def _lowercase ( self : List[str] ): __lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ) # forward pass __lowercase = model(**UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 2_1_8_4_1) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array([1.6_881, -0.2_787, 0.5_901] ) self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) ) __lowercase = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ )
17
0
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig __a = logging.get_logger(__name__) # General docstring __a = 'RegNetConfig' # Base docstring __a = 'facebook/regnet-y-040' __a = [1, 1_0_8_8, 7, 7] # Image classification docstring __a = 'facebook/regnet-y-040' __a = 'tabby, tabby cat' __a = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowercase__( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int = 3 , SCREAMING_SNAKE_CASE_ : int = 1 , SCREAMING_SNAKE_CASE_ : int = 1 , SCREAMING_SNAKE_CASE_ : Optional[str] = "relu" , **SCREAMING_SNAKE_CASE_ : Any , ) -> List[str]: super().__init__(**SCREAMING_SNAKE_CASE_ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb lowercase_ = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) lowercase_ = tf.keras.layers.ConvaD( filters=SCREAMING_SNAKE_CASE_ , kernel_size=SCREAMING_SNAKE_CASE_ , strides=SCREAMING_SNAKE_CASE_ , padding='''VALID''' , groups=SCREAMING_SNAKE_CASE_ , use_bias=SCREAMING_SNAKE_CASE_ , name='''convolution''' , ) lowercase_ = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='''normalization''' ) lowercase_ = ACTaFN[activation] if activation is not None else tf.identity def _lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Any: lowercase_ = self.convolution(self.padding(SCREAMING_SNAKE_CASE_ ) ) lowercase_ = self.normalization(SCREAMING_SNAKE_CASE_ ) lowercase_ = self.activation(SCREAMING_SNAKE_CASE_ ) return hidden_state class lowercase__( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : str , SCREAMING_SNAKE_CASE_ : RegNetConfig , **SCREAMING_SNAKE_CASE_ : str ) -> Any: super().__init__(**SCREAMING_SNAKE_CASE_ ) lowercase_ = config.num_channels lowercase_ = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='''embedder''' , ) def _lowercase ( self : List[str] , SCREAMING_SNAKE_CASE_ : str ) -> Optional[int]: lowercase_ = shape_list(SCREAMING_SNAKE_CASE_ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) lowercase_ = tf.transpose(SCREAMING_SNAKE_CASE_ , perm=(0, 2, 3, 1) ) lowercase_ = self.embedder(SCREAMING_SNAKE_CASE_ ) return hidden_state class lowercase__( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int = 2 , **SCREAMING_SNAKE_CASE_ : List[str] ) -> Union[str, Any]: super().__init__(**SCREAMING_SNAKE_CASE_ ) lowercase_ = tf.keras.layers.ConvaD( filters=SCREAMING_SNAKE_CASE_ , kernel_size=1 , strides=SCREAMING_SNAKE_CASE_ , use_bias=SCREAMING_SNAKE_CASE_ , name='''convolution''' ) lowercase_ = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='''normalization''' ) def _lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : tf.Tensor , SCREAMING_SNAKE_CASE_ : bool = False ) -> tf.Tensor: return self.normalization(self.convolution(SCREAMING_SNAKE_CASE_ ) , training=SCREAMING_SNAKE_CASE_ ) class lowercase__( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : int ) -> Optional[Any]: super().__init__(**SCREAMING_SNAKE_CASE_ ) lowercase_ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=SCREAMING_SNAKE_CASE_ , name='''pooler''' ) lowercase_ = [ tf.keras.layers.ConvaD(filters=SCREAMING_SNAKE_CASE_ , kernel_size=1 , activation='''relu''' , name='''attention.0''' ), tf.keras.layers.ConvaD(filters=SCREAMING_SNAKE_CASE_ , kernel_size=1 , activation='''sigmoid''' , name='''attention.2''' ), ] def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Dict: # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] lowercase_ = self.pooler(SCREAMING_SNAKE_CASE_ ) for layer_module in self.attention: lowercase_ = layer_module(SCREAMING_SNAKE_CASE_ ) lowercase_ = hidden_state * pooled return hidden_state class lowercase__( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : str , SCREAMING_SNAKE_CASE_ : RegNetConfig , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int = 1 , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> List[str]: super().__init__(**SCREAMING_SNAKE_CASE_ ) lowercase_ = in_channels != out_channels or stride != 1 lowercase_ = max(1 , out_channels // config.groups_width ) lowercase_ = ( TFRegNetShortCut(SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ , name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' , name='''shortcut''' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. lowercase_ = [ TFRegNetConvLayer(SCREAMING_SNAKE_CASE_ , kernel_size=1 , activation=config.hidden_act , name='''layer.0''' ), TFRegNetConvLayer( SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ , groups=SCREAMING_SNAKE_CASE_ , activation=config.hidden_act , name='''layer.1''' ), TFRegNetConvLayer(SCREAMING_SNAKE_CASE_ , kernel_size=1 , activation=SCREAMING_SNAKE_CASE_ , name='''layer.2''' ), ] lowercase_ = ACTaFN[config.hidden_act] def _lowercase ( self : List[str] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Any: lowercase_ = hidden_state for layer_module in self.layers: lowercase_ = layer_module(SCREAMING_SNAKE_CASE_ ) lowercase_ = self.shortcut(SCREAMING_SNAKE_CASE_ ) hidden_state += residual lowercase_ = self.activation(SCREAMING_SNAKE_CASE_ ) return hidden_state class lowercase__( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Any , SCREAMING_SNAKE_CASE_ : RegNetConfig , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int = 1 , **SCREAMING_SNAKE_CASE_ : List[str] ) -> int: super().__init__(**SCREAMING_SNAKE_CASE_ ) lowercase_ = in_channels != out_channels or stride != 1 lowercase_ = max(1 , out_channels // config.groups_width ) lowercase_ = ( TFRegNetShortCut(SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ , name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' , name='''shortcut''' ) ) lowercase_ = [ TFRegNetConvLayer(SCREAMING_SNAKE_CASE_ , kernel_size=1 , activation=config.hidden_act , name='''layer.0''' ), TFRegNetConvLayer( SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ , groups=SCREAMING_SNAKE_CASE_ , activation=config.hidden_act , name='''layer.1''' ), TFRegNetSELayer(SCREAMING_SNAKE_CASE_ , reduced_channels=int(round(in_channels / 4 ) ) , name='''layer.2''' ), TFRegNetConvLayer(SCREAMING_SNAKE_CASE_ , kernel_size=1 , activation=SCREAMING_SNAKE_CASE_ , name='''layer.3''' ), ] lowercase_ = ACTaFN[config.hidden_act] def _lowercase ( self : int , SCREAMING_SNAKE_CASE_ : Dict ) -> Optional[Any]: lowercase_ = hidden_state for layer_module in self.layers: lowercase_ = layer_module(SCREAMING_SNAKE_CASE_ ) lowercase_ = self.shortcut(SCREAMING_SNAKE_CASE_ ) hidden_state += residual lowercase_ = self.activation(SCREAMING_SNAKE_CASE_ ) return hidden_state class lowercase__( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : str , SCREAMING_SNAKE_CASE_ : RegNetConfig , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : int = 2 , **SCREAMING_SNAKE_CASE_ : List[Any] ) -> List[str]: super().__init__(**SCREAMING_SNAKE_CASE_ ) lowercase_ = TFRegNetXLayer if config.layer_type == '''x''' else TFRegNetYLayer lowercase_ = [ # downsampling is done in the first layer with stride of 2 layer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ , name='''layers.0''' ), *[layer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , name=f'''layers.{i+1}''' ) for i in range(depth - 1 )], ] def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE_ : int ) -> int: for layer_module in self.layers: lowercase_ = layer_module(SCREAMING_SNAKE_CASE_ ) return hidden_state class lowercase__( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : RegNetConfig , **SCREAMING_SNAKE_CASE_ : Dict ) -> Tuple: super().__init__(**SCREAMING_SNAKE_CASE_ ) lowercase_ = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( SCREAMING_SNAKE_CASE_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='''stages.0''' , ) ) lowercase_ = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(SCREAMING_SNAKE_CASE_ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , depth=SCREAMING_SNAKE_CASE_ , name=f'''stages.{i+1}''' ) ) def _lowercase ( self : Dict , SCREAMING_SNAKE_CASE_ : tf.Tensor , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : bool = True ) -> TFBaseModelOutputWithNoAttention: lowercase_ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowercase_ = hidden_states + (hidden_state,) lowercase_ = stage_module(SCREAMING_SNAKE_CASE_ ) if output_hidden_states: lowercase_ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=SCREAMING_SNAKE_CASE_ , hidden_states=SCREAMING_SNAKE_CASE_ ) @keras_serializable class lowercase__( tf.keras.layers.Layer ): """simple docstring""" a :str = RegNetConfig def __init__( self : str , SCREAMING_SNAKE_CASE_ : Dict , **SCREAMING_SNAKE_CASE_ : List[str] ) -> Any: super().__init__(**SCREAMING_SNAKE_CASE_ ) lowercase_ = config lowercase_ = TFRegNetEmbeddings(SCREAMING_SNAKE_CASE_ , name='''embedder''' ) lowercase_ = TFRegNetEncoder(SCREAMING_SNAKE_CASE_ , name='''encoder''' ) lowercase_ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=SCREAMING_SNAKE_CASE_ , name='''pooler''' ) @unpack_inputs def _lowercase ( self : Dict , SCREAMING_SNAKE_CASE_ : tf.Tensor , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : bool = False , ) -> TFBaseModelOutputWithPoolingAndNoAttention: lowercase_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase_ = return_dict if return_dict is not None else self.config.use_return_dict lowercase_ = self.embedder(SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) lowercase_ = self.encoder( SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) lowercase_ = encoder_outputs[0] lowercase_ = self.pooler(SCREAMING_SNAKE_CASE_ ) # Change to NCHW output format have uniformity in the modules lowercase_ = tf.transpose(SCREAMING_SNAKE_CASE_ , perm=(0, 3, 1, 2) ) lowercase_ = tf.transpose(SCREAMING_SNAKE_CASE_ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: lowercase_ = tuple([tf.transpose(SCREAMING_SNAKE_CASE_ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE_ , pooler_output=SCREAMING_SNAKE_CASE_ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class lowercase__( UpperCAmelCase ): """simple docstring""" a :Tuple = RegNetConfig a :Any = 'regnet' a :List[str] = 'pixel_values' @property def _lowercase ( self : List[str] ) -> str: return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_2_4, 2_2_4) , dtype=tf.floataa )} __a = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' __a = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , UpperCAmelCase , ) class lowercase__( UpperCAmelCase ): """simple docstring""" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : RegNetConfig , *SCREAMING_SNAKE_CASE_ : Any , **SCREAMING_SNAKE_CASE_ : str ) -> List[str]: super().__init__(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowercase_ = TFRegNetMainLayer(SCREAMING_SNAKE_CASE_ , name='''regnet''' ) @unpack_inputs @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=SCREAMING_SNAKE_CASE_ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _lowercase ( self : List[str] , SCREAMING_SNAKE_CASE_ : tf.Tensor , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[Any]=False , ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: lowercase_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase_ = return_dict if return_dict is not None else self.config.use_return_dict lowercase_ = self.regnet( pixel_values=SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , UpperCAmelCase , ) class lowercase__( UpperCAmelCase , UpperCAmelCase ): """simple docstring""" def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : RegNetConfig , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : int ) -> Union[str, Any]: super().__init__(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowercase_ = config.num_labels lowercase_ = TFRegNetMainLayer(SCREAMING_SNAKE_CASE_ , name='''regnet''' ) # classification head lowercase_ = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='''classifier.1''' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=SCREAMING_SNAKE_CASE_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : tf.Tensor = None , SCREAMING_SNAKE_CASE_ : tf.Tensor = None , SCREAMING_SNAKE_CASE_ : bool = None , SCREAMING_SNAKE_CASE_ : bool = None , SCREAMING_SNAKE_CASE_ : Dict=False , ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: lowercase_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase_ = return_dict if return_dict is not None else self.config.use_return_dict lowercase_ = self.regnet( SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) lowercase_ = outputs.pooler_output if return_dict else outputs[1] lowercase_ = self.classifier[0](SCREAMING_SNAKE_CASE_ ) lowercase_ = self.classifier[1](SCREAMING_SNAKE_CASE_ ) lowercase_ = None if labels is None else self.hf_compute_loss(labels=SCREAMING_SNAKE_CASE_ , logits=SCREAMING_SNAKE_CASE_ ) if not return_dict: lowercase_ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=SCREAMING_SNAKE_CASE_ , logits=SCREAMING_SNAKE_CASE_ , hidden_states=outputs.hidden_states )
30
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class _lowerCAmelCase ( unittest.TestCase ,lowercase ): """simple docstring""" def _lowercase ( self : List[Any] ): __lowercase = load_tool("text-classification" ) self.tool.setup() __lowercase = load_tool("text-classification", remote=UpperCAmelCase__ ) def _lowercase ( self : str ): __lowercase = self.tool("That's quite cool", ["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" ) def _lowercase ( self : str ): __lowercase = self.remote_tool("That's quite cool", ["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" ) def _lowercase ( self : List[str] ): __lowercase = self.tool(text="That's quite cool", labels=["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" ) def _lowercase ( self : Tuple ): __lowercase = self.remote_tool(text="That's quite cool", labels=["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" )
17
0
'''simple docstring''' import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging __SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) def UpperCamelCase_ ( _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any]=False ) -> str: """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( "Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise if not is_sharded: _UpperCAmelCase : Optional[int] = os.path.abspath(_UpperCAmelCase ) logger.info(F"""Loading PyTorch weights from {pt_path}""" ) _UpperCAmelCase : Tuple = torch.load(_UpperCAmelCase , map_location="cpu" ) logger.info(F"""PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.""" ) _UpperCAmelCase : Tuple = convert_pytorch_state_dict_to_flax(_UpperCAmelCase , _UpperCAmelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files _UpperCAmelCase : Optional[Any] = convert_pytorch_sharded_state_dict_to_flax(_UpperCAmelCase , _UpperCAmelCase ) return flax_state_dict def UpperCamelCase_ ( _UpperCAmelCase : Tuple[str] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, jnp.ndarray] , _UpperCAmelCase : str , ) -> (Tuple[str], np.ndarray): """simple docstring""" def is_key_or_prefix_key_in_dict(_UpperCAmelCase : Tuple[str] ) -> bool: return len(set(_UpperCAmelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm _UpperCAmelCase : int = pt_tuple_key[:-1] + ("scale",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(_UpperCAmelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean _UpperCAmelCase : Tuple = pt_tuple_key[:-1] + ("mean",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(_UpperCAmelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var _UpperCAmelCase : List[str] = pt_tuple_key[:-1] + ("var",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(_UpperCAmelCase ): return renamed_pt_tuple_key, pt_tensor # embedding _UpperCAmelCase : Optional[Any] = pt_tuple_key[:-1] + ("embedding",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(_UpperCAmelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer _UpperCAmelCase : int = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(_UpperCAmelCase ): _UpperCAmelCase : int = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer _UpperCAmelCase : Tuple = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(_UpperCAmelCase ): _UpperCAmelCase : Tuple = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight _UpperCAmelCase : Any = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias _UpperCAmelCase : Tuple = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 _UpperCAmelCase : List[str] = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): _UpperCAmelCase : List[str] = pt_tuple_key[-2] + "_g" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): _UpperCAmelCase : int = pt_tuple_key[-2] + "_v" if name is not None: _UpperCAmelCase : Tuple = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def UpperCamelCase_ ( _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[int] = {k: v.numpy() for k, v in pt_state_dict.items()} _UpperCAmelCase : Optional[Any] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: _UpperCAmelCase : str = flax_model.params["params"] else: _UpperCAmelCase : Union[str, Any] = flax_model.params _UpperCAmelCase : List[Any] = flatten_dict(_UpperCAmelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: _UpperCAmelCase : Dict = flatten_dict(flax_model.params["batch_stats"] ) random_flax_state_dict.update(_UpperCAmelCase ) _UpperCAmelCase : str = {} _UpperCAmelCase : List[Any] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) _UpperCAmelCase : List[str] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _UpperCAmelCase : int = tuple(pt_key.split("." ) ) # remove base model prefix if necessary _UpperCAmelCase : Any = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: _UpperCAmelCase : Tuple = pt_tuple_key[1:] # Correctly rename weight parameters _UpperCAmelCase , _UpperCAmelCase : List[Any] = rename_key_and_reshape_tensor( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # add model prefix if necessary _UpperCAmelCase : Optional[int] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: _UpperCAmelCase : Union[str, Any] = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ F"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: _UpperCAmelCase : List[str] = jnp.asarray(_UpperCAmelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_UpperCAmelCase , _UpperCAmelCase ) continue # also add unexpected weight so that warning is thrown _UpperCAmelCase : Union[str, Any] = jnp.asarray(_UpperCAmelCase ) else: # also add unexpected weight so that warning is thrown _UpperCAmelCase : Optional[int] = jnp.asarray(_UpperCAmelCase ) return unflatten_dict(_UpperCAmelCase ) def UpperCamelCase_ ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" import torch # Load the index _UpperCAmelCase : Union[str, Any] = {} for shard_file in shard_filenames: # load using msgpack utils _UpperCAmelCase : List[str] = torch.load(_UpperCAmelCase ) _UpperCAmelCase : int = {k: v.numpy() for k, v in pt_state_dict.items()} _UpperCAmelCase : List[Any] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: _UpperCAmelCase : Optional[Any] = flax_model.params["params"] _UpperCAmelCase : List[Any] = flatten_dict(_UpperCAmelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params["batch_stats"] ) ) else: _UpperCAmelCase : List[Any] = flax_model.params _UpperCAmelCase : List[str] = flatten_dict(_UpperCAmelCase ) _UpperCAmelCase : Optional[int] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) _UpperCAmelCase : int = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _UpperCAmelCase : int = tuple(pt_key.split("." ) ) # remove base model prefix if necessary _UpperCAmelCase : List[Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: _UpperCAmelCase : str = pt_tuple_key[1:] # Correctly rename weight parameters _UpperCAmelCase , _UpperCAmelCase : Tuple = rename_key_and_reshape_tensor( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # add model prefix if necessary _UpperCAmelCase : Tuple = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: _UpperCAmelCase : Tuple = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ F"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: _UpperCAmelCase : Union[str, Any] = jnp.asarray(_UpperCAmelCase ) continue if "var" in flax_key[-1]: _UpperCAmelCase : str = jnp.asarray(_UpperCAmelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_UpperCAmelCase , _UpperCAmelCase ) continue # also add unexpected weight so that warning is thrown _UpperCAmelCase : List[str] = jnp.asarray(_UpperCAmelCase ) else: # also add unexpected weight so that warning is thrown _UpperCAmelCase : Any = jnp.asarray(_UpperCAmelCase ) return unflatten_dict(_UpperCAmelCase ) def UpperCamelCase_ ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any ) -> str: """simple docstring""" _UpperCAmelCase : List[Any] = os.path.abspath(_UpperCAmelCase ) logger.info(F"""Loading Flax weights from {flax_checkpoint_path}""" ) # import correct flax class _UpperCAmelCase : List[str] = getattr(_UpperCAmelCase , "Flax" + model.__class__.__name__ ) # load flax weight dict with open(_UpperCAmelCase , "rb" ) as state_f: try: _UpperCAmelCase : Dict = from_bytes(_UpperCAmelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(F"""Unable to convert {flax_checkpoint_path} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(_UpperCAmelCase , _UpperCAmelCase ) def UpperCamelCase_ ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> int: """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( "Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise # check if we have bf16 weights _UpperCAmelCase : List[str] = flatten_dict(jax.tree_util.tree_map(lambda _UpperCAmelCase : x.dtype == jnp.bfloataa , _UpperCAmelCase ) ).values() if any(_UpperCAmelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " "before loading those in PyTorch model." ) _UpperCAmelCase : Optional[int] = jax.tree_util.tree_map( lambda _UpperCAmelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , _UpperCAmelCase ) _UpperCAmelCase : Tuple = flatten_dict(_UpperCAmelCase ) _UpperCAmelCase : List[str] = pt_model.state_dict() _UpperCAmelCase : Tuple = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split("." )[0] for k in pt_model_dict.keys()} ) _UpperCAmelCase : Union[str, Any] = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split("." )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : str = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): _UpperCAmelCase : Tuple = flax_key_tuple[0] == pt_model.base_model_prefix _UpperCAmelCase : Optional[Any] = ".".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: _UpperCAmelCase : str = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: _UpperCAmelCase : int = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(_UpperCAmelCase ) not in pt_model_dict: # conv layer _UpperCAmelCase : int = flax_key_tuple[:-1] + ("weight",) _UpperCAmelCase : Optional[Any] = jnp.transpose(_UpperCAmelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_UpperCAmelCase ) not in pt_model_dict: # linear layer _UpperCAmelCase : List[Any] = flax_key_tuple[:-1] + ("weight",) _UpperCAmelCase : List[Any] = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _UpperCAmelCase : int = flax_key_tuple[:-1] + ("weight",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: _UpperCAmelCase : Optional[Any] = flax_key_tuple[:-1] + ("running_mean",) elif "var" in flax_key_tuple[-1]: _UpperCAmelCase : List[str] = flax_key_tuple[:-1] + ("running_var",) if "batch_stats" in flax_state: _UpperCAmelCase : Union[str, Any] = ".".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: _UpperCAmelCase : Optional[Any] = ".".join(_UpperCAmelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. _UpperCAmelCase : Optional[Any] = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: _UpperCAmelCase : Optional[int] = key.split("." ) _UpperCAmelCase : Tuple = None if key_components[-3::2] == ["parametrizations", "original0"]: _UpperCAmelCase : Union[str, Any] = key_components[-2] + "_g" elif key_components[-3::2] == ["parametrizations", "original1"]: _UpperCAmelCase : int = key_components[-2] + "_v" if name is not None: _UpperCAmelCase : List[str] = key_components[:-3] + [name] _UpperCAmelCase : Optional[Any] = ".".join(_UpperCAmelCase ) _UpperCAmelCase : Any = key if flax_key in special_pt_names: _UpperCAmelCase : Union[str, Any] = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ F"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict _UpperCAmelCase : Optional[Any] = np.asarray(_UpperCAmelCase ) if not isinstance(_UpperCAmelCase , np.ndarray ) else flax_tensor _UpperCAmelCase : int = torch.from_numpy(_UpperCAmelCase ) # remove from missing keys missing_keys.remove(_UpperCAmelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(_UpperCAmelCase ) pt_model.load_state_dict(_UpperCAmelCase ) # re-transform missing_keys to list _UpperCAmelCase : Optional[int] = list(_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: logger.warning( "Some weights of the Flax model were not used when initializing the PyTorch model" F""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" F""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" " (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This" F""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" " FlaxBertForSequenceClassification model)." ) else: logger.warning(F"""All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n""" ) if len(_UpperCAmelCase ) > 0: logger.warning( F"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" F""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" " use it for predictions and inference." ) else: logger.warning( F"""All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n""" "If your task is similar to the task the model of the checkpoint was trained on, " F"""you can already use {pt_model.__class__.__name__} for predictions without further training.""" ) return pt_model
31
"""simple docstring""" from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker _a = 'CompVis/stable-diffusion-v1-1' _a = 'CompVis/stable-diffusion-v1-2' _a = 'CompVis/stable-diffusion-v1-3' _a = 'CompVis/stable-diffusion-v1-4' class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : Dict, UpperCAmelCase__ : AutoencoderKL, UpperCAmelCase__ : CLIPTextModel, UpperCAmelCase__ : CLIPTokenizer, UpperCAmelCase__ : UNetaDConditionModel, UpperCAmelCase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], UpperCAmelCase__ : StableDiffusionSafetyChecker, UpperCAmelCase__ : CLIPImageProcessor, UpperCAmelCase__ : bool = True, ): super()._init_() __lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ ) __lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ ) __lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ ) __lowercase = StableDiffusionPipeline( vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, tokenizer=UpperCAmelCase__, unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, safety_checker=UpperCAmelCase__, feature_extractor=UpperCAmelCase__, requires_safety_checker=UpperCAmelCase__, ) self.register_modules(pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea ) @property def _lowercase ( self : List[str] ): return {k: getattr(self, UpperCAmelCase__ ) for k in self.config.keys() if not k.startswith("_" )} def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase__ ) def _lowercase ( self : List[str] ): self.enable_attention_slicing(UpperCAmelCase__ ) @torch.no_grad() def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Tuple, ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : Tuple, UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : str, ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : str, UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Any, ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Optional[int], ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : str, ): __lowercase = "cuda" if torch.cuda.is_available() else "cpu" self.to(UpperCAmelCase__ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" ) # Get first result from Stable Diffusion Checkpoint v1.1 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get first result from Stable Diffusion Checkpoint v1.2 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get first result from Stable Diffusion Checkpoint v1.3 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get first result from Stable Diffusion Checkpoint v1.4 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
17
0
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ : def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str=1_3 , SCREAMING_SNAKE_CASE__ : Optional[int]=7 , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : str=9_9 , SCREAMING_SNAKE_CASE__ : str=2_4 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=6 , SCREAMING_SNAKE_CASE__ : Optional[int]=3_7 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : str=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=5_1_2 , SCREAMING_SNAKE_CASE__ : List[str]=1_6 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : int=0.02 , SCREAMING_SNAKE_CASE__ : Optional[Any]=3 , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Tuple=1_0_0_0 , ) -> str: a_ : Optional[Any] = parent a_ : List[str] = batch_size a_ : List[str] = seq_length a_ : str = is_training a_ : str = use_input_mask a_ : int = use_token_type_ids a_ : List[str] = use_labels a_ : Optional[int] = vocab_size a_ : Any = hidden_size a_ : int = num_hidden_layers a_ : List[str] = num_attention_heads a_ : str = intermediate_size a_ : Union[str, Any] = hidden_act a_ : List[str] = hidden_dropout_prob a_ : int = attention_probs_dropout_prob a_ : int = max_position_embeddings a_ : Tuple = type_vocab_size a_ : Optional[Any] = type_sequence_label_size a_ : Tuple = initializer_range a_ : Dict = num_labels a_ : str = scope a_ : Optional[int] = range_bbox def SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: a_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a_ : Any = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: a_ : int = bbox[i, j, 3] a_ : str = bbox[i, j, 1] a_ : List[str] = t if bbox[i, j, 2] < bbox[i, j, 0]: a_ : Tuple = bbox[i, j, 2] a_ : List[str] = bbox[i, j, 0] a_ : Union[str, Any] = t a_ : List[Any] = None if self.use_input_mask: a_ : Dict = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) a_ : List[Any] = None if self.use_token_type_ids: a_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a_ : int = None a_ : Tuple = None if self.use_labels: a_ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a_ : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a_ : Optional[int] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> str: a_ : Any = LiltModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() a_ : Any = model(SCREAMING_SNAKE_CASE__ , bbox=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = model(SCREAMING_SNAKE_CASE__ , bbox=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = model(SCREAMING_SNAKE_CASE__ , bbox=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> int: a_ : Any = self.num_labels a_ : str = LiltForTokenClassification(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() a_ : str = model( SCREAMING_SNAKE_CASE__ , bbox=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> str: a_ : Union[str, Any] = LiltForQuestionAnswering(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() a_ : List[str] = model( SCREAMING_SNAKE_CASE__ , bbox=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , start_positions=SCREAMING_SNAKE_CASE__ , end_positions=SCREAMING_SNAKE_CASE__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: a_ : int = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) : List[Any] = config_and_inputs a_ : Optional[int] = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): snake_case__ : Union[str, Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) snake_case__ : str = ( { '''feature-extraction''': LiltModel, '''question-answering''': LiltForQuestionAnswering, '''text-classification''': LiltForSequenceClassification, '''token-classification''': LiltForTokenClassification, '''zero-shot''': LiltForSequenceClassification, } if is_torch_available() else {} ) snake_case__ : List[str] = False snake_case__ : str = False def SCREAMING_SNAKE_CASE ( self : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> int: return True def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: a_ : str = LiltModelTester(self ) a_ : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: a_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: a_ : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a_ : List[str] = type self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: a_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: a_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE__ ) @slow def SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : List[Any] = LiltModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @require_torch @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: a_ : List[str] = LiltModel.from_pretrained('SCUT-DLVCLab/lilt-roberta-en-base' ).to(SCREAMING_SNAKE_CASE__ ) a_ : str = torch.tensor([[1, 2]] , device=SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): a_ : str = model(input_ids=SCREAMING_SNAKE_CASE__ , bbox=SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = torch.Size([1, 2, 7_6_8] ) a_ : int = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=SCREAMING_SNAKE_CASE__ , ) self.assertTrue(outputs.last_hidden_state.shape , SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) )
32
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowerCAmelCase ( lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = "ssube/stable-diffusion-x4-upscaler-onnx" def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : List[str]=0 ): __lowercase = floats_tensor((1, 3, 1_2_8, 1_2_8), rng=random.Random(UpperCAmelCase__ ) ) __lowercase = torch.manual_seed(UpperCAmelCase__ ) __lowercase = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def _lowercase ( self : Any ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def _lowercase ( self : Optional[Any] ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) __lowercase = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.6_898_892, 0.59_240_556, 0.52_499_527, 0.58_866_215, 0.52_258_235, 0.52_572_715, 0.62_414_473, 0.6_174_387, 0.6_214_964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _lowercase ( self : int ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.7_659_278, 0.76_437_664, 0.75_579_107, 0.7_691_116, 0.77_666_986, 0.7_727_672, 0.7_758_664, 0.7_812_226, 0.76_942_515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _lowercase ( self : str ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) __lowercase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _lowercase ( self : Any ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) __lowercase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.77_424_496, 0.773_601, 0.7_645_288, 0.7_769_598, 0.7_772_739, 0.7_738_688, 0.78_187_233, 0.77_879_584, 0.767_043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @property def _lowercase ( self : Tuple ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowercase ( self : Dict ): __lowercase = ort.SessionOptions() __lowercase = False return options def _lowercase ( self : Dict ): __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) __lowercase = init_image.resize((1_2_8, 1_2_8) ) # using the PNDM scheduler by default __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx", provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = "A fantasy landscape, trending on artstation" __lowercase = torch.manual_seed(0 ) __lowercase = pipe( prompt=UpperCAmelCase__, image=UpperCAmelCase__, guidance_scale=7.5, num_inference_steps=1_0, generator=UpperCAmelCase__, output_type="np", ) __lowercase = output.images __lowercase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array([0.4_883, 0.4_947, 0.4_980, 0.4_975, 0.4_982, 0.4_980, 0.5_000, 0.5_006, 0.4_972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def _lowercase ( self : str ): __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) __lowercase = init_image.resize((1_2_8, 1_2_8) ) __lowercase = LMSDiscreteScheduler.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx", subfolder="scheduler" ) __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx", scheduler=UpperCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = "A fantasy landscape, trending on artstation" __lowercase = torch.manual_seed(0 ) __lowercase = pipe( prompt=UpperCAmelCase__, image=UpperCAmelCase__, guidance_scale=7.5, num_inference_steps=2_0, generator=UpperCAmelCase__, output_type="np", ) __lowercase = output.images __lowercase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.50_173_753, 0.50_223_356, 0.502_039, 0.50_233_036, 0.5_023_725, 0.5_022_601, 0.5_018_758, 0.50_234_085, 0.50_241_566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
17
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __A : Union[str, Any] = logging.get_logger(__name__) class _UpperCAmelCase ( _A ): SCREAMING_SNAKE_CASE_ : str = ["pixel_values"] def __init__( self : str , A : bool = True , A : Optional[Dict[str, int]] = None , A : PILImageResampling = PILImageResampling.BICUBIC , A : bool = True , A : bool = True , A : Union[int, float] = 1 / 2_55 , A : Dict[str, int] = None , A : bool = True , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , **A : Dict , ) -> None: super().__init__(**A ) lowercase_ : Tuple = size if size is not None else {'''height''': 2_24, '''width''': 2_24} lowercase_ : Dict = get_size_dict(A ) lowercase_ : Union[str, Any] = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} lowercase_ : List[Any] = get_size_dict(A , default_to_square=A , param_name='''crop_size''' ) lowercase_ : Optional[Any] = do_resize lowercase_ : List[str] = do_rescale lowercase_ : Optional[int] = do_normalize lowercase_ : List[str] = do_center_crop lowercase_ : Union[str, Any] = crop_size lowercase_ : Optional[Any] = size lowercase_ : Optional[Any] = resample lowercase_ : Optional[Any] = rescale_factor lowercase_ : Tuple = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowercase_ : Tuple = image_std if image_std is not None else IMAGENET_DEFAULT_STD def A ( self : str , A : np.ndarray , A : Dict[str, int] , A : PILImageResampling = PILImageResampling.BILINEAR , A : Optional[Union[str, ChannelDimension]] = None , **A : List[str] , ) -> np.ndarray: lowercase_ : str = get_size_dict(A ) if "shortest_edge" in size: lowercase_ : Dict = get_resize_output_image_size(A , size=size['''shortest_edge'''] , default_to_square=A ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: lowercase_ : List[Any] = (size['''height'''], size['''width''']) else: raise ValueError(F'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(A , size=A , resample=A , data_format=A , **A ) def A ( self : str , A : np.ndarray , A : Dict[str, int] , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict , ) -> np.ndarray: lowercase_ : List[Any] = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(A , size=(size['''height'''], size['''width''']) , data_format=A , **A ) def A ( self : Tuple , A : np.ndarray , A : float , A : Optional[Union[str, ChannelDimension]] = None , **A : Any ) -> np.ndarray: return rescale(A , scale=A , data_format=A , **A ) def A ( self : Optional[int] , A : np.ndarray , A : Union[float, List[float]] , A : Union[float, List[float]] , A : Optional[Union[str, ChannelDimension]] = None , **A : Tuple , ) -> np.ndarray: return normalize(A , mean=A , std=A , data_format=A , **A ) def A ( self : Dict , A : ImageInput , A : Optional[bool] = None , A : Dict[str, int] = None , A : PILImageResampling = None , A : bool = None , A : int = None , A : Optional[bool] = None , A : Optional[float] = None , A : Optional[bool] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[str, TensorType]] = None , A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **A : List[str] , ) -> BatchFeature: lowercase_ : str = do_resize if do_resize is not None else self.do_resize lowercase_ : int = do_rescale if do_rescale is not None else self.do_rescale lowercase_ : str = do_normalize if do_normalize is not None else self.do_normalize lowercase_ : Any = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase_ : str = crop_size if crop_size is not None else self.crop_size lowercase_ : int = get_size_dict(A , param_name='''crop_size''' , default_to_square=A ) lowercase_ : Union[str, Any] = resample if resample is not None else self.resample lowercase_ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ : Tuple = image_mean if image_mean is not None else self.image_mean lowercase_ : Tuple = image_std if image_std is not None else self.image_std lowercase_ : Union[str, Any] = size if size is not None else self.size lowercase_ : str = get_size_dict(A ) if not is_batched(A ): lowercase_ : List[Any] = [images] if not valid_images(A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. lowercase_ : Tuple = [to_numpy_array(A ) for image in images] if do_resize: lowercase_ : List[str] = [self.resize(image=A , size=A , resample=A ) for image in images] if do_center_crop: lowercase_ : List[Any] = [self.center_crop(image=A , size=A ) for image in images] if do_rescale: lowercase_ : List[Any] = [self.rescale(image=A , scale=A ) for image in images] if do_normalize: lowercase_ : Dict = [self.normalize(image=A , mean=A , std=A ) for image in images] lowercase_ : List[str] = [to_channel_dimension_format(A , A ) for image in images] lowercase_ : Optional[Any] = {'''pixel_values''': images} return BatchFeature(data=A , tensor_type=A )
33
"""simple docstring""" import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal _a = datasets.utils.logging.get_logger(__name__) _a = ['names', 'prefix'] _a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] _a = ['encoding_errors', 'on_bad_lines'] _a = ['date_format'] @dataclass class _lowerCAmelCase ( datasets.BuilderConfig ): """simple docstring""" __UpperCAmelCase : str = "," __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[Union[int, List[int], str]] = "infer" __UpperCAmelCase : Optional[List[str]] = None __UpperCAmelCase : Optional[List[str]] = None __UpperCAmelCase : Optional[Union[int, str, List[int], List[str]]] = None __UpperCAmelCase : Optional[Union[List[int], List[str]]] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : bool = True __UpperCAmelCase : Optional[Literal["c", "python", "pyarrow"]] = None __UpperCAmelCase : Dict[Union[int, str], Callable[[Any], Any]] = None __UpperCAmelCase : Optional[list] = None __UpperCAmelCase : Optional[list] = None __UpperCAmelCase : bool = False __UpperCAmelCase : Optional[Union[int, List[int]]] = None __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Optional[Union[str, List[str]]] = None __UpperCAmelCase : bool = True __UpperCAmelCase : bool = True __UpperCAmelCase : bool = False __UpperCAmelCase : bool = True __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : str = "." __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : str = '"' __UpperCAmelCase : int = 0 __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : bool = True __UpperCAmelCase : bool = True __UpperCAmelCase : int = 0 __UpperCAmelCase : bool = True __UpperCAmelCase : bool = False __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : int = 1_0_0_0_0 __UpperCAmelCase : Optional[datasets.Features] = None __UpperCAmelCase : Optional[str] = "strict" __UpperCAmelCase : Literal["error", "warn", "skip"] = "error" __UpperCAmelCase : Optional[str] = None def _lowercase ( self : Tuple ): if self.delimiter is not None: __lowercase = self.delimiter if self.column_names is not None: __lowercase = self.column_names @property def _lowercase ( self : Union[str, Any] ): __lowercase = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig(), UpperCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class _lowerCAmelCase ( datasets.ArrowBasedBuilder ): """simple docstring""" __UpperCAmelCase : Tuple = CsvConfig def _lowercase ( self : List[str] ): return datasets.DatasetInfo(features=self.config.features ) def _lowercase ( self : List[Any], UpperCAmelCase__ : Dict ): if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) __lowercase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(UpperCAmelCase__, (str, list, tuple) ): __lowercase = data_files if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = [files] __lowercase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files} )] __lowercase = [] for split_name, files in data_files.items(): if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = [files] __lowercase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=UpperCAmelCase__, gen_kwargs={"files": files} ) ) return splits def _lowercase ( self : Dict, UpperCAmelCase__ : pa.Table ): if self.config.features is not None: __lowercase = self.config.features.arrow_schema if all(not require_storage_cast(UpperCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast __lowercase = pa.Table.from_arrays([pa_table[field.name] for field in schema], schema=UpperCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example __lowercase = table_cast(UpperCAmelCase__, UpperCAmelCase__ ) return pa_table def _lowercase ( self : Optional[Any], UpperCAmelCase__ : List[str] ): __lowercase = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str __lowercase = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(UpperCAmelCase__ ) else object for name, dtype, feature in zip(schema.names, schema.types, self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase__ ) ): __lowercase = pd.read_csv(UpperCAmelCase__, iterator=UpperCAmelCase__, dtype=UpperCAmelCase__, **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(UpperCAmelCase__ ): __lowercase = pa.Table.from_pandas(UpperCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase__ ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(UpperCAmelCase__ )}: {e}""" ) raise
17
0
'''simple docstring''' import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient A =WebClient(token=os.environ['CI_SLACK_BOT_TOKEN']) def snake_case_ (_a : Tuple ): UpperCAmelCase = test_results.split(''' ''' ) UpperCAmelCase = 0 UpperCAmelCase = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. UpperCAmelCase = expressions[-2] if '''=''' in expressions[-1] else expressions[-1] for i, expression in enumerate(_a ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def snake_case_ (_a : Optional[int] ): UpperCAmelCase = {} UpperCAmelCase = None UpperCAmelCase = False for line in failures_short_lines.split('''\n''' ): if re.search(R'''_ \[doctest\]''' , _a ): UpperCAmelCase = True UpperCAmelCase = line.split(''' ''' )[2] elif in_error and not line.split(''' ''' )[0].isdigit(): UpperCAmelCase = line UpperCAmelCase = False return failures class _a : def __init__( self : Dict , lowercase : str , lowercase : Dict ): '''simple docstring''' UpperCAmelCase = title UpperCAmelCase = doc_test_results['''time_spent'''].split(''',''' )[0] UpperCAmelCase = doc_test_results['''success'''] UpperCAmelCase = doc_test_results['''failures'''] UpperCAmelCase = self.n_success + self.n_failures # Failures and success of the modeling tests UpperCAmelCase = doc_test_results @property def A ( self : Any ): '''simple docstring''' UpperCAmelCase = [self._time_spent] UpperCAmelCase = 0 for time in time_spent: UpperCAmelCase = time.split(''':''' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(lowercase ) == 1: UpperCAmelCase = [0, 0, time_parts[0]] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3_600 + minutes * 60 + seconds UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = total_secs // 3_600, (total_secs % 3_600) // 60, total_secs % 60 return f"{int(lowercase )}h{int(lowercase )}m{int(lowercase )}s" @property def A ( self : int ): '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def A ( self : Union[str, Any] ): '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": f"🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def A ( self : int ): '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( f"There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in" f" {self.time}." ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = 40 UpperCAmelCase = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(lowercase , lowercase )} UpperCAmelCase = '''''' for category, failures in category_failures.items(): if len(lowercase ) == 0: continue if report != "": report += "\n\n" report += f"*{category} failures*:".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(lowercase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f"The following examples had failures:\n\n\n{report}\n", }, } @property def A ( self : Any ): '''simple docstring''' UpperCAmelCase = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(lowercase ) @staticmethod def A ( ): '''simple docstring''' UpperCAmelCase = [ { '''type''': '''section''', '''text''': { '''type''': '''plain_text''', '''text''': '''There was an issue running the tests.''', }, '''accessory''': { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True}, '''url''': f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } ] print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(lowercase )} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text='''There was an issue running the tests.''' , blocks=lowercase , ) def A ( self : Optional[Any] ): '''simple docstring''' print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(self.payload )} ) ) UpperCAmelCase = f"{self.n_failures} failures out of {self.n_tests} tests," if self.n_failures else '''All tests passed.''' UpperCAmelCase = client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , blocks=self.payload , text=lowercase , ) def A ( self : Optional[int] , lowercase : Any , lowercase : Any , lowercase : Union[str, Any] , lowercase : List[str] ): '''simple docstring''' UpperCAmelCase = '''''' for key, value in failures.items(): UpperCAmelCase = value[:200] + ''' [Truncated]''' if len(lowercase ) > 250 else value failures_text += f"*{key}*\n_{value}_\n\n" UpperCAmelCase = job_name UpperCAmelCase = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}} if job_link is not None: UpperCAmelCase = { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True}, '''url''': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def A ( self : Optional[int] ): '''simple docstring''' if self.thread_ts is None: raise ValueError('''Can only post reply if a post has been made.''' ) UpperCAmelCase = self.doc_test_results.pop('''job_link''' ) self.doc_test_results.pop('''failures''' ) self.doc_test_results.pop('''success''' ) self.doc_test_results.pop('''time_spent''' ) UpperCAmelCase = sorted(self.doc_test_results.items() , key=lambda lowercase : t[0] ) for job, job_result in sorted_dict: if len(job_result['''failures'''] ): UpperCAmelCase = f"*Num failures* :{len(job_result['failed'] )} \n" UpperCAmelCase = job_result['''failures'''] UpperCAmelCase = self.get_reply_blocks(lowercase , lowercase , lowercase , text=lowercase ) print('''Sending the following reply''' ) print(json.dumps({'''blocks''': blocks} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text=f"Results for {job}" , blocks=lowercase , thread_ts=self.thread_ts['''ts'''] , ) time.sleep(1 ) def snake_case_ (): UpperCAmelCase = os.environ['''GITHUB_RUN_ID'''] UpperCAmelCase = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100" UpperCAmelCase = requests.get(_a ).json() UpperCAmelCase = {} try: jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) UpperCAmelCase = math.ceil((result['''total_count'''] - 1_0_0) / 1_0_0 ) for i in range(_a ): UpperCAmelCase = requests.get(url + F"&page={i + 2}" ).json() jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return jobs except Exception as e: print('''Unknown error, could not fetch links.''' , _a ) return {} def snake_case_ (_a : str ): UpperCAmelCase = {} if os.path.exists(_a ): UpperCAmelCase = os.listdir(_a ) for file in files: try: with open(os.path.join(_a , _a ) , encoding='''utf-8''' ) as f: UpperCAmelCase = f.read() except UnicodeDecodeError as e: raise ValueError(F"Could not open {os.path.join(_a , _a )}." ) from e return _artifact def snake_case_ (): class _a : def __init__( self : Any , lowercase : str ): '''simple docstring''' UpperCAmelCase = name UpperCAmelCase = [] def __str__( self : Tuple ): '''simple docstring''' return self.name def A ( self : List[Any] , lowercase : str ): '''simple docstring''' self.paths.append({'''name''': self.name, '''path''': path} ) UpperCAmelCase = {} UpperCAmelCase = filter(os.path.isdir , os.listdir() ) for directory in directories: UpperCAmelCase = directory if artifact_name not in _available_artifacts: UpperCAmelCase = Artifact(_a ) _available_artifacts[artifact_name].add_path(_a ) return _available_artifacts if __name__ == "__main__": A =get_job_links() A =retrieve_available_artifacts() A =collections.OrderedDict( [ ('*.py', 'API Examples'), ('*.md', 'MD Examples'), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' A ={ v: { 'failed': [], 'failures': {}, } for v in docs.values() } # Link to the GitHub Action job A =github_actions_job_links.get('run_doctests') A =available_artifacts['doc_tests_gpu_test_reports'].paths[0] A =retrieve_artifact(artifact_path['name']) if "stats" in artifact: A , A , A =handle_test_results(artifact['stats']) A =failed A =success A =time_spent[1:-1] + ', ' A =extract_first_line_failure(artifact['failures_short']) for line in artifact["summary_short"].split('\n'): if re.search('FAILED', line): A =line.replace('FAILED ', '') A =line.split()[0].replace('\n', '') if "::" in line: A , A =line.split('::') else: A , A =line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): A =docs[file_regex] doc_test_results[category]["failed"].append(test) A =all_failures[test] if test in all_failures else 'N/A' A =failure break A =Message('🤗 Results of the doc tests.', doc_test_results) message.post() message.post_reply()
34
"""simple docstring""" from scipy.stats import spearmanr import datasets _a = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n' _a = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n' _a = r'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def _lowercase ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ), reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"], ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int]=False ): __lowercase = spearmanr(UpperCAmelCase__, UpperCAmelCase__ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
17
0
'''simple docstring''' import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class UpperCAmelCase_ ( _a ): """simple docstring""" def lowerCamelCase ( self : List[Any] ): snake_case__ : str = tempfile.mkdtemp() snake_case__ : Tuple = 5 # Realm tok snake_case__ : Union[str, Any] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """test""", """question""", """this""", """is""", """the""", """first""", """second""", """third""", """fourth""", """fifth""", """record""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] snake_case__ : Optional[int] = os.path.join(self.tmpdirname , """realm_tokenizer""" ) os.makedirs(snake_case_ , exist_ok=snake_case_ ) snake_case__ : Union[str, Any] = os.path.join(snake_case_ , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) snake_case__ : List[Any] = os.path.join(self.tmpdirname , """realm_block_records""" ) os.makedirs(snake_case_ , exist_ok=snake_case_ ) def lowerCamelCase ( self : List[str] ): return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , """realm_tokenizer""" ) ) def lowerCamelCase ( self : str ): shutil.rmtree(self.tmpdirname ) def lowerCamelCase ( self : int ): snake_case__ : List[Any] = RealmConfig(num_block_records=self.num_block_records ) return config def lowerCamelCase ( self : int ): snake_case__ : str = Dataset.from_dict( { """id""": ["""0""", """1"""], """question""": ["""foo""", """bar"""], """answers""": [["""Foo""", """Bar"""], ["""Bar"""]], } ) return dataset def lowerCamelCase ( self : List[str] ): snake_case__ : str = np.array( [ b"""This is the first record""", b"""This is the second record""", b"""This is the third record""", b"""This is the fourth record""", b"""This is the fifth record""", b"""This is a longer longer longer record""", ] , dtype=snake_case_ , ) return block_records def lowerCamelCase ( self : int ): snake_case__ : Dict = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def lowerCamelCase ( self : int ): snake_case__ : Tuple = self.get_config() snake_case__ : Any = self.get_dummy_retriever() snake_case__ : str = retriever.tokenizer snake_case__ : Optional[int] = np.array([0, 3] , dtype="""long""" ) snake_case__ : List[Any] = tokenizer(["""Test question"""] ).input_ids snake_case__ : List[str] = tokenizer( ["""the fourth"""] , add_special_tokens=snake_case_ , return_token_type_ids=snake_case_ , return_attention_mask=snake_case_ , ).input_ids snake_case__ : List[Any] = config.reader_seq_len snake_case__ , snake_case__ , snake_case__ , snake_case__ : Optional[int] = retriever( snake_case_ , snake_case_ , answer_ids=snake_case_ , max_length=snake_case_ , return_tensors="""np""" ) self.assertEqual(len(snake_case_ ) , 2 ) self.assertEqual(len(snake_case_ ) , 2 ) self.assertEqual(len(snake_case_ ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["""[CLS]""", """test""", """question""", """[SEP]""", """this""", """is""", """the""", """first""", """record""", """[SEP]"""] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["""[CLS]""", """test""", """question""", """[SEP]""", """this""", """is""", """the""", """fourth""", """record""", """[SEP]"""] , ) def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : List[str] = self.get_config() snake_case__ : List[str] = self.get_dummy_retriever() snake_case__ : str = retriever.tokenizer snake_case__ : List[Any] = np.array([0, 3, 5] , dtype="""long""" ) snake_case__ : Union[str, Any] = tokenizer(["""Test question"""] ).input_ids snake_case__ : Optional[int] = tokenizer( ["""the fourth""", """longer longer"""] , add_special_tokens=snake_case_ , return_token_type_ids=snake_case_ , return_attention_mask=snake_case_ , ).input_ids snake_case__ : Any = config.reader_seq_len snake_case__ , snake_case__ , snake_case__ , snake_case__ : List[str] = retriever( snake_case_ , snake_case_ , answer_ids=snake_case_ , max_length=snake_case_ , return_tensors="""np""" ) self.assertEqual([False, True, True] , snake_case_ ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , snake_case_ ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , snake_case_ ) def lowerCamelCase ( self : Any ): snake_case__ : List[str] = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , """realm_block_records""" ) ) # Test local path snake_case__ : Union[str, Any] = retriever.from_pretrained(os.path.join(self.tmpdirname , """realm_block_records""" ) ) self.assertEqual(retriever.block_records[0] , b"""This is the first record""" ) # Test mocked remote path with patch("""transformers.models.realm.retrieval_realm.hf_hub_download""" ) as mock_hf_hub_download: snake_case__ : Tuple = os.path.join( os.path.join(self.tmpdirname , """realm_block_records""" ) , _REALM_BLOCK_RECORDS_FILENAME ) snake_case__ : List[str] = RealmRetriever.from_pretrained("""google/realm-cc-news-pretrained-openqa""" ) self.assertEqual(retriever.block_records[0] , b"""This is the first record""" )
35
"""simple docstring""" from collections.abc import Sequence def _A ( UpperCamelCase_ : Sequence[float], UpperCamelCase_ : float) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(UpperCamelCase_)) def _A ( UpperCamelCase_ : Sequence[float], UpperCamelCase_ : float) -> float: '''simple docstring''' __lowercase = 0.0 for coeff in reversed(UpperCamelCase_): __lowercase = result * x + coeff return result if __name__ == "__main__": _a = (0.0, 0.0, 5.0, 9.3, 7.0) _a = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
17
0
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self, __a): '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"], model_result["ss"]): _lowerCAmelCase : Tuple = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = "sshleifer/tiny-gpt2" _lowerCAmelCase : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID], training=__a, inference=__a, sequence_lengths=[8], batch_sizes=[1], eager_mode=__a, multi_process=__a, ) _lowerCAmelCase : str = TensorFlowBenchmark(__a) _lowerCAmelCase : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = "sgugger/tiny-distilbert-classification" _lowerCAmelCase : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID], training=__a, inference=__a, sequence_lengths=[8], batch_sizes=[1], multi_process=__a, only_pretrain_model=__a, ) _lowerCAmelCase : Tuple = TensorFlowBenchmark(__a) _lowerCAmelCase : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = "sshleifer/tiny-gpt2" _lowerCAmelCase : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID], training=__a, inference=__a, sequence_lengths=[8], batch_sizes=[1], multi_process=__a, ) _lowerCAmelCase : List[Any] = TensorFlowBenchmark(__a) _lowerCAmelCase : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = "sshleifer/tiny-gpt2" _lowerCAmelCase : Dict = AutoConfig.from_pretrained(__a) _lowerCAmelCase : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID], training=__a, inference=__a, sequence_lengths=[8], batch_sizes=[1], eager_mode=__a, multi_process=__a, ) _lowerCAmelCase : Any = TensorFlowBenchmark(__a, [config]) _lowerCAmelCase : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = "sshleifer/tiny-gpt2" _lowerCAmelCase : int = AutoConfig.from_pretrained(__a) _lowerCAmelCase : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID], training=__a, inference=__a, sequence_lengths=[8], batch_sizes=[1], multi_process=__a, ) _lowerCAmelCase : Any = TensorFlowBenchmark(__a, [config]) _lowerCAmelCase : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = "sshleifer/tiny-gpt2" _lowerCAmelCase : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID], training=__a, inference=__a, sequence_lengths=[8], batch_sizes=[1], multi_process=__a, ) _lowerCAmelCase : List[Any] = TensorFlowBenchmark(__a) _lowerCAmelCase : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = "sshleifer/tiny-gpt2" _lowerCAmelCase : Optional[Any] = AutoConfig.from_pretrained(__a) _lowerCAmelCase : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID], training=__a, inference=__a, sequence_lengths=[8], batch_sizes=[1], multi_process=__a, ) _lowerCAmelCase : str = TensorFlowBenchmark(__a, [config]) _lowerCAmelCase : int = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = "patrickvonplaten/t5-tiny-random" _lowerCAmelCase : List[str] = AutoConfig.from_pretrained(__a) _lowerCAmelCase : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID], training=__a, inference=__a, sequence_lengths=[8], batch_sizes=[1], multi_process=__a, ) _lowerCAmelCase : Optional[Any] = TensorFlowBenchmark(__a, configs=[config]) _lowerCAmelCase : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("GPU")) == 0, "Cannot do xla on CPU.") def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = "sshleifer/tiny-gpt2" _lowerCAmelCase : str = TensorFlowBenchmarkArguments( models=[MODEL_ID], training=__a, inference=__a, sequence_lengths=[8], batch_sizes=[1], use_xla=__a, multi_process=__a, ) _lowerCAmelCase : Tuple = TensorFlowBenchmark(__a) _lowerCAmelCase : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID], inference=__a, save_to_csv=__a, sequence_lengths=[8], batch_sizes=[1], inference_time_csv_file=os.path.join(__a, "inf_time.csv"), inference_memory_csv_file=os.path.join(__a, "inf_mem.csv"), env_info_csv_file=os.path.join(__a, "env.csv"), multi_process=__a, ) _lowerCAmelCase : List[str] = TensorFlowBenchmark(__a) benchmark.run() self.assertTrue(Path(os.path.join(__a, "inf_time.csv")).exists()) self.assertTrue(Path(os.path.join(__a, "inf_mem.csv")).exists()) self.assertTrue(Path(os.path.join(__a, "env.csv")).exists()) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(__a): self.assertTrue(hasattr(__a, "sequential")) self.assertTrue(hasattr(__a, "cumulative")) self.assertTrue(hasattr(__a, "current")) self.assertTrue(hasattr(__a, "total")) with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase : str = TensorFlowBenchmarkArguments( models=[MODEL_ID], inference=__a, sequence_lengths=[8], batch_sizes=[1], log_filename=os.path.join(__a, "log.txt"), log_print=__a, trace_memory_line_by_line=__a, eager_mode=__a, multi_process=__a, ) _lowerCAmelCase : List[Any] = TensorFlowBenchmark(__a) _lowerCAmelCase : Tuple = benchmark.run() _check_summary_is_not_empty(result.inference_summary) self.assertTrue(Path(os.path.join(__a, "log.txt")).exists())
36
"""simple docstring""" import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class _lowerCAmelCase ( pl.LightningModule ): """simple docstring""" def __init__( self : Optional[Any], UpperCAmelCase__ : str ): super().__init__() __lowercase = model __lowercase = 2 __lowercase = nn.Linear(self.model.config.hidden_size, self.num_labels ) def _lowercase ( self : Optional[int] ): pass def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str, UpperCamelCase_ : str) -> str: '''simple docstring''' __lowercase = LongformerModel.from_pretrained(UpperCamelCase_) __lowercase = LightningModel(UpperCamelCase_) __lowercase = torch.load(UpperCamelCase_, map_location=torch.device("cpu")) lightning_model.load_state_dict(ckpt["state_dict"]) # init longformer question answering model __lowercase = LongformerForQuestionAnswering.from_pretrained(UpperCamelCase_) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict()) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict()) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(UpperCamelCase_) print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""") if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _a = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
17
0
'''simple docstring''' from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @register_to_config def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = None ) -> Dict: super().__init__() lowerCAmelCase__ : List[Any] = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" lowerCAmelCase__ : Dict = torch.zeros(__UpperCAmelCase ,__UpperCAmelCase ) else: lowerCAmelCase__ : Optional[int] = None lowerCAmelCase__ : Union[str, Any] = torch.nn.Parameter(__UpperCAmelCase ) class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : VQModel __lowercase : CLIPTextModel __lowercase : CLIPTokenizer __lowercase : TransformeraDModel __lowercase : LearnedClassifierFreeSamplingEmbeddings __lowercase : VQDiffusionScheduler def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,) -> Union[str, Any]: super().__init__() self.register_modules( vqvae=__UpperCAmelCase ,transformer=__UpperCAmelCase ,text_encoder=__UpperCAmelCase ,tokenizer=__UpperCAmelCase ,scheduler=__UpperCAmelCase ,learned_classifier_free_sampling_embeddings=__UpperCAmelCase ,) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Optional[int]: lowerCAmelCase__ : Optional[int] = len(__UpperCAmelCase ) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) else 1 # get prompt text embeddings lowerCAmelCase__ : int = self.tokenizer( __UpperCAmelCase ,padding="""max_length""" ,max_length=self.tokenizer.model_max_length ,return_tensors="""pt""" ,) lowerCAmelCase__ : Dict = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCAmelCase__ : List[Any] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) lowerCAmelCase__ : Optional[Any] = text_input_ids[:, : self.tokenizer.model_max_length] lowerCAmelCase__ : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 lowerCAmelCase__ : List[str] = prompt_embeds / prompt_embeds.norm(dim=-1 ,keepdim=__UpperCAmelCase ) # duplicate text embeddings for each generation per prompt lowerCAmelCase__ : Any = prompt_embeds.repeat_interleave(__UpperCAmelCase ,dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: lowerCAmelCase__ : Dict = self.learned_classifier_free_sampling_embeddings.embeddings lowerCAmelCase__ : Optional[Any] = negative_prompt_embeds.unsqueeze(0 ).repeat(__UpperCAmelCase ,1 ,1 ) else: lowerCAmelCase__ : Optional[Any] = [""""""] * batch_size lowerCAmelCase__ : int = text_input_ids.shape[-1] lowerCAmelCase__ : str = self.tokenizer( __UpperCAmelCase ,padding="""max_length""" ,max_length=__UpperCAmelCase ,truncation=__UpperCAmelCase ,return_tensors="""pt""" ,) lowerCAmelCase__ : Union[str, Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings lowerCAmelCase__ : Union[str, Any] = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 ,keepdim=__UpperCAmelCase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCAmelCase__ : Optional[int] = negative_prompt_embeds.shape[1] lowerCAmelCase__ : int = negative_prompt_embeds.repeat(1 ,__UpperCAmelCase ,1 ) lowerCAmelCase__ : Tuple = negative_prompt_embeds.view(batch_size * num_images_per_prompt ,__UpperCAmelCase ,-1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCAmelCase__ : List[Any] = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self ,__UpperCAmelCase ,__UpperCAmelCase = 100 ,__UpperCAmelCase = 5.0 ,__UpperCAmelCase = 1.0 ,__UpperCAmelCase = 1 ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = "pil" ,__UpperCAmelCase = True ,__UpperCAmelCase = None ,__UpperCAmelCase = 1 ,) -> Union[ImagePipelineOutput, Tuple]: if isinstance(__UpperCAmelCase ,__UpperCAmelCase ): lowerCAmelCase__ : Tuple = 1 elif isinstance(__UpperCAmelCase ,__UpperCAmelCase ): lowerCAmelCase__ : int = len(__UpperCAmelCase ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(__UpperCAmelCase )}""" ) lowerCAmelCase__ : Optional[Any] = batch_size * num_images_per_prompt lowerCAmelCase__ : Union[str, Any] = guidance_scale > 1.0 lowerCAmelCase__ : Any = self._encode_prompt(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__UpperCAmelCase ,__UpperCAmelCase ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(__UpperCAmelCase )}.""" ) # get the initial completely masked latents unless the user supplied it lowerCAmelCase__ : Dict = (batch_size, self.transformer.num_latent_pixels) if latents is None: lowerCAmelCase__ : List[Any] = self.transformer.num_vector_embeds - 1 lowerCAmelCase__ : int = torch.full(__UpperCAmelCase ,__UpperCAmelCase ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( """Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,""" F""" {self.transformer.num_vector_embeds - 1} (inclusive).""" ) lowerCAmelCase__ : List[str] = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__UpperCAmelCase ,device=self.device ) lowerCAmelCase__ : Any = self.scheduler.timesteps.to(self.device ) lowerCAmelCase__ : int = latents for i, t in enumerate(self.progress_bar(__UpperCAmelCase ) ): # expand the sample if we are doing classifier free guidance lowerCAmelCase__ : Union[str, Any] = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` lowerCAmelCase__ : List[str] = self.transformer(__UpperCAmelCase ,encoder_hidden_states=__UpperCAmelCase ,timestep=__UpperCAmelCase ).sample if do_classifier_free_guidance: lowerCAmelCase__ , lowerCAmelCase__ : List[str] = model_output.chunk(2 ) lowerCAmelCase__ : List[Any] = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(__UpperCAmelCase ,dim=1 ,keepdim=__UpperCAmelCase ) lowerCAmelCase__ : List[str] = self.truncate(__UpperCAmelCase ,__UpperCAmelCase ) # remove `log(0)`'s (`-inf`s) lowerCAmelCase__ : Optional[Any] = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase__ : List[str] = self.scheduler.step(__UpperCAmelCase ,timestep=__UpperCAmelCase ,sample=__UpperCAmelCase ,generator=__UpperCAmelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) lowerCAmelCase__ : Tuple = self.vqvae.config.vq_embed_dim lowerCAmelCase__ : Optional[int] = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) lowerCAmelCase__ : List[str] = self.vqvae.quantize.get_codebook_entry(__UpperCAmelCase ,shape=__UpperCAmelCase ) lowerCAmelCase__ : int = self.vqvae.decode(__UpperCAmelCase ,force_not_quantize=__UpperCAmelCase ).sample lowerCAmelCase__ : Dict = (image / 2 + 0.5).clamp(0 ,1 ) lowerCAmelCase__ : Union[str, Any] = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": lowerCAmelCase__ : Dict = self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> torch.FloatTensor: lowerCAmelCase__ , lowerCAmelCase__ : Any = torch.sort(__UpperCAmelCase ,1 ,descending=__UpperCAmelCase ) lowerCAmelCase__ : Any = torch.exp(__UpperCAmelCase ) lowerCAmelCase__ : Dict = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out lowerCAmelCase__ : Dict = torch.full_like(keep_mask[:, 0:1, :] ,__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = torch.cat((all_true, keep_mask) ,dim=1 ) lowerCAmelCase__ : str = keep_mask[:, :-1, :] lowerCAmelCase__ : Optional[Any] = keep_mask.gather(1 ,indices.argsort(1 ) ) lowerCAmelCase__ : List[Any] = log_p_x_0.clone() lowerCAmelCase__ : Optional[Any] = -torch.inf # -inf = log(0) return rv
37
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" ,"False" ) ) is not True ,reason="Skipping test because should only be run when releasing minor transformers version" ,) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Optional[int] ): if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split(), encoding="utf-8", check=UpperCAmelCase__, ) assert hasattr(self, "env" ) def _lowercase ( self : str, UpperCAmelCase__ : List[Any] ): # configuration for running training on smdistributed Model Parallel __lowercase = { "enabled": True, "processes_per_host": 8, } __lowercase = { "enabled": True, "parameters": { "microbatches": 4, "placement_strategy": "spread", "pipeline": "interleaved", "optimize": "speed", "partitions": 4, "ddp": True, }, } __lowercase = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options} __lowercase = "trainer" if self.script == "run_glue.py" else "smtrainer" # creates estimator return HuggingFace( entry_point=self.script, source_dir=self.env.test_path, role=self.env.role, image_uri=self.env.image_uri, base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""", instance_count=UpperCAmelCase__, instance_type=self.instance_type, debugger_hook_config=UpperCAmelCase__, hyperparameters={ **self.env.hyperparameters, "model_name_or_path": self.model_name_or_path, "max_steps": 5_0_0, }, metric_definitions=self.env.metric_definitions, distribution=UpperCAmelCase__, py_version="py36", ) def _lowercase ( self : Tuple, UpperCAmelCase__ : int ): TrainingJobAnalytics(UpperCAmelCase__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def _lowercase ( self : str, UpperCAmelCase__ : Union[str, Any] ): # create estimator __lowercase = self.create_estimator(UpperCAmelCase__ ) # run training estimator.fit() # result dataframe __lowercase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __lowercase = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) __lowercase = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __lowercase = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds", 9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""", "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss}, UpperCAmelCase__ )
17
0
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging UpperCAmelCase_ : Tuple = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase :Union[str, Any] = R"""\w+[.]\d+""" UpperCamelCase :int = re.findall(__magic_name__ , __magic_name__ ) for pat in pats: UpperCamelCase :List[str] = key.replace(__magic_name__ , """_""".join(pat.split(""".""" ) ) ) return key def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] ) -> Tuple: """simple docstring""" UpperCamelCase :Optional[Any] = pt_tuple_key[:-1] + ("""scale""",) if ( any("""norm""" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): UpperCamelCase :List[str] = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: UpperCamelCase :Optional[Any] = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: UpperCamelCase :Optional[Any] = pt_tuple_key[:-1] + ("""embedding""",) return renamed_pt_tuple_key, pt_tensor # conv layer UpperCamelCase :Dict = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: UpperCamelCase :Any = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCamelCase :Dict = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight": UpperCamelCase :Optional[Any] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCamelCase :str = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCamelCase :Optional[int] = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple=42 ) -> Union[str, Any]: """simple docstring""" UpperCamelCase :Any = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params UpperCamelCase :Tuple = flax_model.init_weights(PRNGKey(__magic_name__ ) ) UpperCamelCase :Any = flatten_dict(__magic_name__ ) UpperCamelCase :Optional[int] = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCamelCase :Union[str, Any] = rename_key(__magic_name__ ) UpperCamelCase :Optional[Any] = tuple(renamed_pt_key.split(""".""" ) ) # Correctly rename weight parameters UpperCamelCase , UpperCamelCase :Tuple = rename_key_and_reshape_tensor(__magic_name__ , __magic_name__ , __magic_name__ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # also add unexpected weight so that warning is thrown UpperCamelCase :List[Any] = jnp.asarray(__magic_name__ ) return unflatten_dict(__magic_name__ )
38
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : Tuple = "openai/whisper-base" __UpperCAmelCase : Union[str, Any] = ( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) __UpperCAmelCase : List[str] = "transcriber" __UpperCAmelCase : Optional[Any] = WhisperProcessor __UpperCAmelCase : str = WhisperForConditionalGeneration __UpperCAmelCase : List[str] = ["audio"] __UpperCAmelCase : Tuple = ["text"] def _lowercase ( self : str, UpperCAmelCase__ : int ): return self.pre_processor(UpperCAmelCase__, return_tensors="pt" ).input_features def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Any] ): return self.model.generate(inputs=UpperCAmelCase__ ) def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[int] ): return self.pre_processor.batch_decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ )[0]
17
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a = logging.get_logger(__name__) _a = '''▁''' _a = {'''vocab_file''': '''sentencepiece.bpe.model'''} _a = { '''vocab_file''': { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''', } } _a = { '''facebook/xglm-564M''': 2048, } class __lowerCamelCase ( snake_case__): """simple docstring""" UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = ["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase = None , **UpperCAmelCase , ): """simple docstring""" _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer _UpperCAmelCase = 7 _UpperCAmelCase = [F"""<madeupword{i}>""" for i in range(self.num_madeup_words )] _UpperCAmelCase = kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , ) _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCAmelCase ) ) _UpperCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _UpperCAmelCase = 1 # Mimic fairseq token-to-id alignment for the first 4 token _UpperCAmelCase = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} _UpperCAmelCase = len(self.sp_model ) _UpperCAmelCase = {F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(UpperCAmelCase ) _UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): """simple docstring""" _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None _UpperCAmelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _UpperCAmelCase = {} _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase = None ): """simple docstring""" if token_ids_a is None: return [self.sep_token_id] + token_ids_a _UpperCAmelCase = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase = None ): """simple docstring""" _UpperCAmelCase = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def UpperCamelCase ( self ): """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = {self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCAmelCase = self.sp_model.PieceToId(UpperCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = ''.join(UpperCAmelCase ).replace(UpperCAmelCase , ' ' ).strip() return out_string def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase = None ): """simple docstring""" if not os.path.isdir(UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _UpperCAmelCase = os.path.join( UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase , 'wb' ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase ) return (out_vocab_file,)
39
"""simple docstring""" import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str]) -> Optional[int]: '''simple docstring''' if isinstance(UpperCamelCase_, torch.Tensor): return image elif isinstance(UpperCamelCase_, PIL.Image.Image): __lowercase = [image] if isinstance(image[0], PIL.Image.Image): __lowercase = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image] __lowercase = np.concatenate(UpperCamelCase_, axis=0) __lowercase = np.array(UpperCamelCase_).astype(np.floataa) / 255.0 __lowercase = image.transpose(0, 3, 1, 2) __lowercase = 2.0 * image - 1.0 __lowercase = torch.from_numpy(UpperCamelCase_) elif isinstance(image[0], torch.Tensor): __lowercase = torch.cat(UpperCamelCase_, dim=0) return image def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : str, UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[Any]=0.9_995) -> int: '''simple docstring''' if not isinstance(UpperCamelCase_, np.ndarray): __lowercase = True __lowercase = va.device __lowercase = va.cpu().numpy() __lowercase = va.cpu().numpy() __lowercase = np.sum(va * va / (np.linalg.norm(UpperCamelCase_) * np.linalg.norm(UpperCamelCase_))) if np.abs(UpperCamelCase_) > DOT_THRESHOLD: __lowercase = (1 - t) * va + t * va else: __lowercase = np.arccos(UpperCamelCase_) __lowercase = np.sin(UpperCamelCase_) __lowercase = theta_a * t __lowercase = np.sin(UpperCamelCase_) __lowercase = np.sin(theta_a - theta_t) / sin_theta_a __lowercase = sin_theta_t / sin_theta_a __lowercase = sa * va + sa * va if inputs_are_torch: __lowercase = torch.from_numpy(UpperCamelCase_).to(UpperCamelCase_) return va def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Union[str, Any]) -> int: '''simple docstring''' __lowercase = F.normalize(UpperCamelCase_, dim=-1) __lowercase = F.normalize(UpperCamelCase_, dim=-1) return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2) def _A ( UpperCamelCase_ : Optional[int], UpperCamelCase_ : str) -> Optional[int]: '''simple docstring''' for param in model.parameters(): __lowercase = value class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : Dict, UpperCAmelCase__ : AutoencoderKL, UpperCAmelCase__ : CLIPTextModel, UpperCAmelCase__ : CLIPModel, UpperCAmelCase__ : CLIPTokenizer, UpperCAmelCase__ : UNetaDConditionModel, UpperCAmelCase__ : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler], UpperCAmelCase__ : CLIPFeatureExtractor, UpperCAmelCase__ : Union[str, Any]=None, UpperCAmelCase__ : List[str]=None, UpperCAmelCase__ : Any=None, ): super().__init__() self.register_modules( vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, clip_model=UpperCAmelCase__, tokenizer=UpperCAmelCase__, unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, feature_extractor=UpperCAmelCase__, coca_model=UpperCAmelCase__, coca_tokenizer=UpperCAmelCase__, coca_transform=UpperCAmelCase__, ) __lowercase = ( feature_extractor.size if isinstance(feature_extractor.size, UpperCAmelCase__ ) else feature_extractor.size["shortest_edge"] ) __lowercase = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std ) set_requires_grad(self.text_encoder, UpperCAmelCase__ ) set_requires_grad(self.clip_model, UpperCAmelCase__ ) def _lowercase ( self : Tuple, UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase__ ) def _lowercase ( self : int ): self.enable_attention_slicing(UpperCAmelCase__ ) def _lowercase ( self : str ): set_requires_grad(self.vae, UpperCAmelCase__ ) def _lowercase ( self : Any ): set_requires_grad(self.vae, UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ): set_requires_grad(self.unet, UpperCAmelCase__ ) def _lowercase ( self : Any ): set_requires_grad(self.unet, UpperCAmelCase__ ) def _lowercase ( self : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : Optional[Any] ): # get the original timestep using init_timestep __lowercase = min(int(num_inference_steps * strength ), UpperCAmelCase__ ) __lowercase = max(num_inference_steps - init_timestep, 0 ) __lowercase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowercase ( self : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : int=None ): if not isinstance(UpperCAmelCase__, torch.Tensor ): raise ValueError(F"""`image` has to be of type `torch.Tensor` but is {type(UpperCAmelCase__ )}""" ) __lowercase = image.to(device=UpperCAmelCase__, dtype=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(UpperCAmelCase__ ) ] __lowercase = torch.cat(UpperCAmelCase__, dim=0 ) else: __lowercase = self.vae.encode(UpperCAmelCase__ ).latent_dist.sample(UpperCAmelCase__ ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowercase = 0.18_215 * init_latents __lowercase = init_latents.repeat_interleave(UpperCAmelCase__, dim=0 ) __lowercase = randn_tensor(init_latents.shape, generator=UpperCAmelCase__, device=UpperCAmelCase__, dtype=UpperCAmelCase__ ) # get latents __lowercase = self.scheduler.add_noise(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = init_latents return latents def _lowercase ( self : Optional[int], UpperCAmelCase__ : Dict ): __lowercase = self.coca_transform(UpperCAmelCase__ ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): __lowercase = self.coca_model.generate(transformed_image.to(device=self.device, dtype=self.coca_model.dtype ) ) __lowercase = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("<end_of_text>" )[0].replace("<start_of_text>", "" ).rstrip(" .," ) def _lowercase ( self : Tuple, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Tuple ): __lowercase = self.feature_extractor.preprocess(UpperCAmelCase__ ) __lowercase = torch.from_numpy(clip_image_input["pixel_values"][0] ).unsqueeze(0 ).to(self.device ).half() __lowercase = self.clip_model.get_image_features(UpperCAmelCase__ ) __lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=UpperCAmelCase__ ) __lowercase = image_embeddings_clip.repeat_interleave(UpperCAmelCase__, dim=0 ) return image_embeddings_clip @torch.enable_grad() def _lowercase ( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[int], ): __lowercase = latents.detach().requires_grad_() __lowercase = self.scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ ) # predict the noise residual __lowercase = self.unet(UpperCAmelCase__, UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__ ).sample if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): __lowercase = self.scheduler.alphas_cumprod[timestep] __lowercase = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowercase = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 __lowercase = torch.sqrt(UpperCAmelCase__ ) __lowercase = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler, UpperCAmelCase__ ): __lowercase = self.scheduler.sigmas[index] __lowercase = latents - sigma * noise_pred else: raise ValueError(F"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowercase = 1 / 0.18_215 * sample __lowercase = self.vae.decode(UpperCAmelCase__ ).sample __lowercase = (image / 2 + 0.5).clamp(0, 1 ) __lowercase = transforms.Resize(self.feature_extractor_size )(UpperCAmelCase__ ) __lowercase = self.normalize(UpperCAmelCase__ ).to(latents.dtype ) __lowercase = self.clip_model.get_image_features(UpperCAmelCase__ ) __lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=UpperCAmelCase__ ) __lowercase = spherical_dist_loss(UpperCAmelCase__, UpperCAmelCase__ ).mean() * clip_guidance_scale __lowercase = -torch.autograd.grad(UpperCAmelCase__, UpperCAmelCase__ )[0] if isinstance(self.scheduler, UpperCAmelCase__ ): __lowercase = latents.detach() + grads * (sigma**2) __lowercase = noise_pred_original else: __lowercase = noise_pred_original - torch.sqrt(UpperCAmelCase__ ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : str, UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image], UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image], UpperCAmelCase__ : Optional[str] = None, UpperCAmelCase__ : Optional[str] = None, UpperCAmelCase__ : Optional[int] = 5_1_2, UpperCAmelCase__ : Optional[int] = 5_1_2, UpperCAmelCase__ : float = 0.6, UpperCAmelCase__ : Optional[int] = 5_0, UpperCAmelCase__ : Optional[float] = 7.5, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[float] = 1_0_0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : float = 0.8, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, ): if isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and len(UpperCAmelCase__ ) != batch_size: raise ValueError(F"""You have passed {batch_size} batch_size, but only {len(UpperCAmelCase__ )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(UpperCAmelCase__, torch.Generator ) and batch_size > 1: __lowercase = [generator] + [None] * (batch_size - 1) __lowercase = [ ("model", self.coca_model is None), ("tokenizer", self.coca_tokenizer is None), ("transform", self.coca_transform is None), ] __lowercase = [x[0] for x in coca_is_none if x[1]] __lowercase = ", ".join(UpperCAmelCase__ ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(UpperCAmelCase__ ): raise ValueError( F"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" F"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) __lowercase = self.get_image_description(UpperCAmelCase__ ) if style_prompt is None: if len(UpperCAmelCase__ ): raise ValueError( F"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" F""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) __lowercase = self.get_image_description(UpperCAmelCase__ ) # get prompt text embeddings for content and style __lowercase = self.tokenizer( UpperCAmelCase__, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=UpperCAmelCase__, return_tensors="pt", ) __lowercase = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] __lowercase = self.tokenizer( UpperCAmelCase__, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=UpperCAmelCase__, return_tensors="pt", ) __lowercase = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] __lowercase = slerp(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # duplicate text embeddings for each generation per prompt __lowercase = text_embeddings.repeat_interleave(UpperCAmelCase__, dim=0 ) # set timesteps __lowercase = "offset" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) __lowercase = {} if accepts_offset: __lowercase = 1 self.scheduler.set_timesteps(UpperCAmelCase__, **UpperCAmelCase__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) __lowercase ,__lowercase = self.get_timesteps(UpperCAmelCase__, UpperCAmelCase__, self.device ) __lowercase = timesteps[:1].repeat(UpperCAmelCase__ ) # Preprocess image __lowercase = preprocess(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = self.prepare_latents( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, text_embeddings.dtype, self.device, UpperCAmelCase__ ) __lowercase = preprocess(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = self.prepare_latents( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, text_embeddings.dtype, self.device, UpperCAmelCase__ ) __lowercase = slerp(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) if clip_guidance_scale > 0: __lowercase = self.get_clip_image_embeddings(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = self.get_clip_image_embeddings(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = slerp( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __lowercase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __lowercase = content_text_input.input_ids.shape[-1] __lowercase = self.tokenizer([""], padding="max_length", max_length=UpperCAmelCase__, return_tensors="pt" ) __lowercase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt __lowercase = uncond_embeddings.repeat_interleave(UpperCAmelCase__, dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowercase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __lowercase = (batch_size, self.unet.config.in_channels, height // 8, width // 8) __lowercase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps __lowercase = torch.randn(UpperCAmelCase__, generator=UpperCAmelCase__, device="cpu", dtype=UpperCAmelCase__ ).to( self.device ) else: __lowercase = torch.randn(UpperCAmelCase__, generator=UpperCAmelCase__, device=self.device, dtype=UpperCAmelCase__ ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) __lowercase = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __lowercase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __lowercase = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __lowercase = {} if accepts_eta: __lowercase = eta # check if the scheduler accepts generator __lowercase = "generator" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: __lowercase = generator with self.progress_bar(total=UpperCAmelCase__ ): for i, t in enumerate(UpperCAmelCase__ ): # expand the latents if we are doing classifier free guidance __lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowercase = self.scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ ) # predict the noise residual __lowercase = self.unet(UpperCAmelCase__, UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__ ).sample # perform classifier free guidance if do_classifier_free_guidance: __lowercase ,__lowercase = noise_pred.chunk(2 ) __lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: __lowercase = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) __lowercase ,__lowercase = self.cond_fn( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) # compute the previous noisy sample x_t -> x_t-1 __lowercase = self.scheduler.step(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, **UpperCAmelCase__ ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowercase = 1 / 0.18_215 * latents __lowercase = self.vae.decode(UpperCAmelCase__ ).sample __lowercase = (image / 2 + 0.5).clamp(0, 1 ) __lowercase = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": __lowercase = self.numpy_to_pil(UpperCAmelCase__ ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=UpperCAmelCase__, nsfw_content_detected=UpperCAmelCase__ )
17
0
"""simple docstring""" import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class _A ( unittest.TestCase ): """simple docstring""" @property def __snake_case ( self : Tuple): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __snake_case ( self : List[str]): a : Optional[int] = ort.SessionOptions() a : str = False return options def __snake_case ( self : Optional[int]): a : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png") a : Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png") a : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy") # using the PNDM scheduler by default a : List[Any] = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__UpperCAmelCase) a : int = "A red cat sitting on a park bench" a : Optional[Any] = np.random.RandomState(0) a : Optional[Any] = pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , mask_image=__UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=__UpperCAmelCase , output_type="np" , ) a : str = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 1e-2
40
"""simple docstring""" from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class _lowerCAmelCase : """simple docstring""" __UpperCAmelCase : Tuple = XGLMConfig __UpperCAmelCase : Optional[Any] = {} __UpperCAmelCase : Union[str, Any] = "gelu" def __init__( self : Optional[int], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int]=1_4, UpperCAmelCase__ : str=7, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[Any]=True, UpperCAmelCase__ : int=True, UpperCAmelCase__ : List[str]=9_9, UpperCAmelCase__ : Union[str, Any]=3_2, UpperCAmelCase__ : Union[str, Any]=2, UpperCAmelCase__ : Union[str, Any]=4, UpperCAmelCase__ : Tuple=3_7, UpperCAmelCase__ : List[Any]="gelu", UpperCAmelCase__ : List[str]=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Tuple=5_1_2, UpperCAmelCase__ : Optional[Any]=0.02, ): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_labels __lowercase = vocab_size __lowercase = d_model __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = ffn_dim __lowercase = activation_function __lowercase = activation_dropout __lowercase = attention_dropout __lowercase = max_position_embeddings __lowercase = initializer_range __lowercase = None __lowercase = 0 __lowercase = 2 __lowercase = 1 def _lowercase ( self : Union[str, Any] ): return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def _lowercase ( self : Tuple ): __lowercase = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length], self.vocab_size ), clip_value_min=0, clip_value_max=3 ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = self.get_config() __lowercase = floats_tensor([self.num_hidden_layers, self.num_attention_heads], 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowercase ( self : List[Any] ): return XGLMConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, num_layers=self.num_hidden_layers, attention_heads=self.num_attention_heads, ffn_dim=self.ffn_dim, activation_function=self.activation_function, activation_dropout=self.activation_dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, use_cache=UpperCAmelCase__, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, return_dict=UpperCAmelCase__, ) def _lowercase ( self : Dict ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) , ) = config_and_inputs __lowercase = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class _lowerCAmelCase ( lowercase ,lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () __UpperCAmelCase : List[str] = (TFXGLMForCausalLM,) if is_tf_available() else () __UpperCAmelCase : Any = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : List[str] = False __UpperCAmelCase : int = False def _lowercase ( self : Optional[Any] ): __lowercase = TFXGLMModelTester(self ) __lowercase = ConfigTester(self, config_class=UpperCAmelCase__, n_embd=3_7 ) def _lowercase ( self : Any ): self.config_tester.run_common_tests() @slow def _lowercase ( self : List[str] ): for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFXGLMModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def _lowercase ( self : int ): super().test_resize_token_embeddings() @require_tf class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[int]=True ): __lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) __lowercase = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]], dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __lowercase = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on __lowercase = model.generate(UpperCAmelCase__, do_sample=UpperCAmelCase__, num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist(), UpperCAmelCase__ ) @slow def _lowercase ( self : List[Any] ): __lowercase = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) __lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) __lowercase = tokenizer("Today is a nice day and", return_tensors="tf" ) __lowercase = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): __lowercase = model.generate(UpperCAmelCase__, do_sample=UpperCAmelCase__, seed=[7, 0] ) __lowercase = tokenizer.decode(output_ids[0], skip_special_tokens=UpperCAmelCase__ ) __lowercase = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(UpperCAmelCase__, UpperCAmelCase__ ) @slow def _lowercase ( self : Dict ): __lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) __lowercase = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) __lowercase = "left" # use different length sentences to test batching __lowercase = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] __lowercase = tokenizer(UpperCAmelCase__, return_tensors="tf", padding=UpperCAmelCase__ ) __lowercase = inputs["input_ids"] __lowercase = model.generate(input_ids=UpperCAmelCase__, attention_mask=inputs["attention_mask"], max_new_tokens=1_2 ) __lowercase = tokenizer(sentences[0], return_tensors="tf" ).input_ids __lowercase = model.generate(input_ids=UpperCAmelCase__, max_new_tokens=1_2 ) __lowercase = tokenizer(sentences[1], return_tensors="tf" ).input_ids __lowercase = model.generate(input_ids=UpperCAmelCase__, max_new_tokens=1_2 ) __lowercase = tokenizer.batch_decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ ) __lowercase = tokenizer.decode(output_non_padded[0], skip_special_tokens=UpperCAmelCase__ ) __lowercase = tokenizer.decode(output_padded[0], skip_special_tokens=UpperCAmelCase__ ) __lowercase = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(UpperCAmelCase__, UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__, [non_padded_sentence, padded_sentence] )
17
0
'''simple docstring''' from __future__ import annotations import string from itertools import cycle, product from pathlib import Path _A : str =( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) _A : list[int] =[ord(letter) for letter in string.ascii_lowercase] _A : set[int] ={ord(char) for char in VALID_CHARS} _A : list[str] =["the", "be", "to", "of", "and", "in", "that", "have"] def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> str | None: lowerCamelCase__ : str = "" lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : int for keychar, cipherchar in zip(cycle(UpperCamelCase ) , UpperCamelCase ): lowerCamelCase__ : List[Any] = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(UpperCamelCase ) return decoded def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> list[str]: lowerCamelCase__ : list[str] = [] for key in product(UpperCamelCase , repeat=3 ): lowerCamelCase__ : List[Any] = try_key(UpperCamelCase , UpperCamelCase ) if encoded is not None: possibles.append(UpperCamelCase ) return possibles def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> list[str]: return [possible for possible in possibles if common_word in possible.lower()] def SCREAMING_SNAKE_CASE_ (UpperCamelCase = "p059_cipher.txt" ) -> int: lowerCamelCase__ : list[int] lowerCamelCase__ : list[str] lowerCamelCase__ : str lowerCamelCase__ : str lowerCamelCase__ : str = Path(UpperCamelCase ).parent.joinpath(UpperCamelCase ).read_text(encoding="""utf-8""" ) lowerCamelCase__ : List[Any] = [int(UpperCamelCase ) for number in data.strip().split(""",""" )] lowerCamelCase__ : Optional[int] = filter_valid_chars(UpperCamelCase ) for common_word in COMMON_WORDS: lowerCamelCase__ : Dict = filter_common_word(UpperCamelCase , UpperCamelCase ) if len(UpperCamelCase ) == 1: break lowerCamelCase__ : Union[str, Any] = possibles[0] return sum(ord(UpperCamelCase ) for char in decoded_text ) if __name__ == "__main__": print(F'{solution() = }')
41
"""simple docstring""" import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder _a = '__DUMMY_TRANSFORMERS_USER__' _a = 'Dummy User' _a = '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' _a = 'https://hub-ci.huggingface.co' _a = CI_HUB_ENDPOINT + '/datasets/{repo_id}/resolve/{revision}/{path}' _a = CI_HUB_ENDPOINT + '/{repo_id}/resolve/{revision}/{filename}' _a = Path('~/.huggingface/hub_ci_token').expanduser() @pytest.fixture def _A ( UpperCamelCase_ : List[Any]) -> Tuple: '''simple docstring''' monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE", UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : int) -> List[Any]: '''simple docstring''' monkeypatch.setattr("datasets.config.HF_ENDPOINT", UpperCamelCase_) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL", UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : str) -> Dict: '''simple docstring''' monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token", UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : Optional[Any], UpperCamelCase_ : List[Any]) -> List[str]: '''simple docstring''' HfFolder.save_token(UpperCamelCase_) yield HfFolder.delete_token() @pytest.fixture(scope="session") def _A ( ) -> List[Any]: '''simple docstring''' return HfApi(endpoint=UpperCamelCase_) @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi) -> List[Any]: '''simple docstring''' __lowercase = HfFolder.get_token() HfFolder.save_token(UpperCamelCase_) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : Dict) -> int: '''simple docstring''' def _cleanup_repo(UpperCamelCase_ : Optional[int]): hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") return _cleanup_repo @pytest.fixture def _A ( UpperCamelCase_ : str) -> Any: '''simple docstring''' @contextmanager def _temporary_repo(UpperCamelCase_ : Any): try: yield repo_id finally: cleanup_repo(UpperCamelCase_) return _temporary_repo @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : str, UpperCamelCase_ : Optional[int]) -> List[Any]: '''simple docstring''' __lowercase = F"""repo_txt_data-{int(time.time() * 10E3)}""" __lowercase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_) hf_api.upload_file( token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data/text_data.txt", repo_id=UpperCamelCase_, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : Any, UpperCamelCase_ : Dict) -> Optional[int]: '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : int, UpperCamelCase_ : Optional[int]) -> int: '''simple docstring''' __lowercase = F"""repo_zipped_txt_data-{int(time.time() * 10E3)}""" __lowercase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_) hf_api.upload_file( token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data.zip", repo_id=UpperCamelCase_, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Dict, UpperCamelCase_ : Any) -> int: '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : List[str], UpperCamelCase_ : List[str]) -> List[Any]: '''simple docstring''' __lowercase = F"""repo_zipped_img_data-{int(time.time() * 10E3)}""" __lowercase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_) hf_api.upload_file( token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data.zip", repo_id=UpperCamelCase_, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str], UpperCamelCase_ : List[str]) -> str: '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
17
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase : Any = logging.get_logger(__name__) lowercase : str = { "google/mobilenet_v1_1.0_224": "https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json", "google/mobilenet_v1_0.75_192": "https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = """mobilenet_v1""" def __init__( self , lowerCAmelCase_=3 , lowerCAmelCase_=2_24 , lowerCAmelCase_=1.0 , lowerCAmelCase_=8 , lowerCAmelCase_="relu6" , lowerCAmelCase_=True , lowerCAmelCase_=0.999 , lowerCAmelCase_=0.02 , lowerCAmelCase_=0.001 , **lowerCAmelCase_ , ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) if depth_multiplier <= 0: raise ValueError('depth_multiplier must be greater than zero.' ) _snake_case = num_channels _snake_case = image_size _snake_case = depth_multiplier _snake_case = min_depth _snake_case = hidden_act _snake_case = tf_padding _snake_case = classifier_dropout_prob _snake_case = initializer_range _snake_case = layer_norm_eps class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = version.parse("""1.11""" ) @property def lowerCamelCase ( self ): """simple docstring""" return OrderedDict([('pixel_values', {0: 'batch'})] ) @property def lowerCamelCase ( self ): """simple docstring""" if self.task == "image-classification": return OrderedDict([('logits', {0: 'batch'})] ) else: return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] ) @property def lowerCamelCase ( self ): """simple docstring""" return 1E-4
42
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : int = "time_series_transformer" __UpperCAmelCase : Any = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : int, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : str = "student_t", UpperCAmelCase__ : str = "nll", UpperCAmelCase__ : int = 1, UpperCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7], UpperCAmelCase__ : Optional[Union[str, bool]] = "mean", UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : int = 3_2, UpperCAmelCase__ : int = 3_2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : str = "gelu", UpperCAmelCase__ : int = 6_4, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : int = 1_0_0, UpperCAmelCase__ : float = 0.02, UpperCAmelCase__ : Any=True, **UpperCAmelCase__ : List[str], ): # time series specific configuration __lowercase = prediction_length __lowercase = context_length or prediction_length __lowercase = distribution_output __lowercase = loss __lowercase = input_size __lowercase = num_time_features __lowercase = lags_sequence __lowercase = scaling __lowercase = num_dynamic_real_features __lowercase = num_static_real_features __lowercase = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(UpperCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) __lowercase = cardinality else: __lowercase = [0] if embedding_dimension and num_static_categorical_features > 0: if len(UpperCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) __lowercase = embedding_dimension else: __lowercase = [min(5_0, (cat + 1) // 2 ) for cat in self.cardinality] __lowercase = num_parallel_samples # Transformer architecture configuration __lowercase = input_size * len(UpperCAmelCase__ ) + self._number_of_features __lowercase = d_model __lowercase = encoder_attention_heads __lowercase = decoder_attention_heads __lowercase = encoder_ffn_dim __lowercase = decoder_ffn_dim __lowercase = encoder_layers __lowercase = decoder_layers __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = activation_function __lowercase = init_std __lowercase = use_cache super().__init__(is_encoder_decoder=UpperCAmelCase__, **UpperCAmelCase__ ) @property def _lowercase ( self : Optional[Any] ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
17
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a__ : str = CycleDiffusionPipeline a__ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """negative_prompt""", """height""", """width""", """negative_prompt_embeds""", } a__ : Union[str, Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} a__ : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""source_prompt"""} ) a__ : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS a__ : str = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase__ ( self) -> Any: torch.manual_seed(0) __UpperCamelCase :Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) __UpperCamelCase :Any = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , num_train_timesteps=1_000 , clip_sample=__lowercase , set_alpha_to_one=__lowercase , ) torch.manual_seed(0) __UpperCamelCase :Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0) __UpperCamelCase :Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) __UpperCamelCase :List[str] = CLIPTextModel(__lowercase) __UpperCamelCase :Tuple = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') __UpperCamelCase :str = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCamelCase__ ( self , __lowercase , __lowercase=0) -> str: __UpperCamelCase :List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowercase)).to(__lowercase) __UpperCamelCase :List[Any] = image / 2 + 0.5 if str(__lowercase).startswith('''mps'''): __UpperCamelCase :Optional[int] = torch.manual_seed(__lowercase) else: __UpperCamelCase :Optional[int] = torch.Generator(device=__lowercase).manual_seed(__lowercase) __UpperCamelCase :Any = { '''prompt''': '''An astronaut riding an elephant''', '''source_prompt''': '''An astronaut riding a horse''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''eta''': 0.1, '''strength''': 0.8, '''guidance_scale''': 3, '''source_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase :Optional[Any] = self.get_dummy_components() __UpperCamelCase :List[str] = CycleDiffusionPipeline(**__lowercase) __UpperCamelCase :Tuple = pipe.to(__lowercase) pipe.set_progress_bar_config(disable=__lowercase) __UpperCamelCase :List[Any] = self.get_dummy_inputs(__lowercase) __UpperCamelCase :Tuple = pipe(**__lowercase) __UpperCamelCase :Tuple = output.images __UpperCamelCase :Union[str, Any] = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __UpperCamelCase :int = np.array([0.44_59, 0.49_43, 0.45_44, 0.66_43, 0.54_74, 0.43_27, 0.57_01, 0.59_59, 0.51_79]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''') def UpperCamelCase__ ( self) -> Optional[int]: __UpperCamelCase :Any = self.get_dummy_components() for name, module in components.items(): if hasattr(__lowercase , '''half'''): __UpperCamelCase :Any = module.half() __UpperCamelCase :int = CycleDiffusionPipeline(**__lowercase) __UpperCamelCase :Optional[int] = pipe.to(__lowercase) pipe.set_progress_bar_config(disable=__lowercase) __UpperCamelCase :Optional[Any] = self.get_dummy_inputs(__lowercase) __UpperCamelCase :str = pipe(**__lowercase) __UpperCamelCase :Any = output.images __UpperCamelCase :str = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __UpperCamelCase :Optional[Any] = np.array([0.35_06, 0.45_43, 0.4_46, 0.45_75, 0.51_95, 0.41_55, 0.52_73, 0.5_18, 0.41_16]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 @skip_mps def UpperCamelCase__ ( self) -> List[Any]: return super().test_save_load_local() @unittest.skip('''non-deterministic pipeline''') def UpperCamelCase__ ( self) -> Optional[int]: return super().test_inference_batch_single_identical() @skip_mps def UpperCamelCase__ ( self) -> Tuple: return super().test_dict_tuple_outputs_equivalent() @skip_mps def UpperCamelCase__ ( self) -> Any: return super().test_save_load_optional_components() @skip_mps def UpperCamelCase__ ( self) -> Tuple: return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase :int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''') __UpperCamelCase :str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy''') __UpperCamelCase :int = init_image.resize((512, 512)) __UpperCamelCase :List[Any] = '''CompVis/stable-diffusion-v1-4''' __UpperCamelCase :Optional[Any] = DDIMScheduler.from_pretrained(__lowercase , subfolder='''scheduler''') __UpperCamelCase :Optional[Any] = CycleDiffusionPipeline.from_pretrained( __lowercase , scheduler=__lowercase , safety_checker=__lowercase , torch_dtype=torch.floataa , revision='''fp16''') pipe.to(__lowercase) pipe.set_progress_bar_config(disable=__lowercase) pipe.enable_attention_slicing() __UpperCamelCase :Dict = '''A black colored car''' __UpperCamelCase :List[str] = '''A blue colored car''' __UpperCamelCase :Optional[int] = torch.manual_seed(0) __UpperCamelCase :Optional[int] = pipe( prompt=__lowercase , source_prompt=__lowercase , image=__lowercase , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=__lowercase , output_type='''np''' , ) __UpperCamelCase :List[Any] = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image).max() < 5E-1 def UpperCamelCase__ ( self) -> int: __UpperCamelCase :str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''') __UpperCamelCase :str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy''') __UpperCamelCase :List[Any] = init_image.resize((512, 512)) __UpperCamelCase :Optional[int] = '''CompVis/stable-diffusion-v1-4''' __UpperCamelCase :str = DDIMScheduler.from_pretrained(__lowercase , subfolder='''scheduler''') __UpperCamelCase :List[str] = CycleDiffusionPipeline.from_pretrained(__lowercase , scheduler=__lowercase , safety_checker=__lowercase) pipe.to(__lowercase) pipe.set_progress_bar_config(disable=__lowercase) pipe.enable_attention_slicing() __UpperCamelCase :Tuple = '''A black colored car''' __UpperCamelCase :str = '''A blue colored car''' __UpperCamelCase :Tuple = torch.manual_seed(0) __UpperCamelCase :int = pipe( prompt=__lowercase , source_prompt=__lowercase , image=__lowercase , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=__lowercase , output_type='''np''' , ) __UpperCamelCase :Optional[Any] = output.images assert np.abs(image - expected_image).max() < 2E-2
43
"""simple docstring""" import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class _lowerCAmelCase : """simple docstring""" @staticmethod def _lowercase ( *UpperCAmelCase__ : Tuple, **UpperCAmelCase__ : List[Any] ): pass def _A ( UpperCamelCase_ : Union[str, Any]) -> Any: '''simple docstring''' return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. _a = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Tuple = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Optional[Any] ): __lowercase = pipeline( "document-question-answering", model=UpperCAmelCase__, tokenizer=UpperCAmelCase__, image_processor=UpperCAmelCase__ ) __lowercase = INVOICE_URL __lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) ) __lowercase = "What is the placebo?" __lowercase = [ { "image": load_image(UpperCAmelCase__ ), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def _lowercase ( self : int, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Any ): __lowercase = dqa_pipeline(UpperCAmelCase__, top_k=2 ) self.assertEqual( UpperCAmelCase__, [ [ {"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ ), "start": ANY(UpperCAmelCase__ ), "end": ANY(UpperCAmelCase__ )}, {"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ ), "start": ANY(UpperCAmelCase__ ), "end": ANY(UpperCAmelCase__ )}, ] ] * 3, ) @require_torch @require_detectrona @require_pytesseract def _lowercase ( self : Dict ): __lowercase = pipeline("document-question-answering", model="hf-internal-testing/tiny-random-layoutlmv2" ) __lowercase = INVOICE_URL __lowercase = "How many cats are there?" __lowercase = [ {"score": 0.0_001, "answer": "oy 2312/2019", "start": 3_8, "end": 3_9}, {"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 3_8, "end": 4_0}, ] __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), UpperCAmelCase__ ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), UpperCAmelCase__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably __lowercase = "./tests/fixtures/tests_samples/COCO/000000039769.png" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual(UpperCAmelCase__, [] ) # We can optionnally pass directly the words and bounding boxes __lowercase = "./tests/fixtures/tests_samples/COCO/000000039769.png" __lowercase = [] __lowercase = [] __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, words=UpperCAmelCase__, boxes=UpperCAmelCase__, top_k=2 ) self.assertEqual(UpperCAmelCase__, [] ) @slow @require_torch @require_detectrona @require_pytesseract def _lowercase ( self : List[str] ): __lowercase = pipeline( "document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ] * 2, ) @slow @require_torch @require_detectrona @require_pytesseract def _lowercase ( self : Dict ): __lowercase = pipeline( "document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", max_seq_len=5_0, ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3}, {"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3}, {"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3}, {"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6}, ] ] * 2, ) @slow @require_torch @require_pytesseract @require_vision def _lowercase ( self : Optional[Any] ): __lowercase = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=UpperCAmelCase__ ) __lowercase = pipeline( "document-question-answering", model="impira/layoutlm-document-qa", tokenizer=UpperCAmelCase__, revision="3dc6de3", ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ], ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ] ] * 2, ) __lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) ) # This model should also work if `image` is set to None __lowercase = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ], ) @slow @require_torch @require_pytesseract @require_vision def _lowercase ( self : Union[str, Any] ): __lowercase = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=UpperCAmelCase__ ) __lowercase = pipeline( "document-question-answering", model="impira/layoutlm-document-qa", tokenizer=UpperCAmelCase__, revision="3dc6de3", max_seq_len=5_0, ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6}, ] ] * 2, ) __lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) ) # This model should also work if `image` is set to None __lowercase = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) @slow @require_torch def _lowercase ( self : Dict ): __lowercase = pipeline( "document-question-answering", model="naver-clova-ix/donut-base-finetuned-docvqa", tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ), feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa", ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def _lowercase ( self : List[Any] ): pass
17
0
"""simple docstring""" import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() _a : str = logging.get_logger(__name__) _a : Optional[int] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn.grep_linear': 'encoder.layers.*.attention.gru_rel_pos_linear', 'self_attn.relative_attention_bias': 'encoder.layers.*.attention.rel_attn_embed', 'self_attn.grep_a': 'encoder.layers.*.attention.gru_rel_pos_const', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } _a : List[Any] = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any ,_lowerCamelCase : List[Any] ,_lowerCamelCase : Optional[int] ,_lowerCamelCase : Union[str, Any] ,_lowerCamelCase : str ) -> List[str]: for attribute in key.split(""".""" ): _lowerCAmelCase : Tuple = getattr(_lowerCamelCase ,_lowerCamelCase ) if weight_type is not None: _lowerCAmelCase : int = getattr(_lowerCamelCase ,_lowerCamelCase ).shape else: _lowerCAmelCase : str = hf_pointer.shape assert hf_shape == value.shape, ( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": _lowerCAmelCase : Optional[Any] = value elif weight_type == "weight_g": _lowerCAmelCase : str = value elif weight_type == "weight_v": _lowerCAmelCase : Union[str, Any] = value elif weight_type == "bias": _lowerCAmelCase : Optional[int] = value else: _lowerCAmelCase : List[Any] = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict ,_lowerCamelCase : Dict ) -> Any: _lowerCAmelCase : int = [] _lowerCAmelCase : Dict = fairseq_model.state_dict() _lowerCAmelCase : int = hf_model.feature_extractor for name, value in fairseq_dict.items(): _lowerCAmelCase : int = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,hf_model.config.feat_extract_norm == """group""" ,) _lowerCAmelCase : Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: _lowerCAmelCase : List[Any] = True if "*" in mapped_key: _lowerCAmelCase : int = name.split(_lowerCamelCase )[0].split(""".""" )[-2] _lowerCAmelCase : Any = mapped_key.replace("""*""" ,_lowerCamelCase ) if "weight_g" in name: _lowerCAmelCase : int = """weight_g""" elif "weight_v" in name: _lowerCAmelCase : List[str] = """weight_v""" elif "bias" in name and "relative_attention_bias" not in name: _lowerCAmelCase : Tuple = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCAmelCase : str = """weight""" else: _lowerCAmelCase : Dict = None set_recursively(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(f"Unused weights: {unused_weights}" ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any] ,_lowerCamelCase : Any ,_lowerCamelCase : Tuple ,_lowerCamelCase : Optional[Any] ,_lowerCamelCase : Optional[Any] ) -> List[str]: _lowerCAmelCase : List[Any] = full_name.split("""conv_layers.""" )[-1] _lowerCAmelCase : Optional[Any] = name.split(""".""" ) _lowerCAmelCase : Dict = int(items[0] ) _lowerCAmelCase : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) _lowerCAmelCase : List[str] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) _lowerCAmelCase : Any = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) _lowerCAmelCase : List[str] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) _lowerCAmelCase : int = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_lowerCamelCase ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : List[Any] ,_lowerCamelCase : str=None ) -> Dict: # load the pre-trained checkpoints _lowerCAmelCase : int = torch.load(_lowerCamelCase ) _lowerCAmelCase : List[str] = WavLMConfigOrig(checkpoint["""cfg"""] ) _lowerCAmelCase : Tuple = WavLMOrig(_lowerCamelCase ) model.load_state_dict(checkpoint["""model"""] ) model.eval() if config_path is not None: _lowerCAmelCase : Any = WavLMConfig.from_pretrained(_lowerCamelCase ) else: _lowerCAmelCase : Any = WavLMConfig() _lowerCAmelCase : Union[str, Any] = WavLMModel(_lowerCamelCase ) recursively_load_weights(_lowerCamelCase ,_lowerCamelCase ) hf_wavlm.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _a : Optional[int] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') _a : int = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
44
"""simple docstring""" import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _a = 2 class _lowerCAmelCase : """simple docstring""" def __init__( self : Dict, *, # begin keyword-only arguments UpperCAmelCase__ : str="<s>", UpperCAmelCase__ : Tuple="<pad>", UpperCAmelCase__ : str="</s>", UpperCAmelCase__ : Optional[Any]="<unk>", UpperCAmelCase__ : List[Any]=None, ): __lowercase ,__lowercase ,__lowercase ,__lowercase = bos, unk, pad, eos __lowercase = [] __lowercase = [] __lowercase = {} __lowercase = self.add_symbol(UpperCAmelCase__ ) __lowercase = self.add_symbol(UpperCAmelCase__ ) __lowercase = self.add_symbol(UpperCAmelCase__ ) __lowercase = self.add_symbol(UpperCAmelCase__ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(UpperCAmelCase__ ) __lowercase = len(self.symbols ) def __eq__( self : List[str], UpperCAmelCase__ : Dict ): return self.indices == other.indices def __getitem__( self : Optional[int], UpperCAmelCase__ : List[str] ): if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : str ): return len(self.symbols ) def __contains__( self : Any, UpperCAmelCase__ : Optional[Any] ): return sym in self.indices @classmethod def _lowercase ( cls : List[Any], UpperCAmelCase__ : Optional[Any] ): __lowercase = cls() d.add_from_file(UpperCAmelCase__ ) return d def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[Any]=1, UpperCAmelCase__ : str=False ): if word in self.indices and not overwrite: __lowercase = self.indices[word] __lowercase = self.count[idx] + n return idx else: __lowercase = len(self.symbols ) __lowercase = idx self.symbols.append(UpperCAmelCase__ ) self.count.append(UpperCAmelCase__ ) return idx def _lowercase ( self : Any, UpperCAmelCase__ : str ): return 0 def _lowercase ( self : Tuple, UpperCAmelCase__ : List[Any] ): if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): try: with open(UpperCAmelCase__, "r", encoding="utf-8" ) as fd: self.add_from_file(UpperCAmelCase__ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("Incorrect encoding detected in {}, please rebuild the dataset".format(UpperCAmelCase__ ) ) return __lowercase = f.readlines() __lowercase = self._load_meta(UpperCAmelCase__ ) for line in lines[indices_start_line:]: try: __lowercase ,__lowercase = line.rstrip().rsplit(" ", 1 ) if field == "#fairseq:overwrite": __lowercase = True __lowercase ,__lowercase = line.rsplit(" ", 1 ) else: __lowercase = False __lowercase = int(UpperCAmelCase__ ) __lowercase = line if word in self and not overwrite: raise RuntimeError( "Duplicate word found when loading Dictionary: '{}'. " "Duplicate words can overwrite earlier ones by adding the " "#fairseq:overwrite flag at the end of the corresponding row " "in the dictionary file. If using the Camembert model, please " "download an updated copy of the model file.".format(UpperCAmelCase__ ) ) self.add_symbol(UpperCAmelCase__, n=UpperCAmelCase__, overwrite=UpperCAmelCase__ ) except ValueError: raise ValueError("Incorrect dictionary format, expected '<token> <cnt> [flags]'" ) def _A ( UpperCamelCase_ : int) -> str: '''simple docstring''' __lowercase = dict((re.sub(r"@@$", "", UpperCamelCase_), v) if k.endswith("@@") else (re.sub(r"$", "</w>", UpperCamelCase_), v) for k, v in d.items()) __lowercase = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] __lowercase = d[k] # restore return da def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str) -> List[Any]: '''simple docstring''' if not os.path.exists(UpperCamelCase_): raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""") os.makedirs(UpperCamelCase_, exist_ok=UpperCamelCase_) print(F"""Writing results to {pytorch_dump_folder_path}""") # handle various types of models __lowercase = os.path.join(UpperCamelCase_, "checkpoint.pt") if not os.path.isfile(UpperCamelCase_): raise ValueError(F"""path to the file {checkpoint_file} does not exist!""") __lowercase = torch.load(UpperCamelCase_, map_location="cpu") __lowercase = chkpt["cfg"]["model"] # dicts __lowercase = os.path.join(UpperCamelCase_, "dict.txt") if not os.path.isfile(UpperCamelCase_): raise ValueError(F"""path to the file {dict_file} does not exist!""") __lowercase = Dictionary.load(UpperCamelCase_) __lowercase = rewrite_dict_keys(src_dict.indices) __lowercase = len(UpperCamelCase_) __lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["vocab_file"]) print(F"""Generating {src_vocab_file} of {src_vocab_size} records""") with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_)) # merges_file (bpecodes) __lowercase = os.path.join(UpperCamelCase_, "bpecodes") if not os.path.isfile(UpperCamelCase_): raise ValueError(F"""path to the file {bpecodes_file} does not exist!""") __lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["merges_file"]) shutil.copyfile(UpperCamelCase_, UpperCamelCase_) # model config __lowercase = os.path.join(UpperCamelCase_, "config.json") __lowercase = { "activation_dropout": args["activation_dropout"], "architectures": ["BioGptForCausalLM"], "attention_probs_dropout_prob": args["attention_dropout"], "bos_token_id": 0, "eos_token_id": 2, "hidden_act": args["activation_fn"], "hidden_dropout_prob": args["dropout"], "hidden_size": args["decoder_embed_dim"], "initializer_range": 0.02, "intermediate_size": args["decoder_ffn_embed_dim"], "layer_norm_eps": 1E-12, "layerdrop": args["decoder_layerdrop"], "max_position_embeddings": args["max_target_positions"], "model_type": "biogpt", "num_attention_heads": args["decoder_attention_heads"], "num_hidden_layers": args["decoder_layers"], "pad_token_id": 1, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_decoder_input_output_embed"], "vocab_size": src_vocab_size, } # good hparam defaults to start with print(F"""Generating {biogpt_model_config_file}""") with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_)) # tokenizer config __lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_) __lowercase = { "bos_token": "<s>", "eos_token": "</s>", "model_max_length": 1024, "pad_token": "<pad>", "special_tokens_map_file": None, "tokenizer_class": "BioGptTokenizer", "unk_token": "<unk>", } print(F"""Generating {biogpt_tokenizer_config_file}""") with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_)) # model __lowercase = chkpt["model"] # remove unneeded keys __lowercase = [ "decoder.version", ] for k in ignore_keys: model_state_dict.pop(UpperCamelCase_, UpperCamelCase_) __lowercase = list(model_state_dict.keys()) for layer_name in layer_names: if layer_name.endswith("output_projection.weight"): __lowercase = model_state_dict.pop(UpperCamelCase_) else: __lowercase = model_state_dict.pop(UpperCamelCase_) __lowercase = BioGptConfig.from_pretrained(UpperCamelCase_) __lowercase = BioGptForCausalLM(UpperCamelCase_) # check that it loads ok model_new.load_state_dict(UpperCamelCase_) # save __lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_) print(F"""Generating {pytorch_weights_dump_path}""") torch.save(UpperCamelCase_, UpperCamelCase_) print("Conversion is done!") if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _a = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
17
0
"""simple docstring""" import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser lowercase_ = logging.getLogger(__name__) torch.set_grad_enabled(False) lowercase_ = "cuda" if torch.cuda.is_available() else "cpu" def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any]=100 , lowerCAmelCase__ : Optional[int]=" " ) -> List[str]: __a = text.split(lowerCAmelCase__ ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ )] def lowercase ( lowerCAmelCase__ : dict ) -> dict: __a , __a = [], [] for title, text in zip(documents['''title'''] , documents['''text'''] ): if text is not None: for passage in split_text(lowerCAmelCase__ ): titles.append(title if title is not None else '''''' ) texts.append(lowerCAmelCase__ ) return {"title": titles, "text": texts} def lowercase ( lowerCAmelCase__ : dict , lowerCAmelCase__ : DPRContextEncoder , lowerCAmelCase__ : DPRContextEncoderTokenizerFast ) -> dict: __a = ctx_tokenizer( documents['''title'''] , documents['''text'''] , truncation=lowerCAmelCase__ , padding='''longest''' , return_tensors='''pt''' )['''input_ids'''] __a = ctx_encoder(input_ids.to(device=lowerCAmelCase__ ) , return_dict=lowerCAmelCase__ ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def lowercase ( lowerCAmelCase__ : "RagExampleArguments" , lowerCAmelCase__ : "ProcessingArguments" , lowerCAmelCase__ : "IndexHnswArguments" , ) -> Tuple: ###################################### logger.info('''Step 1 - Create the dataset''' ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way __a = load_dataset( '''csv''' , data_files=[rag_example_args.csv_path] , split='''train''' , delimiter='''\t''' , column_names=['''title''', '''text'''] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words __a = dataset.map(lowerCAmelCase__ , batched=lowerCAmelCase__ , num_proc=processing_args.num_proc ) # And compute the embeddings __a = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=lowerCAmelCase__ ) __a = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) __a = Features( {'''text''': Value('''string''' ), '''title''': Value('''string''' ), '''embeddings''': Sequence(Value('''float32''' ) )} ) # optional, save as float32 instead of float64 to save space __a = dataset.map( partial(lowerCAmelCase__ , ctx_encoder=lowerCAmelCase__ , ctx_tokenizer=lowerCAmelCase__ ) , batched=lowerCAmelCase__ , batch_size=processing_args.batch_size , features=lowerCAmelCase__ , ) # And finally save your dataset __a = os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset''' ) dataset.save_to_disk(lowerCAmelCase__ ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info('''Step 2 - Index the dataset''' ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search __a = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index('''embeddings''' , custom_index=lowerCAmelCase__ ) # And save the index __a = os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset_hnsw_index.faiss''' ) dataset.get_index('''embeddings''' ).save(lowerCAmelCase__ ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class __lowerCAmelCase : '''simple docstring''' __UpperCAmelCase : str = field( default=str(Path(__SCREAMING_SNAKE_CASE ).parent / 'test_run' / 'dummy-kb' / 'my_knowledge_dataset.csv' ) , metadata={'help': 'Path to a tab-separated csv file with columns \'title\' and \'text\''} , ) __UpperCAmelCase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'} , ) __UpperCAmelCase : str = field( default='facebook/rag-sequence-nq' , metadata={'help': 'The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''} , ) __UpperCAmelCase : str = field( default='facebook/dpr-ctx_encoder-multiset-base' , metadata={ 'help': ( 'The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or' ' \'facebook/dpr-ctx_encoder-multiset-base\'' ) } , ) __UpperCAmelCase : Optional[str] = field( default=str(Path(__SCREAMING_SNAKE_CASE ).parent / 'test_run' / 'dummy-kb' ) , metadata={'help': 'Path to a directory where the dataset passages and the index will be saved'} , ) @dataclass class __lowerCAmelCase : '''simple docstring''' __UpperCAmelCase : Optional[int] = field( default=__SCREAMING_SNAKE_CASE , metadata={ 'help': 'The number of processes to use to split the documents into passages. Default is single process.' } , ) __UpperCAmelCase : int = field( default=1_6 , metadata={ 'help': 'The batch size to use when computing the passages embeddings using the DPR context encoder.' } , ) @dataclass class __lowerCAmelCase : '''simple docstring''' __UpperCAmelCase : int = field( default=7_6_8 , metadata={'help': 'The dimension of the embeddings to pass to the HNSW Faiss index.'} , ) __UpperCAmelCase : int = field( default=1_2_8 , metadata={ 'help': ( 'The number of bi-directional links created for every new element during the HNSW index construction.' ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) lowercase_ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) lowercase_ , lowercase_ , lowercase_ = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: lowercase_ = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
45
"""simple docstring""" from __future__ import annotations from typing import Any class _lowerCAmelCase : """simple docstring""" def __init__( self : Any, UpperCAmelCase__ : int ): __lowercase = num_of_nodes __lowercase = [] __lowercase = {} def _lowercase ( self : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : int, UpperCAmelCase__ : int ): self.m_edges.append([u_node, v_node, weight] ) def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _lowercase ( self : List[Any], UpperCAmelCase__ : int ): if self.m_component[u_node] != u_node: for k in self.m_component: __lowercase = self.find_component(UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : list[int], UpperCAmelCase__ : int, UpperCAmelCase__ : int ): if component_size[u_node] <= component_size[v_node]: __lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(UpperCAmelCase__ ) elif component_size[u_node] >= component_size[v_node]: __lowercase = self.find_component(UpperCAmelCase__ ) component_size[u_node] += component_size[v_node] self.set_component(UpperCAmelCase__ ) def _lowercase ( self : Any ): __lowercase = [] __lowercase = 0 __lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowercase ,__lowercase ,__lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase ,__lowercase ,__lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 __lowercase = [-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def _A ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
17
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin SCREAMING_SNAKE_CASE__ = False @skip_mps class lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE = StableDiffusionAttendAndExcitePipeline _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_PARAMS _SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_BATCH_PARAMS.union({'token_indices'} ) _SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_IMAGE_PARAMS _SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def _snake_case ( cls ) -> str: super().setUpClass() torch.use_deterministic_algorithms(lowercase ) @classmethod def _snake_case ( cls ) -> List[Any]: super().tearDownClass() torch.use_deterministic_algorithms(lowercase ) def _snake_case ( self ) -> str: torch.manual_seed(0 ) lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=lowercase , ) lowerCAmelCase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=lowercase , set_alpha_to_one=lowercase , ) torch.manual_seed(0 ) lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=512 , ) lowerCAmelCase = CLIPTextModel(lowercase ) lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _snake_case ( self , lowercase , lowercase=0 ) -> Optional[Any]: if str(lowercase ).startswith("""mps""" ): lowerCAmelCase = torch.manual_seed(lowercase ) else: lowerCAmelCase = torch.Generator(device=lowercase ).manual_seed(lowercase ) lowerCAmelCase = lowerCAmelCase = { """prompt""": """a cat and a frog""", """token_indices""": [2, 5], """generator""": generator, """num_inference_steps""": 1, """guidance_scale""": 6.0, """output_type""": """numpy""", """max_iter_to_alter""": 2, """thresholds""": {0: 0.7}, } return inputs def _snake_case ( self ) -> Optional[int]: lowerCAmelCase = """cpu""" lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = self.pipeline_class(**lowercase ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) lowerCAmelCase = self.get_dummy_inputs(lowercase ) lowerCAmelCase = pipe(**lowercase ).images lowerCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) lowerCAmelCase = np.array( [0.63_905_364, 0.62_897_307, 0.48_599_017, 0.5_133_624, 0.5_550_048, 0.45_769_516, 0.50_326_973, 0.5_023_139, 0.45_384_496] ) lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowercase , 1e-3 ) def _snake_case ( self ) -> Union[str, Any]: super().test_cpu_offload_forward_pass(expected_max_diff=5e-4 ) def _snake_case ( self ) -> int: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _snake_case ( self ) -> Optional[int]: self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7e-4 ) def _snake_case ( self ) -> Optional[int]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def _snake_case ( self ) -> Optional[int]: super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5e-4 ) def _snake_case ( self ) -> int: super().test_save_load_local(expected_max_difference=5e-4 ) def _snake_case ( self ) -> int: super().test_save_load_optional_components(expected_max_difference=4e-4 ) @require_torch_gpu @slow class lowercase ( unittest.TestCase ): @classmethod def _snake_case ( cls ) -> Dict: super().setUpClass() torch.use_deterministic_algorithms(lowercase ) @classmethod def _snake_case ( cls ) -> Tuple: super().tearDownClass() torch.use_deterministic_algorithms(lowercase ) def _snake_case ( self ) -> List[str]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> List[Any]: lowerCAmelCase = torch.manual_seed(51 ) lowerCAmelCase = StableDiffusionAttendAndExcitePipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , safety_checker=lowercase , torch_dtype=torch.floataa ) pipe.to("""cuda""" ) lowerCAmelCase = """a painting of an elephant with glasses""" lowerCAmelCase = [5, 7] lowerCAmelCase = pipe( prompt=lowercase , token_indices=lowercase , guidance_scale=7.5 , generator=lowercase , num_inference_steps=5 , max_iter_to_alter=5 , output_type="""numpy""" , ).images[0] lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy""" ) assert np.abs((expected_image - image).max() ) < 5e-1
46
"""simple docstring""" from math import sqrt def _A ( UpperCamelCase_ : int) -> int: '''simple docstring''' __lowercase = 0 for i in range(1, int(sqrt(UpperCamelCase_) + 1)): if n % i == 0 and i != sqrt(UpperCamelCase_): total += i + n // i elif i == sqrt(UpperCamelCase_): total += i return total - n def _A ( UpperCamelCase_ : int = 10000) -> int: '''simple docstring''' __lowercase = sum( i for i in range(1, UpperCamelCase_) if sum_of_divisors(sum_of_divisors(UpperCamelCase_)) == i and sum_of_divisors(UpperCamelCase_) != i) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
17
0
'''simple docstring''' import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } lowerCamelCase : Any = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def _lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any , _UpperCamelCase : Dict , _UpperCamelCase : Any ) -> Any: """simple docstring""" for attribute in key.split('.' ): _SCREAMING_SNAKE_CASE =getattr(_UpperCamelCase , _UpperCamelCase ) if weight_type is not None: _SCREAMING_SNAKE_CASE =getattr(_UpperCamelCase , _UpperCamelCase ).shape else: _SCREAMING_SNAKE_CASE =hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": _SCREAMING_SNAKE_CASE =value elif weight_type == "weight_g": _SCREAMING_SNAKE_CASE =value elif weight_type == "weight_v": _SCREAMING_SNAKE_CASE =value elif weight_type == "bias": _SCREAMING_SNAKE_CASE =value else: _SCREAMING_SNAKE_CASE =value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def _lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : Dict ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =fairseq_model.state_dict() _SCREAMING_SNAKE_CASE =hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): _SCREAMING_SNAKE_CASE =False if "conv_layers" in name: load_conv_layer( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , hf_model.config.feat_extract_norm == 'group' , ) _SCREAMING_SNAKE_CASE =True else: for key, mapped_key in MAPPING.items(): _SCREAMING_SNAKE_CASE ='unispeech_sat.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('.' )[:-1] ) != key): # special case since naming is very similar continue _SCREAMING_SNAKE_CASE =True if "*" in mapped_key: _SCREAMING_SNAKE_CASE =name.split(_UpperCamelCase )[0].split('.' )[-2] _SCREAMING_SNAKE_CASE =mapped_key.replace('*' , _UpperCamelCase ) if "weight_g" in name: _SCREAMING_SNAKE_CASE ='weight_g' elif "weight_v" in name: _SCREAMING_SNAKE_CASE ='weight_v' elif "bias" in name: _SCREAMING_SNAKE_CASE ='bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj _SCREAMING_SNAKE_CASE ='weight' else: _SCREAMING_SNAKE_CASE =None set_recursively(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) continue if not is_used: unused_weights.append(_UpperCamelCase ) logger.warning(f"Unused weights: {unused_weights}" ) def _lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict , _UpperCamelCase : List[str] ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =full_name.split('conv_layers.' )[-1] _SCREAMING_SNAKE_CASE =name.split('.' ) _SCREAMING_SNAKE_CASE =int(items[0] ) _SCREAMING_SNAKE_CASE =int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) _SCREAMING_SNAKE_CASE =value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) _SCREAMING_SNAKE_CASE =value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found." ) _SCREAMING_SNAKE_CASE =value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) _SCREAMING_SNAKE_CASE =value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_UpperCamelCase ) @torch.no_grad() def _lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any]=None , _UpperCamelCase : str=None , _UpperCamelCase : Tuple=True ) -> str: """simple docstring""" if config_path is not None: _SCREAMING_SNAKE_CASE =UniSpeechSatConfig.from_pretrained(_UpperCamelCase ) else: _SCREAMING_SNAKE_CASE =UniSpeechSatConfig() _SCREAMING_SNAKE_CASE ='' if is_finetuned: _SCREAMING_SNAKE_CASE =UniSpeechSatForCTC(_UpperCamelCase ) else: _SCREAMING_SNAKE_CASE =UniSpeechSatForPreTraining(_UpperCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) _SCREAMING_SNAKE_CASE =model[0].eval() recursively_load_weights(_UpperCamelCase , _UpperCamelCase ) hf_wavavec.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) lowerCamelCase : Union[str, Any] = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
47
"""simple docstring""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _a = _symbol_database.Default() _a = _descriptor_pool.Default().AddSerializedFile( b'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) _a = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: _a = None _a = b'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" _a = 45 _a = 15_81 _a = 15_17 _a = 15_70 _a = 15_84 _a = 17_93 _a = 17_95 _a = 19_16 _a = 18_64 _a = 19_05 _a = 19_19 _a = 24_29 _a = 22_08 _a = 24_18 _a = 23_23 _a = 24_07 # @@protoc_insertion_point(module_scope)
17
0
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = False , **UpperCamelCase__ , ) -> List[Any]: super().__init__(features=UpperCamelCase__ , cache_dir=UpperCamelCase__ , keep_in_memory=UpperCamelCase__ , **UpperCamelCase__ ) lowerCamelCase : str = Sql( cache_dir=UpperCamelCase__ , features=UpperCamelCase__ , sql=UpperCamelCase__ , con=UpperCamelCase__ , **UpperCamelCase__ , ) def _lowercase ( self ) -> List[Any]: lowerCamelCase : List[Any] = None lowerCamelCase : List[str] = None lowerCamelCase : int = None lowerCamelCase : Optional[Any] = None self.builder.download_and_prepare( download_config=UpperCamelCase__ , download_mode=UpperCamelCase__ , verification_mode=UpperCamelCase__ , base_path=UpperCamelCase__ , ) # Build dataset for splits lowerCamelCase : Any = self.builder.as_dataset( split="train" , verification_mode=UpperCamelCase__ , in_memory=self.keep_in_memory ) return dataset class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> Any: if num_proc is not None and num_proc <= 0: raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''' ) lowerCamelCase : int = dataset lowerCamelCase : int = name lowerCamelCase : Optional[int] = con lowerCamelCase : List[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE lowerCamelCase : int = num_proc lowerCamelCase : int = to_sql_kwargs def _lowercase ( self ) -> int: lowerCamelCase : Optional[Any] = self.to_sql_kwargs.pop("sql" , UpperCamelCase__ ) lowerCamelCase : Union[str, Any] = self.to_sql_kwargs.pop("con" , UpperCamelCase__ ) lowerCamelCase : str = self.to_sql_kwargs.pop("index" , UpperCamelCase__ ) lowerCamelCase : str = self._write(index=UpperCamelCase__ , **self.to_sql_kwargs ) return written def _lowercase ( self , UpperCamelCase__ ) -> str: lowerCamelCase , lowerCamelCase , lowerCamelCase : Tuple = args lowerCamelCase : Tuple = {**to_sql_kwargs, "if_exists": "append"} if offset > 0 else to_sql_kwargs lowerCamelCase : List[str] = query_table( table=self.dataset.data , key=slice(UpperCamelCase__ , offset + self.batch_size ) , indices=self.dataset._indices , ) lowerCamelCase : List[Any] = batch.to_pandas() lowerCamelCase : Any = df.to_sql(self.name , self.con , index=UpperCamelCase__ , **UpperCamelCase__ ) return num_rows or len(UpperCamelCase__ ) def _lowercase ( self , UpperCamelCase__ , **UpperCamelCase__ ) -> int: lowerCamelCase : Tuple = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: lowerCamelCase , lowerCamelCase : Tuple = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , UpperCamelCase__ , UpperCamelCase__ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += num_rows return written
48
"""simple docstring""" import baseaa def _A ( UpperCamelCase_ : str) -> bytes: '''simple docstring''' return baseaa.baaencode(string.encode("utf-8")) def _A ( UpperCamelCase_ : bytes) -> str: '''simple docstring''' return baseaa.baadecode(UpperCamelCase_).decode("utf-8") if __name__ == "__main__": _a = 'Hello World!' _a = baseaa_encode(test) print(encoded) _a = baseaa_decode(encoded) print(decoded)
17
0
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class _A ( nn.Module ): def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : int = 16 , __SCREAMING_SNAKE_CASE : int = 88 , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : int = 1 , __SCREAMING_SNAKE_CASE : float = 0.0 , __SCREAMING_SNAKE_CASE : int = 32 , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : str = "geglu" , __SCREAMING_SNAKE_CASE : Optional[int] = None , ): '''simple docstring''' super().__init__() __a = nn.ModuleList( [ TransformeraDModel( num_attention_heads=__SCREAMING_SNAKE_CASE , attention_head_dim=__SCREAMING_SNAKE_CASE , in_channels=__SCREAMING_SNAKE_CASE , num_layers=__SCREAMING_SNAKE_CASE , dropout=__SCREAMING_SNAKE_CASE , norm_num_groups=__SCREAMING_SNAKE_CASE , cross_attention_dim=__SCREAMING_SNAKE_CASE , attention_bias=__SCREAMING_SNAKE_CASE , sample_size=__SCREAMING_SNAKE_CASE , num_vector_embeds=__SCREAMING_SNAKE_CASE , activation_fn=__SCREAMING_SNAKE_CASE , num_embeds_ada_norm=__SCREAMING_SNAKE_CASE , ) for _ in range(2) ]) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference __a = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` __a = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` __a = [1, 0] def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : bool = True , ): '''simple docstring''' __a = hidden_states __a = [] __a = 0 # attention_mask is not used yet for i in range(2): # for each of the two transformers, pass the corresponding condition tokens __a = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] __a = self.transformer_index_for_condition[i] __a = self.transformers[transformer_index]( __SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , timestep=__SCREAMING_SNAKE_CASE , cross_attention_kwargs=__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , )[0] encoded_states.append(encoded_state - input_states) tokens_start += self.condition_lengths[i] __a = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) __a = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=__SCREAMING_SNAKE_CASE)
49
"""simple docstring""" def _A ( UpperCamelCase_ : Any) -> List[str]: '''simple docstring''' __lowercase ,__lowercase = [], [] while len(UpperCamelCase_) > 1: __lowercase ,__lowercase = min(UpperCamelCase_), max(UpperCamelCase_) start.append(UpperCamelCase_) end.append(UpperCamelCase_) collection.remove(UpperCamelCase_) collection.remove(UpperCamelCase_) end.reverse() return start + collection + end if __name__ == "__main__": _a = input('Enter numbers separated by a comma:\n').strip() _a = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
17
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) _UpperCAmelCase : str = { """google/pix2struct-textcaps-base""": ( """https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json""" ), } class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = """pix2struct_text_model""" UpperCAmelCase__ = ["""past_key_values"""] UpperCAmelCase__ = { """hidden_size""": """hidden_size""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : str , UpperCAmelCase : Any=50244 , UpperCAmelCase : Union[str, Any]=768 , UpperCAmelCase : List[Any]=64 , UpperCAmelCase : str=2048 , UpperCAmelCase : Optional[int]=12 , UpperCAmelCase : Optional[Any]=12 , UpperCAmelCase : Tuple=32 , UpperCAmelCase : Optional[Any]=128 , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : List[Any]=1e-6 , UpperCAmelCase : List[str]=1.0 , UpperCAmelCase : Any="gelu_new" , UpperCAmelCase : Optional[int]=0 , UpperCAmelCase : Optional[int]=False , UpperCAmelCase : List[Any]=0 , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : Dict=False , UpperCAmelCase : List[str]=True , **UpperCAmelCase : Optional[int] , ) -> Tuple: lowerCamelCase__ : Union[str, Any] = vocab_size lowerCamelCase__ : List[str] = hidden_size lowerCamelCase__ : Optional[int] = d_kv lowerCamelCase__ : Union[str, Any] = d_ff lowerCamelCase__ : Dict = num_layers lowerCamelCase__ : Tuple = num_heads lowerCamelCase__ : str = relative_attention_num_buckets lowerCamelCase__ : Optional[Any] = relative_attention_max_distance lowerCamelCase__ : Tuple = dropout_rate lowerCamelCase__ : str = layer_norm_epsilon lowerCamelCase__ : str = initializer_factor lowerCamelCase__ : Optional[Any] = use_cache lowerCamelCase__ : Dict = eos_token_id lowerCamelCase__ : Dict = decoder_start_token_id # for backwards compatibility lowerCamelCase__ : Tuple = dense_act_fn super().__init__( pad_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , decoder_start_token_id=UpperCAmelCase , tie_word_embeddings=UpperCAmelCase , is_decoder=UpperCAmelCase , **UpperCAmelCase , ) @classmethod def A_ ( cls : Tuple , UpperCAmelCase : Union[str, os.PathLike] , **UpperCAmelCase : str ) -> "PretrainedConfig": cls._set_token_in_kwargs(UpperCAmelCase ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": lowerCamelCase__ : Union[str, Any] = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCAmelCase , **UpperCAmelCase ) class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = """pix2struct_vision_model""" def __init__( self : Optional[int] , UpperCAmelCase : int=768 , UpperCAmelCase : Optional[Any]=768 , UpperCAmelCase : Optional[Any]=2048 , UpperCAmelCase : str=64 , UpperCAmelCase : Union[str, Any]=12 , UpperCAmelCase : List[str]=12 , UpperCAmelCase : Any="gelu_new" , UpperCAmelCase : List[Any]=1e-6 , UpperCAmelCase : Any=0.0 , UpperCAmelCase : List[Any]=0.0 , UpperCAmelCase : Union[str, Any]=1e-10 , UpperCAmelCase : List[Any]=1.0 , UpperCAmelCase : Optional[int]=4096 , UpperCAmelCase : Union[str, Any]=32 , UpperCAmelCase : Union[str, Any]=128 , **UpperCAmelCase : List[str] , ) -> Tuple: super().__init__(**UpperCAmelCase ) lowerCamelCase__ : List[str] = hidden_size lowerCamelCase__ : Any = patch_embed_hidden_size lowerCamelCase__ : Any = d_ff lowerCamelCase__ : int = dropout_rate lowerCamelCase__ : Optional[Any] = num_hidden_layers lowerCamelCase__ : Optional[int] = num_attention_heads lowerCamelCase__ : int = initializer_range lowerCamelCase__ : Optional[int] = initializer_factor lowerCamelCase__ : int = attention_dropout lowerCamelCase__ : str = layer_norm_eps lowerCamelCase__ : List[Any] = dense_act_fn lowerCamelCase__ : int = seq_len lowerCamelCase__ : str = relative_attention_num_buckets lowerCamelCase__ : List[str] = relative_attention_max_distance lowerCamelCase__ : Dict = d_kv @classmethod def A_ ( cls : Any , UpperCAmelCase : Union[str, os.PathLike] , **UpperCAmelCase : int ) -> "PretrainedConfig": cls._set_token_in_kwargs(UpperCAmelCase ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": lowerCamelCase__ : Optional[Any] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCAmelCase , **UpperCAmelCase ) class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = """pix2struct""" UpperCAmelCase__ = True def __init__( self : str , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : str=None , UpperCAmelCase : str=1.0 , UpperCAmelCase : str=0.0_2 , UpperCAmelCase : int=False , UpperCAmelCase : Optional[int]=False , UpperCAmelCase : List[Any]=True , **UpperCAmelCase : Dict , ) -> Optional[int]: super().__init__(tie_word_embeddings=UpperCAmelCase , is_encoder_decoder=UpperCAmelCase , **UpperCAmelCase ) if text_config is None: lowerCamelCase__ : List[Any] = {} logger.info('text_config is None. Initializing the Pix2StructTextConfig with default values.' ) if vision_config is None: lowerCamelCase__ : Tuple = {} logger.info('vision_config is None. Initializing the Pix2StructVisionConfig with default values.' ) lowerCamelCase__ : List[Any] = PixaStructTextConfig(**UpperCAmelCase ) lowerCamelCase__ : List[Any] = PixaStructVisionConfig(**UpperCAmelCase ) lowerCamelCase__ : List[str] = self.text_config.decoder_start_token_id lowerCamelCase__ : int = self.text_config.pad_token_id lowerCamelCase__ : Any = self.text_config.eos_token_id lowerCamelCase__ : Optional[int] = initializer_factor lowerCamelCase__ : Any = initializer_range lowerCamelCase__ : Union[str, Any] = self.initializer_range lowerCamelCase__ : Optional[Any] = self.initializer_range lowerCamelCase__ : List[str] = is_vqa @classmethod def A_ ( cls : Dict , UpperCAmelCase : PixaStructTextConfig , UpperCAmelCase : PixaStructVisionConfig , **UpperCAmelCase : Union[str, Any] ) -> str: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCAmelCase ) def A_ ( self : int ) -> Optional[int]: lowerCamelCase__ : Dict = copy.deepcopy(self.__dict__ ) lowerCamelCase__ : List[Any] = self.text_config.to_dict() lowerCamelCase__ : Any = self.vision_config.to_dict() lowerCamelCase__ : List[Any] = self.__class__.model_type return output
50
"""simple docstring""" def _A ( UpperCamelCase_ : list[int]) -> float: '''simple docstring''' if not nums: # Makes sure that the list is not empty raise ValueError("List is empty") __lowercase = sum(UpperCamelCase_) / len(UpperCamelCase_) # Calculate the average return sum(abs(x - average) for x in nums) / len(UpperCamelCase_) if __name__ == "__main__": import doctest doctest.testmod()
17
0
import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class __snake_case : def __init__( self : List[str] , _snake_case : Any , _snake_case : Tuple=13 , _snake_case : Tuple=7 , _snake_case : Optional[int]=True , _snake_case : Optional[int]=True , _snake_case : List[str]=True , _snake_case : Dict=True , _snake_case : Any=99 , _snake_case : str=32 , _snake_case : Optional[Any]=5 , _snake_case : Any=4 , _snake_case : Tuple=37 , _snake_case : Optional[int]="gelu" , _snake_case : int=0.1 , _snake_case : Optional[Any]=0.1 , _snake_case : Any=128 , _snake_case : List[str]=32 , _snake_case : str=16 , _snake_case : str=2 , _snake_case : List[str]=0.0_2 , _snake_case : str=3 , _snake_case : Optional[Any]=4 , _snake_case : Optional[int]=None , ): """simple docstring""" UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_input_mask UpperCAmelCase_ = use_token_type_ids UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = num_labels UpperCAmelCase_ = num_choices UpperCAmelCase_ = scope def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCAmelCase_ = None if self.use_input_mask: UpperCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length]) UpperCAmelCase_ = None if self.use_token_type_ids: UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_choices) UpperCAmelCase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase ( self : Optional[int]): """simple docstring""" return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_snake_case , initializer_range=self.initializer_range , ) def lowerCamelCase ( self : Optional[int]): """simple docstring""" ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = self.prepare_config_and_inputs() UpperCAmelCase_ = True UpperCAmelCase_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCamelCase ( self : Union[str, Any] , _snake_case : int , _snake_case : Optional[Any] , _snake_case : List[str] , _snake_case : List[Any] , _snake_case : List[Any] , _snake_case : Optional[int] , _snake_case : Tuple): """simple docstring""" UpperCAmelCase_ = NezhaModel(config=_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case) UpperCAmelCase_ = model(_snake_case , token_type_ids=_snake_case) UpperCAmelCase_ = model(_snake_case) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def lowerCamelCase ( self : Optional[Any] , _snake_case : str , _snake_case : Optional[int] , _snake_case : Any , _snake_case : Tuple , _snake_case : Optional[Any] , _snake_case : Optional[Any] , _snake_case : Dict , _snake_case : List[str] , _snake_case : Optional[Any] , ): """simple docstring""" UpperCAmelCase_ = True UpperCAmelCase_ = NezhaModel(_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model( _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , ) UpperCAmelCase_ = model( _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , encoder_hidden_states=_snake_case , ) UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def lowerCamelCase ( self : Optional[int] , _snake_case : str , _snake_case : Tuple , _snake_case : Optional[int] , _snake_case : str , _snake_case : int , _snake_case : Tuple , _snake_case : int): """simple docstring""" UpperCAmelCase_ = NezhaForMaskedLM(config=_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def lowerCamelCase ( self : Tuple , _snake_case : Any , _snake_case : Optional[Any] , _snake_case : Union[str, Any] , _snake_case : Any , _snake_case : Dict , _snake_case : int , _snake_case : Tuple): """simple docstring""" UpperCAmelCase_ = NezhaForNextSentencePrediction(config=_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model( _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def lowerCamelCase ( self : Optional[Any] , _snake_case : Tuple , _snake_case : Dict , _snake_case : Tuple , _snake_case : Any , _snake_case : Union[str, Any] , _snake_case : Any , _snake_case : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = NezhaForPreTraining(config=_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model( _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case , next_sentence_label=_snake_case , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def lowerCamelCase ( self : Dict , _snake_case : Union[str, Any] , _snake_case : str , _snake_case : int , _snake_case : Tuple , _snake_case : Union[str, Any] , _snake_case : Tuple , _snake_case : Tuple): """simple docstring""" UpperCAmelCase_ = NezhaForQuestionAnswering(config=_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model( _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , start_positions=_snake_case , end_positions=_snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def lowerCamelCase ( self : Optional[int] , _snake_case : Optional[Any] , _snake_case : Union[str, Any] , _snake_case : List[Any] , _snake_case : Tuple , _snake_case : str , _snake_case : List[Any] , _snake_case : Optional[int]): """simple docstring""" UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = NezhaForSequenceClassification(_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def lowerCamelCase ( self : Optional[int] , _snake_case : Optional[int] , _snake_case : Tuple , _snake_case : Tuple , _snake_case : Optional[int] , _snake_case : Dict , _snake_case : Union[str, Any] , _snake_case : Optional[int]): """simple docstring""" UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = NezhaForTokenClassification(config=_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def lowerCamelCase ( self : List[Any] , _snake_case : Optional[int] , _snake_case : int , _snake_case : Optional[Any] , _snake_case : int , _snake_case : Union[str, Any] , _snake_case : str , _snake_case : str): """simple docstring""" UpperCAmelCase_ = self.num_choices UpperCAmelCase_ = NezhaForMultipleChoice(config=_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() UpperCAmelCase_ = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() UpperCAmelCase_ = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() UpperCAmelCase_ = model( _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = config_and_inputs UpperCAmelCase_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __snake_case ( a , a , a , unittest.TestCase ): UpperCAmelCase__ : List[str] = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) UpperCAmelCase__ : str = ( { '''feature-extraction''': NezhaModel, '''fill-mask''': NezhaForMaskedLM, '''question-answering''': NezhaForQuestionAnswering, '''text-classification''': NezhaForSequenceClassification, '''token-classification''': NezhaForTokenClassification, '''zero-shot''': NezhaForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ : Union[str, Any] = True def lowerCamelCase ( self : Optional[Any] , _snake_case : Any , _snake_case : int , _snake_case : List[str]=False): """simple docstring""" UpperCAmelCase_ = super()._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case) if return_labels: if model_class in get_values(_snake_case): UpperCAmelCase_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_snake_case) UpperCAmelCase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_snake_case) return inputs_dict def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = NezhaModelTester(self) UpperCAmelCase_ = ConfigTester(self , config_class=_snake_case , hidden_size=37) def lowerCamelCase ( self : List[str]): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_snake_case) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCAmelCase_ = None self.model_tester.create_and_check_model_as_decoder( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_snake_case) def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_snake_case) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*_snake_case) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_snake_case) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_snake_case) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_snake_case) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_snake_case) @slow def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = NezhaModel.from_pretrained(_snake_case) self.assertIsNotNone(_snake_case) @slow @require_torch_gpu def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return UpperCAmelCase_ = True UpperCAmelCase_ = model_class(config=_snake_case) UpperCAmelCase_ = self._prepare_for_class(_snake_case , _snake_case) UpperCAmelCase_ = torch.jit.trace( _snake_case , (inputs_dict['''input_ids'''].to('''cpu'''), inputs_dict['''attention_mask'''].to('''cpu'''))) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_snake_case , os.path.join(_snake_case , '''bert.pt''')) UpperCAmelCase_ = torch.jit.load(os.path.join(_snake_case , '''bert.pt''') , map_location=_snake_case) loaded(inputs_dict['''input_ids'''].to(_snake_case) , inputs_dict['''attention_mask'''].to(_snake_case)) @require_torch class __snake_case ( unittest.TestCase ): @slow def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = NezhaModel.from_pretrained('''sijunhe/nezha-cn-base''') UpperCAmelCase_ = torch.tensor([[0, 1, 2, 3, 4, 5]]) UpperCAmelCase_ = torch.tensor([[0, 1, 1, 1, 1, 1]]) with torch.no_grad(): UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case)[0] UpperCAmelCase_ = torch.Size((1, 6, 768)) self.assertEqual(output.shape , _snake_case) UpperCAmelCase_ = torch.tensor([[[0.0_6_8_5, 0.2_4_4_1, 0.1_1_0_2], [0.0_6_0_0, 0.1_9_0_6, 0.1_3_4_9], [0.0_2_2_1, 0.0_8_1_9, 0.0_5_8_6]]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _snake_case , atol=1e-4)) @slow def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = NezhaForMaskedLM.from_pretrained('''sijunhe/nezha-cn-base''') UpperCAmelCase_ = torch.tensor([[0, 1, 2, 3, 4, 5]]) UpperCAmelCase_ = torch.tensor([[1, 1, 1, 1, 1, 1]]) with torch.no_grad(): UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case)[0] UpperCAmelCase_ = torch.Size((1, 6, 21128)) self.assertEqual(output.shape , _snake_case) UpperCAmelCase_ = torch.tensor( [[-2.7_9_3_9, -1.7_9_0_2, -2.2_1_8_9], [-2.8_5_8_5, -1.8_9_0_8, -2.3_7_2_3], [-2.6_4_9_9, -1.7_7_5_0, -2.2_5_5_8]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _snake_case , atol=1e-4))
51
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : int=1_0_0, UpperCAmelCase__ : Any=1_3, UpperCAmelCase__ : List[Any]=3_0, UpperCAmelCase__ : Dict=2, UpperCAmelCase__ : Any=3, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[str]=True, UpperCAmelCase__ : Optional[Any]=3_2, UpperCAmelCase__ : Any=5, UpperCAmelCase__ : Any=4, UpperCAmelCase__ : Any=3_7, UpperCAmelCase__ : Optional[int]="gelu", UpperCAmelCase__ : Dict=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Dict=1_0, UpperCAmelCase__ : Tuple=0.02, UpperCAmelCase__ : List[Any]=3, ): __lowercase = parent __lowercase = vocab_size __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase = (image_size // patch_size) ** 2 __lowercase = num_patches + 1 def _lowercase ( self : int ): __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size], self.type_sequence_label_size ) __lowercase = BeitConfig( vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=UpperCAmelCase__, initializer_range=self.initializer_range, ) return config, pixel_values, labels def _lowercase ( self : Any, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[str], UpperCAmelCase__ : List[str] ): __lowercase = FlaxBeitModel(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : List[Any] ): __lowercase = FlaxBeitForMaskedImageModeling(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size) ) def _lowercase ( self : Dict, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : Union[str, Any] ): __lowercase = self.type_sequence_label_size __lowercase = FlaxBeitForImageClassification(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowercase = 1 __lowercase = FlaxBeitForImageClassification(UpperCAmelCase__ ) __lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase = model(UpperCAmelCase__ ) def _lowercase ( self : List[str] ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) ,( __lowercase ) ,( __lowercase ) , ) = config_and_inputs __lowercase = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class _lowerCAmelCase ( lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def _lowercase ( self : List[Any] ): __lowercase = FlaxBeitModelTester(self ) __lowercase = ConfigTester(self, config_class=UpperCAmelCase__, has_text_modality=UpperCAmelCase__, hidden_size=3_7 ) def _lowercase ( self : Union[str, Any] ): self.config_tester.run_common_tests() def _lowercase ( self : Optional[int] ): __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(UpperCAmelCase__ ) __lowercase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["pixel_values"] self.assertListEqual(arg_names[:1], UpperCAmelCase__ ) def _lowercase ( self : Tuple ): __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowercase = self._prepare_for_class(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = model_class(UpperCAmelCase__ ) @jax.jit def model_jitted(UpperCAmelCase__ : str, **UpperCAmelCase__ : Dict ): return model(pixel_values=UpperCAmelCase__, **UpperCAmelCase__ ) with self.subTest("JIT Enabled" ): __lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ), len(UpperCAmelCase__ ) ) for jitted_output, output in zip(UpperCAmelCase__, UpperCAmelCase__ ): self.assertEqual(jitted_output.shape, output.shape ) def _lowercase ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def _lowercase ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ ) def _lowercase ( self : Tuple ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ ) @slow def _lowercase ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: __lowercase = model_class_name.from_pretrained("microsoft/beit-base-patch16-224" ) __lowercase = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(UpperCAmelCase__ ) def _A ( ) -> str: '''simple docstring''' __lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_vision @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : Optional[int] ): return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def _lowercase ( self : Any ): __lowercase = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ).pixel_values # prepare bool_masked_pos __lowercase = np.ones((1, 1_9_6), dtype=UpperCAmelCase__ ) # forward pass __lowercase = model(pixel_values=UpperCAmelCase__, bool_masked_pos=UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 1_9_6, 8_1_9_2) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3], UpperCAmelCase__, atol=1E-2 ) ) @slow def _lowercase ( self : Any ): __lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ) # forward pass __lowercase = model(**UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 1_0_0_0) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array([-1.2_385, -1.0_987, -1.0_108] ) self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) ) __lowercase = 2_8_1 self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ ) @slow def _lowercase ( self : List[str] ): __lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ) # forward pass __lowercase = model(**UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 2_1_8_4_1) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array([1.6_881, -0.2_787, 0.5_901] ) self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) ) __lowercase = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ )
17
0
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=0 ) -> Any: # Format the message. if name is None: UpperCamelCase : Dict = None else: UpperCamelCase : Tuple = "." * max(0 , spaces - 2 ) + "# {:" + str(50 - spaces ) + "s}" UpperCamelCase : List[str] = fmt.format(_lowerCAmelCase ) # Print and recurse (if needed). if isinstance(_lowerCAmelCase , _lowerCAmelCase ): if msg is not None: print(_lowerCAmelCase ) for k in val.keys(): recursive_print(_lowerCAmelCase , val[k] , spaces + 2 ) elif isinstance(_lowerCAmelCase , torch.Tensor ): print(_lowerCAmelCase , ":" , val.size() ) else: print(_lowerCAmelCase , ":" , _lowerCAmelCase ) def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. UpperCamelCase : str = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] UpperCamelCase : List[str] = (num_heads, hidden_size, num_splits) + input_shape[1:] UpperCamelCase : str = param.view(*_lowerCAmelCase ) UpperCamelCase : Union[str, Any] = param.transpose(0 , 2 ) UpperCamelCase : List[Any] = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] UpperCamelCase : Optional[Any] = (num_heads, num_splits, hidden_size) + input_shape[1:] UpperCamelCase : Dict = param.view(*_lowerCAmelCase ) UpperCamelCase : Dict = param.transpose(0 , 1 ).contiguous() UpperCamelCase : List[Any] = param.view(*_lowerCAmelCase ) return param def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> str: # The converted output model. UpperCamelCase : List[str] = {} # old versions did not store training args UpperCamelCase : Optional[int] = input_state_dict.get("args" , _lowerCAmelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) UpperCamelCase : Optional[int] = ds_args.padded_vocab_size UpperCamelCase : int = ds_args.max_position_embeddings UpperCamelCase : Any = ds_args.hidden_size UpperCamelCase : Dict = ds_args.num_layers UpperCamelCase : str = ds_args.num_attention_heads UpperCamelCase : Dict = ds_args.ffn_hidden_size # pprint(config) # The number of heads. UpperCamelCase : Optional[Any] = config.n_head # The hidden_size per head. UpperCamelCase : List[str] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): UpperCamelCase : Optional[int] = input_state_dict["checkpoint_version"] else: UpperCamelCase : Tuple = 0.0 # The model. UpperCamelCase : Dict = input_state_dict["model"] # The language model. UpperCamelCase : Any = model["language_model"] # The embeddings. UpperCamelCase : Tuple = lm["embedding"] # The word embeddings. UpperCamelCase : List[str] = embeddings["word_embeddings"]["weight"] # Truncate the embedding table to vocab_size rows. UpperCamelCase : Dict = word_embeddings[: config.vocab_size, :] UpperCamelCase : Optional[int] = word_embeddings # The position embeddings. UpperCamelCase : List[str] = embeddings["position_embeddings"]["weight"] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] UpperCamelCase : Union[str, Any] = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F"""pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don't match""" ) # Store the position embeddings. UpperCamelCase : List[Any] = pos_embeddings # The transformer. UpperCamelCase : int = lm["transformer"] if "transformer" in lm.keys() else lm["encoder"] # The regex to extract layer names. UpperCamelCase : List[Any] = re.compile(r"layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)" ) # The simple map of names for "automated" rules. UpperCamelCase : int = { "attention.dense": ".attn.c_proj.", "self_attention.dense": ".attn.c_proj.", "mlp.dense_h_to_4h": ".mlp.c_fc.", "mlp.dense_4h_to_h": ".mlp.c_proj.", } # Extract the layers. for key, val in transformer.items(): # Match the name. UpperCamelCase : List[str] = layer_re.match(_lowerCAmelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. UpperCamelCase : List[str] = int(m.group(1 ) ) # The name of the operation. UpperCamelCase : List[Any] = m.group(2 ) # Is it a weight or a bias? UpperCamelCase : str = m.group(3 ) # The name of the layer. UpperCamelCase : List[Any] = F"""transformer.h.{layer_idx}""" # For layernorm(s), simply store the layer norm. if op_name.endswith("layernorm" ): UpperCamelCase : Optional[int] = "ln_1" if op_name.startswith("input" ) else "ln_2" UpperCamelCase : str = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. UpperCamelCase : str = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , _lowerCAmelCase , _lowerCAmelCase ) UpperCamelCase : Optional[Any] = causal_mask # Insert a "dummy" tensor for masked_bias. UpperCamelCase : Dict = torch.tensor(-1e4 , dtype=torch.floataa ) UpperCamelCase : Dict = masked_bias UpperCamelCase : List[Any] = fix_query_key_value_ordering(_lowerCAmelCase , _lowerCAmelCase , 3 , _lowerCAmelCase , _lowerCAmelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. UpperCamelCase : Any = out_val.transpose(0 , 1 ).contiguous() # Store. UpperCamelCase : int = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": UpperCamelCase : Dict = fix_query_key_value_ordering(_lowerCAmelCase , _lowerCAmelCase , 3 , _lowerCAmelCase , _lowerCAmelCase ) # Store. No change of shape. UpperCamelCase : Tuple = out_val # Transpose the weights. elif weight_or_bias == "weight": UpperCamelCase : Tuple = megatron_to_transformers[op_name] UpperCamelCase : Tuple = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": UpperCamelCase : int = megatron_to_transformers[op_name] UpperCamelCase : str = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. UpperCamelCase : Optional[int] = transformer["final_layernorm.weight"] UpperCamelCase : Optional[Any] = transformer["final_layernorm.bias"] # For LM head, transformers' wants the matrix to weight embeddings. UpperCamelCase : List[Any] = word_embeddings # It should be done! return output_state_dict def A_ ( ) -> List[str]: # Create the argument parser. UpperCamelCase : str = argparse.ArgumentParser() parser.add_argument("--print-checkpoint-structure" , action="store_true" ) parser.add_argument( "path_to_checkpoint" , type=_lowerCAmelCase , help="Path to the checkpoint file (.zip archive or direct .pt file)" , ) parser.add_argument( "--config_file" , default="" , type=_lowerCAmelCase , help="An optional config json file describing the pre-trained model." , ) UpperCamelCase : List[str] = parser.parse_args() # Extract the basename. UpperCamelCase : List[Any] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F"""Extracting PyTorch state dictionary from {args.path_to_checkpoint}""" ) if args.path_to_checkpoint.endswith(".zip" ): with zipfile.ZipFile(args.path_to_checkpoint , "r" ) as checkpoint: with checkpoint.open("release/mp_rank_00/model_optim_rng.pt" ) as pytorch_dict: UpperCamelCase : int = torch.load(_lowerCAmelCase , map_location="cpu" ) else: UpperCamelCase : List[Any] = torch.load(args.path_to_checkpoint , map_location="cpu" ) UpperCamelCase : Optional[Any] = input_state_dict.get("args" , _lowerCAmelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: UpperCamelCase : Dict = "gelu_fast" elif ds_args.openai_gelu: UpperCamelCase : str = "gelu_new" else: UpperCamelCase : Tuple = "gelu" else: # in the very early days this used to be "gelu_new" UpperCamelCase : Tuple = "gelu_new" # Spell out all parameters in case the defaults change. UpperCamelCase : List[Any] = GPTaConfig( vocab_size=5_0257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=_lowerCAmelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.02 , summary_type="cls_index" , summary_use_proj=_lowerCAmelCase , summary_activation=_lowerCAmelCase , summary_proj_to_labels=_lowerCAmelCase , summary_first_dropout=0.1 , scale_attn_weights=_lowerCAmelCase , use_cache=_lowerCAmelCase , bos_token_id=5_0256 , eos_token_id=5_0256 , ) else: UpperCamelCase : int = GPTaConfig.from_json_file(args.config_file ) UpperCamelCase : str = ["GPT2LMHeadModel"] # Convert. print("Converting" ) UpperCamelCase : Dict = convert_megatron_checkpoint(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(_lowerCAmelCase , _lowerCAmelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: UpperCamelCase : Union[str, Any] = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": UpperCamelCase : Optional[int] = "gpt2" elif tokenizer_type == "PretrainedFromHF": UpperCamelCase : Any = ds_args.tokenizer_name_or_path else: raise ValueError(F"""Unrecognized tokenizer_type {tokenizer_type}""" ) else: UpperCamelCase : Optional[int] = "gpt2" UpperCamelCase : Optional[Any] = AutoTokenizer.from_pretrained(_lowerCAmelCase ) UpperCamelCase : Tuple = type(_lowerCAmelCase ).__name__ UpperCamelCase : Optional[int] = tokenizer_class # Store the config to file. print("Saving config" ) config.save_pretrained(_lowerCAmelCase ) # Save tokenizer based on args print(F"""Adding {tokenizer_class} tokenizer files""" ) tokenizer.save_pretrained(_lowerCAmelCase ) # Store the state_dict to file. UpperCamelCase : Optional[Any] = os.path.join(_lowerCAmelCase , "pytorch_model.bin" ) print(F"""Saving checkpoint to \"{output_checkpoint_file}\"""" ) torch.save(_lowerCAmelCase , _lowerCAmelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
52
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class _lowerCAmelCase ( unittest.TestCase ,lowercase ): """simple docstring""" def _lowercase ( self : List[Any] ): __lowercase = load_tool("text-classification" ) self.tool.setup() __lowercase = load_tool("text-classification", remote=UpperCAmelCase__ ) def _lowercase ( self : str ): __lowercase = self.tool("That's quite cool", ["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" ) def _lowercase ( self : str ): __lowercase = self.remote_tool("That's quite cool", ["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" ) def _lowercase ( self : List[str] ): __lowercase = self.tool(text="That's quite cool", labels=["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" ) def _lowercase ( self : Tuple ): __lowercase = self.remote_tool(text="That's quite cool", labels=["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" )
17
0
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 a__ : Any =get_tests_dir('''fixtures''') a__ : int =get_tests_dir('''fixtures/dummy_feature_extractor_config.json''') a__ : int =get_tests_dir('''fixtures/dummy-config.json''') class snake_case ( unittest.TestCase ): """simple docstring""" def _lowerCamelCase ( self : Union[str, Any] ): __UpperCamelCase = 0 def _lowerCamelCase ( self : Dict ): __UpperCamelCase = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(__A , __A ) def _lowerCamelCase ( self : str ): __UpperCamelCase = AutoFeatureExtractor.from_pretrained(__A ) self.assertIsInstance(__A , __A ) def _lowerCamelCase ( self : Dict ): with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally __UpperCamelCase = AutoFeatureExtractor.from_pretrained(__A ).to_dict() config_dict.pop('feature_extractor_type' ) __UpperCamelCase = WavaVecaFeatureExtractor(**__A ) # save in new folder model_config.save_pretrained(__A ) config.save_pretrained(__A ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained(__A ) # make sure private variable is not incorrectly saved __UpperCamelCase = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(__A , __A ) def _lowerCamelCase ( self : Dict ): __UpperCamelCase = AutoFeatureExtractor.from_pretrained(__A ) self.assertIsInstance(__A , __A ) def _lowerCamelCase ( self : Dict ): with self.assertRaisesRegex( __A , 'bert-base is not a local folder and is not a valid model identifier' ): __UpperCamelCase = AutoFeatureExtractor.from_pretrained('bert-base' ) def _lowerCamelCase ( self : List[Any] ): with self.assertRaisesRegex( __A , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): __UpperCamelCase = AutoFeatureExtractor.from_pretrained(__A , revision='aaaaaa' ) def _lowerCamelCase ( self : List[str] ): with self.assertRaisesRegex( __A , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): __UpperCamelCase = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model' ) def _lowerCamelCase ( self : Tuple ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__A ): __UpperCamelCase = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__A ): __UpperCamelCase = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=__A ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=__A ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__A ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained(__A , trust_remote_code=__A ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) def _lowerCamelCase ( self : List[str] ): try: AutoConfig.register('custom' , __A ) AutoFeatureExtractor.register(__A , __A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__A ): AutoFeatureExtractor.register(__A , __A ) # Now that the config is registered, it can be used as any other config with the auto-API __UpperCamelCase = CustomFeatureExtractor.from_pretrained(__A ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__A ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained(__A ) self.assertIsInstance(__A , __A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def _lowerCamelCase ( self : Any ): class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict =True try: AutoConfig.register('custom' , __A ) AutoFeatureExtractor.register(__A , __A ) # If remote code is not set, the default is to use local __UpperCamelCase = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. __UpperCamelCase = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=__A ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub __UpperCamelCase = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=__A ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(not hasattr(__A , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
53
"""simple docstring""" from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker _a = 'CompVis/stable-diffusion-v1-1' _a = 'CompVis/stable-diffusion-v1-2' _a = 'CompVis/stable-diffusion-v1-3' _a = 'CompVis/stable-diffusion-v1-4' class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : Dict, UpperCAmelCase__ : AutoencoderKL, UpperCAmelCase__ : CLIPTextModel, UpperCAmelCase__ : CLIPTokenizer, UpperCAmelCase__ : UNetaDConditionModel, UpperCAmelCase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], UpperCAmelCase__ : StableDiffusionSafetyChecker, UpperCAmelCase__ : CLIPImageProcessor, UpperCAmelCase__ : bool = True, ): super()._init_() __lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ ) __lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ ) __lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ ) __lowercase = StableDiffusionPipeline( vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, tokenizer=UpperCAmelCase__, unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, safety_checker=UpperCAmelCase__, feature_extractor=UpperCAmelCase__, requires_safety_checker=UpperCAmelCase__, ) self.register_modules(pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea ) @property def _lowercase ( self : List[str] ): return {k: getattr(self, UpperCAmelCase__ ) for k in self.config.keys() if not k.startswith("_" )} def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase__ ) def _lowercase ( self : List[str] ): self.enable_attention_slicing(UpperCAmelCase__ ) @torch.no_grad() def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Tuple, ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : Tuple, UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : str, ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : str, UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Any, ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Optional[int], ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : str, ): __lowercase = "cuda" if torch.cuda.is_available() else "cpu" self.to(UpperCAmelCase__ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" ) # Get first result from Stable Diffusion Checkpoint v1.1 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get first result from Stable Diffusion Checkpoint v1.2 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get first result from Stable Diffusion Checkpoint v1.3 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get first result from Stable Diffusion Checkpoint v1.4 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
17
0
"""simple docstring""" def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = len(lowerCAmelCase_ ) for _ in range(lowerCAmelCase_ ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = arr[i + 1], arr[i] return arr if __name__ == "__main__": a__ : str = list(range(1_0, 0, -1)) print(F"Original: {arr}. Sorted: {odd_even_transposition(arr)}")
54
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowerCAmelCase ( lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = "ssube/stable-diffusion-x4-upscaler-onnx" def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : List[str]=0 ): __lowercase = floats_tensor((1, 3, 1_2_8, 1_2_8), rng=random.Random(UpperCAmelCase__ ) ) __lowercase = torch.manual_seed(UpperCAmelCase__ ) __lowercase = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def _lowercase ( self : Any ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def _lowercase ( self : Optional[Any] ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) __lowercase = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.6_898_892, 0.59_240_556, 0.52_499_527, 0.58_866_215, 0.52_258_235, 0.52_572_715, 0.62_414_473, 0.6_174_387, 0.6_214_964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _lowercase ( self : int ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.7_659_278, 0.76_437_664, 0.75_579_107, 0.7_691_116, 0.77_666_986, 0.7_727_672, 0.7_758_664, 0.7_812_226, 0.76_942_515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _lowercase ( self : str ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) __lowercase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _lowercase ( self : Any ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) __lowercase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.77_424_496, 0.773_601, 0.7_645_288, 0.7_769_598, 0.7_772_739, 0.7_738_688, 0.78_187_233, 0.77_879_584, 0.767_043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @property def _lowercase ( self : Tuple ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowercase ( self : Dict ): __lowercase = ort.SessionOptions() __lowercase = False return options def _lowercase ( self : Dict ): __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) __lowercase = init_image.resize((1_2_8, 1_2_8) ) # using the PNDM scheduler by default __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx", provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = "A fantasy landscape, trending on artstation" __lowercase = torch.manual_seed(0 ) __lowercase = pipe( prompt=UpperCAmelCase__, image=UpperCAmelCase__, guidance_scale=7.5, num_inference_steps=1_0, generator=UpperCAmelCase__, output_type="np", ) __lowercase = output.images __lowercase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array([0.4_883, 0.4_947, 0.4_980, 0.4_975, 0.4_982, 0.4_980, 0.5_000, 0.5_006, 0.4_972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def _lowercase ( self : str ): __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) __lowercase = init_image.resize((1_2_8, 1_2_8) ) __lowercase = LMSDiscreteScheduler.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx", subfolder="scheduler" ) __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx", scheduler=UpperCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = "A fantasy landscape, trending on artstation" __lowercase = torch.manual_seed(0 ) __lowercase = pipe( prompt=UpperCAmelCase__, image=UpperCAmelCase__, guidance_scale=7.5, num_inference_steps=2_0, generator=UpperCAmelCase__, output_type="np", ) __lowercase = output.images __lowercase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.50_173_753, 0.50_223_356, 0.502_039, 0.50_233_036, 0.5_023_725, 0.5_022_601, 0.5_018_758, 0.50_234_085, 0.50_241_566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
17
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class snake_case : """simple docstring""" def __init__( self , UpperCamelCase , UpperCamelCase=13 , UpperCamelCase=7 , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase=99 , UpperCamelCase=32 , UpperCamelCase=2 , UpperCamelCase=4 , UpperCamelCase=37 , UpperCamelCase="gelu" , UpperCamelCase=0.1 , UpperCamelCase=0.1 , UpperCamelCase=512 , UpperCamelCase=16 , UpperCamelCase=2 , UpperCamelCase=0.02 , UpperCamelCase=3 , UpperCamelCase=4 , UpperCamelCase=None , UpperCamelCase=0 , ): """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_input_mask lowerCamelCase_ = use_token_type_ids lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = num_labels lowerCamelCase_ = num_choices lowerCamelCase_ = scope lowerCamelCase_ = projection_dim def snake_case ( self ): """simple docstring""" lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = None if self.use_token_type_ids: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase , initializer_range=self.initializer_range , ) lowerCamelCase_ = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = TFDPRContextEncoder(config=UpperCamelCase ) lowerCamelCase_ = model(UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase ) lowerCamelCase_ = model(UpperCamelCase , token_type_ids=UpperCamelCase ) lowerCamelCase_ = model(UpperCamelCase ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = TFDPRQuestionEncoder(config=UpperCamelCase ) lowerCamelCase_ = model(UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase ) lowerCamelCase_ = model(UpperCamelCase , token_type_ids=UpperCamelCase ) lowerCamelCase_ = model(UpperCamelCase ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = TFDPRReader(config=UpperCamelCase ) lowerCamelCase_ = model(UpperCamelCase , attention_mask=UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = {"input_ids": input_ids} return config, inputs_dict @require_tf class snake_case ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _lowerCamelCase = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) _lowerCamelCase = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {} _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def snake_case ( self ): """simple docstring""" lowerCamelCase_ = TFDPRModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=UpperCamelCase , hidden_size=37 ) def snake_case ( self ): """simple docstring""" self.config_tester.run_common_tests() def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*UpperCamelCase ) @slow def snake_case ( self ): """simple docstring""" for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFDPRContextEncoder.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFDPRContextEncoder.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFDPRQuestionEncoder.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFDPRReader.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) @require_tf class snake_case ( unittest.TestCase ): """simple docstring""" @slow def snake_case ( self ): """simple docstring""" lowerCamelCase_ = TFDPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base" ) lowerCamelCase_ = tf.constant( [[101, 7592, 1010, 2003, 2026, 3899, 1_0140, 1029, 102]] ) # [CLS] hello, is my dog cute? [SEP] lowerCamelCase_ = model(UpperCamelCase )[0] # embedding shape = (1, 768) # compare the actual values for a slice. lowerCamelCase_ = tf.constant( [ [ 0.03_236_253, 0.12_753_335, 0.16_818_509, 0.00_279_786, 0.3_896_933, 0.24_264_945, 0.2_178_971, -0.02_335_227, -0.08_481_959, -0.14_324_117, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1e-4 ) )
55
"""simple docstring""" import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal _a = datasets.utils.logging.get_logger(__name__) _a = ['names', 'prefix'] _a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] _a = ['encoding_errors', 'on_bad_lines'] _a = ['date_format'] @dataclass class _lowerCAmelCase ( datasets.BuilderConfig ): """simple docstring""" __UpperCAmelCase : str = "," __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[Union[int, List[int], str]] = "infer" __UpperCAmelCase : Optional[List[str]] = None __UpperCAmelCase : Optional[List[str]] = None __UpperCAmelCase : Optional[Union[int, str, List[int], List[str]]] = None __UpperCAmelCase : Optional[Union[List[int], List[str]]] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : bool = True __UpperCAmelCase : Optional[Literal["c", "python", "pyarrow"]] = None __UpperCAmelCase : Dict[Union[int, str], Callable[[Any], Any]] = None __UpperCAmelCase : Optional[list] = None __UpperCAmelCase : Optional[list] = None __UpperCAmelCase : bool = False __UpperCAmelCase : Optional[Union[int, List[int]]] = None __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Optional[Union[str, List[str]]] = None __UpperCAmelCase : bool = True __UpperCAmelCase : bool = True __UpperCAmelCase : bool = False __UpperCAmelCase : bool = True __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : str = "." __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : str = '"' __UpperCAmelCase : int = 0 __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : bool = True __UpperCAmelCase : bool = True __UpperCAmelCase : int = 0 __UpperCAmelCase : bool = True __UpperCAmelCase : bool = False __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : int = 1_0_0_0_0 __UpperCAmelCase : Optional[datasets.Features] = None __UpperCAmelCase : Optional[str] = "strict" __UpperCAmelCase : Literal["error", "warn", "skip"] = "error" __UpperCAmelCase : Optional[str] = None def _lowercase ( self : Tuple ): if self.delimiter is not None: __lowercase = self.delimiter if self.column_names is not None: __lowercase = self.column_names @property def _lowercase ( self : Union[str, Any] ): __lowercase = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig(), UpperCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class _lowerCAmelCase ( datasets.ArrowBasedBuilder ): """simple docstring""" __UpperCAmelCase : Tuple = CsvConfig def _lowercase ( self : List[str] ): return datasets.DatasetInfo(features=self.config.features ) def _lowercase ( self : List[Any], UpperCAmelCase__ : Dict ): if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) __lowercase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(UpperCAmelCase__, (str, list, tuple) ): __lowercase = data_files if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = [files] __lowercase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files} )] __lowercase = [] for split_name, files in data_files.items(): if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = [files] __lowercase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=UpperCAmelCase__, gen_kwargs={"files": files} ) ) return splits def _lowercase ( self : Dict, UpperCAmelCase__ : pa.Table ): if self.config.features is not None: __lowercase = self.config.features.arrow_schema if all(not require_storage_cast(UpperCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast __lowercase = pa.Table.from_arrays([pa_table[field.name] for field in schema], schema=UpperCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example __lowercase = table_cast(UpperCAmelCase__, UpperCAmelCase__ ) return pa_table def _lowercase ( self : Optional[Any], UpperCAmelCase__ : List[str] ): __lowercase = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str __lowercase = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(UpperCAmelCase__ ) else object for name, dtype, feature in zip(schema.names, schema.types, self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase__ ) ): __lowercase = pd.read_csv(UpperCAmelCase__, iterator=UpperCAmelCase__, dtype=UpperCAmelCase__, **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(UpperCAmelCase__ ): __lowercase = pa.Table.from_pandas(UpperCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase__ ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(UpperCAmelCase__ )}: {e}""" ) raise
17
0
'''simple docstring''' from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging a : List[str] = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class a ( _lowerCamelCase ): def __init__( self : List[Any] , lowercase_ : int = 101 ): snake_case_ = length def __len__( self : Optional[Any] ): return self.length def __getitem__( self : Any , lowercase_ : Any ): return i class a : def __call__( self : Dict , lowercase_ : str ): return {"input_ids": torch.tensor(lowercase_ ), "labels": torch.tensor(lowercase_ )} class a ( nn.Module ): def __init__( self : Any ): super().__init__() # Add some (unused) params otherwise DDP will complain. snake_case_ = nn.Linear(120 , 80 ) def A_ ( self : Tuple , lowercase_ : List[str] , lowercase_ : List[Any]=None ): if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class a ( _lowerCamelCase ): @require_torch_neuroncore def A_ ( self : List[Any] ): snake_case_ = F"--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n ".split() snake_case_ = self.get_auto_remove_tmp_dir() snake_case_ = F"--output_dir {output_dir}".split() snake_case_ = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowercase_ , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class a ( _lowerCamelCase ): @require_torch_multi_gpu def A_ ( self : List[str] ): snake_case_ = F"--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n ".split() snake_case_ = self.get_auto_remove_tmp_dir() snake_case_ = F"--output_dir {output_dir}".split() snake_case_ = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowercase_ , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py a : List[Any] = HfArgumentParser((TrainingArguments,)) a : Any = parser.parse_args_into_dataclasses()[0] logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ''' f'''distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}''' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: a : List[Any] = DummyDataset(dataset_length) def __magic_name__ ( __UpperCAmelCase ) -> Dict: '''simple docstring''' snake_case_ = list(range(len(__UpperCAmelCase ) ) ) snake_case_ = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' F"{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}" ) return {"success": success} a : List[str] = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) a : str = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) a : str = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) a : Any = 2 a : int = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) a : Optional[Any] = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) a : Tuple = None
56
"""simple docstring""" from scipy.stats import spearmanr import datasets _a = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n' _a = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n' _a = r'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def _lowercase ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ), reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"], ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int]=False ): __lowercase = spearmanr(UpperCAmelCase__, UpperCAmelCase__ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
17
0
"""simple docstring""" import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg" __lowerCAmelCase = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ).convert("RGB" ) __lowerCAmelCase = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73) , (0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11) ), ] ) __lowerCAmelCase = transform(_UpperCamelCase ).unsqueeze(0 ).to(_UpperCamelCase ) return image def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' if "visual_encoder" in key: __lowerCAmelCase = re.sub("visual_encoder*" , "vision_model.encoder" , _UpperCamelCase ) if "blocks" in key: __lowerCAmelCase = re.sub(R"blocks" , "layers" , _UpperCamelCase ) if "attn" in key: __lowerCAmelCase = re.sub(R"attn" , "self_attn" , _UpperCamelCase ) if "norm1" in key: __lowerCAmelCase = re.sub(R"norm1" , "layer_norm1" , _UpperCamelCase ) if "norm2" in key: __lowerCAmelCase = re.sub(R"norm2" , "layer_norm2" , _UpperCamelCase ) if "encoder.norm" in key: __lowerCAmelCase = re.sub(R"encoder.norm" , "post_layernorm" , _UpperCamelCase ) if "encoder.patch_embed.proj" in key: __lowerCAmelCase = re.sub(R"encoder.patch_embed.proj" , "embeddings.patch_embedding" , _UpperCamelCase ) if "encoder.pos_embed" in key: __lowerCAmelCase = re.sub(R"encoder.pos_embed" , "embeddings.position_embedding" , _UpperCamelCase ) if "encoder.cls_token" in key: __lowerCAmelCase = re.sub(R"encoder.cls_token" , "embeddings.class_embedding" , _UpperCamelCase ) if "self_attn" in key: __lowerCAmelCase = re.sub(R"self_attn.proj" , "self_attn.projection" , _UpperCamelCase ) return key @torch.no_grad() def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase=None ): '''simple docstring''' if config_path is not None: __lowerCAmelCase = BlipConfig.from_pretrained(_UpperCamelCase ) else: __lowerCAmelCase = BlipConfig(projection_dim=512 , text_config={} , vision_config={} ) __lowerCAmelCase = BlipForConditionalGeneration(_UpperCamelCase ).eval() __lowerCAmelCase = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth" __lowerCAmelCase = blip_decoder(pretrained=_UpperCamelCase , image_size=384 , vit="base" ) __lowerCAmelCase = pt_model.eval() __lowerCAmelCase = pt_model.state_dict() for key in modified_state_dict.copy(): __lowerCAmelCase = modified_state_dict.pop(_UpperCamelCase ) __lowerCAmelCase = rename_key(_UpperCamelCase ) __lowerCAmelCase = value hf_model.load_state_dict(_UpperCamelCase ) __lowerCAmelCase = 384 __lowerCAmelCase = load_demo_image(image_size=_UpperCamelCase , device="cpu" ) __lowerCAmelCase = BertTokenizer.from_pretrained("bert-base-uncased" ) __lowerCAmelCase = tokenizer(["a picture of"] ).input_ids __lowerCAmelCase = hf_model.generate(_UpperCamelCase , _UpperCamelCase ) assert out[0].tolist() == [3_0522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] __lowerCAmelCase = hf_model.generate(_UpperCamelCase ) assert out[0].tolist() == [3_0522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(_UpperCamelCase ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' __lowerCAmelCase = ( "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth" ) __lowerCAmelCase = blip_vqa(pretrained=_UpperCamelCase , image_size=_UpperCamelCase , vit="base" ) vqa_model.eval() __lowerCAmelCase = vqa_model.state_dict() for key in modified_state_dict.copy(): __lowerCAmelCase = modified_state_dict.pop(_UpperCamelCase ) __lowerCAmelCase = rename_key(_UpperCamelCase ) __lowerCAmelCase = value __lowerCAmelCase = BlipForQuestionAnswering(_UpperCamelCase ) hf_vqa_model.load_state_dict(_UpperCamelCase ) __lowerCAmelCase = ["How many dogs are in this image?"] __lowerCAmelCase = tokenizer(_UpperCamelCase , return_tensors="pt" ).input_ids __lowerCAmelCase = hf_vqa_model.generate(_UpperCamelCase , _UpperCamelCase ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + "_vqa" ) __lowerCAmelCase = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth" __lowerCAmelCase = blip_itm(pretrained=_UpperCamelCase , image_size=_UpperCamelCase , vit="base" ) itm_model.eval() __lowerCAmelCase = itm_model.state_dict() for key in modified_state_dict.copy(): __lowerCAmelCase = modified_state_dict.pop(_UpperCamelCase ) __lowerCAmelCase = rename_key(_UpperCamelCase ) __lowerCAmelCase = value __lowerCAmelCase = BlipForImageTextRetrieval(_UpperCamelCase ) __lowerCAmelCase = ["A picture of a woman with a dog sitting in a beach"] __lowerCAmelCase = tokenizer( _UpperCamelCase , return_tensors="pt" , padding="max_length" , truncation=_UpperCamelCase , max_length=35 , ).input_ids hf_itm_model.load_state_dict(_UpperCamelCase ) hf_itm_model.eval() __lowerCAmelCase = hf_itm_model(_UpperCamelCase , _UpperCamelCase , use_itm_head=_UpperCamelCase ) __lowerCAmelCase = hf_itm_model(_UpperCamelCase , _UpperCamelCase , use_itm_head=_UpperCamelCase ) assert out[0].item() == 0.21_10_68_74_94_27_79_54 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_56_98_84_53_86_50_51_27 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + "_itm" ) if __name__ == "__main__": A : Optional[int] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") A : Optional[int] = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
57
"""simple docstring""" from collections.abc import Sequence def _A ( UpperCamelCase_ : Sequence[float], UpperCamelCase_ : float) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(UpperCamelCase_)) def _A ( UpperCamelCase_ : Sequence[float], UpperCamelCase_ : float) -> float: '''simple docstring''' __lowercase = 0.0 for coeff in reversed(UpperCamelCase_): __lowercase = result * x + coeff return result if __name__ == "__main__": _a = (0.0, 0.0, 5.0, 9.3, 7.0) _a = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
17
0
'''simple docstring''' def lowerCamelCase ( __lowerCamelCase : float , __lowerCamelCase : float ) ->float: if density <= 0: raise ValueError("""Impossible fluid density""" ) if bulk_modulus <= 0: raise ValueError("""Impossible bulk modulus""" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
58
"""simple docstring""" import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class _lowerCAmelCase ( pl.LightningModule ): """simple docstring""" def __init__( self : Optional[Any], UpperCAmelCase__ : str ): super().__init__() __lowercase = model __lowercase = 2 __lowercase = nn.Linear(self.model.config.hidden_size, self.num_labels ) def _lowercase ( self : Optional[int] ): pass def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str, UpperCamelCase_ : str) -> str: '''simple docstring''' __lowercase = LongformerModel.from_pretrained(UpperCamelCase_) __lowercase = LightningModel(UpperCamelCase_) __lowercase = torch.load(UpperCamelCase_, map_location=torch.device("cpu")) lightning_model.load_state_dict(ckpt["state_dict"]) # init longformer question answering model __lowercase = LongformerForQuestionAnswering.from_pretrained(UpperCamelCase_) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict()) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict()) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(UpperCamelCase_) print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""") if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _a = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
17
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = """▁""" __lowerCamelCase = {"""vocab_file""": """sentencepiece.bpe.model"""} __lowerCamelCase = { """vocab_file""": { """facebook/mbart-large-50-one-to-many-mmt""": ( """https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model""" ), } } __lowerCamelCase = { """facebook/mbart-large-50-one-to-many-mmt""": 10_24, } # fmt: off __lowerCamelCase = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN""", """af_ZA""", """az_AZ""", """bn_IN""", """fa_IR""", """he_IL""", """hr_HR""", """id_ID""", """ka_GE""", """km_KH""", """mk_MK""", """ml_IN""", """mn_MN""", """mr_IN""", """pl_PL""", """ps_AF""", """pt_XX""", """sv_SE""", """sw_KE""", """ta_IN""", """te_IN""", """th_TH""", """tl_XX""", """uk_UA""", """ur_PK""", """xh_ZA""", """gl_ES""", """sl_SI"""] class UpperCAmelCase ( A_ ): A__ : Optional[Any] = VOCAB_FILES_NAMES A__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : str = PRETRAINED_VOCAB_FILES_MAP A__ : str = ["input_ids", "attention_mask"] A__ : List[int] = [] A__ : List[int] = [] def __init__(self : List[Any] , snake_case__ : Tuple , snake_case__ : Dict=None , snake_case__ : Any=None , snake_case__ : int="</s>" , snake_case__ : List[Any]="</s>" , snake_case__ : Optional[int]="<s>" , snake_case__ : Tuple="<unk>" , snake_case__ : List[str]="<pad>" , snake_case__ : Dict="<mask>" , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : Tuple , ) -> None: '''simple docstring''' snake_case : int = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token snake_case : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs snake_case : Union[str, Any] = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=snake_case__ , tgt_lang=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) snake_case : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case__ ) ) snake_case : Tuple = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token snake_case : Optional[int] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case : List[str] = 1 snake_case : int = len(self.sp_model ) snake_case : Any = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(snake_case__ ) } snake_case : Union[str, Any] = {v: k for k, v in self.lang_code_to_id.items()} snake_case : List[Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) snake_case : Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()} snake_case : str = src_lang if src_lang is not None else "en_XX" snake_case : Dict = self.lang_code_to_id[self._src_lang] snake_case : int = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _SCREAMING_SNAKE_CASE (self : Tuple ) -> int: '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> str: '''simple docstring''' return self._src_lang @src_lang.setter def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : str ) -> None: '''simple docstring''' snake_case : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__(self : str ) -> Dict: '''simple docstring''' snake_case : Optional[int] = self.__dict__.copy() snake_case : List[str] = None return state def __setstate__(self : str , snake_case__ : Dict ) -> None: '''simple docstring''' snake_case : List[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case : Dict = {} snake_case : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Dict: '''simple docstring''' snake_case : Dict = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : str ) -> int: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case : List[Any] = self.sp_model.PieceToId(snake_case__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : int ) -> str: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' snake_case : int = [] snake_case : Union[str, Any] = "" snake_case : Tuple = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case__ ) + token snake_case : List[Any] = True snake_case : List[Any] = [] else: current_sub_tokens.append(snake_case__ ) snake_case : Optional[Any] = False out_string += self.sp_model.decode(snake_case__ ) return out_string.strip() def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : str , snake_case__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Any = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , "wb" ) as fi: snake_case : str = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) snake_case : Union[str, Any] = [1] * len(self.prefix_tokens ) snake_case : int = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(snake_case__ )) + suffix_ones return prefix_ones + ([0] * len(snake_case__ )) + ([0] * len(snake_case__ )) + suffix_ones def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : Dict , snake_case__ : str , snake_case__ : Optional[str] , snake_case__ : Optional[str] , **snake_case__ : Optional[int] ) -> Optional[int]: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) snake_case : str = src_lang snake_case : List[str] = self(snake_case__ , add_special_tokens=snake_case__ , return_tensors=snake_case__ , **snake_case__ ) snake_case : Optional[int] = self.convert_tokens_to_ids(snake_case__ ) snake_case : Optional[int] = tgt_lang_id return inputs def _SCREAMING_SNAKE_CASE (self : int , snake_case__ : List[str] , snake_case__ : str = "en_XX" , snake_case__ : Optional[List[str]] = None , snake_case__ : str = "ro_RO" , **snake_case__ : Union[str, Any] , ) -> BatchEncoding: '''simple docstring''' snake_case : str = src_lang snake_case : int = tgt_lang return super().prepare_seqaseq_batch(snake_case__ , snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE (self : str ) -> Optional[Any]: '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> str: '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : str ) -> None: '''simple docstring''' snake_case : List[str] = self.lang_code_to_id[src_lang] snake_case : List[str] = [self.cur_lang_code_id] snake_case : Any = [self.eos_token_id] def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : str ) -> None: '''simple docstring''' snake_case : Tuple = self.lang_code_to_id[tgt_lang] snake_case : Union[str, Any] = [self.cur_lang_code_id] snake_case : Tuple = [self.eos_token_id]
59
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" ,"False" ) ) is not True ,reason="Skipping test because should only be run when releasing minor transformers version" ,) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Optional[int] ): if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split(), encoding="utf-8", check=UpperCAmelCase__, ) assert hasattr(self, "env" ) def _lowercase ( self : str, UpperCAmelCase__ : List[Any] ): # configuration for running training on smdistributed Model Parallel __lowercase = { "enabled": True, "processes_per_host": 8, } __lowercase = { "enabled": True, "parameters": { "microbatches": 4, "placement_strategy": "spread", "pipeline": "interleaved", "optimize": "speed", "partitions": 4, "ddp": True, }, } __lowercase = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options} __lowercase = "trainer" if self.script == "run_glue.py" else "smtrainer" # creates estimator return HuggingFace( entry_point=self.script, source_dir=self.env.test_path, role=self.env.role, image_uri=self.env.image_uri, base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""", instance_count=UpperCAmelCase__, instance_type=self.instance_type, debugger_hook_config=UpperCAmelCase__, hyperparameters={ **self.env.hyperparameters, "model_name_or_path": self.model_name_or_path, "max_steps": 5_0_0, }, metric_definitions=self.env.metric_definitions, distribution=UpperCAmelCase__, py_version="py36", ) def _lowercase ( self : Tuple, UpperCAmelCase__ : int ): TrainingJobAnalytics(UpperCAmelCase__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def _lowercase ( self : str, UpperCAmelCase__ : Union[str, Any] ): # create estimator __lowercase = self.create_estimator(UpperCAmelCase__ ) # run training estimator.fit() # result dataframe __lowercase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __lowercase = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) __lowercase = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __lowercase = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds", 9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""", "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss}, UpperCAmelCase__ )
17
0
"""simple docstring""" def _snake_case ( _snake_case : int ): if not isinstance(_snake_case , _snake_case ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
60
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : Tuple = "openai/whisper-base" __UpperCAmelCase : Union[str, Any] = ( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) __UpperCAmelCase : List[str] = "transcriber" __UpperCAmelCase : Optional[Any] = WhisperProcessor __UpperCAmelCase : str = WhisperForConditionalGeneration __UpperCAmelCase : List[str] = ["audio"] __UpperCAmelCase : Tuple = ["text"] def _lowercase ( self : str, UpperCAmelCase__ : int ): return self.pre_processor(UpperCAmelCase__, return_tensors="pt" ).input_features def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Any] ): return self.model.generate(inputs=UpperCAmelCase__ ) def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[int] ): return self.pre_processor.batch_decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ )[0]
17
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _a = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') @dataclass class A_ : '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[str] = field( default="""cifar10""" ,metadata={"""help""": """Name of a dataset from the datasets package"""} ) SCREAMING_SNAKE_CASE__ : Optional[str] = field( default=lowercase__ ,metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) SCREAMING_SNAKE_CASE__ : Optional[str] = field( default=lowercase__ ,metadata={"""help""": """The column name of the images in the files."""} ) SCREAMING_SNAKE_CASE__ : Optional[str] = field(default=lowercase__ ,metadata={"""help""": """A folder containing the training data."""} ) SCREAMING_SNAKE_CASE__ : Optional[str] = field(default=lowercase__ ,metadata={"""help""": """A folder containing the validation data."""} ) SCREAMING_SNAKE_CASE__ : Optional[float] = field( default=0.1_5 ,metadata={"""help""": """Percent to split off of train for validation."""} ) SCREAMING_SNAKE_CASE__ : Optional[int] = field( default=lowercase__ ,metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } ,) SCREAMING_SNAKE_CASE__ : Optional[int] = field( default=lowercase__ ,metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } ,) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = {} if self.train_dir is not None: UpperCAmelCase_ : Optional[int] = self.train_dir if self.validation_dir is not None: UpperCAmelCase_ : List[str] = self.validation_dir UpperCAmelCase_ : List[str] = data_files if data_files else None @dataclass class A_ : '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = field( default=lowercase__ ,metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } ,) SCREAMING_SNAKE_CASE__ : Optional[str] = field( default=lowercase__ ,metadata={"""help""": """Pretrained config name or path if not the same as model_name_or_path"""} ) SCREAMING_SNAKE_CASE__ : Optional[str] = field( default=lowercase__ ,metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } ,) SCREAMING_SNAKE_CASE__ : Optional[str] = field( default=lowercase__ ,metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) SCREAMING_SNAKE_CASE__ : str = field( default="""main""" ,metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} ,) SCREAMING_SNAKE_CASE__ : str = field(default=lowercase__ ,metadata={"""help""": """Name or path of preprocessor config."""} ) SCREAMING_SNAKE_CASE__ : bool = field( default=lowercase__ ,metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } ,) SCREAMING_SNAKE_CASE__ : float = field( default=0.7_5 ,metadata={"""help""": """The ratio of the number of masked tokens in the input sequence."""} ) SCREAMING_SNAKE_CASE__ : bool = field( default=lowercase__ ,metadata={"""help""": """Whether or not to train with normalized pixel values as target."""} ) @dataclass class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : float = field( default=1e-3 ,metadata={"""help""": """Base learning rate: absolute_lr = base_lr * total_batch_size / 256."""} ) def __a ( __lowerCamelCase ): UpperCAmelCase_ : int = torch.stack([example["pixel_values"] for example in examples] ) return {"pixel_values": pixel_values} def __a ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase_ : str = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_mae", __lowerCamelCase, __lowerCamelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCAmelCase_ : Any = training_args.get_process_log_level() logger.setLevel(__lowerCamelCase ) transformers.utils.logging.set_verbosity(__lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. UpperCAmelCase_ : List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase_ : List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset. UpperCAmelCase_ : Tuple = load_dataset( data_args.dataset_name, data_args.dataset_config_name, data_files=data_args.data_files, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) # If we don't have a validation split, split off a percentage of train as validation. UpperCAmelCase_ : Optional[Any] = None if "validation" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split, __lowerCamelCase ) and data_args.train_val_split > 0.0: UpperCAmelCase_ : List[str] = ds["train"].train_test_split(data_args.train_val_split ) UpperCAmelCase_ : Dict = split["train"] UpperCAmelCase_ : str = split["test"] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase_ : Dict = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.config_name: UpperCAmelCase_ : Tuple = ViTMAEConfig.from_pretrained(model_args.config_name, **__lowerCamelCase ) elif model_args.model_name_or_path: UpperCAmelCase_ : List[Any] = ViTMAEConfig.from_pretrained(model_args.model_name_or_path, **__lowerCamelCase ) else: UpperCAmelCase_ : Tuple = ViTMAEConfig() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.config_overrides is not None: logger.info(f"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(f"""New config: {config}""" ) # adapt config config.update( { "mask_ratio": model_args.mask_ratio, "norm_pix_loss": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: UpperCAmelCase_ : List[Any] = ViTImageProcessor.from_pretrained(model_args.image_processor_name, **__lowerCamelCase ) elif model_args.model_name_or_path: UpperCAmelCase_ : str = ViTImageProcessor.from_pretrained(model_args.model_name_or_path, **__lowerCamelCase ) else: UpperCAmelCase_ : Optional[int] = ViTImageProcessor() # create model if model_args.model_name_or_path: UpperCAmelCase_ : int = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path ), config=__lowerCamelCase, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) else: logger.info("Training new model from scratch" ) UpperCAmelCase_ : Dict = ViTMAEForPreTraining(__lowerCamelCase ) if training_args.do_train: UpperCAmelCase_ : Optional[int] = ds["train"].column_names else: UpperCAmelCase_ : Dict = ds["validation"].column_names if data_args.image_column_name is not None: UpperCAmelCase_ : int = data_args.image_column_name elif "image" in column_names: UpperCAmelCase_ : Optional[Any] = "image" elif "img" in column_names: UpperCAmelCase_ : Optional[int] = "img" else: UpperCAmelCase_ : str = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: UpperCAmelCase_ : List[str] = image_processor.size["shortest_edge"] else: UpperCAmelCase_ : int = (image_processor.size["height"], image_processor.size["width"]) UpperCAmelCase_ : Tuple = Compose( [ Lambda(lambda __lowerCamelCase : img.convert("RGB" ) if img.mode != "RGB" else img ), RandomResizedCrop(__lowerCamelCase, scale=(0.2, 1.0), interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean, std=image_processor.image_std ), ] ) def preprocess_images(__lowerCamelCase ): UpperCAmelCase_ : Union[str, Any] = [transforms(__lowerCamelCase ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: UpperCAmelCase_ : List[str] = ds["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(__lowerCamelCase ) if training_args.do_eval: if "validation" not in ds: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: UpperCAmelCase_ : Optional[int] = ( ds["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(__lowerCamelCase ) # Compute absolute learning rate UpperCAmelCase_ : Optional[int] = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: UpperCAmelCase_ : Union[str, Any] = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer UpperCAmelCase_ : Dict = Trainer( model=__lowerCamelCase, args=__lowerCamelCase, train_dataset=ds["train"] if training_args.do_train else None, eval_dataset=ds["validation"] if training_args.do_eval else None, tokenizer=__lowerCamelCase, data_collator=__lowerCamelCase, ) # Training if training_args.do_train: UpperCAmelCase_ : str = None if training_args.resume_from_checkpoint is not None: UpperCAmelCase_ : Tuple = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCAmelCase_ : Union[str, Any] = last_checkpoint UpperCAmelCase_ : List[str] = trainer.train(resume_from_checkpoint=__lowerCamelCase ) trainer.save_model() trainer.log_metrics("train", train_result.metrics ) trainer.save_metrics("train", train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCAmelCase_ : Optional[Any] = trainer.evaluate() trainer.log_metrics("eval", __lowerCamelCase ) trainer.save_metrics("eval", __lowerCamelCase ) # Write model card and (optionally) push to hub UpperCAmelCase_ : Optional[Any] = { "tasks": "masked-auto-encoding", "dataset": data_args.dataset_name, "tags": ["masked-auto-encoding"], } if training_args.push_to_hub: trainer.push_to_hub(**__lowerCamelCase ) else: trainer.create_model_card(**__lowerCamelCase ) def __a ( __lowerCamelCase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
61
"""simple docstring""" import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str]) -> Optional[int]: '''simple docstring''' if isinstance(UpperCamelCase_, torch.Tensor): return image elif isinstance(UpperCamelCase_, PIL.Image.Image): __lowercase = [image] if isinstance(image[0], PIL.Image.Image): __lowercase = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image] __lowercase = np.concatenate(UpperCamelCase_, axis=0) __lowercase = np.array(UpperCamelCase_).astype(np.floataa) / 255.0 __lowercase = image.transpose(0, 3, 1, 2) __lowercase = 2.0 * image - 1.0 __lowercase = torch.from_numpy(UpperCamelCase_) elif isinstance(image[0], torch.Tensor): __lowercase = torch.cat(UpperCamelCase_, dim=0) return image def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : str, UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[Any]=0.9_995) -> int: '''simple docstring''' if not isinstance(UpperCamelCase_, np.ndarray): __lowercase = True __lowercase = va.device __lowercase = va.cpu().numpy() __lowercase = va.cpu().numpy() __lowercase = np.sum(va * va / (np.linalg.norm(UpperCamelCase_) * np.linalg.norm(UpperCamelCase_))) if np.abs(UpperCamelCase_) > DOT_THRESHOLD: __lowercase = (1 - t) * va + t * va else: __lowercase = np.arccos(UpperCamelCase_) __lowercase = np.sin(UpperCamelCase_) __lowercase = theta_a * t __lowercase = np.sin(UpperCamelCase_) __lowercase = np.sin(theta_a - theta_t) / sin_theta_a __lowercase = sin_theta_t / sin_theta_a __lowercase = sa * va + sa * va if inputs_are_torch: __lowercase = torch.from_numpy(UpperCamelCase_).to(UpperCamelCase_) return va def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Union[str, Any]) -> int: '''simple docstring''' __lowercase = F.normalize(UpperCamelCase_, dim=-1) __lowercase = F.normalize(UpperCamelCase_, dim=-1) return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2) def _A ( UpperCamelCase_ : Optional[int], UpperCamelCase_ : str) -> Optional[int]: '''simple docstring''' for param in model.parameters(): __lowercase = value class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : Dict, UpperCAmelCase__ : AutoencoderKL, UpperCAmelCase__ : CLIPTextModel, UpperCAmelCase__ : CLIPModel, UpperCAmelCase__ : CLIPTokenizer, UpperCAmelCase__ : UNetaDConditionModel, UpperCAmelCase__ : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler], UpperCAmelCase__ : CLIPFeatureExtractor, UpperCAmelCase__ : Union[str, Any]=None, UpperCAmelCase__ : List[str]=None, UpperCAmelCase__ : Any=None, ): super().__init__() self.register_modules( vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, clip_model=UpperCAmelCase__, tokenizer=UpperCAmelCase__, unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, feature_extractor=UpperCAmelCase__, coca_model=UpperCAmelCase__, coca_tokenizer=UpperCAmelCase__, coca_transform=UpperCAmelCase__, ) __lowercase = ( feature_extractor.size if isinstance(feature_extractor.size, UpperCAmelCase__ ) else feature_extractor.size["shortest_edge"] ) __lowercase = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std ) set_requires_grad(self.text_encoder, UpperCAmelCase__ ) set_requires_grad(self.clip_model, UpperCAmelCase__ ) def _lowercase ( self : Tuple, UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase__ ) def _lowercase ( self : int ): self.enable_attention_slicing(UpperCAmelCase__ ) def _lowercase ( self : str ): set_requires_grad(self.vae, UpperCAmelCase__ ) def _lowercase ( self : Any ): set_requires_grad(self.vae, UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ): set_requires_grad(self.unet, UpperCAmelCase__ ) def _lowercase ( self : Any ): set_requires_grad(self.unet, UpperCAmelCase__ ) def _lowercase ( self : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : Optional[Any] ): # get the original timestep using init_timestep __lowercase = min(int(num_inference_steps * strength ), UpperCAmelCase__ ) __lowercase = max(num_inference_steps - init_timestep, 0 ) __lowercase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowercase ( self : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : int=None ): if not isinstance(UpperCAmelCase__, torch.Tensor ): raise ValueError(F"""`image` has to be of type `torch.Tensor` but is {type(UpperCAmelCase__ )}""" ) __lowercase = image.to(device=UpperCAmelCase__, dtype=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(UpperCAmelCase__ ) ] __lowercase = torch.cat(UpperCAmelCase__, dim=0 ) else: __lowercase = self.vae.encode(UpperCAmelCase__ ).latent_dist.sample(UpperCAmelCase__ ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowercase = 0.18_215 * init_latents __lowercase = init_latents.repeat_interleave(UpperCAmelCase__, dim=0 ) __lowercase = randn_tensor(init_latents.shape, generator=UpperCAmelCase__, device=UpperCAmelCase__, dtype=UpperCAmelCase__ ) # get latents __lowercase = self.scheduler.add_noise(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = init_latents return latents def _lowercase ( self : Optional[int], UpperCAmelCase__ : Dict ): __lowercase = self.coca_transform(UpperCAmelCase__ ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): __lowercase = self.coca_model.generate(transformed_image.to(device=self.device, dtype=self.coca_model.dtype ) ) __lowercase = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("<end_of_text>" )[0].replace("<start_of_text>", "" ).rstrip(" .," ) def _lowercase ( self : Tuple, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Tuple ): __lowercase = self.feature_extractor.preprocess(UpperCAmelCase__ ) __lowercase = torch.from_numpy(clip_image_input["pixel_values"][0] ).unsqueeze(0 ).to(self.device ).half() __lowercase = self.clip_model.get_image_features(UpperCAmelCase__ ) __lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=UpperCAmelCase__ ) __lowercase = image_embeddings_clip.repeat_interleave(UpperCAmelCase__, dim=0 ) return image_embeddings_clip @torch.enable_grad() def _lowercase ( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[int], ): __lowercase = latents.detach().requires_grad_() __lowercase = self.scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ ) # predict the noise residual __lowercase = self.unet(UpperCAmelCase__, UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__ ).sample if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): __lowercase = self.scheduler.alphas_cumprod[timestep] __lowercase = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowercase = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 __lowercase = torch.sqrt(UpperCAmelCase__ ) __lowercase = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler, UpperCAmelCase__ ): __lowercase = self.scheduler.sigmas[index] __lowercase = latents - sigma * noise_pred else: raise ValueError(F"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowercase = 1 / 0.18_215 * sample __lowercase = self.vae.decode(UpperCAmelCase__ ).sample __lowercase = (image / 2 + 0.5).clamp(0, 1 ) __lowercase = transforms.Resize(self.feature_extractor_size )(UpperCAmelCase__ ) __lowercase = self.normalize(UpperCAmelCase__ ).to(latents.dtype ) __lowercase = self.clip_model.get_image_features(UpperCAmelCase__ ) __lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=UpperCAmelCase__ ) __lowercase = spherical_dist_loss(UpperCAmelCase__, UpperCAmelCase__ ).mean() * clip_guidance_scale __lowercase = -torch.autograd.grad(UpperCAmelCase__, UpperCAmelCase__ )[0] if isinstance(self.scheduler, UpperCAmelCase__ ): __lowercase = latents.detach() + grads * (sigma**2) __lowercase = noise_pred_original else: __lowercase = noise_pred_original - torch.sqrt(UpperCAmelCase__ ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : str, UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image], UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image], UpperCAmelCase__ : Optional[str] = None, UpperCAmelCase__ : Optional[str] = None, UpperCAmelCase__ : Optional[int] = 5_1_2, UpperCAmelCase__ : Optional[int] = 5_1_2, UpperCAmelCase__ : float = 0.6, UpperCAmelCase__ : Optional[int] = 5_0, UpperCAmelCase__ : Optional[float] = 7.5, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[float] = 1_0_0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : float = 0.8, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, ): if isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and len(UpperCAmelCase__ ) != batch_size: raise ValueError(F"""You have passed {batch_size} batch_size, but only {len(UpperCAmelCase__ )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(UpperCAmelCase__, torch.Generator ) and batch_size > 1: __lowercase = [generator] + [None] * (batch_size - 1) __lowercase = [ ("model", self.coca_model is None), ("tokenizer", self.coca_tokenizer is None), ("transform", self.coca_transform is None), ] __lowercase = [x[0] for x in coca_is_none if x[1]] __lowercase = ", ".join(UpperCAmelCase__ ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(UpperCAmelCase__ ): raise ValueError( F"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" F"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) __lowercase = self.get_image_description(UpperCAmelCase__ ) if style_prompt is None: if len(UpperCAmelCase__ ): raise ValueError( F"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" F""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) __lowercase = self.get_image_description(UpperCAmelCase__ ) # get prompt text embeddings for content and style __lowercase = self.tokenizer( UpperCAmelCase__, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=UpperCAmelCase__, return_tensors="pt", ) __lowercase = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] __lowercase = self.tokenizer( UpperCAmelCase__, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=UpperCAmelCase__, return_tensors="pt", ) __lowercase = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] __lowercase = slerp(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # duplicate text embeddings for each generation per prompt __lowercase = text_embeddings.repeat_interleave(UpperCAmelCase__, dim=0 ) # set timesteps __lowercase = "offset" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) __lowercase = {} if accepts_offset: __lowercase = 1 self.scheduler.set_timesteps(UpperCAmelCase__, **UpperCAmelCase__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) __lowercase ,__lowercase = self.get_timesteps(UpperCAmelCase__, UpperCAmelCase__, self.device ) __lowercase = timesteps[:1].repeat(UpperCAmelCase__ ) # Preprocess image __lowercase = preprocess(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = self.prepare_latents( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, text_embeddings.dtype, self.device, UpperCAmelCase__ ) __lowercase = preprocess(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = self.prepare_latents( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, text_embeddings.dtype, self.device, UpperCAmelCase__ ) __lowercase = slerp(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) if clip_guidance_scale > 0: __lowercase = self.get_clip_image_embeddings(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = self.get_clip_image_embeddings(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = slerp( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __lowercase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __lowercase = content_text_input.input_ids.shape[-1] __lowercase = self.tokenizer([""], padding="max_length", max_length=UpperCAmelCase__, return_tensors="pt" ) __lowercase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt __lowercase = uncond_embeddings.repeat_interleave(UpperCAmelCase__, dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowercase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __lowercase = (batch_size, self.unet.config.in_channels, height // 8, width // 8) __lowercase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps __lowercase = torch.randn(UpperCAmelCase__, generator=UpperCAmelCase__, device="cpu", dtype=UpperCAmelCase__ ).to( self.device ) else: __lowercase = torch.randn(UpperCAmelCase__, generator=UpperCAmelCase__, device=self.device, dtype=UpperCAmelCase__ ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) __lowercase = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __lowercase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __lowercase = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __lowercase = {} if accepts_eta: __lowercase = eta # check if the scheduler accepts generator __lowercase = "generator" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: __lowercase = generator with self.progress_bar(total=UpperCAmelCase__ ): for i, t in enumerate(UpperCAmelCase__ ): # expand the latents if we are doing classifier free guidance __lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowercase = self.scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ ) # predict the noise residual __lowercase = self.unet(UpperCAmelCase__, UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__ ).sample # perform classifier free guidance if do_classifier_free_guidance: __lowercase ,__lowercase = noise_pred.chunk(2 ) __lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: __lowercase = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) __lowercase ,__lowercase = self.cond_fn( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) # compute the previous noisy sample x_t -> x_t-1 __lowercase = self.scheduler.step(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, **UpperCAmelCase__ ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowercase = 1 / 0.18_215 * latents __lowercase = self.vae.decode(UpperCAmelCase__ ).sample __lowercase = (image / 2 + 0.5).clamp(0, 1 ) __lowercase = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": __lowercase = self.numpy_to_pil(UpperCAmelCase__ ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=UpperCAmelCase__, nsfw_content_detected=UpperCAmelCase__ )
17
0
from string import ascii_lowercase, ascii_uppercase def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str ): if not sentence: return "" __UpperCamelCase =dict(zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
62
"""simple docstring""" from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class _lowerCAmelCase : """simple docstring""" __UpperCAmelCase : Tuple = XGLMConfig __UpperCAmelCase : Optional[Any] = {} __UpperCAmelCase : Union[str, Any] = "gelu" def __init__( self : Optional[int], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int]=1_4, UpperCAmelCase__ : str=7, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[Any]=True, UpperCAmelCase__ : int=True, UpperCAmelCase__ : List[str]=9_9, UpperCAmelCase__ : Union[str, Any]=3_2, UpperCAmelCase__ : Union[str, Any]=2, UpperCAmelCase__ : Union[str, Any]=4, UpperCAmelCase__ : Tuple=3_7, UpperCAmelCase__ : List[Any]="gelu", UpperCAmelCase__ : List[str]=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Tuple=5_1_2, UpperCAmelCase__ : Optional[Any]=0.02, ): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_labels __lowercase = vocab_size __lowercase = d_model __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = ffn_dim __lowercase = activation_function __lowercase = activation_dropout __lowercase = attention_dropout __lowercase = max_position_embeddings __lowercase = initializer_range __lowercase = None __lowercase = 0 __lowercase = 2 __lowercase = 1 def _lowercase ( self : Union[str, Any] ): return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def _lowercase ( self : Tuple ): __lowercase = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length], self.vocab_size ), clip_value_min=0, clip_value_max=3 ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = self.get_config() __lowercase = floats_tensor([self.num_hidden_layers, self.num_attention_heads], 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowercase ( self : List[Any] ): return XGLMConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, num_layers=self.num_hidden_layers, attention_heads=self.num_attention_heads, ffn_dim=self.ffn_dim, activation_function=self.activation_function, activation_dropout=self.activation_dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, use_cache=UpperCAmelCase__, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, return_dict=UpperCAmelCase__, ) def _lowercase ( self : Dict ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) , ) = config_and_inputs __lowercase = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class _lowerCAmelCase ( lowercase ,lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () __UpperCAmelCase : List[str] = (TFXGLMForCausalLM,) if is_tf_available() else () __UpperCAmelCase : Any = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : List[str] = False __UpperCAmelCase : int = False def _lowercase ( self : Optional[Any] ): __lowercase = TFXGLMModelTester(self ) __lowercase = ConfigTester(self, config_class=UpperCAmelCase__, n_embd=3_7 ) def _lowercase ( self : Any ): self.config_tester.run_common_tests() @slow def _lowercase ( self : List[str] ): for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFXGLMModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def _lowercase ( self : int ): super().test_resize_token_embeddings() @require_tf class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[int]=True ): __lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) __lowercase = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]], dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __lowercase = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on __lowercase = model.generate(UpperCAmelCase__, do_sample=UpperCAmelCase__, num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist(), UpperCAmelCase__ ) @slow def _lowercase ( self : List[Any] ): __lowercase = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) __lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) __lowercase = tokenizer("Today is a nice day and", return_tensors="tf" ) __lowercase = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): __lowercase = model.generate(UpperCAmelCase__, do_sample=UpperCAmelCase__, seed=[7, 0] ) __lowercase = tokenizer.decode(output_ids[0], skip_special_tokens=UpperCAmelCase__ ) __lowercase = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(UpperCAmelCase__, UpperCAmelCase__ ) @slow def _lowercase ( self : Dict ): __lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) __lowercase = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) __lowercase = "left" # use different length sentences to test batching __lowercase = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] __lowercase = tokenizer(UpperCAmelCase__, return_tensors="tf", padding=UpperCAmelCase__ ) __lowercase = inputs["input_ids"] __lowercase = model.generate(input_ids=UpperCAmelCase__, attention_mask=inputs["attention_mask"], max_new_tokens=1_2 ) __lowercase = tokenizer(sentences[0], return_tensors="tf" ).input_ids __lowercase = model.generate(input_ids=UpperCAmelCase__, max_new_tokens=1_2 ) __lowercase = tokenizer(sentences[1], return_tensors="tf" ).input_ids __lowercase = model.generate(input_ids=UpperCAmelCase__, max_new_tokens=1_2 ) __lowercase = tokenizer.batch_decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ ) __lowercase = tokenizer.decode(output_non_padded[0], skip_special_tokens=UpperCAmelCase__ ) __lowercase = tokenizer.decode(output_padded[0], skip_special_tokens=UpperCAmelCase__ ) __lowercase = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(UpperCAmelCase__, UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__, [non_padded_sentence, padded_sentence] )
17
0
'''simple docstring''' import math class __SCREAMING_SNAKE_CASE : """simple docstring""" def UpperCamelCase__ ( self : List[str] , __a : list[list[float]] , __a : list[int] ): _a = 0.0 _a = 0.0 for i in range(len(__a ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def UpperCamelCase__ ( self : List[Any] , __a : list[list[int | float]] , __a : list[int] , __a : int , __a : float ): for i in range(len(__a ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def _lowerCamelCase ( ) -> None: # Training Examples ( m, n ) _a = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) _a = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training _a = SelfOrganizingMap() _a = 3 _a = 0.5 for _ in range(lowercase ): for j in range(len(lowercase ) ): # training sample _a = training_samples[j] # Compute the winning vector _a = self_organizing_map.get_winner(lowercase , lowercase ) # Update the winning vector _a = self_organizing_map.update(lowercase , lowercase , lowercase , lowercase ) # classify test sample _a = [0, 0, 0, 1] _a = self_organizing_map.get_winner(lowercase , lowercase ) # results print(F'Clusters that the test sample belongs to : {winner}' ) print(F'Weights that have been trained : {weights}' ) # running the main() function if __name__ == "__main__": main()
63
"""simple docstring""" import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder _a = '__DUMMY_TRANSFORMERS_USER__' _a = 'Dummy User' _a = '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' _a = 'https://hub-ci.huggingface.co' _a = CI_HUB_ENDPOINT + '/datasets/{repo_id}/resolve/{revision}/{path}' _a = CI_HUB_ENDPOINT + '/{repo_id}/resolve/{revision}/{filename}' _a = Path('~/.huggingface/hub_ci_token').expanduser() @pytest.fixture def _A ( UpperCamelCase_ : List[Any]) -> Tuple: '''simple docstring''' monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE", UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : int) -> List[Any]: '''simple docstring''' monkeypatch.setattr("datasets.config.HF_ENDPOINT", UpperCamelCase_) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL", UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : str) -> Dict: '''simple docstring''' monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token", UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : Optional[Any], UpperCamelCase_ : List[Any]) -> List[str]: '''simple docstring''' HfFolder.save_token(UpperCamelCase_) yield HfFolder.delete_token() @pytest.fixture(scope="session") def _A ( ) -> List[Any]: '''simple docstring''' return HfApi(endpoint=UpperCamelCase_) @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi) -> List[Any]: '''simple docstring''' __lowercase = HfFolder.get_token() HfFolder.save_token(UpperCamelCase_) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : Dict) -> int: '''simple docstring''' def _cleanup_repo(UpperCamelCase_ : Optional[int]): hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") return _cleanup_repo @pytest.fixture def _A ( UpperCamelCase_ : str) -> Any: '''simple docstring''' @contextmanager def _temporary_repo(UpperCamelCase_ : Any): try: yield repo_id finally: cleanup_repo(UpperCamelCase_) return _temporary_repo @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : str, UpperCamelCase_ : Optional[int]) -> List[Any]: '''simple docstring''' __lowercase = F"""repo_txt_data-{int(time.time() * 10E3)}""" __lowercase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_) hf_api.upload_file( token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data/text_data.txt", repo_id=UpperCamelCase_, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : Any, UpperCamelCase_ : Dict) -> Optional[int]: '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : int, UpperCamelCase_ : Optional[int]) -> int: '''simple docstring''' __lowercase = F"""repo_zipped_txt_data-{int(time.time() * 10E3)}""" __lowercase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_) hf_api.upload_file( token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data.zip", repo_id=UpperCamelCase_, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Dict, UpperCamelCase_ : Any) -> int: '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : List[str], UpperCamelCase_ : List[str]) -> List[Any]: '''simple docstring''' __lowercase = F"""repo_zipped_img_data-{int(time.time() * 10E3)}""" __lowercase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_) hf_api.upload_file( token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data.zip", repo_id=UpperCamelCase_, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str], UpperCamelCase_ : List[str]) -> str: '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
17
0
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int ): """simple docstring""" while b: _snake_case , _snake_case : Optional[int] = b, a % b return a def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int ): """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(snake_case__ , a % b ) def UpperCAmelCase__ (): """simple docstring""" print(F"euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}" ) print(F"euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}" ) print(F"euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}" ) print(F"euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}" ) print(F"euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}" ) print(F"euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}" ) print(F"euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}" ) print(F"euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}" ) print(F"euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}" ) print(F"euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}" ) if __name__ == "__main__": main()
64
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : int = "time_series_transformer" __UpperCAmelCase : Any = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : int, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : str = "student_t", UpperCAmelCase__ : str = "nll", UpperCAmelCase__ : int = 1, UpperCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7], UpperCAmelCase__ : Optional[Union[str, bool]] = "mean", UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : int = 3_2, UpperCAmelCase__ : int = 3_2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : str = "gelu", UpperCAmelCase__ : int = 6_4, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : int = 1_0_0, UpperCAmelCase__ : float = 0.02, UpperCAmelCase__ : Any=True, **UpperCAmelCase__ : List[str], ): # time series specific configuration __lowercase = prediction_length __lowercase = context_length or prediction_length __lowercase = distribution_output __lowercase = loss __lowercase = input_size __lowercase = num_time_features __lowercase = lags_sequence __lowercase = scaling __lowercase = num_dynamic_real_features __lowercase = num_static_real_features __lowercase = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(UpperCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) __lowercase = cardinality else: __lowercase = [0] if embedding_dimension and num_static_categorical_features > 0: if len(UpperCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) __lowercase = embedding_dimension else: __lowercase = [min(5_0, (cat + 1) // 2 ) for cat in self.cardinality] __lowercase = num_parallel_samples # Transformer architecture configuration __lowercase = input_size * len(UpperCAmelCase__ ) + self._number_of_features __lowercase = d_model __lowercase = encoder_attention_heads __lowercase = decoder_attention_heads __lowercase = encoder_ffn_dim __lowercase = decoder_ffn_dim __lowercase = encoder_layers __lowercase = decoder_layers __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = activation_function __lowercase = init_std __lowercase = use_cache super().__init__(is_encoder_decoder=UpperCAmelCase__, **UpperCAmelCase__ ) @property def _lowercase ( self : Optional[Any] ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
17
0
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowerCAmelCase_ ( ) -> str: '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ = 9, 14 # noqa: F841 UpperCAmelCase__ = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] UpperCAmelCase__ = defaultdict(__A ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) UpperCAmelCase__ = mst(__A ) UpperCAmelCase__ = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: UpperCAmelCase__ = tuple(answer[:2] ) UpperCAmelCase__ = tuple(edge[::-1] ) assert edge in result or reverse in result
65
"""simple docstring""" import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class _lowerCAmelCase : """simple docstring""" @staticmethod def _lowercase ( *UpperCAmelCase__ : Tuple, **UpperCAmelCase__ : List[Any] ): pass def _A ( UpperCamelCase_ : Union[str, Any]) -> Any: '''simple docstring''' return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. _a = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Tuple = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Optional[Any] ): __lowercase = pipeline( "document-question-answering", model=UpperCAmelCase__, tokenizer=UpperCAmelCase__, image_processor=UpperCAmelCase__ ) __lowercase = INVOICE_URL __lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) ) __lowercase = "What is the placebo?" __lowercase = [ { "image": load_image(UpperCAmelCase__ ), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def _lowercase ( self : int, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Any ): __lowercase = dqa_pipeline(UpperCAmelCase__, top_k=2 ) self.assertEqual( UpperCAmelCase__, [ [ {"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ ), "start": ANY(UpperCAmelCase__ ), "end": ANY(UpperCAmelCase__ )}, {"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ ), "start": ANY(UpperCAmelCase__ ), "end": ANY(UpperCAmelCase__ )}, ] ] * 3, ) @require_torch @require_detectrona @require_pytesseract def _lowercase ( self : Dict ): __lowercase = pipeline("document-question-answering", model="hf-internal-testing/tiny-random-layoutlmv2" ) __lowercase = INVOICE_URL __lowercase = "How many cats are there?" __lowercase = [ {"score": 0.0_001, "answer": "oy 2312/2019", "start": 3_8, "end": 3_9}, {"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 3_8, "end": 4_0}, ] __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), UpperCAmelCase__ ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), UpperCAmelCase__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably __lowercase = "./tests/fixtures/tests_samples/COCO/000000039769.png" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual(UpperCAmelCase__, [] ) # We can optionnally pass directly the words and bounding boxes __lowercase = "./tests/fixtures/tests_samples/COCO/000000039769.png" __lowercase = [] __lowercase = [] __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, words=UpperCAmelCase__, boxes=UpperCAmelCase__, top_k=2 ) self.assertEqual(UpperCAmelCase__, [] ) @slow @require_torch @require_detectrona @require_pytesseract def _lowercase ( self : List[str] ): __lowercase = pipeline( "document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ] * 2, ) @slow @require_torch @require_detectrona @require_pytesseract def _lowercase ( self : Dict ): __lowercase = pipeline( "document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", max_seq_len=5_0, ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3}, {"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3}, {"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3}, {"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6}, ] ] * 2, ) @slow @require_torch @require_pytesseract @require_vision def _lowercase ( self : Optional[Any] ): __lowercase = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=UpperCAmelCase__ ) __lowercase = pipeline( "document-question-answering", model="impira/layoutlm-document-qa", tokenizer=UpperCAmelCase__, revision="3dc6de3", ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ], ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ] ] * 2, ) __lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) ) # This model should also work if `image` is set to None __lowercase = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ], ) @slow @require_torch @require_pytesseract @require_vision def _lowercase ( self : Union[str, Any] ): __lowercase = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=UpperCAmelCase__ ) __lowercase = pipeline( "document-question-answering", model="impira/layoutlm-document-qa", tokenizer=UpperCAmelCase__, revision="3dc6de3", max_seq_len=5_0, ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6}, ] ] * 2, ) __lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) ) # This model should also work if `image` is set to None __lowercase = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) @slow @require_torch def _lowercase ( self : Dict ): __lowercase = pipeline( "document-question-answering", model="naver-clova-ix/donut-base-finetuned-docvqa", tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ), feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa", ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def _lowercase ( self : List[Any] ): pass
17
0
"""simple docstring""" import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self: List[Any] , snake_case: List[str] , snake_case: Optional[Any]=13 , snake_case: List[str]=7 , snake_case: Dict=True , snake_case: List[str]=True , snake_case: Optional[int]=True , snake_case: Any=True , snake_case: Optional[Any]=99 , snake_case: Tuple=32 , snake_case: Tuple=5 , snake_case: Dict=4 , snake_case: Optional[Any]=37 , snake_case: Union[str, Any]="gelu" , snake_case: Tuple=0.1 , snake_case: List[Any]=0.1 , snake_case: List[str]=512 , snake_case: Optional[int]=16 , snake_case: int=2 , snake_case: List[Any]=0.0_2 , snake_case: Union[str, Any]=4 , ) -> List[str]: snake_case_ :Dict = parent snake_case_ :Any = batch_size snake_case_ :Any = seq_length snake_case_ :List[str] = is_training snake_case_ :Optional[Any] = use_attention_mask snake_case_ :Dict = use_token_type_ids snake_case_ :Union[str, Any] = use_labels snake_case_ :str = vocab_size snake_case_ :int = hidden_size snake_case_ :List[str] = num_hidden_layers snake_case_ :Dict = num_attention_heads snake_case_ :Any = intermediate_size snake_case_ :Tuple = hidden_act snake_case_ :int = hidden_dropout_prob snake_case_ :Optional[Any] = attention_probs_dropout_prob snake_case_ :Any = max_position_embeddings snake_case_ :Union[str, Any] = type_vocab_size snake_case_ :Optional[int] = type_sequence_label_size snake_case_ :Union[str, Any] = initializer_range snake_case_ :Tuple = num_choices def lowerCAmelCase_ ( self: Tuple ) -> str: snake_case_ :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ :Union[str, Any] = None if self.use_attention_mask: snake_case_ :str = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ :Any = None if self.use_token_type_ids: snake_case_ :List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ :int = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase_ ( self: Optional[int] ) -> int: snake_case_ :str = self.prepare_config_and_inputs() snake_case_, snake_case_, snake_case_, snake_case_ :Optional[int] = config_and_inputs snake_case_ :Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowerCAmelCase_ ( self: Optional[Any] ) -> Any: snake_case_ :int = self.prepare_config_and_inputs() snake_case_, snake_case_, snake_case_, snake_case_ :Dict = config_and_inputs snake_case_ :Union[str, Any] = True snake_case_ :Optional[int] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case_ :Tuple = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowerCamelCase ( _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _A : List[str] = True _A : Dict = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase_ ( self: int ) -> List[str]: snake_case_ :Any = FlaxBertModelTester(self ) @slow def lowerCAmelCase_ ( self: List[str] ) -> Dict: # Only check this for base model, not necessary for all model classes. # This will also help speed-up tests. snake_case_ :Dict = FlaxBertModel.from_pretrained("""bert-base-cased""" ) snake_case_ :Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(snake_case )
66
"""simple docstring""" import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _a = 2 class _lowerCAmelCase : """simple docstring""" def __init__( self : Dict, *, # begin keyword-only arguments UpperCAmelCase__ : str="<s>", UpperCAmelCase__ : Tuple="<pad>", UpperCAmelCase__ : str="</s>", UpperCAmelCase__ : Optional[Any]="<unk>", UpperCAmelCase__ : List[Any]=None, ): __lowercase ,__lowercase ,__lowercase ,__lowercase = bos, unk, pad, eos __lowercase = [] __lowercase = [] __lowercase = {} __lowercase = self.add_symbol(UpperCAmelCase__ ) __lowercase = self.add_symbol(UpperCAmelCase__ ) __lowercase = self.add_symbol(UpperCAmelCase__ ) __lowercase = self.add_symbol(UpperCAmelCase__ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(UpperCAmelCase__ ) __lowercase = len(self.symbols ) def __eq__( self : List[str], UpperCAmelCase__ : Dict ): return self.indices == other.indices def __getitem__( self : Optional[int], UpperCAmelCase__ : List[str] ): if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : str ): return len(self.symbols ) def __contains__( self : Any, UpperCAmelCase__ : Optional[Any] ): return sym in self.indices @classmethod def _lowercase ( cls : List[Any], UpperCAmelCase__ : Optional[Any] ): __lowercase = cls() d.add_from_file(UpperCAmelCase__ ) return d def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[Any]=1, UpperCAmelCase__ : str=False ): if word in self.indices and not overwrite: __lowercase = self.indices[word] __lowercase = self.count[idx] + n return idx else: __lowercase = len(self.symbols ) __lowercase = idx self.symbols.append(UpperCAmelCase__ ) self.count.append(UpperCAmelCase__ ) return idx def _lowercase ( self : Any, UpperCAmelCase__ : str ): return 0 def _lowercase ( self : Tuple, UpperCAmelCase__ : List[Any] ): if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): try: with open(UpperCAmelCase__, "r", encoding="utf-8" ) as fd: self.add_from_file(UpperCAmelCase__ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("Incorrect encoding detected in {}, please rebuild the dataset".format(UpperCAmelCase__ ) ) return __lowercase = f.readlines() __lowercase = self._load_meta(UpperCAmelCase__ ) for line in lines[indices_start_line:]: try: __lowercase ,__lowercase = line.rstrip().rsplit(" ", 1 ) if field == "#fairseq:overwrite": __lowercase = True __lowercase ,__lowercase = line.rsplit(" ", 1 ) else: __lowercase = False __lowercase = int(UpperCAmelCase__ ) __lowercase = line if word in self and not overwrite: raise RuntimeError( "Duplicate word found when loading Dictionary: '{}'. " "Duplicate words can overwrite earlier ones by adding the " "#fairseq:overwrite flag at the end of the corresponding row " "in the dictionary file. If using the Camembert model, please " "download an updated copy of the model file.".format(UpperCAmelCase__ ) ) self.add_symbol(UpperCAmelCase__, n=UpperCAmelCase__, overwrite=UpperCAmelCase__ ) except ValueError: raise ValueError("Incorrect dictionary format, expected '<token> <cnt> [flags]'" ) def _A ( UpperCamelCase_ : int) -> str: '''simple docstring''' __lowercase = dict((re.sub(r"@@$", "", UpperCamelCase_), v) if k.endswith("@@") else (re.sub(r"$", "</w>", UpperCamelCase_), v) for k, v in d.items()) __lowercase = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] __lowercase = d[k] # restore return da def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str) -> List[Any]: '''simple docstring''' if not os.path.exists(UpperCamelCase_): raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""") os.makedirs(UpperCamelCase_, exist_ok=UpperCamelCase_) print(F"""Writing results to {pytorch_dump_folder_path}""") # handle various types of models __lowercase = os.path.join(UpperCamelCase_, "checkpoint.pt") if not os.path.isfile(UpperCamelCase_): raise ValueError(F"""path to the file {checkpoint_file} does not exist!""") __lowercase = torch.load(UpperCamelCase_, map_location="cpu") __lowercase = chkpt["cfg"]["model"] # dicts __lowercase = os.path.join(UpperCamelCase_, "dict.txt") if not os.path.isfile(UpperCamelCase_): raise ValueError(F"""path to the file {dict_file} does not exist!""") __lowercase = Dictionary.load(UpperCamelCase_) __lowercase = rewrite_dict_keys(src_dict.indices) __lowercase = len(UpperCamelCase_) __lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["vocab_file"]) print(F"""Generating {src_vocab_file} of {src_vocab_size} records""") with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_)) # merges_file (bpecodes) __lowercase = os.path.join(UpperCamelCase_, "bpecodes") if not os.path.isfile(UpperCamelCase_): raise ValueError(F"""path to the file {bpecodes_file} does not exist!""") __lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["merges_file"]) shutil.copyfile(UpperCamelCase_, UpperCamelCase_) # model config __lowercase = os.path.join(UpperCamelCase_, "config.json") __lowercase = { "activation_dropout": args["activation_dropout"], "architectures": ["BioGptForCausalLM"], "attention_probs_dropout_prob": args["attention_dropout"], "bos_token_id": 0, "eos_token_id": 2, "hidden_act": args["activation_fn"], "hidden_dropout_prob": args["dropout"], "hidden_size": args["decoder_embed_dim"], "initializer_range": 0.02, "intermediate_size": args["decoder_ffn_embed_dim"], "layer_norm_eps": 1E-12, "layerdrop": args["decoder_layerdrop"], "max_position_embeddings": args["max_target_positions"], "model_type": "biogpt", "num_attention_heads": args["decoder_attention_heads"], "num_hidden_layers": args["decoder_layers"], "pad_token_id": 1, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_decoder_input_output_embed"], "vocab_size": src_vocab_size, } # good hparam defaults to start with print(F"""Generating {biogpt_model_config_file}""") with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_)) # tokenizer config __lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_) __lowercase = { "bos_token": "<s>", "eos_token": "</s>", "model_max_length": 1024, "pad_token": "<pad>", "special_tokens_map_file": None, "tokenizer_class": "BioGptTokenizer", "unk_token": "<unk>", } print(F"""Generating {biogpt_tokenizer_config_file}""") with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_)) # model __lowercase = chkpt["model"] # remove unneeded keys __lowercase = [ "decoder.version", ] for k in ignore_keys: model_state_dict.pop(UpperCamelCase_, UpperCamelCase_) __lowercase = list(model_state_dict.keys()) for layer_name in layer_names: if layer_name.endswith("output_projection.weight"): __lowercase = model_state_dict.pop(UpperCamelCase_) else: __lowercase = model_state_dict.pop(UpperCamelCase_) __lowercase = BioGptConfig.from_pretrained(UpperCamelCase_) __lowercase = BioGptForCausalLM(UpperCamelCase_) # check that it loads ok model_new.load_state_dict(UpperCamelCase_) # save __lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_) print(F"""Generating {pytorch_weights_dump_path}""") torch.save(UpperCamelCase_, UpperCamelCase_) print("Conversion is done!") if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _a = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
17
0
'''simple docstring''' from __future__ import annotations def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = False , ) -> tuple[int, float, str]: __lowerCamelCase = cipher_alphabet or [chr(UpperCamelCase__ ) for i in range(97 , 1_23 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) __lowerCamelCase = { '''a''': 0.0_8_4_9_7, '''b''': 0.0_1_4_9_2, '''c''': 0.0_2_2_0_2, '''d''': 0.0_4_2_5_3, '''e''': 0.1_1_1_6_2, '''f''': 0.0_2_2_2_8, '''g''': 0.0_2_0_1_5, '''h''': 0.0_6_0_9_4, '''i''': 0.0_7_5_4_6, '''j''': 0.0_0_1_5_3, '''k''': 0.0_1_2_9_2, '''l''': 0.0_4_0_2_5, '''m''': 0.0_2_4_0_6, '''n''': 0.0_6_7_4_9, '''o''': 0.0_7_5_0_7, '''p''': 0.0_1_9_2_9, '''q''': 0.0_0_0_9_5, '''r''': 0.0_7_5_8_7, '''s''': 0.0_6_3_2_7, '''t''': 0.0_9_3_5_6, '''u''': 0.0_2_7_5_8, '''v''': 0.0_0_9_7_8, '''w''': 0.0_2_5_6_0, '''x''': 0.0_0_1_5_0, '''y''': 0.0_1_9_9_4, '''z''': 0.0_0_0_7_7, } else: # Custom frequencies dictionary __lowerCamelCase = frequencies_dict if not case_sensitive: __lowerCamelCase = ciphertext.lower() # Chi squared statistic values __lowerCamelCase = {} # cycle through all of the shifts for shift in range(len(UpperCamelCase__ ) ): __lowerCamelCase = '''''' # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet __lowerCamelCase = (alphabet_letters.index(letter.lower() ) - shift) % len( UpperCamelCase__ ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter __lowerCamelCase = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: __lowerCamelCase = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message __lowerCamelCase = decrypted_with_shift.lower().count(UpperCamelCase__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies __lowerCamelCase = frequencies[letter] * occurrences # Complete the chi squared statistic formula __lowerCamelCase = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message __lowerCamelCase = decrypted_with_shift.count(UpperCamelCase__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies __lowerCamelCase = frequencies[letter] * occurrences # Complete the chi squared statistic formula __lowerCamelCase = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary __lowerCamelCase = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(UpperCamelCase__ ) -> tuple[float, str]: return chi_squared_statistic_values[key] __lowerCamelCase = min( UpperCamelCase__ , key=UpperCamelCase__ , ) # Get all the data from the most likely cipher (key, decoded message) ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
67
"""simple docstring""" from __future__ import annotations from typing import Any class _lowerCAmelCase : """simple docstring""" def __init__( self : Any, UpperCAmelCase__ : int ): __lowercase = num_of_nodes __lowercase = [] __lowercase = {} def _lowercase ( self : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : int, UpperCAmelCase__ : int ): self.m_edges.append([u_node, v_node, weight] ) def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _lowercase ( self : List[Any], UpperCAmelCase__ : int ): if self.m_component[u_node] != u_node: for k in self.m_component: __lowercase = self.find_component(UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : list[int], UpperCAmelCase__ : int, UpperCAmelCase__ : int ): if component_size[u_node] <= component_size[v_node]: __lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(UpperCAmelCase__ ) elif component_size[u_node] >= component_size[v_node]: __lowercase = self.find_component(UpperCAmelCase__ ) component_size[u_node] += component_size[v_node] self.set_component(UpperCAmelCase__ ) def _lowercase ( self : Any ): __lowercase = [] __lowercase = 0 __lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowercase ,__lowercase ,__lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase ,__lowercase ,__lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 __lowercase = [-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def _A ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
17
0
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class a__ ( unittest.TestCase ): """simple docstring""" def UpperCamelCase ( self , lowercase ) -> Tuple: '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"] ): A__ = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(lowercase ) def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' A__ = "sshleifer/tiny-gpt2" A__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , ) A__ = PyTorchBenchmark(lowercase ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase ( self ) -> Dict: '''simple docstring''' A__ = "sgugger/tiny-distilbert-classification" A__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , only_pretrain_model=lowercase , ) A__ = PyTorchBenchmark(lowercase ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' A__ = "sshleifer/tiny-gpt2" A__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , torchscript=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , ) A__ = PyTorchBenchmark(lowercase ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision" ) def UpperCamelCase ( self ) -> Optional[Any]: '''simple docstring''' A__ = "sshleifer/tiny-gpt2" A__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , fpaa=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , ) A__ = PyTorchBenchmark(lowercase ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase ( self ) -> Dict: '''simple docstring''' A__ = "sshleifer/tiny-gpt2" A__ = AutoConfig.from_pretrained(lowercase ) # set architectures equal to `None` A__ = None A__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , ) A__ = PyTorchBenchmark(lowercase , configs=[config] ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase ( self ) -> Any: '''simple docstring''' A__ = "sshleifer/tiny-gpt2" A__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , ) A__ = PyTorchBenchmark(lowercase ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == "cpu" , "Can't do half precision" ) def UpperCamelCase ( self ) -> str: '''simple docstring''' A__ = "sshleifer/tiny-gpt2" A__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=lowercase , multi_process=lowercase , ) A__ = PyTorchBenchmark(lowercase ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' A__ = "sshleifer/tiny-gpt2" A__ = AutoConfig.from_pretrained(lowercase ) A__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , ) A__ = PyTorchBenchmark(lowercase , configs=[config] ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase ( self ) -> Dict: '''simple docstring''' A__ = "sshleifer/tinier_bart" A__ = AutoConfig.from_pretrained(lowercase ) A__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , ) A__ = PyTorchBenchmark(lowercase , configs=[config] ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase ( self ) -> str: '''simple docstring''' A__ = "sshleifer/tiny-gpt2" A__ = AutoConfig.from_pretrained(lowercase ) A__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , ) A__ = PyTorchBenchmark(lowercase , configs=[config] ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' A__ = "sshleifer/tinier_bart" A__ = AutoConfig.from_pretrained(lowercase ) A__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , ) A__ = PyTorchBenchmark(lowercase , configs=[config] ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' A__ = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: A__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , save_to_csv=lowercase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(lowercase , "inf_time.csv" ) , train_memory_csv_file=os.path.join(lowercase , "train_mem.csv" ) , inference_memory_csv_file=os.path.join(lowercase , "inf_mem.csv" ) , train_time_csv_file=os.path.join(lowercase , "train_time.csv" ) , env_info_csv_file=os.path.join(lowercase , "env.csv" ) , multi_process=lowercase , ) A__ = PyTorchBenchmark(lowercase ) benchmark.run() self.assertTrue(Path(os.path.join(lowercase , "inf_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(lowercase , "train_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(lowercase , "inf_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(lowercase , "train_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(lowercase , "env.csv" ) ).exists() ) def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' A__ = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(lowercase ): self.assertTrue(hasattr(lowercase , "sequential" ) ) self.assertTrue(hasattr(lowercase , "cumulative" ) ) self.assertTrue(hasattr(lowercase , "current" ) ) self.assertTrue(hasattr(lowercase , "total" ) ) with tempfile.TemporaryDirectory() as tmp_dir: A__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(lowercase , "log.txt" ) , log_print=lowercase , trace_memory_line_by_line=lowercase , multi_process=lowercase , ) A__ = PyTorchBenchmark(lowercase ) A__ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(lowercase , "log.txt" ) ).exists() )
68
"""simple docstring""" from math import sqrt def _A ( UpperCamelCase_ : int) -> int: '''simple docstring''' __lowercase = 0 for i in range(1, int(sqrt(UpperCamelCase_) + 1)): if n % i == 0 and i != sqrt(UpperCamelCase_): total += i + n // i elif i == sqrt(UpperCamelCase_): total += i return total - n def _A ( UpperCamelCase_ : int = 10000) -> int: '''simple docstring''' __lowercase = sum( i for i in range(1, UpperCamelCase_) if sum_of_divisors(sum_of_divisors(UpperCamelCase_)) == i and sum_of_divisors(UpperCamelCase_) != i) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
17
0
"""simple docstring""" import sys __UpperCamelCase = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def UpperCAmelCase ( UpperCAmelCase ) -> int: snake_case_ = 1 for digit in s: product *= int(UpperCAmelCase ) return product def UpperCAmelCase ( UpperCAmelCase = N ) -> int: snake_case_ = -sys.maxsize - 1 snake_case_ = n[:13] snake_case_ = 13 while cur_index < len(UpperCAmelCase ) - 13: if int(n[cur_index] ) >= int(substr[0] ): snake_case_ = substr[1:] + n[cur_index] cur_index += 1 else: snake_case_ = max(UpperCAmelCase , str_eval(UpperCAmelCase ) ) snake_case_ = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(F"""{solution() = }""")
69
"""simple docstring""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _a = _symbol_database.Default() _a = _descriptor_pool.Default().AddSerializedFile( b'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) _a = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: _a = None _a = b'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" _a = 45 _a = 15_81 _a = 15_17 _a = 15_70 _a = 15_84 _a = 17_93 _a = 17_95 _a = 19_16 _a = 18_64 _a = 19_05 _a = 19_19 _a = 24_29 _a = 22_08 _a = 24_18 _a = 23_23 _a = 24_07 # @@protoc_insertion_point(module_scope)
17
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() A__ : List[Any] =logging.get_logger(__name__) def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase=False ): """simple docstring""" _lowerCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"deit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"deit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"deit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"deit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"deit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"deit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"deit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"deit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"deit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"deit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """deit.embeddings.cls_token"""), ("""dist_token""", """deit.embeddings.distillation_token"""), ("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """deit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" _lowerCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("""norm.weight""", """deit.layernorm.weight"""), ("""norm.bias""", """deit.layernorm.bias"""), ("""head.weight""", """cls_classifier.weight"""), ("""head.bias""", """cls_classifier.bias"""), ("""head_dist.weight""", """distillation_classifier.weight"""), ("""head_dist.bias""", """distillation_classifier.bias"""), ] ) return rename_keys def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _lowerCAmelCase = """""" else: _lowerCAmelCase = """deit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCAmelCase = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) _lowerCAmelCase = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase = in_proj_weight[ : config.hidden_size, : ] _lowerCAmelCase = in_proj_bias[: config.hidden_size] _lowerCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCAmelCase = in_proj_weight[ -config.hidden_size :, : ] _lowerCAmelCase = in_proj_bias[-config.hidden_size :] def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = dct.pop(lowerCAmelCase ) _lowerCAmelCase = val def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" _lowerCAmelCase = Image.open(requests.get(lowerCAmelCase , stream=lowerCAmelCase ).raw ) return im @torch.no_grad() def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = DeiTConfig() # all deit models have fine-tuned heads _lowerCAmelCase = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size _lowerCAmelCase = 10_00 _lowerCAmelCase = """huggingface/label-files""" _lowerCAmelCase = """imagenet-1k-id2label.json""" _lowerCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase , lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) _lowerCAmelCase = {int(lowerCAmelCase ): v for k, v in idalabel.items()} _lowerCAmelCase = idalabel _lowerCAmelCase = {v: k for k, v in idalabel.items()} _lowerCAmelCase = int(deit_name[-6:-4] ) _lowerCAmelCase = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("""tiny""" ): _lowerCAmelCase = 1_92 _lowerCAmelCase = 7_68 _lowerCAmelCase = 12 _lowerCAmelCase = 3 elif deit_name[9:].startswith("""small""" ): _lowerCAmelCase = 3_84 _lowerCAmelCase = 15_36 _lowerCAmelCase = 12 _lowerCAmelCase = 6 if deit_name[9:].startswith("""base""" ): pass elif deit_name[4:].startswith("""large""" ): _lowerCAmelCase = 10_24 _lowerCAmelCase = 40_96 _lowerCAmelCase = 24 _lowerCAmelCase = 16 # load original model from timm _lowerCAmelCase = timm.create_model(lowerCAmelCase , pretrained=lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _lowerCAmelCase = timm_model.state_dict() _lowerCAmelCase = create_rename_keys(lowerCAmelCase , lowerCAmelCase ) for src, dest in rename_keys: rename_key(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) read_in_q_k_v(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # load HuggingFace model _lowerCAmelCase = DeiTForImageClassificationWithTeacher(lowerCAmelCase ).eval() model.load_state_dict(lowerCAmelCase ) # Check outputs on an image, prepared by DeiTImageProcessor _lowerCAmelCase = int( (2_56 / 2_24) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 _lowerCAmelCase = DeiTImageProcessor(size=lowerCAmelCase , crop_size=config.image_size ) _lowerCAmelCase = image_processor(images=prepare_img() , return_tensors="""pt""" ) _lowerCAmelCase = encoding["""pixel_values"""] _lowerCAmelCase = model(lowerCAmelCase ) _lowerCAmelCase = timm_model(lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase , outputs.logits , atol=1e-3 ) Path(lowerCAmelCase ).mkdir(exist_ok=lowerCAmelCase ) print(f"Saving model {deit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": A__ : Union[str, Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--deit_name''', default='''vit_deit_base_distilled_patch16_224''', type=str, help='''Name of the DeiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) A__ : Tuple =parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
70
"""simple docstring""" import baseaa def _A ( UpperCamelCase_ : str) -> bytes: '''simple docstring''' return baseaa.baaencode(string.encode("utf-8")) def _A ( UpperCamelCase_ : bytes) -> str: '''simple docstring''' return baseaa.baadecode(UpperCamelCase_).decode("utf-8") if __name__ == "__main__": _a = 'Hello World!' _a = baseaa_encode(test) print(encoded) _a = baseaa_decode(encoded) print(decoded)
17
0
def A ( a_ ) -> int: return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def A ( a_ ) -> bool: __UpperCamelCase : Union[str, Any] =0 __UpperCamelCase : Optional[int] =number while duplicate > 0: __UpperCamelCase , __UpperCamelCase : Any =divmod(a_ ,10 ) fact_sum += factorial(a_ ) return fact_sum == number if __name__ == "__main__": print('''Program to check whether a number is a Krisnamurthy Number or not.''') A_ :Tuple = int(input('''Enter number: ''').strip()) print( f"{number} is {'' if krishnamurthy(number) else 'not '}a Krishnamurthy Number." )
71
"""simple docstring""" def _A ( UpperCamelCase_ : Any) -> List[str]: '''simple docstring''' __lowercase ,__lowercase = [], [] while len(UpperCamelCase_) > 1: __lowercase ,__lowercase = min(UpperCamelCase_), max(UpperCamelCase_) start.append(UpperCamelCase_) end.append(UpperCamelCase_) collection.remove(UpperCamelCase_) collection.remove(UpperCamelCase_) end.reverse() return start + collection + end if __name__ == "__main__": _a = input('Enter numbers separated by a comma:\n').strip() _a = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
17
0
"""simple docstring""" from collections import defaultdict def snake_case_ ( A_ : int ): '''simple docstring''' _lowerCamelCase : Dict = 1 _lowerCamelCase : List[Any] = True for v in tree[start]: if v not in visited: ret += dfs(A_ ) if ret % 2 == 0: cuts.append(A_ ) return ret def snake_case_ ( ): '''simple docstring''' dfs(1 ) if __name__ == "__main__": lowerCAmelCase__ , lowerCAmelCase__ = 10, 9 lowerCAmelCase__ = defaultdict(list) lowerCAmelCase__ = {} lowerCAmelCase__ = [] lowerCAmelCase__ = 0 lowerCAmelCase__ = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
72
"""simple docstring""" def _A ( UpperCamelCase_ : list[int]) -> float: '''simple docstring''' if not nums: # Makes sure that the list is not empty raise ValueError("List is empty") __lowercase = sum(UpperCamelCase_) / len(UpperCamelCase_) # Calculate the average return sum(abs(x - average) for x in nums) / len(UpperCamelCase_) if __name__ == "__main__": import doctest doctest.testmod()
17
0
import argparse import os import re a ="""src/transformers""" # Pattern that looks at the indentation in a line. a =re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. a =re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. a =re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. a =re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. a =re.compile(r"""\[([^\]]+)\]""") def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Union[str, Any]: __lowerCamelCase : List[str] = _re_indent.search(lowerCamelCase__ ) return "" if search is None else search.groups()[0] def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__="" , lowerCamelCase__=None , lowerCamelCase__=None ) -> Any: __lowerCamelCase : int = 0 __lowerCamelCase : int = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(lowerCamelCase__ ): index += 1 __lowerCamelCase : Dict = ['\n'.join(lines[:index] )] else: __lowerCamelCase : int = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __lowerCamelCase : str = [lines[index]] index += 1 while index < len(lowerCamelCase__ ) and (end_prompt is None or not lines[index].startswith(lowerCamelCase__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(lowerCamelCase__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(lowerCamelCase__ ) ) if index < len(lowerCamelCase__ ) - 1: __lowerCamelCase : Dict = [lines[index + 1]] index += 1 else: __lowerCamelCase : List[str] = [] else: blocks.append('\n'.join(lowerCamelCase__ ) ) __lowerCamelCase : Any = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(lowerCamelCase__ ) > 0: blocks.append('\n'.join(lowerCamelCase__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowerCamelCase__ ): blocks.append('\n'.join(lines[index:] ) ) return blocks def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Optional[int]: def _inner(lowerCamelCase__ ): return key(lowerCamelCase__ ).lower().replace('_' , '' ) return _inner def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__=None ) -> Union[str, Any]: # If no key is provided, we use a noop. def noop(lowerCamelCase__ ): return x if key is None: __lowerCamelCase : Dict = noop # Constants are all uppercase, they go first. __lowerCamelCase : List[Any] = [obj for obj in objects if key(lowerCamelCase__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __lowerCamelCase : Union[str, Any] = [obj for obj in objects if key(lowerCamelCase__ )[0].isupper() and not key(lowerCamelCase__ ).isupper()] # Functions begin with a lowercase, they go last. __lowerCamelCase : Union[str, Any] = [obj for obj in objects if not key(lowerCamelCase__ )[0].isupper()] __lowerCamelCase : List[Any] = ignore_underscore(lowerCamelCase__ ) return sorted(lowerCamelCase__ , key=lowerCamelCase__ ) + sorted(lowerCamelCase__ , key=lowerCamelCase__ ) + sorted(lowerCamelCase__ , key=lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> str: # This inner function sort imports between [ ]. def _replace(lowerCamelCase__ ): __lowerCamelCase : Dict = match.groups()[0] if "," not in imports: return F"[{imports}]" __lowerCamelCase : Any = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowerCamelCase : List[Any] = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(lowerCamelCase__ )] ) + "]" __lowerCamelCase : int = import_statement.split('\n' ) if len(lowerCamelCase__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __lowerCamelCase : Any = 2 if lines[1].strip() == '[' else 1 __lowerCamelCase : Optional[Any] = [(i, _re_strip_line.search(lowerCamelCase__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __lowerCamelCase : Tuple = sort_objects(lowerCamelCase__ , key=lambda lowerCamelCase__ : x[1] ) __lowerCamelCase : Optional[int] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(lowerCamelCase__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __lowerCamelCase : Optional[int] = _re_bracket_content.sub(_replace , lines[1] ) else: __lowerCamelCase : int = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowerCamelCase : Optional[int] = keys[:-1] __lowerCamelCase : List[str] = get_indent(lines[1] ) + ', '.join([F"\"{k}\"" for k in sort_objects(lowerCamelCase__ )] ) return "\n".join(lowerCamelCase__ ) else: # Finally we have to deal with imports fitting on one line __lowerCamelCase : Any = _re_bracket_content.sub(_replace , lowerCamelCase__ ) return import_statement def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__=True ) -> Dict: with open(lowerCamelCase__ , encoding='utf-8' ) as f: __lowerCamelCase : int = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __lowerCamelCase : str = split_code_in_indented_blocks( lowerCamelCase__ , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(lowerCamelCase__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __lowerCamelCase : Optional[int] = main_blocks[block_idx] __lowerCamelCase : str = block.split('\n' ) # Get to the start of the imports. __lowerCamelCase : Union[str, Any] = 0 while line_idx < len(lowerCamelCase__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __lowerCamelCase : List[Any] = len(lowerCamelCase__ ) else: line_idx += 1 if line_idx >= len(lowerCamelCase__ ): continue # Ignore beginning and last line: they don't contain anything. __lowerCamelCase : Dict = '\n'.join(block_lines[line_idx:-1] ) __lowerCamelCase : Any = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __lowerCamelCase : Any = split_code_in_indented_blocks(lowerCamelCase__ , indent_level=lowerCamelCase__ ) # We have two categories of import key: list or _import_structure[key].append/extend __lowerCamelCase : Optional[Any] = _re_direct_key if '_import_structure = {' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __lowerCamelCase : Optional[Any] = [(pattern.search(lowerCamelCase__ ).groups()[0] if pattern.search(lowerCamelCase__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __lowerCamelCase : Optional[Any] = [(i, key) for i, key in enumerate(lowerCamelCase__ ) if key is not None] __lowerCamelCase : str = [x[0] for x in sorted(lowerCamelCase__ , key=lambda lowerCamelCase__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __lowerCamelCase : int = 0 __lowerCamelCase : Union[str, Any] = [] for i in range(len(lowerCamelCase__ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: __lowerCamelCase : Optional[int] = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(lowerCamelCase__ ) count += 1 # And we put our main block back together with its first and last line. __lowerCamelCase : Tuple = '\n'.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(lowerCamelCase__ ): if check_only: return True else: print(F"Overwriting {file}." ) with open(lowerCamelCase__ , 'w' , encoding='utf-8' ) as f: f.write('\n'.join(lowerCamelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__=True ) -> Optional[Any]: __lowerCamelCase : Optional[int] = [] for root, _, files in os.walk(lowerCamelCase__ ): if "__init__.py" in files: __lowerCamelCase : Optional[Any] = sort_imports(os.path.join(lowerCamelCase__ , '__init__.py' ) , check_only=lowerCamelCase__ ) if result: __lowerCamelCase : Tuple = [os.path.join(lowerCamelCase__ , '__init__.py' )] if len(lowerCamelCase__ ) > 0: raise ValueError(F"Would overwrite {len(lowerCamelCase__ )} files, run `make style`." ) if __name__ == "__main__": a =argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") a =parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
73
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : int=1_0_0, UpperCAmelCase__ : Any=1_3, UpperCAmelCase__ : List[Any]=3_0, UpperCAmelCase__ : Dict=2, UpperCAmelCase__ : Any=3, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[str]=True, UpperCAmelCase__ : Optional[Any]=3_2, UpperCAmelCase__ : Any=5, UpperCAmelCase__ : Any=4, UpperCAmelCase__ : Any=3_7, UpperCAmelCase__ : Optional[int]="gelu", UpperCAmelCase__ : Dict=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Dict=1_0, UpperCAmelCase__ : Tuple=0.02, UpperCAmelCase__ : List[Any]=3, ): __lowercase = parent __lowercase = vocab_size __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase = (image_size // patch_size) ** 2 __lowercase = num_patches + 1 def _lowercase ( self : int ): __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size], self.type_sequence_label_size ) __lowercase = BeitConfig( vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=UpperCAmelCase__, initializer_range=self.initializer_range, ) return config, pixel_values, labels def _lowercase ( self : Any, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[str], UpperCAmelCase__ : List[str] ): __lowercase = FlaxBeitModel(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : List[Any] ): __lowercase = FlaxBeitForMaskedImageModeling(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size) ) def _lowercase ( self : Dict, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : Union[str, Any] ): __lowercase = self.type_sequence_label_size __lowercase = FlaxBeitForImageClassification(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowercase = 1 __lowercase = FlaxBeitForImageClassification(UpperCAmelCase__ ) __lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase = model(UpperCAmelCase__ ) def _lowercase ( self : List[str] ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) ,( __lowercase ) ,( __lowercase ) , ) = config_and_inputs __lowercase = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class _lowerCAmelCase ( lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def _lowercase ( self : List[Any] ): __lowercase = FlaxBeitModelTester(self ) __lowercase = ConfigTester(self, config_class=UpperCAmelCase__, has_text_modality=UpperCAmelCase__, hidden_size=3_7 ) def _lowercase ( self : Union[str, Any] ): self.config_tester.run_common_tests() def _lowercase ( self : Optional[int] ): __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(UpperCAmelCase__ ) __lowercase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["pixel_values"] self.assertListEqual(arg_names[:1], UpperCAmelCase__ ) def _lowercase ( self : Tuple ): __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowercase = self._prepare_for_class(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = model_class(UpperCAmelCase__ ) @jax.jit def model_jitted(UpperCAmelCase__ : str, **UpperCAmelCase__ : Dict ): return model(pixel_values=UpperCAmelCase__, **UpperCAmelCase__ ) with self.subTest("JIT Enabled" ): __lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ), len(UpperCAmelCase__ ) ) for jitted_output, output in zip(UpperCAmelCase__, UpperCAmelCase__ ): self.assertEqual(jitted_output.shape, output.shape ) def _lowercase ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def _lowercase ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ ) def _lowercase ( self : Tuple ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ ) @slow def _lowercase ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: __lowercase = model_class_name.from_pretrained("microsoft/beit-base-patch16-224" ) __lowercase = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(UpperCAmelCase__ ) def _A ( ) -> str: '''simple docstring''' __lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_vision @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : Optional[int] ): return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def _lowercase ( self : Any ): __lowercase = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ).pixel_values # prepare bool_masked_pos __lowercase = np.ones((1, 1_9_6), dtype=UpperCAmelCase__ ) # forward pass __lowercase = model(pixel_values=UpperCAmelCase__, bool_masked_pos=UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 1_9_6, 8_1_9_2) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3], UpperCAmelCase__, atol=1E-2 ) ) @slow def _lowercase ( self : Any ): __lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ) # forward pass __lowercase = model(**UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 1_0_0_0) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array([-1.2_385, -1.0_987, -1.0_108] ) self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) ) __lowercase = 2_8_1 self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ ) @slow def _lowercase ( self : List[str] ): __lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ) # forward pass __lowercase = model(**UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 2_1_8_4_1) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array([1.6_881, -0.2_787, 0.5_901] ) self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) ) __lowercase = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ )
17
0
"""simple docstring""" import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: List[Any] = RoFormerTokenizer _lowerCamelCase: Any = RoFormerTokenizerFast _lowerCamelCase: Optional[int] = True _lowerCamelCase: Any = True def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: super().setUp() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,**A_ : Tuple ) -> Any: return self.tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,**A_ : Optional[int] ) -> Dict: return self.rust_tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: A = '永和服装饰品有限公司,今天天气非常好' A = '永和 服装 饰品 有限公司 , 今 天 天 气 非常 好' return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: A = self.get_tokenizer() A , A = self.get_chinese_input_output_texts() A = tokenizer.tokenize(A_ ) self.assertListEqual(A_ ,output_text.split() ) A = tokens + [tokenizer.unk_token] A = [2_2943, 2_1332, 3_4431, 4_5904, 117, 306, 1231, 1231, 2653, 3_3994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: A = self.get_rust_tokenizer() A , A = self.get_chinese_input_output_texts() A = tokenizer.tokenize(A_ ) self.assertListEqual(A_ ,output_text.split() ) A = tokens + [tokenizer.unk_token] A = [2_2943, 2_1332, 3_4431, 4_5904, 117, 306, 1231, 1231, 2653, 3_3994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: pass def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: pass def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: pass
74
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class _lowerCAmelCase ( unittest.TestCase ,lowercase ): """simple docstring""" def _lowercase ( self : List[Any] ): __lowercase = load_tool("text-classification" ) self.tool.setup() __lowercase = load_tool("text-classification", remote=UpperCAmelCase__ ) def _lowercase ( self : str ): __lowercase = self.tool("That's quite cool", ["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" ) def _lowercase ( self : str ): __lowercase = self.remote_tool("That's quite cool", ["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" ) def _lowercase ( self : List[str] ): __lowercase = self.tool(text="That's quite cool", labels=["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" ) def _lowercase ( self : Tuple ): __lowercase = self.remote_tool(text="That's quite cool", labels=["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" )
17
0
'''simple docstring''' from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline a_ : Any = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class __UpperCamelCase ( lowerCamelCase__ ): def __init__( self, **lowerCAmelCase ): """simple docstring""" super().__init__(**lowerCAmelCase ) if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) # No specific FOR_XXX available yet def __call__( self, lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return super().__call__(lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ ={} if "candidate_labels" in kwargs: lowerCamelCase_ =kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: lowerCamelCase_ =kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=None, lowerCAmelCase="This is a sound of {}." ): """simple docstring""" if isinstance(lowerCAmelCase, lowerCAmelCase ): if audio.startswith('''http://''' ) or audio.startswith('''https://''' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png lowerCamelCase_ =requests.get(lowerCAmelCase ).content else: with open(lowerCAmelCase, '''rb''' ) as f: lowerCamelCase_ =f.read() if isinstance(lowerCAmelCase, lowerCAmelCase ): lowerCamelCase_ =ffmpeg_read(lowerCAmelCase, self.feature_extractor.sampling_rate ) if not isinstance(lowerCAmelCase, np.ndarray ): raise ValueError('''We expect a numpy ndarray as input''' ) if len(audio.shape ) != 1: raise ValueError('''We expect a single channel audio input for ZeroShotAudioClassificationPipeline''' ) lowerCamelCase_ =self.feature_extractor( [audio], sampling_rate=self.feature_extractor.sampling_rate, return_tensors='''pt''' ) lowerCamelCase_ =candidate_labels lowerCamelCase_ =[hypothesis_template.format(lowerCAmelCase ) for x in candidate_labels] lowerCamelCase_ =self.tokenizer(lowerCAmelCase, return_tensors=self.framework, padding=lowerCAmelCase ) lowerCamelCase_ =[text_inputs] return inputs def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =model_inputs.pop('''candidate_labels''' ) lowerCamelCase_ =model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0], lowerCAmelCase ): lowerCamelCase_ =text_inputs[0] else: # Batching case. lowerCamelCase_ =text_inputs[0][0] lowerCamelCase_ =self.model(**lowerCAmelCase, **lowerCAmelCase ) lowerCamelCase_ ={ '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_audio, } return model_outputs def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =model_outputs.pop('''candidate_labels''' ) lowerCamelCase_ =model_outputs['''logits'''][0] if self.framework == "pt": lowerCamelCase_ =logits.softmax(dim=0 ) lowerCamelCase_ =probs.tolist() else: raise ValueError('''`tf` framework not supported.''' ) lowerCamelCase_ =[ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(lowerCAmelCase, lowerCAmelCase ), key=lambda lowerCAmelCase : -x[0] ) ] return result
75
"""simple docstring""" from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker _a = 'CompVis/stable-diffusion-v1-1' _a = 'CompVis/stable-diffusion-v1-2' _a = 'CompVis/stable-diffusion-v1-3' _a = 'CompVis/stable-diffusion-v1-4' class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : Dict, UpperCAmelCase__ : AutoencoderKL, UpperCAmelCase__ : CLIPTextModel, UpperCAmelCase__ : CLIPTokenizer, UpperCAmelCase__ : UNetaDConditionModel, UpperCAmelCase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], UpperCAmelCase__ : StableDiffusionSafetyChecker, UpperCAmelCase__ : CLIPImageProcessor, UpperCAmelCase__ : bool = True, ): super()._init_() __lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ ) __lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ ) __lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ ) __lowercase = StableDiffusionPipeline( vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, tokenizer=UpperCAmelCase__, unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, safety_checker=UpperCAmelCase__, feature_extractor=UpperCAmelCase__, requires_safety_checker=UpperCAmelCase__, ) self.register_modules(pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea ) @property def _lowercase ( self : List[str] ): return {k: getattr(self, UpperCAmelCase__ ) for k in self.config.keys() if not k.startswith("_" )} def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase__ ) def _lowercase ( self : List[str] ): self.enable_attention_slicing(UpperCAmelCase__ ) @torch.no_grad() def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Tuple, ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : Tuple, UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : str, ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : str, UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Any, ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Optional[int], ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : str, ): __lowercase = "cuda" if torch.cuda.is_available() else "cpu" self.to(UpperCAmelCase__ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" ) # Get first result from Stable Diffusion Checkpoint v1.1 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get first result from Stable Diffusion Checkpoint v1.2 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get first result from Stable Diffusion Checkpoint v1.3 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get first result from Stable Diffusion Checkpoint v1.4 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
17
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='speech_to_text' lowerCamelCase__ =['past_key_values'] lowerCamelCase__ ={'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[int] , a : Optional[int]=1_0000 , a : Any=12 , a : List[Any]=2048 , a : Any=4 , a : str=6 , a : List[str]=2048 , a : str=4 , a : Tuple=0.0 , a : Dict=0.0 , a : Union[str, Any]=True , a : Any=True , a : Tuple="relu" , a : int=256 , a : Dict=0.1 , a : int=0.0 , a : List[str]=0.0 , a : Dict=0.02 , a : Tuple=2 , a : Tuple=True , a : Optional[Any]=1 , a : int=0 , a : Tuple=2 , a : str=6000 , a : List[Any]=1024 , a : int=2 , a : Optional[Any]=(5, 5) , a : Dict=1024 , a : int=80 , a : Optional[int]=1 , **a : str , ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE : str = d_model SCREAMING_SNAKE_CASE : Union[str, Any] = encoder_ffn_dim SCREAMING_SNAKE_CASE : Any = encoder_layers SCREAMING_SNAKE_CASE : int = encoder_attention_heads SCREAMING_SNAKE_CASE : List[Any] = decoder_ffn_dim SCREAMING_SNAKE_CASE : Any = decoder_layers SCREAMING_SNAKE_CASE : Optional[int] = decoder_attention_heads SCREAMING_SNAKE_CASE : Optional[Any] = dropout SCREAMING_SNAKE_CASE : str = attention_dropout SCREAMING_SNAKE_CASE : Optional[Any] = activation_dropout SCREAMING_SNAKE_CASE : str = activation_function SCREAMING_SNAKE_CASE : Any = init_std SCREAMING_SNAKE_CASE : Any = encoder_layerdrop SCREAMING_SNAKE_CASE : int = decoder_layerdrop SCREAMING_SNAKE_CASE : Tuple = use_cache SCREAMING_SNAKE_CASE : Optional[int] = encoder_layers SCREAMING_SNAKE_CASE : str = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE : Union[str, Any] = max_source_positions SCREAMING_SNAKE_CASE : str = max_target_positions SCREAMING_SNAKE_CASE : Optional[int] = num_conv_layers SCREAMING_SNAKE_CASE : Union[str, Any] = list(a ) SCREAMING_SNAKE_CASE : Optional[int] = conv_channels SCREAMING_SNAKE_CASE : Dict = input_feat_per_channel SCREAMING_SNAKE_CASE : Optional[Any] = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` " F"but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, " F"`config.num_conv_layers = {self.num_conv_layers}`." ) super().__init__( pad_token_id=a , bos_token_id=a , eos_token_id=a , is_encoder_decoder=a , decoder_start_token_id=a , **a , )
76
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowerCAmelCase ( lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = "ssube/stable-diffusion-x4-upscaler-onnx" def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : List[str]=0 ): __lowercase = floats_tensor((1, 3, 1_2_8, 1_2_8), rng=random.Random(UpperCAmelCase__ ) ) __lowercase = torch.manual_seed(UpperCAmelCase__ ) __lowercase = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def _lowercase ( self : Any ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def _lowercase ( self : Optional[Any] ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) __lowercase = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.6_898_892, 0.59_240_556, 0.52_499_527, 0.58_866_215, 0.52_258_235, 0.52_572_715, 0.62_414_473, 0.6_174_387, 0.6_214_964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _lowercase ( self : int ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.7_659_278, 0.76_437_664, 0.75_579_107, 0.7_691_116, 0.77_666_986, 0.7_727_672, 0.7_758_664, 0.7_812_226, 0.76_942_515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _lowercase ( self : str ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) __lowercase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _lowercase ( self : Any ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) __lowercase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.77_424_496, 0.773_601, 0.7_645_288, 0.7_769_598, 0.7_772_739, 0.7_738_688, 0.78_187_233, 0.77_879_584, 0.767_043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @property def _lowercase ( self : Tuple ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowercase ( self : Dict ): __lowercase = ort.SessionOptions() __lowercase = False return options def _lowercase ( self : Dict ): __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) __lowercase = init_image.resize((1_2_8, 1_2_8) ) # using the PNDM scheduler by default __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx", provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = "A fantasy landscape, trending on artstation" __lowercase = torch.manual_seed(0 ) __lowercase = pipe( prompt=UpperCAmelCase__, image=UpperCAmelCase__, guidance_scale=7.5, num_inference_steps=1_0, generator=UpperCAmelCase__, output_type="np", ) __lowercase = output.images __lowercase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array([0.4_883, 0.4_947, 0.4_980, 0.4_975, 0.4_982, 0.4_980, 0.5_000, 0.5_006, 0.4_972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def _lowercase ( self : str ): __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) __lowercase = init_image.resize((1_2_8, 1_2_8) ) __lowercase = LMSDiscreteScheduler.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx", subfolder="scheduler" ) __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx", scheduler=UpperCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = "A fantasy landscape, trending on artstation" __lowercase = torch.manual_seed(0 ) __lowercase = pipe( prompt=UpperCAmelCase__, image=UpperCAmelCase__, guidance_scale=7.5, num_inference_steps=2_0, generator=UpperCAmelCase__, output_type="np", ) __lowercase = output.images __lowercase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.50_173_753, 0.50_223_356, 0.502_039, 0.50_233_036, 0.5_023_725, 0.5_022_601, 0.5_018_758, 0.50_234_085, 0.50_241_566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
17
0
"""simple docstring""" import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class UpperCAmelCase_ ( _a): lowerCamelCase__ : List[Any] = ["image_processor", "tokenizer"] lowerCamelCase__ : Union[str, Any] = "OwlViTImageProcessor" lowerCamelCase__ : Tuple = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , a=None , a=None , **a ) -> Optional[int]: lowercase__ : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , a , ) lowercase__ : List[Any] = kwargs.pop('feature_extractor' ) lowercase__ : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(a , a ) def __call__( self , a=None , a=None , a=None , a="max_length" , a="np" , **a ) -> List[Any]: if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(a , a ) or (isinstance(a , a ) and not isinstance(text[0] , a )): lowercase__ : int = [self.tokenizer(a , padding=a , return_tensors=a , **a )] elif isinstance(a , a ) and isinstance(text[0] , a ): lowercase__ : Union[str, Any] = [] # Maximum number of queries across batch lowercase__ : str = max([len(a ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(a ) != max_num_queries: lowercase__ : Optional[int] = t + [' '] * (max_num_queries - len(a )) lowercase__ : Union[str, Any] = self.tokenizer(a , padding=a , return_tensors=a , **a ) encodings.append(a ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": lowercase__ : List[str] = np.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) lowercase__ : Union[str, Any] = np.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp lowercase__ : List[str] = jnp.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) lowercase__ : Optional[int] = jnp.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch lowercase__ : Dict = torch.cat([encoding['input_ids'] for encoding in encodings] , dim=0 ) lowercase__ : Tuple = torch.cat([encoding['attention_mask'] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf lowercase__ : str = tf.stack([encoding['input_ids'] for encoding in encodings] , axis=0 ) lowercase__ : Tuple = tf.stack([encoding['attention_mask'] for encoding in encodings] , axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) lowercase__ : Dict = BatchEncoding() lowercase__ : str = input_ids lowercase__ : Dict = attention_mask if query_images is not None: lowercase__ : Union[str, Any] = BatchEncoding() lowercase__ : Any = self.image_processor( a , return_tensors=a , **a ).pixel_values lowercase__ : str = query_pixel_values if images is not None: lowercase__ : List[Any] = self.image_processor(a , return_tensors=a , **a ) if text is not None and images is not None: lowercase__ : str = image_features.pixel_values return encoding elif query_images is not None and images is not None: lowercase__ : List[Any] = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**a ) , tensor_type=a ) def _UpperCAmelCase ( self , *a , **a ) -> Tuple: return self.image_processor.post_process(*a , **a ) def _UpperCAmelCase ( self , *a , **a ) -> Dict: return self.image_processor.post_process_object_detection(*a , **a ) def _UpperCAmelCase ( self , *a , **a ) -> Optional[Any]: return self.image_processor.post_process_image_guided_detection(*a , **a ) def _UpperCAmelCase ( self , *a , **a ) -> Optional[int]: return self.tokenizer.batch_decode(*a , **a ) def _UpperCAmelCase ( self , *a , **a ) -> Union[str, Any]: return self.tokenizer.decode(*a , **a ) @property def _UpperCAmelCase ( self ) -> Tuple: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , a , ) return self.image_processor_class @property def _UpperCAmelCase ( self ) -> Optional[Any]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , a , ) return self.image_processor
77
"""simple docstring""" import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal _a = datasets.utils.logging.get_logger(__name__) _a = ['names', 'prefix'] _a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] _a = ['encoding_errors', 'on_bad_lines'] _a = ['date_format'] @dataclass class _lowerCAmelCase ( datasets.BuilderConfig ): """simple docstring""" __UpperCAmelCase : str = "," __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[Union[int, List[int], str]] = "infer" __UpperCAmelCase : Optional[List[str]] = None __UpperCAmelCase : Optional[List[str]] = None __UpperCAmelCase : Optional[Union[int, str, List[int], List[str]]] = None __UpperCAmelCase : Optional[Union[List[int], List[str]]] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : bool = True __UpperCAmelCase : Optional[Literal["c", "python", "pyarrow"]] = None __UpperCAmelCase : Dict[Union[int, str], Callable[[Any], Any]] = None __UpperCAmelCase : Optional[list] = None __UpperCAmelCase : Optional[list] = None __UpperCAmelCase : bool = False __UpperCAmelCase : Optional[Union[int, List[int]]] = None __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Optional[Union[str, List[str]]] = None __UpperCAmelCase : bool = True __UpperCAmelCase : bool = True __UpperCAmelCase : bool = False __UpperCAmelCase : bool = True __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : str = "." __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : str = '"' __UpperCAmelCase : int = 0 __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : bool = True __UpperCAmelCase : bool = True __UpperCAmelCase : int = 0 __UpperCAmelCase : bool = True __UpperCAmelCase : bool = False __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : int = 1_0_0_0_0 __UpperCAmelCase : Optional[datasets.Features] = None __UpperCAmelCase : Optional[str] = "strict" __UpperCAmelCase : Literal["error", "warn", "skip"] = "error" __UpperCAmelCase : Optional[str] = None def _lowercase ( self : Tuple ): if self.delimiter is not None: __lowercase = self.delimiter if self.column_names is not None: __lowercase = self.column_names @property def _lowercase ( self : Union[str, Any] ): __lowercase = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig(), UpperCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class _lowerCAmelCase ( datasets.ArrowBasedBuilder ): """simple docstring""" __UpperCAmelCase : Tuple = CsvConfig def _lowercase ( self : List[str] ): return datasets.DatasetInfo(features=self.config.features ) def _lowercase ( self : List[Any], UpperCAmelCase__ : Dict ): if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) __lowercase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(UpperCAmelCase__, (str, list, tuple) ): __lowercase = data_files if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = [files] __lowercase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files} )] __lowercase = [] for split_name, files in data_files.items(): if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = [files] __lowercase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=UpperCAmelCase__, gen_kwargs={"files": files} ) ) return splits def _lowercase ( self : Dict, UpperCAmelCase__ : pa.Table ): if self.config.features is not None: __lowercase = self.config.features.arrow_schema if all(not require_storage_cast(UpperCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast __lowercase = pa.Table.from_arrays([pa_table[field.name] for field in schema], schema=UpperCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example __lowercase = table_cast(UpperCAmelCase__, UpperCAmelCase__ ) return pa_table def _lowercase ( self : Optional[Any], UpperCAmelCase__ : List[str] ): __lowercase = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str __lowercase = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(UpperCAmelCase__ ) else object for name, dtype, feature in zip(schema.names, schema.types, self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase__ ) ): __lowercase = pd.read_csv(UpperCAmelCase__, iterator=UpperCAmelCase__, dtype=UpperCAmelCase__, **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(UpperCAmelCase__ ): __lowercase = pa.Table.from_pandas(UpperCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase__ ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(UpperCAmelCase__ )}: {e}""" ) raise
17
0
"""simple docstring""" def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): if index == r: for j in range(lowercase_ ): print(data[j] , end=' ' ) print(' ' ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location UpperCAmelCase = arr[i] combination_util(lowercase_ , lowercase_ , lowercase_ , index + 1 , lowercase_ , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ ): # A temporary array to store all combination one by one UpperCAmelCase = [0] * r # Print all combination using temporary array 'data[]' combination_util(lowercase_ , lowercase_ , lowercase_ , 0 , lowercase_ , 0 ) if __name__ == "__main__": # Driver code to check the function above snake_case_ = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
78
"""simple docstring""" from scipy.stats import spearmanr import datasets _a = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n' _a = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n' _a = r'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def _lowercase ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ), reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"], ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int]=False ): __lowercase = spearmanr(UpperCAmelCase__, UpperCAmelCase__ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
17
0
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class _UpperCAmelCase : """simple docstring""" def __init__( self : str , __UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any]=2 , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : List[Any]=False , __UpperCAmelCase : Any=10 , __UpperCAmelCase : Optional[int]=3 , __UpperCAmelCase : int=32 * 8 , __UpperCAmelCase : int=32 * 8 , __UpperCAmelCase : List[Any]=4 , __UpperCAmelCase : Optional[int]=64 , ): '''simple docstring''' _A = parent _A = batch_size _A = is_training _A = use_auxiliary_loss _A = num_queries _A = num_channels _A = min_size _A = max_size _A = num_labels _A = hidden_dim _A = hidden_dim def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' _A = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __UpperCAmelCase ) _A = torch.ones([self.batch_size, self.min_size, self.max_size] , device=__UpperCAmelCase ) _A = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__UpperCAmelCase ) > 0.5 ).float() _A = (torch.rand((self.batch_size, self.num_labels) , device=__UpperCAmelCase ) > 0.5).long() _A = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' _A = MaskaFormerConfig( hidden_size=self.hidden_dim , ) _A = self.num_queries _A = self.num_labels _A = [1, 1, 1, 1] _A = self.num_channels _A = 64 _A = 128 _A = self.hidden_dim _A = self.hidden_dim _A = self.hidden_dim return config def lowerCAmelCase ( self : Tuple ): '''simple docstring''' _A , _A , _A , _A , _A = self.prepare_config_and_inputs() _A = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} return config, inputs_dict def lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[int] ): '''simple docstring''' _A = output.encoder_hidden_states _A = output.pixel_decoder_hidden_states _A = output.transformer_decoder_hidden_states self.parent.assertTrue(len(__UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__UpperCAmelCase ) , config.decoder_layers ) def lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : Any , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[str]=False ): '''simple docstring''' with torch.no_grad(): _A = MaskaFormerModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _A = model(pixel_values=__UpperCAmelCase , pixel_mask=__UpperCAmelCase ) _A = model(__UpperCAmelCase , output_hidden_states=__UpperCAmelCase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__UpperCAmelCase , __UpperCAmelCase ) def lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any] ): '''simple docstring''' _A = MaskaFormerForUniversalSegmentation(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() def comm_check_on_output(__UpperCAmelCase : Any ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _A = model(pixel_values=__UpperCAmelCase , pixel_mask=__UpperCAmelCase ) _A = model(__UpperCAmelCase ) comm_check_on_output(__UpperCAmelCase ) _A = model( pixel_values=__UpperCAmelCase , pixel_mask=__UpperCAmelCase , mask_labels=__UpperCAmelCase , class_labels=__UpperCAmelCase ) comm_check_on_output(__UpperCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class _UpperCAmelCase ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" snake_case = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () snake_case = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} snake_case = False snake_case = False snake_case = False snake_case = False def lowerCAmelCase ( self : str ): '''simple docstring''' _A = MaskaFormerModelTester(self ) _A = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase ) def lowerCAmelCase ( self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase ( self : str ): '''simple docstring''' _A , _A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__UpperCAmelCase , **__UpperCAmelCase , output_hidden_states=__UpperCAmelCase ) def lowerCAmelCase ( self : str ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*__UpperCAmelCase ) @unittest.skip(reason="Mask2Former does not use inputs_embeds" ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' pass @unittest.skip(reason="Mask2Former does not have a get_input_embeddings method" ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason="Mask2Former is not a generative model" ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' pass @unittest.skip(reason="Mask2Former does not use token embeddings" ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason="Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' pass def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(__UpperCAmelCase ) _A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A = [*signature.parameters.keys()] _A = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) @slow def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: _A = MaskaFormerModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def lowerCAmelCase ( self : int ): '''simple docstring''' _A = (self.model_tester.min_size,) * 2 _A = { "pixel_values": torch.randn((2, 3, *size) , device=__UpperCAmelCase ), "mask_labels": torch.randn((2, 10, *size) , device=__UpperCAmelCase ), "class_labels": torch.zeros(2 , 10 , device=__UpperCAmelCase ).long(), } _A = self.model_tester.get_config() _A = MaskaFormerForUniversalSegmentation(__UpperCAmelCase ).to(__UpperCAmelCase ) _A = model(**__UpperCAmelCase ) self.assertTrue(outputs.loss is not None ) def lowerCAmelCase ( self : str ): '''simple docstring''' _A , _A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__UpperCAmelCase , **__UpperCAmelCase , output_hidden_states=__UpperCAmelCase ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(__UpperCAmelCase ).to(__UpperCAmelCase ) _A = model(**__UpperCAmelCase , output_attentions=__UpperCAmelCase ) self.assertTrue(outputs.attentions is not None ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' if not self.model_tester.is_training: return _A = self.all_model_classes[1] _A , _A , _A , _A , _A = self.model_tester.prepare_config_and_inputs() _A = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() _A = model(__UpperCAmelCase , mask_labels=__UpperCAmelCase , class_labels=__UpperCAmelCase ).loss loss.backward() def lowerCAmelCase ( self : Tuple ): '''simple docstring''' _A = self.all_model_classes[1] _A , _A , _A , _A , _A = self.model_tester.prepare_config_and_inputs() _A = True _A = True _A = model_class(__UpperCAmelCase ).to(__UpperCAmelCase ) model.train() _A = model(__UpperCAmelCase , mask_labels=__UpperCAmelCase , class_labels=__UpperCAmelCase ) _A = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _A = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() _A = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _A = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__UpperCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowerCamelCase_ = 1e-4 def __lowercase ( ) -> Optional[int]: '''simple docstring''' _A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @slow class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def lowerCAmelCase ( self : List[str] ): '''simple docstring''' _A = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(__UpperCAmelCase ) _A = self.default_image_processor _A = prepare_img() _A = image_processor(__UpperCAmelCase , return_tensors="pt" ).to(__UpperCAmelCase ) _A = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__UpperCAmelCase , (1, 3, 384, 384) ) with torch.no_grad(): _A = model(**__UpperCAmelCase ) _A = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(__UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , __UpperCAmelCase , atol=__UpperCAmelCase ) ) _A = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(__UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __UpperCAmelCase , atol=__UpperCAmelCase ) ) _A = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(__UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __UpperCAmelCase , atol=__UpperCAmelCase ) ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' _A = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__UpperCAmelCase ).eval() _A = self.default_image_processor _A = prepare_img() _A = image_processor(__UpperCAmelCase , return_tensors="pt" ).to(__UpperCAmelCase ) _A = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__UpperCAmelCase , (1, 3, 384, 384) ) with torch.no_grad(): _A = model(**__UpperCAmelCase ) # masks_queries_logits _A = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) _A = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] _A = torch.tensor(__UpperCAmelCase ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __UpperCAmelCase , atol=__UpperCAmelCase ) ) # class_queries_logits _A = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) _A = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __UpperCAmelCase , atol=__UpperCAmelCase ) ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' _A = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__UpperCAmelCase ).eval() _A = self.default_image_processor _A = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="pt" , ) _A = inputs["pixel_values"].to(__UpperCAmelCase ) _A = [el.to(__UpperCAmelCase ) for el in inputs["mask_labels"]] _A = [el.to(__UpperCAmelCase ) for el in inputs["class_labels"]] with torch.no_grad(): _A = model(**__UpperCAmelCase ) self.assertTrue(outputs.loss is not None )
79
"""simple docstring""" from collections.abc import Sequence def _A ( UpperCamelCase_ : Sequence[float], UpperCamelCase_ : float) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(UpperCamelCase_)) def _A ( UpperCamelCase_ : Sequence[float], UpperCamelCase_ : float) -> float: '''simple docstring''' __lowercase = 0.0 for coeff in reversed(UpperCamelCase_): __lowercase = result * x + coeff return result if __name__ == "__main__": _a = (0.0, 0.0, 5.0, 9.3, 7.0) _a = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
17
0
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class lowercase_ ( a__ ): @staticmethod @abstractmethod def __a ( a ): raise NotImplementedError() @abstractmethod def __a ( self ): raise NotImplementedError()
80
"""simple docstring""" import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class _lowerCAmelCase ( pl.LightningModule ): """simple docstring""" def __init__( self : Optional[Any], UpperCAmelCase__ : str ): super().__init__() __lowercase = model __lowercase = 2 __lowercase = nn.Linear(self.model.config.hidden_size, self.num_labels ) def _lowercase ( self : Optional[int] ): pass def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str, UpperCamelCase_ : str) -> str: '''simple docstring''' __lowercase = LongformerModel.from_pretrained(UpperCamelCase_) __lowercase = LightningModel(UpperCamelCase_) __lowercase = torch.load(UpperCamelCase_, map_location=torch.device("cpu")) lightning_model.load_state_dict(ckpt["state_dict"]) # init longformer question answering model __lowercase = LongformerForQuestionAnswering.from_pretrained(UpperCamelCase_) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict()) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict()) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(UpperCamelCase_) print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""") if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _a = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
17
0
"""simple docstring""" from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = DistilBertTokenizer __lowerCAmelCase = DistilBertTokenizerFast __lowerCAmelCase = True @slow def SCREAMING_SNAKE_CASE ( self ) -> int: a =DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' ) a =tokenizer.encode('''sequence builders''' , add_special_tokens=__A ) a =tokenizer.encode('''multi-sequence build''' , add_special_tokens=__A ) a =tokenizer.build_inputs_with_special_tokens(__A ) a =tokenizer.build_inputs_with_special_tokens(__A , __A ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
81
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" ,"False" ) ) is not True ,reason="Skipping test because should only be run when releasing minor transformers version" ,) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Optional[int] ): if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split(), encoding="utf-8", check=UpperCAmelCase__, ) assert hasattr(self, "env" ) def _lowercase ( self : str, UpperCAmelCase__ : List[Any] ): # configuration for running training on smdistributed Model Parallel __lowercase = { "enabled": True, "processes_per_host": 8, } __lowercase = { "enabled": True, "parameters": { "microbatches": 4, "placement_strategy": "spread", "pipeline": "interleaved", "optimize": "speed", "partitions": 4, "ddp": True, }, } __lowercase = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options} __lowercase = "trainer" if self.script == "run_glue.py" else "smtrainer" # creates estimator return HuggingFace( entry_point=self.script, source_dir=self.env.test_path, role=self.env.role, image_uri=self.env.image_uri, base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""", instance_count=UpperCAmelCase__, instance_type=self.instance_type, debugger_hook_config=UpperCAmelCase__, hyperparameters={ **self.env.hyperparameters, "model_name_or_path": self.model_name_or_path, "max_steps": 5_0_0, }, metric_definitions=self.env.metric_definitions, distribution=UpperCAmelCase__, py_version="py36", ) def _lowercase ( self : Tuple, UpperCAmelCase__ : int ): TrainingJobAnalytics(UpperCAmelCase__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def _lowercase ( self : str, UpperCAmelCase__ : Union[str, Any] ): # create estimator __lowercase = self.create_estimator(UpperCAmelCase__ ) # run training estimator.fit() # result dataframe __lowercase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __lowercase = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) __lowercase = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __lowercase = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds", 9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""", "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss}, UpperCAmelCase__ )
17
0
from __future__ import annotations import time A__ = list[tuple[int, int]] A__ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] A__ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class __lowerCAmelCase : def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = pos_x _lowerCAmelCase = pos_y _lowerCAmelCase = (pos_y, pos_x) _lowerCAmelCase = goal_x _lowerCAmelCase = goal_y _lowerCAmelCase = parent class __lowerCAmelCase : def __init__( self , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = Node(start[1] , start[0] , goal[1] , goal[0] , _snake_case ) _lowerCAmelCase = Node(goal[1] , goal[0] , goal[1] , goal[0] , _snake_case ) _lowerCAmelCase = [self.start] _lowerCAmelCase = False def snake_case ( self ): """simple docstring""" while self.node_queue: _lowerCAmelCase = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: _lowerCAmelCase = True return self.retrace_path(_snake_case ) _lowerCAmelCase = self.get_successors(_snake_case ) for node in successors: self.node_queue.append(_snake_case ) if not self.reached: return [self.start.pos] return None def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = [] for action in delta: _lowerCAmelCase = parent.pos_x + action[1] _lowerCAmelCase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_snake_case ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(_snake_case , _snake_case , self.target.pos_y , self.target.pos_x , _snake_case ) ) return successors def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = node _lowerCAmelCase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _lowerCAmelCase = current_node.parent path.reverse() return path class __lowerCAmelCase : def __init__( self , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = BreadthFirstSearch(_snake_case , _snake_case ) _lowerCAmelCase = BreadthFirstSearch(_snake_case , _snake_case ) _lowerCAmelCase = False def snake_case ( self ): """simple docstring""" while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: _lowerCAmelCase = self.fwd_bfs.node_queue.pop(0 ) _lowerCAmelCase = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: _lowerCAmelCase = True return self.retrace_bidirectional_path( _snake_case , _snake_case ) _lowerCAmelCase = current_bwd_node _lowerCAmelCase = current_fwd_node _lowerCAmelCase = { self.fwd_bfs: self.fwd_bfs.get_successors(_snake_case ), self.bwd_bfs: self.bwd_bfs.get_successors(_snake_case ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(_snake_case ) if not self.reached: return [self.fwd_bfs.start.pos] return None def snake_case ( self , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = self.fwd_bfs.retrace_path(_snake_case ) _lowerCAmelCase = self.bwd_bfs.retrace_path(_snake_case ) bwd_path.pop() bwd_path.reverse() _lowerCAmelCase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() A__ = (0, 0) A__ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) A__ = time.time() A__ = BreadthFirstSearch(init, goal) A__ = bfs.search() A__ = time.time() - start_bfs_time print("""Unidirectional BFS computation time : """, bfs_time) A__ = time.time() A__ = BidirectionalBreadthFirstSearch(init, goal) A__ = bd_bfs.search() A__ = time.time() - start_bd_bfs_time print("""Bidirectional BFS computation time : """, bd_bfs_time)
82
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : Tuple = "openai/whisper-base" __UpperCAmelCase : Union[str, Any] = ( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) __UpperCAmelCase : List[str] = "transcriber" __UpperCAmelCase : Optional[Any] = WhisperProcessor __UpperCAmelCase : str = WhisperForConditionalGeneration __UpperCAmelCase : List[str] = ["audio"] __UpperCAmelCase : Tuple = ["text"] def _lowercase ( self : str, UpperCAmelCase__ : int ): return self.pre_processor(UpperCAmelCase__, return_tensors="pt" ).input_features def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Any] ): return self.model.generate(inputs=UpperCAmelCase__ ) def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[int] ): return self.pre_processor.batch_decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ )[0]
17
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class lowercase__ ( lowercase ): lowercase__ = """openai/whisper-base""" lowercase__ = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) lowercase__ = """transcriber""" lowercase__ = WhisperProcessor lowercase__ = WhisperForConditionalGeneration lowercase__ = ["""audio"""] lowercase__ = ["""text"""] def UpperCamelCase_ ( self : Dict ,lowerCamelCase__ : Optional[int] ): '''simple docstring''' return self.pre_processor(lowerCamelCase__ ,return_tensors='pt' ).input_features def UpperCamelCase_ ( self : Dict ,lowerCamelCase__ : Tuple ): '''simple docstring''' return self.model.generate(inputs=lowerCamelCase__ ) def UpperCamelCase_ ( self : Optional[Any] ,lowerCamelCase__ : Union[str, Any] ): '''simple docstring''' return self.pre_processor.batch_decode(lowerCamelCase__ ,skip_special_tokens=lowerCamelCase__ )[0]
83
"""simple docstring""" import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str]) -> Optional[int]: '''simple docstring''' if isinstance(UpperCamelCase_, torch.Tensor): return image elif isinstance(UpperCamelCase_, PIL.Image.Image): __lowercase = [image] if isinstance(image[0], PIL.Image.Image): __lowercase = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image] __lowercase = np.concatenate(UpperCamelCase_, axis=0) __lowercase = np.array(UpperCamelCase_).astype(np.floataa) / 255.0 __lowercase = image.transpose(0, 3, 1, 2) __lowercase = 2.0 * image - 1.0 __lowercase = torch.from_numpy(UpperCamelCase_) elif isinstance(image[0], torch.Tensor): __lowercase = torch.cat(UpperCamelCase_, dim=0) return image def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : str, UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[Any]=0.9_995) -> int: '''simple docstring''' if not isinstance(UpperCamelCase_, np.ndarray): __lowercase = True __lowercase = va.device __lowercase = va.cpu().numpy() __lowercase = va.cpu().numpy() __lowercase = np.sum(va * va / (np.linalg.norm(UpperCamelCase_) * np.linalg.norm(UpperCamelCase_))) if np.abs(UpperCamelCase_) > DOT_THRESHOLD: __lowercase = (1 - t) * va + t * va else: __lowercase = np.arccos(UpperCamelCase_) __lowercase = np.sin(UpperCamelCase_) __lowercase = theta_a * t __lowercase = np.sin(UpperCamelCase_) __lowercase = np.sin(theta_a - theta_t) / sin_theta_a __lowercase = sin_theta_t / sin_theta_a __lowercase = sa * va + sa * va if inputs_are_torch: __lowercase = torch.from_numpy(UpperCamelCase_).to(UpperCamelCase_) return va def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Union[str, Any]) -> int: '''simple docstring''' __lowercase = F.normalize(UpperCamelCase_, dim=-1) __lowercase = F.normalize(UpperCamelCase_, dim=-1) return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2) def _A ( UpperCamelCase_ : Optional[int], UpperCamelCase_ : str) -> Optional[int]: '''simple docstring''' for param in model.parameters(): __lowercase = value class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : Dict, UpperCAmelCase__ : AutoencoderKL, UpperCAmelCase__ : CLIPTextModel, UpperCAmelCase__ : CLIPModel, UpperCAmelCase__ : CLIPTokenizer, UpperCAmelCase__ : UNetaDConditionModel, UpperCAmelCase__ : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler], UpperCAmelCase__ : CLIPFeatureExtractor, UpperCAmelCase__ : Union[str, Any]=None, UpperCAmelCase__ : List[str]=None, UpperCAmelCase__ : Any=None, ): super().__init__() self.register_modules( vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, clip_model=UpperCAmelCase__, tokenizer=UpperCAmelCase__, unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, feature_extractor=UpperCAmelCase__, coca_model=UpperCAmelCase__, coca_tokenizer=UpperCAmelCase__, coca_transform=UpperCAmelCase__, ) __lowercase = ( feature_extractor.size if isinstance(feature_extractor.size, UpperCAmelCase__ ) else feature_extractor.size["shortest_edge"] ) __lowercase = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std ) set_requires_grad(self.text_encoder, UpperCAmelCase__ ) set_requires_grad(self.clip_model, UpperCAmelCase__ ) def _lowercase ( self : Tuple, UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase__ ) def _lowercase ( self : int ): self.enable_attention_slicing(UpperCAmelCase__ ) def _lowercase ( self : str ): set_requires_grad(self.vae, UpperCAmelCase__ ) def _lowercase ( self : Any ): set_requires_grad(self.vae, UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ): set_requires_grad(self.unet, UpperCAmelCase__ ) def _lowercase ( self : Any ): set_requires_grad(self.unet, UpperCAmelCase__ ) def _lowercase ( self : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : Optional[Any] ): # get the original timestep using init_timestep __lowercase = min(int(num_inference_steps * strength ), UpperCAmelCase__ ) __lowercase = max(num_inference_steps - init_timestep, 0 ) __lowercase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowercase ( self : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : int=None ): if not isinstance(UpperCAmelCase__, torch.Tensor ): raise ValueError(F"""`image` has to be of type `torch.Tensor` but is {type(UpperCAmelCase__ )}""" ) __lowercase = image.to(device=UpperCAmelCase__, dtype=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(UpperCAmelCase__ ) ] __lowercase = torch.cat(UpperCAmelCase__, dim=0 ) else: __lowercase = self.vae.encode(UpperCAmelCase__ ).latent_dist.sample(UpperCAmelCase__ ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowercase = 0.18_215 * init_latents __lowercase = init_latents.repeat_interleave(UpperCAmelCase__, dim=0 ) __lowercase = randn_tensor(init_latents.shape, generator=UpperCAmelCase__, device=UpperCAmelCase__, dtype=UpperCAmelCase__ ) # get latents __lowercase = self.scheduler.add_noise(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = init_latents return latents def _lowercase ( self : Optional[int], UpperCAmelCase__ : Dict ): __lowercase = self.coca_transform(UpperCAmelCase__ ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): __lowercase = self.coca_model.generate(transformed_image.to(device=self.device, dtype=self.coca_model.dtype ) ) __lowercase = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("<end_of_text>" )[0].replace("<start_of_text>", "" ).rstrip(" .," ) def _lowercase ( self : Tuple, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Tuple ): __lowercase = self.feature_extractor.preprocess(UpperCAmelCase__ ) __lowercase = torch.from_numpy(clip_image_input["pixel_values"][0] ).unsqueeze(0 ).to(self.device ).half() __lowercase = self.clip_model.get_image_features(UpperCAmelCase__ ) __lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=UpperCAmelCase__ ) __lowercase = image_embeddings_clip.repeat_interleave(UpperCAmelCase__, dim=0 ) return image_embeddings_clip @torch.enable_grad() def _lowercase ( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[int], ): __lowercase = latents.detach().requires_grad_() __lowercase = self.scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ ) # predict the noise residual __lowercase = self.unet(UpperCAmelCase__, UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__ ).sample if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): __lowercase = self.scheduler.alphas_cumprod[timestep] __lowercase = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowercase = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 __lowercase = torch.sqrt(UpperCAmelCase__ ) __lowercase = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler, UpperCAmelCase__ ): __lowercase = self.scheduler.sigmas[index] __lowercase = latents - sigma * noise_pred else: raise ValueError(F"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowercase = 1 / 0.18_215 * sample __lowercase = self.vae.decode(UpperCAmelCase__ ).sample __lowercase = (image / 2 + 0.5).clamp(0, 1 ) __lowercase = transforms.Resize(self.feature_extractor_size )(UpperCAmelCase__ ) __lowercase = self.normalize(UpperCAmelCase__ ).to(latents.dtype ) __lowercase = self.clip_model.get_image_features(UpperCAmelCase__ ) __lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=UpperCAmelCase__ ) __lowercase = spherical_dist_loss(UpperCAmelCase__, UpperCAmelCase__ ).mean() * clip_guidance_scale __lowercase = -torch.autograd.grad(UpperCAmelCase__, UpperCAmelCase__ )[0] if isinstance(self.scheduler, UpperCAmelCase__ ): __lowercase = latents.detach() + grads * (sigma**2) __lowercase = noise_pred_original else: __lowercase = noise_pred_original - torch.sqrt(UpperCAmelCase__ ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : str, UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image], UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image], UpperCAmelCase__ : Optional[str] = None, UpperCAmelCase__ : Optional[str] = None, UpperCAmelCase__ : Optional[int] = 5_1_2, UpperCAmelCase__ : Optional[int] = 5_1_2, UpperCAmelCase__ : float = 0.6, UpperCAmelCase__ : Optional[int] = 5_0, UpperCAmelCase__ : Optional[float] = 7.5, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[float] = 1_0_0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : float = 0.8, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, ): if isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and len(UpperCAmelCase__ ) != batch_size: raise ValueError(F"""You have passed {batch_size} batch_size, but only {len(UpperCAmelCase__ )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(UpperCAmelCase__, torch.Generator ) and batch_size > 1: __lowercase = [generator] + [None] * (batch_size - 1) __lowercase = [ ("model", self.coca_model is None), ("tokenizer", self.coca_tokenizer is None), ("transform", self.coca_transform is None), ] __lowercase = [x[0] for x in coca_is_none if x[1]] __lowercase = ", ".join(UpperCAmelCase__ ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(UpperCAmelCase__ ): raise ValueError( F"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" F"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) __lowercase = self.get_image_description(UpperCAmelCase__ ) if style_prompt is None: if len(UpperCAmelCase__ ): raise ValueError( F"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" F""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) __lowercase = self.get_image_description(UpperCAmelCase__ ) # get prompt text embeddings for content and style __lowercase = self.tokenizer( UpperCAmelCase__, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=UpperCAmelCase__, return_tensors="pt", ) __lowercase = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] __lowercase = self.tokenizer( UpperCAmelCase__, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=UpperCAmelCase__, return_tensors="pt", ) __lowercase = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] __lowercase = slerp(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # duplicate text embeddings for each generation per prompt __lowercase = text_embeddings.repeat_interleave(UpperCAmelCase__, dim=0 ) # set timesteps __lowercase = "offset" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) __lowercase = {} if accepts_offset: __lowercase = 1 self.scheduler.set_timesteps(UpperCAmelCase__, **UpperCAmelCase__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) __lowercase ,__lowercase = self.get_timesteps(UpperCAmelCase__, UpperCAmelCase__, self.device ) __lowercase = timesteps[:1].repeat(UpperCAmelCase__ ) # Preprocess image __lowercase = preprocess(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = self.prepare_latents( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, text_embeddings.dtype, self.device, UpperCAmelCase__ ) __lowercase = preprocess(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = self.prepare_latents( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, text_embeddings.dtype, self.device, UpperCAmelCase__ ) __lowercase = slerp(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) if clip_guidance_scale > 0: __lowercase = self.get_clip_image_embeddings(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = self.get_clip_image_embeddings(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = slerp( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __lowercase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __lowercase = content_text_input.input_ids.shape[-1] __lowercase = self.tokenizer([""], padding="max_length", max_length=UpperCAmelCase__, return_tensors="pt" ) __lowercase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt __lowercase = uncond_embeddings.repeat_interleave(UpperCAmelCase__, dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowercase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __lowercase = (batch_size, self.unet.config.in_channels, height // 8, width // 8) __lowercase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps __lowercase = torch.randn(UpperCAmelCase__, generator=UpperCAmelCase__, device="cpu", dtype=UpperCAmelCase__ ).to( self.device ) else: __lowercase = torch.randn(UpperCAmelCase__, generator=UpperCAmelCase__, device=self.device, dtype=UpperCAmelCase__ ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) __lowercase = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __lowercase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __lowercase = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __lowercase = {} if accepts_eta: __lowercase = eta # check if the scheduler accepts generator __lowercase = "generator" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: __lowercase = generator with self.progress_bar(total=UpperCAmelCase__ ): for i, t in enumerate(UpperCAmelCase__ ): # expand the latents if we are doing classifier free guidance __lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowercase = self.scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ ) # predict the noise residual __lowercase = self.unet(UpperCAmelCase__, UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__ ).sample # perform classifier free guidance if do_classifier_free_guidance: __lowercase ,__lowercase = noise_pred.chunk(2 ) __lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: __lowercase = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) __lowercase ,__lowercase = self.cond_fn( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) # compute the previous noisy sample x_t -> x_t-1 __lowercase = self.scheduler.step(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, **UpperCAmelCase__ ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowercase = 1 / 0.18_215 * latents __lowercase = self.vae.decode(UpperCAmelCase__ ).sample __lowercase = (image / 2 + 0.5).clamp(0, 1 ) __lowercase = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": __lowercase = self.numpy_to_pil(UpperCAmelCase__ ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=UpperCAmelCase__, nsfw_content_detected=UpperCAmelCase__ )
17
0
"""simple docstring""" from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :jnp.ndarray UpperCAmelCase_ :jnp.ndarray class _SCREAMING_SNAKE_CASE ( nn.Module ): UpperCAmelCase_ :int UpperCAmelCase_ :Tuple[int] = (16, 32, 96, 256) UpperCAmelCase_ :jnp.dtype = jnp.floataa def __lowerCAmelCase ( self ) -> Dict: lowerCAmelCase_ :Optional[int] = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCAmelCase_ :int = [] for i in range(len(self.block_out_channels ) - 1 ): lowerCAmelCase_ :Union[str, Any] = self.block_out_channels[i] lowerCAmelCase_ :Optional[int] = self.block_out_channels[i + 1] lowerCAmelCase_ :int = nn.Conv( __A , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(__A ) lowerCAmelCase_ :List[str] = nn.Conv( __A , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(__A ) lowerCAmelCase_ :Optional[int] = blocks lowerCAmelCase_ :int = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , __A ) -> Tuple: lowerCAmelCase_ :Dict = self.conv_in(__A ) lowerCAmelCase_ :List[str] = nn.silu(__A ) for block in self.blocks: lowerCAmelCase_ :Any = block(__A ) lowerCAmelCase_ :Optional[int] = nn.silu(__A ) lowerCAmelCase_ :List[Any] = self.conv_out(__A ) return embedding @flax_register_to_config class _SCREAMING_SNAKE_CASE ( nn.Module , A__ , A__ ): UpperCAmelCase_ :int = 32 UpperCAmelCase_ :int = 4 UpperCAmelCase_ :Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) UpperCAmelCase_ :Union[bool, Tuple[bool]] = False UpperCAmelCase_ :Tuple[int] = (320, 640, 1280, 1280) UpperCAmelCase_ :int = 2 UpperCAmelCase_ :Union[int, Tuple[int]] = 8 UpperCAmelCase_ :Optional[Union[int, Tuple[int]]] = None UpperCAmelCase_ :int = 1280 UpperCAmelCase_ :float = 0.0 UpperCAmelCase_ :bool = False UpperCAmelCase_ :jnp.dtype = jnp.floataa UpperCAmelCase_ :bool = True UpperCAmelCase_ :int = 0 UpperCAmelCase_ :str = "rgb" UpperCAmelCase_ :Tuple[int] = (16, 32, 96, 256) def __lowerCAmelCase ( self , __A ) -> FrozenDict: # init input tensors lowerCAmelCase_ :Optional[int] = (1, self.in_channels, self.sample_size, self.sample_size) lowerCAmelCase_ :Dict = jnp.zeros(__A , dtype=jnp.floataa ) lowerCAmelCase_ :List[Any] = jnp.ones((1,) , dtype=jnp.intaa ) lowerCAmelCase_ :Optional[int] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) lowerCAmelCase_ :Any = (1, 3, self.sample_size * 8, self.sample_size * 8) lowerCAmelCase_ :Optional[int] = jnp.zeros(__A , dtype=jnp.floataa ) lowerCAmelCase_ , lowerCAmelCase_ :Optional[int] = jax.random.split(__A ) lowerCAmelCase_ :Optional[int] = {"""params""": params_rng, """dropout""": dropout_rng} return self.init(__A , __A , __A , __A , __A )["params"] def __lowerCAmelCase ( self ) -> List[str]: lowerCAmelCase_ :Union[str, Any] = self.block_out_channels lowerCAmelCase_ :int = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowerCAmelCase_ :Dict = self.num_attention_heads or self.attention_head_dim # input lowerCAmelCase_ :int = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time lowerCAmelCase_ :Optional[Any] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) lowerCAmelCase_ :Optional[Any] = FlaxTimestepEmbedding(__A , dtype=self.dtype ) lowerCAmelCase_ :int = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) lowerCAmelCase_ :List[str] = self.only_cross_attention if isinstance(__A , __A ): lowerCAmelCase_ :List[str] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(__A , __A ): lowerCAmelCase_ :Optional[Any] = (num_attention_heads,) * len(self.down_block_types ) # down lowerCAmelCase_ :Dict = [] lowerCAmelCase_ :Optional[Any] = [] lowerCAmelCase_ :Dict = block_out_channels[0] lowerCAmelCase_ :List[Any] = nn.Conv( __A , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__A ) for i, down_block_type in enumerate(self.down_block_types ): lowerCAmelCase_ :List[Any] = output_channel lowerCAmelCase_ :List[str] = block_out_channels[i] lowerCAmelCase_ :Tuple = i == len(__A ) - 1 if down_block_type == "CrossAttnDownBlock2D": lowerCAmelCase_ :Tuple = FlaxCrossAttnDownBlockaD( in_channels=__A , out_channels=__A , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: lowerCAmelCase_ :Optional[int] = FlaxDownBlockaD( in_channels=__A , out_channels=__A , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(__A ) for _ in range(self.layers_per_block ): lowerCAmelCase_ :List[str] = nn.Conv( __A , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__A ) if not is_final_block: lowerCAmelCase_ :str = nn.Conv( __A , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__A ) lowerCAmelCase_ :List[Any] = down_blocks lowerCAmelCase_ :Optional[Any] = controlnet_down_blocks # mid lowerCAmelCase_ :int = block_out_channels[-1] lowerCAmelCase_ :List[Any] = FlaxUNetMidBlockaDCrossAttn( in_channels=__A , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) lowerCAmelCase_ :Dict = nn.Conv( __A , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , __A , __A , __A , __A , __A = 1.0 , __A = True , __A = False , ) -> Union[FlaxControlNetOutput, Tuple]: lowerCAmelCase_ :Union[str, Any] = self.controlnet_conditioning_channel_order if channel_order == "bgr": lowerCAmelCase_ :Optional[int] = jnp.flip(__A , axis=1 ) # 1. time if not isinstance(__A , jnp.ndarray ): lowerCAmelCase_ :List[str] = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(__A , jnp.ndarray ) and len(timesteps.shape ) == 0: lowerCAmelCase_ :str = timesteps.astype(dtype=jnp.floataa ) lowerCAmelCase_ :Union[str, Any] = jnp.expand_dims(__A , 0 ) lowerCAmelCase_ :List[Any] = self.time_proj(__A ) lowerCAmelCase_ :Optional[Any] = self.time_embedding(__A ) # 2. pre-process lowerCAmelCase_ :int = jnp.transpose(__A , (0, 2, 3, 1) ) lowerCAmelCase_ :List[Any] = self.conv_in(__A ) lowerCAmelCase_ :Union[str, Any] = jnp.transpose(__A , (0, 2, 3, 1) ) lowerCAmelCase_ :List[str] = self.controlnet_cond_embedding(__A ) sample += controlnet_cond # 3. down lowerCAmelCase_ :Any = (sample,) for down_block in self.down_blocks: if isinstance(__A , __A ): lowerCAmelCase_ , lowerCAmelCase_ :Any = down_block(__A , __A , __A , deterministic=not train ) else: lowerCAmelCase_ , lowerCAmelCase_ :Union[str, Any] = down_block(__A , __A , deterministic=not train ) down_block_res_samples += res_samples # 4. mid lowerCAmelCase_ :int = self.mid_block(__A , __A , __A , deterministic=not train ) # 5. contronet blocks lowerCAmelCase_ :Dict = () for down_block_res_sample, controlnet_block in zip(__A , self.controlnet_down_blocks ): lowerCAmelCase_ :Union[str, Any] = controlnet_block(__A ) controlnet_down_block_res_samples += (down_block_res_sample,) lowerCAmelCase_ :Optional[Any] = controlnet_down_block_res_samples lowerCAmelCase_ :List[Any] = self.controlnet_mid_block(__A ) # 6. scaling lowerCAmelCase_ :List[Any] = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=__A , mid_block_res_sample=__A )
84
"""simple docstring""" from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class _lowerCAmelCase : """simple docstring""" __UpperCAmelCase : Tuple = XGLMConfig __UpperCAmelCase : Optional[Any] = {} __UpperCAmelCase : Union[str, Any] = "gelu" def __init__( self : Optional[int], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int]=1_4, UpperCAmelCase__ : str=7, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[Any]=True, UpperCAmelCase__ : int=True, UpperCAmelCase__ : List[str]=9_9, UpperCAmelCase__ : Union[str, Any]=3_2, UpperCAmelCase__ : Union[str, Any]=2, UpperCAmelCase__ : Union[str, Any]=4, UpperCAmelCase__ : Tuple=3_7, UpperCAmelCase__ : List[Any]="gelu", UpperCAmelCase__ : List[str]=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Tuple=5_1_2, UpperCAmelCase__ : Optional[Any]=0.02, ): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_labels __lowercase = vocab_size __lowercase = d_model __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = ffn_dim __lowercase = activation_function __lowercase = activation_dropout __lowercase = attention_dropout __lowercase = max_position_embeddings __lowercase = initializer_range __lowercase = None __lowercase = 0 __lowercase = 2 __lowercase = 1 def _lowercase ( self : Union[str, Any] ): return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def _lowercase ( self : Tuple ): __lowercase = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length], self.vocab_size ), clip_value_min=0, clip_value_max=3 ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = self.get_config() __lowercase = floats_tensor([self.num_hidden_layers, self.num_attention_heads], 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowercase ( self : List[Any] ): return XGLMConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, num_layers=self.num_hidden_layers, attention_heads=self.num_attention_heads, ffn_dim=self.ffn_dim, activation_function=self.activation_function, activation_dropout=self.activation_dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, use_cache=UpperCAmelCase__, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, return_dict=UpperCAmelCase__, ) def _lowercase ( self : Dict ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) , ) = config_and_inputs __lowercase = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class _lowerCAmelCase ( lowercase ,lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () __UpperCAmelCase : List[str] = (TFXGLMForCausalLM,) if is_tf_available() else () __UpperCAmelCase : Any = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : List[str] = False __UpperCAmelCase : int = False def _lowercase ( self : Optional[Any] ): __lowercase = TFXGLMModelTester(self ) __lowercase = ConfigTester(self, config_class=UpperCAmelCase__, n_embd=3_7 ) def _lowercase ( self : Any ): self.config_tester.run_common_tests() @slow def _lowercase ( self : List[str] ): for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFXGLMModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def _lowercase ( self : int ): super().test_resize_token_embeddings() @require_tf class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[int]=True ): __lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) __lowercase = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]], dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __lowercase = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on __lowercase = model.generate(UpperCAmelCase__, do_sample=UpperCAmelCase__, num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist(), UpperCAmelCase__ ) @slow def _lowercase ( self : List[Any] ): __lowercase = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) __lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) __lowercase = tokenizer("Today is a nice day and", return_tensors="tf" ) __lowercase = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): __lowercase = model.generate(UpperCAmelCase__, do_sample=UpperCAmelCase__, seed=[7, 0] ) __lowercase = tokenizer.decode(output_ids[0], skip_special_tokens=UpperCAmelCase__ ) __lowercase = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(UpperCAmelCase__, UpperCAmelCase__ ) @slow def _lowercase ( self : Dict ): __lowercase = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) __lowercase = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) __lowercase = "left" # use different length sentences to test batching __lowercase = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] __lowercase = tokenizer(UpperCAmelCase__, return_tensors="tf", padding=UpperCAmelCase__ ) __lowercase = inputs["input_ids"] __lowercase = model.generate(input_ids=UpperCAmelCase__, attention_mask=inputs["attention_mask"], max_new_tokens=1_2 ) __lowercase = tokenizer(sentences[0], return_tensors="tf" ).input_ids __lowercase = model.generate(input_ids=UpperCAmelCase__, max_new_tokens=1_2 ) __lowercase = tokenizer(sentences[1], return_tensors="tf" ).input_ids __lowercase = model.generate(input_ids=UpperCAmelCase__, max_new_tokens=1_2 ) __lowercase = tokenizer.batch_decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ ) __lowercase = tokenizer.decode(output_non_padded[0], skip_special_tokens=UpperCAmelCase__ ) __lowercase = tokenizer.decode(output_padded[0], skip_special_tokens=UpperCAmelCase__ ) __lowercase = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(UpperCAmelCase__, UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__, [non_padded_sentence, padded_sentence] )
17
0
'''simple docstring''' from collections import deque from .hash_table import HashTable class _snake_case ( lowercase_ ): def __init__( self , *a__ , **a__ ) -> Tuple: '''simple docstring''' super().__init__(*a__ , **a__ ) def lowerCAmelCase__ ( self , a__ , a__ ) -> List[Any]: '''simple docstring''' snake_case_ = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(a__ ) snake_case_ = self.values[key] def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' return ( sum(self.charge_factor - len(a__ ) for slot in self.values ) / self.size_table * self.charge_factor ) def lowerCAmelCase__ ( self , a__ , a__=None ) -> str: '''simple docstring''' if not ( len(self.values[key] ) == self.charge_factor and self.values.count(a__ ) == 0 ): return key return super()._collision_resolution(a__ , a__ )
85
"""simple docstring""" import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder _a = '__DUMMY_TRANSFORMERS_USER__' _a = 'Dummy User' _a = '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' _a = 'https://hub-ci.huggingface.co' _a = CI_HUB_ENDPOINT + '/datasets/{repo_id}/resolve/{revision}/{path}' _a = CI_HUB_ENDPOINT + '/{repo_id}/resolve/{revision}/{filename}' _a = Path('~/.huggingface/hub_ci_token').expanduser() @pytest.fixture def _A ( UpperCamelCase_ : List[Any]) -> Tuple: '''simple docstring''' monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE", UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : int) -> List[Any]: '''simple docstring''' monkeypatch.setattr("datasets.config.HF_ENDPOINT", UpperCamelCase_) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL", UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : str) -> Dict: '''simple docstring''' monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token", UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : Optional[Any], UpperCamelCase_ : List[Any]) -> List[str]: '''simple docstring''' HfFolder.save_token(UpperCamelCase_) yield HfFolder.delete_token() @pytest.fixture(scope="session") def _A ( ) -> List[Any]: '''simple docstring''' return HfApi(endpoint=UpperCamelCase_) @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi) -> List[Any]: '''simple docstring''' __lowercase = HfFolder.get_token() HfFolder.save_token(UpperCamelCase_) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : Dict) -> int: '''simple docstring''' def _cleanup_repo(UpperCamelCase_ : Optional[int]): hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") return _cleanup_repo @pytest.fixture def _A ( UpperCamelCase_ : str) -> Any: '''simple docstring''' @contextmanager def _temporary_repo(UpperCamelCase_ : Any): try: yield repo_id finally: cleanup_repo(UpperCamelCase_) return _temporary_repo @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : str, UpperCamelCase_ : Optional[int]) -> List[Any]: '''simple docstring''' __lowercase = F"""repo_txt_data-{int(time.time() * 10E3)}""" __lowercase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_) hf_api.upload_file( token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data/text_data.txt", repo_id=UpperCamelCase_, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : Any, UpperCamelCase_ : Dict) -> Optional[int]: '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : int, UpperCamelCase_ : Optional[int]) -> int: '''simple docstring''' __lowercase = F"""repo_zipped_txt_data-{int(time.time() * 10E3)}""" __lowercase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_) hf_api.upload_file( token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data.zip", repo_id=UpperCamelCase_, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Dict, UpperCamelCase_ : Any) -> int: '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : List[str], UpperCamelCase_ : List[str]) -> List[Any]: '''simple docstring''' __lowercase = F"""repo_zipped_img_data-{int(time.time() * 10E3)}""" __lowercase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_) hf_api.upload_file( token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data.zip", repo_id=UpperCamelCase_, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str], UpperCamelCase_ : List[str]) -> str: '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
17
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase__ = { """configuration_transfo_xl""": ["""TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TransfoXLConfig"""], """tokenization_transfo_xl""": ["""TransfoXLCorpus""", """TransfoXLTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """AdaptiveEmbedding""", """TransfoXLForSequenceClassification""", """TransfoXLLMHeadModel""", """TransfoXLModel""", """TransfoXLPreTrainedModel""", """load_tf_weights_in_transfo_xl""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFAdaptiveEmbedding""", """TFTransfoXLForSequenceClassification""", """TFTransfoXLLMHeadModel""", """TFTransfoXLMainLayer""", """TFTransfoXLModel""", """TFTransfoXLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
86
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : int = "time_series_transformer" __UpperCAmelCase : Any = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : int, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : str = "student_t", UpperCAmelCase__ : str = "nll", UpperCAmelCase__ : int = 1, UpperCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7], UpperCAmelCase__ : Optional[Union[str, bool]] = "mean", UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : Optional[List[int]] = None, UpperCAmelCase__ : int = 3_2, UpperCAmelCase__ : int = 3_2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : str = "gelu", UpperCAmelCase__ : int = 6_4, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : int = 1_0_0, UpperCAmelCase__ : float = 0.02, UpperCAmelCase__ : Any=True, **UpperCAmelCase__ : List[str], ): # time series specific configuration __lowercase = prediction_length __lowercase = context_length or prediction_length __lowercase = distribution_output __lowercase = loss __lowercase = input_size __lowercase = num_time_features __lowercase = lags_sequence __lowercase = scaling __lowercase = num_dynamic_real_features __lowercase = num_static_real_features __lowercase = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(UpperCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) __lowercase = cardinality else: __lowercase = [0] if embedding_dimension and num_static_categorical_features > 0: if len(UpperCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) __lowercase = embedding_dimension else: __lowercase = [min(5_0, (cat + 1) // 2 ) for cat in self.cardinality] __lowercase = num_parallel_samples # Transformer architecture configuration __lowercase = input_size * len(UpperCAmelCase__ ) + self._number_of_features __lowercase = d_model __lowercase = encoder_attention_heads __lowercase = decoder_attention_heads __lowercase = encoder_ffn_dim __lowercase = decoder_ffn_dim __lowercase = encoder_layers __lowercase = decoder_layers __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = activation_function __lowercase = init_std __lowercase = use_cache super().__init__(is_encoder_decoder=UpperCAmelCase__, **UpperCAmelCase__ ) @property def _lowercase ( self : Optional[Any] ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
17
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class snake_case_ ( unittest.TestCase ): def __init__( self : Optional[int] , lowercase_ : str , lowercase_ : Optional[Any]=7 , lowercase_ : List[str]=3 , lowercase_ : int=30 , lowercase_ : List[Any]=4_00 , lowercase_ : Dict=True , lowercase_ : Optional[int]=None , lowercase_ : Any=True , lowercase_ : List[str]=[0.5, 0.5, 0.5] , lowercase_ : List[str]=[0.5, 0.5, 0.5] , lowercase_ : Any=True , lowercase_ : Optional[int]=1 / 2_55 , lowercase_ : str=True , ) -> Tuple: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowercase__ : Optional[int] = size if size is not None else {"shortest_edge": 18, "longest_edge": 13_33} lowercase__ : List[str] = parent lowercase__ : str = batch_size lowercase__ : Optional[Any] = num_channels lowercase__ : List[str] = min_resolution lowercase__ : str = max_resolution lowercase__ : Optional[Any] = do_resize lowercase__ : List[Any] = size lowercase__ : int = do_normalize lowercase__ : List[Any] = image_mean lowercase__ : List[str] = image_std lowercase__ : Optional[Any] = do_rescale lowercase__ : Dict = rescale_factor lowercase__ : Union[str, Any] = do_pad def __UpperCamelCase ( self : Any ) -> Dict: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __UpperCamelCase ( self : str , lowercase_ : Optional[Any] , lowercase_ : Optional[Any]=False ) -> Any: if not batched: lowercase__ : Dict = image_inputs[0] if isinstance(lowercase_ , Image.Image ): lowercase__ , lowercase__ : List[Any] = image.size else: lowercase__ , lowercase__ : List[str] = image.shape[1], image.shape[2] if w < h: lowercase__ : Any = int(self.size["shortest_edge"] * h / w ) lowercase__ : Union[str, Any] = self.size["shortest_edge"] elif w > h: lowercase__ : str = self.size["shortest_edge"] lowercase__ : Tuple = int(self.size["shortest_edge"] * w / h ) else: lowercase__ : Any = self.size["shortest_edge"] lowercase__ : Tuple = self.size["shortest_edge"] else: lowercase__ : int = [] for image in image_inputs: lowercase__ , lowercase__ : Tuple = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowercase__ : Union[str, Any] = max(lowercase_ , key=lambda lowercase_ : item[0] )[0] lowercase__ : Any = max(lowercase_ , key=lambda lowercase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class snake_case_ ( __A ,unittest.TestCase ): __A : str = DeformableDetrImageProcessor if is_vision_available() else None def __UpperCamelCase ( self : List[Any] ) -> Any: lowercase__ : Optional[Any] = DeformableDetrImageProcessingTester(self ) @property def __UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self : int ) -> int: lowercase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , "image_mean" ) ) self.assertTrue(hasattr(lowercase_ , "image_std" ) ) self.assertTrue(hasattr(lowercase_ , "do_normalize" ) ) self.assertTrue(hasattr(lowercase_ , "do_resize" ) ) self.assertTrue(hasattr(lowercase_ , "do_rescale" ) ) self.assertTrue(hasattr(lowercase_ , "do_pad" ) ) self.assertTrue(hasattr(lowercase_ , "size" ) ) def __UpperCamelCase ( self : Tuple ) -> Optional[int]: lowercase__ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 13_33} ) self.assertEqual(image_processor.do_pad , lowercase_ ) lowercase__ : int = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowercase_ ) self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} ) self.assertEqual(image_processor.do_pad , lowercase_ ) def __UpperCamelCase ( self : Dict ) -> str: pass def __UpperCamelCase ( self : List[str] ) -> Any: # Initialize image_processing lowercase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input lowercase__ : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowercase__ , lowercase__ : Tuple = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__ , lowercase__ : Optional[Any] = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) lowercase__ : str = image_processing(lowercase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __UpperCamelCase ( self : List[str] ) -> int: # Initialize image_processing lowercase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input lowercase__ : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowercase__ , lowercase__ : List[str] = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__ : Tuple = image_processing(lowercase_ , return_tensors="pt" ).pixel_values lowercase__ , lowercase__ : Any = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __UpperCamelCase ( self : str ) -> int: # Initialize image_processing lowercase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input lowercase__ : List[str] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowercase__ , lowercase__ : int = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__ : Union[str, Any] = image_processing(lowercase_ , return_tensors="pt" ).pixel_values lowercase__ , lowercase__ : Tuple = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __UpperCamelCase ( self : Union[str, Any] ) -> Tuple: # prepare image and target lowercase__ : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: lowercase__ : List[Any] = json.loads(f.read() ) lowercase__ : Dict = {"image_id": 3_97_69, "annotations": target} # encode them lowercase__ : List[str] = DeformableDetrImageProcessor() lowercase__ : Optional[int] = image_processing(images=lowercase_ , annotations=lowercase_ , return_tensors="pt" ) # verify pixel values lowercase__ : Union[str, Any] = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["pixel_values"].shape , lowercase_ ) lowercase__ : Dict = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowercase_ , atol=1E-4 ) ) # verify area lowercase__ : Union[str, Any] = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowercase_ ) ) # verify boxes lowercase__ : Optional[Any] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , lowercase_ ) lowercase__ : Optional[Any] = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowercase_ , atol=1E-3 ) ) # verify image_id lowercase__ : Dict = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowercase_ ) ) # verify is_crowd lowercase__ : Optional[int] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowercase_ ) ) # verify class_labels lowercase__ : Optional[int] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowercase_ ) ) # verify orig_size lowercase__ : Tuple = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowercase_ ) ) # verify size lowercase__ : List[str] = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowercase_ ) ) @slow def __UpperCamelCase ( self : str ) -> Tuple: # prepare image, target and masks_path lowercase__ : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: lowercase__ : Optional[Any] = json.loads(f.read() ) lowercase__ : Union[str, Any] = {"file_name": "000000039769.png", "image_id": 3_97_69, "segments_info": target} lowercase__ : Optional[int] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them lowercase__ : Dict = DeformableDetrImageProcessor(format="coco_panoptic" ) lowercase__ : Optional[Any] = image_processing(images=lowercase_ , annotations=lowercase_ , masks_path=lowercase_ , return_tensors="pt" ) # verify pixel values lowercase__ : Tuple = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["pixel_values"].shape , lowercase_ ) lowercase__ : int = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowercase_ , atol=1E-4 ) ) # verify area lowercase__ : Tuple = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowercase_ ) ) # verify boxes lowercase__ : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , lowercase_ ) lowercase__ : Dict = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowercase_ , atol=1E-3 ) ) # verify image_id lowercase__ : List[str] = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowercase_ ) ) # verify is_crowd lowercase__ : Optional[int] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowercase_ ) ) # verify class_labels lowercase__ : Any = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowercase_ ) ) # verify masks lowercase__ : str = 82_28_73 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , lowercase_ ) # verify orig_size lowercase__ : Dict = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowercase_ ) ) # verify size lowercase__ : str = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowercase_ ) )
87
"""simple docstring""" import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class _lowerCAmelCase : """simple docstring""" @staticmethod def _lowercase ( *UpperCAmelCase__ : Tuple, **UpperCAmelCase__ : List[Any] ): pass def _A ( UpperCamelCase_ : Union[str, Any]) -> Any: '''simple docstring''' return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. _a = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Tuple = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Optional[Any] ): __lowercase = pipeline( "document-question-answering", model=UpperCAmelCase__, tokenizer=UpperCAmelCase__, image_processor=UpperCAmelCase__ ) __lowercase = INVOICE_URL __lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) ) __lowercase = "What is the placebo?" __lowercase = [ { "image": load_image(UpperCAmelCase__ ), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def _lowercase ( self : int, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Any ): __lowercase = dqa_pipeline(UpperCAmelCase__, top_k=2 ) self.assertEqual( UpperCAmelCase__, [ [ {"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ ), "start": ANY(UpperCAmelCase__ ), "end": ANY(UpperCAmelCase__ )}, {"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ ), "start": ANY(UpperCAmelCase__ ), "end": ANY(UpperCAmelCase__ )}, ] ] * 3, ) @require_torch @require_detectrona @require_pytesseract def _lowercase ( self : Dict ): __lowercase = pipeline("document-question-answering", model="hf-internal-testing/tiny-random-layoutlmv2" ) __lowercase = INVOICE_URL __lowercase = "How many cats are there?" __lowercase = [ {"score": 0.0_001, "answer": "oy 2312/2019", "start": 3_8, "end": 3_9}, {"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 3_8, "end": 4_0}, ] __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), UpperCAmelCase__ ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), UpperCAmelCase__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably __lowercase = "./tests/fixtures/tests_samples/COCO/000000039769.png" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual(UpperCAmelCase__, [] ) # We can optionnally pass directly the words and bounding boxes __lowercase = "./tests/fixtures/tests_samples/COCO/000000039769.png" __lowercase = [] __lowercase = [] __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, words=UpperCAmelCase__, boxes=UpperCAmelCase__, top_k=2 ) self.assertEqual(UpperCAmelCase__, [] ) @slow @require_torch @require_detectrona @require_pytesseract def _lowercase ( self : List[str] ): __lowercase = pipeline( "document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ] * 2, ) @slow @require_torch @require_detectrona @require_pytesseract def _lowercase ( self : Dict ): __lowercase = pipeline( "document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", max_seq_len=5_0, ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3}, {"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3}, {"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3}, {"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6}, ] ] * 2, ) @slow @require_torch @require_pytesseract @require_vision def _lowercase ( self : Optional[Any] ): __lowercase = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=UpperCAmelCase__ ) __lowercase = pipeline( "document-question-answering", model="impira/layoutlm-document-qa", tokenizer=UpperCAmelCase__, revision="3dc6de3", ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ], ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ] ] * 2, ) __lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) ) # This model should also work if `image` is set to None __lowercase = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ], ) @slow @require_torch @require_pytesseract @require_vision def _lowercase ( self : Union[str, Any] ): __lowercase = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=UpperCAmelCase__ ) __lowercase = pipeline( "document-question-answering", model="impira/layoutlm-document-qa", tokenizer=UpperCAmelCase__, revision="3dc6de3", max_seq_len=5_0, ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6}, ] ] * 2, ) __lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) ) # This model should also work if `image` is set to None __lowercase = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) @slow @require_torch def _lowercase ( self : Dict ): __lowercase = pipeline( "document-question-answering", model="naver-clova-ix/donut-base-finetuned-docvqa", tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ), feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa", ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def _lowercase ( self : List[Any] ): pass
17
0
import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class UpperCAmelCase_ ( _A ): '''simple docstring''' def __init__( self : Optional[int] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : str=None , **UpperCamelCase__ : List[Any] ) -> int: """simple docstring""" __magic_name__ = parent __magic_name__ = config_class __magic_name__ = has_text_modality __magic_name__ = kwargs __magic_name__ = common_properties def _lowercase ( self : List[Any] ) -> str: """simple docstring""" __magic_name__ = self.config_class(**self.inputs_dict ) __magic_name__ = ( ["""hidden_size""", """num_attention_heads""", """num_hidden_layers"""] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["""vocab_size"""] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(UpperCamelCase__ , UpperCamelCase__ ) , msg=F'''`{prop}` does not exist''' ) # Test that config has the common properties as setter for idx, name in enumerate(UpperCamelCase__ ): try: setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) self.parent.assertEqual( getattr(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ , msg=F'''`{name} value {idx} expected, but was {getattr(UpperCamelCase__ , UpperCamelCase__ )}''' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(UpperCamelCase__ ): try: __magic_name__ = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ , msg=F'''`{name} value {idx} expected, but was {getattr(UpperCamelCase__ , UpperCamelCase__ )}''' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def _lowercase ( self : List[str] ) -> Any: """simple docstring""" __magic_name__ = self.config_class(**self.inputs_dict ) __magic_name__ = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , UpperCamelCase__ ) def _lowercase ( self : Tuple ) -> Optional[Any]: """simple docstring""" __magic_name__ = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __magic_name__ = os.path.join(UpperCamelCase__ , """config.json""" ) config_first.to_json_file(UpperCamelCase__ ) __magic_name__ = self.config_class.from_json_file(UpperCamelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self : int ) -> List[str]: """simple docstring""" __magic_name__ = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(UpperCamelCase__ ) __magic_name__ = self.config_class.from_pretrained(UpperCamelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self : str ) -> Tuple: """simple docstring""" __magic_name__ = self.config_class(**self.inputs_dict ) __magic_name__ = """test""" with tempfile.TemporaryDirectory() as tmpdirname: __magic_name__ = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) config_first.save_pretrained(UpperCamelCase__ ) __magic_name__ = self.config_class.from_pretrained(UpperCamelCase__ , subfolder=UpperCamelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self : List[Any] ) -> List[Any]: """simple docstring""" __magic_name__ = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) __magic_name__ = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def _lowercase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" if self.config_class.is_composition: return __magic_name__ = self.config_class() self.parent.assertIsNotNone(UpperCamelCase__ ) def _lowercase ( self : Optional[int] ) -> List[Any]: """simple docstring""" __magic_name__ = copy.deepcopy(UpperCamelCase__ ) __magic_name__ = self.config_class(**UpperCamelCase__ ) __magic_name__ = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("""torch_dtype""", config.torch_dtype, torch.floataa) ) elif getattr(UpperCamelCase__ , UpperCamelCase__ ) != value: wrong_values.append((key, getattr(UpperCamelCase__ , UpperCamelCase__ ), value) ) if len(UpperCamelCase__ ) > 0: __magic_name__ = """\n""".join([F'''- {v[0]}: got {v[1]} instead of {v[2]}''' for v in wrong_values] ) raise ValueError(F'''The following keys were not properly set in the config:\n{errors}''' ) def _lowercase ( self : Optional[int] ) -> List[Any]: """simple docstring""" self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
88
"""simple docstring""" import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _a = 2 class _lowerCAmelCase : """simple docstring""" def __init__( self : Dict, *, # begin keyword-only arguments UpperCAmelCase__ : str="<s>", UpperCAmelCase__ : Tuple="<pad>", UpperCAmelCase__ : str="</s>", UpperCAmelCase__ : Optional[Any]="<unk>", UpperCAmelCase__ : List[Any]=None, ): __lowercase ,__lowercase ,__lowercase ,__lowercase = bos, unk, pad, eos __lowercase = [] __lowercase = [] __lowercase = {} __lowercase = self.add_symbol(UpperCAmelCase__ ) __lowercase = self.add_symbol(UpperCAmelCase__ ) __lowercase = self.add_symbol(UpperCAmelCase__ ) __lowercase = self.add_symbol(UpperCAmelCase__ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(UpperCAmelCase__ ) __lowercase = len(self.symbols ) def __eq__( self : List[str], UpperCAmelCase__ : Dict ): return self.indices == other.indices def __getitem__( self : Optional[int], UpperCAmelCase__ : List[str] ): if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : str ): return len(self.symbols ) def __contains__( self : Any, UpperCAmelCase__ : Optional[Any] ): return sym in self.indices @classmethod def _lowercase ( cls : List[Any], UpperCAmelCase__ : Optional[Any] ): __lowercase = cls() d.add_from_file(UpperCAmelCase__ ) return d def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[Any]=1, UpperCAmelCase__ : str=False ): if word in self.indices and not overwrite: __lowercase = self.indices[word] __lowercase = self.count[idx] + n return idx else: __lowercase = len(self.symbols ) __lowercase = idx self.symbols.append(UpperCAmelCase__ ) self.count.append(UpperCAmelCase__ ) return idx def _lowercase ( self : Any, UpperCAmelCase__ : str ): return 0 def _lowercase ( self : Tuple, UpperCAmelCase__ : List[Any] ): if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): try: with open(UpperCAmelCase__, "r", encoding="utf-8" ) as fd: self.add_from_file(UpperCAmelCase__ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("Incorrect encoding detected in {}, please rebuild the dataset".format(UpperCAmelCase__ ) ) return __lowercase = f.readlines() __lowercase = self._load_meta(UpperCAmelCase__ ) for line in lines[indices_start_line:]: try: __lowercase ,__lowercase = line.rstrip().rsplit(" ", 1 ) if field == "#fairseq:overwrite": __lowercase = True __lowercase ,__lowercase = line.rsplit(" ", 1 ) else: __lowercase = False __lowercase = int(UpperCAmelCase__ ) __lowercase = line if word in self and not overwrite: raise RuntimeError( "Duplicate word found when loading Dictionary: '{}'. " "Duplicate words can overwrite earlier ones by adding the " "#fairseq:overwrite flag at the end of the corresponding row " "in the dictionary file. If using the Camembert model, please " "download an updated copy of the model file.".format(UpperCAmelCase__ ) ) self.add_symbol(UpperCAmelCase__, n=UpperCAmelCase__, overwrite=UpperCAmelCase__ ) except ValueError: raise ValueError("Incorrect dictionary format, expected '<token> <cnt> [flags]'" ) def _A ( UpperCamelCase_ : int) -> str: '''simple docstring''' __lowercase = dict((re.sub(r"@@$", "", UpperCamelCase_), v) if k.endswith("@@") else (re.sub(r"$", "</w>", UpperCamelCase_), v) for k, v in d.items()) __lowercase = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] __lowercase = d[k] # restore return da def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str) -> List[Any]: '''simple docstring''' if not os.path.exists(UpperCamelCase_): raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""") os.makedirs(UpperCamelCase_, exist_ok=UpperCamelCase_) print(F"""Writing results to {pytorch_dump_folder_path}""") # handle various types of models __lowercase = os.path.join(UpperCamelCase_, "checkpoint.pt") if not os.path.isfile(UpperCamelCase_): raise ValueError(F"""path to the file {checkpoint_file} does not exist!""") __lowercase = torch.load(UpperCamelCase_, map_location="cpu") __lowercase = chkpt["cfg"]["model"] # dicts __lowercase = os.path.join(UpperCamelCase_, "dict.txt") if not os.path.isfile(UpperCamelCase_): raise ValueError(F"""path to the file {dict_file} does not exist!""") __lowercase = Dictionary.load(UpperCamelCase_) __lowercase = rewrite_dict_keys(src_dict.indices) __lowercase = len(UpperCamelCase_) __lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["vocab_file"]) print(F"""Generating {src_vocab_file} of {src_vocab_size} records""") with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_)) # merges_file (bpecodes) __lowercase = os.path.join(UpperCamelCase_, "bpecodes") if not os.path.isfile(UpperCamelCase_): raise ValueError(F"""path to the file {bpecodes_file} does not exist!""") __lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["merges_file"]) shutil.copyfile(UpperCamelCase_, UpperCamelCase_) # model config __lowercase = os.path.join(UpperCamelCase_, "config.json") __lowercase = { "activation_dropout": args["activation_dropout"], "architectures": ["BioGptForCausalLM"], "attention_probs_dropout_prob": args["attention_dropout"], "bos_token_id": 0, "eos_token_id": 2, "hidden_act": args["activation_fn"], "hidden_dropout_prob": args["dropout"], "hidden_size": args["decoder_embed_dim"], "initializer_range": 0.02, "intermediate_size": args["decoder_ffn_embed_dim"], "layer_norm_eps": 1E-12, "layerdrop": args["decoder_layerdrop"], "max_position_embeddings": args["max_target_positions"], "model_type": "biogpt", "num_attention_heads": args["decoder_attention_heads"], "num_hidden_layers": args["decoder_layers"], "pad_token_id": 1, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_decoder_input_output_embed"], "vocab_size": src_vocab_size, } # good hparam defaults to start with print(F"""Generating {biogpt_model_config_file}""") with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_)) # tokenizer config __lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_) __lowercase = { "bos_token": "<s>", "eos_token": "</s>", "model_max_length": 1024, "pad_token": "<pad>", "special_tokens_map_file": None, "tokenizer_class": "BioGptTokenizer", "unk_token": "<unk>", } print(F"""Generating {biogpt_tokenizer_config_file}""") with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_)) # model __lowercase = chkpt["model"] # remove unneeded keys __lowercase = [ "decoder.version", ] for k in ignore_keys: model_state_dict.pop(UpperCamelCase_, UpperCamelCase_) __lowercase = list(model_state_dict.keys()) for layer_name in layer_names: if layer_name.endswith("output_projection.weight"): __lowercase = model_state_dict.pop(UpperCamelCase_) else: __lowercase = model_state_dict.pop(UpperCamelCase_) __lowercase = BioGptConfig.from_pretrained(UpperCamelCase_) __lowercase = BioGptForCausalLM(UpperCamelCase_) # check that it loads ok model_new.load_state_dict(UpperCamelCase_) # save __lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_) print(F"""Generating {pytorch_weights_dump_path}""") torch.save(UpperCamelCase_, UpperCamelCase_) print("Conversion is done!") if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _a = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
17
0
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'''vocab_file''': '''spiece.model'''} __lowerCAmelCase = { '''vocab_file''': { '''TsinghuaAI/CPM-Generate''': '''https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model''', } } class __magic_name__ ( _UpperCamelCase ): def __init__( self : Optional[int] ,_UpperCAmelCase : str ,_UpperCAmelCase : List[Any]=False ,_UpperCAmelCase : List[Any]=True ,_UpperCAmelCase : Optional[int]=False ,_UpperCAmelCase : Dict="<s>" ,_UpperCAmelCase : Tuple="</s>" ,_UpperCAmelCase : Dict="<unk>" ,_UpperCAmelCase : Dict="<sep>" ,_UpperCAmelCase : List[str]="<pad>" ,_UpperCAmelCase : List[Any]="<cls>" ,_UpperCAmelCase : Union[str, Any]="<mask>" ,_UpperCAmelCase : Optional[Any]=["<eop>", "<eod>"] ,_UpperCAmelCase : Optional[Dict[str, Any]] = None ,**_UpperCAmelCase : Union[str, Any] ,): _a : List[Any] = AddedToken(_UpperCAmelCase ,lstrip=_UpperCAmelCase ,rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase ,_UpperCAmelCase ) else mask_token _a : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_UpperCAmelCase ,remove_space=_UpperCAmelCase ,keep_accents=_UpperCAmelCase ,bos_token=_UpperCAmelCase ,eos_token=_UpperCAmelCase ,unk_token=_UpperCAmelCase ,sep_token=_UpperCAmelCase ,pad_token=_UpperCAmelCase ,cls_token=_UpperCAmelCase ,mask_token=_UpperCAmelCase ,additional_special_tokens=_UpperCAmelCase ,sp_model_kwargs=self.sp_model_kwargs ,**_UpperCAmelCase ,) _a : List[Any] = 3 _a : Optional[int] = do_lower_case _a : Dict = remove_space _a : Union[str, Any] = keep_accents _a : Any = vocab_file _a : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCAmelCase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( 'You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ' 'See https://pypi.org/project/jieba/ for installation.' ) _a : Optional[int] = jieba _a : Union[str, Any] = str.maketrans(' \n' ,'\u2582\u2583' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def __lowercase ( self : Dict ): return len(self.sp_model ) def __lowercase ( self : Dict ): _a : Optional[Any] = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : int ): _a : Tuple = self.__dict__.copy() _a : Any = None return state def __setstate__( self : Any ,_UpperCAmelCase : Optional[int] ): _a : Any = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): _a : Optional[int] = {} _a : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowercase ( self : Optional[Any] ,_UpperCAmelCase : str ): if self.remove_space: _a : List[str] = ' '.join(inputs.strip().split() ) else: _a : int = inputs _a : str = outputs.replace('``' ,'"' ).replace('\'\'' ,'"' ) if not self.keep_accents: _a : Dict = unicodedata.normalize('NFKD' ,_UpperCAmelCase ) _a : List[str] = ''.join([c for c in outputs if not unicodedata.combining(_UpperCAmelCase )] ) if self.do_lower_case: _a : Dict = outputs.lower() return outputs def __lowercase ( self : List[str] ,_UpperCAmelCase : str ): _a : int = self.preprocess_text(_UpperCAmelCase ) _a : Dict = self.sp_model.encode(_UpperCAmelCase ,out_type=_UpperCAmelCase ) _a : Optional[Any] = [] for piece in pieces: if len(_UpperCAmelCase ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): _a : Dict = self.sp_model.EncodeAsPieces(piece[:-1].replace(_UpperCAmelCase ,'' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _a : Optional[int] = cur_pieces[1:] else: _a : Optional[int] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_UpperCAmelCase ) else: new_pieces.append(_UpperCAmelCase ) return new_pieces def __lowercase ( self : Optional[int] ,_UpperCAmelCase : Union[str, Any] ): return self.sp_model.PieceToId(_UpperCAmelCase ) def __lowercase ( self : Union[str, Any] ,_UpperCAmelCase : List[str] ): return self.sp_model.IdToPiece(_UpperCAmelCase ) def __lowercase ( self : Optional[Any] ,_UpperCAmelCase : Any ): _a : Dict = ''.join(_UpperCAmelCase ).replace(_UpperCAmelCase ,' ' ).strip() return out_string def __lowercase ( self : Optional[Any] ,_UpperCAmelCase : List[int] ,_UpperCAmelCase : Optional[List[int]] = None ): _a : List[str] = [self.sep_token_id] _a : int = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowercase ( self : Optional[Any] ,_UpperCAmelCase : List[int] ,_UpperCAmelCase : Optional[List[int]] = None ,_UpperCAmelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase ,token_ids_a=_UpperCAmelCase ,already_has_special_tokens=_UpperCAmelCase ) if token_ids_a is not None: return ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1, 1] return ([0] * len(_UpperCAmelCase )) + [1, 1] def __lowercase ( self : Optional[Any] ,_UpperCAmelCase : List[int] ,_UpperCAmelCase : Optional[List[int]] = None ): _a : Union[str, Any] = [self.sep_token_id] _a : List[str] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __lowercase ( self : List[str] ,_UpperCAmelCase : str ,_UpperCAmelCase : Optional[str] = None ): if not os.path.isdir(_UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _a : List[Any] = os.path.join( _UpperCAmelCase ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCAmelCase ,'wb' ) as fi: _a : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (out_vocab_file,) def __lowercase ( self : int ,*_UpperCAmelCase : Dict ,**_UpperCAmelCase : List[Any] ): _a : List[str] = super()._decode(*_UpperCAmelCase ,**_UpperCAmelCase ) _a : List[str] = text.replace(' ' ,'' ).replace('\u2582' ,' ' ).replace('\u2583' ,'\n' ) return text
89
"""simple docstring""" from __future__ import annotations from typing import Any class _lowerCAmelCase : """simple docstring""" def __init__( self : Any, UpperCAmelCase__ : int ): __lowercase = num_of_nodes __lowercase = [] __lowercase = {} def _lowercase ( self : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : int, UpperCAmelCase__ : int ): self.m_edges.append([u_node, v_node, weight] ) def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _lowercase ( self : List[Any], UpperCAmelCase__ : int ): if self.m_component[u_node] != u_node: for k in self.m_component: __lowercase = self.find_component(UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : list[int], UpperCAmelCase__ : int, UpperCAmelCase__ : int ): if component_size[u_node] <= component_size[v_node]: __lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(UpperCAmelCase__ ) elif component_size[u_node] >= component_size[v_node]: __lowercase = self.find_component(UpperCAmelCase__ ) component_size[u_node] += component_size[v_node] self.set_component(UpperCAmelCase__ ) def _lowercase ( self : Any ): __lowercase = [] __lowercase = 0 __lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowercase ,__lowercase ,__lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase ,__lowercase ,__lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 __lowercase = [-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def _A ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
17
0
import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn.grep_linear": "encoder.layers.*.attention.gru_rel_pos_linear", "self_attn.relative_attention_bias": "encoder.layers.*.attention.rel_attn_embed", "self_attn.grep_a": "encoder.layers.*.attention.gru_rel_pos_const", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } __A = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Union[str, Any] ) -> List[Any]: """simple docstring""" for attribute in key.split('.' ): __lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ) if weight_type is not None: __lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ).shape else: __lowerCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowerCamelCase = value elif weight_type == "weight_g": __lowerCamelCase = value elif weight_type == "weight_v": __lowerCamelCase = value elif weight_type == "bias": __lowerCamelCase = value else: __lowerCamelCase = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple ) -> Tuple: """simple docstring""" __lowerCamelCase = [] __lowerCamelCase = fairseq_model.state_dict() __lowerCamelCase = hf_model.feature_extractor for name, value in fairseq_dict.items(): __lowerCamelCase = False if "conv_layers" in name: load_conv_layer( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hf_model.config.feat_extract_norm == 'group' , ) __lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __lowerCamelCase = True if "*" in mapped_key: __lowerCamelCase = name.split(UpperCamelCase__ )[0].split('.' )[-2] __lowerCamelCase = mapped_key.replace('*' , UpperCamelCase__ ) if "weight_g" in name: __lowerCamelCase = 'weight_g' elif "weight_v" in name: __lowerCamelCase = 'weight_v' elif "bias" in name and "relative_attention_bias" not in name: __lowerCamelCase = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowerCamelCase = 'weight' else: __lowerCamelCase = None set_recursively(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) continue if not is_used: unused_weights.append(UpperCamelCase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] ) -> List[Any]: """simple docstring""" __lowerCamelCase = full_name.split('conv_layers.' )[-1] __lowerCamelCase = name.split('.' ) __lowerCamelCase = int(items[0] ) __lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(UpperCamelCase__ ) @torch.no_grad() def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int]=None ) -> Any: """simple docstring""" __lowerCamelCase = torch.load(UpperCamelCase__ ) __lowerCamelCase = WavLMConfigOrig(checkpoint['cfg'] ) __lowerCamelCase = WavLMOrig(UpperCamelCase__ ) model.load_state_dict(checkpoint['model'] ) model.eval() if config_path is not None: __lowerCamelCase = WavLMConfig.from_pretrained(UpperCamelCase__ ) else: __lowerCamelCase = WavLMConfig() __lowerCamelCase = WavLMModel(UpperCamelCase__ ) recursively_load_weights(UpperCamelCase__ , UpperCamelCase__ ) hf_wavlm.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") __A = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
90
"""simple docstring""" from math import sqrt def _A ( UpperCamelCase_ : int) -> int: '''simple docstring''' __lowercase = 0 for i in range(1, int(sqrt(UpperCamelCase_) + 1)): if n % i == 0 and i != sqrt(UpperCamelCase_): total += i + n // i elif i == sqrt(UpperCamelCase_): total += i return total - n def _A ( UpperCamelCase_ : int = 10000) -> int: '''simple docstring''' __lowercase = sum( i for i in range(1, UpperCamelCase_) if sum_of_divisors(sum_of_divisors(UpperCamelCase_)) == i and sum_of_divisors(UpperCamelCase_) != i) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
17
0
"""simple docstring""" import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def _A (__a="" ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = tempfile.mkdtemp() return os.path.join(__a , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.rand(12 , dtype=torch.floataa) - 0.5 SCREAMING_SNAKE_CASE_ : Optional[Any] = AgentAudio(lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = str(agent_type.to_string()) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowercase_ , agent_type.to_raw() , atol=1e-4)) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(lowercase_)) # Ensure that the file contains the same value as the original tensor SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = sf.read(lowercase_) self.assertTrue(torch.allclose(lowercase_ , torch.tensor(lowercase_) , atol=1e-4)) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = torch.rand(12 , dtype=torch.floataa) - 0.5 SCREAMING_SNAKE_CASE_ : int = get_new_path(suffix='''.wav''') sf.write(lowercase_ , lowercase_ , 16000) SCREAMING_SNAKE_CASE_ : int = AgentAudio(lowercase_) self.assertTrue(torch.allclose(lowercase_ , agent_type.to_raw() , atol=1e-4)) self.assertEqual(agent_type.to_string() , lowercase_) @require_vision @require_torch class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = torch.randint(0 , 256 , (64, 64, 3)) SCREAMING_SNAKE_CASE_ : Dict = AgentImage(lowercase_) SCREAMING_SNAKE_CASE_ : int = str(agent_type.to_string()) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowercase_ , agent_type._tensor , atol=1e-4)) self.assertIsInstance(agent_type.to_raw() , Image.Image) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowercase_)) def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = Path(get_tests_dir('''fixtures/tests_samples/COCO''')) / '''000000039769.png''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = Image.open(lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = AgentImage(lowercase_) self.assertTrue(path.samefile(agent_type.to_string())) self.assertTrue(image == agent_type.to_raw()) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowercase_)) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = Path(get_tests_dir('''fixtures/tests_samples/COCO''')) / '''000000039769.png''' SCREAMING_SNAKE_CASE_ : List[str] = Image.open(lowercase_) SCREAMING_SNAKE_CASE_ : int = AgentImage(lowercase_) self.assertFalse(path.samefile(agent_type.to_string())) self.assertTrue(image == agent_type.to_raw()) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowercase_)) class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = '''Hey!''' SCREAMING_SNAKE_CASE_ : int = AgentText(lowercase_) self.assertEqual(lowercase_ , agent_type.to_string()) self.assertEqual(lowercase_ , agent_type.to_raw()) self.assertEqual(lowercase_ , lowercase_)
91
"""simple docstring""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _a = _symbol_database.Default() _a = _descriptor_pool.Default().AddSerializedFile( b'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) _a = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: _a = None _a = b'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" _a = 45 _a = 15_81 _a = 15_17 _a = 15_70 _a = 15_84 _a = 17_93 _a = 17_95 _a = 19_16 _a = 18_64 _a = 19_05 _a = 19_19 _a = 24_29 _a = 22_08 _a = 24_18 _a = 23_23 _a = 24_07 # @@protoc_insertion_point(module_scope)
17
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE_ : str ): __lowerCAmelCase = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: __lowerCAmelCase = 1_92 __lowerCAmelCase = 7_68 __lowerCAmelCase = 12 __lowerCAmelCase = 3 __lowerCAmelCase = [8_00, 13_33] __lowerCAmelCase = False elif yolos_name == "yolos_s_dWr": __lowerCAmelCase = 3_30 __lowerCAmelCase = 14 __lowerCAmelCase = 6 __lowerCAmelCase = 13_20 elif "yolos_s" in yolos_name: __lowerCAmelCase = 3_84 __lowerCAmelCase = 15_36 __lowerCAmelCase = 12 __lowerCAmelCase = 6 elif "yolos_b" in yolos_name: __lowerCAmelCase = [8_00, 13_44] __lowerCAmelCase = 91 __lowerCAmelCase = "huggingface/label-files" __lowerCAmelCase = "coco-detection-id2label.json" __lowerCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type="dataset" ) , "r" ) ) __lowerCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} return config def _a ( SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : YolosConfig , SCREAMING_SNAKE_CASE_ : bool = False ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[: config.hidden_size, :] __lowerCAmelCase = in_proj_bias[: config.hidden_size] __lowerCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCAmelCase = in_proj_weight[-config.hidden_size :, :] __lowerCAmelCase = in_proj_bias[-config.hidden_size :] def _a ( SCREAMING_SNAKE_CASE_ : str ): if "backbone" in name: __lowerCAmelCase = name.replace("backbone" , "vit" ) if "cls_token" in name: __lowerCAmelCase = name.replace("cls_token" , "embeddings.cls_token" ) if "det_token" in name: __lowerCAmelCase = name.replace("det_token" , "embeddings.detection_tokens" ) if "mid_pos_embed" in name: __lowerCAmelCase = name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" ) if "pos_embed" in name: __lowerCAmelCase = name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: __lowerCAmelCase = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "blocks" in name: __lowerCAmelCase = name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: __lowerCAmelCase = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: __lowerCAmelCase = name.replace("attn" , "attention.self" ) if "norm1" in name: __lowerCAmelCase = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: __lowerCAmelCase = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: __lowerCAmelCase = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: __lowerCAmelCase = name.replace("mlp.fc2" , "output.dense" ) if "class_embed" in name: __lowerCAmelCase = name.replace("class_embed" , "class_labels_classifier" ) if "bbox_embed" in name: __lowerCAmelCase = name.replace("bbox_embed" , "bbox_predictor" ) if "vit.norm" in name: __lowerCAmelCase = name.replace("vit.norm" , "vit.layernorm" ) return name def _a ( SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : YolosForObjectDetection ): for key in orig_state_dict.copy().keys(): __lowerCAmelCase = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "qkv" in key: __lowerCAmelCase = key.split("." ) __lowerCAmelCase = int(key_split[2] ) __lowerCAmelCase = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[ dim : dim * 2, : ] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[dim : dim * 2] __lowerCAmelCase = val[-dim:] else: __lowerCAmelCase = val return orig_state_dict def _a ( ): __lowerCAmelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowerCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : bool = False ): __lowerCAmelCase = get_yolos_config(SCREAMING_SNAKE_CASE_ ) # load original state_dict __lowerCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ , map_location="cpu" )["model"] # load 🤗 model __lowerCAmelCase = YolosForObjectDetection(SCREAMING_SNAKE_CASE_ ) model.eval() __lowerCAmelCase = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Check outputs on an image, prepared by YolosImageProcessor __lowerCAmelCase = 8_00 if yolos_name != "yolos_ti" else 5_12 __lowerCAmelCase = YolosImageProcessor(format="coco_detection" , size=SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = image_processor(images=prepare_img() , return_tensors="pt" ) __lowerCAmelCase = model(**SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase , __lowerCAmelCase = outputs.logits, outputs.pred_boxes __lowerCAmelCase , __lowerCAmelCase = None, None if yolos_name == "yolos_ti": __lowerCAmelCase = torch.tensor( [[-39.50_22, -11.98_20, -17.68_88], [-29.95_74, -9.97_69, -17.76_91], [-42.32_81, -20.72_00, -30.62_94]] ) __lowerCAmelCase = torch.tensor( [[0.40_21, 0.08_36, 0.79_79], [0.01_84, 0.26_09, 0.03_64], [0.17_81, 0.20_04, 0.20_95]] ) elif yolos_name == "yolos_s_200_pre": __lowerCAmelCase = torch.tensor( [[-24.02_48, -10.30_24, -14.82_90], [-42.03_92, -16.82_00, -27.43_34], [-27.27_43, -11.81_54, -18.71_48]] ) __lowerCAmelCase = torch.tensor( [[0.25_59, 0.54_55, 0.47_06], [0.29_89, 0.72_79, 0.18_75], [0.77_32, 0.40_17, 0.44_62]] ) elif yolos_name == "yolos_s_300_pre": __lowerCAmelCase = torch.tensor( [[-36.22_20, -14.43_85, -23.54_57], [-35.69_70, -14.75_83, -21.39_35], [-31.59_39, -13.60_42, -16.80_49]] ) __lowerCAmelCase = torch.tensor( [[0.76_14, 0.23_16, 0.47_28], [0.71_68, 0.44_95, 0.38_55], [0.49_96, 0.14_66, 0.99_96]] ) elif yolos_name == "yolos_s_dWr": __lowerCAmelCase = torch.tensor( [[-42.86_68, -24.10_49, -41.16_90], [-34.74_56, -14.12_74, -24.91_94], [-33.78_98, -12.19_46, -25.64_95]] ) __lowerCAmelCase = torch.tensor( [[0.55_87, 0.27_73, 0.06_05], [0.50_04, 0.30_14, 0.99_94], [0.49_99, 0.15_48, 0.99_94]] ) elif yolos_name == "yolos_base": __lowerCAmelCase = torch.tensor( [[-40.60_64, -24.30_84, -32.64_47], [-55.19_90, -30.77_19, -35.58_77], [-51.43_11, -33.35_07, -35.64_62]] ) __lowerCAmelCase = torch.tensor( [[0.55_55, 0.27_94, 0.06_55], [0.90_49, 0.26_64, 0.18_94], [0.91_83, 0.19_84, 0.16_35]] ) else: raise ValueError(F"""Unknown yolos_name: {yolos_name}""" ) assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(F"""Saving model {yolos_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: __lowerCAmelCase = { "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) __lowerCAmelCase = model_mapping[yolos_name] image_processor.push_to_hub(SCREAMING_SNAKE_CASE_ , organization="hustvl" ) model.push_to_hub(SCREAMING_SNAKE_CASE_ , organization="hustvl" ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--yolos_name""", default="""yolos_s_200_pre""", type=str, help=( """Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre',""" """ 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'.""" ), ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original state dict (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) UpperCamelCase__ = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
92
"""simple docstring""" import baseaa def _A ( UpperCamelCase_ : str) -> bytes: '''simple docstring''' return baseaa.baaencode(string.encode("utf-8")) def _A ( UpperCamelCase_ : bytes) -> str: '''simple docstring''' return baseaa.baadecode(UpperCamelCase_).decode("utf-8") if __name__ == "__main__": _a = 'Hello World!' _a = baseaa_encode(test) print(encoded) _a = baseaa_decode(encoded) print(decoded)
17
0
'''simple docstring''' import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class lowerCAmelCase__ ( unittest.TestCase ): def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" return F'''gaussian_noise_s={seed}_shape={'_'.join([str(__SCREAMING_SNAKE_CASE ) for s in shape] )}.npy''' def _snake_case ( self ): """simple docstring""" super().tearDown() gc.collect() def _snake_case ( self , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=(4, 4, 64, 64) , __SCREAMING_SNAKE_CASE=False ): """simple docstring""" lowercase_ : Any = jnp.bfloataa if fpaa else jnp.floataa lowercase_ : int = jnp.array(load_hf_numpy(self.get_file_format(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) , dtype=__SCREAMING_SNAKE_CASE ) return image def _snake_case ( self , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE="CompVis/stable-diffusion-v1-4" ): """simple docstring""" lowercase_ : Union[str, Any] = jnp.bfloataa if fpaa else jnp.floataa lowercase_ : Union[str, Any] = '''bf16''' if fpaa else None lowercase_ , lowercase_ : Dict = FlaxUNetaDConditionModel.from_pretrained( __SCREAMING_SNAKE_CASE , subfolder='''unet''' , dtype=__SCREAMING_SNAKE_CASE , revision=__SCREAMING_SNAKE_CASE ) return model, params def _snake_case ( self , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=(4, 77, 7_68) , __SCREAMING_SNAKE_CASE=False ): """simple docstring""" lowercase_ : Optional[Any] = jnp.bfloataa if fpaa else jnp.floataa lowercase_ : List[str] = jnp.array(load_hf_numpy(self.get_file_format(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) , dtype=__SCREAMING_SNAKE_CASE ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2_323, -0.1_304, 0.0_813, -0.3_093, -0.0_919, -0.1_571, -0.1_125, -0.5_806]], [17, 0.55, [-0.0_831, -0.2_443, 0.0_901, -0.0_919, 0.3_396, 0.0_103, -0.3_743, 0.0_701]], [8, 0.89, [-0.4_863, 0.0_859, 0.0_875, -0.1_658, 0.9_199, -0.0_114, 0.4_839, 0.4_639]], [3, 10_00, [-0.5_649, 0.2_402, -0.5_518, 0.1_248, 1.1_328, -0.2_443, -0.0_325, -1.0_078]], # fmt: on ] ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ , lowercase_ : Tuple = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=__SCREAMING_SNAKE_CASE ) lowercase_ : Any = self.get_latents(__SCREAMING_SNAKE_CASE , fpaa=__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = self.get_encoder_hidden_states(__SCREAMING_SNAKE_CASE , fpaa=__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = model.apply( {'''params''': params} , __SCREAMING_SNAKE_CASE , jnp.array(__SCREAMING_SNAKE_CASE , dtype=jnp.intaa ) , encoder_hidden_states=__SCREAMING_SNAKE_CASE , ).sample assert sample.shape == latents.shape lowercase_ : Dict = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) lowercase_ : Tuple = jnp.array(__SCREAMING_SNAKE_CASE , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1_514, 0.0_807, 0.1_624, 0.1_016, -0.1_896, 0.0_263, 0.0_677, 0.2_310]], [17, 0.55, [0.1_164, -0.0_216, 0.0_170, 0.1_589, -0.3_120, 0.1_005, -0.0_581, -0.1_458]], [8, 0.89, [-0.1_758, -0.0_169, 0.1_004, -0.1_411, 0.1_312, 0.1_103, -0.1_996, 0.2_139]], [3, 10_00, [0.1_214, 0.0_352, -0.0_731, -0.1_562, -0.0_994, -0.0_906, -0.2_340, -0.0_539]], # fmt: on ] ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ , lowercase_ : Union[str, Any] = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=__SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = self.get_latents(__SCREAMING_SNAKE_CASE , shape=(4, 4, 96, 96) , fpaa=__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = self.get_encoder_hidden_states(__SCREAMING_SNAKE_CASE , shape=(4, 77, 10_24) , fpaa=__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = model.apply( {'''params''': params} , __SCREAMING_SNAKE_CASE , jnp.array(__SCREAMING_SNAKE_CASE , dtype=jnp.intaa ) , encoder_hidden_states=__SCREAMING_SNAKE_CASE , ).sample assert sample.shape == latents.shape lowercase_ : Optional[int] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) lowercase_ : List[Any] = jnp.array(__SCREAMING_SNAKE_CASE , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-2 )
93
"""simple docstring""" def _A ( UpperCamelCase_ : Any) -> List[str]: '''simple docstring''' __lowercase ,__lowercase = [], [] while len(UpperCamelCase_) > 1: __lowercase ,__lowercase = min(UpperCamelCase_), max(UpperCamelCase_) start.append(UpperCamelCase_) end.append(UpperCamelCase_) collection.remove(UpperCamelCase_) collection.remove(UpperCamelCase_) end.reverse() return start + collection + end if __name__ == "__main__": _a = input('Enter numbers separated by a comma:\n').strip() _a = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
17
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) snake_case : List[Any] = { '''configuration_vision_text_dual_encoder''': ['''VisionTextDualEncoderConfig'''], '''processing_vision_text_dual_encoder''': ['''VisionTextDualEncoderProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Dict = ['''VisionTextDualEncoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Tuple = ['''FlaxVisionTextDualEncoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Dict = ['''TFVisionTextDualEncoderModel'''] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys snake_case : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
94
"""simple docstring""" def _A ( UpperCamelCase_ : list[int]) -> float: '''simple docstring''' if not nums: # Makes sure that the list is not empty raise ValueError("List is empty") __lowercase = sum(UpperCamelCase_) / len(UpperCamelCase_) # Calculate the average return sum(abs(x - average) for x in nums) / len(UpperCamelCase_) if __name__ == "__main__": import doctest doctest.testmod()
17
0
import math def _A ( SCREAMING_SNAKE_CASE : list , SCREAMING_SNAKE_CASE : int = 0 , SCREAMING_SNAKE_CASE : int = 0 ): """simple docstring""" a__ : Union[str, Any] =end or len(SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): a__ : Dict =i a__ : Optional[int] =array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: a__ : Tuple =array[temp_index - 1] temp_index -= 1 a__ : Any =temp_index_value return array def _A ( SCREAMING_SNAKE_CASE : list , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): # Max Heap """simple docstring""" a__ : Optional[int] =index a__ : Any =2 * index + 1 # Left Node a__ : Tuple =2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: a__ : int =left_index if right_index < heap_size and array[largest] < array[right_index]: a__ : int =right_index if largest != index: a__ , a__ : str =array[largest], array[index] heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def _A ( SCREAMING_SNAKE_CASE : list ): """simple docstring""" a__ : Any =len(SCREAMING_SNAKE_CASE ) for i in range(n // 2 , -1 , -1 ): heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for i in range(n - 1 , 0 , -1 ): a__ , a__ : Optional[Any] =array[0], array[i] heapify(SCREAMING_SNAKE_CASE , 0 , SCREAMING_SNAKE_CASE ) return array def _A ( SCREAMING_SNAKE_CASE : list , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): """simple docstring""" if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def _A ( SCREAMING_SNAKE_CASE : list , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): """simple docstring""" a__ : str =low a__ : List[Any] =high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i a__ , a__ : Tuple =array[j], array[i] i += 1 def _A ( SCREAMING_SNAKE_CASE : list ): """simple docstring""" if len(SCREAMING_SNAKE_CASE ) == 0: return array a__ : str =2 * math.ceil(math.loga(len(SCREAMING_SNAKE_CASE ) ) ) a__ : str =16 return intro_sort(SCREAMING_SNAKE_CASE , 0 , len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def _A ( SCREAMING_SNAKE_CASE : list , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): """simple docstring""" while end - start > size_threshold: if max_depth == 0: return heap_sort(SCREAMING_SNAKE_CASE ) max_depth -= 1 a__ : Dict =median_of_a(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , start + ((end - start) // 2) + 1 , end - 1 ) a__ : Any =partition(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) intro_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) a__ : Tuple =p return insertion_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase : Optional[Any] = input("""Enter numbers separated by a comma : """).strip() UpperCAmelCase : Dict = [float(item) for item in user_input.split(""",""")] print(sort(unsorted))
95
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : int=1_0_0, UpperCAmelCase__ : Any=1_3, UpperCAmelCase__ : List[Any]=3_0, UpperCAmelCase__ : Dict=2, UpperCAmelCase__ : Any=3, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[str]=True, UpperCAmelCase__ : Optional[Any]=3_2, UpperCAmelCase__ : Any=5, UpperCAmelCase__ : Any=4, UpperCAmelCase__ : Any=3_7, UpperCAmelCase__ : Optional[int]="gelu", UpperCAmelCase__ : Dict=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Dict=1_0, UpperCAmelCase__ : Tuple=0.02, UpperCAmelCase__ : List[Any]=3, ): __lowercase = parent __lowercase = vocab_size __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase = (image_size // patch_size) ** 2 __lowercase = num_patches + 1 def _lowercase ( self : int ): __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size], self.type_sequence_label_size ) __lowercase = BeitConfig( vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=UpperCAmelCase__, initializer_range=self.initializer_range, ) return config, pixel_values, labels def _lowercase ( self : Any, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[str], UpperCAmelCase__ : List[str] ): __lowercase = FlaxBeitModel(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : List[Any] ): __lowercase = FlaxBeitForMaskedImageModeling(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size) ) def _lowercase ( self : Dict, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : Union[str, Any] ): __lowercase = self.type_sequence_label_size __lowercase = FlaxBeitForImageClassification(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowercase = 1 __lowercase = FlaxBeitForImageClassification(UpperCAmelCase__ ) __lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase = model(UpperCAmelCase__ ) def _lowercase ( self : List[str] ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) ,( __lowercase ) ,( __lowercase ) , ) = config_and_inputs __lowercase = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class _lowerCAmelCase ( lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def _lowercase ( self : List[Any] ): __lowercase = FlaxBeitModelTester(self ) __lowercase = ConfigTester(self, config_class=UpperCAmelCase__, has_text_modality=UpperCAmelCase__, hidden_size=3_7 ) def _lowercase ( self : Union[str, Any] ): self.config_tester.run_common_tests() def _lowercase ( self : Optional[int] ): __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(UpperCAmelCase__ ) __lowercase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["pixel_values"] self.assertListEqual(arg_names[:1], UpperCAmelCase__ ) def _lowercase ( self : Tuple ): __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowercase = self._prepare_for_class(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = model_class(UpperCAmelCase__ ) @jax.jit def model_jitted(UpperCAmelCase__ : str, **UpperCAmelCase__ : Dict ): return model(pixel_values=UpperCAmelCase__, **UpperCAmelCase__ ) with self.subTest("JIT Enabled" ): __lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ), len(UpperCAmelCase__ ) ) for jitted_output, output in zip(UpperCAmelCase__, UpperCAmelCase__ ): self.assertEqual(jitted_output.shape, output.shape ) def _lowercase ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def _lowercase ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ ) def _lowercase ( self : Tuple ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ ) @slow def _lowercase ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: __lowercase = model_class_name.from_pretrained("microsoft/beit-base-patch16-224" ) __lowercase = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(UpperCAmelCase__ ) def _A ( ) -> str: '''simple docstring''' __lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_vision @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : Optional[int] ): return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def _lowercase ( self : Any ): __lowercase = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ).pixel_values # prepare bool_masked_pos __lowercase = np.ones((1, 1_9_6), dtype=UpperCAmelCase__ ) # forward pass __lowercase = model(pixel_values=UpperCAmelCase__, bool_masked_pos=UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 1_9_6, 8_1_9_2) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3], UpperCAmelCase__, atol=1E-2 ) ) @slow def _lowercase ( self : Any ): __lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ) # forward pass __lowercase = model(**UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 1_0_0_0) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array([-1.2_385, -1.0_987, -1.0_108] ) self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) ) __lowercase = 2_8_1 self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ ) @slow def _lowercase ( self : List[str] ): __lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ) # forward pass __lowercase = model(**UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 2_1_8_4_1) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array([1.6_881, -0.2_787, 0.5_901] ) self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) ) __lowercase = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ )
17
0
"""simple docstring""" from math import isqrt def _snake_case ( lowercase__ ): return all(number % divisor != 0 for divisor in range(2 , isqrt(lowercase__ ) + 1 ) ) def _snake_case ( lowercase__ = 10**6 ): _lowerCamelCase : str = 0 _lowerCamelCase : int = 1 _lowerCamelCase : Union[str, Any] = 7 while prime_candidate < max_prime: primes_count += is_prime(lowercase__ ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F"{solution() = }")
96
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class _lowerCAmelCase ( unittest.TestCase ,lowercase ): """simple docstring""" def _lowercase ( self : List[Any] ): __lowercase = load_tool("text-classification" ) self.tool.setup() __lowercase = load_tool("text-classification", remote=UpperCAmelCase__ ) def _lowercase ( self : str ): __lowercase = self.tool("That's quite cool", ["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" ) def _lowercase ( self : str ): __lowercase = self.remote_tool("That's quite cool", ["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" ) def _lowercase ( self : List[str] ): __lowercase = self.tool(text="That's quite cool", labels=["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" ) def _lowercase ( self : Tuple ): __lowercase = self.remote_tool(text="That's quite cool", labels=["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" )
17
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class lowercase ( A__ ): """simple docstring""" _a = 'microsoft/speecht5_tts' _a = ( 'This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ' 'text to read (in English) and returns a waveform object containing the sound.' ) _a = 'text_reader' _a = SpeechTaProcessor _a = SpeechTaForTextToSpeech _a = SpeechTaHifiGan _a = ['text'] _a = ['audio'] def lowerCAmelCase__ ( self ): '''simple docstring''' if self.post_processor is None: UpperCamelCase__ :int = '''microsoft/speecht5_hifigan''' super().setup() def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_=None ): '''simple docstring''' UpperCamelCase__ :str = self.pre_processor(text=UpperCamelCase_ , return_tensors='''pt''' , truncation=UpperCamelCase_ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('''Datasets needs to be installed if not passing speaker embeddings.''' ) UpperCamelCase__ :Union[str, Any] = load_dataset('''Matthijs/cmu-arctic-xvectors''' , split='''validation''' ) UpperCamelCase__ :int = torch.tensor(embeddings_dataset[7305]['''xvector'''] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' with torch.no_grad(): return self.post_processor(UpperCamelCase_ ).cpu().detach()
97
"""simple docstring""" from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker _a = 'CompVis/stable-diffusion-v1-1' _a = 'CompVis/stable-diffusion-v1-2' _a = 'CompVis/stable-diffusion-v1-3' _a = 'CompVis/stable-diffusion-v1-4' class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : Dict, UpperCAmelCase__ : AutoencoderKL, UpperCAmelCase__ : CLIPTextModel, UpperCAmelCase__ : CLIPTokenizer, UpperCAmelCase__ : UNetaDConditionModel, UpperCAmelCase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], UpperCAmelCase__ : StableDiffusionSafetyChecker, UpperCAmelCase__ : CLIPImageProcessor, UpperCAmelCase__ : bool = True, ): super()._init_() __lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ ) __lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ ) __lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ ) __lowercase = StableDiffusionPipeline( vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, tokenizer=UpperCAmelCase__, unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, safety_checker=UpperCAmelCase__, feature_extractor=UpperCAmelCase__, requires_safety_checker=UpperCAmelCase__, ) self.register_modules(pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea ) @property def _lowercase ( self : List[str] ): return {k: getattr(self, UpperCAmelCase__ ) for k in self.config.keys() if not k.startswith("_" )} def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase__ ) def _lowercase ( self : List[str] ): self.enable_attention_slicing(UpperCAmelCase__ ) @torch.no_grad() def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Tuple, ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : Tuple, UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : str, ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : str, UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Any, ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : Optional[int], ): return self.pipea( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) @torch.no_grad() def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, List[str]], UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_1_2, UpperCAmelCase__ : int = 5_0, UpperCAmelCase__ : float = 7.5, UpperCAmelCase__ : Optional[Union[str, List[str]]] = None, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[torch.FloatTensor] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCAmelCase__ : int = 1, **UpperCAmelCase__ : str, ): __lowercase = "cuda" if torch.cuda.is_available() else "cpu" self.to(UpperCAmelCase__ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" ) # Get first result from Stable Diffusion Checkpoint v1.1 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get first result from Stable Diffusion Checkpoint v1.2 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get first result from Stable Diffusion Checkpoint v1.3 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get first result from Stable Diffusion Checkpoint v1.4 __lowercase = self.textaimg_sda_a( prompt=UpperCAmelCase__, height=UpperCAmelCase__, width=UpperCAmelCase__, num_inference_steps=UpperCAmelCase__, guidance_scale=UpperCAmelCase__, negative_prompt=UpperCAmelCase__, num_images_per_prompt=UpperCAmelCase__, eta=UpperCAmelCase__, generator=UpperCAmelCase__, latents=UpperCAmelCase__, output_type=UpperCAmelCase__, return_dict=UpperCAmelCase__, callback=UpperCAmelCase__, callback_steps=UpperCAmelCase__, **UpperCAmelCase__, ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
17
0
"""simple docstring""" def a_ ( ): return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )] lowerCAmelCase__ : Any = generate_large_matrix() lowerCAmelCase__ : Any = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def a_ ( lowerCamelCase ): assert all(row == sorted(lowerCamelCase , reverse=lowerCamelCase ) for row in grid ) assert all(list(lowerCamelCase ) == sorted(lowerCamelCase , reverse=lowerCamelCase ) for col in zip(*lowerCamelCase ) ) def a_ ( lowerCamelCase ): UpperCAmelCase__ = 0 UpperCAmelCase__ = len(lowerCamelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: UpperCAmelCase__ = (left + right) // 2 UpperCAmelCase__ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: UpperCAmelCase__ = mid + 1 else: UpperCAmelCase__ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowerCamelCase ) def a_ ( lowerCamelCase ): UpperCAmelCase__ = 0 UpperCAmelCase__ = len(grid[0] ) for i in range(len(lowerCamelCase ) ): UpperCAmelCase__ = find_negative_index(grid[i][:bound] ) total += bound return (len(lowerCamelCase ) * len(grid[0] )) - total def a_ ( lowerCamelCase ): return len([number for row in grid for number in row if number < 0] ) def a_ ( lowerCamelCase ): UpperCAmelCase__ = 0 for row in grid: for i, number in enumerate(lowerCamelCase ): if number < 0: total += len(lowerCamelCase ) - i break return total def a_ ( ): from timeit import timeit print('Running benchmarks' ) UpperCAmelCase__ = ( 'from __main__ import count_negatives_binary_search, ' 'count_negatives_brute_force, count_negatives_brute_force_with_break, grid' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): UpperCAmelCase__ = timeit(f'''{func}(grid=grid)''' , setup=lowerCamelCase , number=5_0_0 ) print(f'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
98
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowerCAmelCase ( lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = "ssube/stable-diffusion-x4-upscaler-onnx" def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : List[str]=0 ): __lowercase = floats_tensor((1, 3, 1_2_8, 1_2_8), rng=random.Random(UpperCAmelCase__ ) ) __lowercase = torch.manual_seed(UpperCAmelCase__ ) __lowercase = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def _lowercase ( self : Any ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def _lowercase ( self : Optional[Any] ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) __lowercase = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.6_898_892, 0.59_240_556, 0.52_499_527, 0.58_866_215, 0.52_258_235, 0.52_572_715, 0.62_414_473, 0.6_174_387, 0.6_214_964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _lowercase ( self : int ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.7_659_278, 0.76_437_664, 0.75_579_107, 0.7_691_116, 0.77_666_986, 0.7_727_672, 0.7_758_664, 0.7_812_226, 0.76_942_515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _lowercase ( self : str ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) __lowercase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _lowercase ( self : Any ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) __lowercase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.77_424_496, 0.773_601, 0.7_645_288, 0.7_769_598, 0.7_772_739, 0.7_738_688, 0.78_187_233, 0.77_879_584, 0.767_043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @property def _lowercase ( self : Tuple ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowercase ( self : Dict ): __lowercase = ort.SessionOptions() __lowercase = False return options def _lowercase ( self : Dict ): __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) __lowercase = init_image.resize((1_2_8, 1_2_8) ) # using the PNDM scheduler by default __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx", provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = "A fantasy landscape, trending on artstation" __lowercase = torch.manual_seed(0 ) __lowercase = pipe( prompt=UpperCAmelCase__, image=UpperCAmelCase__, guidance_scale=7.5, num_inference_steps=1_0, generator=UpperCAmelCase__, output_type="np", ) __lowercase = output.images __lowercase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array([0.4_883, 0.4_947, 0.4_980, 0.4_975, 0.4_982, 0.4_980, 0.5_000, 0.5_006, 0.4_972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def _lowercase ( self : str ): __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) __lowercase = init_image.resize((1_2_8, 1_2_8) ) __lowercase = LMSDiscreteScheduler.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx", subfolder="scheduler" ) __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx", scheduler=UpperCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = "A fantasy landscape, trending on artstation" __lowercase = torch.manual_seed(0 ) __lowercase = pipe( prompt=UpperCAmelCase__, image=UpperCAmelCase__, guidance_scale=7.5, num_inference_steps=2_0, generator=UpperCAmelCase__, output_type="np", ) __lowercase = output.images __lowercase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.50_173_753, 0.50_223_356, 0.502_039, 0.50_233_036, 0.5_023_725, 0.5_022_601, 0.5_018_758, 0.50_234_085, 0.50_241_566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
17
0
def A_ ( A__ ) -> int: a__ : list[list[int]] = [[0 for _ in range(A__ )] for _ in range(m + 1 )] for i in range(m + 1 ): a__ : Any = 1 for n in range(m + 1 ): for k in range(1 , A__ ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: lowercase : Any = int(input("""Enter a number: """).strip()) print(partition(n)) except ValueError: print("""Please enter a number.""") else: try: lowercase : Tuple = int(sys.argv[1]) print(partition(n)) except ValueError: print("""Please pass a number.""")
99
"""simple docstring""" import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal _a = datasets.utils.logging.get_logger(__name__) _a = ['names', 'prefix'] _a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] _a = ['encoding_errors', 'on_bad_lines'] _a = ['date_format'] @dataclass class _lowerCAmelCase ( datasets.BuilderConfig ): """simple docstring""" __UpperCAmelCase : str = "," __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[Union[int, List[int], str]] = "infer" __UpperCAmelCase : Optional[List[str]] = None __UpperCAmelCase : Optional[List[str]] = None __UpperCAmelCase : Optional[Union[int, str, List[int], List[str]]] = None __UpperCAmelCase : Optional[Union[List[int], List[str]]] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : bool = True __UpperCAmelCase : Optional[Literal["c", "python", "pyarrow"]] = None __UpperCAmelCase : Dict[Union[int, str], Callable[[Any], Any]] = None __UpperCAmelCase : Optional[list] = None __UpperCAmelCase : Optional[list] = None __UpperCAmelCase : bool = False __UpperCAmelCase : Optional[Union[int, List[int]]] = None __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Optional[Union[str, List[str]]] = None __UpperCAmelCase : bool = True __UpperCAmelCase : bool = True __UpperCAmelCase : bool = False __UpperCAmelCase : bool = True __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : str = "." __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : str = '"' __UpperCAmelCase : int = 0 __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : bool = True __UpperCAmelCase : bool = True __UpperCAmelCase : int = 0 __UpperCAmelCase : bool = True __UpperCAmelCase : bool = False __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : int = 1_0_0_0_0 __UpperCAmelCase : Optional[datasets.Features] = None __UpperCAmelCase : Optional[str] = "strict" __UpperCAmelCase : Literal["error", "warn", "skip"] = "error" __UpperCAmelCase : Optional[str] = None def _lowercase ( self : Tuple ): if self.delimiter is not None: __lowercase = self.delimiter if self.column_names is not None: __lowercase = self.column_names @property def _lowercase ( self : Union[str, Any] ): __lowercase = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig(), UpperCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class _lowerCAmelCase ( datasets.ArrowBasedBuilder ): """simple docstring""" __UpperCAmelCase : Tuple = CsvConfig def _lowercase ( self : List[str] ): return datasets.DatasetInfo(features=self.config.features ) def _lowercase ( self : List[Any], UpperCAmelCase__ : Dict ): if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) __lowercase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(UpperCAmelCase__, (str, list, tuple) ): __lowercase = data_files if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = [files] __lowercase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files} )] __lowercase = [] for split_name, files in data_files.items(): if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = [files] __lowercase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=UpperCAmelCase__, gen_kwargs={"files": files} ) ) return splits def _lowercase ( self : Dict, UpperCAmelCase__ : pa.Table ): if self.config.features is not None: __lowercase = self.config.features.arrow_schema if all(not require_storage_cast(UpperCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast __lowercase = pa.Table.from_arrays([pa_table[field.name] for field in schema], schema=UpperCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example __lowercase = table_cast(UpperCAmelCase__, UpperCAmelCase__ ) return pa_table def _lowercase ( self : Optional[Any], UpperCAmelCase__ : List[str] ): __lowercase = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str __lowercase = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(UpperCAmelCase__ ) else object for name, dtype, feature in zip(schema.names, schema.types, self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase__ ) ): __lowercase = pd.read_csv(UpperCAmelCase__, iterator=UpperCAmelCase__, dtype=UpperCAmelCase__, **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(UpperCAmelCase__ ): __lowercase = pa.Table.from_pandas(UpperCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase__ ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(UpperCAmelCase__ )}: {e}""" ) raise
17
0
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_=None ): if attention_mask is None: __SCREAMING_SNAKE_CASE = tf.cast(tf.math.not_equal(UpperCamelCase_ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class SCREAMING_SNAKE_CASE_ : """simple docstring""" __lowercase : Union[str, Any] = OPTConfig __lowercase : Union[str, Any] = {} __lowercase : List[Any] = '''gelu''' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=1_3 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=9_9 , lowerCAmelCase__=1_6 , lowerCAmelCase__=2 , lowerCAmelCase__=4 , lowerCAmelCase__=4 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=2_0 , lowerCAmelCase__=2 , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=1_6 , lowerCAmelCase__=1_6 , ): __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = eos_token_id __SCREAMING_SNAKE_CASE = pad_token_id __SCREAMING_SNAKE_CASE = bos_token_id __SCREAMING_SNAKE_CASE = embed_dim __SCREAMING_SNAKE_CASE = word_embed_proj_dim __SCREAMING_SNAKE_CASE = False def snake_case_ ( self): __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) __SCREAMING_SNAKE_CASE = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size) , 1) __SCREAMING_SNAKE_CASE = tf.concat([input_ids, eos_tensor] , axis=1) __SCREAMING_SNAKE_CASE = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowerCAmelCase__ , **self.config_updates , ) __SCREAMING_SNAKE_CASE = prepare_opt_inputs_dict(lowerCAmelCase__ , lowerCAmelCase__) return config, inputs_dict def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = TFOPTModel(config=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = inputs_dict["""input_ids"""] __SCREAMING_SNAKE_CASE = input_ids[:1, :] __SCREAMING_SNAKE_CASE = inputs_dict["""attention_mask"""][:1, :] __SCREAMING_SNAKE_CASE = 1 # first forward pass __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , use_cache=lowerCAmelCase__) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , config.vocab_size) __SCREAMING_SNAKE_CASE = tf.cast(ids_tensor((self.batch_size, 3) , 2) , tf.inta) # append to next input_ids and __SCREAMING_SNAKE_CASE = tf.concat([input_ids, next_tokens] , axis=-1) __SCREAMING_SNAKE_CASE = tf.concat([attention_mask, next_attn_mask] , axis=-1) __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__)[0] __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__)[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1]) # select random slice __SCREAMING_SNAKE_CASE = int(ids_tensor((1,) , output_from_past.shape[-1])) __SCREAMING_SNAKE_CASE = output_from_no_past[:, -3:, random_slice_idx] __SCREAMING_SNAKE_CASE = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCAmelCase__ , lowerCAmelCase__ , rtol=1E-3) @require_tf class SCREAMING_SNAKE_CASE_ ( __a , __a , unittest.TestCase ): """simple docstring""" __lowercase : List[str] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () __lowercase : Any = (TFOPTForCausalLM,) if is_tf_available() else () __lowercase : int = ( {'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {} ) __lowercase : List[str] = False __lowercase : Union[str, Any] = False __lowercase : Tuple = False __lowercase : Union[str, Any] = 10 def snake_case_ ( self): __SCREAMING_SNAKE_CASE = TFOPTModelTester(self) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=lowerCAmelCase__) def snake_case_ ( self): self.config_tester.run_common_tests() def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowerCAmelCase__ , lowerCAmelCase__): if hasattr(lowerCAmelCase__ , """weight"""): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowerCAmelCase__ , """weight"""): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 1_0, config.vocab_size + 1_0]: # build the embeddings __SCREAMING_SNAKE_CASE = model_class(config=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = _get_word_embedding_weight(lowerCAmelCase__ , model.get_input_embeddings()) __SCREAMING_SNAKE_CASE = _get_word_embedding_weight(lowerCAmelCase__ , model.get_output_embeddings()) # reshape the embeddings model.resize_token_embeddings(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = _get_word_embedding_weight(lowerCAmelCase__ , model.get_input_embeddings()) __SCREAMING_SNAKE_CASE = _get_word_embedding_weight(lowerCAmelCase__ , model.get_output_embeddings()) # check that the resized embeddings size matches the desired size. __SCREAMING_SNAKE_CASE = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowerCAmelCase__) # check that weights remain the same after resizing __SCREAMING_SNAKE_CASE = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value()): if tf.math.reduce_sum(tf.math.abs(pa - pa)) > 0: __SCREAMING_SNAKE_CASE = False self.assertTrue(lowerCAmelCase__) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value()): if tf.math.reduce_sum(tf.math.abs(pa - pa)) > 0: __SCREAMING_SNAKE_CASE = False self.assertTrue(lowerCAmelCase__) def _lowerCAmelCase ( UpperCamelCase_ ): return tf.constant(UpperCamelCase_ , dtype=tf.intaa ) @require_tf class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" __lowercase : Union[str, Any] = 99 def snake_case_ ( self): __SCREAMING_SNAKE_CASE = tf.ones((4, 1) , dtype=tf.intaa) * 2 __SCREAMING_SNAKE_CASE = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3) + 3, eos_column_vector] , axis=1) __SCREAMING_SNAKE_CASE = input_ids.shape[0] __SCREAMING_SNAKE_CASE = OPTConfig( vocab_size=self.vocab_size , hidden_size=2_4 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" @slow def snake_case_ ( self): __SCREAMING_SNAKE_CASE = TFOPTModel.from_pretrained("""facebook/opt-350m""") __SCREAMING_SNAKE_CASE = _long_tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]]) __SCREAMING_SNAKE_CASE = tf.not_equal(lowerCAmelCase__ , model.config.pad_token_id) with tf.GradientTape(): __SCREAMING_SNAKE_CASE = model(input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__).last_hidden_state __SCREAMING_SNAKE_CASE = (1, 1_1, 5_1_2) self.assertEqual(output.shape , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tf.constant( [[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]]) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=4E-3)) __SCREAMING_SNAKE_CASE = tf.function(lowerCAmelCase__ , jit_compile=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = xla_generate(lowerCAmelCase__ , lowerCAmelCase__)[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=4E-2)) @require_tf @slow class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self): super().setUp() __SCREAMING_SNAKE_CASE = """facebook/opt-350m""" def snake_case_ ( self): __SCREAMING_SNAKE_CASE = TFOPTForCausalLM.from_pretrained(self.path_model) __SCREAMING_SNAKE_CASE = GPTaTokenizer.from_pretrained(self.path_model) __SCREAMING_SNAKE_CASE = [ """Today is a beautiful day and I want to""", """In the city of""", """Paris is the capital of France and""", """Computers and mobile phones have taken""", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False __SCREAMING_SNAKE_CASE = tokenizer(lowerCAmelCase__ , return_tensors="""tf""" , padding=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask)[0] , axis=-1) __SCREAMING_SNAKE_CASE = tf.constant( [ [1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70], [-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22], [0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03], [6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77], ]) self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-4)) __SCREAMING_SNAKE_CASE = tf.function(lowerCAmelCase__ , jit_compile=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask)[0] , axis=-1) self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-4)) @require_tf @slow class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" @property def snake_case_ ( self): return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def snake_case_ ( self): __SCREAMING_SNAKE_CASE = """facebook/opt-125m""" __SCREAMING_SNAKE_CASE = [ """Today is a beautiful day and I want to""", """In the city of New York, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = GPTaTokenizer.from_pretrained(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = TFOPTForCausalLM.from_pretrained(lowerCAmelCase__) for prompt in self.prompts: __SCREAMING_SNAKE_CASE = tokenizer(lowerCAmelCase__ , return_tensors="""tf""").input_ids __SCREAMING_SNAKE_CASE = model.generate(lowerCAmelCase__ , max_length=1_0) __SCREAMING_SNAKE_CASE = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__) predicted_outputs += generated_string self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = """facebook/opt-350m""" __SCREAMING_SNAKE_CASE = GPTaTokenizer.from_pretrained(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = TFOPTForCausalLM.from_pretrained(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = """left""" # use different length sentences to test batching __SCREAMING_SNAKE_CASE = [ """Hello, my dog is a little""", """Today, I""", ] __SCREAMING_SNAKE_CASE = tokenizer(lowerCAmelCase__ , return_tensors="""tf""" , padding=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = inputs["""input_ids"""] __SCREAMING_SNAKE_CASE = model.generate(input_ids=lowerCAmelCase__ , attention_mask=inputs["""attention_mask"""]) __SCREAMING_SNAKE_CASE = tokenizer(sentences[0] , return_tensors="""tf""").input_ids __SCREAMING_SNAKE_CASE = model.generate(input_ids=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["""attention_mask"""][-1] , tf.intaa)) __SCREAMING_SNAKE_CASE = tokenizer(sentences[1] , return_tensors="""tf""").input_ids __SCREAMING_SNAKE_CASE = model.generate(input_ids=lowerCAmelCase__ , max_length=model.config.max_length - num_paddings) __SCREAMING_SNAKE_CASE = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = [ """Hello, my dog is a little bit of a dork.\nI'm a little bit""", """Today, I was in the middle of a conversation with a friend about the""", ] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , [non_padded_sentence, padded_sentence]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = """facebook/opt-350m""" __SCREAMING_SNAKE_CASE = [ """Today is a beautiful day and I want to""", """In the city of San Francisco, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = GPTaTokenizer.from_pretrained(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = TFOPTForCausalLM.from_pretrained(lowerCAmelCase__) for prompt in self.prompts: __SCREAMING_SNAKE_CASE = tokenizer(lowerCAmelCase__ , return_tensors="""tf""").input_ids __SCREAMING_SNAKE_CASE = model.generate(lowerCAmelCase__ , max_length=1_0) __SCREAMING_SNAKE_CASE = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__) predicted_outputs += generated_string self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__)
100
"""simple docstring""" from scipy.stats import spearmanr import datasets _a = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n' _a = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n' _a = r'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def _lowercase ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ), reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"], ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int]=False ): __lowercase = spearmanr(UpperCAmelCase__, UpperCAmelCase__ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
17
0