code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
from __future__ import annotations import collections import pprint from pathlib import Path def UpperCamelCase_( lowerCamelCase_ ) -> str: return "".join(sorted(lowerCamelCase_ ) ) def UpperCamelCase_( lowerCamelCase_ ) -> list[str]: return word_by_signature[signature(lowerCamelCase_ )] SCREAMING_SNAKE_CASE : str = Path(__file__).parent.joinpath("words.txt").read_text(encoding="utf-8") SCREAMING_SNAKE_CASE : List[str] = sorted({word.strip().lower() for word in data.splitlines()}) SCREAMING_SNAKE_CASE : int = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": SCREAMING_SNAKE_CASE : List[Any] = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open("anagrams.txt", "w") as file: file.write("all_anagrams = \n ") file.write(pprint.pformat(all_anagrams))
21
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __A =1_6 __A =3_2 def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ = 1_6 ): lowerCamelCase_ = AutoTokenizer.from_pretrained("bert-base-cased" ) lowerCamelCase_ = load_dataset("glue" , "mrpc" ) def tokenize_function(lowerCamelCase__ ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase_ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCamelCase_ = datasets.map( lowerCamelCase__ , batched=lowerCamelCase__ , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase_ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowerCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCamelCase_ = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCamelCase_ = 1_6 elif accelerator.mixed_precision != "no": lowerCamelCase_ = 8 else: lowerCamelCase_ = None return tokenizer.pad( lowerCamelCase__ , padding="longest" , max_length=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_tensors="pt" , ) # Instantiate dataloaders. lowerCamelCase_ = DataLoader( tokenized_datasets["train"] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ ) lowerCamelCase_ = DataLoader( tokenized_datasets["validation"] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders __A =mocked_dataloaders # noqa: F811 def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS" , lowerCamelCase__ ) == "1": lowerCamelCase_ = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: lowerCamelCase_ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: lowerCamelCase_ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase_ = config["lr"] lowerCamelCase_ = int(config["num_epochs"] ) lowerCamelCase_ = int(config["seed"] ) lowerCamelCase_ = int(config["batch_size"] ) set_seed(lowerCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ = get_dataloaders(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation lowerCamelCase_ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowerCamelCase_ = batch_size // MAX_GPU_BATCH_SIZE lowerCamelCase_ = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase_ = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=lowerCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCamelCase_ = model.to(accelerator.device ) # Instantiate optimizer lowerCamelCase_ = AdamW(params=model.parameters() , lr=lowerCamelCase__ ) # Instantiate scheduler lowerCamelCase_ = get_linear_schedule_with_warmup( optimizer=lowerCamelCase__ , num_warmup_steps=1_0_0 , num_training_steps=(len(lowerCamelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: lowerCamelCase_ = os.path.split(lowerCamelCase__ )[-1].split("." )[0] accelerator.init_trackers(lowerCamelCase__ , lowerCamelCase__ ) # Now we train the model for epoch in range(lowerCamelCase__ ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: lowerCamelCase_ = 0 for step, batch in enumerate(lowerCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCamelCase_ = model(**lowerCamelCase__ ) lowerCamelCase_ = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() lowerCamelCase_ = loss / gradient_accumulation_steps accelerator.backward(lowerCamelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase_ = model(**lowerCamelCase__ ) lowerCamelCase_ = outputs.logits.argmax(dim=-1 ) lowerCamelCase_ , lowerCamelCase_ = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=lowerCamelCase__ , references=lowerCamelCase__ , ) lowerCamelCase_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , lowerCamelCase__ ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { "accuracy": eval_metric["accuracy"], "f1": eval_metric["f1"], "train_loss": total_loss.item() / len(lowerCamelCase__ ), "epoch": epoch, } , step=lowerCamelCase__ , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def lowerCamelCase_ ( ): lowerCamelCase_ = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=lowerCamelCase__ , default=lowerCamelCase__ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=lowerCamelCase__ , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) lowerCamelCase_ = parser.parse_args() lowerCamelCase_ = {"lr": 2e-5, "num_epochs": 3, "seed": 4_2, "batch_size": 1_6} training_function(lowerCamelCase__ , lowerCamelCase__ ) if __name__ == "__main__": main()
19
0
'''simple docstring''' from __future__ import annotations from statistics import mean def UpperCAmelCase_ ( __lowercase : list[int] , __lowercase : list[int] , __lowercase : int ) -> list[int]: '''simple docstring''' _UpperCAmelCase = [0] * no_of_processes _UpperCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(__lowercase ): _UpperCAmelCase = burst_time[i] _UpperCAmelCase = [] _UpperCAmelCase = 0 _UpperCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: _UpperCAmelCase = [] _UpperCAmelCase = -1 for i in range(__lowercase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(__lowercase ) if len(__lowercase ) > 0: _UpperCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: _UpperCAmelCase = i total_time += burst_time[target_process] completed += 1 _UpperCAmelCase = 0 _UpperCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def UpperCAmelCase_ ( __lowercase : list[int] , __lowercase : int , __lowercase : list[int] ) -> list[int]: '''simple docstring''' _UpperCAmelCase = [0] * no_of_processes for i in range(__lowercase ): _UpperCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print('''[TEST CASE 01]''') __SCREAMING_SNAKE_CASE :Dict = 4 __SCREAMING_SNAKE_CASE :int = [2, 5, 3, 7] __SCREAMING_SNAKE_CASE :List[Any] = [0, 0, 0, 0] __SCREAMING_SNAKE_CASE :Tuple = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __SCREAMING_SNAKE_CASE :Any = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print('''PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time''') for i, process_id in enumerate(list(range(1, 5))): print( F"{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t" F"{waiting_time[i]}\t\t\t\t{turn_around_time[i]}" ) print(F"\nAverage waiting time = {mean(waiting_time):.5f}") print(F"Average turnaround time = {mean(turn_around_time):.5f}")
22
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: __A =None __A =logging.get_logger(__name__) __A ={'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __A ={ '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } __A ={ '''facebook/mbart-large-en-ro''': 1_0_2_4, '''facebook/mbart-large-cc25''': 1_0_2_4, } # fmt: off __A =['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = ['input_ids', 'attention_mask'] lowerCAmelCase__ = MBartTokenizer lowerCAmelCase__ = [] lowerCAmelCase__ = [] def __init__( self , lowercase=None , lowercase=None , lowercase="<s>" , lowercase="</s>" , lowercase="</s>" , lowercase="<s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase="<mask>" , lowercase=None , lowercase=None , lowercase=None , **lowercase , ) -> Dict: # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else mask_token super().__init__( vocab_file=lowercase , tokenizer_file=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , cls_token=lowercase , unk_token=lowercase , pad_token=lowercase , mask_token=lowercase , src_lang=lowercase , tgt_lang=lowercase , additional_special_tokens=lowercase , **lowercase , ) lowerCamelCase_ = vocab_file lowerCamelCase_ = False if not self.vocab_file else True lowerCamelCase_ = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens} ) lowerCamelCase_ = { lang_code: self.convert_tokens_to_ids(lowercase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCamelCase_ = src_lang if src_lang is not None else "en_XX" lowerCamelCase_ = self.convert_tokens_to_ids(self._src_lang ) lowerCamelCase_ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def SCREAMING_SNAKE_CASE_( self ) -> str: return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE_( self , lowercase ) -> None: lowerCamelCase_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> List[int]: lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , **lowercase ) -> List[Any]: if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) lowerCamelCase_ = src_lang lowerCamelCase_ = self(lowercase , add_special_tokens=lowercase , return_tensors=lowercase , **lowercase ) lowerCamelCase_ = self.convert_tokens_to_ids(lowercase ) lowerCamelCase_ = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = "en_XX" , lowercase = None , lowercase = "ro_RO" , **lowercase , ) -> BatchEncoding: lowerCamelCase_ = src_lang lowerCamelCase_ = tgt_lang return super().prepare_seqaseq_batch(lowercase , lowercase , **lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Dict: return self.set_src_lang_special_tokens(self.src_lang ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> None: lowerCamelCase_ = self.convert_tokens_to_ids(lowercase ) lowerCamelCase_ = [] lowerCamelCase_ = [self.eos_token_id, self.cur_lang_code] lowerCamelCase_ = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase_ = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase_ = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> None: lowerCamelCase_ = self.convert_tokens_to_ids(lowercase ) lowerCamelCase_ = [] lowerCamelCase_ = [self.eos_token_id, self.cur_lang_code] lowerCamelCase_ = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase_ = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase_ = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory.' ) return lowerCamelCase_ = os.path.join( lowercase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ): copyfile(self.vocab_file , lowercase ) return (out_vocab_file,)
19
0
'''simple docstring''' import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase__: str = logging.get_logger(__name__) UpperCamelCase__: str = {"vocab_file": "vocab.json"} UpperCamelCase__: Optional[int] = { "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } UpperCamelCase__: List[str] = {"mgp-str": 27} class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[str] , __snake_case : List[Any] , __snake_case : Optional[Any]="[GO]" , __snake_case : List[Any]="[GO]" , __snake_case : Union[str, Any]="[s]" , __snake_case : Optional[Any]="[GO]" , **__snake_case : List[Any] ) -> Union[str, Any]: super().__init__( unk_token=__snake_case , bos_token=__snake_case , eos_token=__snake_case , pad_token=__snake_case , **__snake_case , ) with open(__snake_case , encoding='''utf-8''' ) as vocab_handle: UpperCAmelCase : Union[str, Any] = json.load(__snake_case ) UpperCAmelCase : Optional[int] = {v: k for k, v in self.vocab.items()} @property def A ( self : Union[str, Any] ) -> List[str]: return len(self.vocab ) def A ( self : Dict ) -> List[Any]: return dict(self.vocab , **self.added_tokens_encoder ) def A ( self : int , __snake_case : Union[str, Any] ) -> Dict: UpperCAmelCase : int = [] for s in text: char_tokens.extend(__snake_case ) return char_tokens def A ( self : Optional[int] , __snake_case : List[str] ) -> List[Any]: return self.vocab.get(__snake_case , self.vocab.get(self.unk_token ) ) def A ( self : Optional[Any] , __snake_case : Optional[int] ) -> int: return self.decoder.get(__snake_case ) def A ( self : Union[str, Any] , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__snake_case ): logger.error('''Vocabulary path ({}) should be a directory'''.format(__snake_case ) ) return UpperCAmelCase : List[str] = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) with open(__snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=__snake_case , ensure_ascii=__snake_case ) + '''\n''' ) return (vocab_file,)
23
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss __A =pytest.mark.integration @require_faiss class _SCREAMING_SNAKE_CASE ( snake_case_ ): def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(lowercase ) for x in np.arange(30 ).tolist()]} ) return dset def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: import faiss lowerCamelCase_ = self._create_dummy_dataset() lowerCamelCase_ = dset.map( lambda lowercase , lowercase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=lowercase , keep_in_memory=lowercase ) lowerCamelCase_ = dset.add_faiss_index("vecs" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCamelCase_ , lowerCamelCase_ = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) dset.drop_index("vecs" ) def SCREAMING_SNAKE_CASE_( self ) -> Dict: import faiss lowerCamelCase_ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCamelCase_ , lowerCamelCase_ = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: import faiss lowerCamelCase_ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowercase ) as tmp_file: dset.save_faiss_index("vecs" , tmp_file.name ) dset.load_faiss_index("vecs2" , tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase_ , lowerCamelCase_ = dset.get_nearest_examples("vecs2" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: lowerCamelCase_ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" ) dset.drop_index("vecs" ) self.assertRaises(lowercase , partial(dset.get_nearest_examples , "vecs2" , np.ones(5 , dtype=np.floataa ) ) ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: from elasticsearch import Elasticsearch lowerCamelCase_ = self._create_dummy_dataset() with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: lowerCamelCase_ = {"acknowledged": True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 29}]}} lowerCamelCase_ = Elasticsearch() dset.add_elasticsearch_index("filename" , es_client=lowercase ) lowerCamelCase_ , lowerCamelCase_ = dset.get_nearest_examples("filename" , "my_name-train_29" ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) @require_faiss class _SCREAMING_SNAKE_CASE ( snake_case_ ): def SCREAMING_SNAKE_CASE_( self ) -> Tuple: import faiss lowerCamelCase_ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCamelCase_ = np.zeros(5 , dtype=np.floataa ) lowerCamelCase_ = 1 lowerCamelCase_ , lowerCamelCase_ = index.search(lowercase ) self.assertRaises(lowercase , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCamelCase_ = np.eye(5 , dtype=np.floataa )[::-1] lowerCamelCase_ , lowerCamelCase_ = index.search_batch(lowercase ) self.assertRaises(lowercase , index.search_batch , queries[0] ) lowerCamelCase_ = [scores[0] for scores in total_scores] lowerCamelCase_ = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Any: import faiss lowerCamelCase_ = FaissIndex(string_factory="Flat" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCamelCase_ = FaissIndex(string_factory="LSH" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(lowercase ): lowerCamelCase_ = FaissIndex(string_factory="Flat" , custom_index=faiss.IndexFlat(5 ) ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: import faiss lowerCamelCase_ = faiss.IndexFlat(5 ) lowerCamelCase_ = FaissIndex(custom_index=lowercase ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: import faiss lowerCamelCase_ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowercase ) as tmp_file: index.save(tmp_file.name ) lowerCamelCase_ = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase_ = np.zeros(5 , dtype=np.floataa ) lowerCamelCase_ = 1 lowerCamelCase_ , lowerCamelCase_ = index.search(lowercase ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def lowerCamelCase_ ( lowerCamelCase__ ): import faiss lowerCamelCase_ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCamelCase_ = "index.faiss" lowerCamelCase_ = F'mock://{index_name}' index.save(lowerCamelCase__ , storage_options=mockfs.storage_options ) lowerCamelCase_ = FaissIndex.load(lowerCamelCase__ , storage_options=mockfs.storage_options ) lowerCamelCase_ = np.zeros(5 , dtype=np.floataa ) lowerCamelCase_ = 1 lowerCamelCase_ , lowerCamelCase_ = index.search(lowerCamelCase__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _SCREAMING_SNAKE_CASE ( snake_case_ ): def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: from elasticsearch import Elasticsearch with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: lowerCamelCase_ = Elasticsearch() lowerCamelCase_ = {"acknowledged": True} lowerCamelCase_ = ElasticSearchIndex(es_client=lowercase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["foo", "bar", "foobar"] ) # single query lowerCamelCase_ = "foo" lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} lowerCamelCase_ , lowerCamelCase_ = index.search(lowercase ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCamelCase_ = "foo" lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} lowerCamelCase_ , lowerCamelCase_ = index.search(lowercase , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCamelCase_ = ["foo", "bar", "foobar"] lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} lowerCamelCase_ , lowerCamelCase_ = index.search_batch(lowercase ) lowerCamelCase_ = [scores[0] for scores in total_scores] lowerCamelCase_ = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase ) , 0 ) self.assertListEqual([1, 1, 1] , lowercase ) # batched queries with timeout lowerCamelCase_ = ["foo", "bar", "foobar"] lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} lowerCamelCase_ , lowerCamelCase_ = index.search_batch(lowercase , request_timeout=30 ) lowerCamelCase_ = [scores[0] for scores in total_scores] lowerCamelCase_ = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase ) , 0 ) self.assertListEqual([1, 1, 1] , lowercase )
19
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def lowerCamelCase__ ( snake_case_ : Tuple=None ) -> Optional[int]: __snake_case = argparse.ArgumentParser(add_help=snake_case_ , allow_abbrev=snake_case_ ) # The main config parser __snake_case = config_command_parser(snake_case_ ) # The subparser to add commands to __snake_case = config_parser.add_subparsers(title='''subcommands''' , dest='''subcommand''' ) # Then add other parsers with the parent parser default_command_parser(snake_case_ , parents=[parent_parser] ) update_command_parser(snake_case_ , parents=[parent_parser] ) return config_parser def lowerCamelCase__ ( ) -> Optional[int]: __snake_case = get_config_parser() __snake_case = config_parser.parse_args() if not hasattr(snake_case_ , '''func''' ): config_parser.print_help() exit(1 ) # Run args.func(snake_case_ ) if __name__ == "__main__": main()
24
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class _SCREAMING_SNAKE_CASE : def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=99 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.0_2 , lowercase=3 , lowercase=4 , lowercase=None , ) -> List[str]: lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_token_type_ids lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = num_labels lowerCamelCase_ = num_choices lowerCamelCase_ = scope lowerCamelCase_ = self.vocab_size - 1 def SCREAMING_SNAKE_CASE_( self ) -> Any: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_token_type_ids: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) lowerCamelCase_ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , *lowercase ) -> Dict: lowerCamelCase_ = OpenAIGPTModel(config=lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = model(lowercase , token_type_ids=lowercase , head_mask=lowercase ) lowerCamelCase_ = model(lowercase , token_type_ids=lowercase ) lowerCamelCase_ = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , *lowercase ) -> int: lowerCamelCase_ = OpenAIGPTLMHeadModel(lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = model(lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , *lowercase ) -> Dict: lowerCamelCase_ = OpenAIGPTDoubleHeadsModel(lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = model(lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , *lowercase ) -> int: lowerCamelCase_ = self.num_labels lowerCamelCase_ = OpenAIGPTForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = model(lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = { "input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask, } return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): lowerCAmelCase__ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) lowerCAmelCase__ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly lowerCAmelCase__ = ( { 'feature-extraction': OpenAIGPTModel, 'text-classification': OpenAIGPTForSequenceClassification, 'text-generation': OpenAIGPTLMHeadModel, 'zero-shot': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase ) -> int: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase=False ) -> Any: lowerCamelCase_ = super()._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": lowerCamelCase_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=lowercase , ) lowerCamelCase_ = inputs_dict["labels"] lowerCamelCase_ = inputs_dict["labels"] lowerCamelCase_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=lowercase , ) lowerCamelCase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase ) return inputs_dict def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ = OpenAIGPTModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=lowercase , n_embd=37 ) def SCREAMING_SNAKE_CASE_( self ) -> Any: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Tuple: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowercase ) @slow def SCREAMING_SNAKE_CASE_( self ) -> Any: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = OpenAIGPTModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ = OpenAIGPTLMHeadModel.from_pretrained("openai-gpt" ) model.to(lowercase ) lowerCamelCase_ = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=lowercase ) # the president is lowerCamelCase_ = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the lowerCamelCase_ = model.generate(lowercase , do_sample=lowercase ) self.assertListEqual(output_ids[0].tolist() , lowercase )
19
0
"""simple docstring""" import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCAmelCase__ : List[str] = '.' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) UpperCAmelCase__ : List[Any] = [ 'Assert', 'AssignVariableOp', 'EmptyTensorList', 'MergeV2Checkpoints', 'ReadVariableOp', 'ResourceGather', 'RestoreV2', 'SaveV2', 'ShardedFilename', 'StatefulPartitionedCall', 'StaticRegexFullMatch', 'VarHandleOp', ] def lowercase_ ( _snake_case ,_snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : List[str] = SavedModel() SCREAMING_SNAKE_CASE__ : Dict = [] with open(os.path.join(_snake_case ,"""utils""" ,"""tf_ops""" ,"""onnx.json""" ) ) as f: SCREAMING_SNAKE_CASE__ : Any = json.load(_snake_case )["""opsets"""] for i in range(1 ,opset + 1 ): onnx_ops.extend(onnx_opsets[str(_snake_case )] ) with open(_snake_case ,"""rb""" ) as f: saved_model.ParseFromString(f.read() ) SCREAMING_SNAKE_CASE__ : List[str] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want SCREAMING_SNAKE_CASE__ : int = sorted(_snake_case ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(_snake_case ) if strict and len(_snake_case ) > 0: raise Exception(f'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops ) elif len(_snake_case ) > 0: print(f'''Found the following incompatible ops for the opset {opset}:''' ) print(*_snake_case ,sep="""\n""" ) else: print(f'''The saved model {saved_model_path} can properly be converted with ONNX.''' ) if __name__ == "__main__": UpperCAmelCase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('--saved_model_path', help='Path of the saved model to check (the .pb file).') parser.add_argument( '--opset', default=1_2, type=int, help='The ONNX opset against which the model has to be tested.' ) parser.add_argument( '--framework', choices=['onnx'], default='onnx', help='Frameworks against which to test the saved model.' ) parser.add_argument( '--strict', action='store_true', help='Whether make the checking strict (raise errors) or not (raise warnings)' ) UpperCAmelCase__ : Dict = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
25
__A ={str(digit): digit**5 for digit in range(1_0)} def lowerCamelCase_ ( lowerCamelCase__ ): return sum(DIGITS_FIFTH_POWER[digit] for digit in str(lowerCamelCase__ ) ) def lowerCamelCase_ ( ): return sum( number for number in range(1_0_0_0 , 1_0_0_0_0_0_0 ) if number == digits_fifth_powers_sum(lowerCamelCase__ ) ) if __name__ == "__main__": print(solution())
19
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class lowercase ( UpperCamelCase__ ): _a = "camembert" def __init__( self , _a=3_0522 , _a=768 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1e-12 , _a=1 , _a=0 , _a=2 , _a="absolute" , _a=True , _a=None , **_a , ) -> str: super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) _A : Any = vocab_size _A : List[Any] = hidden_size _A : Dict = num_hidden_layers _A : int = num_attention_heads _A : Dict = hidden_act _A : str = intermediate_size _A : List[Any] = hidden_dropout_prob _A : str = attention_probs_dropout_prob _A : int = max_position_embeddings _A : Tuple = type_vocab_size _A : List[str] = initializer_range _A : Dict = layer_norm_eps _A : str = position_embedding_type _A : Dict = use_cache _A : Any = classifier_dropout class lowercase ( UpperCamelCase__ ): @property def a__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _A : Optional[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _A : Optional[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
26
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() __A =logging.get_logger(__name__) def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: lowerCamelCase_ = 1_9_2 lowerCamelCase_ = 7_6_8 lowerCamelCase_ = 1_2 lowerCamelCase_ = 3 lowerCamelCase_ = [8_0_0, 1_3_3_3] lowerCamelCase_ = False elif yolos_name == "yolos_s_dWr": lowerCamelCase_ = 3_3_0 lowerCamelCase_ = 1_4 lowerCamelCase_ = 6 lowerCamelCase_ = 1_3_2_0 elif "yolos_s" in yolos_name: lowerCamelCase_ = 3_8_4 lowerCamelCase_ = 1_5_3_6 lowerCamelCase_ = 1_2 lowerCamelCase_ = 6 elif "yolos_b" in yolos_name: lowerCamelCase_ = [8_0_0, 1_3_4_4] lowerCamelCase_ = 9_1 lowerCamelCase_ = "huggingface/label-files" lowerCamelCase_ = "coco-detection-id2label.json" lowerCamelCase_ = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="dataset" ) , "r" ) ) lowerCamelCase_ = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} lowerCamelCase_ = idalabel lowerCamelCase_ = {v: k for k, v in idalabel.items()} return config def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase_ = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) lowerCamelCase_ = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase_ = in_proj_weight[: config.hidden_size, :] lowerCamelCase_ = in_proj_bias[: config.hidden_size] lowerCamelCase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase_ = in_proj_weight[-config.hidden_size :, :] lowerCamelCase_ = in_proj_bias[-config.hidden_size :] def lowerCamelCase_ ( lowerCamelCase__ ): if "backbone" in name: lowerCamelCase_ = name.replace("backbone" , "vit" ) if "cls_token" in name: lowerCamelCase_ = name.replace("cls_token" , "embeddings.cls_token" ) if "det_token" in name: lowerCamelCase_ = name.replace("det_token" , "embeddings.detection_tokens" ) if "mid_pos_embed" in name: lowerCamelCase_ = name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" ) if "pos_embed" in name: lowerCamelCase_ = name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: lowerCamelCase_ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "blocks" in name: lowerCamelCase_ = name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: lowerCamelCase_ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: lowerCamelCase_ = name.replace("attn" , "attention.self" ) if "norm1" in name: lowerCamelCase_ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowerCamelCase_ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: lowerCamelCase_ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowerCamelCase_ = name.replace("mlp.fc2" , "output.dense" ) if "class_embed" in name: lowerCamelCase_ = name.replace("class_embed" , "class_labels_classifier" ) if "bbox_embed" in name: lowerCamelCase_ = name.replace("bbox_embed" , "bbox_predictor" ) if "vit.norm" in name: lowerCamelCase_ = name.replace("vit.norm" , "vit.layernorm" ) return name def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): for key in orig_state_dict.copy().keys(): lowerCamelCase_ = orig_state_dict.pop(lowerCamelCase__ ) if "qkv" in key: lowerCamelCase_ = key.split("." ) lowerCamelCase_ = int(key_split[2] ) lowerCamelCase_ = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: lowerCamelCase_ = val[:dim, :] lowerCamelCase_ = val[ dim : dim * 2, : ] lowerCamelCase_ = val[-dim:, :] else: lowerCamelCase_ = val[:dim] lowerCamelCase_ = val[dim : dim * 2] lowerCamelCase_ = val[-dim:] else: lowerCamelCase_ = val return orig_state_dict def lowerCamelCase_ ( ): lowerCamelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase_ = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ) return im @torch.no_grad() def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ): lowerCamelCase_ = get_yolos_config(lowerCamelCase__ ) # load original state_dict lowerCamelCase_ = torch.load(lowerCamelCase__ , map_location="cpu" )["model"] # load 🤗 model lowerCamelCase_ = YolosForObjectDetection(lowerCamelCase__ ) model.eval() lowerCamelCase_ = convert_state_dict(lowerCamelCase__ , lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) # Check outputs on an image, prepared by YolosImageProcessor lowerCamelCase_ = 8_0_0 if yolos_name != "yolos_ti" else 5_1_2 lowerCamelCase_ = YolosImageProcessor(format="coco_detection" , size=lowerCamelCase__ ) lowerCamelCase_ = image_processor(images=prepare_img() , return_tensors="pt" ) lowerCamelCase_ = model(**lowerCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ = outputs.logits, outputs.pred_boxes lowerCamelCase_ , lowerCamelCase_ = None, None if yolos_name == "yolos_ti": lowerCamelCase_ = torch.tensor( [[-39.50_22, -11.98_20, -17.68_88], [-29.95_74, -9.97_69, -17.76_91], [-42.32_81, -20.72_00, -30.62_94]] ) lowerCamelCase_ = torch.tensor( [[0.40_21, 0.08_36, 0.79_79], [0.01_84, 0.26_09, 0.03_64], [0.17_81, 0.20_04, 0.20_95]] ) elif yolos_name == "yolos_s_200_pre": lowerCamelCase_ = torch.tensor( [[-24.02_48, -10.30_24, -14.82_90], [-42.03_92, -16.82_00, -27.43_34], [-27.27_43, -11.81_54, -18.71_48]] ) lowerCamelCase_ = torch.tensor( [[0.25_59, 0.54_55, 0.47_06], [0.29_89, 0.72_79, 0.18_75], [0.77_32, 0.40_17, 0.44_62]] ) elif yolos_name == "yolos_s_300_pre": lowerCamelCase_ = torch.tensor( [[-36.22_20, -14.43_85, -23.54_57], [-35.69_70, -14.75_83, -21.39_35], [-31.59_39, -13.60_42, -16.80_49]] ) lowerCamelCase_ = torch.tensor( [[0.76_14, 0.23_16, 0.47_28], [0.71_68, 0.44_95, 0.38_55], [0.49_96, 0.14_66, 0.99_96]] ) elif yolos_name == "yolos_s_dWr": lowerCamelCase_ = torch.tensor( [[-42.86_68, -24.10_49, -41.16_90], [-34.74_56, -14.12_74, -24.91_94], [-33.78_98, -12.19_46, -25.64_95]] ) lowerCamelCase_ = torch.tensor( [[0.55_87, 0.27_73, 0.06_05], [0.50_04, 0.30_14, 0.99_94], [0.49_99, 0.15_48, 0.99_94]] ) elif yolos_name == "yolos_base": lowerCamelCase_ = torch.tensor( [[-40.60_64, -24.30_84, -32.64_47], [-55.19_90, -30.77_19, -35.58_77], [-51.43_11, -33.35_07, -35.64_62]] ) lowerCamelCase_ = torch.tensor( [[0.55_55, 0.27_94, 0.06_55], [0.90_49, 0.26_64, 0.18_94], [0.91_83, 0.19_84, 0.16_35]] ) else: raise ValueError(F'Unknown yolos_name: {yolos_name}' ) assert torch.allclose(logits[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) print(F'Saving model {yolos_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCamelCase__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: lowerCamelCase_ = { "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) lowerCamelCase_ = model_mapping[yolos_name] image_processor.push_to_hub(lowerCamelCase__ , organization="hustvl" ) model.push_to_hub(lowerCamelCase__ , organization="hustvl" ) if __name__ == "__main__": __A =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--yolos_name''', default='''yolos_s_200_pre''', type=str, help=( '''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',''' ''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.''' ), ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __A =parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
19
0
'''simple docstring''' import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowercase : int = logging.get_logger(__name__) __lowercase : List[str] = {'vocab_file': 'vocab.json'} __lowercase : List[Any] = { 'vocab_file': { 'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json', } } __lowercase : Tuple = {'mgp-str': 27} class __UpperCamelCase ( lowerCAmelCase_ ): A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , __a , __a="[GO]" , __a="[GO]" , __a="[s]" , __a="[GO]" , **__a ): '''simple docstring''' super().__init__( unk_token=__a , bos_token=__a , eos_token=__a , pad_token=__a , **__a , ) with open(__a , encoding='utf-8' ) as vocab_handle: __a : Dict = json.load(__a ) __a : Union[str, Any] = {v: k for k, v in self.vocab.items()} @property def __UpperCAmelCase ( self ): '''simple docstring''' return len(self.vocab ) def __UpperCAmelCase ( self ): '''simple docstring''' return dict(self.vocab , **self.added_tokens_encoder ) def __UpperCAmelCase ( self , __a ): '''simple docstring''' __a : str = [] for s in text: char_tokens.extend(__a ) return char_tokens def __UpperCAmelCase ( self , __a ): '''simple docstring''' return self.vocab.get(__a , self.vocab.get(self.unk_token ) ) def __UpperCAmelCase ( self , __a ): '''simple docstring''' return self.decoder.get(__a ) def __UpperCAmelCase ( self , __a , __a = None ): '''simple docstring''' if not os.path.isdir(__a ): logger.error('Vocabulary path ({}) should be a directory'.format(__a ) ) return __a : Any = os.path.join( __a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) with open(__a , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=__a , ensure_ascii=__a ) + '\n' ) return (vocab_file,)
27
def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = [0 for i in range(r + 1 )] # nc0 = 1 lowerCamelCase_ = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. lowerCamelCase_ = min(lowerCamelCase__ , lowerCamelCase__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=1_0, r=5))
19
0
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" def A ( self : int , UpperCamelCase__ : Tuple ): """simple docstring""" if isinstance(UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase = [label.strip() for label in labels.split(',' ) if label.strip()] return labels def __call__( self : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : Tuple ): """simple docstring""" if len(UpperCamelCase__ ) == 0 or len(UpperCamelCase__ ) == 0: raise ValueError('You must include at least one label and at least one sequence.' ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( 'The provided hypothesis_template "{}" was not able to be formatted with the target labels. ' 'Make sure the passed template includes formatting syntax such as {{}} where the label should go.' ).format(UpperCamelCase__ ) ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase = [sequences] UpperCamelCase = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(UpperCamelCase__ )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(_a ) class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" def __init__( self : Tuple , UpperCamelCase__ : Any=ZeroShotClassificationArgumentHandler() , *UpperCamelCase__ : Dict , **UpperCamelCase__ : str ): """simple docstring""" UpperCamelCase = args_parser super().__init__(*UpperCamelCase__ , **UpperCamelCase__ ) if self.entailment_id == -1: logger.warning( 'Failed to determine \'entailment\' label id from the label2id mapping in the model config. Setting to ' '-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.' ) @property def A ( self : List[Any] ): """simple docstring""" for label, ind in self.model.config.labelaid.items(): if label.lower().startswith('entail' ): return ind return -1 def A ( self : Optional[int] , UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : Optional[Any]=TruncationStrategy.ONLY_FIRST , **UpperCamelCase__ : Optional[Any] ): """simple docstring""" UpperCamelCase = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( 'Tokenizer was not supporting padding necessary for zero-shot, attempting to use ' ' `pad_token=eos_token`' ) UpperCamelCase = self.tokenizer.eos_token try: UpperCamelCase = self.tokenizer( UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_tensors=UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , ) except Exception as e: if "too short" in str(UpperCamelCase__ ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. UpperCamelCase = self.tokenizer( UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_tensors=UpperCamelCase__ , padding=UpperCamelCase__ , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def A ( self : Optional[Any] , **UpperCamelCase__ : List[str] ): """simple docstring""" if kwargs.get('multi_class' , UpperCamelCase__ ) is not None: UpperCamelCase = kwargs['multi_class'] logger.warning( 'The `multi_class` argument has been deprecated and renamed to `multi_label`. ' '`multi_class` will be removed in a future version of Transformers.' ) UpperCamelCase = {} if "candidate_labels" in kwargs: UpperCamelCase = self._args_parser._parse_labels(kwargs['candidate_labels'] ) if "hypothesis_template" in kwargs: UpperCamelCase = kwargs['hypothesis_template'] UpperCamelCase = {} if "multi_label" in kwargs: UpperCamelCase = kwargs['multi_label'] return preprocess_params, {}, postprocess_params def __call__( self : int , UpperCamelCase__ : Union[str, List[str]] , *UpperCamelCase__ : List[Any] , **UpperCamelCase__ : Any , ): """simple docstring""" if len(UpperCamelCase__ ) == 0: pass elif len(UpperCamelCase__ ) == 1 and "candidate_labels" not in kwargs: UpperCamelCase = args[0] else: raise ValueError(f"""Unable to understand extra arguments {args}""" ) return super().__call__(UpperCamelCase__ , **UpperCamelCase__ ) def A ( self : Any , UpperCamelCase__ : str , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : Optional[int]="This example is {}." ): """simple docstring""" UpperCamelCase , UpperCamelCase = self._args_parser(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for i, (candidate_label, sequence_pair) in enumerate(zip(UpperCamelCase__ , UpperCamelCase__ ) ): UpperCamelCase = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(UpperCamelCase__ ) - 1, **model_input, } def A ( self : Optional[Any] , UpperCamelCase__ : List[Any] ): """simple docstring""" UpperCamelCase = inputs['candidate_label'] UpperCamelCase = inputs['sequence'] UpperCamelCase = {k: inputs[k] for k in self.tokenizer.model_input_names} UpperCamelCase = self.model(**UpperCamelCase__ ) UpperCamelCase = { 'candidate_label': candidate_label, 'sequence': sequence, 'is_last': inputs['is_last'], **outputs, } return model_outputs def A ( self : Optional[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int]=False ): """simple docstring""" UpperCamelCase = [outputs['candidate_label'] for outputs in model_outputs] UpperCamelCase = [outputs['sequence'] for outputs in model_outputs] UpperCamelCase = np.concatenate([output['logits'].numpy() for output in model_outputs] ) UpperCamelCase = logits.shape[0] UpperCamelCase = len(UpperCamelCase__ ) UpperCamelCase = N // n UpperCamelCase = logits.reshape((num_sequences, n, -1) ) if multi_label or len(UpperCamelCase__ ) == 1: # softmax over the entailment vs. contradiction dim for each label independently UpperCamelCase = self.entailment_id UpperCamelCase = -1 if entailment_id == 0 else 0 UpperCamelCase = reshaped_outputs[..., [contradiction_id, entailment_id]] UpperCamelCase = np.exp(UpperCamelCase__ ) / np.exp(UpperCamelCase__ ).sum(-1 , keepdims=UpperCamelCase__ ) UpperCamelCase = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels UpperCamelCase = reshaped_outputs[..., self.entailment_id] UpperCamelCase = np.exp(UpperCamelCase__ ) / np.exp(UpperCamelCase__ ).sum(-1 , keepdims=UpperCamelCase__ ) UpperCamelCase = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
28
import math def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(lowerCamelCase__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("This should never happen" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. __A ='''Enter the base and the power separated by a comma: ''' __A, __A =map(int, input(prompt).split(''',''')) __A, __A =map(int, input(prompt).split(''',''')) # We find the log of each number, using the function res(), which takes two # arguments. __A =res(xa, ya) __A =res(xa, ya) # We check for the largest number if resa > resa: print('''Largest number is''', xa, '''^''', ya) elif resa > resa: print('''Largest number is''', xa, '''^''', ya) else: print('''Both are equal''')
19
0
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'nvidia/segformer-b0-finetuned-ade-512-512': ( 'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : str = '''segformer''' def __init__( self , _UpperCamelCase=3 , _UpperCamelCase=4 , _UpperCamelCase=[2, 2, 2, 2] , _UpperCamelCase=[8, 4, 2, 1] , _UpperCamelCase=[3_2, 6_4, 1_6_0, 2_5_6] , _UpperCamelCase=[7, 3, 3, 3] , _UpperCamelCase=[4, 2, 2, 2] , _UpperCamelCase=[1, 2, 5, 8] , _UpperCamelCase=[4, 4, 4, 4] , _UpperCamelCase="gelu" , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=0.1 , _UpperCamelCase=0.02 , _UpperCamelCase=0.1 , _UpperCamelCase=1E-6 , _UpperCamelCase=2_5_6 , _UpperCamelCase=2_5_5 , **_UpperCamelCase , ) -> List[Any]: super().__init__(**_UpperCamelCase ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , _UpperCamelCase , ) UpperCAmelCase_ : str = num_channels UpperCAmelCase_ : List[Any] = num_encoder_blocks UpperCAmelCase_ : str = depths UpperCAmelCase_ : List[Any] = sr_ratios UpperCAmelCase_ : List[str] = hidden_sizes UpperCAmelCase_ : List[str] = patch_sizes UpperCAmelCase_ : Dict = strides UpperCAmelCase_ : Dict = mlp_ratios UpperCAmelCase_ : List[Any] = num_attention_heads UpperCAmelCase_ : str = hidden_act UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : Optional[int] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = classifier_dropout_prob UpperCAmelCase_ : Tuple = initializer_range UpperCAmelCase_ : List[str] = drop_path_rate UpperCAmelCase_ : Union[str, Any] = layer_norm_eps UpperCAmelCase_ : int = decoder_hidden_size UpperCAmelCase_ : Optional[Any] = kwargs.get('reshape_last_stage' , _UpperCamelCase ) UpperCAmelCase_ : List[str] = semantic_loss_ignore_index class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : Any = version.parse('''1.11''' ) @property def __UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __UpperCAmelCase ( self ) -> float: return 1E-4 @property def __UpperCAmelCase ( self ) -> int: return 1_2
29
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features __A =logging.get_logger(__name__) __A =list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) __A =tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _SCREAMING_SNAKE_CASE : lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Model type selected in the list: ' + ', '.join(snake_case_ )} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) lowerCAmelCase__ = field( default=1_28 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase__ = field( default=1_28 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) lowerCAmelCase__ = field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) lowerCAmelCase__ = field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) lowerCAmelCase__ = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase__ = field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase__ = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) lowerCAmelCase__ = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = 'train' lowerCAmelCase__ = 'dev' class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 def __init__( self , lowercase , lowercase , lowercase = None , lowercase = Split.train , lowercase = False , lowercase = None , lowercase = "pt" , ) -> List[str]: lowerCamelCase_ = args lowerCamelCase_ = is_language_sensitive lowerCamelCase_ = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(lowercase , lowercase ): try: lowerCamelCase_ = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) lowerCamelCase_ = mode # Load data features from cache or dataset file lowerCamelCase_ = "v2" if args.version_2_with_negative else "v1" lowerCamelCase_ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase_ = cached_features_file + ".lock" with FileLock(lowercase ): if os.path.exists(lowercase ) and not args.overwrite_cache: lowerCamelCase_ = time.time() lowerCamelCase_ = torch.load(lowercase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. lowerCamelCase_ = self.old_features["features"] lowerCamelCase_ = self.old_features.get("dataset" , lowercase ) lowerCamelCase_ = self.old_features.get("examples" , lowercase ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' " future run" ) else: if mode == Split.dev: lowerCamelCase_ = self.processor.get_dev_examples(args.data_dir ) else: lowerCamelCase_ = self.processor.get_train_examples(args.data_dir ) lowerCamelCase_ , lowerCamelCase_ = squad_convert_examples_to_features( examples=self.examples , tokenizer=lowercase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=lowercase , ) lowerCamelCase_ = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples} , lowercase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ) -> Tuple: return len(self.features ) def __getitem__( self , lowercase ) -> Dict[str, torch.Tensor]: # Convert to Tensors and build dataset lowerCamelCase_ = self.features[i] lowerCamelCase_ = torch.tensor(feature.input_ids , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.attention_mask , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.token_type_ids , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.cls_index , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.p_mask , dtype=torch.float ) lowerCamelCase_ = torch.tensor(feature.is_impossible , dtype=torch.float ) lowerCamelCase_ = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: lowerCamelCase_ = torch.tensor(feature.start_position , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
19
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class lowercase__( UpperCAmelCase ): """simple docstring""" a :Any = 'timesformer' def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple=2_2_4 , SCREAMING_SNAKE_CASE_ : Dict=1_6 , SCREAMING_SNAKE_CASE_ : str=3 , SCREAMING_SNAKE_CASE_ : List[str]=8 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=7_6_8 , SCREAMING_SNAKE_CASE_ : List[str]=1_2 , SCREAMING_SNAKE_CASE_ : Optional[Any]=1_2 , SCREAMING_SNAKE_CASE_ : Any=3_0_7_2 , SCREAMING_SNAKE_CASE_ : List[Any]="gelu" , SCREAMING_SNAKE_CASE_ : List[str]=0.0 , SCREAMING_SNAKE_CASE_ : Dict=0.0 , SCREAMING_SNAKE_CASE_ : Any=0.02 , SCREAMING_SNAKE_CASE_ : str=1e-6 , SCREAMING_SNAKE_CASE_ : List[str]=True , SCREAMING_SNAKE_CASE_ : List[str]="divided_space_time" , SCREAMING_SNAKE_CASE_ : List[Any]=0 , **SCREAMING_SNAKE_CASE_ : Any , ) -> Optional[Any]: super().__init__(**SCREAMING_SNAKE_CASE_ ) lowercase_ = image_size lowercase_ = patch_size lowercase_ = num_channels lowercase_ = num_frames lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = qkv_bias lowercase_ = attention_type lowercase_ = drop_path_rate
30
from abc import ABC, abstractmethod from argparse import ArgumentParser class _SCREAMING_SNAKE_CASE ( snake_case_ ): @staticmethod @abstractmethod def SCREAMING_SNAKE_CASE_( lowercase ) -> int: raise NotImplementedError() @abstractmethod def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: raise NotImplementedError()
19
0
'''simple docstring''' from __future__ import annotations def UpperCamelCase_ ( _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float , ) -> tuple: """simple docstring""" if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor" ) elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor" ) elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
31
from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging __A =logging.get_logger(__name__) # pylint: disable=invalid-name class _SCREAMING_SNAKE_CASE ( snake_case_ ): def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> List[Any]: super().__init__() if hasattr(scheduler.config , "steps_offset" ) and scheduler.config.steps_offset != 1: lowerCamelCase_ = ( f'The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`' f' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ' "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1" , "1.0.0" , lowercase , standard_warn=lowercase ) lowerCamelCase_ = dict(scheduler.config ) lowerCamelCase_ = 1 lowerCamelCase_ = FrozenDict(lowercase ) if hasattr(scheduler.config , "skip_prk_steps" ) and scheduler.config.skip_prk_steps is False: lowerCamelCase_ = ( f'The configuration file of this scheduler: {scheduler} has not set the configuration' " `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make" " sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to" " incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face" " Hub, it would be very nice if you could open a Pull request for the" " `scheduler/scheduler_config.json` file" ) deprecate("skip_prk_steps not set" , "1.0.0" , lowercase , standard_warn=lowercase ) lowerCamelCase_ = dict(scheduler.config ) lowerCamelCase_ = True lowerCamelCase_ = FrozenDict(lowercase ) if safety_checker is None: logger.warning( f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure' " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( segmentation_model=lowercase , segmentation_processor=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , unet=lowercase , scheduler=lowercase , safety_checker=lowercase , feature_extractor=lowercase , ) def SCREAMING_SNAKE_CASE_( self , lowercase = "auto" ) -> Tuple: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowerCamelCase_ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: self.enable_attention_slicing(lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> str: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) lowerCamelCase_ = torch.device("cuda" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(lowercase , lowercase ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: if self.device != torch.device("meta" ) or not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self , lowercase , lowercase , lowercase , lowercase = 512 , lowercase = 512 , lowercase = 50 , lowercase = 7.5 , lowercase = None , lowercase = 1 , lowercase = 0.0 , lowercase = None , lowercase = None , lowercase = "pil" , lowercase = True , lowercase = None , lowercase = 1 , **lowercase , ) -> int: lowerCamelCase_ = self.segmentation_processor( text=[text] , images=[image] , padding="max_length" , return_tensors="pt" ).to(self.device ) lowerCamelCase_ = self.segmentation_model(**lowercase ) lowerCamelCase_ = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() lowerCamelCase_ = self.numpy_to_pil(lowercase )[0].resize(image.size ) # Run inpainting pipeline with the generated mask lowerCamelCase_ = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=lowercase , image=lowercase , mask_image=lowercase , height=lowercase , width=lowercase , num_inference_steps=lowercase , guidance_scale=lowercase , negative_prompt=lowercase , num_images_per_prompt=lowercase , eta=lowercase , generator=lowercase , latents=lowercase , output_type=lowercase , return_dict=lowercase , callback=lowercase , callback_steps=lowercase , )
19
0
from math import factorial def SCREAMING_SNAKE_CASE_ ( __A : int = 20 ) -> int: """simple docstring""" a_ : str = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... a_ : Dict = n // 2 return int(factorial(__A ) / (factorial(__A ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: UpperCAmelCase_ : int = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
32
from collections import deque def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = len(lowerCamelCase__ ) lowerCamelCase_ = deque() lowerCamelCase_ = [False for _ in range(lowerCamelCase__ )] lowerCamelCase_ = [-1 for _ in range(lowerCamelCase__ )] lowerCamelCase_ = index_of[:] def strong_connect(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = index # the number when this node is seen lowerCamelCase_ = index # lowest rank node reachable from here index += 1 stack.append(lowerCamelCase__ ) lowerCamelCase_ = True for w in g[v]: if index_of[w] == -1: lowerCamelCase_ = strong_connect(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: lowerCamelCase_ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: lowerCamelCase_ = [] lowerCamelCase_ = stack.pop() lowerCamelCase_ = False component.append(lowerCamelCase__ ) while w != v: lowerCamelCase_ = stack.pop() lowerCamelCase_ = False component.append(lowerCamelCase__ ) components.append(lowerCamelCase__ ) return index lowerCamelCase_ = [] for v in range(lowerCamelCase__ ): if index_of[v] == -1: strong_connect(lowerCamelCase__ , 0 , lowerCamelCase__ ) return components def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = [[] for _ in range(lowerCamelCase__ )] for u, v in edges: g[u].append(lowerCamelCase__ ) return g if __name__ == "__main__": # Test __A =7 __A =[0, 0, 1, 2, 3, 3, 4, 4, 6] __A =[1, 3, 2, 0, 1, 4, 5, 6, 5] __A =[(u, v) for u, v in zip(source, target)] __A =create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
19
0
"""simple docstring""" def lowercase ( __snake_case : Optional[int] ): lowercase_ : int = 0 lowercase_ : Optional[Any] = len(__snake_case ) for i in range(n - 1 ): for j in range(i + 1 , __snake_case ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def lowercase ( __snake_case : str ): if len(__snake_case ) <= 1: return arr, 0 lowercase_ : Optional[Any] = len(__snake_case ) // 2 lowercase_ : List[Any] = arr[0:mid] lowercase_ : Union[str, Any] = arr[mid:] lowercase_ , lowercase_ : Tuple = count_inversions_recursive(__snake_case ) lowercase_ , lowercase_ : List[Any] = count_inversions_recursive(__snake_case ) lowercase_ , lowercase_ : List[Any] = _count_cross_inversions(__snake_case , __snake_case ) lowercase_ : List[Any] = inversion_p + inversions_q + cross_inversions return c, num_inversions def lowercase ( __snake_case : str , __snake_case : Optional[int] ): lowercase_ : Optional[Any] = [] lowercase_ : Any = 0 while i < len(__snake_case ) and j < len(__snake_case ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(__snake_case ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(__snake_case ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def lowercase ( ): lowercase_ : Union[str, Any] = [1_0, 2, 1, 5, 5, 2, 1_1] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) lowercase_ : int = count_inversions_bf(__snake_case ) lowercase_ , lowercase_ : Dict = count_inversions_recursive(__snake_case ) assert num_inversions_bf == num_inversions_recursive == 8 print('''number of inversions = ''' , __snake_case ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() lowercase_ : Dict = count_inversions_bf(__snake_case ) lowercase_ , lowercase_ : Dict = count_inversions_recursive(__snake_case ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __snake_case ) # an empty list should also have zero inversions lowercase_ : List[Any] = [] lowercase_ : Any = count_inversions_bf(__snake_case ) lowercase_ , lowercase_ : List[str] = count_inversions_recursive(__snake_case ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __snake_case ) if __name__ == "__main__": main()
33
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A ={'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys __A =_LazyModule(__name__, globals()['''__file__'''], _import_structure)
19
0
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging A =logging.get_logger(__name__) A ={ 'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json', # See all Marian models at https://huggingface.co/models?filter=marian } class _a ( __a ): __a : List[Any] = """marian""" __a : Union[str, Any] = ["""past_key_values"""] __a : List[str] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[Any] , lowercase : Union[str, Any]=58_101 , lowercase : Tuple=None , lowercase : str=1_024 , lowercase : Optional[int]=12 , lowercase : Optional[int]=4_096 , lowercase : int=16 , lowercase : List[Any]=12 , lowercase : int=4_096 , lowercase : Optional[int]=16 , lowercase : int=0.0 , lowercase : Tuple=0.0 , lowercase : Tuple=True , lowercase : Union[str, Any]=True , lowercase : List[Any]="gelu" , lowercase : Tuple=1_024 , lowercase : str=0.1 , lowercase : str=0.0 , lowercase : Optional[int]=0.0 , lowercase : Dict=0.02 , lowercase : Union[str, Any]=58_100 , lowercase : List[str]=False , lowercase : str=58_100 , lowercase : Any=0 , lowercase : Optional[Any]=0 , lowercase : Tuple=True , **lowercase : Optional[int] , ): '''simple docstring''' UpperCAmelCase = vocab_size UpperCAmelCase = decoder_vocab_size or vocab_size UpperCAmelCase = max_position_embeddings UpperCAmelCase = d_model UpperCAmelCase = encoder_ffn_dim UpperCAmelCase = encoder_layers UpperCAmelCase = encoder_attention_heads UpperCAmelCase = decoder_ffn_dim UpperCAmelCase = decoder_layers UpperCAmelCase = decoder_attention_heads UpperCAmelCase = dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = activation_function UpperCAmelCase = init_std UpperCAmelCase = encoder_layerdrop UpperCAmelCase = decoder_layerdrop UpperCAmelCase = use_cache UpperCAmelCase = encoder_layers UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase = share_encoder_decoder_embeddings super().__init__( pad_token_id=lowercase , eos_token_id=lowercase , is_encoder_decoder=lowercase , decoder_start_token_id=lowercase , forced_eos_token_id=lowercase , **lowercase , ) class _a ( __a ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def A ( self : int ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: UpperCAmelCase = {0: '''batch'''} UpperCAmelCase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''} UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowercase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: UpperCAmelCase , UpperCAmelCase = self.num_layers for i in range(lowercase ): UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} else: UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def A ( self : Any ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = super().outputs else: UpperCAmelCase = super(lowercase , self ).outputs if self.use_past: UpperCAmelCase , UpperCAmelCase = self.num_layers for i in range(lowercase ): UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def A ( self : Dict , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ): '''simple docstring''' UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase , lowercase , lowercase , lowercase , lowercase ) # Generate decoder inputs UpperCAmelCase = seq_length if not self.use_past else 1 UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase , lowercase , lowercase , lowercase , lowercase ) UpperCAmelCase = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} UpperCAmelCase = dict(**lowercase , **lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase , UpperCAmelCase = common_inputs['''input_ids'''].shape UpperCAmelCase = common_inputs['''decoder_input_ids'''].shape[1] UpperCAmelCase , UpperCAmelCase = self.num_attention_heads UpperCAmelCase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase = decoder_seq_length + 3 UpperCAmelCase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCAmelCase = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowercase , lowercase )] , dim=1 ) UpperCAmelCase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCAmelCase , UpperCAmelCase = self.num_layers UpperCAmelCase = min(lowercase , lowercase ) UpperCAmelCase = max(lowercase , lowercase ) - min_num_layers UpperCAmelCase = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowercase ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase ), torch.zeros(lowercase ), torch.zeros(lowercase ), torch.zeros(lowercase ), ) ) # TODO: test this. UpperCAmelCase = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowercase , lowercase ): common_inputs["past_key_values"].append((torch.zeros(lowercase ), torch.zeros(lowercase )) ) return common_inputs def A ( self : int , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ): '''simple docstring''' UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase , lowercase , lowercase , lowercase , lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase , UpperCAmelCase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values UpperCAmelCase = seqlen + 2 UpperCAmelCase , UpperCAmelCase = self.num_layers UpperCAmelCase , UpperCAmelCase = self.num_attention_heads UpperCAmelCase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase = common_inputs['''attention_mask'''].dtype UpperCAmelCase = torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowercase , lowercase , dtype=lowercase )] , dim=1 ) UpperCAmelCase = [ (torch.zeros(lowercase ), torch.zeros(lowercase )) for _ in range(lowercase ) ] return common_inputs def A ( self : str , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ): '''simple docstring''' UpperCAmelCase = compute_effective_axis_dimension( lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase = tokenizer.num_special_tokens_to_add(lowercase ) UpperCAmelCase = compute_effective_axis_dimension( lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size UpperCAmelCase = dict(tokenizer(lowercase , return_tensors=lowercase ) ) return common_inputs def A ( self : List[str] , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) else: UpperCAmelCase = self._generate_dummy_inputs_for_causal_lm( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) return common_inputs def A ( self : List[Any] , lowercase : Any , lowercase : Tuple , lowercase : Any , lowercase : Any ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = super()._flatten_past_key_values_(lowercase , lowercase , lowercase , lowercase ) else: UpperCAmelCase = super(lowercase , self )._flatten_past_key_values_( lowercase , lowercase , lowercase , lowercase ) @property def A ( self : Any ): '''simple docstring''' return 1E-4
34
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A ={'''configuration_wavlm''': ['''WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WavLMConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WavLMForAudioFrameClassification''', '''WavLMForCTC''', '''WavLMForSequenceClassification''', '''WavLMForXVector''', '''WavLMModel''', '''WavLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys __A =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json", # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = "gpt_neox" def __init__( self : int , snake_case_ : Union[str, Any]=50_432 , snake_case_ : Union[str, Any]=6_144 , snake_case_ : Union[str, Any]=44 , snake_case_ : Any=64 , snake_case_ : Union[str, Any]=24_576 , snake_case_ : List[Any]="gelu" , snake_case_ : Any=0.25 , snake_case_ : Dict=10_000 , snake_case_ : List[Any]=0.0 , snake_case_ : Tuple=0.0 , snake_case_ : Optional[int]=0.1 , snake_case_ : Any=2_048 , snake_case_ : str=0.02 , snake_case_ : Dict=1E-5 , snake_case_ : Union[str, Any]=True , snake_case_ : Dict=0 , snake_case_ : Optional[Any]=2 , snake_case_ : Dict=False , snake_case_ : Optional[Any]=True , snake_case_ : Optional[Any]=None , **snake_case_ : List[Any] , ): super().__init__(bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) snake_case__ : Tuple = vocab_size snake_case__ : Union[str, Any] = max_position_embeddings snake_case__ : Optional[int] = hidden_size snake_case__ : List[Any] = num_hidden_layers snake_case__ : Union[str, Any] = num_attention_heads snake_case__ : List[Any] = intermediate_size snake_case__ : Tuple = hidden_act snake_case__ : str = rotary_pct snake_case__ : Tuple = rotary_emb_base snake_case__ : List[str] = attention_dropout snake_case__ : Tuple = hidden_dropout snake_case__ : Dict = classifier_dropout snake_case__ : Dict = initializer_range snake_case__ : Optional[int] = layer_norm_eps snake_case__ : Optional[int] = use_cache snake_case__ : Union[str, Any] = tie_word_embeddings snake_case__ : str = use_parallel_residual snake_case__ : int = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( """The hidden size is not divisble by the number of attention heads! Make sure to update them!""" ) def lowerCamelCase ( self : List[str] ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , snake_case_ ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f"got {self.rope_scaling}" ) snake_case__ : Optional[int] = self.rope_scaling.get("""type""" , snake_case_ ) snake_case__ : int = self.rope_scaling.get("""factor""" , snake_case_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(snake_case_ , snake_case_ ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
35
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __A ='''2.13.1''' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('''3.7'''): raise ImportWarning( '''To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.''' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( '''To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n''' '''If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.''' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __A =concatenate_datasets __A =DownloadConfig __A =DownloadManager __A =DownloadMode __A =DownloadConfig __A =DownloadMode __A =DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
19
0
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class UpperCAmelCase_ ( a): def __init__( self, __a = "▁", __a = True, __a = "<unk>", __a = "</s>", __a = "<pad>", ): '''simple docstring''' _lowerCAmelCase : List[str] = { "pad": {"id": 0, "token": pad_token}, "eos": {"id": 1, "token": eos_token}, "unk": {"id": 2, "token": unk_token}, } _lowerCAmelCase : str = [None] * len(self.special_tokens) for token_dict in self.special_tokens.values(): _lowerCAmelCase : Dict = token_dict["token"] _lowerCAmelCase : int = Tokenizer(Unigram()) _lowerCAmelCase : Any = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(" {2,}"), " "), normalizers.Lowercase(), ]) _lowerCAmelCase : Tuple = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=__a, add_prefix_space=__a), pre_tokenizers.Digits(individual_digits=__a), pre_tokenizers.Punctuation(), ]) _lowerCAmelCase : List[str] = decoders.Metaspace(replacement=__a, add_prefix_space=__a) _lowerCAmelCase : Tuple = TemplateProcessing( single=f"$A {self.special_tokens['eos']['token']}", special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])], ) _lowerCAmelCase : List[Any] = { "model": "SentencePieceUnigram", "replacement": replacement, "add_prefix_space": add_prefix_space, } super().__init__(__a, __a) def snake_case__ ( self, __a, __a = 8000, __a = True, ): '''simple docstring''' _lowerCAmelCase : Dict = trainers.UnigramTrainer( vocab_size=__a, special_tokens=self.special_tokens_list, show_progress=__a, ) if isinstance(__a, __a): _lowerCAmelCase : Union[str, Any] = [files] self._tokenizer.train(__a, trainer=__a) self.add_unk_id() def snake_case__ ( self, __a, __a = 8000, __a = True, ): '''simple docstring''' _lowerCAmelCase : Optional[int] = trainers.UnigramTrainer( vocab_size=__a, special_tokens=self.special_tokens_list, show_progress=__a, ) self._tokenizer.train_from_iterator(__a, trainer=__a) self.add_unk_id() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = json.loads(self._tokenizer.to_str()) _lowerCAmelCase : Tuple = self.special_tokens["unk"]["id"] _lowerCAmelCase : Any = Tokenizer.from_str(json.dumps(__a))
36
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A ={ '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __A =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
0
'''simple docstring''' from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { '''nielsr/canine-s''': 2048, } # Unicode defines 1,114,112 total “codepoints” _lowerCAmelCase = 111_4112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py _lowerCAmelCase = 0 _lowerCAmelCase = 0xe_000 _lowerCAmelCase = 0xe_001 _lowerCAmelCase = 0xe_002 _lowerCAmelCase = 0xe_003 _lowerCAmelCase = 0xe_004 # Maps special codepoints to human-readable names. _lowerCAmelCase = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. _lowerCAmelCase = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self ,__UpperCAmelCase=chr(__UpperCAmelCase ) ,__UpperCAmelCase=chr(__UpperCAmelCase ) ,__UpperCAmelCase=chr(__UpperCAmelCase ) ,__UpperCAmelCase=chr(__UpperCAmelCase ) ,__UpperCAmelCase=chr(__UpperCAmelCase ) ,__UpperCAmelCase=chr(__UpperCAmelCase ) ,__UpperCAmelCase=False ,__UpperCAmelCase=2048 ,**__UpperCAmelCase ,) -> Optional[int]: lowerCAmelCase__ : Optional[int] = AddedToken(__UpperCAmelCase ,lstrip=__UpperCAmelCase ,rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) else bos_token lowerCAmelCase__ : Dict = AddedToken(__UpperCAmelCase ,lstrip=__UpperCAmelCase ,rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) else eos_token lowerCAmelCase__ : Union[str, Any] = AddedToken(__UpperCAmelCase ,lstrip=__UpperCAmelCase ,rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) else sep_token lowerCAmelCase__ : int = AddedToken(__UpperCAmelCase ,lstrip=__UpperCAmelCase ,rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) else cls_token lowerCAmelCase__ : int = AddedToken(__UpperCAmelCase ,lstrip=__UpperCAmelCase ,rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase__ : str = AddedToken(__UpperCAmelCase ,lstrip=__UpperCAmelCase ,rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) else mask_token super().__init__( bos_token=__UpperCAmelCase ,eos_token=__UpperCAmelCase ,sep_token=__UpperCAmelCase ,cls_token=__UpperCAmelCase ,pad_token=__UpperCAmelCase ,mask_token=__UpperCAmelCase ,add_prefix_space=__UpperCAmelCase ,model_max_length=__UpperCAmelCase ,**__UpperCAmelCase ,) # Creates a mapping for looking up the IDs of special symbols. lowerCAmelCase__ : Dict[str, int] = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): lowerCAmelCase__ : Tuple = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. lowerCAmelCase__ : Dict[int, str] = { codepoint: name for name, codepoint in self._special_codepoints.items() } lowerCAmelCase__ : Optional[Any] = UNICODE_VOCAB_SIZE lowerCAmelCase__ : Any = len(self._special_codepoints ) @property def UpperCAmelCase_ ( self ) -> int: return self._unicode_vocab_size def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> List[str]: return list(__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> int: try: return ord(__UpperCAmelCase ) except TypeError: raise ValueError(F"""invalid token: '{token}'""" ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> str: try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(__UpperCAmelCase ) except TypeError: raise ValueError(F"""invalid id: {index}""" ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> int: return "".join(__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> List[int]: lowerCAmelCase__ : str = [self.sep_token_id] lowerCAmelCase__ : Optional[int] = [self.cls_token_id] lowerCAmelCase__ : str = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase ,token_ids_a=__UpperCAmelCase ,already_has_special_tokens=__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = [1] + ([0] * len(__UpperCAmelCase )) + [1] if token_ids_a is not None: result += ([0] * len(__UpperCAmelCase )) + [1] return result def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> List[int]: lowerCAmelCase__ : Optional[int] = [self.sep_token_id] lowerCAmelCase__ : List[str] = [self.cls_token_id] lowerCAmelCase__ : Optional[int] = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> int: return ()
37
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class _SCREAMING_SNAKE_CASE : def __init__( self , lowercase , ) -> Optional[int]: lowerCamelCase_ = parent lowerCamelCase_ = 13 lowerCamelCase_ = 7 lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = 99 lowerCamelCase_ = 32 lowerCamelCase_ = 2 lowerCamelCase_ = 4 lowerCamelCase_ = 37 lowerCamelCase_ = "gelu" lowerCamelCase_ = 0.1 lowerCamelCase_ = 0.1 lowerCamelCase_ = 512 lowerCamelCase_ = 16 lowerCamelCase_ = 2 lowerCamelCase_ = 0.0_2 lowerCamelCase_ = 3 lowerCamelCase_ = 4 lowerCamelCase_ = None def SCREAMING_SNAKE_CASE_( self ) -> Any: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_input_mask: lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_( self ) -> List[str]: ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = self.prepare_config_and_inputs() lowerCamelCase_ = True lowerCamelCase_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Any: lowerCamelCase_ = TFEsmModel(config=lowercase ) lowerCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} lowerCamelCase_ = model(lowercase ) lowerCamelCase_ = [input_ids, input_mask] lowerCamelCase_ = model(lowercase ) lowerCamelCase_ = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> Tuple: lowerCamelCase_ = True lowerCamelCase_ = TFEsmModel(config=lowercase ) lowerCamelCase_ = { "input_ids": input_ids, "attention_mask": input_mask, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": encoder_attention_mask, } lowerCamelCase_ = model(lowercase ) lowerCamelCase_ = [input_ids, input_mask] lowerCamelCase_ = model(lowercase , encoder_hidden_states=lowercase ) # Also check the case where encoder outputs are not passed lowerCamelCase_ = model(lowercase , attention_mask=lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: lowerCamelCase_ = TFEsmForMaskedLM(config=lowercase ) lowerCamelCase_ = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> int: lowerCamelCase_ = self.num_labels lowerCamelCase_ = TFEsmForTokenClassification(config=lowercase ) lowerCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} lowerCamelCase_ = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , unittest.TestCase ): lowerCAmelCase__ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) lowerCAmelCase__ = ( { 'feature-extraction': TFEsmModel, 'fill-mask': TFEsmForMaskedLM, 'text-classification': TFEsmForSequenceClassification, 'token-classification': TFEsmForTokenClassification, 'zero-shot': TFEsmForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = TFEsmModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=lowercase , hidden_size=37 ) def SCREAMING_SNAKE_CASE_( self ) -> Any: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Tuple: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase ) @slow def SCREAMING_SNAKE_CASE_( self ) -> Dict: for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFEsmModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @unittest.skip("Protein models do not support embedding resizing." ) def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: pass @unittest.skip("Protein models do not support embedding resizing." ) def SCREAMING_SNAKE_CASE_( self ) -> Any: pass def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(lowercase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer lowerCamelCase_ = model.get_bias() assert isinstance(lowercase , lowercase ) for k, v in name.items(): assert isinstance(lowercase , tf.Variable ) else: lowerCamelCase_ = model.get_output_embeddings() assert x is None lowerCamelCase_ = model.get_bias() assert name is None @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ = TFEsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D" ) lowerCamelCase_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase_ = model(lowercase )[0] lowerCamelCase_ = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , lowercase ) # compare the actual values for a slice. lowerCamelCase_ = tf.constant( [ [ [8.9_2_1_5_1_8, -1_0.5_8_9_8_1_4, -6.4_6_7_1_3_0_7], [-6.3_9_6_7_1_5_6, -1_3.9_1_1_3_7_7, -1.1_2_1_1_9_1_5], [-7.7_8_1_2_4_7, -1_3.9_5_1_5_5_7, -3.7_4_0_5_9_2], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) ) @slow def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ = TFEsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D" ) lowerCamelCase_ = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCamelCase_ = model(lowercase )[0] # compare the actual values for a slice. lowerCamelCase_ = tf.constant( [ [ [0.1_4_4_4_3_0_9_2, 0.5_4_1_2_5_3_2_7, 0.3_2_4_7_7_3_9], [0.3_0_3_4_0_4_8_4, 0.0_0_5_2_6_6_7_6, 0.3_1_0_7_7_7_2_2], [0.3_2_2_7_8_0_4_3, -0.2_4_9_8_7_0_9_6, 0.3_4_1_4_6_2_8], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
19
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _SCREAMING_SNAKE_CASE ( _a , _a , unittest.TestCase ): snake_case__ : Optional[int] = CycleDiffusionPipeline snake_case__ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """negative_prompt""", """height""", """width""", """negative_prompt_embeds""", } snake_case__ : Any = PipelineTesterMixin.required_optional_params - {"""latents"""} snake_case__ : Tuple = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""source_prompt"""} ) snake_case__ : Tuple = IMAGE_TO_IMAGE_IMAGE_PARAMS snake_case__ : List[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def _A ( self : str ): torch.manual_seed(0 ) UpperCamelCase :Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) UpperCamelCase :Union[str, Any] = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , num_train_timesteps=1_000 , clip_sample=__lowerCamelCase , set_alpha_to_one=__lowerCamelCase , ) torch.manual_seed(0 ) UpperCamelCase :Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase :List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) UpperCamelCase :List[Any] = CLIPTextModel(__lowerCamelCase ) UpperCamelCase :Optional[int] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) UpperCamelCase :List[str] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _A ( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any]=0 ): UpperCamelCase :Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) UpperCamelCase :List[str] = image / 2 + 0.5 if str(__lowerCamelCase ).startswith("""mps""" ): UpperCamelCase :Union[str, Any] = torch.manual_seed(__lowerCamelCase ) else: UpperCamelCase :List[Any] = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) UpperCamelCase :Optional[Any] = { """prompt""": """An astronaut riding an elephant""", """source_prompt""": """An astronaut riding a horse""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """eta""": 0.1, """strength""": 0.8, """guidance_scale""": 3, """source_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def _A ( self : Optional[int] ): UpperCamelCase :Dict = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase :str = self.get_dummy_components() UpperCamelCase :int = CycleDiffusionPipeline(**__lowerCamelCase ) UpperCamelCase :Dict = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase :Tuple = self.get_dummy_inputs(__lowerCamelCase ) UpperCamelCase :Any = pipe(**__lowerCamelCase ) UpperCamelCase :Dict = output.images UpperCamelCase :Any = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) UpperCamelCase :int = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def _A ( self : Optional[int] ): UpperCamelCase :Dict = self.get_dummy_components() for name, module in components.items(): if hasattr(__lowerCamelCase , """half""" ): UpperCamelCase :Optional[Any] = module.half() UpperCamelCase :int = CycleDiffusionPipeline(**__lowerCamelCase ) UpperCamelCase :Optional[Any] = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase :Any = self.get_dummy_inputs(__lowerCamelCase ) UpperCamelCase :Optional[int] = pipe(**__lowerCamelCase ) UpperCamelCase :List[str] = output.images UpperCamelCase :Optional[Any] = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) UpperCamelCase :List[str] = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def _A ( self : List[str] ): return super().test_save_load_local() @unittest.skip("""non-deterministic pipeline""" ) def _A ( self : Optional[int] ): return super().test_inference_batch_single_identical() @skip_mps def _A ( self : Optional[int] ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def _A ( self : List[str] ): return super().test_save_load_optional_components() @skip_mps def _A ( self : Tuple ): return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _A ( self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self : Tuple ): UpperCamelCase :int = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/cycle-diffusion/black_colored_car.png""" ) UpperCamelCase :List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy""" ) UpperCamelCase :Any = init_image.resize((512, 512) ) UpperCamelCase :Dict = """CompVis/stable-diffusion-v1-4""" UpperCamelCase :List[Any] = DDIMScheduler.from_pretrained(__lowerCamelCase , subfolder="""scheduler""" ) UpperCamelCase :str = CycleDiffusionPipeline.from_pretrained( __lowerCamelCase , scheduler=__lowerCamelCase , safety_checker=__lowerCamelCase , torch_dtype=torch.floataa , revision="""fp16""" ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) pipe.enable_attention_slicing() UpperCamelCase :List[Any] = """A black colored car""" UpperCamelCase :Tuple = """A blue colored car""" UpperCamelCase :Tuple = torch.manual_seed(0 ) UpperCamelCase :List[Any] = pipe( prompt=__lowerCamelCase , source_prompt=__lowerCamelCase , image=__lowerCamelCase , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=__lowerCamelCase , output_type="""np""" , ) UpperCamelCase :Optional[int] = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def _A ( self : Optional[Any] ): UpperCamelCase :Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/cycle-diffusion/black_colored_car.png""" ) UpperCamelCase :Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy""" ) UpperCamelCase :Optional[Any] = init_image.resize((512, 512) ) UpperCamelCase :str = """CompVis/stable-diffusion-v1-4""" UpperCamelCase :Union[str, Any] = DDIMScheduler.from_pretrained(__lowerCamelCase , subfolder="""scheduler""" ) UpperCamelCase :str = CycleDiffusionPipeline.from_pretrained(__lowerCamelCase , scheduler=__lowerCamelCase , safety_checker=__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) pipe.enable_attention_slicing() UpperCamelCase :Dict = """A black colored car""" UpperCamelCase :str = """A blue colored car""" UpperCamelCase :List[Any] = torch.manual_seed(0 ) UpperCamelCase :Optional[int] = pipe( prompt=__lowerCamelCase , source_prompt=__lowerCamelCase , image=__lowerCamelCase , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=__lowerCamelCase , output_type="""np""" , ) UpperCamelCase :Optional[int] = output.images assert np.abs(image - expected_image ).max() < 2E-2
38
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging __A =logging.get_logger(__name__) def lowerCamelCase_ ( ): # Get the sagemaker specific mp parameters from smp_options variable. lowerCamelCase_ = os.getenv("SM_HP_MP_PARAMETERS" , "{}" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. lowerCamelCase_ = json.loads(lowerCamelCase__ ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. lowerCamelCase_ = os.getenv("SM_FRAMEWORK_PARAMS" , "{}" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". lowerCamelCase_ = json.loads(lowerCamelCase__ ) if not mpi_options.get("sagemaker_mpi_enabled" , lowerCamelCase__ ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("smdistributed" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = field( default='' , metadata={'help': 'Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'} , ) def SCREAMING_SNAKE_CASE_( self ) -> Tuple: super().__post_init__() warnings.warn( "`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use " "`TrainingArguments` instead." , lowercase , ) @cached_property def SCREAMING_SNAKE_CASE_( self ) -> "torch.device": logger.info("PyTorch: setting up devices" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( "torch.distributed process group is initialized, but local_rank == -1. " "In order to use Torch DDP, launch your script with `python -m torch.distributed.launch" ) if self.no_cuda: lowerCamelCase_ = torch.device("cpu" ) lowerCamelCase_ = 0 elif is_sagemaker_model_parallel_available(): lowerCamelCase_ = smp.local_rank() lowerCamelCase_ = torch.device("cuda" , lowercase ) lowerCamelCase_ = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="smddp" , timeout=self.ddp_timeout_delta ) lowerCamelCase_ = int(os.getenv("SMDATAPARALLEL_LOCAL_RANK" ) ) lowerCamelCase_ = torch.device("cuda" , self.local_rank ) lowerCamelCase_ = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 lowerCamelCase_ = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. lowerCamelCase_ = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="nccl" , timeout=self.ddp_timeout_delta ) lowerCamelCase_ = torch.device("cuda" , self.local_rank ) lowerCamelCase_ = 1 if device.type == "cuda": torch.cuda.set_device(lowercase ) return device @property def SCREAMING_SNAKE_CASE_( self ) -> Tuple: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def SCREAMING_SNAKE_CASE_( self ) -> List[str]: return not is_sagemaker_model_parallel_available() @property def SCREAMING_SNAKE_CASE_( self ) -> Dict: return False
19
0
from collections import deque def __A ( __lowerCAmelCase )-> str: """simple docstring""" _UpperCAmelCase = len(__lowerCAmelCase ) _UpperCAmelCase = deque() _UpperCAmelCase = [False for _ in range(__lowerCAmelCase )] _UpperCAmelCase = [-1 for _ in range(__lowerCAmelCase )] _UpperCAmelCase = index_of[:] def strong_connect(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase = index # the number when this node is seen _UpperCAmelCase = index # lowest rank node reachable from here index += 1 stack.append(__lowerCAmelCase ) _UpperCAmelCase = True for w in g[v]: if index_of[w] == -1: _UpperCAmelCase = strong_connect(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: _UpperCAmelCase = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: _UpperCAmelCase = [] _UpperCAmelCase = stack.pop() _UpperCAmelCase = False component.append(__lowerCAmelCase ) while w != v: _UpperCAmelCase = stack.pop() _UpperCAmelCase = False component.append(__lowerCAmelCase ) components.append(__lowerCAmelCase ) return index _UpperCAmelCase = [] for v in range(__lowerCAmelCase ): if index_of[v] == -1: strong_connect(__lowerCAmelCase , 0 , __lowerCAmelCase ) return components def __A ( __lowerCAmelCase , __lowerCAmelCase )-> List[str]: """simple docstring""" _UpperCAmelCase = [[] for _ in range(__lowerCAmelCase )] for u, v in edges: g[u].append(__lowerCAmelCase ) return g if __name__ == "__main__": # Test _a = 7 _a = [0, 0, 1, 2, 3, 3, 4, 4, 6] _a = [1, 3, 2, 0, 1, 4, 5, 6, 5] _a = [(u, v) for u, v in zip(source, target)] _a = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
39
import math def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ = 0 , lowerCamelCase__ = 0 ): lowerCamelCase_ = end or len(lowerCamelCase__ ) for i in range(lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = i lowerCamelCase_ = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: lowerCamelCase_ = array[temp_index - 1] temp_index -= 1 lowerCamelCase_ = temp_index_value return array def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): # Max Heap lowerCamelCase_ = index lowerCamelCase_ = 2 * index + 1 # Left Node lowerCamelCase_ = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: lowerCamelCase_ = left_index if right_index < heap_size and array[largest] < array[right_index]: lowerCamelCase_ = right_index if largest != index: lowerCamelCase_ , lowerCamelCase_ = array[largest], array[index] heapify(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = len(lowerCamelCase__ ) for i in range(n // 2 , -1 , -1 ): heapify(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) for i in range(n - 1 , 0 , -1 ): lowerCamelCase_ , lowerCamelCase_ = array[0], array[i] heapify(lowerCamelCase__ , 0 , lowerCamelCase__ ) return array def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = low lowerCamelCase_ = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i lowerCamelCase_ , lowerCamelCase_ = array[j], array[i] i += 1 def lowerCamelCase_ ( lowerCamelCase__ ): if len(lowerCamelCase__ ) == 0: return array lowerCamelCase_ = 2 * math.ceil(math.loga(len(lowerCamelCase__ ) ) ) lowerCamelCase_ = 1_6 return intro_sort(lowerCamelCase__ , 0 , len(lowerCamelCase__ ) , lowerCamelCase__ , lowerCamelCase__ ) def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): while end - start > size_threshold: if max_depth == 0: return heap_sort(lowerCamelCase__ ) max_depth -= 1 lowerCamelCase_ = median_of_a(lowerCamelCase__ , lowerCamelCase__ , start + ((end - start) // 2) + 1 , end - 1 ) lowerCamelCase_ = partition(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) intro_sort(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = p return insertion_sort(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() __A =input('''Enter numbers separated by a comma : ''').strip() __A =[float(item) for item in user_input.split(''',''')] print(sort(unsorted))
19
0
"""simple docstring""" import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def lowercase ( A_=32 , A_=10 , A_=100 , A_=1_026 , A_=True , A_="data/tokenized_stories_train_wikitext103.jbl" , A_="igf_context_pairs.jbl" , )-> List[str]: '''simple docstring''' set_seed(3 ) # generate train_data and objective_set a , a : Dict = generate_datasets( A_ , A_ , number=A_ , min_len=1_026 , trim=A_ ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? a : List[Any] = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) # load pretrained model a : Union[str, Any] = load_gpta("gpt2" ).to(A_ ) print("computing perplexity on objective set" ) a : int = compute_perplexity(A_ , A_ , A_ ).item() print("perplexity on objective set:" , A_ ) # collect igf pairs and save to file demo.jbl collect_objective_set(A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def lowercase ( A_ , A_=15 , A_=128 , A_=100 , A_="igf_model.pt" , )-> Any: '''simple docstring''' set_seed(42 ) # Load pre-trained model a : int = GPTaLMHeadModel.from_pretrained("gpt2" ) # Initialize secondary learner to use embedding weights of model a : int = SecondaryLearner(A_ ) # Train secondary learner a : Optional[Any] = train_secondary_learner( A_ , A_ , max_epochs=A_ , batch_size=A_ , eval_freq=100 , igf_model_path=A_ , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def lowercase ( A_ , A_ , A_ , A_=32 , A_=1_000 , A_=16 , A_=1.0 , A_=recopy_gpta , A_=None , A_=10 , A_="gpt2_finetuned.pt" , )-> Union[str, Any]: '''simple docstring''' a : Optional[Any] = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) a : List[str] = RandomSampler(A_ ) a : Tuple = DataLoader(A_ , sampler=A_ ) a : Union[str, Any] = max_steps // (len(A_ )) + 1 a : List[Any] = 0 a : str = torch.zeros((1, context_len) , dtype=torch.long , device=A_ ) a , a , a : Dict = recopy_model(A_ , A_ , A_ ) model.train() if secondary_learner is not None: secondary_learner.to(A_ ) secondary_learner.eval() a : Tuple = [] a : List[Any] = 0 a : str = [] a : Optional[Any] = [] # Compute the performance of the transformer model at the beginning a : Union[str, Any] = compute_perplexity(A_ , A_ , A_ ) test_perps.append(A_ ) print("Test perplexity, step" , A_ , ":" , A_ ) for epoch in range(int(A_ ) ): for step, example in enumerate(A_ ): torch.cuda.empty_cache() a : str = random.randint(0 , example.size(2 ) - context_len - 1 ) a : List[Any] = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() a : List[str] = model(A_ , labels=A_ ) a : Optional[Any] = True if secondary_learner is not None: a : Tuple = secondary_learner.forward( torch.tensor(A_ , dtype=torch.long , device=A_ ).unsqueeze(0 ) )[0].item() observed_qs.append(float(A_ ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: a : List[Any] = -1 if predicted_q < threshold: a : Tuple = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) a : Union[str, Any] = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() a : Dict = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: a : Dict = compute_perplexity(A_ , A_ , A_ ) test_perps.append(A_ ) print("Test perplexity, step" , A_ , ":" , A_ ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , A_ ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def lowercase ( )-> Optional[int]: '''simple docstring''' a : Any = argparse.ArgumentParser(description="Fine-tune a transformer model with IGF on a language modeling task" ) # Required parameters parser.add_argument( "--data_dir" , default=A_ , type=A_ , required=A_ , help="The input data dir. Should contain data files for WikiText." , ) parser.add_argument( "--model_name_or_path" , default=A_ , type=A_ , required=A_ , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--data_file" , type=A_ , default=A_ , help=( "A jbl file containing tokenized data which can be split as objective dataset, " "train_dataset and test_dataset." ) , ) parser.add_argument( "--igf_data_file" , type=A_ , default=A_ , help="A jbl file containing the context and information gain pairs to train secondary learner." , ) parser.add_argument( "--output_dir" , default=A_ , type=A_ , required=A_ , help="The output directory where the final fine-tuned model is stored." , ) parser.add_argument( "--tokenizer_name" , default=A_ , type=A_ , help="Pretrained tokenizer name or path if not the same as model_name" , ) parser.add_argument("--seed" , type=A_ , default=A_ , help="A seed for reproducible training." ) parser.add_argument( "--context_len" , default=32 , type=A_ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--size_objective_set" , default=100 , type=A_ , help="number of articles that are long enough to be used as our objective set" , ) parser.add_argument( "--eval_freq" , default=100 , type=A_ , help="secondary model evaluation is triggered at eval_freq" ) parser.add_argument("--max_steps" , default=1_000 , type=A_ , help="To calculate training epochs" ) parser.add_argument( "--secondary_learner_batch_size" , default=128 , type=A_ , help="batch size of training data for secondary learner" , ) parser.add_argument( "--batch_size" , default=16 , type=A_ , help="batch size of training data of language model(gpt2) " ) parser.add_argument( "--eval_interval" , default=10 , type=A_ , help=( "decay the selectivity of our secondary learner filter from" "1 standard deviation above average to 1 below average after 10 batches" ) , ) parser.add_argument( "--number" , default=100 , type=A_ , help="The number of examples split to be used as objective_set/test_data" ) parser.add_argument( "--min_len" , default=1_026 , type=A_ , help="The minimum length of the article to be used as objective set" ) parser.add_argument( "--secondary_learner_max_epochs" , default=15 , type=A_ , help="number of epochs to train secondary learner" ) parser.add_argument("--trim" , default=A_ , type=A_ , help="truncate the example if it exceeds context length" ) parser.add_argument( "--threshold" , default=1.0 , type=A_ , help=( "The threshold value used by secondary learner to filter the train_data and allow only" " informative data as input to the model" ) , ) parser.add_argument("--finetuned_model_name" , default="gpt2_finetuned.pt" , type=A_ , help="finetuned_model_name" ) parser.add_argument( "--recopy_model" , default=A_ , type=A_ , help="Reset the model to the original pretrained GPT-2 weights after each iteration" , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1_026 , trim=A_ , data_file="data/tokenized_stories_train_wikitext103.jbl" , igf_data_file="igf_context_pairs.jbl" , ) # Load train data for secondary learner a : Union[str, Any] = joblib.load("data/IGF_values.jbl" ) # Train secondary learner a : Optional[Any] = training_secondary_learner( A_ , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path="igf_model.pt" , ) # load pretrained gpt2 model a : List[str] = GPTaLMHeadModel.from_pretrained("gpt2" ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model a , a : str = generate_datasets( context_len=32 , file="data/tokenized_stories_train_wikitext103.jbl" , number=100 , min_len=1_026 , trim=A_ ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( A_ , A_ , A_ , context_len=32 , max_steps=1_000 , batch_size=16 , threshold=1.0 , recopy_model=A_ , secondary_learner=A_ , eval_interval=10 , finetuned_model_name="gpt2_finetuned.pt" , ) if __name__ == "__main__": main()
40
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _SCREAMING_SNAKE_CASE ( snake_case_ ): def __init__( self , *lowercase , lowercase=None , lowercase=None , **lowercase ) -> List[str]: super().__init__(*lowercase , **lowercase ) lowerCamelCase_ = eval_examples lowerCamelCase_ = post_process_function def SCREAMING_SNAKE_CASE_( self , lowercase = None , lowercase=None , lowercase = None , lowercase = "eval" , **lowercase , ) -> Dict[str, float]: lowerCamelCase_ = gen_kwargs.copy() lowerCamelCase_ = ( gen_kwargs["max_length"] if gen_kwargs.get("max_length" ) is not None else self.args.generation_max_length ) lowerCamelCase_ = ( gen_kwargs["num_beams"] if gen_kwargs.get("num_beams" ) is not None else self.args.generation_num_beams ) lowerCamelCase_ = gen_kwargs lowerCamelCase_ = self.eval_dataset if eval_dataset is None else eval_dataset lowerCamelCase_ = self.get_eval_dataloader(lowercase ) lowerCamelCase_ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowerCamelCase_ = self.compute_metrics lowerCamelCase_ = None lowerCamelCase_ = time.time() lowerCamelCase_ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowerCamelCase_ = eval_loop( lowercase , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase , metric_key_prefix=lowercase , ) finally: lowerCamelCase_ = compute_metrics lowerCamelCase_ = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( lowercase , lowercase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowerCamelCase_ = self.post_process_function(lowercase , lowercase , lowercase ) lowerCamelCase_ = self.compute_metrics(lowercase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowerCamelCase_ = metrics.pop(lowercase ) metrics.update(output.metrics ) else: lowerCamelCase_ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowercase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowerCamelCase_ = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowercase ) return metrics def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase=None , lowercase = "test" , **lowercase ) -> Union[str, Any]: lowerCamelCase_ = gen_kwargs.copy() lowerCamelCase_ = self.get_test_dataloader(lowercase ) # Temporarily disable metric computation, we will do it in the loop here. lowerCamelCase_ = self.compute_metrics lowerCamelCase_ = None lowerCamelCase_ = time.time() lowerCamelCase_ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowerCamelCase_ = eval_loop( lowercase , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase , metric_key_prefix=lowercase , ) finally: lowerCamelCase_ = compute_metrics lowerCamelCase_ = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( lowercase , lowercase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output lowerCamelCase_ = self.post_process_function(lowercase , lowercase , lowercase , "predict" ) lowerCamelCase_ = self.compute_metrics(lowercase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowerCamelCase_ = metrics.pop(lowercase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowercase )
19
0
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class _lowercase : def __init__( self: List[Any] , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Dict=2 , UpperCamelCase__: Optional[int]=True , UpperCamelCase__: Any=False , UpperCamelCase__: Dict=10 , UpperCamelCase__: List[str]=3 , UpperCamelCase__: int=32 * 4 , UpperCamelCase__: List[str]=32 * 6 , UpperCamelCase__: Optional[int]=4 , UpperCamelCase__: int=32 , ): lowerCamelCase__ : List[str] = parent lowerCamelCase__ : List[Any] = batch_size lowerCamelCase__ : Union[str, Any] = is_training lowerCamelCase__ : List[Any] = use_auxiliary_loss lowerCamelCase__ : List[Any] = num_queries lowerCamelCase__ : List[str] = num_channels lowerCamelCase__ : Optional[Any] = min_size lowerCamelCase__ : List[Any] = max_size lowerCamelCase__ : int = num_labels lowerCamelCase__ : Optional[int] = mask_feature_size def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : Any = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( UpperCamelCase__ ) lowerCamelCase__ : Optional[int] = torch.ones([self.batch_size, self.min_size, self.max_size] , device=UpperCamelCase__ ) lowerCamelCase__ : Union[str, Any] = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=UpperCamelCase__ ) > 0.5 ).float() lowerCamelCase__ : Tuple = (torch.rand((self.batch_size, self.num_labels) , device=UpperCamelCase__ ) > 0.5).long() lowerCamelCase__ : Tuple = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowerCamelCase_ ( self: Optional[int] ): return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def lowerCamelCase_ ( self: str ): lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.prepare_config_and_inputs() lowerCamelCase__ : Tuple = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def lowerCamelCase_ ( self: Dict , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Union[str, Any] ): lowerCamelCase__ : Optional[Any] = output.encoder_hidden_states lowerCamelCase__ : List[Any] = output.pixel_decoder_hidden_states lowerCamelCase__ : str = output.transformer_decoder_hidden_states self.parent.assertTrue(len(UpperCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(UpperCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(UpperCamelCase__ ) , config.decoder_config.decoder_layers ) def lowerCamelCase_ ( self: Any , UpperCamelCase__: List[Any] , UpperCamelCase__: Dict , UpperCamelCase__: Optional[int] , UpperCamelCase__: Optional[int]=False ): with torch.no_grad(): lowerCamelCase__ : Optional[int] = MaskFormerModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase__ : Dict = model(pixel_values=UpperCamelCase__ , pixel_mask=UpperCamelCase__ ) lowerCamelCase__ : Optional[int] = model(UpperCamelCase__ , output_hidden_states=UpperCamelCase__ ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self: int , UpperCamelCase__: Dict , UpperCamelCase__: List[str] , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Any , UpperCamelCase__: List[str] ): lowerCamelCase__ : List[Any] = MaskFormerForInstanceSegmentation(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() def comm_check_on_output(UpperCamelCase__: List[str] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): lowerCamelCase__ : Optional[int] = model(pixel_values=UpperCamelCase__ , pixel_mask=UpperCamelCase__ ) lowerCamelCase__ : Any = model(UpperCamelCase__ ) comm_check_on_output(UpperCamelCase__ ) lowerCamelCase__ : Optional[int] = model( pixel_values=UpperCamelCase__ , pixel_mask=UpperCamelCase__ , mask_labels=UpperCamelCase__ , class_labels=UpperCamelCase__ ) comm_check_on_output(UpperCamelCase__ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class _lowercase ( _lowercase , _lowercase , unittest.TestCase ): a = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () a = ( {"""feature-extraction""": MaskFormerModel, """image-segmentation""": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) a = False a = False a = False a = False def lowerCamelCase_ ( self: int ): lowerCamelCase__ : Any = MaskFormerModelTester(self ) lowerCamelCase__ : List[Any] = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ ) def lowerCamelCase_ ( self: List[str] ): self.config_tester.run_common_tests() def lowerCamelCase_ ( self: Optional[int] ): lowerCamelCase__ , lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(UpperCamelCase__ , **UpperCamelCase__ , output_hidden_states=UpperCamelCase__ ) def lowerCamelCase_ ( self: Dict ): lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*UpperCamelCase__ ) @unittest.skip(reason="""MaskFormer does not use inputs_embeds""" ) def lowerCamelCase_ ( self: str ): pass @unittest.skip(reason="""MaskFormer does not have a get_input_embeddings method""" ) def lowerCamelCase_ ( self: str ): pass @unittest.skip(reason="""MaskFormer is not a generative model""" ) def lowerCamelCase_ ( self: Union[str, Any] ): pass @unittest.skip(reason="""MaskFormer does not use token embeddings""" ) def lowerCamelCase_ ( self: Any ): pass @require_torch_multi_gpu @unittest.skip( reason="""MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def lowerCamelCase_ ( self: Optional[Any] ): pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCamelCase_ ( self: List[Any] ): pass def lowerCamelCase_ ( self: Dict ): lowerCamelCase__ , lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : List[Any] = model_class(UpperCamelCase__ ) lowerCamelCase__ : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : int = [*signature.parameters.keys()] lowerCamelCase__ : Union[str, Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) @slow def lowerCamelCase_ ( self: List[str] ): for model_name in ["facebook/maskformer-swin-small-coco"]: lowerCamelCase__ : Any = MaskFormerModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def lowerCamelCase_ ( self: str ): lowerCamelCase__ : Union[str, Any] = (self.model_tester.min_size,) * 2 lowerCamelCase__ : Dict = { """pixel_values""": torch.randn((2, 3, *size) , device=UpperCamelCase__ ), """mask_labels""": torch.randn((2, 10, *size) , device=UpperCamelCase__ ), """class_labels""": torch.zeros(2 , 10 , device=UpperCamelCase__ ).long(), } lowerCamelCase__ : List[str] = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(UpperCamelCase__ ) lowerCamelCase__ : List[str] = model(**UpperCamelCase__ ) self.assertTrue(outputs.loss is not None ) def lowerCamelCase_ ( self: Union[str, Any] ): lowerCamelCase__ , lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(UpperCamelCase__ , **UpperCamelCase__ , output_hidden_states=UpperCamelCase__ ) def lowerCamelCase_ ( self: int ): lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : str = model_class(UpperCamelCase__ ).to(UpperCamelCase__ ) lowerCamelCase__ : List[str] = model(**UpperCamelCase__ , output_attentions=UpperCamelCase__ ) self.assertTrue(outputs.attentions is not None ) def lowerCamelCase_ ( self: Union[str, Any] ): if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss lowerCamelCase__ : Optional[Any] = self.all_model_classes[1] lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() lowerCamelCase__ : Dict = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.train() lowerCamelCase__ : Optional[int] = model(UpperCamelCase__ , mask_labels=UpperCamelCase__ , class_labels=UpperCamelCase__ ).loss loss.backward() def lowerCamelCase_ ( self: str ): # only MaskFormerForInstanceSegmentation has the loss lowerCamelCase__ : List[str] = self.all_model_classes[1] lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() lowerCamelCase__ : List[str] = True lowerCamelCase__ : Tuple = True lowerCamelCase__ : int = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.train() lowerCamelCase__ : Tuple = model(UpperCamelCase__ , mask_labels=UpperCamelCase__ , class_labels=UpperCamelCase__ ) lowerCamelCase__ : List[Any] = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() lowerCamelCase__ : Optional[int] = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't lowerCamelCase__ : int = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() lowerCamelCase__ : str = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=UpperCamelCase__ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) _A : Optional[int] =1e-4 def SCREAMING_SNAKE_CASE_ () -> Optional[int]: lowerCamelCase__ : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class _lowercase ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self: Dict ): return ( MaskFormerImageProcessor.from_pretrained("""facebook/maskformer-swin-small-coco""" ) if is_vision_available() else None ) def lowerCamelCase_ ( self: Optional[Any] ): lowerCamelCase__ : Optional[Any] = MaskFormerModel.from_pretrained("""facebook/maskformer-swin-small-coco""" ).to(UpperCamelCase__ ) lowerCamelCase__ : str = self.default_image_processor lowerCamelCase__ : Dict = prepare_img() lowerCamelCase__ : List[str] = image_processor(UpperCamelCase__ , return_tensors="""pt""" ).to(UpperCamelCase__ ) lowerCamelCase__ : Any = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCamelCase__ , (1, 3, 800, 1_088) ) with torch.no_grad(): lowerCamelCase__ : List[str] = model(**UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = torch.tensor( [[-0.0_482, 0.9_228, 0.4_951], [-0.2_547, 0.8_017, 0.8_527], [-0.0_069, 0.3_385, -0.0_089]] ).to(UpperCamelCase__ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , UpperCamelCase__ , atol=UpperCamelCase__ ) ) lowerCamelCase__ : Optional[Any] = torch.tensor( [[-0.8_422, -0.8_434, -0.9_718], [-1.0_144, -0.5_565, -0.4_195], [-1.0_038, -0.4_484, -0.1_961]] ).to(UpperCamelCase__ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , UpperCamelCase__ , atol=UpperCamelCase__ ) ) lowerCamelCase__ : List[str] = torch.tensor( [[0.2_852, -0.0_159, 0.9_735], [0.6_254, 0.1_858, 0.8_529], [-0.0_680, -0.4_116, 1.8_413]] ).to(UpperCamelCase__ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , UpperCamelCase__ , atol=UpperCamelCase__ ) ) def lowerCamelCase_ ( self: Optional[int] ): lowerCamelCase__ : Union[str, Any] = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(UpperCamelCase__ ) .eval() ) lowerCamelCase__ : Optional[int] = self.default_image_processor lowerCamelCase__ : List[Any] = prepare_img() lowerCamelCase__ : Tuple = image_processor(UpperCamelCase__ , return_tensors="""pt""" ).to(UpperCamelCase__ ) lowerCamelCase__ : List[Any] = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCamelCase__ , (1, 3, 800, 1_088) ) with torch.no_grad(): lowerCamelCase__ : Dict = model(**UpperCamelCase__ ) # masks_queries_logits lowerCamelCase__ : List[str] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) lowerCamelCase__ : int = [ [-1.3_737_124, -1.7_724_937, -1.9_364_233], [-1.5_977_281, -1.9_867_939, -2.1_523_695], [-1.5_795_398, -1.9_269_832, -2.093_942], ] lowerCamelCase__ : int = torch.tensor(UpperCamelCase__ ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCamelCase__ , atol=UpperCamelCase__ ) ) # class_queries_logits lowerCamelCase__ : Any = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) lowerCamelCase__ : Tuple = torch.tensor( [ [1.6_512e00, -5.2_572e00, -3.3_519e00], [3.6_169e-02, -5.9_025e00, -2.9_313e00], [1.0_766e-04, -7.7_630e00, -5.1_263e00], ] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCamelCase__ , atol=UpperCamelCase__ ) ) def lowerCamelCase_ ( self: List[Any] ): lowerCamelCase__ : Optional[int] = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-resnet101-coco-stuff""" ) .to(UpperCamelCase__ ) .eval() ) lowerCamelCase__ : str = self.default_image_processor lowerCamelCase__ : List[str] = prepare_img() lowerCamelCase__ : List[Any] = image_processor(UpperCamelCase__ , return_tensors="""pt""" ).to(UpperCamelCase__ ) lowerCamelCase__ : List[str] = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCamelCase__ , (1, 3, 800, 1_088) ) with torch.no_grad(): lowerCamelCase__ : Any = model(**UpperCamelCase__ ) # masks_queries_logits lowerCamelCase__ : int = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) lowerCamelCase__ : Optional[Any] = [[-0.9_046, -2.6_366, -4.6_062], [-3.4_179, -5.7_890, -8.8_057], [-4.9_179, -7.6_560, -10.7_711]] lowerCamelCase__ : List[Any] = torch.tensor(UpperCamelCase__ ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCamelCase__ , atol=UpperCamelCase__ ) ) # class_queries_logits lowerCamelCase__ : Dict = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) lowerCamelCase__ : Optional[int] = torch.tensor( [[4.7_188, -3.2_585, -2.8_857], [6.6_871, -2.9_181, -1.2_487], [7.2_449, -2.2_764, -2.1_874]] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCamelCase__ , atol=UpperCamelCase__ ) ) def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : Optional[int] = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(UpperCamelCase__ ) .eval() ) lowerCamelCase__ : Any = self.default_image_processor lowerCamelCase__ : Optional[Any] = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="""pt""" , ) lowerCamelCase__ : Optional[int] = inputs["""pixel_values"""].to(UpperCamelCase__ ) lowerCamelCase__ : int = [el.to(UpperCamelCase__ ) for el in inputs["""mask_labels"""]] lowerCamelCase__ : int = [el.to(UpperCamelCase__ ) for el in inputs["""class_labels"""]] with torch.no_grad(): lowerCamelCase__ : List[Any] = model(**UpperCamelCase__ ) self.assertTrue(outputs.loss is not None )
41
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer __A =logging.get_logger(__name__) # pylint: disable=invalid-name __A =''' Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu") >>> repo = "openai/shap-e-img2img" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png" >>> image = load_image(image_url).convert("RGB") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], "corgi_3d.gif") ``` ''' @dataclass class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = 42 class _SCREAMING_SNAKE_CASE ( snake_case_ ): def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> List[str]: super().__init__() self.register_modules( prior=lowercase , image_encoder=lowercase , image_processor=lowercase , scheduler=lowercase , renderer=lowercase , ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> int: if latents is None: lowerCamelCase_ = randn_tensor(lowercase , generator=lowercase , device=lowercase , dtype=lowercase ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) lowerCamelCase_ = latents.to(lowercase ) lowerCamelCase_ = latents * scheduler.init_noise_sigma return latents def SCREAMING_SNAKE_CASE_( self , lowercase=0 ) -> int: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) lowerCamelCase_ = torch.device(f'cuda:{gpu_id}' ) lowerCamelCase_ = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase , lowercase ) @property def SCREAMING_SNAKE_CASE_( self ) -> List[str]: if self.device != torch.device("meta" ) or not hasattr(self.image_encoder , "_hf_hook" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(lowercase , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , ) -> List[str]: if isinstance(lowercase , lowercase ) and isinstance(image[0] , torch.Tensor ): lowerCamelCase_ = torch.cat(lowercase , axis=0 ) if image[0].ndim == 4 else torch.stack(lowercase , axis=0 ) if not isinstance(lowercase , torch.Tensor ): lowerCamelCase_ = self.image_processor(lowercase , return_tensors="pt" ).pixel_values[0].unsqueeze(0 ) lowerCamelCase_ = image.to(dtype=self.image_encoder.dtype , device=lowercase ) lowerCamelCase_ = self.image_encoder(lowercase )["last_hidden_state"] lowerCamelCase_ = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 lowerCamelCase_ = image_embeds.repeat_interleave(lowercase , dim=0 ) if do_classifier_free_guidance: lowerCamelCase_ = torch.zeros_like(lowercase ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase_ = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(lowercase ) def __call__( self , lowercase , lowercase = 1 , lowercase = 25 , lowercase = None , lowercase = None , lowercase = 4.0 , lowercase = 64 , lowercase = "pil" , lowercase = True , ) -> Union[str, Any]: if isinstance(lowercase , PIL.Image.Image ): lowerCamelCase_ = 1 elif isinstance(lowercase , torch.Tensor ): lowerCamelCase_ = image.shape[0] elif isinstance(lowercase , lowercase ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): lowerCamelCase_ = len(lowercase ) else: raise ValueError( f'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(lowercase )}' ) lowerCamelCase_ = self._execution_device lowerCamelCase_ = batch_size * num_images_per_prompt lowerCamelCase_ = guidance_scale > 1.0 lowerCamelCase_ = self._encode_image(lowercase , lowercase , lowercase , lowercase ) # prior self.scheduler.set_timesteps(lowercase , device=lowercase ) lowerCamelCase_ = self.scheduler.timesteps lowerCamelCase_ = self.prior.config.num_embeddings lowerCamelCase_ = self.prior.config.embedding_dim lowerCamelCase_ = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , lowercase , lowercase , lowercase , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim lowerCamelCase_ = latents.reshape(latents.shape[0] , lowercase , lowercase ) for i, t in enumerate(self.progress_bar(lowercase ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase_ = self.scheduler.scale_model_input(lowercase , lowercase ) lowerCamelCase_ = self.prior( lowercase , timestep=lowercase , proj_embedding=lowercase , ).predicted_image_embedding # remove the variance lowerCamelCase_ , lowerCamelCase_ = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: lowerCamelCase_ , lowerCamelCase_ = noise_pred.chunk(2 ) lowerCamelCase_ = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) lowerCamelCase_ = self.scheduler.step( lowercase , timestep=lowercase , sample=lowercase , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=lowercase ) lowerCamelCase_ = [] for i, latent in enumerate(lowercase ): print() lowerCamelCase_ = self.renderer.decode( latent[None, :] , lowercase , size=lowercase , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(lowercase ) lowerCamelCase_ = torch.stack(lowercase ) if output_type not in ["np", "pil"]: raise ValueError(f'Only the output types `pil` and `np` are supported not output_type={output_type}' ) lowerCamelCase_ = images.cpu().numpy() if output_type == "pil": lowerCamelCase_ = [self.numpy_to_pil(lowercase ) for image in images] # Offload last model to CPU if hasattr(self , "final_offload_hook" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=lowercase )
19
0
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer lowercase : Dict = ["gpt2"] lowercase : Any = "gpt2" if is_tf_available(): class __UpperCAmelCase ( tf.Module ): def __init__( self , lowerCAmelCase_ ): """simple docstring""" super().__init__() _snake_case = tokenizer _snake_case = AutoConfig.from_pretrained(lowerCAmelCase_ ) _snake_case = TFGPTaLMHeadModel.from_config(lowerCAmelCase_ ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='text' ),) ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = self.tokenizer(lowerCAmelCase_ ) _snake_case = tokenized['input_ids'].to_tensor() _snake_case = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) _snake_case = self.model(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ )['logits'] return outputs @require_tf @require_keras_nlp class __UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ): """simple docstring""" super().setUp() _snake_case = [GPTaTokenizer.from_pretrained(lowerCAmelCase_ ) for checkpoint in (TOKENIZER_CHECKPOINTS)] _snake_case = [TFGPTaTokenizer.from_pretrained(lowerCAmelCase_ ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) _snake_case = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] _snake_case = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def lowerCamelCase ( self ): """simple docstring""" for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: _snake_case = tokenizer([test_inputs] , return_tensors='tf' ) _snake_case = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors _snake_case = python_outputs[key].numpy() _snake_case = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(lowerCAmelCase_ , tf.intaa ) == tf_outputs_values ) ) @slow def lowerCamelCase ( self ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: _snake_case = tf.function(lowerCAmelCase_ ) for test_inputs in self.test_sentences: _snake_case = tf.constant(lowerCAmelCase_ ) _snake_case = compiled_tokenizer(lowerCAmelCase_ ) _snake_case = tf_tokenizer(lowerCAmelCase_ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def lowerCamelCase ( self ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: _snake_case = ModelToSave(tokenizer=lowerCAmelCase_ ) _snake_case = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case = model.serving(lowerCAmelCase_ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _snake_case = Path(lowerCAmelCase_ ) / 'saved.model' tf.saved_model.save(lowerCAmelCase_ , lowerCAmelCase_ , signatures={'serving_default': model.serving} ) _snake_case = tf.saved_model.load(lowerCAmelCase_ ) _snake_case = loaded_model.signatures['serving_default'](lowerCAmelCase_ )['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def lowerCamelCase ( self ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: _snake_case = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case = tf_tokenizer(lowerCAmelCase_ ) # Build model with some sample inputs _snake_case = tf_tokenizer.get_config() _snake_case = TFGPTaTokenizer.from_config(lowerCAmelCase_ ) _snake_case = model_from_config(lowerCAmelCase_ ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def lowerCamelCase ( self ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: # for the test to run _snake_case = 12_31_23 for max_length in [3, 5, 10_24]: _snake_case = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case = tf_tokenizer(lowerCAmelCase_ , max_length=lowerCAmelCase_ ) _snake_case = out['input_ids'].numpy().shape[1] assert out_length == max_length
42
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowerCamelCase_ ( ): lowerCamelCase_ , lowerCamelCase_ = 9, 1_4 # noqa: F841 lowerCamelCase_ = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 1_4], [3, 4, 9], [5, 4, 1_0], [1, 7, 1_1], ] lowerCamelCase_ = defaultdict(lowerCamelCase__ ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) lowerCamelCase_ = mst(lowerCamelCase__ ) lowerCamelCase_ = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: lowerCamelCase_ = tuple(answer[:2] ) lowerCamelCase_ = tuple(edge[::-1] ) assert edge in result or reverse in result
19
0
from random import randint, random def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = 5 , ): '''simple docstring''' __UpperCamelCase :Optional[int] = [[-1] * number_of_cells] # Create a highway without any car __UpperCamelCase :Optional[int] = 0 __UpperCamelCase :Any = max(SCREAMING_SNAKE_CASE , 0 ) while i < number_of_cells: __UpperCamelCase :Union[str, Any] = ( randint(0 , SCREAMING_SNAKE_CASE ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Any = 0 __UpperCamelCase :Optional[int] = highway_now[car_index + 1 :] for cell in range(len(SCREAMING_SNAKE_CASE ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(SCREAMING_SNAKE_CASE , -1 ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Optional[int] = len(SCREAMING_SNAKE_CASE ) # Beforce calculations, the highway is empty __UpperCamelCase :List[str] = [-1] * number_of_cells for car_index in range(SCREAMING_SNAKE_CASE ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed __UpperCamelCase :Optional[int] = min(highway_now[car_index] + 1 , SCREAMING_SNAKE_CASE ) # Number of empty cell before the next car __UpperCamelCase :Dict = get_distance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) - 1 # We can't have the car causing an accident __UpperCamelCase :Tuple = min(next_highway[car_index] , SCREAMING_SNAKE_CASE ) if random() < probability: # Randomly, a driver will slow down __UpperCamelCase :Optional[Any] = max(next_highway[car_index] - 1 , 0 ) return next_highway def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Union[str, Any] = len(highway[0] ) for i in range(SCREAMING_SNAKE_CASE ): __UpperCamelCase :int = update(highway[i] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCamelCase :Dict = [-1] * number_of_cells for car_index in range(SCREAMING_SNAKE_CASE ): __UpperCamelCase :Dict = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) __UpperCamelCase :Dict = (car_index + speed) % number_of_cells # Commit the change of position __UpperCamelCase :Union[str, Any] = speed highway.append(SCREAMING_SNAKE_CASE ) return highway if __name__ == "__main__": import doctest doctest.testmod()
43
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __A =1_6 __A =3_2 def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ = 1_6 ): lowerCamelCase_ = AutoTokenizer.from_pretrained("bert-base-cased" ) lowerCamelCase_ = load_dataset("glue" , "mrpc" ) def tokenize_function(lowerCamelCase__ ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase_ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCamelCase_ = datasets.map( lowerCamelCase__ , batched=lowerCamelCase__ , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase_ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowerCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCamelCase_ = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCamelCase_ = 1_6 elif accelerator.mixed_precision != "no": lowerCamelCase_ = 8 else: lowerCamelCase_ = None return tokenizer.pad( lowerCamelCase__ , padding="longest" , max_length=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_tensors="pt" , ) # Instantiate dataloaders. lowerCamelCase_ = DataLoader( tokenized_datasets["train"] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ ) lowerCamelCase_ = DataLoader( tokenized_datasets["validation"] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders __A =mocked_dataloaders # noqa: F811 def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS" , lowerCamelCase__ ) == "1": lowerCamelCase_ = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: lowerCamelCase_ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: lowerCamelCase_ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase_ = config["lr"] lowerCamelCase_ = int(config["num_epochs"] ) lowerCamelCase_ = int(config["seed"] ) lowerCamelCase_ = int(config["batch_size"] ) set_seed(lowerCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ = get_dataloaders(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation lowerCamelCase_ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowerCamelCase_ = batch_size // MAX_GPU_BATCH_SIZE lowerCamelCase_ = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase_ = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=lowerCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCamelCase_ = model.to(accelerator.device ) # Instantiate optimizer lowerCamelCase_ = AdamW(params=model.parameters() , lr=lowerCamelCase__ ) # Instantiate scheduler lowerCamelCase_ = get_linear_schedule_with_warmup( optimizer=lowerCamelCase__ , num_warmup_steps=1_0_0 , num_training_steps=(len(lowerCamelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: lowerCamelCase_ = os.path.split(lowerCamelCase__ )[-1].split("." )[0] accelerator.init_trackers(lowerCamelCase__ , lowerCamelCase__ ) # Now we train the model for epoch in range(lowerCamelCase__ ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: lowerCamelCase_ = 0 for step, batch in enumerate(lowerCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCamelCase_ = model(**lowerCamelCase__ ) lowerCamelCase_ = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() lowerCamelCase_ = loss / gradient_accumulation_steps accelerator.backward(lowerCamelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase_ = model(**lowerCamelCase__ ) lowerCamelCase_ = outputs.logits.argmax(dim=-1 ) lowerCamelCase_ , lowerCamelCase_ = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=lowerCamelCase__ , references=lowerCamelCase__ , ) lowerCamelCase_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , lowerCamelCase__ ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { "accuracy": eval_metric["accuracy"], "f1": eval_metric["f1"], "train_loss": total_loss.item() / len(lowerCamelCase__ ), "epoch": epoch, } , step=lowerCamelCase__ , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def lowerCamelCase_ ( ): lowerCamelCase_ = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=lowerCamelCase__ , default=lowerCamelCase__ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=lowerCamelCase__ , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) lowerCamelCase_ = parser.parse_args() lowerCamelCase_ = {"lr": 2e-5, "num_epochs": 3, "seed": 4_2, "batch_size": 1_6} training_function(lowerCamelCase__ , lowerCamelCase__ ) if __name__ == "__main__": main()
19
0
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : str = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) _UpperCamelCase : ClassVar[Features] = Features({"image": Image()} ) _UpperCamelCase : ClassVar[Features] = Features({"labels": ClassLabel} ) _UpperCamelCase : str = "image" _UpperCamelCase : str = "labels" def __A ( self , a__ ): if self.label_column not in features: raise ValueError(F"Column {self.label_column} is not present in features." ) if not isinstance(features[self.label_column] , a__ ): raise ValueError(F"Column {self.label_column} is not a ClassLabel." ) _lowerCAmelCase : str = copy.deepcopy(self ) _lowerCAmelCase : Dict = self.label_schema.copy() _lowerCAmelCase : str = features[self.label_column] _lowerCAmelCase : Optional[Any] = label_schema return task_template @property def __A ( self ): return { self.image_column: "image", self.label_column: "labels", }
44
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: __A =None __A =logging.get_logger(__name__) __A ={'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __A ={ '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } __A ={ '''facebook/mbart-large-en-ro''': 1_0_2_4, '''facebook/mbart-large-cc25''': 1_0_2_4, } # fmt: off __A =['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = ['input_ids', 'attention_mask'] lowerCAmelCase__ = MBartTokenizer lowerCAmelCase__ = [] lowerCAmelCase__ = [] def __init__( self , lowercase=None , lowercase=None , lowercase="<s>" , lowercase="</s>" , lowercase="</s>" , lowercase="<s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase="<mask>" , lowercase=None , lowercase=None , lowercase=None , **lowercase , ) -> Dict: # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else mask_token super().__init__( vocab_file=lowercase , tokenizer_file=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , cls_token=lowercase , unk_token=lowercase , pad_token=lowercase , mask_token=lowercase , src_lang=lowercase , tgt_lang=lowercase , additional_special_tokens=lowercase , **lowercase , ) lowerCamelCase_ = vocab_file lowerCamelCase_ = False if not self.vocab_file else True lowerCamelCase_ = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens} ) lowerCamelCase_ = { lang_code: self.convert_tokens_to_ids(lowercase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCamelCase_ = src_lang if src_lang is not None else "en_XX" lowerCamelCase_ = self.convert_tokens_to_ids(self._src_lang ) lowerCamelCase_ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def SCREAMING_SNAKE_CASE_( self ) -> str: return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE_( self , lowercase ) -> None: lowerCamelCase_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> List[int]: lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , **lowercase ) -> List[Any]: if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) lowerCamelCase_ = src_lang lowerCamelCase_ = self(lowercase , add_special_tokens=lowercase , return_tensors=lowercase , **lowercase ) lowerCamelCase_ = self.convert_tokens_to_ids(lowercase ) lowerCamelCase_ = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = "en_XX" , lowercase = None , lowercase = "ro_RO" , **lowercase , ) -> BatchEncoding: lowerCamelCase_ = src_lang lowerCamelCase_ = tgt_lang return super().prepare_seqaseq_batch(lowercase , lowercase , **lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Dict: return self.set_src_lang_special_tokens(self.src_lang ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> None: lowerCamelCase_ = self.convert_tokens_to_ids(lowercase ) lowerCamelCase_ = [] lowerCamelCase_ = [self.eos_token_id, self.cur_lang_code] lowerCamelCase_ = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase_ = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase_ = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> None: lowerCamelCase_ = self.convert_tokens_to_ids(lowercase ) lowerCamelCase_ = [] lowerCamelCase_ = [self.eos_token_id, self.cur_lang_code] lowerCamelCase_ = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase_ = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase_ = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory.' ) return lowerCamelCase_ = os.path.join( lowercase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ): copyfile(self.vocab_file , lowercase ) return (out_vocab_file,)
19
0
"""simple docstring""" import math def lowercase ( lowerCAmelCase__ : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase ( lowerCAmelCase__ : float = 0.1 ) -> int: __a = 3 __a = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(lowerCAmelCase__ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
45
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss __A =pytest.mark.integration @require_faiss class _SCREAMING_SNAKE_CASE ( snake_case_ ): def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(lowercase ) for x in np.arange(30 ).tolist()]} ) return dset def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: import faiss lowerCamelCase_ = self._create_dummy_dataset() lowerCamelCase_ = dset.map( lambda lowercase , lowercase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=lowercase , keep_in_memory=lowercase ) lowerCamelCase_ = dset.add_faiss_index("vecs" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCamelCase_ , lowerCamelCase_ = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) dset.drop_index("vecs" ) def SCREAMING_SNAKE_CASE_( self ) -> Dict: import faiss lowerCamelCase_ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCamelCase_ , lowerCamelCase_ = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: import faiss lowerCamelCase_ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowercase ) as tmp_file: dset.save_faiss_index("vecs" , tmp_file.name ) dset.load_faiss_index("vecs2" , tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase_ , lowerCamelCase_ = dset.get_nearest_examples("vecs2" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: lowerCamelCase_ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" ) dset.drop_index("vecs" ) self.assertRaises(lowercase , partial(dset.get_nearest_examples , "vecs2" , np.ones(5 , dtype=np.floataa ) ) ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: from elasticsearch import Elasticsearch lowerCamelCase_ = self._create_dummy_dataset() with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: lowerCamelCase_ = {"acknowledged": True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 29}]}} lowerCamelCase_ = Elasticsearch() dset.add_elasticsearch_index("filename" , es_client=lowercase ) lowerCamelCase_ , lowerCamelCase_ = dset.get_nearest_examples("filename" , "my_name-train_29" ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) @require_faiss class _SCREAMING_SNAKE_CASE ( snake_case_ ): def SCREAMING_SNAKE_CASE_( self ) -> Tuple: import faiss lowerCamelCase_ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCamelCase_ = np.zeros(5 , dtype=np.floataa ) lowerCamelCase_ = 1 lowerCamelCase_ , lowerCamelCase_ = index.search(lowercase ) self.assertRaises(lowercase , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCamelCase_ = np.eye(5 , dtype=np.floataa )[::-1] lowerCamelCase_ , lowerCamelCase_ = index.search_batch(lowercase ) self.assertRaises(lowercase , index.search_batch , queries[0] ) lowerCamelCase_ = [scores[0] for scores in total_scores] lowerCamelCase_ = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Any: import faiss lowerCamelCase_ = FaissIndex(string_factory="Flat" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCamelCase_ = FaissIndex(string_factory="LSH" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(lowercase ): lowerCamelCase_ = FaissIndex(string_factory="Flat" , custom_index=faiss.IndexFlat(5 ) ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: import faiss lowerCamelCase_ = faiss.IndexFlat(5 ) lowerCamelCase_ = FaissIndex(custom_index=lowercase ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: import faiss lowerCamelCase_ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowercase ) as tmp_file: index.save(tmp_file.name ) lowerCamelCase_ = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase_ = np.zeros(5 , dtype=np.floataa ) lowerCamelCase_ = 1 lowerCamelCase_ , lowerCamelCase_ = index.search(lowercase ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def lowerCamelCase_ ( lowerCamelCase__ ): import faiss lowerCamelCase_ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCamelCase_ = "index.faiss" lowerCamelCase_ = F'mock://{index_name}' index.save(lowerCamelCase__ , storage_options=mockfs.storage_options ) lowerCamelCase_ = FaissIndex.load(lowerCamelCase__ , storage_options=mockfs.storage_options ) lowerCamelCase_ = np.zeros(5 , dtype=np.floataa ) lowerCamelCase_ = 1 lowerCamelCase_ , lowerCamelCase_ = index.search(lowerCamelCase__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _SCREAMING_SNAKE_CASE ( snake_case_ ): def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: from elasticsearch import Elasticsearch with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: lowerCamelCase_ = Elasticsearch() lowerCamelCase_ = {"acknowledged": True} lowerCamelCase_ = ElasticSearchIndex(es_client=lowercase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["foo", "bar", "foobar"] ) # single query lowerCamelCase_ = "foo" lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} lowerCamelCase_ , lowerCamelCase_ = index.search(lowercase ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCamelCase_ = "foo" lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} lowerCamelCase_ , lowerCamelCase_ = index.search(lowercase , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCamelCase_ = ["foo", "bar", "foobar"] lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} lowerCamelCase_ , lowerCamelCase_ = index.search_batch(lowercase ) lowerCamelCase_ = [scores[0] for scores in total_scores] lowerCamelCase_ = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase ) , 0 ) self.assertListEqual([1, 1, 1] , lowercase ) # batched queries with timeout lowerCamelCase_ = ["foo", "bar", "foobar"] lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} lowerCamelCase_ , lowerCamelCase_ = index.search_batch(lowercase , request_timeout=30 ) lowerCamelCase_ = [scores[0] for scores in total_scores] lowerCamelCase_ = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase ) , 0 ) self.assertListEqual([1, 1, 1] , lowercase )
19
0
"""simple docstring""" SCREAMING_SNAKE_CASE__ = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : bytes ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase = F'a bytes-like object is required, not \'{data.__class__.__name__}\'' raise TypeError(SCREAMING_SNAKE_CASE ) lowerCAmelCase = """""".join(bin(SCREAMING_SNAKE_CASE )[2:].zfill(8 ) for byte in data ) lowerCAmelCase = len(SCREAMING_SNAKE_CASE ) % 6 != 0 if padding_needed: # The padding that will be added later lowerCAmelCase = B"""=""" * ((6 - len(SCREAMING_SNAKE_CASE ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(SCREAMING_SNAKE_CASE ) % 6) else: lowerCAmelCase = B"""""" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(SCREAMING_SNAKE_CASE ) , 6 ) ).encode() + padding ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase = ( """argument should be a bytes-like object or ASCII string, """ F'not \'{encoded_data.__class__.__name__}\'' ) raise TypeError(SCREAMING_SNAKE_CASE ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): try: lowerCAmelCase = encoded_data.decode("""utf-8""" ) except UnicodeDecodeError: raise ValueError("""base64 encoded data should only contain ASCII characters""" ) lowerCAmelCase = encoded_data.count("""=""" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(SCREAMING_SNAKE_CASE ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one lowerCAmelCase = encoded_data[:-padding] lowerCAmelCase = """""".join( bin(B64_CHARSET.index(SCREAMING_SNAKE_CASE ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: lowerCAmelCase = """""".join( bin(B64_CHARSET.index(SCREAMING_SNAKE_CASE ) )[2:].zfill(6 ) for char in encoded_data ) lowerCAmelCase = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(SCREAMING_SNAKE_CASE ) , 8 ) ] return bytes(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
46
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class _SCREAMING_SNAKE_CASE : def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=99 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.0_2 , lowercase=3 , lowercase=4 , lowercase=None , ) -> List[str]: lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_token_type_ids lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = num_labels lowerCamelCase_ = num_choices lowerCamelCase_ = scope lowerCamelCase_ = self.vocab_size - 1 def SCREAMING_SNAKE_CASE_( self ) -> Any: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_token_type_ids: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) lowerCamelCase_ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , *lowercase ) -> Dict: lowerCamelCase_ = OpenAIGPTModel(config=lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = model(lowercase , token_type_ids=lowercase , head_mask=lowercase ) lowerCamelCase_ = model(lowercase , token_type_ids=lowercase ) lowerCamelCase_ = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , *lowercase ) -> int: lowerCamelCase_ = OpenAIGPTLMHeadModel(lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = model(lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , *lowercase ) -> Dict: lowerCamelCase_ = OpenAIGPTDoubleHeadsModel(lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = model(lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , *lowercase ) -> int: lowerCamelCase_ = self.num_labels lowerCamelCase_ = OpenAIGPTForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = model(lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = { "input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask, } return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): lowerCAmelCase__ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) lowerCAmelCase__ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly lowerCAmelCase__ = ( { 'feature-extraction': OpenAIGPTModel, 'text-classification': OpenAIGPTForSequenceClassification, 'text-generation': OpenAIGPTLMHeadModel, 'zero-shot': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase ) -> int: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase=False ) -> Any: lowerCamelCase_ = super()._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": lowerCamelCase_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=lowercase , ) lowerCamelCase_ = inputs_dict["labels"] lowerCamelCase_ = inputs_dict["labels"] lowerCamelCase_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=lowercase , ) lowerCamelCase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase ) return inputs_dict def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ = OpenAIGPTModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=lowercase , n_embd=37 ) def SCREAMING_SNAKE_CASE_( self ) -> Any: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Tuple: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowercase ) @slow def SCREAMING_SNAKE_CASE_( self ) -> Any: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = OpenAIGPTModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ = OpenAIGPTLMHeadModel.from_pretrained("openai-gpt" ) model.to(lowercase ) lowerCamelCase_ = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=lowercase ) # the president is lowerCamelCase_ = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the lowerCamelCase_ = model.generate(lowercase , do_sample=lowercase ) self.assertListEqual(output_ids[0].tolist() , lowercase )
19
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class A__ ( A__ , unittest.TestCase ): A__ = ShapEPipeline A__ = ['prompt'] A__ = ['prompt'] A__ = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] A__ = False @property def A ( self : int ) -> int: '''simple docstring''' return 32 @property def A ( self : Dict ) -> List[Any]: '''simple docstring''' return 32 @property def A ( self : int ) -> List[Any]: '''simple docstring''' return self.time_input_dim * 4 @property def A ( self : str ) -> Optional[Any]: '''simple docstring''' return 8 @property def A ( self : Union[str, Any] ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def A ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_a ) @property def A ( self : Tuple ) -> int: '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE ={ 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } _SCREAMING_SNAKE_CASE =PriorTransformer(**_a ) return model @property def A ( self : Dict ) -> Any: '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE ={ 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } _SCREAMING_SNAKE_CASE =ShapERenderer(**_a ) return model def A ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.dummy_prior _SCREAMING_SNAKE_CASE =self.dummy_text_encoder _SCREAMING_SNAKE_CASE =self.dummy_tokenizer _SCREAMING_SNAKE_CASE =self.dummy_renderer _SCREAMING_SNAKE_CASE =HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1024 , prediction_type='sample' , use_karras_sigmas=_a , clip_sample=_a , clip_sample_range=1.0 , ) _SCREAMING_SNAKE_CASE ={ 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def A ( self : int , _a : Optional[Any] , _a : Any=0 ) -> Union[str, Any]: '''simple docstring''' if str(_a ).startswith('mps' ): _SCREAMING_SNAKE_CASE =torch.manual_seed(_a ) else: _SCREAMING_SNAKE_CASE =torch.Generator(device=_a ).manual_seed(_a ) _SCREAMING_SNAKE_CASE ={ 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def A ( self : int ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE ='cpu' _SCREAMING_SNAKE_CASE =self.get_dummy_components() _SCREAMING_SNAKE_CASE =self.pipeline_class(**_a ) _SCREAMING_SNAKE_CASE =pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE =pipe(**self.get_dummy_inputs(_a ) ) _SCREAMING_SNAKE_CASE =output.images[0] _SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _SCREAMING_SNAKE_CASE =np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A ( self : Dict ) -> List[str]: '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def A ( self : Optional[Any] ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =torch_device == 'cpu' _SCREAMING_SNAKE_CASE =True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_a , relax_max_difference=_a , ) def A ( self : str ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.get_dummy_components() _SCREAMING_SNAKE_CASE =self.pipeline_class(**_a ) _SCREAMING_SNAKE_CASE =pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =2 _SCREAMING_SNAKE_CASE =self.get_dummy_inputs(_a ) for key in inputs.keys(): if key in self.batch_params: _SCREAMING_SNAKE_CASE =batch_size * [inputs[key]] _SCREAMING_SNAKE_CASE =pipe(**_a , num_images_per_prompt=_a )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class A__ ( unittest.TestCase ): def A ( self : str ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : Optional[Any] ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) _SCREAMING_SNAKE_CASE =ShapEPipeline.from_pretrained('openai/shap-e' ) _SCREAMING_SNAKE_CASE =pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE =torch.Generator(device=_a ).manual_seed(0 ) _SCREAMING_SNAKE_CASE =pipe( 'a shark' , generator=_a , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_a , _a )
47
__A ={str(digit): digit**5 for digit in range(1_0)} def lowerCamelCase_ ( lowerCamelCase__ ): return sum(DIGITS_FIFTH_POWER[digit] for digit in str(lowerCamelCase__ ) ) def lowerCamelCase_ ( ): return sum( number for number in range(1_0_0_0 , 1_0_0_0_0_0_0 ) if number == digits_fifth_powers_sum(lowerCamelCase__ ) ) if __name__ == "__main__": print(solution())
19
0
def A ( _SCREAMING_SNAKE_CASE ) -> Any: lowerCamelCase : Optional[Any] = [] lowerCamelCase : str = set({"(", "[", "{"} ) lowerCamelCase : int = set({")", "]", "}"} ) lowerCamelCase : Union[str, Any] = {"{": "}", "[": "]", "(": ")"} for i in range(len(_SCREAMING_SNAKE_CASE ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(_SCREAMING_SNAKE_CASE ) == 0 or (len(_SCREAMING_SNAKE_CASE ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(_SCREAMING_SNAKE_CASE ) == 0 def A ( ) -> Union[str, Any]: lowerCamelCase : int = input("Enter sequence of brackets: " ) if is_balanced(_SCREAMING_SNAKE_CASE ): print(_SCREAMING_SNAKE_CASE ,"is balanced" ) else: print(_SCREAMING_SNAKE_CASE ,"is not balanced" ) if __name__ == "__main__": main()
48
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() __A =logging.get_logger(__name__) def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: lowerCamelCase_ = 1_9_2 lowerCamelCase_ = 7_6_8 lowerCamelCase_ = 1_2 lowerCamelCase_ = 3 lowerCamelCase_ = [8_0_0, 1_3_3_3] lowerCamelCase_ = False elif yolos_name == "yolos_s_dWr": lowerCamelCase_ = 3_3_0 lowerCamelCase_ = 1_4 lowerCamelCase_ = 6 lowerCamelCase_ = 1_3_2_0 elif "yolos_s" in yolos_name: lowerCamelCase_ = 3_8_4 lowerCamelCase_ = 1_5_3_6 lowerCamelCase_ = 1_2 lowerCamelCase_ = 6 elif "yolos_b" in yolos_name: lowerCamelCase_ = [8_0_0, 1_3_4_4] lowerCamelCase_ = 9_1 lowerCamelCase_ = "huggingface/label-files" lowerCamelCase_ = "coco-detection-id2label.json" lowerCamelCase_ = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="dataset" ) , "r" ) ) lowerCamelCase_ = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} lowerCamelCase_ = idalabel lowerCamelCase_ = {v: k for k, v in idalabel.items()} return config def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase_ = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) lowerCamelCase_ = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase_ = in_proj_weight[: config.hidden_size, :] lowerCamelCase_ = in_proj_bias[: config.hidden_size] lowerCamelCase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase_ = in_proj_weight[-config.hidden_size :, :] lowerCamelCase_ = in_proj_bias[-config.hidden_size :] def lowerCamelCase_ ( lowerCamelCase__ ): if "backbone" in name: lowerCamelCase_ = name.replace("backbone" , "vit" ) if "cls_token" in name: lowerCamelCase_ = name.replace("cls_token" , "embeddings.cls_token" ) if "det_token" in name: lowerCamelCase_ = name.replace("det_token" , "embeddings.detection_tokens" ) if "mid_pos_embed" in name: lowerCamelCase_ = name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" ) if "pos_embed" in name: lowerCamelCase_ = name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: lowerCamelCase_ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "blocks" in name: lowerCamelCase_ = name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: lowerCamelCase_ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: lowerCamelCase_ = name.replace("attn" , "attention.self" ) if "norm1" in name: lowerCamelCase_ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowerCamelCase_ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: lowerCamelCase_ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowerCamelCase_ = name.replace("mlp.fc2" , "output.dense" ) if "class_embed" in name: lowerCamelCase_ = name.replace("class_embed" , "class_labels_classifier" ) if "bbox_embed" in name: lowerCamelCase_ = name.replace("bbox_embed" , "bbox_predictor" ) if "vit.norm" in name: lowerCamelCase_ = name.replace("vit.norm" , "vit.layernorm" ) return name def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): for key in orig_state_dict.copy().keys(): lowerCamelCase_ = orig_state_dict.pop(lowerCamelCase__ ) if "qkv" in key: lowerCamelCase_ = key.split("." ) lowerCamelCase_ = int(key_split[2] ) lowerCamelCase_ = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: lowerCamelCase_ = val[:dim, :] lowerCamelCase_ = val[ dim : dim * 2, : ] lowerCamelCase_ = val[-dim:, :] else: lowerCamelCase_ = val[:dim] lowerCamelCase_ = val[dim : dim * 2] lowerCamelCase_ = val[-dim:] else: lowerCamelCase_ = val return orig_state_dict def lowerCamelCase_ ( ): lowerCamelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase_ = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ) return im @torch.no_grad() def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ): lowerCamelCase_ = get_yolos_config(lowerCamelCase__ ) # load original state_dict lowerCamelCase_ = torch.load(lowerCamelCase__ , map_location="cpu" )["model"] # load 🤗 model lowerCamelCase_ = YolosForObjectDetection(lowerCamelCase__ ) model.eval() lowerCamelCase_ = convert_state_dict(lowerCamelCase__ , lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) # Check outputs on an image, prepared by YolosImageProcessor lowerCamelCase_ = 8_0_0 if yolos_name != "yolos_ti" else 5_1_2 lowerCamelCase_ = YolosImageProcessor(format="coco_detection" , size=lowerCamelCase__ ) lowerCamelCase_ = image_processor(images=prepare_img() , return_tensors="pt" ) lowerCamelCase_ = model(**lowerCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ = outputs.logits, outputs.pred_boxes lowerCamelCase_ , lowerCamelCase_ = None, None if yolos_name == "yolos_ti": lowerCamelCase_ = torch.tensor( [[-39.50_22, -11.98_20, -17.68_88], [-29.95_74, -9.97_69, -17.76_91], [-42.32_81, -20.72_00, -30.62_94]] ) lowerCamelCase_ = torch.tensor( [[0.40_21, 0.08_36, 0.79_79], [0.01_84, 0.26_09, 0.03_64], [0.17_81, 0.20_04, 0.20_95]] ) elif yolos_name == "yolos_s_200_pre": lowerCamelCase_ = torch.tensor( [[-24.02_48, -10.30_24, -14.82_90], [-42.03_92, -16.82_00, -27.43_34], [-27.27_43, -11.81_54, -18.71_48]] ) lowerCamelCase_ = torch.tensor( [[0.25_59, 0.54_55, 0.47_06], [0.29_89, 0.72_79, 0.18_75], [0.77_32, 0.40_17, 0.44_62]] ) elif yolos_name == "yolos_s_300_pre": lowerCamelCase_ = torch.tensor( [[-36.22_20, -14.43_85, -23.54_57], [-35.69_70, -14.75_83, -21.39_35], [-31.59_39, -13.60_42, -16.80_49]] ) lowerCamelCase_ = torch.tensor( [[0.76_14, 0.23_16, 0.47_28], [0.71_68, 0.44_95, 0.38_55], [0.49_96, 0.14_66, 0.99_96]] ) elif yolos_name == "yolos_s_dWr": lowerCamelCase_ = torch.tensor( [[-42.86_68, -24.10_49, -41.16_90], [-34.74_56, -14.12_74, -24.91_94], [-33.78_98, -12.19_46, -25.64_95]] ) lowerCamelCase_ = torch.tensor( [[0.55_87, 0.27_73, 0.06_05], [0.50_04, 0.30_14, 0.99_94], [0.49_99, 0.15_48, 0.99_94]] ) elif yolos_name == "yolos_base": lowerCamelCase_ = torch.tensor( [[-40.60_64, -24.30_84, -32.64_47], [-55.19_90, -30.77_19, -35.58_77], [-51.43_11, -33.35_07, -35.64_62]] ) lowerCamelCase_ = torch.tensor( [[0.55_55, 0.27_94, 0.06_55], [0.90_49, 0.26_64, 0.18_94], [0.91_83, 0.19_84, 0.16_35]] ) else: raise ValueError(F'Unknown yolos_name: {yolos_name}' ) assert torch.allclose(logits[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) print(F'Saving model {yolos_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCamelCase__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: lowerCamelCase_ = { "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) lowerCamelCase_ = model_mapping[yolos_name] image_processor.push_to_hub(lowerCamelCase__ , organization="hustvl" ) model.push_to_hub(lowerCamelCase__ , organization="hustvl" ) if __name__ == "__main__": __A =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--yolos_name''', default='''yolos_s_200_pre''', type=str, help=( '''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',''' ''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.''' ), ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __A =parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
19
0
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def __snake_case ( _UpperCAmelCase ): if isinstance(_UpperCAmelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class _A : def _lowerCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]): '''simple docstring''' pass def _lowerCamelCase ( self : List[str]): '''simple docstring''' pass def _lowerCamelCase ( self : Any): '''simple docstring''' pass def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Any=None , **__SCREAMING_SNAKE_CASE : Optional[int]): '''simple docstring''' __a = VisionTextDualEncoderConfig.from_vision_text_configs(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel(__SCREAMING_SNAKE_CASE) __a = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim)) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim)) def _lowerCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : str=None , **__SCREAMING_SNAKE_CASE : Optional[int]): '''simple docstring''' __a , __a = self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel(vision_model=__SCREAMING_SNAKE_CASE , text_model=__SCREAMING_SNAKE_CASE) __a = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim)) def _lowerCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple=None , **__SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' __a , __a = self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = {'''vision_model''': vision_model, '''text_model''': text_model} __a = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**__SCREAMING_SNAKE_CASE) __a = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim)) def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str]=None , **__SCREAMING_SNAKE_CASE : List[str]): '''simple docstring''' __a , __a = self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel(vision_model=__SCREAMING_SNAKE_CASE , text_model=__SCREAMING_SNAKE_CASE) __a = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) __a = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel.from_pretrained(__SCREAMING_SNAKE_CASE) __a = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) __a = after_output[0].numpy() __a = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1E-5) def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int=None , **__SCREAMING_SNAKE_CASE : Union[str, Any]): '''simple docstring''' __a , __a = self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel(vision_model=__SCREAMING_SNAKE_CASE , text_model=__SCREAMING_SNAKE_CASE) __a = model( input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , output_attentions=__SCREAMING_SNAKE_CASE) __a = output.vision_model_output.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE) , vision_config.num_hidden_layers) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __a = to_atuple(vision_model.config.image_size) __a = to_atuple(vision_model.config.patch_size) __a = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __a = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len)) __a = output.text_model_output.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE) , text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : float): '''simple docstring''' __a = np.abs((a - b)).max() self.assertLessEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , F'Difference between torch and flax is {diff} (>= {tol}).') def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : int): '''simple docstring''' __a = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : str): '''simple docstring''' __a = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = self.prepare_config_and_inputs() self.check_save_load(**__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__SCREAMING_SNAKE_CASE) @slow def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a , __a = self.get_pretrained_model_and_inputs() __a = model_a(**__SCREAMING_SNAKE_CASE) __a = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel.from_pretrained(__SCREAMING_SNAKE_CASE) __a = model_a(**__SCREAMING_SNAKE_CASE) __a = after_outputs[0].numpy() __a = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1E-5) @require_tf class _A ( __UpperCAmelCase ,unittest.TestCase ): def _lowerCamelCase ( self : Any): '''simple docstring''' __a = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-random-bert''') __a = 13 __a = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) __a = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size) __a = random_attention_mask([batch_size, 4]) __a = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def _lowerCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int): '''simple docstring''' __a = TFViTModel(__SCREAMING_SNAKE_CASE , name='''vision_model''') __a = TFBertModel(__SCREAMING_SNAKE_CASE , name='''text_model''') return vision_model, text_model def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = TFViTModelTester(self) __a = TFBertModelTester(self) __a = vit_model_tester.prepare_config_and_inputs() __a = bert_model_tester.prepare_config_and_inputs() __a , __a , __a = vision_config_and_inputs ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _A ( __UpperCAmelCase ,unittest.TestCase ): def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-deit-tf''' , '''hf-internal-testing/tiny-random-roberta''') __a = 13 __a = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) __a = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size) __a = random_attention_mask([batch_size, 4]) __a = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[str]=None , **__SCREAMING_SNAKE_CASE : Optional[int]): '''simple docstring''' __a , __a = self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel(vision_model=__SCREAMING_SNAKE_CASE , text_model=__SCREAMING_SNAKE_CASE) __a = model( input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , output_attentions=__SCREAMING_SNAKE_CASE) __a = output.vision_model_output.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE) , vision_config.num_hidden_layers) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __a = to_atuple(vision_model.config.image_size) __a = to_atuple(vision_model.config.patch_size) __a = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __a = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len)) __a = output.text_model_output.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE) , text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' __a = TFDeiTModel(__SCREAMING_SNAKE_CASE , name='''vision_model''') __a = TFRobertaModel(__SCREAMING_SNAKE_CASE , name='''text_model''') return vision_model, text_model def _lowerCamelCase ( self : int): '''simple docstring''' __a = TFDeiTModelTester(self) __a = TFRobertaModelTester(self) __a = vit_model_tester.prepare_config_and_inputs() __a = bert_model_tester.prepare_config_and_inputs() __a , __a , __a = vision_config_and_inputs ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _A ( __UpperCAmelCase ,unittest.TestCase ): def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-clip-tf''' , '''hf-internal-testing/tiny-random-bert''') __a = 13 __a = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) __a = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size) __a = random_attention_mask([batch_size, 4]) __a = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' __a = TFCLIPVisionModel(__SCREAMING_SNAKE_CASE , name='''vision_model''') __a = TFBertModel(__SCREAMING_SNAKE_CASE , name='''text_model''') return vision_model, text_model def _lowerCamelCase ( self : str): '''simple docstring''' __a = TFCLIPVisionModelTester(self) __a = TFBertModelTester(self) __a = clip_model_tester.prepare_config_and_inputs() __a = bert_model_tester.prepare_config_and_inputs() __a , __a = vision_config_and_inputs ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class _A ( unittest.TestCase ): @slow def _lowerCamelCase ( self : List[Any]): '''simple docstring''' __a = TFVisionTextDualEncoderModel.from_pretrained( '''clip-italian/clip-italian''' , logit_scale_init_value=1.0 , from_pt=__SCREAMING_SNAKE_CASE) __a = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''') __a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') __a = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] , images=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors='''np''') __a = model(**__SCREAMING_SNAKE_CASE) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0])) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __a = np.array([[1.2_28_47_27, 0.3_10_41_22]]) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , __SCREAMING_SNAKE_CASE , atol=1E-3))
49
def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = [0 for i in range(r + 1 )] # nc0 = 1 lowerCamelCase_ = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. lowerCamelCase_ = min(lowerCamelCase__ , lowerCamelCase__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=1_0, r=5))
19
0
import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": _UpperCAmelCase : str = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( """--original_config_file""", default=None, type=str, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--scheduler_type""", default="""pndm""", type=str, help="""Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']""", ) parser.add_argument( """--pipeline_type""", default=None, type=str, help=( """The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'""" """. If `None` pipeline will be automatically inferred.""" ), ) parser.add_argument( """--image_size""", default=None, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--prediction_type""", default=None, type=str, help=( """The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable""" """ Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") parser.add_argument( """--stable_unclip""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.""", ) parser.add_argument( """--stable_unclip_prior""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.""", ) parser.add_argument( """--clip_stats_path""", type=str, help="""Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.""", required=False, ) parser.add_argument( """--controlnet""", action="""store_true""", default=None, help="""Set flag if this is a controlnet checkpoint.""" ) parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--vae_path""", type=str, default=None, required=False, help="""Set to a path, hub id to an already converted vae to not convert it again.""", ) _UpperCAmelCase : List[Any] = parser.parse_args() _UpperCAmelCase : str = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
50
import math def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(lowerCamelCase__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("This should never happen" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. __A ='''Enter the base and the power separated by a comma: ''' __A, __A =map(int, input(prompt).split(''',''')) __A, __A =map(int, input(prompt).split(''',''')) # We find the log of each number, using the function res(), which takes two # arguments. __A =res(xa, ya) __A =res(xa, ya) # We check for the largest number if resa > resa: print('''Largest number is''', xa, '''^''', ya) elif resa > resa: print('''Largest number is''', xa, '''^''', ya) else: print('''Both are equal''')
19
0
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 snake_case_ : List[Any] = data_utils.TransfoXLTokenizer snake_case_ : int = data_utils.TransfoXLCorpus snake_case_ : List[Any] = data_utils snake_case_ : int = data_utils def A (__A : Dict , __A : List[Any] , __A : Union[str, Any] , __A : Tuple ) -> Union[str, Any]: """simple docstring""" if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(__A , '''rb''' ) as fp: UpperCAmelCase_ = pickle.load(__A , encoding='''latin1''' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) UpperCAmelCase_ = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''pretrained_vocab_file'''] print(F"""Save vocabulary to {pytorch_vocab_dump_path}""" ) UpperCAmelCase_ = corpus.vocab.__dict__ torch.save(__A , __A ) UpperCAmelCase_ = corpus.__dict__ corpus_dict_no_vocab.pop('''vocab''' , __A ) UpperCAmelCase_ = pytorch_dump_folder_path + '''/''' + CORPUS_NAME print(F"""Save dataset to {pytorch_dataset_dump_path}""" ) torch.save(__A , __A ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model UpperCAmelCase_ = os.path.abspath(__A ) UpperCAmelCase_ = os.path.abspath(__A ) print(F"""Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.""" ) # Initialise PyTorch model if transfo_xl_config_file == "": UpperCAmelCase_ = TransfoXLConfig() else: UpperCAmelCase_ = TransfoXLConfig.from_json_file(__A ) print(F"""Building PyTorch model from configuration: {config}""" ) UpperCAmelCase_ = TransfoXLLMHeadModel(__A ) UpperCAmelCase_ = load_tf_weights_in_transfo_xl(__A , __A , __A ) # Save pytorch-model UpperCAmelCase_ = os.path.join(__A , __A ) UpperCAmelCase_ = os.path.join(__A , __A ) print(F"""Save PyTorch model to {os.path.abspath(__A )}""" ) torch.save(model.state_dict() , __A ) print(F"""Save configuration file to {os.path.abspath(__A )}""" ) with open(__A , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": snake_case_ : List[str] = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--tf_checkpoint_path", default="", type=str, help="An optional path to a TensorFlow checkpoint path to be converted.", ) parser.add_argument( "--transfo_xl_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--transfo_xl_dataset_file", default="", type=str, help="An optional dataset file to be converted in a vocabulary.", ) snake_case_ : int = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
51
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features __A =logging.get_logger(__name__) __A =list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) __A =tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _SCREAMING_SNAKE_CASE : lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Model type selected in the list: ' + ', '.join(snake_case_ )} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) lowerCAmelCase__ = field( default=1_28 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase__ = field( default=1_28 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) lowerCAmelCase__ = field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) lowerCAmelCase__ = field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) lowerCAmelCase__ = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase__ = field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase__ = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) lowerCAmelCase__ = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = 'train' lowerCAmelCase__ = 'dev' class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 def __init__( self , lowercase , lowercase , lowercase = None , lowercase = Split.train , lowercase = False , lowercase = None , lowercase = "pt" , ) -> List[str]: lowerCamelCase_ = args lowerCamelCase_ = is_language_sensitive lowerCamelCase_ = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(lowercase , lowercase ): try: lowerCamelCase_ = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) lowerCamelCase_ = mode # Load data features from cache or dataset file lowerCamelCase_ = "v2" if args.version_2_with_negative else "v1" lowerCamelCase_ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase_ = cached_features_file + ".lock" with FileLock(lowercase ): if os.path.exists(lowercase ) and not args.overwrite_cache: lowerCamelCase_ = time.time() lowerCamelCase_ = torch.load(lowercase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. lowerCamelCase_ = self.old_features["features"] lowerCamelCase_ = self.old_features.get("dataset" , lowercase ) lowerCamelCase_ = self.old_features.get("examples" , lowercase ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' " future run" ) else: if mode == Split.dev: lowerCamelCase_ = self.processor.get_dev_examples(args.data_dir ) else: lowerCamelCase_ = self.processor.get_train_examples(args.data_dir ) lowerCamelCase_ , lowerCamelCase_ = squad_convert_examples_to_features( examples=self.examples , tokenizer=lowercase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=lowercase , ) lowerCamelCase_ = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples} , lowercase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ) -> Tuple: return len(self.features ) def __getitem__( self , lowercase ) -> Dict[str, torch.Tensor]: # Convert to Tensors and build dataset lowerCamelCase_ = self.features[i] lowerCamelCase_ = torch.tensor(feature.input_ids , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.attention_mask , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.token_type_ids , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.cls_index , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.p_mask , dtype=torch.float ) lowerCamelCase_ = torch.tensor(feature.is_impossible , dtype=torch.float ) lowerCamelCase_ = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: lowerCamelCase_ = torch.tensor(feature.start_position , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
19
0
import pprint import requests __lowerCamelCase : Tuple = """https://zenquotes.io/api""" def A_ ( ) -> list: return requests.get(API_ENDPOINT_URL + "/today" ).json() def A_ ( ) -> list: return requests.get(API_ENDPOINT_URL + "/random" ).json() if __name__ == "__main__": __lowerCamelCase : Optional[int] = random_quotes() pprint.pprint(response)
52
from abc import ABC, abstractmethod from argparse import ArgumentParser class _SCREAMING_SNAKE_CASE ( snake_case_ ): @staticmethod @abstractmethod def SCREAMING_SNAKE_CASE_( lowercase ) -> int: raise NotImplementedError() @abstractmethod def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: raise NotImplementedError()
19
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Optional[int] =logging.get_logger(__name__) a__ : int ={ '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json''', } class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any ="gpt_neox_japanese" def __init__( self : Any , __A : List[Any]=3_2_0_0_0 , __A : Tuple=2_5_6_0 , __A : str=3_2 , __A : int=3_2 , __A : Optional[int]=4 , __A : Optional[Any]="gelu" , __A : List[Any]=1.00 , __A : str=1_0_0_0_0 , __A : Union[str, Any]=2_0_4_8 , __A : str=0.02 , __A : Optional[int]=1e-5 , __A : str=True , __A : Any=3_1_9_9_6 , __A : Union[str, Any]=3_1_9_9_9 , __A : Dict=0.1 , __A : str=0.0 , **__A : Dict , ): super().__init__(bos_token_id=__A , eos_token_id=__A , **__A ) __UpperCamelCase = vocab_size __UpperCamelCase = max_position_embeddings __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_multiple_size __UpperCamelCase = hidden_act __UpperCamelCase = rotary_pct __UpperCamelCase = rotary_emb_base __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = use_cache __UpperCamelCase = attention_dropout __UpperCamelCase = hidden_dropout
53
from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging __A =logging.get_logger(__name__) # pylint: disable=invalid-name class _SCREAMING_SNAKE_CASE ( snake_case_ ): def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> List[Any]: super().__init__() if hasattr(scheduler.config , "steps_offset" ) and scheduler.config.steps_offset != 1: lowerCamelCase_ = ( f'The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`' f' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ' "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1" , "1.0.0" , lowercase , standard_warn=lowercase ) lowerCamelCase_ = dict(scheduler.config ) lowerCamelCase_ = 1 lowerCamelCase_ = FrozenDict(lowercase ) if hasattr(scheduler.config , "skip_prk_steps" ) and scheduler.config.skip_prk_steps is False: lowerCamelCase_ = ( f'The configuration file of this scheduler: {scheduler} has not set the configuration' " `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make" " sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to" " incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face" " Hub, it would be very nice if you could open a Pull request for the" " `scheduler/scheduler_config.json` file" ) deprecate("skip_prk_steps not set" , "1.0.0" , lowercase , standard_warn=lowercase ) lowerCamelCase_ = dict(scheduler.config ) lowerCamelCase_ = True lowerCamelCase_ = FrozenDict(lowercase ) if safety_checker is None: logger.warning( f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure' " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( segmentation_model=lowercase , segmentation_processor=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , unet=lowercase , scheduler=lowercase , safety_checker=lowercase , feature_extractor=lowercase , ) def SCREAMING_SNAKE_CASE_( self , lowercase = "auto" ) -> Tuple: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowerCamelCase_ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: self.enable_attention_slicing(lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> str: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) lowerCamelCase_ = torch.device("cuda" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(lowercase , lowercase ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: if self.device != torch.device("meta" ) or not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self , lowercase , lowercase , lowercase , lowercase = 512 , lowercase = 512 , lowercase = 50 , lowercase = 7.5 , lowercase = None , lowercase = 1 , lowercase = 0.0 , lowercase = None , lowercase = None , lowercase = "pil" , lowercase = True , lowercase = None , lowercase = 1 , **lowercase , ) -> int: lowerCamelCase_ = self.segmentation_processor( text=[text] , images=[image] , padding="max_length" , return_tensors="pt" ).to(self.device ) lowerCamelCase_ = self.segmentation_model(**lowercase ) lowerCamelCase_ = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() lowerCamelCase_ = self.numpy_to_pil(lowercase )[0].resize(image.size ) # Run inpainting pipeline with the generated mask lowerCamelCase_ = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=lowercase , image=lowercase , mask_image=lowercase , height=lowercase , width=lowercase , num_inference_steps=lowercase , guidance_scale=lowercase , negative_prompt=lowercase , num_images_per_prompt=lowercase , eta=lowercase , generator=lowercase , latents=lowercase , output_type=lowercase , return_dict=lowercase , callback=lowercase , callback_steps=lowercase , )
19
0
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Tuple = logging.get_logger(__name__) a__ : Tuple = { '''huggingface/time-series-transformer-tourism-monthly''': ( '''https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json''' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : Optional[int] = "time_series_transformer" snake_case__ : Optional[int] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : Union[str, Any] , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : str = "student_t" , UpperCAmelCase__ : str = "nll" , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7] , UpperCAmelCase__ : Optional[Union[str, bool]] = "mean" , UpperCAmelCase__ : int = 0 , UpperCAmelCase__ : int = 0 , UpperCAmelCase__ : int = 0 , UpperCAmelCase__ : int = 0 , UpperCAmelCase__ : Optional[List[int]] = None , UpperCAmelCase__ : Optional[List[int]] = None , UpperCAmelCase__ : int = 3_2 , UpperCAmelCase__ : int = 3_2 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : str = "gelu" , UpperCAmelCase__ : int = 6_4 , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : int = 1_0_0 , UpperCAmelCase__ : float = 0.02 , UpperCAmelCase__ : Optional[int]=True , **UpperCAmelCase__ : Tuple , ) -> Dict: # time series specific configuration __SCREAMING_SNAKE_CASE = prediction_length __SCREAMING_SNAKE_CASE = context_length or prediction_length __SCREAMING_SNAKE_CASE = distribution_output __SCREAMING_SNAKE_CASE = loss __SCREAMING_SNAKE_CASE = input_size __SCREAMING_SNAKE_CASE = num_time_features __SCREAMING_SNAKE_CASE = lags_sequence __SCREAMING_SNAKE_CASE = scaling __SCREAMING_SNAKE_CASE = num_dynamic_real_features __SCREAMING_SNAKE_CASE = num_static_real_features __SCREAMING_SNAKE_CASE = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(UpperCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) __SCREAMING_SNAKE_CASE = cardinality else: __SCREAMING_SNAKE_CASE = [0] if embedding_dimension and num_static_categorical_features > 0: if len(UpperCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) __SCREAMING_SNAKE_CASE = embedding_dimension else: __SCREAMING_SNAKE_CASE = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] __SCREAMING_SNAKE_CASE = num_parallel_samples # Transformer architecture configuration __SCREAMING_SNAKE_CASE = input_size * len(UpperCAmelCase__ ) + self._number_of_features __SCREAMING_SNAKE_CASE = d_model __SCREAMING_SNAKE_CASE = encoder_attention_heads __SCREAMING_SNAKE_CASE = decoder_attention_heads __SCREAMING_SNAKE_CASE = encoder_ffn_dim __SCREAMING_SNAKE_CASE = decoder_ffn_dim __SCREAMING_SNAKE_CASE = encoder_layers __SCREAMING_SNAKE_CASE = decoder_layers __SCREAMING_SNAKE_CASE = dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = encoder_layerdrop __SCREAMING_SNAKE_CASE = decoder_layerdrop __SCREAMING_SNAKE_CASE = activation_function __SCREAMING_SNAKE_CASE = init_std __SCREAMING_SNAKE_CASE = use_cache super().__init__(is_encoder_decoder=UpperCAmelCase__ , **UpperCAmelCase__ ) @property def UpperCAmelCase_ ( self : Any ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
54
from collections import deque def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = len(lowerCamelCase__ ) lowerCamelCase_ = deque() lowerCamelCase_ = [False for _ in range(lowerCamelCase__ )] lowerCamelCase_ = [-1 for _ in range(lowerCamelCase__ )] lowerCamelCase_ = index_of[:] def strong_connect(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = index # the number when this node is seen lowerCamelCase_ = index # lowest rank node reachable from here index += 1 stack.append(lowerCamelCase__ ) lowerCamelCase_ = True for w in g[v]: if index_of[w] == -1: lowerCamelCase_ = strong_connect(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: lowerCamelCase_ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: lowerCamelCase_ = [] lowerCamelCase_ = stack.pop() lowerCamelCase_ = False component.append(lowerCamelCase__ ) while w != v: lowerCamelCase_ = stack.pop() lowerCamelCase_ = False component.append(lowerCamelCase__ ) components.append(lowerCamelCase__ ) return index lowerCamelCase_ = [] for v in range(lowerCamelCase__ ): if index_of[v] == -1: strong_connect(lowerCamelCase__ , 0 , lowerCamelCase__ ) return components def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = [[] for _ in range(lowerCamelCase__ )] for u, v in edges: g[u].append(lowerCamelCase__ ) return g if __name__ == "__main__": # Test __A =7 __A =[0, 0, 1, 2, 3, 3, 4, 4, 6] __A =[1, 3, 2, 0, 1, 4, 5, 6, 5] __A =[(u, v) for u, v in zip(source, target)] __A =create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
19
0
'''simple docstring''' import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = "" _lowerCamelCase = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) _lowerCamelCase = None # compression type in fsspec. ex: "gzip" _lowerCamelCase = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self , UpperCamelCase = "" , UpperCamelCase = None , UpperCamelCase = None , **UpperCamelCase ): """simple docstring""" super().__init__(self , **UpperCamelCase ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode lowerCamelCase_ = fsspec.open( UpperCamelCase , mode="rb" , protocol=UpperCamelCase , compression=self.compression , client_kwargs={ "requote_redirect_url": False, # see https://github.com/huggingface/datasets/pull/5459 "trust_env": True, # Enable reading proxy env variables. **(target_options or {}).pop("client_kwargs" , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) lowerCamelCase_ = os.path.basename(self.file.path.split("::" )[0] ) lowerCamelCase_ = ( self.compressed_name[: self.compressed_name.rindex("." )] if "." in self.compressed_name else self.compressed_name ) lowerCamelCase_ = None @classmethod def snake_case ( cls , UpperCamelCase ): """simple docstring""" # compressed file paths are always relative to the archive root return super()._strip_protocol(UpperCamelCase ).lstrip("/" ) def snake_case ( self ): """simple docstring""" if self.dir_cache is None: lowerCamelCase_ = {**self.file.fs.info(self.file.path ), "name": self.uncompressed_name} lowerCamelCase_ = {f["name"]: f} def snake_case ( self , UpperCamelCase ): """simple docstring""" return self.file.open().read() def snake_case ( self , UpperCamelCase , UpperCamelCase = "rb" , UpperCamelCase=None , UpperCamelCase=True , UpperCamelCase=None , **UpperCamelCase , ): """simple docstring""" lowerCamelCase_ = self._strip_protocol(UpperCamelCase ) if mode != "rb": raise ValueError(f'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' ) return self.file.open() class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = "bz2" _lowerCamelCase = "bz2" _lowerCamelCase = ".bz2" class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = "gzip" _lowerCamelCase = "gzip" _lowerCamelCase = ".gz" class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = "lz4" _lowerCamelCase = "lz4" _lowerCamelCase = ".lz4" class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = "xz" _lowerCamelCase = "xz" _lowerCamelCase = ".xz" class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = "zstd" _lowerCamelCase = "zstd" _lowerCamelCase = ".zst" def __init__( self , UpperCamelCase , UpperCamelCase = "rb" , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = DEFAULT_BLOCK_SIZE , **UpperCamelCase , ): """simple docstring""" super().__init__( fo=UpperCamelCase , mode=UpperCamelCase , target_protocol=UpperCamelCase , target_options=UpperCamelCase , block_size=UpperCamelCase , **UpperCamelCase , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 lowerCamelCase_ = self.file.__enter__ class snake_case : """simple docstring""" def __init__( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = file_ def __enter__( self ): """simple docstring""" self._file.__enter__() return self def __exit__( self , *UpperCamelCase , **UpperCamelCase ): """simple docstring""" self._file.__exit__(*UpperCamelCase , **UpperCamelCase ) def __iter__( self ): """simple docstring""" return iter(self._file ) def snake_case ( self ): """simple docstring""" return next(self._file ) def __getattr__( self , UpperCamelCase ): """simple docstring""" return getattr(self._file , UpperCamelCase ) def fixed_enter(*UpperCamelCase , **UpperCamelCase ): return WrappedFile(_enter(*UpperCamelCase , **UpperCamelCase ) ) lowerCamelCase_ = fixed_enter
55
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A ={'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys __A =_LazyModule(__name__, globals()['''__file__'''], _import_structure)
19
0
'''simple docstring''' import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin a : List[str] = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class a ( _lowerCamelCase , unittest.TestCase ): snake_case_ = AlbertTokenizer snake_case_ = AlbertTokenizerFast snake_case_ = True snake_case_ = True snake_case_ = True def A_ ( self : int ): super().setUp() # We have a SentencePiece fixture for testing snake_case_ = AlbertTokenizer(lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def A_ ( self : Dict , lowercase_ : Optional[int] ): snake_case_ = '''this is a test''' snake_case_ = '''this is a test''' return input_text, output_text def A_ ( self : Union[str, Any] ): snake_case_ = '''<pad>''' snake_case_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ) , lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ) , lowercase_ ) def A_ ( self : Union[str, Any] ): snake_case_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''▁eloquent''' ) self.assertEqual(len(lowercase_ ) , 3_0000 ) def A_ ( self : Union[str, Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def A_ ( self : List[str] ): if not self.test_rust_tokenizer: return snake_case_ = self.get_tokenizer() snake_case_ = self.get_rust_tokenizer() snake_case_ = '''I was born in 92000, and this is falsé.''' snake_case_ = tokenizer.tokenize(lowercase_ ) snake_case_ = rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) snake_case_ = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) snake_case_ = rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) snake_case_ = self.get_rust_tokenizer() snake_case_ = tokenizer.encode(lowercase_ ) snake_case_ = rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) def A_ ( self : int ): snake_case_ = AlbertTokenizer(lowercase_ , keep_accents=lowercase_ ) snake_case_ = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowercase_ , ['''▁this''', '''▁is''', '''▁a''', '''▁test'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ) , [48, 25, 21, 1289] ) snake_case_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowercase_ , ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.'''] ) snake_case_ = tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual(lowercase_ , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) snake_case_ = tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_ , ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.'''] , ) def A_ ( self : Optional[Any] ): snake_case_ = AlbertTokenizer(lowercase_ ) snake_case_ = tokenizer.encode('''sequence builders''' ) snake_case_ = tokenizer.encode('''multi-sequence build''' ) snake_case_ = tokenizer.build_inputs_with_special_tokens(lowercase_ ) snake_case_ = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def A_ ( self : Optional[int] ): # fmt: off snake_case_ = {'''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''input_ids''': [[2, 2_1970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 1_2051, 18, 17, 7103, 2153, 673, 8, 3515, 1_8684, 8, 4461, 6, 1927, 297, 8, 1_2060, 2607, 18, 13, 5, 4461, 15, 1_0538, 38, 8, 135, 15, 822, 58, 15, 993, 1_0363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 1_0641, 6, 29, 84, 2512, 2430, 782, 1_8684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 1_1712, 15, 7103, 2153, 673, 17, 2_4883, 9990, 9, 3], [2, 1_1502, 25, 1006, 20, 782, 8, 1_1809, 855, 1732, 1_9393, 1_8667, 37, 367, 2_1018, 69, 1854, 34, 1_1860, 1_9124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 1_7659, 84, 14, 1_6792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase_ , model_name='''albert-base-v2''' , revision='''6b6560eaf5ff2e250b00c50f380c5389a9c2d82e''' , )
56
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A ={'''configuration_wavlm''': ['''WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WavLMConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WavLMForAudioFrameClassification''', '''WavLMForCTC''', '''WavLMForSequenceClassification''', '''WavLMForXVector''', '''WavLMModel''', '''WavLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys __A =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
0
"""simple docstring""" from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline A : List[Any] = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase__ ) class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self , **__a ): super().__init__(**__a ) if self.framework != "pt": raise ValueError(f"The {self.__class__} is only available in PyTorch." ) # No specific FOR_XXX available yet def __call__( self , __a , **__a ): return super().__call__(__a , **__a ) def snake_case ( self , **__a ): __lowerCAmelCase = {} if "candidate_labels" in kwargs: __lowerCAmelCase = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: __lowerCAmelCase = kwargs["hypothesis_template"] return preprocess_params, {}, {} def snake_case ( self , __a , __a=None , __a="This is a sound of {}." ): if isinstance(__a , __a ): if audio.startswith("http://" ) or audio.startswith("https://" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png __lowerCAmelCase = requests.get(__a ).content else: with open(__a , "rb" ) as f: __lowerCAmelCase = f.read() if isinstance(__a , __a ): __lowerCAmelCase = ffmpeg_read(__a , self.feature_extractor.sampling_rate ) if not isinstance(__a , np.ndarray ): raise ValueError("We expect a numpy ndarray as input" ) if len(audio.shape ) != 1: raise ValueError("We expect a single channel audio input for ZeroShotAudioClassificationPipeline" ) __lowerCAmelCase = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="pt" ) __lowerCAmelCase = candidate_labels __lowerCAmelCase = [hypothesis_template.format(__a ) for x in candidate_labels] __lowerCAmelCase = self.tokenizer(__a , return_tensors=self.framework , padding=__a ) __lowerCAmelCase = [text_inputs] return inputs def snake_case ( self , __a ): __lowerCAmelCase = model_inputs.pop("candidate_labels" ) __lowerCAmelCase = model_inputs.pop("text_inputs" ) if isinstance(text_inputs[0] , __a ): __lowerCAmelCase = text_inputs[0] else: # Batching case. __lowerCAmelCase = text_inputs[0][0] __lowerCAmelCase = self.model(**__a , **__a ) __lowerCAmelCase = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_audio, } return model_outputs def snake_case ( self , __a ): __lowerCAmelCase = model_outputs.pop("candidate_labels" ) __lowerCAmelCase = model_outputs["logits"][0] if self.framework == "pt": __lowerCAmelCase = logits.softmax(dim=0 ) __lowerCAmelCase = probs.tolist() else: raise ValueError("`tf` framework not supported." ) __lowerCAmelCase = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(__a , __a ) , key=lambda __a : -x[0] ) ] return result
57
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __A ='''2.13.1''' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('''3.7'''): raise ImportWarning( '''To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.''' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( '''To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n''' '''If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.''' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __A =concatenate_datasets __A =DownloadConfig __A =DownloadManager __A =DownloadMode __A =DownloadConfig __A =DownloadMode __A =DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
19
0
'''simple docstring''' from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES lowercase_ = logging.get_logger(__name__) lowercase_ = OrderedDict( [ # Base model mapping ("""albert""", """FlaxAlbertModel"""), ("""bart""", """FlaxBartModel"""), ("""beit""", """FlaxBeitModel"""), ("""bert""", """FlaxBertModel"""), ("""big_bird""", """FlaxBigBirdModel"""), ("""blenderbot""", """FlaxBlenderbotModel"""), ("""blenderbot-small""", """FlaxBlenderbotSmallModel"""), ("""clip""", """FlaxCLIPModel"""), ("""distilbert""", """FlaxDistilBertModel"""), ("""electra""", """FlaxElectraModel"""), ("""gpt-sw3""", """FlaxGPT2Model"""), ("""gpt2""", """FlaxGPT2Model"""), ("""gpt_neo""", """FlaxGPTNeoModel"""), ("""gptj""", """FlaxGPTJModel"""), ("""longt5""", """FlaxLongT5Model"""), ("""marian""", """FlaxMarianModel"""), ("""mbart""", """FlaxMBartModel"""), ("""mt5""", """FlaxMT5Model"""), ("""opt""", """FlaxOPTModel"""), ("""pegasus""", """FlaxPegasusModel"""), ("""regnet""", """FlaxRegNetModel"""), ("""resnet""", """FlaxResNetModel"""), ("""roberta""", """FlaxRobertaModel"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormModel"""), ("""roformer""", """FlaxRoFormerModel"""), ("""t5""", """FlaxT5Model"""), ("""vision-text-dual-encoder""", """FlaxVisionTextDualEncoderModel"""), ("""vit""", """FlaxViTModel"""), ("""wav2vec2""", """FlaxWav2Vec2Model"""), ("""whisper""", """FlaxWhisperModel"""), ("""xglm""", """FlaxXGLMModel"""), ("""xlm-roberta""", """FlaxXLMRobertaModel"""), ] ) lowercase_ = OrderedDict( [ # Model for pre-training mapping ("""albert""", """FlaxAlbertForPreTraining"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForPreTraining"""), ("""big_bird""", """FlaxBigBirdForPreTraining"""), ("""electra""", """FlaxElectraForPreTraining"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ("""wav2vec2""", """FlaxWav2Vec2ForPreTraining"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) lowercase_ = OrderedDict( [ # Model for Masked LM mapping ("""albert""", """FlaxAlbertForMaskedLM"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForMaskedLM"""), ("""big_bird""", """FlaxBigBirdForMaskedLM"""), ("""distilbert""", """FlaxDistilBertForMaskedLM"""), ("""electra""", """FlaxElectraForMaskedLM"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) lowercase_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("""bart""", """FlaxBartForConditionalGeneration"""), ("""blenderbot""", """FlaxBlenderbotForConditionalGeneration"""), ("""blenderbot-small""", """FlaxBlenderbotSmallForConditionalGeneration"""), ("""encoder-decoder""", """FlaxEncoderDecoderModel"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""marian""", """FlaxMarianMTModel"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""pegasus""", """FlaxPegasusForConditionalGeneration"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ] ) lowercase_ = OrderedDict( [ # Model for Image-classsification ("""beit""", """FlaxBeitForImageClassification"""), ("""regnet""", """FlaxRegNetForImageClassification"""), ("""resnet""", """FlaxResNetForImageClassification"""), ("""vit""", """FlaxViTForImageClassification"""), ] ) lowercase_ = OrderedDict( [ ("""vision-encoder-decoder""", """FlaxVisionEncoderDecoderModel"""), ] ) lowercase_ = OrderedDict( [ # Model for Causal LM mapping ("""bart""", """FlaxBartForCausalLM"""), ("""bert""", """FlaxBertForCausalLM"""), ("""big_bird""", """FlaxBigBirdForCausalLM"""), ("""electra""", """FlaxElectraForCausalLM"""), ("""gpt-sw3""", """FlaxGPT2LMHeadModel"""), ("""gpt2""", """FlaxGPT2LMHeadModel"""), ("""gpt_neo""", """FlaxGPTNeoForCausalLM"""), ("""gptj""", """FlaxGPTJForCausalLM"""), ("""opt""", """FlaxOPTForCausalLM"""), ("""roberta""", """FlaxRobertaForCausalLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForCausalLM"""), ("""xglm""", """FlaxXGLMForCausalLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForCausalLM"""), ] ) lowercase_ = OrderedDict( [ # Model for Sequence Classification mapping ("""albert""", """FlaxAlbertForSequenceClassification"""), ("""bart""", """FlaxBartForSequenceClassification"""), ("""bert""", """FlaxBertForSequenceClassification"""), ("""big_bird""", """FlaxBigBirdForSequenceClassification"""), ("""distilbert""", """FlaxDistilBertForSequenceClassification"""), ("""electra""", """FlaxElectraForSequenceClassification"""), ("""mbart""", """FlaxMBartForSequenceClassification"""), ("""roberta""", """FlaxRobertaForSequenceClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForSequenceClassification"""), ("""roformer""", """FlaxRoFormerForSequenceClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForSequenceClassification"""), ] ) lowercase_ = OrderedDict( [ # Model for Question Answering mapping ("""albert""", """FlaxAlbertForQuestionAnswering"""), ("""bart""", """FlaxBartForQuestionAnswering"""), ("""bert""", """FlaxBertForQuestionAnswering"""), ("""big_bird""", """FlaxBigBirdForQuestionAnswering"""), ("""distilbert""", """FlaxDistilBertForQuestionAnswering"""), ("""electra""", """FlaxElectraForQuestionAnswering"""), ("""mbart""", """FlaxMBartForQuestionAnswering"""), ("""roberta""", """FlaxRobertaForQuestionAnswering"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForQuestionAnswering"""), ("""roformer""", """FlaxRoFormerForQuestionAnswering"""), ("""xlm-roberta""", """FlaxXLMRobertaForQuestionAnswering"""), ] ) lowercase_ = OrderedDict( [ # Model for Token Classification mapping ("""albert""", """FlaxAlbertForTokenClassification"""), ("""bert""", """FlaxBertForTokenClassification"""), ("""big_bird""", """FlaxBigBirdForTokenClassification"""), ("""distilbert""", """FlaxDistilBertForTokenClassification"""), ("""electra""", """FlaxElectraForTokenClassification"""), ("""roberta""", """FlaxRobertaForTokenClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForTokenClassification"""), ("""roformer""", """FlaxRoFormerForTokenClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForTokenClassification"""), ] ) lowercase_ = OrderedDict( [ # Model for Multiple Choice mapping ("""albert""", """FlaxAlbertForMultipleChoice"""), ("""bert""", """FlaxBertForMultipleChoice"""), ("""big_bird""", """FlaxBigBirdForMultipleChoice"""), ("""distilbert""", """FlaxDistilBertForMultipleChoice"""), ("""electra""", """FlaxElectraForMultipleChoice"""), ("""roberta""", """FlaxRobertaForMultipleChoice"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMultipleChoice"""), ("""roformer""", """FlaxRoFormerForMultipleChoice"""), ("""xlm-roberta""", """FlaxXLMRobertaForMultipleChoice"""), ] ) lowercase_ = OrderedDict( [ ("""bert""", """FlaxBertForNextSentencePrediction"""), ] ) lowercase_ = OrderedDict( [ ("""speech-encoder-decoder""", """FlaxSpeechEncoderDecoderModel"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ] ) lowercase_ = OrderedDict( [ ("""whisper""", """FlaxWhisperForAudioClassification"""), ] ) lowercase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) lowercase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) lowercase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) lowercase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) lowercase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) lowercase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) lowercase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) lowercase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) lowercase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) lowercase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) lowercase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) lowercase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) lowercase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) lowercase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class a_ ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase = FLAX_MODEL_MAPPING lowercase_ = auto_class_update(FlaxAutoModel) class a_ ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase = FLAX_MODEL_FOR_PRETRAINING_MAPPING lowercase_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc="""pretraining""") class a_ ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING lowercase_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc="""causal language modeling""") class a_ ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase = FLAX_MODEL_FOR_MASKED_LM_MAPPING lowercase_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="""masked language modeling""") class a_ ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowercase_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="""sequence-to-sequence language modeling""", checkpoint_for_example="""t5-base""" ) class a_ ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowercase_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="""sequence classification""" ) class a_ ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING lowercase_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="""question answering""") class a_ ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowercase_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="""token classification""" ) class a_ ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING lowercase_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="""multiple choice""") class a_ ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING lowercase_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="""next sentence prediction""" ) class a_ ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowercase_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc="""image classification""" ) class a_ ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING lowercase_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="""vision-to-text modeling""") class a_ ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING lowercase_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="""sequence-to-sequence speech-to-text modeling""" )
58
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A ={ '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __A =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
0
import logging from transformers.configuration_utils import PretrainedConfig __lowerCamelCase = logging.getLogger(__name__) class UpperCAmelCase ( A_ ): A__ : int = "masked_bert" def __init__(self : Dict , snake_case__ : Optional[Any]=3_05_22 , snake_case__ : int=7_68 , snake_case__ : Union[str, Any]=12 , snake_case__ : List[str]=12 , snake_case__ : Optional[Any]=30_72 , snake_case__ : Union[str, Any]="gelu" , snake_case__ : str=0.1 , snake_case__ : Optional[int]=0.1 , snake_case__ : List[str]=5_12 , snake_case__ : Tuple=2 , snake_case__ : Optional[Any]=0.02 , snake_case__ : List[Any]=1e-12 , snake_case__ : Optional[int]=0 , snake_case__ : Dict="topK" , snake_case__ : Any="constant" , snake_case__ : Tuple=0.0 , **snake_case__ : Dict , ) -> Tuple: '''simple docstring''' super().__init__(pad_token_id=snake_case__ , **snake_case__ ) snake_case : Any = vocab_size snake_case : int = hidden_size snake_case : Dict = num_hidden_layers snake_case : Optional[int] = num_attention_heads snake_case : int = hidden_act snake_case : Tuple = intermediate_size snake_case : Any = hidden_dropout_prob snake_case : Optional[Any] = attention_probs_dropout_prob snake_case : Dict = max_position_embeddings snake_case : Any = type_vocab_size snake_case : List[Any] = initializer_range snake_case : List[Any] = layer_norm_eps snake_case : Tuple = pruning_method snake_case : Tuple = mask_init snake_case : Optional[int] = mask_scale
59
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class _SCREAMING_SNAKE_CASE : def __init__( self , lowercase , ) -> Optional[int]: lowerCamelCase_ = parent lowerCamelCase_ = 13 lowerCamelCase_ = 7 lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = 99 lowerCamelCase_ = 32 lowerCamelCase_ = 2 lowerCamelCase_ = 4 lowerCamelCase_ = 37 lowerCamelCase_ = "gelu" lowerCamelCase_ = 0.1 lowerCamelCase_ = 0.1 lowerCamelCase_ = 512 lowerCamelCase_ = 16 lowerCamelCase_ = 2 lowerCamelCase_ = 0.0_2 lowerCamelCase_ = 3 lowerCamelCase_ = 4 lowerCamelCase_ = None def SCREAMING_SNAKE_CASE_( self ) -> Any: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_input_mask: lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_( self ) -> List[str]: ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = self.prepare_config_and_inputs() lowerCamelCase_ = True lowerCamelCase_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Any: lowerCamelCase_ = TFEsmModel(config=lowercase ) lowerCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} lowerCamelCase_ = model(lowercase ) lowerCamelCase_ = [input_ids, input_mask] lowerCamelCase_ = model(lowercase ) lowerCamelCase_ = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> Tuple: lowerCamelCase_ = True lowerCamelCase_ = TFEsmModel(config=lowercase ) lowerCamelCase_ = { "input_ids": input_ids, "attention_mask": input_mask, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": encoder_attention_mask, } lowerCamelCase_ = model(lowercase ) lowerCamelCase_ = [input_ids, input_mask] lowerCamelCase_ = model(lowercase , encoder_hidden_states=lowercase ) # Also check the case where encoder outputs are not passed lowerCamelCase_ = model(lowercase , attention_mask=lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: lowerCamelCase_ = TFEsmForMaskedLM(config=lowercase ) lowerCamelCase_ = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> int: lowerCamelCase_ = self.num_labels lowerCamelCase_ = TFEsmForTokenClassification(config=lowercase ) lowerCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} lowerCamelCase_ = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , unittest.TestCase ): lowerCAmelCase__ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) lowerCAmelCase__ = ( { 'feature-extraction': TFEsmModel, 'fill-mask': TFEsmForMaskedLM, 'text-classification': TFEsmForSequenceClassification, 'token-classification': TFEsmForTokenClassification, 'zero-shot': TFEsmForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = TFEsmModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=lowercase , hidden_size=37 ) def SCREAMING_SNAKE_CASE_( self ) -> Any: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Tuple: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase ) @slow def SCREAMING_SNAKE_CASE_( self ) -> Dict: for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFEsmModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @unittest.skip("Protein models do not support embedding resizing." ) def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: pass @unittest.skip("Protein models do not support embedding resizing." ) def SCREAMING_SNAKE_CASE_( self ) -> Any: pass def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(lowercase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer lowerCamelCase_ = model.get_bias() assert isinstance(lowercase , lowercase ) for k, v in name.items(): assert isinstance(lowercase , tf.Variable ) else: lowerCamelCase_ = model.get_output_embeddings() assert x is None lowerCamelCase_ = model.get_bias() assert name is None @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ = TFEsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D" ) lowerCamelCase_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase_ = model(lowercase )[0] lowerCamelCase_ = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , lowercase ) # compare the actual values for a slice. lowerCamelCase_ = tf.constant( [ [ [8.9_2_1_5_1_8, -1_0.5_8_9_8_1_4, -6.4_6_7_1_3_0_7], [-6.3_9_6_7_1_5_6, -1_3.9_1_1_3_7_7, -1.1_2_1_1_9_1_5], [-7.7_8_1_2_4_7, -1_3.9_5_1_5_5_7, -3.7_4_0_5_9_2], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) ) @slow def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ = TFEsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D" ) lowerCamelCase_ = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCamelCase_ = model(lowercase )[0] # compare the actual values for a slice. lowerCamelCase_ = tf.constant( [ [ [0.1_4_4_4_3_0_9_2, 0.5_4_1_2_5_3_2_7, 0.3_2_4_7_7_3_9], [0.3_0_3_4_0_4_8_4, 0.0_0_5_2_6_6_7_6, 0.3_1_0_7_7_7_2_2], [0.3_2_2_7_8_0_4_3, -0.2_4_9_8_7_0_9_6, 0.3_4_1_4_6_2_8], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
19
0
"""simple docstring""" import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : Any ): lowerCAmelCase : List[Any] = 0 @slow def lowerCamelCase__ ( self : Optional[int] ): for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(UpperCamelCase_ ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(UpperCamelCase_ ) , 0 ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : str = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 1_2 ) def lowerCamelCase__ ( self : str ): lowerCAmelCase : Any = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 2_0 ) def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : List[Any] = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) # Check that tokenizer_type ≠ model_type lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(UpperCamelCase_ , config=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 1_2 ) def lowerCamelCase__ ( self : Optional[int] ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(UpperCamelCase_ , '''vocab.txt''' ) ) lowerCAmelCase : int = AutoTokenizer.from_pretrained(UpperCamelCase_ , tokenizer_type='''bert''' , use_fast=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(UpperCamelCase_ , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(UpperCamelCase_ , '''merges.txt''' ) ) lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ , tokenizer_type='''gpt2''' , use_fast=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) @require_tokenizers def lowerCamelCase__ ( self : List[str] ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(UpperCamelCase_ , '''vocab.txt''' ) ) lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(UpperCamelCase_ , tokenizer_type='''bert''' ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(UpperCamelCase_ , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(UpperCamelCase_ , '''merges.txt''' ) ) lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ , tokenizer_type='''gpt2''' ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): with pytest.raises(UpperCamelCase_ ): AutoTokenizer.from_pretrained('''./''' , tokenizer_type='''xxx''' ) @require_tokenizers def lowerCamelCase__ ( self : Optional[Any] ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: lowerCAmelCase : List[str] = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , UpperCamelCase_ ) else: self.assertEqual(tokenizer.do_lower_case , UpperCamelCase_ ) self.assertEqual(tokenizer.model_max_length , 5_1_2 ) @require_tokenizers def lowerCamelCase__ ( self : Any ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( UpperCamelCase_ , '''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' , ): lowerCAmelCase : Optional[Any] = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def lowerCamelCase__ ( self : Any ): # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai lowerCAmelCase : List[Any] = TOKENIZER_MAPPING.values() lowerCAmelCase : Tuple = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(UpperCamelCase_ ) @require_tokenizers def lowerCamelCase__ ( self : Dict ): self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=UpperCamelCase_ ) , UpperCamelCase_ ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) , UpperCamelCase_ ) @require_tokenizers def lowerCamelCase__ ( self : int ): lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' , do_lower_case=UpperCamelCase_ ) lowerCAmelCase : List[str] = '''Hello, world. How are you?''' lowerCAmelCase : Dict = tokenizer.tokenize(UpperCamelCase_ ) self.assertEqual('''[UNK]''' , tokens[0] ) lowerCAmelCase : str = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' , do_lower_case=UpperCamelCase_ ) lowerCAmelCase : int = tokenizer.tokenize(UpperCamelCase_ ) self.assertEqual('''[UNK]''' , tokens[0] ) @require_tokenizers def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(tokenizer.model_max_length , 5_1_2 ) self.assertEqual(tokenizer.vocab_size , 3_0_0_0_0 ) self.assertEqual(tokenizer.unk_token , '''[UNK]''' ) self.assertEqual(tokenizer.padding_side , '''right''' ) self.assertEqual(tokenizer.truncation_side , '''right''' ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Dict = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 1_2 ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): # Check we can load the tokenizer config of an online model. lowerCAmelCase : Union[str, Any] = get_tokenizer_config('''bert-base-cased''' ) lowerCAmelCase : Optional[int] = config.pop('''_commit_hash''' , UpperCamelCase_ ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(UpperCamelCase_ , {'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. lowerCAmelCase : str = get_tokenizer_config(UpperCamelCase_ ) self.assertDictEqual(UpperCamelCase_ , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. lowerCAmelCase : Dict = AutoTokenizer.from_pretrained(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : Tuple = get_tokenizer_config(UpperCamelCase_ ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] , '''BertTokenizer''' ) def lowerCamelCase__ ( self : Union[str, Any] ): try: AutoConfig.register('''custom''' , UpperCamelCase_ ) AutoTokenizer.register(UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase_ ): AutoTokenizer.register(UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ ) lowerCAmelCase : Dict = CustomTokenizer.from_pretrained(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : Any = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def lowerCamelCase__ ( self : int ): try: AutoConfig.register('''custom''' , UpperCamelCase_ ) # Can register in two steps AutoTokenizer.register(UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(UpperCamelCase_ , fast_tokenizer_class=UpperCamelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ , fast_tokenizer_class=UpperCamelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase_ ): AutoTokenizer.register(UpperCamelCase_ , fast_tokenizer_class=UpperCamelCase_ ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase : Any = BertTokenizerFast.from_pretrained(UpperCamelCase_ ) bert_tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : int = CustomTokenizerFast.from_pretrained(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowerCamelCase__ ( self : Dict ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCamelCase_ ): lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase_ ): lowerCAmelCase : str = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ ) lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : Any = AutoTokenizer.from_pretrained(UpperCamelCase_ , trust_remote_code=UpperCamelCase_ ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version lowerCAmelCase : str = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : Any = AutoTokenizer.from_pretrained(UpperCamelCase_ , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) @require_tokenizers def lowerCamelCase__ ( self : int ): class snake_case_( a__ ): __UpperCamelCase = False class snake_case_( a__ ): __UpperCamelCase = NewTokenizer __UpperCamelCase = False try: AutoConfig.register('''custom''' , UpperCamelCase_ ) AutoTokenizer.register(UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ ) AutoTokenizer.register(UpperCamelCase_ , fast_tokenizer_class=UpperCamelCase_ ) # If remote code is not set, the default is to use local lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) lowerCAmelCase : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , use_fast=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. lowerCAmelCase : Any = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) lowerCAmelCase : str = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) lowerCAmelCase : Dict = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=UpperCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def lowerCamelCase__ ( self : Optional[Any] ): with self.assertRaisesRegex( UpperCamelCase_ , '''bert-base is not a local folder and is not a valid model identifier''' ): lowerCAmelCase : str = AutoTokenizer.from_pretrained('''bert-base''' ) def lowerCamelCase__ ( self : Any ): with self.assertRaisesRegex( UpperCamelCase_ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ , revision='''aaaaaa''' ) def lowerCamelCase__ ( self : Any ): # Make sure we have cached the tokenizer. lowerCAmelCase : str = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
60
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging __A =logging.get_logger(__name__) def lowerCamelCase_ ( ): # Get the sagemaker specific mp parameters from smp_options variable. lowerCamelCase_ = os.getenv("SM_HP_MP_PARAMETERS" , "{}" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. lowerCamelCase_ = json.loads(lowerCamelCase__ ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. lowerCamelCase_ = os.getenv("SM_FRAMEWORK_PARAMS" , "{}" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". lowerCamelCase_ = json.loads(lowerCamelCase__ ) if not mpi_options.get("sagemaker_mpi_enabled" , lowerCamelCase__ ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("smdistributed" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = field( default='' , metadata={'help': 'Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'} , ) def SCREAMING_SNAKE_CASE_( self ) -> Tuple: super().__post_init__() warnings.warn( "`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use " "`TrainingArguments` instead." , lowercase , ) @cached_property def SCREAMING_SNAKE_CASE_( self ) -> "torch.device": logger.info("PyTorch: setting up devices" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( "torch.distributed process group is initialized, but local_rank == -1. " "In order to use Torch DDP, launch your script with `python -m torch.distributed.launch" ) if self.no_cuda: lowerCamelCase_ = torch.device("cpu" ) lowerCamelCase_ = 0 elif is_sagemaker_model_parallel_available(): lowerCamelCase_ = smp.local_rank() lowerCamelCase_ = torch.device("cuda" , lowercase ) lowerCamelCase_ = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="smddp" , timeout=self.ddp_timeout_delta ) lowerCamelCase_ = int(os.getenv("SMDATAPARALLEL_LOCAL_RANK" ) ) lowerCamelCase_ = torch.device("cuda" , self.local_rank ) lowerCamelCase_ = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 lowerCamelCase_ = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. lowerCamelCase_ = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="nccl" , timeout=self.ddp_timeout_delta ) lowerCamelCase_ = torch.device("cuda" , self.local_rank ) lowerCamelCase_ = 1 if device.type == "cuda": torch.cuda.set_device(lowercase ) return device @property def SCREAMING_SNAKE_CASE_( self ) -> Tuple: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def SCREAMING_SNAKE_CASE_( self ) -> List[str]: return not is_sagemaker_model_parallel_available() @property def SCREAMING_SNAKE_CASE_( self ) -> Dict: return False
19
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a = logging.get_logger(__name__) _a = '▁' _a = {'vocab_file': 'sentencepiece.bpe.model'} _a = { 'vocab_file': { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model', } } _a = { 'facebook/xglm-564M': 2_048, } class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Dict = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Any = ["""input_ids""", """attention_mask"""] def __init__( self , lowercase_ , lowercase_="<s>" , lowercase_="</s>" , lowercase_="</s>" , lowercase_="<s>" , lowercase_="<unk>" , lowercase_="<pad>" , lowercase_ = None , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : Any = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer UpperCAmelCase_ : List[str] = 7 UpperCAmelCase_ : Optional[int] = [F"""<madeupword{i}>""" for i in range(self.num_madeup_words )] UpperCAmelCase_ : int = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , pad_token=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) UpperCAmelCase_ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowercase_ ) ) UpperCAmelCase_ : Any = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase_ : List[str] = 1 # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase_ : Optional[Any] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} UpperCAmelCase_ : int = len(self.sp_model ) UpperCAmelCase_ : Tuple = {F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(lowercase_ ) UpperCAmelCase_ : Dict = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): """simple docstring""" UpperCAmelCase_ : List[str] = self.__dict__.copy() UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Optional[int] = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Tuple = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase_ : str = {} UpperCAmelCase_ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" if token_ids_a is None: return [self.sep_token_id] + token_ids_a UpperCAmelCase_ : Any = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ ) if token_ids_a is None: return [1] + ([0] * len(lowercase_ )) return [1] + ([0] * len(lowercase_ )) + [1, 1] + ([0] * len(lowercase_ )) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" UpperCAmelCase_ : List[Any] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def UpperCamelCase__ ( self ): """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return self.sp_model.encode(lowercase_ , out_type=lowercase_ ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase_ : Optional[Any] = self.sp_model.PieceToId(lowercase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = "".join(lowercase_ ).replace(lowercase_ , " " ).strip() return out_string def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" if not os.path.isdir(lowercase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase_ : Optional[int] = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase_ , "wb" ) as fi: UpperCAmelCase_ : List[Any] = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (out_vocab_file,)
61
import math def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ = 0 , lowerCamelCase__ = 0 ): lowerCamelCase_ = end or len(lowerCamelCase__ ) for i in range(lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = i lowerCamelCase_ = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: lowerCamelCase_ = array[temp_index - 1] temp_index -= 1 lowerCamelCase_ = temp_index_value return array def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): # Max Heap lowerCamelCase_ = index lowerCamelCase_ = 2 * index + 1 # Left Node lowerCamelCase_ = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: lowerCamelCase_ = left_index if right_index < heap_size and array[largest] < array[right_index]: lowerCamelCase_ = right_index if largest != index: lowerCamelCase_ , lowerCamelCase_ = array[largest], array[index] heapify(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = len(lowerCamelCase__ ) for i in range(n // 2 , -1 , -1 ): heapify(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) for i in range(n - 1 , 0 , -1 ): lowerCamelCase_ , lowerCamelCase_ = array[0], array[i] heapify(lowerCamelCase__ , 0 , lowerCamelCase__ ) return array def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = low lowerCamelCase_ = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i lowerCamelCase_ , lowerCamelCase_ = array[j], array[i] i += 1 def lowerCamelCase_ ( lowerCamelCase__ ): if len(lowerCamelCase__ ) == 0: return array lowerCamelCase_ = 2 * math.ceil(math.loga(len(lowerCamelCase__ ) ) ) lowerCamelCase_ = 1_6 return intro_sort(lowerCamelCase__ , 0 , len(lowerCamelCase__ ) , lowerCamelCase__ , lowerCamelCase__ ) def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): while end - start > size_threshold: if max_depth == 0: return heap_sort(lowerCamelCase__ ) max_depth -= 1 lowerCamelCase_ = median_of_a(lowerCamelCase__ , lowerCamelCase__ , start + ((end - start) // 2) + 1 , end - 1 ) lowerCamelCase_ = partition(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) intro_sort(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = p return insertion_sort(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() __A =input('''Enter numbers separated by a comma : ''').strip() __A =[float(item) for item in user_input.split(''',''')] print(sort(unsorted))
19
0
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) _A = [ 'cross_validation.py', 'gradient_accumulation.py', 'local_sgd.py', 'multi_process_metrics.py', 'memory.py', 'automatic_gradient_accumulation.py', 'fsdp_with_peak_mem_tracking.py', 'deepspeed_with_config_support.py', 'megatron_lm_gpt_pretraining.py', ] class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self , A_ , A_ , A_ = None , A_ = None ) -> Optional[Any]: __UpperCamelCase =None __UpperCamelCase =os.path.abspath(os.path.join('examples' , 'by_feature' ) ) __UpperCamelCase =os.path.abspath('examples' ) for item in os.listdir(A_ ): if item not in EXCLUDE_EXAMPLES: __UpperCamelCase =os.path.join(A_ , A_ ) if os.path.isfile(A_ ) and ".py" in item_path: with self.subTest( tested_script=A_ , feature_script=A_ , tested_section='main()' if parser_only else 'training_function()' , ): __UpperCamelCase =compare_against_test( os.path.join(A_ , A_ ) , A_ , A_ , A_ ) __UpperCamelCase ='\n'.join(A_ ) if special_strings is not None: for string in special_strings: __UpperCamelCase =diff.replace(A_ , '' ) self.assertEqual(A_ , '' ) def _a ( self ) -> Dict: self.one_complete_example('complete_nlp_example.py' , A_ ) self.one_complete_example('complete_nlp_example.py' , A_ ) def _a ( self ) -> Dict: __UpperCamelCase =os.path.abspath(os.path.join('examples' , 'cv_example.py' ) ) __UpperCamelCase =[ ' ' * 16 + '{\n\n', ' ' * 20 + '"accuracy": eval_metric["accuracy"],\n\n', ' ' * 20 + '"f1": eval_metric["f1"],\n\n', ' ' * 20 + '"train_loss": total_loss.item() / len(train_dataloader),\n\n', ' ' * 20 + '"epoch": epoch,\n\n', ' ' * 16 + '},\n\n', ' ' * 16 + 'step=epoch,\n', ' ' * 12, ' ' * 8 + 'for step, batch in enumerate(active_dataloader):\n', ] self.one_complete_example('complete_cv_example.py' , A_ , A_ , A_ ) self.one_complete_example('complete_cv_example.py' , A_ , A_ , A_ ) @mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "1"} ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Tuple = False @classmethod def _a ( cls ) -> Union[str, Any]: super().setUpClass() __UpperCamelCase =tempfile.mkdtemp() __UpperCamelCase =os.path.join(cls._tmpdir , 'default_config.yml' ) write_basic_config(save_location=cls.configPath ) __UpperCamelCase =['accelerate', 'launch', '--config_file', cls.configPath] @classmethod def _a ( cls ) -> Union[str, Any]: super().tearDownClass() shutil.rmtree(cls._tmpdir ) def _a ( self ) -> List[Any]: __UpperCamelCase =f'\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'epoch_0' ) ) ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =f'\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n '.split() __UpperCamelCase =run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'step_2' ) ) ) def _a ( self ) -> Tuple: __UpperCamelCase =f'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )}\n '.split() __UpperCamelCase =run_command(self._launch_args + testargs , return_stdout=A_ ) self.assertNotIn('epoch 0:' , A_ ) self.assertIn('epoch 1:' , A_ ) def _a ( self ) -> int: __UpperCamelCase =f'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )}\n '.split() __UpperCamelCase =run_command(self._launch_args + testargs , return_stdout=A_ ) if torch.cuda.is_available(): __UpperCamelCase =torch.cuda.device_count() else: __UpperCamelCase =1 if num_processes > 1: self.assertNotIn('epoch 0:' , A_ ) self.assertIn('epoch 1:' , A_ ) else: self.assertIn('epoch 0:' , A_ ) self.assertIn('epoch 1:' , A_ ) @slow def _a ( self ) -> Optional[Any]: __UpperCamelCase ='\n examples/by_feature/cross_validation.py\n --num_folds 2\n '.split() with mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '0'} ): __UpperCamelCase =run_command(self._launch_args + testargs , return_stdout=A_ ) __UpperCamelCase =re.findall('({.+})' , A_ ) __UpperCamelCase =[r for r in results if 'accuracy' in r][-1] __UpperCamelCase =ast.literal_eval(A_ ) self.assertGreaterEqual(results['accuracy'] , 0.75 ) def _a ( self ) -> str: __UpperCamelCase =['examples/by_feature/multi_process_metrics.py'] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def _a ( self ) -> List[str]: with tempfile.TemporaryDirectory() as tmpdir: __UpperCamelCase =f'\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(A_ , 'tracking' ) ) ) def _a ( self ) -> Optional[int]: __UpperCamelCase =['examples/by_feature/gradient_accumulation.py'] run_command(self._launch_args + testargs ) def _a ( self ) -> List[Any]: __UpperCamelCase =['examples/by_feature/local_sgd.py'] run_command(self._launch_args + testargs )
62
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _SCREAMING_SNAKE_CASE ( snake_case_ ): def __init__( self , *lowercase , lowercase=None , lowercase=None , **lowercase ) -> List[str]: super().__init__(*lowercase , **lowercase ) lowerCamelCase_ = eval_examples lowerCamelCase_ = post_process_function def SCREAMING_SNAKE_CASE_( self , lowercase = None , lowercase=None , lowercase = None , lowercase = "eval" , **lowercase , ) -> Dict[str, float]: lowerCamelCase_ = gen_kwargs.copy() lowerCamelCase_ = ( gen_kwargs["max_length"] if gen_kwargs.get("max_length" ) is not None else self.args.generation_max_length ) lowerCamelCase_ = ( gen_kwargs["num_beams"] if gen_kwargs.get("num_beams" ) is not None else self.args.generation_num_beams ) lowerCamelCase_ = gen_kwargs lowerCamelCase_ = self.eval_dataset if eval_dataset is None else eval_dataset lowerCamelCase_ = self.get_eval_dataloader(lowercase ) lowerCamelCase_ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowerCamelCase_ = self.compute_metrics lowerCamelCase_ = None lowerCamelCase_ = time.time() lowerCamelCase_ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowerCamelCase_ = eval_loop( lowercase , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase , metric_key_prefix=lowercase , ) finally: lowerCamelCase_ = compute_metrics lowerCamelCase_ = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( lowercase , lowercase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowerCamelCase_ = self.post_process_function(lowercase , lowercase , lowercase ) lowerCamelCase_ = self.compute_metrics(lowercase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowerCamelCase_ = metrics.pop(lowercase ) metrics.update(output.metrics ) else: lowerCamelCase_ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowercase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowerCamelCase_ = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowercase ) return metrics def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase=None , lowercase = "test" , **lowercase ) -> Union[str, Any]: lowerCamelCase_ = gen_kwargs.copy() lowerCamelCase_ = self.get_test_dataloader(lowercase ) # Temporarily disable metric computation, we will do it in the loop here. lowerCamelCase_ = self.compute_metrics lowerCamelCase_ = None lowerCamelCase_ = time.time() lowerCamelCase_ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowerCamelCase_ = eval_loop( lowercase , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase , metric_key_prefix=lowercase , ) finally: lowerCamelCase_ = compute_metrics lowerCamelCase_ = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( lowercase , lowercase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output lowerCamelCase_ = self.post_process_function(lowercase , lowercase , lowercase , "predict" ) lowerCamelCase_ = self.compute_metrics(lowercase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowerCamelCase_ = metrics.pop(lowercase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowercase )
19
0
'''simple docstring''' import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase_ : Dict = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =AlbertTokenizer __a =AlbertTokenizerFast __a =True __a =True __a =True def UpperCamelCase__ ( self : List[str] ): super().setUp() # We have a SentencePiece fixture for testing _a = AlbertTokenizer(__a ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self : Dict , __a : int ): _a = "this is a test" _a = "this is a test" return input_text, output_text def UpperCamelCase__ ( self : Any ): _a = "<pad>" _a = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a ) def UpperCamelCase__ ( self : List[Any] ): _a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "▁eloquent" ) self.assertEqual(len(__a ) , 3_00_00 ) def UpperCamelCase__ ( self : Union[str, Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 3_00_00 ) def UpperCamelCase__ ( self : Dict ): if not self.test_rust_tokenizer: return _a = self.get_tokenizer() _a = self.get_rust_tokenizer() _a = "I was born in 92000, and this is falsé." _a = tokenizer.tokenize(__a ) _a = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) _a = tokenizer.encode(__a , add_special_tokens=__a ) _a = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) _a = self.get_rust_tokenizer() _a = tokenizer.encode(__a ) _a = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) def UpperCamelCase__ ( self : Dict ): _a = AlbertTokenizer(__a , keep_accents=__a ) _a = tokenizer.tokenize("This is a test" ) self.assertListEqual(__a , ["▁this", "▁is", "▁a", "▁test"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [48, 25, 21, 12_89] ) _a = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __a , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", "."] ) _a = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual(__a , [31, 23, 3_86, 19, 5_61, 30_50, 15, 17, 48, 25, 82_56, 18, 1, 9] ) _a = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual( __a , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "."] , ) def UpperCamelCase__ ( self : int ): _a = AlbertTokenizer(__a ) _a = tokenizer.encode("sequence builders" ) _a = tokenizer.encode("multi-sequence build" ) _a = tokenizer.build_inputs_with_special_tokens(__a ) _a = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def UpperCamelCase__ ( self : str ): # fmt: off _a = {"attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "input_ids": [[2, 2_19_70, 13, 5, 60_92, 1_67, 28, 71_03, 21_53, 6_73, 8, 70_28, 1_20_51, 18, 17, 71_03, 21_53, 6_73, 8, 35_15, 1_86_84, 8, 44_61, 6, 19_27, 2_97, 8, 1_20_60, 26_07, 18, 13, 5, 44_61, 15, 1_05_38, 38, 8, 1_35, 15, 8_22, 58, 15, 9_93, 1_03_63, 15, 14_60, 80_05, 44_61, 15, 9_93, 2_55, 23_28, 9, 9, 9, 6, 26, 11_12, 8_16, 32_60, 13, 5, 1_03, 23_77, 6, 17, 11_12, 8_16, 27_82, 13, 5, 1_03, 1_06_41, 6, 29, 84, 25_12, 24_30, 7_82, 1_86_84, 27_61, 19, 8_08, 24_30, 25_56, 17, 8_55, 14_80, 94_77, 40_91, 1_28, 1_17_12, 15, 71_03, 21_53, 6_73, 17, 2_48_83, 99_90, 9, 3], [2, 1_15_02, 25, 10_06, 20, 7_82, 8, 1_18_09, 8_55, 17_32, 1_93_93, 1_86_67, 37, 3_67, 2_10_18, 69, 18_54, 34, 1_18_60, 1_91_24, 27, 1_56, 2_25, 17, 1_93, 41_41, 19, 65, 91_24, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 22_31, 8_86, 23_85, 1_76_59, 84, 14, 1_67_92, 19_52, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__a , model_name="albert-base-v2" , revision="6b6560eaf5ff2e250b00c50f380c5389a9c2d82e" , )
63
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer __A =logging.get_logger(__name__) # pylint: disable=invalid-name __A =''' Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu") >>> repo = "openai/shap-e-img2img" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png" >>> image = load_image(image_url).convert("RGB") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], "corgi_3d.gif") ``` ''' @dataclass class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = 42 class _SCREAMING_SNAKE_CASE ( snake_case_ ): def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> List[str]: super().__init__() self.register_modules( prior=lowercase , image_encoder=lowercase , image_processor=lowercase , scheduler=lowercase , renderer=lowercase , ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> int: if latents is None: lowerCamelCase_ = randn_tensor(lowercase , generator=lowercase , device=lowercase , dtype=lowercase ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) lowerCamelCase_ = latents.to(lowercase ) lowerCamelCase_ = latents * scheduler.init_noise_sigma return latents def SCREAMING_SNAKE_CASE_( self , lowercase=0 ) -> int: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) lowerCamelCase_ = torch.device(f'cuda:{gpu_id}' ) lowerCamelCase_ = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase , lowercase ) @property def SCREAMING_SNAKE_CASE_( self ) -> List[str]: if self.device != torch.device("meta" ) or not hasattr(self.image_encoder , "_hf_hook" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(lowercase , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , ) -> List[str]: if isinstance(lowercase , lowercase ) and isinstance(image[0] , torch.Tensor ): lowerCamelCase_ = torch.cat(lowercase , axis=0 ) if image[0].ndim == 4 else torch.stack(lowercase , axis=0 ) if not isinstance(lowercase , torch.Tensor ): lowerCamelCase_ = self.image_processor(lowercase , return_tensors="pt" ).pixel_values[0].unsqueeze(0 ) lowerCamelCase_ = image.to(dtype=self.image_encoder.dtype , device=lowercase ) lowerCamelCase_ = self.image_encoder(lowercase )["last_hidden_state"] lowerCamelCase_ = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 lowerCamelCase_ = image_embeds.repeat_interleave(lowercase , dim=0 ) if do_classifier_free_guidance: lowerCamelCase_ = torch.zeros_like(lowercase ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase_ = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(lowercase ) def __call__( self , lowercase , lowercase = 1 , lowercase = 25 , lowercase = None , lowercase = None , lowercase = 4.0 , lowercase = 64 , lowercase = "pil" , lowercase = True , ) -> Union[str, Any]: if isinstance(lowercase , PIL.Image.Image ): lowerCamelCase_ = 1 elif isinstance(lowercase , torch.Tensor ): lowerCamelCase_ = image.shape[0] elif isinstance(lowercase , lowercase ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): lowerCamelCase_ = len(lowercase ) else: raise ValueError( f'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(lowercase )}' ) lowerCamelCase_ = self._execution_device lowerCamelCase_ = batch_size * num_images_per_prompt lowerCamelCase_ = guidance_scale > 1.0 lowerCamelCase_ = self._encode_image(lowercase , lowercase , lowercase , lowercase ) # prior self.scheduler.set_timesteps(lowercase , device=lowercase ) lowerCamelCase_ = self.scheduler.timesteps lowerCamelCase_ = self.prior.config.num_embeddings lowerCamelCase_ = self.prior.config.embedding_dim lowerCamelCase_ = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , lowercase , lowercase , lowercase , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim lowerCamelCase_ = latents.reshape(latents.shape[0] , lowercase , lowercase ) for i, t in enumerate(self.progress_bar(lowercase ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase_ = self.scheduler.scale_model_input(lowercase , lowercase ) lowerCamelCase_ = self.prior( lowercase , timestep=lowercase , proj_embedding=lowercase , ).predicted_image_embedding # remove the variance lowerCamelCase_ , lowerCamelCase_ = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: lowerCamelCase_ , lowerCamelCase_ = noise_pred.chunk(2 ) lowerCamelCase_ = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) lowerCamelCase_ = self.scheduler.step( lowercase , timestep=lowercase , sample=lowercase , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=lowercase ) lowerCamelCase_ = [] for i, latent in enumerate(lowercase ): print() lowerCamelCase_ = self.renderer.decode( latent[None, :] , lowercase , size=lowercase , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(lowercase ) lowerCamelCase_ = torch.stack(lowercase ) if output_type not in ["np", "pil"]: raise ValueError(f'Only the output types `pil` and `np` are supported not output_type={output_type}' ) lowerCamelCase_ = images.cpu().numpy() if output_type == "pil": lowerCamelCase_ = [self.numpy_to_pil(lowercase ) for image in images] # Offload last model to CPU if hasattr(self , "final_offload_hook" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=lowercase )
19
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json''' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class lowercase( __a ): '''simple docstring''' lowercase__ = "speech_to_text_2" lowercase__ = ["past_key_values"] lowercase__ = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self: List[str], a_: str=10_000, a_: str=6, a_: List[Any]=2_048, a_: Optional[int]=4, a_: List[str]=0.0, a_: Optional[int]=True, a_: List[str]="relu", a_: Optional[Any]=256, a_: Any=0.1, a_: List[str]=0.0, a_: Optional[int]=0.0, a_: Optional[Any]=0.02, a_: Union[str, Any]=2, a_: List[str]=True, a_: Optional[Any]=1, a_: Dict=0, a_: Dict=2, a_: Optional[int]=1_024, **a_: Any, ): '''simple docstring''' _snake_case : Union[str, Any] = vocab_size _snake_case : str = d_model _snake_case : Tuple = decoder_ffn_dim _snake_case : Optional[int] = decoder_layers _snake_case : Optional[Any] = decoder_attention_heads _snake_case : Union[str, Any] = dropout _snake_case : List[str] = attention_dropout _snake_case : str = activation_dropout _snake_case : Union[str, Any] = activation_function _snake_case : List[str] = init_std _snake_case : int = decoder_layerdrop _snake_case : int = use_cache _snake_case : str = decoder_layers _snake_case : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True _snake_case : int = max_target_positions super().__init__( pad_token_id=a_, bos_token_id=a_, eos_token_id=a_, decoder_start_token_id=a_, **a_, )
64
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowerCamelCase_ ( ): lowerCamelCase_ , lowerCamelCase_ = 9, 1_4 # noqa: F841 lowerCamelCase_ = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 1_4], [3, 4, 9], [5, 4, 1_0], [1, 7, 1_1], ] lowerCamelCase_ = defaultdict(lowerCamelCase__ ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) lowerCamelCase_ = mst(lowerCamelCase__ ) lowerCamelCase_ = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: lowerCamelCase_ = tuple(answer[:2] ) lowerCamelCase_ = tuple(edge[::-1] ) assert edge in result or reverse in result
19
0
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer UpperCamelCase__ = ['bert-base-uncased', 'bert-base-cased'] UpperCamelCase__ = 'hf-internal-testing/tiny-bert-tf-only' if is_tf_available(): class A ( tf.keras.Model ): def __init__(self : Any , __UpperCAmelCase : Tuple ) -> Optional[Any]: """simple docstring""" super().__init__() UpperCAmelCase__ = tokenizer UpperCAmelCase__ = AutoConfig.from_pretrained(__UpperCAmelCase ) UpperCAmelCase__ = TFAutoModel.from_config(__UpperCAmelCase ) def lowercase_ (self : int , __UpperCAmelCase : Union[str, Any] ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.tokenizer(__UpperCAmelCase ) UpperCAmelCase__ = self.bert(**__UpperCAmelCase ) return out["pooler_output"] @require_tf @require_tensorflow_text class A ( unittest.TestCase ): def lowercase_ (self : List[str] ) -> List[str]: """simple docstring""" super().setUp() UpperCAmelCase__ = [ BertTokenizer.from_pretrained(__UpperCAmelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false UpperCAmelCase__ = [TFBertTokenizer.from_pretrained(__UpperCAmelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(__UpperCAmelCase , use_fast_bert_tokenizer=__UpperCAmelCase ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) UpperCAmelCase__ = [ "This is a straightforward English test sentence.", "This one has some weird characters\rto\nsee\r\nif those\u00E9break things.", "Now we're going to add some Chinese: 一 二 三 一二三", "And some much more rare Chinese: 齉 堃 齉堃", "Je vais aussi écrire en français pour tester les accents", "Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ", ] UpperCAmelCase__ = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def lowercase_ (self : Any ) -> int: """simple docstring""" for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): UpperCAmelCase__ = tokenizer(__UpperCAmelCase , return_tensors="tf" , padding="longest" ) UpperCAmelCase__ = tf_tokenizer(__UpperCAmelCase ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def lowercase_ (self : List[Any] ) -> List[Any]: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase__ = tf_tokenizer(self.paired_sentences ) UpperCAmelCase__ = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def lowercase_ (self : Union[str, Any] ) -> Optional[int]: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase__ = tf.function(__UpperCAmelCase ) for test_inputs in (self.test_sentences, self.paired_sentences): UpperCAmelCase__ = tf.constant(__UpperCAmelCase ) UpperCAmelCase__ = compiled_tokenizer(__UpperCAmelCase ) UpperCAmelCase__ = tf_tokenizer(__UpperCAmelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def lowercase_ (self : str ) -> List[str]: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase__ = ModelToSave(tokenizer=__UpperCAmelCase ) UpperCAmelCase__ = tf.convert_to_tensor(self.test_sentences ) UpperCAmelCase__ = model(__UpperCAmelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: UpperCAmelCase__ = Path(__UpperCAmelCase ) / "saved.model" model.save(__UpperCAmelCase ) UpperCAmelCase__ = tf.keras.models.load_model(__UpperCAmelCase ) UpperCAmelCase__ = loaded_model(__UpperCAmelCase ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
65
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __A =1_6 __A =3_2 def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ = 1_6 ): lowerCamelCase_ = AutoTokenizer.from_pretrained("bert-base-cased" ) lowerCamelCase_ = load_dataset("glue" , "mrpc" ) def tokenize_function(lowerCamelCase__ ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase_ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCamelCase_ = datasets.map( lowerCamelCase__ , batched=lowerCamelCase__ , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase_ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowerCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCamelCase_ = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCamelCase_ = 1_6 elif accelerator.mixed_precision != "no": lowerCamelCase_ = 8 else: lowerCamelCase_ = None return tokenizer.pad( lowerCamelCase__ , padding="longest" , max_length=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_tensors="pt" , ) # Instantiate dataloaders. lowerCamelCase_ = DataLoader( tokenized_datasets["train"] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ ) lowerCamelCase_ = DataLoader( tokenized_datasets["validation"] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders __A =mocked_dataloaders # noqa: F811 def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS" , lowerCamelCase__ ) == "1": lowerCamelCase_ = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: lowerCamelCase_ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: lowerCamelCase_ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase_ = config["lr"] lowerCamelCase_ = int(config["num_epochs"] ) lowerCamelCase_ = int(config["seed"] ) lowerCamelCase_ = int(config["batch_size"] ) set_seed(lowerCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ = get_dataloaders(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation lowerCamelCase_ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowerCamelCase_ = batch_size // MAX_GPU_BATCH_SIZE lowerCamelCase_ = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase_ = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=lowerCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCamelCase_ = model.to(accelerator.device ) # Instantiate optimizer lowerCamelCase_ = AdamW(params=model.parameters() , lr=lowerCamelCase__ ) # Instantiate scheduler lowerCamelCase_ = get_linear_schedule_with_warmup( optimizer=lowerCamelCase__ , num_warmup_steps=1_0_0 , num_training_steps=(len(lowerCamelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: lowerCamelCase_ = os.path.split(lowerCamelCase__ )[-1].split("." )[0] accelerator.init_trackers(lowerCamelCase__ , lowerCamelCase__ ) # Now we train the model for epoch in range(lowerCamelCase__ ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: lowerCamelCase_ = 0 for step, batch in enumerate(lowerCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCamelCase_ = model(**lowerCamelCase__ ) lowerCamelCase_ = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() lowerCamelCase_ = loss / gradient_accumulation_steps accelerator.backward(lowerCamelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase_ = model(**lowerCamelCase__ ) lowerCamelCase_ = outputs.logits.argmax(dim=-1 ) lowerCamelCase_ , lowerCamelCase_ = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=lowerCamelCase__ , references=lowerCamelCase__ , ) lowerCamelCase_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , lowerCamelCase__ ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { "accuracy": eval_metric["accuracy"], "f1": eval_metric["f1"], "train_loss": total_loss.item() / len(lowerCamelCase__ ), "epoch": epoch, } , step=lowerCamelCase__ , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def lowerCamelCase_ ( ): lowerCamelCase_ = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=lowerCamelCase__ , default=lowerCamelCase__ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=lowerCamelCase__ , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) lowerCamelCase_ = parser.parse_args() lowerCamelCase_ = {"lr": 2e-5, "num_epochs": 3, "seed": 4_2, "batch_size": 1_6} training_function(lowerCamelCase__ , lowerCamelCase__ ) if __name__ == "__main__": main()
19
0
"""simple docstring""" import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class lowerCamelCase : '''simple docstring''' def __init__( self: Dict , snake_case: Optional[Any] , snake_case: Tuple=13 , snake_case: Any=32 , snake_case: Union[str, Any]=2 , snake_case: Tuple=3 , snake_case: Union[str, Any]=16 , snake_case: Union[str, Any]=[1, 2, 1] , snake_case: Optional[Any]=[2, 2, 4] , snake_case: str=2 , snake_case: List[str]=2.0 , snake_case: Optional[int]=True , snake_case: Union[str, Any]=0.0 , snake_case: Optional[int]=0.0 , snake_case: Optional[Any]=0.1 , snake_case: List[str]="gelu" , snake_case: Any=False , snake_case: Optional[Any]=True , snake_case: Optional[int]=0.0_2 , snake_case: Any=1E-5 , snake_case: Optional[int]=True , snake_case: int=None , snake_case: Any=True , snake_case: str=10 , snake_case: Optional[Any]=8 , snake_case: Union[str, Any]=["stage1", "stage2", "stage3"] , snake_case: Tuple=[1, 2, 3] , ) -> Dict: snake_case_ :Dict = parent snake_case_ :List[Any] = batch_size snake_case_ :Dict = image_size snake_case_ :Dict = patch_size snake_case_ :Tuple = num_channels snake_case_ :List[Any] = embed_dim snake_case_ :List[str] = depths snake_case_ :str = num_heads snake_case_ :Tuple = window_size snake_case_ :Tuple = mlp_ratio snake_case_ :int = qkv_bias snake_case_ :Tuple = hidden_dropout_prob snake_case_ :Optional[Any] = attention_probs_dropout_prob snake_case_ :Dict = drop_path_rate snake_case_ :Any = hidden_act snake_case_ :Any = use_absolute_embeddings snake_case_ :int = patch_norm snake_case_ :List[Any] = layer_norm_eps snake_case_ :Tuple = initializer_range snake_case_ :str = is_training snake_case_ :int = scope snake_case_ :Tuple = use_labels snake_case_ :Tuple = type_sequence_label_size snake_case_ :str = encoder_stride snake_case_ :List[Any] = out_features snake_case_ :str = out_indices def lowerCAmelCase_ ( self: Tuple ) -> Dict: snake_case_ :Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ :str = None if self.use_labels: snake_case_ :Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ :Union[str, Any] = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ ( self: int ) -> Optional[Any]: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def lowerCAmelCase_ ( self: List[Any] , snake_case: str , snake_case: int , snake_case: List[str] ) -> Any: snake_case_ :Dict = MaskFormerSwinModel(config=snake_case ) model.to(snake_case ) model.eval() snake_case_ :Tuple = model(snake_case ) snake_case_ :Dict = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) snake_case_ :Any = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowerCAmelCase_ ( self: Optional[Any] , snake_case: int , snake_case: List[str] , snake_case: Tuple ) -> Union[str, Any]: snake_case_ :Any = MaskFormerSwinBackbone(config=snake_case ) model.to(snake_case ) model.eval() snake_case_ :Optional[Any] = model(snake_case ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(snake_case ): snake_case_ :Optional[Any] = ["""stem"""] snake_case_ :str = MaskFormerSwinBackbone(config=snake_case ) def lowerCAmelCase_ ( self: List[str] ) -> Optional[Any]: snake_case_ :Optional[int] = self.prepare_config_and_inputs() snake_case_, snake_case_, snake_case_ :str = config_and_inputs snake_case_ :Tuple = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _A : Union[str, Any] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) _A : str = {"""feature-extraction""": MaskFormerSwinModel} if is_torch_available() else {} _A : List[str] = False _A : Any = False _A : Dict = False _A : List[Any] = False _A : Optional[int] = False def lowerCAmelCase_ ( self: Dict ) -> Any: snake_case_ :str = MaskFormerSwinModelTester(self ) snake_case_ :Optional[Any] = ConfigTester(self , config_class=snake_case , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( """`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with""" """ `nn.DataParallel`""" ) ) def lowerCAmelCase_ ( self: List[str] ) -> Optional[int]: pass def lowerCAmelCase_ ( self: Union[str, Any] ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase_ ( self: Any ) -> Tuple: return def lowerCAmelCase_ ( self: Any ) -> Any: snake_case_ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def lowerCAmelCase_ ( self: Union[str, Any] ) -> int: snake_case_ :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*snake_case ) @unittest.skip("""Swin does not use inputs_embeds""" ) def lowerCAmelCase_ ( self: str ) -> List[str]: pass @unittest.skip("""Swin does not support feedforward chunking""" ) def lowerCAmelCase_ ( self: int ) -> Optional[int]: pass def lowerCAmelCase_ ( self: List[str] ) -> List[Any]: snake_case_, snake_case_ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ :str = model_class(snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case_ :Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case , nn.Linear ) ) def lowerCAmelCase_ ( self: Tuple ) -> Dict: snake_case_, snake_case_ :int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ :Optional[int] = model_class(snake_case ) snake_case_ :str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ :str = [*signature.parameters.keys()] snake_case_ :str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case ) @unittest.skip(reason="""MaskFormerSwin is only used as backbone and doesn't support output_attentions""" ) def lowerCAmelCase_ ( self: List[Any] ) -> List[Any]: pass @unittest.skip(reason="""MaskFormerSwin is only used as an internal backbone""" ) def lowerCAmelCase_ ( self: Dict ) -> List[Any]: pass def lowerCAmelCase_ ( self: Union[str, Any] , snake_case: Union[str, Any] , snake_case: int , snake_case: Any , snake_case: List[str] ) -> str: snake_case_ :List[str] = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): snake_case_ :List[Any] = model(**self._prepare_for_class(snake_case , snake_case ) ) snake_case_ :Any = outputs.hidden_states snake_case_ :Optional[int] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(snake_case ) , snake_case ) # Swin has a different seq_length snake_case_ :str = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) snake_case_ :int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowerCAmelCase_ ( self: List[Any] ) -> Optional[int]: snake_case_, snake_case_ :Any = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ :List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: snake_case_ :Tuple = True self.check_hidden_states_output(snake_case , snake_case , snake_case , snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ :List[Any] = True self.check_hidden_states_output(snake_case , snake_case , snake_case , snake_case ) def lowerCAmelCase_ ( self: Optional[Any] ) -> Tuple: snake_case_, snake_case_ :int = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ :List[Any] = 3 snake_case_ :List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) snake_case_ :Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) snake_case_ :Tuple = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) snake_case_ :List[str] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: snake_case_ :str = True self.check_hidden_states_output(snake_case , snake_case , snake_case , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ :Any = True self.check_hidden_states_output(snake_case , snake_case , snake_case , (padded_height, padded_width) ) @unittest.skip(reason="""MaskFormerSwin doesn't have pretrained checkpoints""" ) def lowerCAmelCase_ ( self: Union[str, Any] ) -> List[str]: pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def lowerCAmelCase_ ( self: List[str] ) -> str: pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def lowerCAmelCase_ ( self: str ) -> List[Any]: pass def lowerCAmelCase_ ( self: Union[str, Any] ) -> Optional[Any]: snake_case_, snake_case_ :Dict = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(snake_case: str ): snake_case_ :Optional[int] = 0 return t def check_equivalence(snake_case: List[Any] , snake_case: Union[str, Any] , snake_case: int , snake_case: Tuple={} ): with torch.no_grad(): snake_case_ :List[Any] = model(**snake_case , return_dict=snake_case , **snake_case ) snake_case_ :Any = model(**snake_case , return_dict=snake_case , **snake_case ).to_tuple() def recursive_check(snake_case: List[Any] , snake_case: int ): if isinstance(snake_case , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(snake_case , snake_case ): recursive_check(snake_case , snake_case ) elif isinstance(snake_case , snake_case ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(snake_case , snake_case ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(snake_case ) , set_nan_tensor_to_zero(snake_case ) , atol=1E-5 ) , msg=( """Tuple and dict output are not equal. Difference:""" f""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" f""" {torch.isnan(snake_case ).any()} and `inf`: {torch.isinf(snake_case )}. Dict has""" f""" `nan`: {torch.isnan(snake_case ).any()} and `inf`: {torch.isinf(snake_case )}.""" ) , ) recursive_check(snake_case , snake_case ) for model_class in self.all_model_classes: snake_case_ :int = model_class(snake_case ) model.to(snake_case ) model.eval() snake_case_ :Any = self._prepare_for_class(snake_case , snake_case ) snake_case_ :List[Any] = self._prepare_for_class(snake_case , snake_case ) check_equivalence(snake_case , snake_case , snake_case ) snake_case_ :Tuple = self._prepare_for_class(snake_case , snake_case , return_labels=snake_case ) snake_case_ :Dict = self._prepare_for_class(snake_case , snake_case , return_labels=snake_case ) check_equivalence(snake_case , snake_case , snake_case ) snake_case_ :Tuple = self._prepare_for_class(snake_case , snake_case ) snake_case_ :Any = self._prepare_for_class(snake_case , snake_case ) check_equivalence(snake_case , snake_case , snake_case , {"""output_hidden_states""": True} ) snake_case_ :Dict = self._prepare_for_class(snake_case , snake_case , return_labels=snake_case ) snake_case_ :List[str] = self._prepare_for_class(snake_case , snake_case , return_labels=snake_case ) check_equivalence(snake_case , snake_case , snake_case , {"""output_hidden_states""": True} ) @require_torch class lowerCamelCase ( unittest.TestCase , _lowerCAmelCase ): '''simple docstring''' _A : int = (MaskFormerSwinBackbone,) if is_torch_available() else () _A : Tuple = MaskFormerSwinConfig def lowerCAmelCase_ ( self: List[str] ) -> Optional[int]: snake_case_ :Optional[Any] = MaskFormerSwinModelTester(self ) def lowerCAmelCase_ ( self: int ) -> Optional[int]: snake_case_, snake_case_ :Any = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ :Tuple = inputs_dict["""pixel_values"""].shape[0] for backbone_class in self.all_model_classes: snake_case_ :List[str] = backbone_class(snake_case ) backbone.to(snake_case ) backbone.eval() snake_case_ :List[Any] = backbone(**snake_case ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , snake_case ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True snake_case_ :Union[str, Any] = backbone(**snake_case , output_hidden_states=snake_case ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) snake_case_, snake_case_, snake_case_ :List[Any] = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: snake_case_ :List[Any] = backbone(**snake_case , output_attentions=snake_case ) self.assertIsNotNone(outputs.attentions )
66
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: __A =None __A =logging.get_logger(__name__) __A ={'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __A ={ '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } __A ={ '''facebook/mbart-large-en-ro''': 1_0_2_4, '''facebook/mbart-large-cc25''': 1_0_2_4, } # fmt: off __A =['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = ['input_ids', 'attention_mask'] lowerCAmelCase__ = MBartTokenizer lowerCAmelCase__ = [] lowerCAmelCase__ = [] def __init__( self , lowercase=None , lowercase=None , lowercase="<s>" , lowercase="</s>" , lowercase="</s>" , lowercase="<s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase="<mask>" , lowercase=None , lowercase=None , lowercase=None , **lowercase , ) -> Dict: # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else mask_token super().__init__( vocab_file=lowercase , tokenizer_file=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , cls_token=lowercase , unk_token=lowercase , pad_token=lowercase , mask_token=lowercase , src_lang=lowercase , tgt_lang=lowercase , additional_special_tokens=lowercase , **lowercase , ) lowerCamelCase_ = vocab_file lowerCamelCase_ = False if not self.vocab_file else True lowerCamelCase_ = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens} ) lowerCamelCase_ = { lang_code: self.convert_tokens_to_ids(lowercase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCamelCase_ = src_lang if src_lang is not None else "en_XX" lowerCamelCase_ = self.convert_tokens_to_ids(self._src_lang ) lowerCamelCase_ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def SCREAMING_SNAKE_CASE_( self ) -> str: return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE_( self , lowercase ) -> None: lowerCamelCase_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> List[int]: lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , **lowercase ) -> List[Any]: if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) lowerCamelCase_ = src_lang lowerCamelCase_ = self(lowercase , add_special_tokens=lowercase , return_tensors=lowercase , **lowercase ) lowerCamelCase_ = self.convert_tokens_to_ids(lowercase ) lowerCamelCase_ = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = "en_XX" , lowercase = None , lowercase = "ro_RO" , **lowercase , ) -> BatchEncoding: lowerCamelCase_ = src_lang lowerCamelCase_ = tgt_lang return super().prepare_seqaseq_batch(lowercase , lowercase , **lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Dict: return self.set_src_lang_special_tokens(self.src_lang ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> None: lowerCamelCase_ = self.convert_tokens_to_ids(lowercase ) lowerCamelCase_ = [] lowerCamelCase_ = [self.eos_token_id, self.cur_lang_code] lowerCamelCase_ = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase_ = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase_ = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> None: lowerCamelCase_ = self.convert_tokens_to_ids(lowercase ) lowerCamelCase_ = [] lowerCamelCase_ = [self.eos_token_id, self.cur_lang_code] lowerCamelCase_ = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase_ = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase_ = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory.' ) return lowerCamelCase_ = os.path.join( lowercase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ): copyfile(self.vocab_file , lowercase ) return (out_vocab_file,)
19
0
'''simple docstring''' def __lowerCAmelCase ( UpperCamelCase__ = 50 ) -> int: __lowerCamelCase = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f'{solution() = }')
67
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss __A =pytest.mark.integration @require_faiss class _SCREAMING_SNAKE_CASE ( snake_case_ ): def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(lowercase ) for x in np.arange(30 ).tolist()]} ) return dset def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: import faiss lowerCamelCase_ = self._create_dummy_dataset() lowerCamelCase_ = dset.map( lambda lowercase , lowercase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=lowercase , keep_in_memory=lowercase ) lowerCamelCase_ = dset.add_faiss_index("vecs" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCamelCase_ , lowerCamelCase_ = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) dset.drop_index("vecs" ) def SCREAMING_SNAKE_CASE_( self ) -> Dict: import faiss lowerCamelCase_ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCamelCase_ , lowerCamelCase_ = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: import faiss lowerCamelCase_ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowercase ) as tmp_file: dset.save_faiss_index("vecs" , tmp_file.name ) dset.load_faiss_index("vecs2" , tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase_ , lowerCamelCase_ = dset.get_nearest_examples("vecs2" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: lowerCamelCase_ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" ) dset.drop_index("vecs" ) self.assertRaises(lowercase , partial(dset.get_nearest_examples , "vecs2" , np.ones(5 , dtype=np.floataa ) ) ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: from elasticsearch import Elasticsearch lowerCamelCase_ = self._create_dummy_dataset() with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: lowerCamelCase_ = {"acknowledged": True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 29}]}} lowerCamelCase_ = Elasticsearch() dset.add_elasticsearch_index("filename" , es_client=lowercase ) lowerCamelCase_ , lowerCamelCase_ = dset.get_nearest_examples("filename" , "my_name-train_29" ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) @require_faiss class _SCREAMING_SNAKE_CASE ( snake_case_ ): def SCREAMING_SNAKE_CASE_( self ) -> Tuple: import faiss lowerCamelCase_ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCamelCase_ = np.zeros(5 , dtype=np.floataa ) lowerCamelCase_ = 1 lowerCamelCase_ , lowerCamelCase_ = index.search(lowercase ) self.assertRaises(lowercase , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCamelCase_ = np.eye(5 , dtype=np.floataa )[::-1] lowerCamelCase_ , lowerCamelCase_ = index.search_batch(lowercase ) self.assertRaises(lowercase , index.search_batch , queries[0] ) lowerCamelCase_ = [scores[0] for scores in total_scores] lowerCamelCase_ = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Any: import faiss lowerCamelCase_ = FaissIndex(string_factory="Flat" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCamelCase_ = FaissIndex(string_factory="LSH" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(lowercase ): lowerCamelCase_ = FaissIndex(string_factory="Flat" , custom_index=faiss.IndexFlat(5 ) ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: import faiss lowerCamelCase_ = faiss.IndexFlat(5 ) lowerCamelCase_ = FaissIndex(custom_index=lowercase ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: import faiss lowerCamelCase_ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowercase ) as tmp_file: index.save(tmp_file.name ) lowerCamelCase_ = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase_ = np.zeros(5 , dtype=np.floataa ) lowerCamelCase_ = 1 lowerCamelCase_ , lowerCamelCase_ = index.search(lowercase ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def lowerCamelCase_ ( lowerCamelCase__ ): import faiss lowerCamelCase_ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCamelCase_ = "index.faiss" lowerCamelCase_ = F'mock://{index_name}' index.save(lowerCamelCase__ , storage_options=mockfs.storage_options ) lowerCamelCase_ = FaissIndex.load(lowerCamelCase__ , storage_options=mockfs.storage_options ) lowerCamelCase_ = np.zeros(5 , dtype=np.floataa ) lowerCamelCase_ = 1 lowerCamelCase_ , lowerCamelCase_ = index.search(lowerCamelCase__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _SCREAMING_SNAKE_CASE ( snake_case_ ): def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: from elasticsearch import Elasticsearch with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: lowerCamelCase_ = Elasticsearch() lowerCamelCase_ = {"acknowledged": True} lowerCamelCase_ = ElasticSearchIndex(es_client=lowercase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["foo", "bar", "foobar"] ) # single query lowerCamelCase_ = "foo" lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} lowerCamelCase_ , lowerCamelCase_ = index.search(lowercase ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCamelCase_ = "foo" lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} lowerCamelCase_ , lowerCamelCase_ = index.search(lowercase , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCamelCase_ = ["foo", "bar", "foobar"] lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} lowerCamelCase_ , lowerCamelCase_ = index.search_batch(lowercase ) lowerCamelCase_ = [scores[0] for scores in total_scores] lowerCamelCase_ = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase ) , 0 ) self.assertListEqual([1, 1, 1] , lowercase ) # batched queries with timeout lowerCamelCase_ = ["foo", "bar", "foobar"] lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} lowerCamelCase_ , lowerCamelCase_ = index.search_batch(lowercase , request_timeout=30 ) lowerCamelCase_ = [scores[0] for scores in total_scores] lowerCamelCase_ = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase ) , 0 ) self.assertListEqual([1, 1, 1] , lowercase )
19
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """BAAI/AltCLIP""": """https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json""", # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = 'altclip_text_model' def __init__( self , lowercase=250002 , lowercase=1024 , lowercase=24 , lowercase=16 , lowercase=4096 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=514 , lowercase=1 , lowercase=0.02 , lowercase=0.02 , lowercase=1e-05 , lowercase=1 , lowercase=0 , lowercase=2 , lowercase="absolute" , lowercase=True , lowercase=768 , **lowercase , ) -> Optional[Any]: '''simple docstring''' super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = initializer_range A__ = initializer_factor A__ = layer_norm_eps A__ = position_embedding_type A__ = use_cache A__ = project_dim class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = 'altclip_vision_model' def __init__( self , lowercase=768 , lowercase=3072 , lowercase=512 , lowercase=12 , lowercase=12 , lowercase=3 , lowercase=224 , lowercase=32 , lowercase="quick_gelu" , lowercase=1e-5 , lowercase=0.0 , lowercase=0.02 , lowercase=1.0 , **lowercase , ) -> Tuple: '''simple docstring''' super().__init__(**lowercase ) A__ = hidden_size A__ = intermediate_size A__ = projection_dim A__ = num_hidden_layers A__ = num_attention_heads A__ = num_channels A__ = patch_size A__ = image_size A__ = initializer_range A__ = initializer_factor A__ = attention_dropout A__ = layer_norm_eps A__ = hidden_act @classmethod def UpperCamelCase ( cls , lowercase , **lowercase ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(lowercase ) A__ , A__ = cls.get_config_dict(lowercase , **lowercase ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get("model_type" ) == "altclip": A__ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(lowercase , **lowercase ) class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = 'altclip' __lowerCamelCase = True def __init__( self , lowercase=None , lowercase=None , lowercase=768 , lowercase=2.6592 , **lowercase ) -> List[str]: '''simple docstring''' A__ = kwargs.pop("text_config_dict" , lowercase ) A__ = kwargs.pop("vision_config_dict" , lowercase ) super().__init__(**lowercase ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: A__ = {} # This is the complete result when using `text_config_dict`. A__ = AltCLIPTextConfig(**lowercase ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: A__ = ( F'`{key}` is found in both `text_config_dict` and `text_config` but with different values. ' F'The value `text_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: A__ = ( F'`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The ' F'value `text_config["{key}"]` will be overriden.' ) logger.warning(lowercase ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: A__ = {} # This is the complete result when using `vision_config_dict`. A__ = AltCLIPVisionConfig(**lowercase ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: A__ = { str(lowercase ): value for key, value in _vision_config_dict["id2label"].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: A__ = ( F'`{key}` is found in both `vision_config_dict` and `vision_config` but with different ' F'values. The value `vision_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: A__ = ( F'`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. ' F'The value `vision_config["{key}"]` will be overriden.' ) logger.warning(lowercase ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: A__ = {} logger.info("`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values." ) if vision_config is None: A__ = {} logger.info("`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values." ) A__ = AltCLIPTextConfig(**lowercase ) A__ = AltCLIPVisionConfig(**lowercase ) A__ = projection_dim A__ = logit_scale_init_value A__ = 1.0 @classmethod def UpperCamelCase ( cls , lowercase , lowercase , **lowercase ) -> Union[str, Any]: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowercase ) def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' A__ = copy.deepcopy(self.__dict__ ) A__ = self.text_config.to_dict() A__ = self.vision_config.to_dict() A__ = self.__class__.model_type return output
68
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class _SCREAMING_SNAKE_CASE : def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=99 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.0_2 , lowercase=3 , lowercase=4 , lowercase=None , ) -> List[str]: lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_token_type_ids lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = num_labels lowerCamelCase_ = num_choices lowerCamelCase_ = scope lowerCamelCase_ = self.vocab_size - 1 def SCREAMING_SNAKE_CASE_( self ) -> Any: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_token_type_ids: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) lowerCamelCase_ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , *lowercase ) -> Dict: lowerCamelCase_ = OpenAIGPTModel(config=lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = model(lowercase , token_type_ids=lowercase , head_mask=lowercase ) lowerCamelCase_ = model(lowercase , token_type_ids=lowercase ) lowerCamelCase_ = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , *lowercase ) -> int: lowerCamelCase_ = OpenAIGPTLMHeadModel(lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = model(lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , *lowercase ) -> Dict: lowerCamelCase_ = OpenAIGPTDoubleHeadsModel(lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = model(lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , *lowercase ) -> int: lowerCamelCase_ = self.num_labels lowerCamelCase_ = OpenAIGPTForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = model(lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = { "input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask, } return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): lowerCAmelCase__ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) lowerCAmelCase__ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly lowerCAmelCase__ = ( { 'feature-extraction': OpenAIGPTModel, 'text-classification': OpenAIGPTForSequenceClassification, 'text-generation': OpenAIGPTLMHeadModel, 'zero-shot': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase ) -> int: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase=False ) -> Any: lowerCamelCase_ = super()._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": lowerCamelCase_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=lowercase , ) lowerCamelCase_ = inputs_dict["labels"] lowerCamelCase_ = inputs_dict["labels"] lowerCamelCase_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=lowercase , ) lowerCamelCase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase ) return inputs_dict def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ = OpenAIGPTModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=lowercase , n_embd=37 ) def SCREAMING_SNAKE_CASE_( self ) -> Any: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Tuple: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowercase ) @slow def SCREAMING_SNAKE_CASE_( self ) -> Any: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = OpenAIGPTModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ = OpenAIGPTLMHeadModel.from_pretrained("openai-gpt" ) model.to(lowercase ) lowerCamelCase_ = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=lowercase ) # the president is lowerCamelCase_ = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the lowerCamelCase_ = model.generate(lowercase , do_sample=lowercase ) self.assertListEqual(output_ids[0].tolist() , lowercase )
19
0
"""simple docstring""" from __future__ import annotations from collections import deque class UpperCamelCase : def __init__( self, lowerCAmelCase__) -> Union[str, Any]: snake_case_ = [] self.adlist.append( {'value': '', 'next_states': [], 'fail_state': 0, 'output': []}) for keyword in keywords: self.add_keyword(lowerCAmelCase__) self.set_fail_transitions() def a_ ( self, lowerCAmelCase__, lowerCAmelCase__) -> int | None: for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def a_ ( self, lowerCAmelCase__) -> None: snake_case_ = 0 for character in keyword: snake_case_ = self.find_next_state(lowerCAmelCase__, lowerCAmelCase__) if next_state is None: self.adlist.append( { 'value': character, 'next_states': [], 'fail_state': 0, 'output': [], }) self.adlist[current_state]["next_states"].append(len(self.adlist) - 1) snake_case_ = len(self.adlist) - 1 else: snake_case_ = next_state self.adlist[current_state]["output"].append(lowerCAmelCase__) def a_ ( self) -> None: snake_case_ = deque() for node in self.adlist[0]["next_states"]: q.append(lowerCAmelCase__) snake_case_ = 0 while q: snake_case_ = q.popleft() for child in self.adlist[r]["next_states"]: q.append(lowerCAmelCase__) snake_case_ = self.adlist[r]['fail_state'] while ( self.find_next_state(lowerCAmelCase__, self.adlist[child]['value']) is None and state != 0 ): snake_case_ = self.adlist[state]['fail_state'] snake_case_ = self.find_next_state( lowerCAmelCase__, self.adlist[child]['value']) if self.adlist[child]["fail_state"] is None: snake_case_ = 0 snake_case_ = ( self.adlist[child]['output'] + self.adlist[self.adlist[child]['fail_state']]['output'] ) def a_ ( self, lowerCAmelCase__) -> dict[str, list[int]]: snake_case_ = {} # returns a dict with keywords and list of its occurrences snake_case_ = 0 for i in range(len(lowerCAmelCase__)): while ( self.find_next_state(lowerCAmelCase__, string[i]) is None and current_state != 0 ): snake_case_ = self.adlist[current_state]['fail_state'] snake_case_ = self.find_next_state(lowerCAmelCase__, string[i]) if next_state is None: snake_case_ = 0 else: snake_case_ = next_state for key in self.adlist[current_state]["output"]: if key not in result: snake_case_ = [] result[key].append(i - len(lowerCAmelCase__) + 1) return result if __name__ == "__main__": import doctest doctest.testmod()
69
__A ={str(digit): digit**5 for digit in range(1_0)} def lowerCamelCase_ ( lowerCamelCase__ ): return sum(DIGITS_FIFTH_POWER[digit] for digit in str(lowerCamelCase__ ) ) def lowerCamelCase_ ( ): return sum( number for number in range(1_0_0_0 , 1_0_0_0_0_0_0 ) if number == digits_fifth_powers_sum(lowerCamelCase__ ) ) if __name__ == "__main__": print(solution())
19
0
'''simple docstring''' # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position A__ : Dict ='''2.13.1''' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('''3.7'''): raise ImportWarning( '''To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.''' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( '''To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n''' '''If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.''' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip A__ : Tuple =concatenate_datasets A__ : Dict =DownloadConfig A__ : int =DownloadManager A__ : Union[str, Any] =DownloadMode A__ : Tuple =DownloadConfig A__ : Optional[Any] =DownloadMode A__ : str =DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
70
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() __A =logging.get_logger(__name__) def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: lowerCamelCase_ = 1_9_2 lowerCamelCase_ = 7_6_8 lowerCamelCase_ = 1_2 lowerCamelCase_ = 3 lowerCamelCase_ = [8_0_0, 1_3_3_3] lowerCamelCase_ = False elif yolos_name == "yolos_s_dWr": lowerCamelCase_ = 3_3_0 lowerCamelCase_ = 1_4 lowerCamelCase_ = 6 lowerCamelCase_ = 1_3_2_0 elif "yolos_s" in yolos_name: lowerCamelCase_ = 3_8_4 lowerCamelCase_ = 1_5_3_6 lowerCamelCase_ = 1_2 lowerCamelCase_ = 6 elif "yolos_b" in yolos_name: lowerCamelCase_ = [8_0_0, 1_3_4_4] lowerCamelCase_ = 9_1 lowerCamelCase_ = "huggingface/label-files" lowerCamelCase_ = "coco-detection-id2label.json" lowerCamelCase_ = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="dataset" ) , "r" ) ) lowerCamelCase_ = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} lowerCamelCase_ = idalabel lowerCamelCase_ = {v: k for k, v in idalabel.items()} return config def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase_ = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) lowerCamelCase_ = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase_ = in_proj_weight[: config.hidden_size, :] lowerCamelCase_ = in_proj_bias[: config.hidden_size] lowerCamelCase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase_ = in_proj_weight[-config.hidden_size :, :] lowerCamelCase_ = in_proj_bias[-config.hidden_size :] def lowerCamelCase_ ( lowerCamelCase__ ): if "backbone" in name: lowerCamelCase_ = name.replace("backbone" , "vit" ) if "cls_token" in name: lowerCamelCase_ = name.replace("cls_token" , "embeddings.cls_token" ) if "det_token" in name: lowerCamelCase_ = name.replace("det_token" , "embeddings.detection_tokens" ) if "mid_pos_embed" in name: lowerCamelCase_ = name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" ) if "pos_embed" in name: lowerCamelCase_ = name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: lowerCamelCase_ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "blocks" in name: lowerCamelCase_ = name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: lowerCamelCase_ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: lowerCamelCase_ = name.replace("attn" , "attention.self" ) if "norm1" in name: lowerCamelCase_ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowerCamelCase_ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: lowerCamelCase_ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowerCamelCase_ = name.replace("mlp.fc2" , "output.dense" ) if "class_embed" in name: lowerCamelCase_ = name.replace("class_embed" , "class_labels_classifier" ) if "bbox_embed" in name: lowerCamelCase_ = name.replace("bbox_embed" , "bbox_predictor" ) if "vit.norm" in name: lowerCamelCase_ = name.replace("vit.norm" , "vit.layernorm" ) return name def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): for key in orig_state_dict.copy().keys(): lowerCamelCase_ = orig_state_dict.pop(lowerCamelCase__ ) if "qkv" in key: lowerCamelCase_ = key.split("." ) lowerCamelCase_ = int(key_split[2] ) lowerCamelCase_ = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: lowerCamelCase_ = val[:dim, :] lowerCamelCase_ = val[ dim : dim * 2, : ] lowerCamelCase_ = val[-dim:, :] else: lowerCamelCase_ = val[:dim] lowerCamelCase_ = val[dim : dim * 2] lowerCamelCase_ = val[-dim:] else: lowerCamelCase_ = val return orig_state_dict def lowerCamelCase_ ( ): lowerCamelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase_ = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ) return im @torch.no_grad() def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ): lowerCamelCase_ = get_yolos_config(lowerCamelCase__ ) # load original state_dict lowerCamelCase_ = torch.load(lowerCamelCase__ , map_location="cpu" )["model"] # load 🤗 model lowerCamelCase_ = YolosForObjectDetection(lowerCamelCase__ ) model.eval() lowerCamelCase_ = convert_state_dict(lowerCamelCase__ , lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) # Check outputs on an image, prepared by YolosImageProcessor lowerCamelCase_ = 8_0_0 if yolos_name != "yolos_ti" else 5_1_2 lowerCamelCase_ = YolosImageProcessor(format="coco_detection" , size=lowerCamelCase__ ) lowerCamelCase_ = image_processor(images=prepare_img() , return_tensors="pt" ) lowerCamelCase_ = model(**lowerCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ = outputs.logits, outputs.pred_boxes lowerCamelCase_ , lowerCamelCase_ = None, None if yolos_name == "yolos_ti": lowerCamelCase_ = torch.tensor( [[-39.50_22, -11.98_20, -17.68_88], [-29.95_74, -9.97_69, -17.76_91], [-42.32_81, -20.72_00, -30.62_94]] ) lowerCamelCase_ = torch.tensor( [[0.40_21, 0.08_36, 0.79_79], [0.01_84, 0.26_09, 0.03_64], [0.17_81, 0.20_04, 0.20_95]] ) elif yolos_name == "yolos_s_200_pre": lowerCamelCase_ = torch.tensor( [[-24.02_48, -10.30_24, -14.82_90], [-42.03_92, -16.82_00, -27.43_34], [-27.27_43, -11.81_54, -18.71_48]] ) lowerCamelCase_ = torch.tensor( [[0.25_59, 0.54_55, 0.47_06], [0.29_89, 0.72_79, 0.18_75], [0.77_32, 0.40_17, 0.44_62]] ) elif yolos_name == "yolos_s_300_pre": lowerCamelCase_ = torch.tensor( [[-36.22_20, -14.43_85, -23.54_57], [-35.69_70, -14.75_83, -21.39_35], [-31.59_39, -13.60_42, -16.80_49]] ) lowerCamelCase_ = torch.tensor( [[0.76_14, 0.23_16, 0.47_28], [0.71_68, 0.44_95, 0.38_55], [0.49_96, 0.14_66, 0.99_96]] ) elif yolos_name == "yolos_s_dWr": lowerCamelCase_ = torch.tensor( [[-42.86_68, -24.10_49, -41.16_90], [-34.74_56, -14.12_74, -24.91_94], [-33.78_98, -12.19_46, -25.64_95]] ) lowerCamelCase_ = torch.tensor( [[0.55_87, 0.27_73, 0.06_05], [0.50_04, 0.30_14, 0.99_94], [0.49_99, 0.15_48, 0.99_94]] ) elif yolos_name == "yolos_base": lowerCamelCase_ = torch.tensor( [[-40.60_64, -24.30_84, -32.64_47], [-55.19_90, -30.77_19, -35.58_77], [-51.43_11, -33.35_07, -35.64_62]] ) lowerCamelCase_ = torch.tensor( [[0.55_55, 0.27_94, 0.06_55], [0.90_49, 0.26_64, 0.18_94], [0.91_83, 0.19_84, 0.16_35]] ) else: raise ValueError(F'Unknown yolos_name: {yolos_name}' ) assert torch.allclose(logits[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) print(F'Saving model {yolos_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCamelCase__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: lowerCamelCase_ = { "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) lowerCamelCase_ = model_mapping[yolos_name] image_processor.push_to_hub(lowerCamelCase__ , organization="hustvl" ) model.push_to_hub(lowerCamelCase__ , organization="hustvl" ) if __name__ == "__main__": __A =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--yolos_name''', default='''yolos_s_200_pre''', type=str, help=( '''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',''' ''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.''' ), ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __A =parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
19
0
from math import factorial def A ( a_ = 100 ) -> int: return sum(int(a_ ) for x in str(factorial(a_ ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
71
def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = [0 for i in range(r + 1 )] # nc0 = 1 lowerCamelCase_ = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. lowerCamelCase_ = min(lowerCamelCase__ , lowerCamelCase__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=1_0, r=5))
19
0
"""simple docstring""" import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) lowerCAmelCase__ = logging.getLogger() def snake_case_ ( A_ : Path, A_ : list ): '''simple docstring''' _lowerCamelCase : int = '''\n'''.join(A_ ) Path(A_ ).open('''w''' ).writelines(A_ ) lowerCAmelCase__ = '''patrickvonplaten/t5-tiny-random''' lowerCAmelCase__ = '''sshleifer/bart-tiny-random''' lowerCAmelCase__ = '''sshleifer/tiny-mbart''' lowerCAmelCase__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class __snake_case ( _lowercase): def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : Tuple = Path(self.get_auto_remove_tmp_dir() ) / '''utest_input.source''' _lowerCamelCase : Tuple = input_file_name.parent / '''utest_output.txt''' assert not output_file_name.exists() _lowerCamelCase : Optional[int] = [''' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'''] _dump_articles(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Any = str(Path(self.get_auto_remove_tmp_dir() ) / '''scores.json''' ) _lowerCamelCase : List[str] = '''translation_en_to_de''' if model == T5_TINY else '''summarization''' _lowerCamelCase : Optional[Any] = f''' run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 '''.split() with patch.object(__lowerCAmelCase , '''argv''' , __lowerCAmelCase ): run_generate() assert Path(__lowerCAmelCase ).exists() # os.remove(Path(output_file_name)) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" self.run_eval_tester(__lowerCAmelCase ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCAmelCase : Optional[int] ): """simple docstring""" self.run_eval_tester(__lowerCAmelCase ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCAmelCase : Optional[int] ): """simple docstring""" _lowerCamelCase : Optional[int] = Path(self.get_auto_remove_tmp_dir() ) / '''utest_input.source''' _lowerCamelCase : List[str] = input_file_name.parent / '''utest_output.txt''' assert not output_file_name.exists() _lowerCamelCase : List[Any] = { '''en''': ['''Machine learning is great, isn\'t it?''', '''I like to eat bananas''', '''Tomorrow is another great day!'''], '''de''': [ '''Maschinelles Lernen ist großartig, oder?''', '''Ich esse gerne Bananen''', '''Morgen ist wieder ein toller Tag!''', ], } _lowerCamelCase : Dict = Path(self.get_auto_remove_tmp_dir() ) _lowerCamelCase : List[str] = str(tmp_dir / '''scores.json''' ) _lowerCamelCase : Union[str, Any] = str(tmp_dir / '''val.target''' ) _dump_articles(__lowerCAmelCase , text['''en'''] ) _dump_articles(__lowerCAmelCase , text['''de'''] ) _lowerCamelCase : Union[str, Any] = '''translation_en_to_de''' if model == T5_TINY else '''summarization''' _lowerCamelCase : str = f''' run_eval_search.py {model} {str(__lowerCAmelCase )} {str(__lowerCAmelCase )} --score_path {score_path} --reference_path {reference_path} --task {task} '''.split() testargs.extend(['''--search''', '''num_beams=1:2 length_penalty=0.9:1.0'''] ) with patch.object(__lowerCAmelCase , '''argv''' , __lowerCAmelCase ): with CaptureStdout() as cs: run_search() _lowerCamelCase : Optional[Any] = [''' num_beams | length_penalty''', model, '''Best score args'''] _lowerCamelCase : Optional[Any] = ['''Info'''] if "translation" in task: expected_strings.append('''bleu''' ) else: expected_strings.extend(__lowerCAmelCase ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(__lowerCAmelCase ).exists() os.remove(Path(__lowerCAmelCase ) )
72
import math def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(lowerCamelCase__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("This should never happen" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. __A ='''Enter the base and the power separated by a comma: ''' __A, __A =map(int, input(prompt).split(''',''')) __A, __A =map(int, input(prompt).split(''',''')) # We find the log of each number, using the function res(), which takes two # arguments. __A =res(xa, ya) __A =res(xa, ya) # We check for the largest number if resa > resa: print('''Largest number is''', xa, '''^''', ya) elif resa > resa: print('''Largest number is''', xa, '''^''', ya) else: print('''Both are equal''')
19
0
from math import isclose, sqrt def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> tuple[float, float, float]: __lowerCamelCase : Tuple = point_y / 4 / point_x __lowerCamelCase : Tuple = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) __lowerCamelCase : List[Any] = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) __lowerCamelCase : int = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 __lowerCamelCase : Any = outgoing_gradient**2 + 4 __lowerCamelCase : Optional[int] = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) __lowerCamelCase : str = (point_y - outgoing_gradient * point_x) ** 2 - 1_0_0 __lowerCamelCase : str = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) __lowerCamelCase : Optional[Any] = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point __lowerCamelCase : Optional[Any] = x_minus if isclose(lowerCamelCase__ , lowerCamelCase__ ) else x_plus __lowerCamelCase : Tuple = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ = 1.4 , lowerCamelCase__ = -9.6 ) -> int: __lowerCamelCase : int = 0 __lowerCamelCase : float = first_x_coord __lowerCamelCase : float = first_y_coord __lowerCamelCase : float = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Any = next_point(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F"""{solution() = }""")
73
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features __A =logging.get_logger(__name__) __A =list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) __A =tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _SCREAMING_SNAKE_CASE : lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Model type selected in the list: ' + ', '.join(snake_case_ )} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) lowerCAmelCase__ = field( default=1_28 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase__ = field( default=1_28 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) lowerCAmelCase__ = field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) lowerCAmelCase__ = field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) lowerCAmelCase__ = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase__ = field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase__ = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) lowerCAmelCase__ = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = 'train' lowerCAmelCase__ = 'dev' class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 def __init__( self , lowercase , lowercase , lowercase = None , lowercase = Split.train , lowercase = False , lowercase = None , lowercase = "pt" , ) -> List[str]: lowerCamelCase_ = args lowerCamelCase_ = is_language_sensitive lowerCamelCase_ = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(lowercase , lowercase ): try: lowerCamelCase_ = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) lowerCamelCase_ = mode # Load data features from cache or dataset file lowerCamelCase_ = "v2" if args.version_2_with_negative else "v1" lowerCamelCase_ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase_ = cached_features_file + ".lock" with FileLock(lowercase ): if os.path.exists(lowercase ) and not args.overwrite_cache: lowerCamelCase_ = time.time() lowerCamelCase_ = torch.load(lowercase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. lowerCamelCase_ = self.old_features["features"] lowerCamelCase_ = self.old_features.get("dataset" , lowercase ) lowerCamelCase_ = self.old_features.get("examples" , lowercase ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' " future run" ) else: if mode == Split.dev: lowerCamelCase_ = self.processor.get_dev_examples(args.data_dir ) else: lowerCamelCase_ = self.processor.get_train_examples(args.data_dir ) lowerCamelCase_ , lowerCamelCase_ = squad_convert_examples_to_features( examples=self.examples , tokenizer=lowercase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=lowercase , ) lowerCamelCase_ = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples} , lowercase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ) -> Tuple: return len(self.features ) def __getitem__( self , lowercase ) -> Dict[str, torch.Tensor]: # Convert to Tensors and build dataset lowerCamelCase_ = self.features[i] lowerCamelCase_ = torch.tensor(feature.input_ids , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.attention_mask , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.token_type_ids , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.cls_index , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.p_mask , dtype=torch.float ) lowerCamelCase_ = torch.tensor(feature.is_impossible , dtype=torch.float ) lowerCamelCase_ = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: lowerCamelCase_ = torch.tensor(feature.start_position , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
19
0
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf _lowercase = logging.get_logger(__name__) @dataclass class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Optional[int] = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self : int ,**A_ : Any ) -> Any: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: A = deprecated_arg[3:] A = not kwargs.pop(A_ ) logger.warning( F'{deprecated_arg} is depreciated. Please use --no-{positive_arg} or' F' {positive_arg}={kwargs[positive_arg]}' ) A = kwargs.pop('tpu_name' ,self.tpu_name ) A = kwargs.pop('device_idx' ,self.device_idx ) A = kwargs.pop('eager_mode' ,self.eager_mode ) A = kwargs.pop('use_xla' ,self.use_xla ) super().__init__(**A_ ) _lowerCamelCase: str = field( default=_lowercase , metadata={'''help''': '''Name of TPU'''} , ) _lowerCamelCase: int = field( default=0 , metadata={'''help''': '''CPU / GPU device index. Defaults to 0.'''} , ) _lowerCamelCase: bool = field(default=_lowercase , metadata={'''help''': '''Benchmark models in eager model.'''} ) _lowerCamelCase: bool = field( default=_lowercase , metadata={ '''help''': '''Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.''' } , ) @cached_property def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]: requires_backends(self ,['tf'] ) A = None if self.tpu: try: if self.tpu_name: A = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: A = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: A = None return tpu @cached_property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]: requires_backends(self ,['tf'] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) A = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] ,'GPU' ) A = tf.distribute.OneDeviceStrategy(device=F'/gpu:{self.device_idx}' ) else: tf.config.set_visible_devices([] ,'GPU' ) # disable GPU A = tf.distribute.OneDeviceStrategy(device=F'/cpu:{self.device_idx}' ) return strategy @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> bool: requires_backends(self ,['tf'] ) return self._setup_tpu is not None @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> "tf.distribute.Strategy": requires_backends(self ,['tf'] ) return self._setup_strategy @property def _SCREAMING_SNAKE_CASE ( self : int ) -> str: requires_backends(self ,['tf'] ) return tf.config.list_physical_devices('GPU' ) @property def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: requires_backends(self ,['tf'] ) if self.cuda: return len(self.gpu_list ) return 0 @property def _SCREAMING_SNAKE_CASE ( self : str ) -> bool: return self.n_gpu > 0
74
from abc import ABC, abstractmethod from argparse import ArgumentParser class _SCREAMING_SNAKE_CASE ( snake_case_ ): @staticmethod @abstractmethod def SCREAMING_SNAKE_CASE_( lowercase ) -> int: raise NotImplementedError() @abstractmethod def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: raise NotImplementedError()
19
0
'''simple docstring''' from math import isqrt def a_ ( __snake_case : int ) -> bool: """simple docstring""" return all(number % divisor != 0 for divisor in range(2 , isqrt(__snake_case ) + 1 ) ) def a_ ( __snake_case : int = 10**6 ) -> int: """simple docstring""" lowerCamelCase_ =0 lowerCamelCase_ =1 lowerCamelCase_ =7 while prime_candidate < max_prime: primes_count += is_prime(__snake_case ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F"""{solution() = }""")
75
from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging __A =logging.get_logger(__name__) # pylint: disable=invalid-name class _SCREAMING_SNAKE_CASE ( snake_case_ ): def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> List[Any]: super().__init__() if hasattr(scheduler.config , "steps_offset" ) and scheduler.config.steps_offset != 1: lowerCamelCase_ = ( f'The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`' f' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ' "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1" , "1.0.0" , lowercase , standard_warn=lowercase ) lowerCamelCase_ = dict(scheduler.config ) lowerCamelCase_ = 1 lowerCamelCase_ = FrozenDict(lowercase ) if hasattr(scheduler.config , "skip_prk_steps" ) and scheduler.config.skip_prk_steps is False: lowerCamelCase_ = ( f'The configuration file of this scheduler: {scheduler} has not set the configuration' " `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make" " sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to" " incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face" " Hub, it would be very nice if you could open a Pull request for the" " `scheduler/scheduler_config.json` file" ) deprecate("skip_prk_steps not set" , "1.0.0" , lowercase , standard_warn=lowercase ) lowerCamelCase_ = dict(scheduler.config ) lowerCamelCase_ = True lowerCamelCase_ = FrozenDict(lowercase ) if safety_checker is None: logger.warning( f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure' " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( segmentation_model=lowercase , segmentation_processor=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , unet=lowercase , scheduler=lowercase , safety_checker=lowercase , feature_extractor=lowercase , ) def SCREAMING_SNAKE_CASE_( self , lowercase = "auto" ) -> Tuple: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowerCamelCase_ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: self.enable_attention_slicing(lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> str: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) lowerCamelCase_ = torch.device("cuda" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(lowercase , lowercase ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: if self.device != torch.device("meta" ) or not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self , lowercase , lowercase , lowercase , lowercase = 512 , lowercase = 512 , lowercase = 50 , lowercase = 7.5 , lowercase = None , lowercase = 1 , lowercase = 0.0 , lowercase = None , lowercase = None , lowercase = "pil" , lowercase = True , lowercase = None , lowercase = 1 , **lowercase , ) -> int: lowerCamelCase_ = self.segmentation_processor( text=[text] , images=[image] , padding="max_length" , return_tensors="pt" ).to(self.device ) lowerCamelCase_ = self.segmentation_model(**lowercase ) lowerCamelCase_ = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() lowerCamelCase_ = self.numpy_to_pil(lowercase )[0].resize(image.size ) # Run inpainting pipeline with the generated mask lowerCamelCase_ = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=lowercase , image=lowercase , mask_image=lowercase , height=lowercase , width=lowercase , num_inference_steps=lowercase , guidance_scale=lowercase , negative_prompt=lowercase , num_images_per_prompt=lowercase , eta=lowercase , generator=lowercase , latents=lowercase , output_type=lowercase , return_dict=lowercase , callback=lowercase , callback_steps=lowercase , )
19
0
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : Tuple ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = { "task_specific_params": { "summarization": {"length_penalty": 1.0, "max_length": 128, "min_length": 12, "num_beams": 4}, "summarization_cnn": {"length_penalty": 2.0, "max_length": 142, "min_length": 56, "num_beams": 4}, "summarization_xsum": {"length_penalty": 1.0, "max_length": 62, "min_length": 11, "num_beams": 6}, } } SCREAMING_SNAKE_CASE : int = { "task_specific_params.summarization.length_penalty": 1.0, "task_specific_params.summarization.max_length": 128, "task_specific_params.summarization.min_length": 12, "task_specific_params.summarization.num_beams": 4, "task_specific_params.summarization_cnn.length_penalty": 2.0, "task_specific_params.summarization_cnn.max_length": 142, "task_specific_params.summarization_cnn.min_length": 56, "task_specific_params.summarization_cnn.num_beams": 4, "task_specific_params.summarization_xsum.length_penalty": 1.0, "task_specific_params.summarization_xsum.max_length": 62, "task_specific_params.summarization_xsum.min_length": 11, "task_specific_params.summarization_xsum.num_beams": 6, } self.assertEqual(flatten_dict(a ) , a ) def __UpperCamelCase ( self : int ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(a ) , x.transpose() ) ) SCREAMING_SNAKE_CASE : str = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor(a ) self.assertTrue(np.allclose(transpose(a ) , transpose(a ).numpy() ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor(a ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , transpose(a , axes=(1, 2, 0) ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Tuple ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : Tuple = tf.constant(a ) self.assertTrue(np.allclose(transpose(a ) , transpose(a ).numpy() ) ) SCREAMING_SNAKE_CASE : int = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE : Dict = tf.constant(a ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , transpose(a , axes=(1, 2, 0) ).numpy() ) ) @require_flax def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : List[Any] = jnp.array(a ) self.assertTrue(np.allclose(transpose(a ) , np.asarray(transpose(a ) ) ) ) SCREAMING_SNAKE_CASE : List[Any] = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE : Any = jnp.array(a ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , np.asarray(transpose(a , axes=(1, 2, 0) ) ) ) ) def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , np.reshape(a , (4, 3) ) ) ) SCREAMING_SNAKE_CASE : Tuple = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , np.reshape(a , (12, 5) ) ) ) @require_torch def __UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor(a ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , reshape(a , (4, 3) ).numpy() ) ) SCREAMING_SNAKE_CASE : Dict = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE : Any = torch.tensor(a ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , reshape(a , (12, 5) ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Any ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : Optional[int] = tf.constant(a ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , reshape(a , (4, 3) ).numpy() ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE : int = tf.constant(a ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , reshape(a , (12, 5) ).numpy() ) ) @require_flax def __UpperCamelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : Optional[Any] = jnp.array(a ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , np.asarray(reshape(a , (4, 3) ) ) ) ) SCREAMING_SNAKE_CASE : str = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.array(a ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , np.asarray(reshape(a , (12, 5) ) ) ) ) def __UpperCamelCase ( self : int ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(a ) , np.squeeze(a ) ) ) SCREAMING_SNAKE_CASE : str = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , np.squeeze(a , axis=2 ) ) ) @require_torch def __UpperCamelCase ( self : List[str] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : str = np.random.randn(1 , 3 , 4 ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor(a ) self.assertTrue(np.allclose(squeeze(a ) , squeeze(a ).numpy() ) ) SCREAMING_SNAKE_CASE : int = np.random.randn(1 , 4 , 1 , 5 ) SCREAMING_SNAKE_CASE : Dict = torch.tensor(a ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , squeeze(a , axis=2 ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = np.random.randn(1 , 3 , 4 ) SCREAMING_SNAKE_CASE : str = tf.constant(a ) self.assertTrue(np.allclose(squeeze(a ) , squeeze(a ).numpy() ) ) SCREAMING_SNAKE_CASE : List[str] = np.random.randn(1 , 4 , 1 , 5 ) SCREAMING_SNAKE_CASE : Any = tf.constant(a ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , squeeze(a , axis=2 ).numpy() ) ) @require_flax def __UpperCamelCase ( self : int ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = np.random.randn(1 , 3 , 4 ) SCREAMING_SNAKE_CASE : List[str] = jnp.array(a ) self.assertTrue(np.allclose(squeeze(a ) , np.asarray(squeeze(a ) ) ) ) SCREAMING_SNAKE_CASE : int = np.random.randn(1 , 4 , 1 , 5 ) SCREAMING_SNAKE_CASE : str = jnp.array(a ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , np.asarray(squeeze(a , axis=2 ) ) ) ) def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , np.expand_dims(a , axis=1 ) ) ) @require_torch def __UpperCamelCase ( self : Optional[int] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : str = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor(a ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , expand_dims(a , axis=1 ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Optional[int] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : Dict = tf.constant(a ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , expand_dims(a , axis=1 ).numpy() ) ) @require_flax def __UpperCamelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.array(a ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , np.asarray(expand_dims(a , axis=1 ) ) ) )
76
from collections import deque def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = len(lowerCamelCase__ ) lowerCamelCase_ = deque() lowerCamelCase_ = [False for _ in range(lowerCamelCase__ )] lowerCamelCase_ = [-1 for _ in range(lowerCamelCase__ )] lowerCamelCase_ = index_of[:] def strong_connect(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = index # the number when this node is seen lowerCamelCase_ = index # lowest rank node reachable from here index += 1 stack.append(lowerCamelCase__ ) lowerCamelCase_ = True for w in g[v]: if index_of[w] == -1: lowerCamelCase_ = strong_connect(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: lowerCamelCase_ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: lowerCamelCase_ = [] lowerCamelCase_ = stack.pop() lowerCamelCase_ = False component.append(lowerCamelCase__ ) while w != v: lowerCamelCase_ = stack.pop() lowerCamelCase_ = False component.append(lowerCamelCase__ ) components.append(lowerCamelCase__ ) return index lowerCamelCase_ = [] for v in range(lowerCamelCase__ ): if index_of[v] == -1: strong_connect(lowerCamelCase__ , 0 , lowerCamelCase__ ) return components def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = [[] for _ in range(lowerCamelCase__ )] for u, v in edges: g[u].append(lowerCamelCase__ ) return g if __name__ == "__main__": # Test __A =7 __A =[0, 0, 1, 2, 3, 3, 4, 4, 6] __A =[1, 3, 2, 0, 1, 4, 5, 6, 5] __A =[(u, v) for u, v in zip(source, target)] __A =create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
19
0
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def a_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Optional[Any]="pt" ): '''simple docstring''' lowercase__ : Optional[int] = {'add_prefix_space': True} if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and not line.startswith(' ' ) else {} lowercase__ : str = padding_side return tokenizer( [line] , max_length=_lowerCAmelCase , padding='max_length' if pad_to_max_length else None , truncation=_lowerCAmelCase , return_tensors=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , **_lowerCAmelCase , ) def a_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str=None , ): '''simple docstring''' lowercase__ : List[Any] = input_ids.ne(_lowerCAmelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class UpperCAmelCase_ ( _a): def __init__( self , a , a , a , a , a="train" , a=None , a=None , a=None , a="" , ) -> Any: super().__init__() lowercase__ : Any = Path(a ).joinpath(type_path + '.source' ) lowercase__ : Union[str, Any] = Path(a ).joinpath(type_path + '.target' ) lowercase__ : List[str] = self.get_char_lens(self.src_file ) lowercase__ : Any = max_source_length lowercase__ : str = max_target_length assert min(self.src_lens ) > 0, f"""found empty line in {self.src_file}""" lowercase__ : List[Any] = tokenizer lowercase__ : Optional[Any] = prefix if n_obs is not None: lowercase__ : str = self.src_lens[:n_obs] lowercase__ : Optional[Any] = src_lang lowercase__ : Tuple = tgt_lang def __len__( self ) -> List[Any]: return len(self.src_lens ) def __getitem__( self , a ) -> Dict[str, torch.Tensor]: lowercase__ : Optional[Any] = index + 1 # linecache starts at 1 lowercase__ : Tuple = self.prefix + linecache.getline(str(self.src_file ) , a ).rstrip('\n' ) lowercase__ : List[Any] = linecache.getline(str(self.tgt_file ) , a ).rstrip('\n' ) assert source_line, f"""empty source line for index {index}""" assert tgt_line, f"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer , a ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right lowercase__ : str = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , a ) else self.tokenizer ) lowercase__ : List[Any] = self.tokenizer.generator if isinstance(self.tokenizer , a ) else self.tokenizer lowercase__ : Dict = encode_line(a , a , self.max_source_length , 'right' ) lowercase__ : Optional[int] = encode_line(a , a , self.max_target_length , 'right' ) lowercase__ : Dict = source_inputs['input_ids'].squeeze() lowercase__ : Any = target_inputs['input_ids'].squeeze() lowercase__ : Any = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _UpperCAmelCase ( a ) -> Optional[Any]: return [len(a ) for x in Path(a ).open().readlines()] def _UpperCAmelCase ( self , a ) -> Dict[str, torch.Tensor]: lowercase__ : Union[str, Any] = torch.stack([x['input_ids'] for x in batch] ) lowercase__ : Dict = torch.stack([x['attention_mask'] for x in batch] ) lowercase__ : List[str] = torch.stack([x['decoder_input_ids'] for x in batch] ) lowercase__ : Optional[Any] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , a ) else self.tokenizer.pad_token_id ) lowercase__ : Optional[int] = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , a ) else self.tokenizer.pad_token_id ) lowercase__ : Optional[Any] = trim_batch(a , a ) lowercase__ , lowercase__ : Optional[int] = trim_batch(a , a , attention_mask=a ) lowercase__ : str = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch _UpperCamelCase : Any = getLogger(__name__) def a_ ( _lowerCAmelCase : List[List] ): '''simple docstring''' return list(itertools.chain.from_iterable(_lowerCAmelCase ) ) def a_ ( _lowerCAmelCase : str ): '''simple docstring''' lowercase__ : int = get_git_info() save_json(_lowerCAmelCase , os.path.join(_lowerCAmelCase , 'git_log.json' ) ) def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any]=4 , **_lowerCAmelCase : Dict ): '''simple docstring''' with open(_lowerCAmelCase , 'w' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase , indent=_lowerCAmelCase , **_lowerCAmelCase ) def a_ ( _lowerCAmelCase : List[str] ): '''simple docstring''' with open(_lowerCAmelCase ) as f: return json.load(_lowerCAmelCase ) def a_ ( ): '''simple docstring''' lowercase__ : int = git.Repo(search_parent_directories=_lowerCAmelCase ) lowercase__ : Union[str, Any] = { 'repo_id': str(_lowerCAmelCase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def a_ ( _lowerCAmelCase : Callable , _lowerCAmelCase : Iterable ): '''simple docstring''' return list(map(_lowerCAmelCase , _lowerCAmelCase ) ) def a_ ( _lowerCAmelCase : int , _lowerCAmelCase : Optional[int] ): '''simple docstring''' with open(_lowerCAmelCase , 'wb' ) as f: return pickle.dump(_lowerCAmelCase , _lowerCAmelCase ) def a_ ( _lowerCAmelCase : Any ): '''simple docstring''' def remove_articles(_lowerCAmelCase : Union[str, Any] ): return re.sub(R'\b(a|an|the)\b' , ' ' , _lowerCAmelCase ) def white_space_fix(_lowerCAmelCase : Optional[Any] ): return " ".join(text.split() ) def remove_punc(_lowerCAmelCase : int ): lowercase__ : str = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowerCAmelCase : Dict ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowerCAmelCase ) ) ) ) def a_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : Union[str, Any] = normalize_answer(_lowerCAmelCase ).split() lowercase__ : Dict = normalize_answer(_lowerCAmelCase ).split() lowercase__ : Tuple = Counter(_lowerCAmelCase ) & Counter(_lowerCAmelCase ) lowercase__ : Tuple = sum(common.values() ) if num_same == 0: return 0 lowercase__ : List[str] = 1.0 * num_same / len(_lowerCAmelCase ) lowercase__ : List[Any] = 1.0 * num_same / len(_lowerCAmelCase ) lowercase__ : List[Any] = (2 * precision * recall) / (precision + recall) return fa def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ): '''simple docstring''' return normalize_answer(_lowerCAmelCase ) == normalize_answer(_lowerCAmelCase ) def a_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str] ): '''simple docstring''' assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) lowercase__ : Dict = 0 for hypo, pred in zip(_lowerCAmelCase , _lowerCAmelCase ): em += exact_match_score(_lowerCAmelCase , _lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: em /= len(_lowerCAmelCase ) return {"em": em} def a_ ( _lowerCAmelCase : Any ): '''simple docstring''' return model_prefix.startswith('rag' ) def a_ ( _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] ): '''simple docstring''' lowercase__ : Union[str, Any] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead lowercase__ : int = 'dropout_rate' for p in extra_params: if getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): if not hasattr(_lowerCAmelCase , _lowerCAmelCase ) and not hasattr(_lowerCAmelCase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_lowerCAmelCase ) ) delattr(_lowerCAmelCase , _lowerCAmelCase ) continue lowercase__ : Any = p if hasattr(_lowerCAmelCase , _lowerCAmelCase ) else equivalent_param[p] setattr(_lowerCAmelCase , _lowerCAmelCase , getattr(_lowerCAmelCase , _lowerCAmelCase ) ) delattr(_lowerCAmelCase , _lowerCAmelCase ) return hparams, config
77
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A ={'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys __A =_LazyModule(__name__, globals()['''__file__'''], _import_structure)
19
0
"""simple docstring""" from __future__ import annotations def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ , ): if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif electron_conc < 0: raise ValueError('Electron concentration cannot be negative in a semiconductor' ) elif hole_conc < 0: raise ValueError('Hole concentration cannot be negative in a semiconductor' ) elif intrinsic_conc < 0: raise ValueError( 'Intrinsic concentration cannot be negative in a semiconductor' ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
78
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A ={'''configuration_wavlm''': ['''WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WavLMConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WavLMForAudioFrameClassification''', '''WavLMForCTC''', '''WavLMForSequenceClassification''', '''WavLMForXVector''', '''WavLMModel''', '''WavLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys __A =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''facebook/xmod-base''': '''https://huggingface.co/facebook/xmod-base/resolve/main/config.json''', '''facebook/xmod-large-prenorm''': '''https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json''', '''facebook/xmod-base-13-125k''': '''https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json''', '''facebook/xmod-base-30-125k''': '''https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json''', '''facebook/xmod-base-30-195k''': '''https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json''', '''facebook/xmod-base-60-125k''': '''https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json''', '''facebook/xmod-base-60-265k''': '''https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json''', '''facebook/xmod-base-75-125k''': '''https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json''', '''facebook/xmod-base-75-269k''': '''https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json''', } class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = '''xmod''' def __init__( self : Optional[int] , __UpperCAmelCase : int=30522 , __UpperCAmelCase : int=768 , __UpperCAmelCase : Optional[Any]=12 , __UpperCAmelCase : Union[str, Any]=12 , __UpperCAmelCase : Any=3072 , __UpperCAmelCase : Optional[Any]="gelu" , __UpperCAmelCase : Union[str, Any]=0.1 , __UpperCAmelCase : int=0.1 , __UpperCAmelCase : Dict=512 , __UpperCAmelCase : str=2 , __UpperCAmelCase : List[str]=0.02 , __UpperCAmelCase : Optional[Any]=1E-12 , __UpperCAmelCase : Union[str, Any]=1 , __UpperCAmelCase : Optional[Any]=0 , __UpperCAmelCase : Any=2 , __UpperCAmelCase : int="absolute" , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : str=False , __UpperCAmelCase : Any=2 , __UpperCAmelCase : List[str]=False , __UpperCAmelCase : int=True , __UpperCAmelCase : int=True , __UpperCAmelCase : Union[str, Any]=("en_XX",) , __UpperCAmelCase : List[Any]=None , **__UpperCAmelCase : int , ): '''simple docstring''' super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = hidden_act _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = initializer_range _A = layer_norm_eps _A = position_embedding_type _A = use_cache _A = classifier_dropout _A = pre_norm _A = adapter_reduction_factor _A = adapter_layer_norm _A = adapter_reuse_layer_norm _A = ln_before_adapter _A = list(__UpperCAmelCase ) _A = default_language class _UpperCAmelCase ( snake_case_ ): """simple docstring""" @property def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' if self.task == "multiple-choice": _A = {0: "batch", 1: "choice", 2: "sequence"} else: _A = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
79
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __A ='''2.13.1''' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('''3.7'''): raise ImportWarning( '''To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.''' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( '''To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n''' '''If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.''' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __A =concatenate_datasets __A =DownloadConfig __A =DownloadManager __A =DownloadMode __A =DownloadConfig __A =DownloadMode __A =DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
19
0
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase_ ( a__ ): __UpperCAmelCase = ['image_processor', 'tokenizer'] __UpperCAmelCase = 'ViltImageProcessor' __UpperCAmelCase = ('BertTokenizer', 'BertTokenizerFast') def __init__( self , a=None , a=None , **a ): UpperCamelCase__ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , a , ) UpperCamelCase__ = kwargs.pop("feature_extractor" ) UpperCamelCase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(a , a ) UpperCamelCase__ = self.image_processor def __call__( self , a , a = None , a = True , a = False , a = None , a = None , a = 0 , a = None , a = None , a = None , a = False , a = False , a = False , a = False , a = True , a = None , **a , ): UpperCamelCase__ = self.tokenizer( text=a , add_special_tokens=a , padding=a , truncation=a , max_length=a , stride=a , pad_to_multiple_of=a , return_token_type_ids=a , return_attention_mask=a , return_overflowing_tokens=a , return_special_tokens_mask=a , return_offsets_mapping=a , return_length=a , verbose=a , return_tensors=a , **a , ) # add pixel_values + pixel_mask UpperCamelCase__ = self.image_processor(a , return_tensors=a ) encoding.update(a ) return encoding def __a ( self , *a , **a ): return self.tokenizer.batch_decode(*a , **a ) def __a ( self , *a , **a ): return self.tokenizer.decode(*a , **a ) @property def __a ( self ): UpperCamelCase__ = self.tokenizer.model_input_names UpperCamelCase__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __a ( self ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , a , ) return self.image_processor_class @property def __a ( self ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , a , ) return self.image_processor
80
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A ={ '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __A =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
0
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class __A : """simple docstring""" def __init__( self ) -> Tuple: a ={} def SCREAMING_SNAKE_CASE ( self , __A , __A , __A=1 ) -> Union[str, Any]: if self.graph.get(__A ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: a =[[w, v]] if not self.graph.get(__A ): a =[] def SCREAMING_SNAKE_CASE ( self ) -> int: return list(self.graph ) def SCREAMING_SNAKE_CASE ( self , __A , __A ) -> Optional[Any]: if self.graph.get(__A ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__A ) def SCREAMING_SNAKE_CASE ( self , __A=-2 , __A=-1 ) -> List[Any]: if s == d: return [] a =[] a =[] if s == -2: a =list(self.graph )[0] stack.append(__A ) visited.append(__A ) a =s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: a =s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__A ) return visited else: stack.append(node[1] ) visited.append(node[1] ) a =node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__A ) != 0: a =stack[len(__A ) - 1] else: a =ss # check if se have reached the starting point if len(__A ) == 0: return visited def SCREAMING_SNAKE_CASE ( self , __A=-1 ) -> int: if c == -1: a =floor(random() * 1_0000 ) + 10 for i in range(__A ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): a =floor(random() * c ) + 1 if n != i: self.add_pair(__A , __A , 1 ) def SCREAMING_SNAKE_CASE ( self , __A=-2 ) -> List[str]: a =deque() a =[] if s == -2: a =list(self.graph )[0] d.append(__A ) visited.append(__A ) while d: a =d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def SCREAMING_SNAKE_CASE ( self , __A ) -> Optional[Any]: a =0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def SCREAMING_SNAKE_CASE ( self , __A ) -> Tuple: return len(self.graph[u] ) def SCREAMING_SNAKE_CASE ( self , __A=-2 ) -> List[Any]: a =[] a =[] if s == -2: a =list(self.graph )[0] stack.append(__A ) visited.append(__A ) a =s a =[] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: a =s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) a =node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(__A ) != 0: a =stack[len(__A ) - 1] else: a =ss # check if se have reached the starting point if len(__A ) == 0: return sorted_nodes def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a =[] a =[] a =list(self.graph )[0] stack.append(__A ) visited.append(__A ) a =-2 a =[] a =s a =False a =set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: a =s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): a =len(__A ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) a =node[1] break # check if all the children are visited if s == ss: stack.pop() a =True if len(__A ) != 0: a =stack[len(__A ) - 1] else: a =False indirect_parents.append(__A ) a =s a =ss # check if se have reached the starting point if len(__A ) == 0: return list(__A ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: a =[] a =[] a =list(self.graph )[0] stack.append(__A ) visited.append(__A ) a =-2 a =[] a =s a =False a =set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: a =s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): a =len(__A ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) a =node[1] break # check if all the children are visited if s == ss: stack.pop() a =True if len(__A ) != 0: a =stack[len(__A ) - 1] else: a =False indirect_parents.append(__A ) a =s a =ss # check if se have reached the starting point if len(__A ) == 0: return False def SCREAMING_SNAKE_CASE ( self , __A=-2 , __A=-1 ) -> List[str]: a =time() self.dfs(__A , __A ) a =time() return end - begin def SCREAMING_SNAKE_CASE ( self , __A=-2 ) -> int: a =time() self.bfs(__A ) a =time() return end - begin class __A : """simple docstring""" def __init__( self ) -> List[str]: a ={} def SCREAMING_SNAKE_CASE ( self , __A , __A , __A=1 ) -> Dict: # check if the u exists if self.graph.get(__A ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist a =[[w, v]] # add the other way if self.graph.get(__A ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist a =[[w, u]] def SCREAMING_SNAKE_CASE ( self , __A , __A ) -> Any: if self.graph.get(__A ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__A ) # the other way round if self.graph.get(__A ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(__A ) def SCREAMING_SNAKE_CASE ( self , __A=-2 , __A=-1 ) -> int: if s == d: return [] a =[] a =[] if s == -2: a =list(self.graph )[0] stack.append(__A ) visited.append(__A ) a =s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: a =s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__A ) return visited else: stack.append(node[1] ) visited.append(node[1] ) a =node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__A ) != 0: a =stack[len(__A ) - 1] else: a =ss # check if se have reached the starting point if len(__A ) == 0: return visited def SCREAMING_SNAKE_CASE ( self , __A=-1 ) -> List[Any]: if c == -1: a =floor(random() * 1_0000 ) + 10 for i in range(__A ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): a =floor(random() * c ) + 1 if n != i: self.add_pair(__A , __A , 1 ) def SCREAMING_SNAKE_CASE ( self , __A=-2 ) -> str: a =deque() a =[] if s == -2: a =list(self.graph )[0] d.append(__A ) visited.append(__A ) while d: a =d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def SCREAMING_SNAKE_CASE ( self , __A ) -> str: return len(self.graph[u] ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a =[] a =[] a =list(self.graph )[0] stack.append(__A ) visited.append(__A ) a =-2 a =[] a =s a =False a =set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: a =s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): a =len(__A ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) a =node[1] break # check if all the children are visited if s == ss: stack.pop() a =True if len(__A ) != 0: a =stack[len(__A ) - 1] else: a =False indirect_parents.append(__A ) a =s a =ss # check if se have reached the starting point if len(__A ) == 0: return list(__A ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a =[] a =[] a =list(self.graph )[0] stack.append(__A ) visited.append(__A ) a =-2 a =[] a =s a =False a =set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: a =s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): a =len(__A ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) a =node[1] break # check if all the children are visited if s == ss: stack.pop() a =True if len(__A ) != 0: a =stack[len(__A ) - 1] else: a =False indirect_parents.append(__A ) a =s a =ss # check if se have reached the starting point if len(__A ) == 0: return False def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: return list(self.graph ) def SCREAMING_SNAKE_CASE ( self , __A=-2 , __A=-1 ) -> Optional[int]: a =time() self.dfs(__A , __A ) a =time() return end - begin def SCREAMING_SNAKE_CASE ( self , __A=-2 ) -> Dict: a =time() self.bfs(__A ) a =time() return end - begin
81
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class _SCREAMING_SNAKE_CASE : def __init__( self , lowercase , ) -> Optional[int]: lowerCamelCase_ = parent lowerCamelCase_ = 13 lowerCamelCase_ = 7 lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = 99 lowerCamelCase_ = 32 lowerCamelCase_ = 2 lowerCamelCase_ = 4 lowerCamelCase_ = 37 lowerCamelCase_ = "gelu" lowerCamelCase_ = 0.1 lowerCamelCase_ = 0.1 lowerCamelCase_ = 512 lowerCamelCase_ = 16 lowerCamelCase_ = 2 lowerCamelCase_ = 0.0_2 lowerCamelCase_ = 3 lowerCamelCase_ = 4 lowerCamelCase_ = None def SCREAMING_SNAKE_CASE_( self ) -> Any: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_input_mask: lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_( self ) -> List[str]: ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = self.prepare_config_and_inputs() lowerCamelCase_ = True lowerCamelCase_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Any: lowerCamelCase_ = TFEsmModel(config=lowercase ) lowerCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} lowerCamelCase_ = model(lowercase ) lowerCamelCase_ = [input_ids, input_mask] lowerCamelCase_ = model(lowercase ) lowerCamelCase_ = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> Tuple: lowerCamelCase_ = True lowerCamelCase_ = TFEsmModel(config=lowercase ) lowerCamelCase_ = { "input_ids": input_ids, "attention_mask": input_mask, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": encoder_attention_mask, } lowerCamelCase_ = model(lowercase ) lowerCamelCase_ = [input_ids, input_mask] lowerCamelCase_ = model(lowercase , encoder_hidden_states=lowercase ) # Also check the case where encoder outputs are not passed lowerCamelCase_ = model(lowercase , attention_mask=lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: lowerCamelCase_ = TFEsmForMaskedLM(config=lowercase ) lowerCamelCase_ = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> int: lowerCamelCase_ = self.num_labels lowerCamelCase_ = TFEsmForTokenClassification(config=lowercase ) lowerCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} lowerCamelCase_ = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , unittest.TestCase ): lowerCAmelCase__ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) lowerCAmelCase__ = ( { 'feature-extraction': TFEsmModel, 'fill-mask': TFEsmForMaskedLM, 'text-classification': TFEsmForSequenceClassification, 'token-classification': TFEsmForTokenClassification, 'zero-shot': TFEsmForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = TFEsmModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=lowercase , hidden_size=37 ) def SCREAMING_SNAKE_CASE_( self ) -> Any: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Tuple: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase ) @slow def SCREAMING_SNAKE_CASE_( self ) -> Dict: for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFEsmModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @unittest.skip("Protein models do not support embedding resizing." ) def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: pass @unittest.skip("Protein models do not support embedding resizing." ) def SCREAMING_SNAKE_CASE_( self ) -> Any: pass def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(lowercase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer lowerCamelCase_ = model.get_bias() assert isinstance(lowercase , lowercase ) for k, v in name.items(): assert isinstance(lowercase , tf.Variable ) else: lowerCamelCase_ = model.get_output_embeddings() assert x is None lowerCamelCase_ = model.get_bias() assert name is None @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ = TFEsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D" ) lowerCamelCase_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase_ = model(lowercase )[0] lowerCamelCase_ = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , lowercase ) # compare the actual values for a slice. lowerCamelCase_ = tf.constant( [ [ [8.9_2_1_5_1_8, -1_0.5_8_9_8_1_4, -6.4_6_7_1_3_0_7], [-6.3_9_6_7_1_5_6, -1_3.9_1_1_3_7_7, -1.1_2_1_1_9_1_5], [-7.7_8_1_2_4_7, -1_3.9_5_1_5_5_7, -3.7_4_0_5_9_2], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) ) @slow def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ = TFEsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D" ) lowerCamelCase_ = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCamelCase_ = model(lowercase )[0] # compare the actual values for a slice. lowerCamelCase_ = tf.constant( [ [ [0.1_4_4_4_3_0_9_2, 0.5_4_1_2_5_3_2_7, 0.3_2_4_7_7_3_9], [0.3_0_3_4_0_4_8_4, 0.0_0_5_2_6_6_7_6, 0.3_1_0_7_7_7_2_2], [0.3_2_2_7_8_0_4_3, -0.2_4_9_8_7_0_9_6, 0.3_4_1_4_6_2_8], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
19
0
def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def _UpperCAmelCase ( snake_case = 50_00 ): """simple docstring""" _lowerCAmelCase = [(i * (3 * i - 1)) // 2 for i in range(1 , snake_case )] for i, pentagonal_i in enumerate(snake_case ): for j in range(snake_case , len(snake_case ) ): _lowerCAmelCase = pentagonal_nums[j] _lowerCAmelCase = pentagonal_i + pentagonal_j _lowerCAmelCase = pentagonal_j - pentagonal_i if is_pentagonal(snake_case ) and is_pentagonal(snake_case ): return b return -1 if __name__ == "__main__": print(f"{solution() = }")
82
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging __A =logging.get_logger(__name__) def lowerCamelCase_ ( ): # Get the sagemaker specific mp parameters from smp_options variable. lowerCamelCase_ = os.getenv("SM_HP_MP_PARAMETERS" , "{}" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. lowerCamelCase_ = json.loads(lowerCamelCase__ ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. lowerCamelCase_ = os.getenv("SM_FRAMEWORK_PARAMS" , "{}" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". lowerCamelCase_ = json.loads(lowerCamelCase__ ) if not mpi_options.get("sagemaker_mpi_enabled" , lowerCamelCase__ ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("smdistributed" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = field( default='' , metadata={'help': 'Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'} , ) def SCREAMING_SNAKE_CASE_( self ) -> Tuple: super().__post_init__() warnings.warn( "`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use " "`TrainingArguments` instead." , lowercase , ) @cached_property def SCREAMING_SNAKE_CASE_( self ) -> "torch.device": logger.info("PyTorch: setting up devices" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( "torch.distributed process group is initialized, but local_rank == -1. " "In order to use Torch DDP, launch your script with `python -m torch.distributed.launch" ) if self.no_cuda: lowerCamelCase_ = torch.device("cpu" ) lowerCamelCase_ = 0 elif is_sagemaker_model_parallel_available(): lowerCamelCase_ = smp.local_rank() lowerCamelCase_ = torch.device("cuda" , lowercase ) lowerCamelCase_ = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="smddp" , timeout=self.ddp_timeout_delta ) lowerCamelCase_ = int(os.getenv("SMDATAPARALLEL_LOCAL_RANK" ) ) lowerCamelCase_ = torch.device("cuda" , self.local_rank ) lowerCamelCase_ = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 lowerCamelCase_ = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. lowerCamelCase_ = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="nccl" , timeout=self.ddp_timeout_delta ) lowerCamelCase_ = torch.device("cuda" , self.local_rank ) lowerCamelCase_ = 1 if device.type == "cuda": torch.cuda.set_device(lowercase ) return device @property def SCREAMING_SNAKE_CASE_( self ) -> Tuple: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def SCREAMING_SNAKE_CASE_( self ) -> List[str]: return not is_sagemaker_model_parallel_available() @property def SCREAMING_SNAKE_CASE_( self ) -> Dict: return False
19
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase__ ( lowercase , unittest.TestCase ): lowercase__ = KandinskyVaaPipeline lowercase__ = [ """image_embeds""", """negative_image_embeds""", ] lowercase__ = ["""image_embeds""", """negative_image_embeds"""] lowercase__ = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] lowercase__ = False @property def UpperCamelCase_ ( self : str ): '''simple docstring''' return 32 @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return 32 @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return self.time_input_dim @property def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return 100 @property def UpperCamelCase_ ( self : int ): '''simple docstring''' torch.manual_seed(0 ) _UpperCamelCase : Dict = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _UpperCamelCase : str = UNetaDConditionModel(**lowerCamelCase__ ) return model @property def UpperCamelCase_ ( self : str ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) _UpperCamelCase : str = VQModel(**self.dummy_movq_kwargs ) return model def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _UpperCamelCase : Tuple = self.dummy_unet _UpperCamelCase : List[Any] = self.dummy_movq _UpperCamelCase : Optional[Any] = DDIMScheduler( num_train_timesteps=1000 ,beta_schedule='linear' ,beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,clip_sample=lowerCamelCase__ ,set_alpha_to_one=lowerCamelCase__ ,steps_offset=1 ,prediction_type='epsilon' ,thresholding=lowerCamelCase__ ,) _UpperCamelCase : List[str] = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def UpperCamelCase_ ( self : Any ,lowerCamelCase__ : Dict ,lowerCamelCase__ : str=0 ): '''simple docstring''' _UpperCamelCase : Tuple = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) _UpperCamelCase : Dict = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(seed + 1 ) ).to( lowerCamelCase__ ) if str(lowerCamelCase__ ).startswith('mps' ): _UpperCamelCase : str = torch.manual_seed(lowerCamelCase__ ) else: _UpperCamelCase : Tuple = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) _UpperCamelCase : List[str] = { 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _UpperCamelCase : List[Any] = 'cpu' _UpperCamelCase : Dict = self.get_dummy_components() _UpperCamelCase : Optional[int] = self.pipeline_class(**lowerCamelCase__ ) _UpperCamelCase : Optional[Any] = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _UpperCamelCase : Optional[Any] = pipe(**self.get_dummy_inputs(lowerCamelCase__ ) ) _UpperCamelCase : Dict = output.images _UpperCamelCase : Dict = pipe( **self.get_dummy_inputs(lowerCamelCase__ ) ,return_dict=lowerCamelCase__ ,)[0] _UpperCamelCase : Tuple = image[0, -3:, -3:, -1] _UpperCamelCase : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCamelCase : Any = np.array( [0.6_2_3_7_9_7_6, 1.0, 0.3_6_4_4_1_3_3_2, 1.0, 0.7_0_6_3_9_6_3_4, 0.2_9_8_7_7_1_8_6, 0.8_5_6_5_2_1_2_5, 0.5_2_1_6_8_4_3, 0.5_4_4_5_4_0_4_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class lowercase__ ( unittest.TestCase ): def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _UpperCamelCase : List[str] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy' ) _UpperCamelCase : Any = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' ,torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase__ ) _UpperCamelCase : List[str] = KandinskyVaaPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder' ,torch_dtype=torch.floataa ) _UpperCamelCase : Union[str, Any] = pipeline.to(lowerCamelCase__ ) pipeline.set_progress_bar_config(disable=lowerCamelCase__ ) _UpperCamelCase : int = 'red cat, 4k photo' _UpperCamelCase : List[str] = torch.Generator(device='cuda' ).manual_seed(0 ) _UpperCamelCase , _UpperCamelCase : str = pipe_prior( lowerCamelCase__ ,generator=lowerCamelCase__ ,num_inference_steps=5 ,negative_prompt='' ,).to_tuple() _UpperCamelCase : Optional[int] = torch.Generator(device='cuda' ).manual_seed(0 ) _UpperCamelCase : Tuple = pipeline( image_embeds=lowerCamelCase__ ,negative_image_embeds=lowerCamelCase__ ,generator=lowerCamelCase__ ,num_inference_steps=100 ,output_type='np' ,) _UpperCamelCase : str = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(lowerCamelCase__ ,lowerCamelCase__ )
83
import math def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ = 0 , lowerCamelCase__ = 0 ): lowerCamelCase_ = end or len(lowerCamelCase__ ) for i in range(lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = i lowerCamelCase_ = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: lowerCamelCase_ = array[temp_index - 1] temp_index -= 1 lowerCamelCase_ = temp_index_value return array def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): # Max Heap lowerCamelCase_ = index lowerCamelCase_ = 2 * index + 1 # Left Node lowerCamelCase_ = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: lowerCamelCase_ = left_index if right_index < heap_size and array[largest] < array[right_index]: lowerCamelCase_ = right_index if largest != index: lowerCamelCase_ , lowerCamelCase_ = array[largest], array[index] heapify(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = len(lowerCamelCase__ ) for i in range(n // 2 , -1 , -1 ): heapify(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) for i in range(n - 1 , 0 , -1 ): lowerCamelCase_ , lowerCamelCase_ = array[0], array[i] heapify(lowerCamelCase__ , 0 , lowerCamelCase__ ) return array def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = low lowerCamelCase_ = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i lowerCamelCase_ , lowerCamelCase_ = array[j], array[i] i += 1 def lowerCamelCase_ ( lowerCamelCase__ ): if len(lowerCamelCase__ ) == 0: return array lowerCamelCase_ = 2 * math.ceil(math.loga(len(lowerCamelCase__ ) ) ) lowerCamelCase_ = 1_6 return intro_sort(lowerCamelCase__ , 0 , len(lowerCamelCase__ ) , lowerCamelCase__ , lowerCamelCase__ ) def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): while end - start > size_threshold: if max_depth == 0: return heap_sort(lowerCamelCase__ ) max_depth -= 1 lowerCamelCase_ = median_of_a(lowerCamelCase__ , lowerCamelCase__ , start + ((end - start) // 2) + 1 , end - 1 ) lowerCamelCase_ = partition(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) intro_sort(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = p return insertion_sort(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() __A =input('''Enter numbers separated by a comma : ''').strip() __A =[float(item) for item in user_input.split(''',''')] print(sort(unsorted))
19
0
"""simple docstring""" from __future__ import annotations from typing import Any class _SCREAMING_SNAKE_CASE ( A__ ): pass class _SCREAMING_SNAKE_CASE : def __init__( self , __A ) -> None: lowerCAmelCase_ :Any = data lowerCAmelCase_ :Node | None = None def __iter__( self ) -> Dict: lowerCAmelCase_ :int = self lowerCAmelCase_ :Tuple = [] while node: if node in visited: raise ContainsLoopError visited.append(__A ) yield node.data lowerCAmelCase_ :Tuple = node.next_node @property def __lowerCAmelCase ( self ) -> bool: try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": __UpperCAmelCase = Node(1) __UpperCAmelCase = Node(2) __UpperCAmelCase = Node(3) __UpperCAmelCase = Node(4) print(root_node.has_loop) # False __UpperCAmelCase = root_node.next_node print(root_node.has_loop) # True __UpperCAmelCase = Node(5) __UpperCAmelCase = Node(6) __UpperCAmelCase = Node(5) __UpperCAmelCase = Node(6) print(root_node.has_loop) # False __UpperCAmelCase = Node(1) print(root_node.has_loop) # False
84
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _SCREAMING_SNAKE_CASE ( snake_case_ ): def __init__( self , *lowercase , lowercase=None , lowercase=None , **lowercase ) -> List[str]: super().__init__(*lowercase , **lowercase ) lowerCamelCase_ = eval_examples lowerCamelCase_ = post_process_function def SCREAMING_SNAKE_CASE_( self , lowercase = None , lowercase=None , lowercase = None , lowercase = "eval" , **lowercase , ) -> Dict[str, float]: lowerCamelCase_ = gen_kwargs.copy() lowerCamelCase_ = ( gen_kwargs["max_length"] if gen_kwargs.get("max_length" ) is not None else self.args.generation_max_length ) lowerCamelCase_ = ( gen_kwargs["num_beams"] if gen_kwargs.get("num_beams" ) is not None else self.args.generation_num_beams ) lowerCamelCase_ = gen_kwargs lowerCamelCase_ = self.eval_dataset if eval_dataset is None else eval_dataset lowerCamelCase_ = self.get_eval_dataloader(lowercase ) lowerCamelCase_ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowerCamelCase_ = self.compute_metrics lowerCamelCase_ = None lowerCamelCase_ = time.time() lowerCamelCase_ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowerCamelCase_ = eval_loop( lowercase , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase , metric_key_prefix=lowercase , ) finally: lowerCamelCase_ = compute_metrics lowerCamelCase_ = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( lowercase , lowercase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowerCamelCase_ = self.post_process_function(lowercase , lowercase , lowercase ) lowerCamelCase_ = self.compute_metrics(lowercase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowerCamelCase_ = metrics.pop(lowercase ) metrics.update(output.metrics ) else: lowerCamelCase_ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowercase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowerCamelCase_ = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowercase ) return metrics def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase=None , lowercase = "test" , **lowercase ) -> Union[str, Any]: lowerCamelCase_ = gen_kwargs.copy() lowerCamelCase_ = self.get_test_dataloader(lowercase ) # Temporarily disable metric computation, we will do it in the loop here. lowerCamelCase_ = self.compute_metrics lowerCamelCase_ = None lowerCamelCase_ = time.time() lowerCamelCase_ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowerCamelCase_ = eval_loop( lowercase , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase , metric_key_prefix=lowercase , ) finally: lowerCamelCase_ = compute_metrics lowerCamelCase_ = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( lowercase , lowercase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output lowerCamelCase_ = self.post_process_function(lowercase , lowercase , lowercase , "predict" ) lowerCamelCase_ = self.compute_metrics(lowercase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowerCamelCase_ = metrics.pop(lowercase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowercase )
19
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE : Tuple = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Union[str, Any] = ["ConditionalDetrFeatureExtractor"] _SCREAMING_SNAKE_CASE : List[Any] = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Dict = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
85
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer __A =logging.get_logger(__name__) # pylint: disable=invalid-name __A =''' Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu") >>> repo = "openai/shap-e-img2img" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png" >>> image = load_image(image_url).convert("RGB") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], "corgi_3d.gif") ``` ''' @dataclass class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = 42 class _SCREAMING_SNAKE_CASE ( snake_case_ ): def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> List[str]: super().__init__() self.register_modules( prior=lowercase , image_encoder=lowercase , image_processor=lowercase , scheduler=lowercase , renderer=lowercase , ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> int: if latents is None: lowerCamelCase_ = randn_tensor(lowercase , generator=lowercase , device=lowercase , dtype=lowercase ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) lowerCamelCase_ = latents.to(lowercase ) lowerCamelCase_ = latents * scheduler.init_noise_sigma return latents def SCREAMING_SNAKE_CASE_( self , lowercase=0 ) -> int: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) lowerCamelCase_ = torch.device(f'cuda:{gpu_id}' ) lowerCamelCase_ = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase , lowercase ) @property def SCREAMING_SNAKE_CASE_( self ) -> List[str]: if self.device != torch.device("meta" ) or not hasattr(self.image_encoder , "_hf_hook" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(lowercase , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , ) -> List[str]: if isinstance(lowercase , lowercase ) and isinstance(image[0] , torch.Tensor ): lowerCamelCase_ = torch.cat(lowercase , axis=0 ) if image[0].ndim == 4 else torch.stack(lowercase , axis=0 ) if not isinstance(lowercase , torch.Tensor ): lowerCamelCase_ = self.image_processor(lowercase , return_tensors="pt" ).pixel_values[0].unsqueeze(0 ) lowerCamelCase_ = image.to(dtype=self.image_encoder.dtype , device=lowercase ) lowerCamelCase_ = self.image_encoder(lowercase )["last_hidden_state"] lowerCamelCase_ = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 lowerCamelCase_ = image_embeds.repeat_interleave(lowercase , dim=0 ) if do_classifier_free_guidance: lowerCamelCase_ = torch.zeros_like(lowercase ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase_ = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(lowercase ) def __call__( self , lowercase , lowercase = 1 , lowercase = 25 , lowercase = None , lowercase = None , lowercase = 4.0 , lowercase = 64 , lowercase = "pil" , lowercase = True , ) -> Union[str, Any]: if isinstance(lowercase , PIL.Image.Image ): lowerCamelCase_ = 1 elif isinstance(lowercase , torch.Tensor ): lowerCamelCase_ = image.shape[0] elif isinstance(lowercase , lowercase ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): lowerCamelCase_ = len(lowercase ) else: raise ValueError( f'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(lowercase )}' ) lowerCamelCase_ = self._execution_device lowerCamelCase_ = batch_size * num_images_per_prompt lowerCamelCase_ = guidance_scale > 1.0 lowerCamelCase_ = self._encode_image(lowercase , lowercase , lowercase , lowercase ) # prior self.scheduler.set_timesteps(lowercase , device=lowercase ) lowerCamelCase_ = self.scheduler.timesteps lowerCamelCase_ = self.prior.config.num_embeddings lowerCamelCase_ = self.prior.config.embedding_dim lowerCamelCase_ = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , lowercase , lowercase , lowercase , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim lowerCamelCase_ = latents.reshape(latents.shape[0] , lowercase , lowercase ) for i, t in enumerate(self.progress_bar(lowercase ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase_ = self.scheduler.scale_model_input(lowercase , lowercase ) lowerCamelCase_ = self.prior( lowercase , timestep=lowercase , proj_embedding=lowercase , ).predicted_image_embedding # remove the variance lowerCamelCase_ , lowerCamelCase_ = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: lowerCamelCase_ , lowerCamelCase_ = noise_pred.chunk(2 ) lowerCamelCase_ = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) lowerCamelCase_ = self.scheduler.step( lowercase , timestep=lowercase , sample=lowercase , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=lowercase ) lowerCamelCase_ = [] for i, latent in enumerate(lowercase ): print() lowerCamelCase_ = self.renderer.decode( latent[None, :] , lowercase , size=lowercase , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(lowercase ) lowerCamelCase_ = torch.stack(lowercase ) if output_type not in ["np", "pil"]: raise ValueError(f'Only the output types `pil` and `np` are supported not output_type={output_type}' ) lowerCamelCase_ = images.cpu().numpy() if output_type == "pil": lowerCamelCase_ = [self.numpy_to_pil(lowercase ) for image in images] # Offload last model to CPU if hasattr(self , "final_offload_hook" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=lowercase )
19
0
"""simple docstring""" def __lowerCAmelCase (_UpperCamelCase = 1000 ): __lowerCAmelCase , __lowerCAmelCase : Optional[int] = 1, 1 __lowerCAmelCase : int = 2 while True: __lowerCAmelCase : Optional[int] = 0 __lowerCAmelCase : List[str] = fa + fa __lowerCAmelCase , __lowerCAmelCase : Optional[Any] = fa, f index += 1 for _ in str(_UpperCamelCase ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
86
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowerCamelCase_ ( ): lowerCamelCase_ , lowerCamelCase_ = 9, 1_4 # noqa: F841 lowerCamelCase_ = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 1_4], [3, 4, 9], [5, 4, 1_0], [1, 7, 1_1], ] lowerCamelCase_ = defaultdict(lowerCamelCase__ ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) lowerCamelCase_ = mst(lowerCamelCase__ ) lowerCamelCase_ = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: lowerCamelCase_ = tuple(answer[:2] ) lowerCamelCase_ = tuple(edge[::-1] ) assert edge in result or reverse in result
19
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''s-JoL/Open-Llama-V1''': '''https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json''', } class snake_case_ ( __A ): __A : Optional[Any] = "open-llama" def __init__( self : Tuple , lowercase_ : str=10_00_00 , lowercase_ : Any=40_96 , lowercase_ : Dict=1_10_08 , lowercase_ : Union[str, Any]=32 , lowercase_ : int=32 , lowercase_ : Tuple="silu" , lowercase_ : Any=20_48 , lowercase_ : int=0.02 , lowercase_ : Any=1E-6 , lowercase_ : int=True , lowercase_ : Optional[Any]=0 , lowercase_ : Optional[Any]=1 , lowercase_ : Any=2 , lowercase_ : Any=False , lowercase_ : int=True , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Optional[int]=0.1 , lowercase_ : Optional[int]=True , lowercase_ : Union[str, Any]=True , lowercase_ : Any=None , **lowercase_ : Any , ) -> Union[str, Any]: lowercase__ : Tuple = vocab_size lowercase__ : Optional[Any] = max_position_embeddings lowercase__ : Union[str, Any] = hidden_size lowercase__ : Any = intermediate_size lowercase__ : Union[str, Any] = num_hidden_layers lowercase__ : Dict = num_attention_heads lowercase__ : List[str] = hidden_act lowercase__ : Any = initializer_range lowercase__ : List[Any] = rms_norm_eps lowercase__ : Optional[int] = use_cache lowercase__ : Tuple = kwargs.pop( "use_memorry_efficient_attention" , lowercase_ ) lowercase__ : Optional[Any] = hidden_dropout_prob lowercase__ : str = attention_dropout_prob lowercase__ : Tuple = use_stable_embedding lowercase__ : Dict = shared_input_output_embedding lowercase__ : Optional[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , tie_word_embeddings=lowercase_ , **lowercase_ , ) def __UpperCamelCase ( self : Dict ) -> int: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowercase_ ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " F'''got {self.rope_scaling}''' ) lowercase__ : Any = self.rope_scaling.get("type" , lowercase_ ) lowercase__ : Tuple = self.rope_scaling.get("factor" , lowercase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(lowercase_ , lowercase_ ) or rope_scaling_factor <= 1.0: raise ValueError(F'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
87
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __A =1_6 __A =3_2 def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ = 1_6 ): lowerCamelCase_ = AutoTokenizer.from_pretrained("bert-base-cased" ) lowerCamelCase_ = load_dataset("glue" , "mrpc" ) def tokenize_function(lowerCamelCase__ ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase_ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCamelCase_ = datasets.map( lowerCamelCase__ , batched=lowerCamelCase__ , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase_ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowerCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCamelCase_ = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCamelCase_ = 1_6 elif accelerator.mixed_precision != "no": lowerCamelCase_ = 8 else: lowerCamelCase_ = None return tokenizer.pad( lowerCamelCase__ , padding="longest" , max_length=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_tensors="pt" , ) # Instantiate dataloaders. lowerCamelCase_ = DataLoader( tokenized_datasets["train"] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ ) lowerCamelCase_ = DataLoader( tokenized_datasets["validation"] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders __A =mocked_dataloaders # noqa: F811 def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS" , lowerCamelCase__ ) == "1": lowerCamelCase_ = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: lowerCamelCase_ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: lowerCamelCase_ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase_ = config["lr"] lowerCamelCase_ = int(config["num_epochs"] ) lowerCamelCase_ = int(config["seed"] ) lowerCamelCase_ = int(config["batch_size"] ) set_seed(lowerCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ = get_dataloaders(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation lowerCamelCase_ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowerCamelCase_ = batch_size // MAX_GPU_BATCH_SIZE lowerCamelCase_ = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase_ = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=lowerCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCamelCase_ = model.to(accelerator.device ) # Instantiate optimizer lowerCamelCase_ = AdamW(params=model.parameters() , lr=lowerCamelCase__ ) # Instantiate scheduler lowerCamelCase_ = get_linear_schedule_with_warmup( optimizer=lowerCamelCase__ , num_warmup_steps=1_0_0 , num_training_steps=(len(lowerCamelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: lowerCamelCase_ = os.path.split(lowerCamelCase__ )[-1].split("." )[0] accelerator.init_trackers(lowerCamelCase__ , lowerCamelCase__ ) # Now we train the model for epoch in range(lowerCamelCase__ ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: lowerCamelCase_ = 0 for step, batch in enumerate(lowerCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCamelCase_ = model(**lowerCamelCase__ ) lowerCamelCase_ = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() lowerCamelCase_ = loss / gradient_accumulation_steps accelerator.backward(lowerCamelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase_ = model(**lowerCamelCase__ ) lowerCamelCase_ = outputs.logits.argmax(dim=-1 ) lowerCamelCase_ , lowerCamelCase_ = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=lowerCamelCase__ , references=lowerCamelCase__ , ) lowerCamelCase_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , lowerCamelCase__ ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { "accuracy": eval_metric["accuracy"], "f1": eval_metric["f1"], "train_loss": total_loss.item() / len(lowerCamelCase__ ), "epoch": epoch, } , step=lowerCamelCase__ , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def lowerCamelCase_ ( ): lowerCamelCase_ = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=lowerCamelCase__ , default=lowerCamelCase__ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=lowerCamelCase__ , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) lowerCamelCase_ = parser.parse_args() lowerCamelCase_ = {"lr": 2e-5, "num_epochs": 3, "seed": 4_2, "batch_size": 1_6} training_function(lowerCamelCase__ , lowerCamelCase__ ) if __name__ == "__main__": main()
19
0
import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[int] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str]=13 , UpperCamelCase__ : int=30 , UpperCamelCase__ : Optional[int]=2 , UpperCamelCase__ : List[Any]=3 , UpperCamelCase__ : str=True , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : Optional[Any]=32 , UpperCamelCase__ : int=5 , UpperCamelCase__ : List[Any]=4 , UpperCamelCase__ : List[str]=37 , UpperCamelCase__ : Any="gelu" , UpperCamelCase__ : List[Any]=0.1 , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : Dict=10 , UpperCamelCase__ : List[Any]=0.02 , ) -> Dict: """simple docstring""" __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = image_size __magic_name__ = patch_size __magic_name__ = num_channels __magic_name__ = is_training __magic_name__ = use_labels __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = type_sequence_label_size __magic_name__ = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __magic_name__ = (image_size // patch_size) ** 2 __magic_name__ = num_patches + 1 def _lowercase ( self : Any ) -> Optional[int]: """simple docstring""" __magic_name__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , ) return config, pixel_values def _lowercase ( self : List[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int ) -> List[Any]: """simple docstring""" __magic_name__ = FlaxViTModel(config=UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) __magic_name__ = (self.image_size, self.image_size) __magic_name__ = (self.patch_size, self.patch_size) __magic_name__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def _lowercase ( self : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : List[Any] ) -> Any: """simple docstring""" __magic_name__ = self.type_sequence_label_size __magic_name__ = FlaxViTForImageClassification(config=UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __magic_name__ = 1 __magic_name__ = FlaxViTForImageClassification(UpperCamelCase__ ) __magic_name__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ = model(UpperCamelCase__ ) def _lowercase ( self : int ) -> int: """simple docstring""" __magic_name__ = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ) = config_and_inputs __magic_name__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class UpperCAmelCase_ ( _A , unittest.TestCase ): '''simple docstring''' a__ = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def _lowercase ( self : Tuple ) -> None: """simple docstring""" __magic_name__ = FlaxViTModelTester(self ) __magic_name__ = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def _lowercase ( self : int ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def _lowercase ( self : Optional[Any] ) -> str: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def _lowercase ( self : Dict ) -> List[str]: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) def _lowercase ( self : str ) -> Union[str, Any]: """simple docstring""" __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ = model_class(UpperCamelCase__ ) __magic_name__ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ = [*signature.parameters.keys()] __magic_name__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def _lowercase ( self : Dict ) -> Optional[int]: """simple docstring""" __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = model_class(UpperCamelCase__ ) @jax.jit def model_jitted(UpperCamelCase__ : Optional[Any] , **UpperCamelCase__ : Dict ): return model(pixel_values=UpperCamelCase__ , **UpperCamelCase__ ) with self.subTest("""JIT Enabled""" ): __magic_name__ = model_jitted(**UpperCamelCase__ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __magic_name__ = model_jitted(**UpperCamelCase__ ).to_tuple() self.assertEqual(len(UpperCamelCase__ ) , len(UpperCamelCase__ ) ) for jitted_output, output in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _lowercase ( self : Tuple ) -> Any: """simple docstring""" for model_class_name in self.all_model_classes: __magic_name__ = model_class_name.from_pretrained("""google/vit-base-patch16-224""" ) __magic_name__ = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(UpperCamelCase__ )
88
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: __A =None __A =logging.get_logger(__name__) __A ={'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __A ={ '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } __A ={ '''facebook/mbart-large-en-ro''': 1_0_2_4, '''facebook/mbart-large-cc25''': 1_0_2_4, } # fmt: off __A =['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = ['input_ids', 'attention_mask'] lowerCAmelCase__ = MBartTokenizer lowerCAmelCase__ = [] lowerCAmelCase__ = [] def __init__( self , lowercase=None , lowercase=None , lowercase="<s>" , lowercase="</s>" , lowercase="</s>" , lowercase="<s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase="<mask>" , lowercase=None , lowercase=None , lowercase=None , **lowercase , ) -> Dict: # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else mask_token super().__init__( vocab_file=lowercase , tokenizer_file=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , cls_token=lowercase , unk_token=lowercase , pad_token=lowercase , mask_token=lowercase , src_lang=lowercase , tgt_lang=lowercase , additional_special_tokens=lowercase , **lowercase , ) lowerCamelCase_ = vocab_file lowerCamelCase_ = False if not self.vocab_file else True lowerCamelCase_ = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens} ) lowerCamelCase_ = { lang_code: self.convert_tokens_to_ids(lowercase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCamelCase_ = src_lang if src_lang is not None else "en_XX" lowerCamelCase_ = self.convert_tokens_to_ids(self._src_lang ) lowerCamelCase_ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def SCREAMING_SNAKE_CASE_( self ) -> str: return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE_( self , lowercase ) -> None: lowerCamelCase_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> List[int]: lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , **lowercase ) -> List[Any]: if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) lowerCamelCase_ = src_lang lowerCamelCase_ = self(lowercase , add_special_tokens=lowercase , return_tensors=lowercase , **lowercase ) lowerCamelCase_ = self.convert_tokens_to_ids(lowercase ) lowerCamelCase_ = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = "en_XX" , lowercase = None , lowercase = "ro_RO" , **lowercase , ) -> BatchEncoding: lowerCamelCase_ = src_lang lowerCamelCase_ = tgt_lang return super().prepare_seqaseq_batch(lowercase , lowercase , **lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Dict: return self.set_src_lang_special_tokens(self.src_lang ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> None: lowerCamelCase_ = self.convert_tokens_to_ids(lowercase ) lowerCamelCase_ = [] lowerCamelCase_ = [self.eos_token_id, self.cur_lang_code] lowerCamelCase_ = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase_ = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase_ = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> None: lowerCamelCase_ = self.convert_tokens_to_ids(lowercase ) lowerCamelCase_ = [] lowerCamelCase_ = [self.eos_token_id, self.cur_lang_code] lowerCamelCase_ = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase_ = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase_ = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory.' ) return lowerCamelCase_ = os.path.join( lowercase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ): copyfile(self.vocab_file , lowercase ) return (out_vocab_file,)
19
0
'''simple docstring''' import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel __lowerCAmelCase = { '''text_branch''': '''text_model''', '''audio_branch''': '''audio_model.audio_encoder''', '''attn''': '''attention.self''', '''self.proj''': '''output.dense''', '''attention.self_mask''': '''attn_mask''', '''mlp.fc1''': '''intermediate.dense''', '''mlp.fc2''': '''output.dense''', '''norm1''': '''layernorm_before''', '''norm2''': '''layernorm_after''', '''bn0''': '''batch_norm''', } __lowerCAmelCase = AutoFeatureExtractor.from_pretrained('''laion/clap-htsat-unfused''', truncation='''rand_trunc''') def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_=False ) -> Any: _a , _a : Union[str, Any] = create_model( 'HTSAT-tiny' , 'roberta' , lowerCAmelCase_ , precision='fp32' , device='cuda:0' if torch.cuda.is_available() else 'cpu' , enable_fusion=lowerCAmelCase_ , fusion_type='aff_2d' if enable_fusion else None , ) return model, model_cfg def __lowerCamelCase ( lowerCAmelCase_ ) -> int: _a : Optional[int] = {} _a : Tuple = r'.*sequential.(\d+).*' _a : int = r'.*_projection.(\d+).*' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: _a : Union[str, Any] = key.replace(lowerCAmelCase_ , lowerCAmelCase_ ) if re.match(lowerCAmelCase_ , lowerCAmelCase_ ): # replace sequential layers with list _a : List[str] = re.match(lowerCAmelCase_ , lowerCAmelCase_ ).group(1 ) _a : Optional[Any] = key.replace(f"""sequential.{sequential_layer}.""" , f"""layers.{int(lowerCAmelCase_ )//3}.linear.""" ) elif re.match(lowerCAmelCase_ , lowerCAmelCase_ ): _a : str = int(re.match(lowerCAmelCase_ , lowerCAmelCase_ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... _a : Optional[Any] = 1 if projecton_layer == 0 else 2 _a : int = key.replace(f"""_projection.{projecton_layer}.""" , f"""_projection.linear{transformers_projection_layer}.""" ) if "audio" and "qkv" in key: # split qkv into query key and value _a : str = value _a : List[str] = mixed_qkv.size(0 ) // 3 _a : str = mixed_qkv[:qkv_dim] _a : int = mixed_qkv[qkv_dim : qkv_dim * 2] _a : Any = mixed_qkv[qkv_dim * 2 :] _a : List[Any] = query_layer _a : Union[str, Any] = key_layer _a : Tuple = value_layer else: _a : Dict = value return model_state_dict def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ) -> int: _a , _a : Optional[Any] = init_clap(lowerCAmelCase_ , enable_fusion=lowerCAmelCase_ ) clap_model.eval() _a : Tuple = clap_model.state_dict() _a : Optional[int] = rename_state_dict(lowerCAmelCase_ ) _a : List[str] = ClapConfig() _a : Tuple = enable_fusion _a : int = ClapModel(lowerCAmelCase_ ) # ignore the spectrogram embedding layer model.load_state_dict(lowerCAmelCase_ , strict=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) transformers_config.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument('''--enable_fusion''', action='''store_true''', help='''Whether to enable fusion or not''') __lowerCAmelCase = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
89
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss __A =pytest.mark.integration @require_faiss class _SCREAMING_SNAKE_CASE ( snake_case_ ): def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(lowercase ) for x in np.arange(30 ).tolist()]} ) return dset def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: import faiss lowerCamelCase_ = self._create_dummy_dataset() lowerCamelCase_ = dset.map( lambda lowercase , lowercase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=lowercase , keep_in_memory=lowercase ) lowerCamelCase_ = dset.add_faiss_index("vecs" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCamelCase_ , lowerCamelCase_ = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) dset.drop_index("vecs" ) def SCREAMING_SNAKE_CASE_( self ) -> Dict: import faiss lowerCamelCase_ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCamelCase_ , lowerCamelCase_ = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: import faiss lowerCamelCase_ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowercase ) as tmp_file: dset.save_faiss_index("vecs" , tmp_file.name ) dset.load_faiss_index("vecs2" , tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase_ , lowerCamelCase_ = dset.get_nearest_examples("vecs2" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: lowerCamelCase_ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" ) dset.drop_index("vecs" ) self.assertRaises(lowercase , partial(dset.get_nearest_examples , "vecs2" , np.ones(5 , dtype=np.floataa ) ) ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: from elasticsearch import Elasticsearch lowerCamelCase_ = self._create_dummy_dataset() with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: lowerCamelCase_ = {"acknowledged": True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 29}]}} lowerCamelCase_ = Elasticsearch() dset.add_elasticsearch_index("filename" , es_client=lowercase ) lowerCamelCase_ , lowerCamelCase_ = dset.get_nearest_examples("filename" , "my_name-train_29" ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) @require_faiss class _SCREAMING_SNAKE_CASE ( snake_case_ ): def SCREAMING_SNAKE_CASE_( self ) -> Tuple: import faiss lowerCamelCase_ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCamelCase_ = np.zeros(5 , dtype=np.floataa ) lowerCamelCase_ = 1 lowerCamelCase_ , lowerCamelCase_ = index.search(lowercase ) self.assertRaises(lowercase , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCamelCase_ = np.eye(5 , dtype=np.floataa )[::-1] lowerCamelCase_ , lowerCamelCase_ = index.search_batch(lowercase ) self.assertRaises(lowercase , index.search_batch , queries[0] ) lowerCamelCase_ = [scores[0] for scores in total_scores] lowerCamelCase_ = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Any: import faiss lowerCamelCase_ = FaissIndex(string_factory="Flat" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCamelCase_ = FaissIndex(string_factory="LSH" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(lowercase ): lowerCamelCase_ = FaissIndex(string_factory="Flat" , custom_index=faiss.IndexFlat(5 ) ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: import faiss lowerCamelCase_ = faiss.IndexFlat(5 ) lowerCamelCase_ = FaissIndex(custom_index=lowercase ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: import faiss lowerCamelCase_ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowercase ) as tmp_file: index.save(tmp_file.name ) lowerCamelCase_ = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase_ = np.zeros(5 , dtype=np.floataa ) lowerCamelCase_ = 1 lowerCamelCase_ , lowerCamelCase_ = index.search(lowercase ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def lowerCamelCase_ ( lowerCamelCase__ ): import faiss lowerCamelCase_ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCamelCase_ = "index.faiss" lowerCamelCase_ = F'mock://{index_name}' index.save(lowerCamelCase__ , storage_options=mockfs.storage_options ) lowerCamelCase_ = FaissIndex.load(lowerCamelCase__ , storage_options=mockfs.storage_options ) lowerCamelCase_ = np.zeros(5 , dtype=np.floataa ) lowerCamelCase_ = 1 lowerCamelCase_ , lowerCamelCase_ = index.search(lowerCamelCase__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _SCREAMING_SNAKE_CASE ( snake_case_ ): def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: from elasticsearch import Elasticsearch with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: lowerCamelCase_ = Elasticsearch() lowerCamelCase_ = {"acknowledged": True} lowerCamelCase_ = ElasticSearchIndex(es_client=lowercase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["foo", "bar", "foobar"] ) # single query lowerCamelCase_ = "foo" lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} lowerCamelCase_ , lowerCamelCase_ = index.search(lowercase ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCamelCase_ = "foo" lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} lowerCamelCase_ , lowerCamelCase_ = index.search(lowercase , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCamelCase_ = ["foo", "bar", "foobar"] lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} lowerCamelCase_ , lowerCamelCase_ = index.search_batch(lowercase ) lowerCamelCase_ = [scores[0] for scores in total_scores] lowerCamelCase_ = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase ) , 0 ) self.assertListEqual([1, 1, 1] , lowercase ) # batched queries with timeout lowerCamelCase_ = ["foo", "bar", "foobar"] lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} lowerCamelCase_ , lowerCamelCase_ = index.search_batch(lowercase , request_timeout=30 ) lowerCamelCase_ = [scores[0] for scores in total_scores] lowerCamelCase_ = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase ) , 0 ) self.assertListEqual([1, 1, 1] , lowercase )
19
0
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __A = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', f'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', f'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', f'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', f'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.weight''', f'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', f'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', f'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', f'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.weight''', f'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', f'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', f'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', f'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', f'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', f'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.bias''', f'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', f'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', f'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', f'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.bias''', f'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', f'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ("transformer.decoder.ref_point_head.layers.0.weight", "decoder.ref_point_head.layers.0.weight"), ("transformer.decoder.ref_point_head.layers.0.bias", "decoder.ref_point_head.layers.0.bias"), ("transformer.decoder.ref_point_head.layers.1.weight", "decoder.ref_point_head.layers.1.weight"), ("transformer.decoder.ref_point_head.layers.1.bias", "decoder.ref_point_head.layers.1.bias"), ("transformer.decoder.query_scale.layers.0.weight", "decoder.query_scale.layers.0.weight"), ("transformer.decoder.query_scale.layers.0.bias", "decoder.query_scale.layers.0.bias"), ("transformer.decoder.query_scale.layers.1.weight", "decoder.query_scale.layers.1.weight"), ("transformer.decoder.query_scale.layers.1.bias", "decoder.query_scale.layers.1.bias"), ("transformer.decoder.layers.0.ca_qpos_proj.weight", "decoder.layers.0.ca_qpos_proj.weight"), ("transformer.decoder.layers.0.ca_qpos_proj.bias", "decoder.layers.0.ca_qpos_proj.bias"), ] ) def lowerCamelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] ) -> Dict: """simple docstring""" __lowerCamelCase = state_dict.pop(UpperCamelCase__ ) __lowerCamelCase = val def lowerCamelCase_ ( UpperCamelCase__ : int ) -> Union[str, Any]: """simple docstring""" __lowerCamelCase = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: __lowerCamelCase = key.replace('backbone.0.body' , 'backbone.conv_encoder.model' ) __lowerCamelCase = value else: __lowerCamelCase = value return new_state_dict def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : Dict=False ) -> Union[str, Any]: """simple docstring""" __lowerCamelCase = '' if is_panoptic: __lowerCamelCase = 'conditional_detr.' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __lowerCamelCase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) __lowerCamelCase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCamelCase = in_proj_weight[:256, :] __lowerCamelCase = in_proj_bias[:256] __lowerCamelCase = in_proj_weight[256:512, :] __lowerCamelCase = in_proj_bias[256:512] __lowerCamelCase = in_proj_weight[-256:, :] __lowerCamelCase = in_proj_bias[-256:] def lowerCamelCase_ ( ) -> Dict: """simple docstring""" __lowerCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCamelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) return im @torch.no_grad() def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str ) -> List[str]: """simple docstring""" __lowerCamelCase = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: __lowerCamelCase = 'resnet101' if "dc5" in model_name: __lowerCamelCase = True __lowerCamelCase = 'panoptic' in model_name if is_panoptic: __lowerCamelCase = 250 else: __lowerCamelCase = 91 __lowerCamelCase = 'huggingface/label-files' __lowerCamelCase = 'coco-detection-id2label.json' __lowerCamelCase = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='dataset' ) , 'r' ) ) __lowerCamelCase = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} __lowerCamelCase = idalabel __lowerCamelCase = {v: k for k, v in idalabel.items()} # load image processor __lowerCamelCase = 'coco_panoptic' if is_panoptic else 'coco_detection' __lowerCamelCase = ConditionalDetrImageProcessor(format=UpperCamelCase__ ) # prepare image __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(images=UpperCamelCase__ , return_tensors='pt' ) __lowerCamelCase = encoding['pixel_values'] logger.info(F"""Converting model {model_name}...""" ) # load original model from torch hub __lowerCamelCase = torch.hub.load('DeppMeng/ConditionalDETR' , UpperCamelCase__ , pretrained=UpperCamelCase__ ).eval() __lowerCamelCase = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: __lowerCamelCase = 'conditional_detr.' + src rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = rename_backbone_keys(UpperCamelCase__ ) # query, key and value matrices need special treatment read_in_q_k_v(UpperCamelCase__ , is_panoptic=UpperCamelCase__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __lowerCamelCase = 'conditional_detr.model.' if is_panoptic else 'model.' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('conditional_detr' ) and not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ) ): __lowerCamelCase = state_dict.pop(UpperCamelCase__ ) __lowerCamelCase = val elif "class_labels_classifier" in key or "bbox_predictor" in key: __lowerCamelCase = state_dict.pop(UpperCamelCase__ ) __lowerCamelCase = val elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ): continue else: __lowerCamelCase = state_dict.pop(UpperCamelCase__ ) __lowerCamelCase = val else: if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): __lowerCamelCase = state_dict.pop(UpperCamelCase__ ) __lowerCamelCase = val # finally, create HuggingFace model and load state dict __lowerCamelCase = ConditionalDetrForSegmentation(UpperCamelCase__ ) if is_panoptic else ConditionalDetrForObjectDetection(UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) model.eval() model.push_to_hub(repo_id=UpperCamelCase__ , organization='DepuMeng' , commit_message='Add model' ) # verify our conversion __lowerCamelCase = conditional_detr(UpperCamelCase__ ) __lowerCamelCase = model(UpperCamelCase__ ) assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1E-4 ) # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) image_processor.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--model_name", default="conditional_detr_resnet50", type=str, help="Name of the CONDITIONAL_DETR model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) __A = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
90
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class _SCREAMING_SNAKE_CASE : def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=99 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.0_2 , lowercase=3 , lowercase=4 , lowercase=None , ) -> List[str]: lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_token_type_ids lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = num_labels lowerCamelCase_ = num_choices lowerCamelCase_ = scope lowerCamelCase_ = self.vocab_size - 1 def SCREAMING_SNAKE_CASE_( self ) -> Any: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_token_type_ids: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) lowerCamelCase_ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , *lowercase ) -> Dict: lowerCamelCase_ = OpenAIGPTModel(config=lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = model(lowercase , token_type_ids=lowercase , head_mask=lowercase ) lowerCamelCase_ = model(lowercase , token_type_ids=lowercase ) lowerCamelCase_ = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , *lowercase ) -> int: lowerCamelCase_ = OpenAIGPTLMHeadModel(lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = model(lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , *lowercase ) -> Dict: lowerCamelCase_ = OpenAIGPTDoubleHeadsModel(lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = model(lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , *lowercase ) -> int: lowerCamelCase_ = self.num_labels lowerCamelCase_ = OpenAIGPTForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = model(lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = { "input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask, } return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): lowerCAmelCase__ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) lowerCAmelCase__ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly lowerCAmelCase__ = ( { 'feature-extraction': OpenAIGPTModel, 'text-classification': OpenAIGPTForSequenceClassification, 'text-generation': OpenAIGPTLMHeadModel, 'zero-shot': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase ) -> int: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase=False ) -> Any: lowerCamelCase_ = super()._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": lowerCamelCase_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=lowercase , ) lowerCamelCase_ = inputs_dict["labels"] lowerCamelCase_ = inputs_dict["labels"] lowerCamelCase_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=lowercase , ) lowerCamelCase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase ) return inputs_dict def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ = OpenAIGPTModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=lowercase , n_embd=37 ) def SCREAMING_SNAKE_CASE_( self ) -> Any: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Tuple: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowercase ) @slow def SCREAMING_SNAKE_CASE_( self ) -> Any: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = OpenAIGPTModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ = OpenAIGPTLMHeadModel.from_pretrained("openai-gpt" ) model.to(lowercase ) lowerCamelCase_ = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=lowercase ) # the president is lowerCamelCase_ = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the lowerCamelCase_ = model.generate(lowercase , do_sample=lowercase ) self.assertListEqual(output_ids[0].tolist() , lowercase )
19
0
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm UpperCAmelCase_ : Tuple = re.compile("""[^A-Za-z_0-9]""") # parameters used in DuplicationIndex UpperCAmelCase_ : List[Any] = 10 UpperCAmelCase_ : List[str] = 256 def _A (__a ) -> Optional[MinHash]: """simple docstring""" if len(__a ) < MIN_NUM_TOKENS: return None SCREAMING_SNAKE_CASE_ : Union[str, Any] = MinHash(num_perm=__a ) for token in set(__a ): min_hash.update(token.encode() ) return min_hash def _A (__a ) -> Set[str]: """simple docstring""" return {t for t in NON_ALPHA.split(__a ) if len(t.strip() ) > 0} class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Dict , *, lowercase_ : float = 0.85 , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = duplication_jaccard_threshold SCREAMING_SNAKE_CASE_ : Any = NUM_PERM SCREAMING_SNAKE_CASE_ : Union[str, Any] = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm) SCREAMING_SNAKE_CASE_ : List[Any] = defaultdict(lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : Tuple , lowercase_ : MinHash): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = self._index.query(lowercase_) if code_key in self._index.keys: print(F'Duplicate key {code_key}') return self._index.insert(lowercase_ , lowercase_) if len(lowercase_) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(lowercase_) break else: self._duplicate_clusters[close_duplicates[0]].add(lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = [] for base, duplicates in self._duplicate_clusters.items(): SCREAMING_SNAKE_CASE_ : Tuple = [base] + list(lowercase_) # reformat the cluster to be a list of dict SCREAMING_SNAKE_CASE_ : Optional[int] = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(lowercase_) return duplicate_clusters def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = self.get_duplicate_clusters() with open(lowercase_ , '''w''') as f: json.dump(lowercase_ , lowercase_) def _A (__a ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = element SCREAMING_SNAKE_CASE_ : Dict = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _A (__a ) -> List[Any]: """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(__a , max_queue_size=1_00_00 ) , chunksize=1_00 , ): if data is not None: yield data def _A (__a , __a ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = DuplicationIndex(duplication_jaccard_threshold=__a ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(__a ) ) , max_queue_size=1_00 ) ): di.add(__a , __a ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _A (__a , __a ) -> float: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = get_tokens(__a ) SCREAMING_SNAKE_CASE_ : Any = get_tokens(__a ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) UpperCAmelCase_ : List[str] = None def _A (__a , __a ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = [] for elementa in cluster: SCREAMING_SNAKE_CASE_ : Any = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: SCREAMING_SNAKE_CASE_ : Union[str, Any] = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(__a , __a ) >= jaccard_threshold: elementa["copies"] += 1 break else: SCREAMING_SNAKE_CASE_ : Optional[int] = 1 extremes.append(__a ) return extremes def _A (__a , __a , __a ) -> List[str]: """simple docstring""" global _shared_dataset SCREAMING_SNAKE_CASE_ : Any = dataset SCREAMING_SNAKE_CASE_ : List[Any] = [] SCREAMING_SNAKE_CASE_ : str = partial(_find_cluster_extremes_shared , jaccard_threshold=__a ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( __a , __a , ) , total=len(__a ) , ): extremes_list.append(__a ) return extremes_list def _A (__a , __a = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = make_duplicate_clusters(__a , __a ) SCREAMING_SNAKE_CASE_ : List[Any] = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} SCREAMING_SNAKE_CASE_ : Optional[int] = {} SCREAMING_SNAKE_CASE_ : int = find_extremes(__a , __a , __a ) for extremes in extremes_clusters: for element in extremes: SCREAMING_SNAKE_CASE_ : int = element SCREAMING_SNAKE_CASE_ : Optional[int] = duplicate_indices - set(extreme_dict.keys() ) SCREAMING_SNAKE_CASE_ : Any = dataset.filter(lambda __a , __a : idx not in remove_indices , with_indices=__a ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: SCREAMING_SNAKE_CASE_ : Dict = element['''base_index'''] in extreme_dict if element["is_extreme"]: SCREAMING_SNAKE_CASE_ : Union[str, Any] = extreme_dict[element['''base_index''']]['''copies'''] print(f'Original dataset size: {len(__a )}' ) print(f'Number of duplicate clusters: {len(__a )}' ) print(f'Files in duplicate cluster: {len(__a )}' ) print(f'Unique files in duplicate cluster: {len(__a )}' ) print(f'Filtered dataset size: {len(__a )}' ) return ds_filter, duplicate_clusters
91
__A ={str(digit): digit**5 for digit in range(1_0)} def lowerCamelCase_ ( lowerCamelCase__ ): return sum(DIGITS_FIFTH_POWER[digit] for digit in str(lowerCamelCase__ ) ) def lowerCamelCase_ ( ): return sum( number for number in range(1_0_0_0 , 1_0_0_0_0_0_0 ) if number == digits_fifth_powers_sum(lowerCamelCase__ ) ) if __name__ == "__main__": print(solution())
19
0
from ..utils import DummyObject, requires_backends class a__ ( metaclass=snake_case__ ): _a : List[str] = ["""keras_nlp"""] def __init__( self , *_A , **_A ): """simple docstring""" requires_backends(self , ["keras_nlp"] )
92
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() __A =logging.get_logger(__name__) def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: lowerCamelCase_ = 1_9_2 lowerCamelCase_ = 7_6_8 lowerCamelCase_ = 1_2 lowerCamelCase_ = 3 lowerCamelCase_ = [8_0_0, 1_3_3_3] lowerCamelCase_ = False elif yolos_name == "yolos_s_dWr": lowerCamelCase_ = 3_3_0 lowerCamelCase_ = 1_4 lowerCamelCase_ = 6 lowerCamelCase_ = 1_3_2_0 elif "yolos_s" in yolos_name: lowerCamelCase_ = 3_8_4 lowerCamelCase_ = 1_5_3_6 lowerCamelCase_ = 1_2 lowerCamelCase_ = 6 elif "yolos_b" in yolos_name: lowerCamelCase_ = [8_0_0, 1_3_4_4] lowerCamelCase_ = 9_1 lowerCamelCase_ = "huggingface/label-files" lowerCamelCase_ = "coco-detection-id2label.json" lowerCamelCase_ = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="dataset" ) , "r" ) ) lowerCamelCase_ = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} lowerCamelCase_ = idalabel lowerCamelCase_ = {v: k for k, v in idalabel.items()} return config def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase_ = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) lowerCamelCase_ = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase_ = in_proj_weight[: config.hidden_size, :] lowerCamelCase_ = in_proj_bias[: config.hidden_size] lowerCamelCase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase_ = in_proj_weight[-config.hidden_size :, :] lowerCamelCase_ = in_proj_bias[-config.hidden_size :] def lowerCamelCase_ ( lowerCamelCase__ ): if "backbone" in name: lowerCamelCase_ = name.replace("backbone" , "vit" ) if "cls_token" in name: lowerCamelCase_ = name.replace("cls_token" , "embeddings.cls_token" ) if "det_token" in name: lowerCamelCase_ = name.replace("det_token" , "embeddings.detection_tokens" ) if "mid_pos_embed" in name: lowerCamelCase_ = name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" ) if "pos_embed" in name: lowerCamelCase_ = name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: lowerCamelCase_ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "blocks" in name: lowerCamelCase_ = name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: lowerCamelCase_ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: lowerCamelCase_ = name.replace("attn" , "attention.self" ) if "norm1" in name: lowerCamelCase_ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowerCamelCase_ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: lowerCamelCase_ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowerCamelCase_ = name.replace("mlp.fc2" , "output.dense" ) if "class_embed" in name: lowerCamelCase_ = name.replace("class_embed" , "class_labels_classifier" ) if "bbox_embed" in name: lowerCamelCase_ = name.replace("bbox_embed" , "bbox_predictor" ) if "vit.norm" in name: lowerCamelCase_ = name.replace("vit.norm" , "vit.layernorm" ) return name def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): for key in orig_state_dict.copy().keys(): lowerCamelCase_ = orig_state_dict.pop(lowerCamelCase__ ) if "qkv" in key: lowerCamelCase_ = key.split("." ) lowerCamelCase_ = int(key_split[2] ) lowerCamelCase_ = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: lowerCamelCase_ = val[:dim, :] lowerCamelCase_ = val[ dim : dim * 2, : ] lowerCamelCase_ = val[-dim:, :] else: lowerCamelCase_ = val[:dim] lowerCamelCase_ = val[dim : dim * 2] lowerCamelCase_ = val[-dim:] else: lowerCamelCase_ = val return orig_state_dict def lowerCamelCase_ ( ): lowerCamelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase_ = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ) return im @torch.no_grad() def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ): lowerCamelCase_ = get_yolos_config(lowerCamelCase__ ) # load original state_dict lowerCamelCase_ = torch.load(lowerCamelCase__ , map_location="cpu" )["model"] # load 🤗 model lowerCamelCase_ = YolosForObjectDetection(lowerCamelCase__ ) model.eval() lowerCamelCase_ = convert_state_dict(lowerCamelCase__ , lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) # Check outputs on an image, prepared by YolosImageProcessor lowerCamelCase_ = 8_0_0 if yolos_name != "yolos_ti" else 5_1_2 lowerCamelCase_ = YolosImageProcessor(format="coco_detection" , size=lowerCamelCase__ ) lowerCamelCase_ = image_processor(images=prepare_img() , return_tensors="pt" ) lowerCamelCase_ = model(**lowerCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ = outputs.logits, outputs.pred_boxes lowerCamelCase_ , lowerCamelCase_ = None, None if yolos_name == "yolos_ti": lowerCamelCase_ = torch.tensor( [[-39.50_22, -11.98_20, -17.68_88], [-29.95_74, -9.97_69, -17.76_91], [-42.32_81, -20.72_00, -30.62_94]] ) lowerCamelCase_ = torch.tensor( [[0.40_21, 0.08_36, 0.79_79], [0.01_84, 0.26_09, 0.03_64], [0.17_81, 0.20_04, 0.20_95]] ) elif yolos_name == "yolos_s_200_pre": lowerCamelCase_ = torch.tensor( [[-24.02_48, -10.30_24, -14.82_90], [-42.03_92, -16.82_00, -27.43_34], [-27.27_43, -11.81_54, -18.71_48]] ) lowerCamelCase_ = torch.tensor( [[0.25_59, 0.54_55, 0.47_06], [0.29_89, 0.72_79, 0.18_75], [0.77_32, 0.40_17, 0.44_62]] ) elif yolos_name == "yolos_s_300_pre": lowerCamelCase_ = torch.tensor( [[-36.22_20, -14.43_85, -23.54_57], [-35.69_70, -14.75_83, -21.39_35], [-31.59_39, -13.60_42, -16.80_49]] ) lowerCamelCase_ = torch.tensor( [[0.76_14, 0.23_16, 0.47_28], [0.71_68, 0.44_95, 0.38_55], [0.49_96, 0.14_66, 0.99_96]] ) elif yolos_name == "yolos_s_dWr": lowerCamelCase_ = torch.tensor( [[-42.86_68, -24.10_49, -41.16_90], [-34.74_56, -14.12_74, -24.91_94], [-33.78_98, -12.19_46, -25.64_95]] ) lowerCamelCase_ = torch.tensor( [[0.55_87, 0.27_73, 0.06_05], [0.50_04, 0.30_14, 0.99_94], [0.49_99, 0.15_48, 0.99_94]] ) elif yolos_name == "yolos_base": lowerCamelCase_ = torch.tensor( [[-40.60_64, -24.30_84, -32.64_47], [-55.19_90, -30.77_19, -35.58_77], [-51.43_11, -33.35_07, -35.64_62]] ) lowerCamelCase_ = torch.tensor( [[0.55_55, 0.27_94, 0.06_55], [0.90_49, 0.26_64, 0.18_94], [0.91_83, 0.19_84, 0.16_35]] ) else: raise ValueError(F'Unknown yolos_name: {yolos_name}' ) assert torch.allclose(logits[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) print(F'Saving model {yolos_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCamelCase__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: lowerCamelCase_ = { "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) lowerCamelCase_ = model_mapping[yolos_name] image_processor.push_to_hub(lowerCamelCase__ , organization="hustvl" ) model.push_to_hub(lowerCamelCase__ , organization="hustvl" ) if __name__ == "__main__": __A =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--yolos_name''', default='''yolos_s_200_pre''', type=str, help=( '''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',''' ''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.''' ), ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __A =parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
19
0
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase__ ( lowerCamelCase_ , unittest.TestCase ): lowerCAmelCase_ = RobertaTokenizer lowerCAmelCase_ = RobertaTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = {'''cls_token''': '''<s>'''} def _snake_case ( self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase_ : Any = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] lowercase_ : List[str] = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) lowercase_ : List[Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowercase_ : Union[str, Any] = {'''unk_token''': '''<unk>'''} lowercase_ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase_ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def _snake_case ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def _snake_case ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : List[Any] = '''lower newer''' lowercase_ : Dict = '''lower newer''' return input_text, output_text def _snake_case ( self ): """simple docstring""" lowercase_ : Optional[int] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase_ : List[Any] = '''lower newer''' lowercase_ : Union[str, Any] = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] lowercase_ : Union[str, Any] = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) # , add_prefix_space=True) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = tokens + [tokenizer.unk_token] lowercase_ : Tuple = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" lowercase_ : List[str] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , ) @slow def _snake_case ( self ): """simple docstring""" lowercase_ : List[Any] = self.tokenizer_class.from_pretrained('''roberta-base''' ) lowercase_ : Optional[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) lowercase_ : str = tokenizer.encode( '''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) lowercase_ : str = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) lowercase_ : str = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _snake_case ( self ): """simple docstring""" lowercase_ : Tuple = self.get_tokenizer() lowercase_ : Optional[Any] = '''Encode this sequence.''' lowercase_ : Optional[Any] = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments lowercase_ : int = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) lowercase_ : List[str] = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) lowercase_ : Any = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Testing spaces after special tokens lowercase_ : Any = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE )} ) # mask token has a left space lowercase_ : List[Any] = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) lowercase_ : int = '''Encode <mask> sequence''' lowercase_ : List[Any] = '''Encode <mask>sequence''' lowercase_ : Tuple = tokenizer.encode(__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = encoded.index(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = tokenizer.encode(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = encoded.index(__SCREAMING_SNAKE_CASE ) lowercase_ : str = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" pass def _snake_case ( self ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) lowercase_ : str = '''A, <mask> AllenNLP sentence.''' lowercase_ : Optional[int] = tokenizer_r.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = tokenizer_p.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) lowercase_ : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) lowercase_ : List[Any] = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def _snake_case ( self ): """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): lowercase_ : List[str] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) lowercase_ : List[Any] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , __SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state['''add_prefix_space'''] , __SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state['''trim_offsets'''] , __SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase_ : Optional[Any] = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` lowercase_ : int = F'''{text_of_1_token} {text_of_1_token}''' lowercase_ : Dict = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) lowercase_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) lowercase_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) lowercase_ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) lowercase_ : List[str] = F''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) lowercase_ : str = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ) + 1, 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) lowercase_ : Any = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) lowercase_ : str = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) lowercase_ : List[str] = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
93
def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = [0 for i in range(r + 1 )] # nc0 = 1 lowerCamelCase_ = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. lowerCamelCase_ = min(lowerCamelCase__ , lowerCamelCase__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=1_0, r=5))
19
0
def __lowerCamelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : str ): """simple docstring""" a :int = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def __lowerCamelCase ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] ): """simple docstring""" a :Tuple = 0 while b > 0: if b & 1: a :List[str] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
94
import math def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(lowerCamelCase__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("This should never happen" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. __A ='''Enter the base and the power separated by a comma: ''' __A, __A =map(int, input(prompt).split(''',''')) __A, __A =map(int, input(prompt).split(''',''')) # We find the log of each number, using the function res(), which takes two # arguments. __A =res(xa, ya) __A =res(xa, ya) # We check for the largest number if resa > resa: print('''Largest number is''', xa, '''^''', ya) elif resa > resa: print('''Largest number is''', xa, '''^''', ya) else: print('''Both are equal''')
19
0
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class __lowerCAmelCase : _lowercase : Optional[int] = LEDConfig _lowercase : Optional[Any] = {} _lowercase : Optional[int] = """gelu""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=1_3 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=9_9 , lowerCAmelCase__=3_2 , lowerCAmelCase__=2 , lowerCAmelCase__=4 , lowerCAmelCase__=3_7 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=2_0 , lowerCAmelCase__=2 , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=4 , ) -> int: '''simple docstring''' a__ : int =parent a__ : int =batch_size a__ : Dict =seq_length a__ : str =is_training a__ : Optional[int] =use_labels a__ : Optional[Any] =vocab_size a__ : List[str] =hidden_size a__ : Dict =num_hidden_layers a__ : str =num_attention_heads a__ : str =intermediate_size a__ : Dict =hidden_dropout_prob a__ : Tuple =attention_probs_dropout_prob a__ : List[str] =max_position_embeddings a__ : Dict =eos_token_id a__ : Tuple =pad_token_id a__ : Optional[Any] =bos_token_id a__ : int =attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after a__ : Union[str, Any] =self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests a__ : List[str] =( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' a__ : Any =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) a__ : List[Any] =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) a__ : List[Any] =tf.concat([input_ids, eos_tensor] , axis=1 ) a__ : Any =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a__ : Tuple =self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) a__ : int =prepare_led_inputs_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) a__ : str =tf.concat( [tf.zeros_like(lowerCAmelCase__ )[:, :-1], tf.ones_like(lowerCAmelCase__ )[:, -1:]] , axis=-1 , ) a__ : Dict =global_attention_mask return config, inputs_dict def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: '''simple docstring''' a__ : Any =TFLEDModel(config=lowerCAmelCase__ ).get_decoder() a__ : Tuple =inputs_dict["input_ids"] a__ : Any =input_ids[:1, :] a__ : List[str] =inputs_dict["attention_mask"][:1, :] a__ : List[Any] =1 # first forward pass a__ : Any =model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , use_cache=lowerCAmelCase__ ) a__ , a__ : Optional[int] =outputs.to_tuple() # create hypothetical next token and extent to next_input_ids a__ : Optional[Any] =ids_tensor((self.batch_size, 3) , config.vocab_size ) a__ : str =tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and a__ : Optional[int] =tf.concat([input_ids, next_tokens] , axis=-1 ) a__ : List[str] =tf.concat([attention_mask, next_attn_mask] , axis=-1 ) a__ : List[Any] =model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0] a__ : Tuple =model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice a__ : Any =int(ids_tensor((1,) , output_from_past.shape[-1] ) ) a__ : Optional[Any] =output_from_no_past[:, -3:, random_slice_idx] a__ : int =output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCAmelCase__ , lowerCAmelCase__ , rtol=1E-3 ) def _A ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : str=None , SCREAMING_SNAKE_CASE : Optional[Any]=None , SCREAMING_SNAKE_CASE : Optional[Any]=None , ): """simple docstring""" if attention_mask is None: a__ : Optional[int] =tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: a__ : Any =tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: a__ : int =tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: a__ : Optional[int] =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase): _lowercase : int = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _lowercase : Union[str, Any] = (TFLEDForConditionalGeneration,) if is_tf_available() else () _lowercase : Optional[int] = ( { """conversational""": TFLEDForConditionalGeneration, """feature-extraction""": TFLEDModel, """summarization""": TFLEDForConditionalGeneration, """text2text-generation""": TFLEDForConditionalGeneration, """translation""": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _lowercase : Union[str, Any] = True _lowercase : List[str] = False _lowercase : List[str] = False _lowercase : Dict = False def _lowercase ( self ) -> int: '''simple docstring''' a__ : List[str] =TFLEDModelTester(self ) a__ : Any =ConfigTester(self , config_class=lowerCAmelCase__ ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def _lowercase ( self ) -> str: '''simple docstring''' a__ : Any =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase__ ) def _lowercase ( self ) -> Tuple: '''simple docstring''' a__ , a__ : Any =self.model_tester.prepare_config_and_inputs_for_common() a__ : List[str] =tf.zeros_like(inputs_dict["attention_mask"] ) a__ : Tuple =2 a__ : int =tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["global_attention_mask"] , ) a__ : Dict =True a__ : List[Any] =self.model_tester.seq_length a__ : Dict =self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowerCAmelCase__ ): a__ : List[Any] =outputs.decoder_attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowerCAmelCase__ ): a__ : Optional[int] =[t.numpy() for t in outputs.encoder_attentions] a__ : Any =[t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: a__ : Optional[int] =True a__ : List[Any] =False a__ : Any =False a__ : List[str] =model_class(lowerCAmelCase__ ) a__ : Optional[Any] =model(self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) a__ : Optional[int] =len(lowerCAmelCase__ ) self.assertEqual(config.output_hidden_states , lowerCAmelCase__ ) check_encoder_attentions_output(lowerCAmelCase__ ) if self.is_encoder_decoder: a__ : Union[str, Any] =model_class(lowerCAmelCase__ ) a__ : Dict =model(self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) self.assertEqual(config.output_hidden_states , lowerCAmelCase__ ) check_decoder_attentions_output(lowerCAmelCase__ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] a__ : str =True a__ : Union[str, Any] =model_class(lowerCAmelCase__ ) a__ : Optional[Any] =model(self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) self.assertEqual(config.output_hidden_states , lowerCAmelCase__ ) check_encoder_attentions_output(lowerCAmelCase__ ) # Check attention is always last and order is fine a__ : int =True a__ : Tuple =True a__ : Tuple =model_class(lowerCAmelCase__ ) a__ : Optional[Any] =model(self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowerCAmelCase__ ) ) self.assertEqual(model.config.output_hidden_states , lowerCAmelCase__ ) check_encoder_attentions_output(lowerCAmelCase__ ) @unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' pass def _lowercase ( self ) -> str: '''simple docstring''' pass def _A ( SCREAMING_SNAKE_CASE : str ): """simple docstring""" return tf.constant(SCREAMING_SNAKE_CASE , dtype=tf.intaa ) UpperCAmelCase : Dict = 1E-4 @slow @require_tf class __lowerCAmelCase ( unittest.TestCase): def _lowercase ( self ) -> Dict: '''simple docstring''' a__ : Tuple =TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led # change to intended input here a__ : Any =_long_tensor([5_1_2 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) a__ : int =_long_tensor([1_2_8 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) a__ : List[str] =prepare_led_inputs_dict(model.config , lowerCAmelCase__ , lowerCAmelCase__ ) a__ : Tuple =model(**lowerCAmelCase__ )[0] a__ : Optional[int] =(1, 1_0_2_4, 7_6_8) self.assertEqual(output.shape , lowerCAmelCase__ ) # change to expected output here a__ : Optional[int] =tf.convert_to_tensor( [[2.30_50, 2.82_79, 0.65_31], [-1.84_57, -0.14_55, -3.56_61], [-1.01_86, 0.45_86, -2.20_43]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowerCAmelCase__ , atol=1E-3 ) def _lowercase ( self ) -> Any: '''simple docstring''' a__ : Tuple =TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ) # change to intended input here a__ : Union[str, Any] =_long_tensor([5_1_2 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) a__ : Dict =_long_tensor([1_2_8 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) a__ : int =prepare_led_inputs_dict(model.config , lowerCAmelCase__ , lowerCAmelCase__ ) a__ : Optional[int] =model(**lowerCAmelCase__ )[0] a__ : Any =(1, 1_0_2_4, model.config.vocab_size) self.assertEqual(output.shape , lowerCAmelCase__ ) # change to expected output here a__ : Dict =tf.convert_to_tensor( [[33.65_07, 6.45_72, 16.80_89], [5.87_39, -2.42_38, 11.29_02], [-3.21_39, -4.31_49, 4.27_83]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowerCAmelCase__ , atol=1E-3 , rtol=1E-3 )
95
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features __A =logging.get_logger(__name__) __A =list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) __A =tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _SCREAMING_SNAKE_CASE : lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Model type selected in the list: ' + ', '.join(snake_case_ )} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) lowerCAmelCase__ = field( default=1_28 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase__ = field( default=1_28 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) lowerCAmelCase__ = field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) lowerCAmelCase__ = field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) lowerCAmelCase__ = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase__ = field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase__ = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) lowerCAmelCase__ = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = 'train' lowerCAmelCase__ = 'dev' class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 def __init__( self , lowercase , lowercase , lowercase = None , lowercase = Split.train , lowercase = False , lowercase = None , lowercase = "pt" , ) -> List[str]: lowerCamelCase_ = args lowerCamelCase_ = is_language_sensitive lowerCamelCase_ = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(lowercase , lowercase ): try: lowerCamelCase_ = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) lowerCamelCase_ = mode # Load data features from cache or dataset file lowerCamelCase_ = "v2" if args.version_2_with_negative else "v1" lowerCamelCase_ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase_ = cached_features_file + ".lock" with FileLock(lowercase ): if os.path.exists(lowercase ) and not args.overwrite_cache: lowerCamelCase_ = time.time() lowerCamelCase_ = torch.load(lowercase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. lowerCamelCase_ = self.old_features["features"] lowerCamelCase_ = self.old_features.get("dataset" , lowercase ) lowerCamelCase_ = self.old_features.get("examples" , lowercase ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' " future run" ) else: if mode == Split.dev: lowerCamelCase_ = self.processor.get_dev_examples(args.data_dir ) else: lowerCamelCase_ = self.processor.get_train_examples(args.data_dir ) lowerCamelCase_ , lowerCamelCase_ = squad_convert_examples_to_features( examples=self.examples , tokenizer=lowercase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=lowercase , ) lowerCamelCase_ = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples} , lowercase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ) -> Tuple: return len(self.features ) def __getitem__( self , lowercase ) -> Dict[str, torch.Tensor]: # Convert to Tensors and build dataset lowerCamelCase_ = self.features[i] lowerCamelCase_ = torch.tensor(feature.input_ids , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.attention_mask , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.token_type_ids , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.cls_index , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.p_mask , dtype=torch.float ) lowerCamelCase_ = torch.tensor(feature.is_impossible , dtype=torch.float ) lowerCamelCase_ = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: lowerCamelCase_ = torch.tensor(feature.start_position , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
19
0
"""simple docstring""" import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL lowercase__ = logging.get_logger(__name__) def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): def constraint_to_multiple_of(lowercase__ , lowercase__ , lowercase__=0 , lowercase__=None ): _lowerCamelCase : List[Any] = round(val / multiple ) * multiple if max_val is not None and x > max_val: _lowerCamelCase : Optional[int] = math.floor(val / multiple ) * multiple if x < min_val: _lowerCamelCase : List[str] = math.ceil(val / multiple ) * multiple return x _lowerCamelCase : Optional[int] = (output_size, output_size) if isinstance(lowercase__ , lowercase__ ) else output_size _lowerCamelCase, _lowerCamelCase : List[str] = get_image_size(lowercase__ ) _lowerCamelCase, _lowerCamelCase : Union[str, Any] = output_size # determine new height and width _lowerCamelCase : Dict = output_height / input_height _lowerCamelCase : Any = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _lowerCamelCase : Tuple = scale_width else: # fit height _lowerCamelCase : Any = scale_height _lowerCamelCase : Optional[int] = constraint_to_multiple_of(scale_height * input_height , multiple=lowercase__ ) _lowerCamelCase : Any = constraint_to_multiple_of(scale_width * input_width , multiple=lowercase__ ) return (new_height, new_width) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = ["""pixel_values"""] def __init__( self , lowercase = True , lowercase = None , lowercase = PILImageResampling.BILINEAR , lowercase = False , lowercase = 1 , lowercase = True , lowercase = 1 / 255 , lowercase = True , lowercase = None , lowercase = None , **lowercase , ): super().__init__(**lowercase ) _lowerCamelCase : Optional[int] = size if size is not None else {'height': 384, 'width': 384} _lowerCamelCase : Union[str, Any] = get_size_dict(lowercase ) _lowerCamelCase : Optional[Any] = do_resize _lowerCamelCase : List[Any] = size _lowerCamelCase : Tuple = keep_aspect_ratio _lowerCamelCase : List[Any] = ensure_multiple_of _lowerCamelCase : str = resample _lowerCamelCase : Optional[Any] = do_rescale _lowerCamelCase : Union[str, Any] = rescale_factor _lowerCamelCase : int = do_normalize _lowerCamelCase : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowerCamelCase : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def A_ ( self , lowercase , lowercase , lowercase = False , lowercase = 1 , lowercase = PILImageResampling.BICUBIC , lowercase = None , **lowercase , ): _lowerCamelCase : str = get_size_dict(lowercase ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) _lowerCamelCase : Optional[Any] = get_resize_output_image_size( lowercase , output_size=(size['height'], size['width']) , keep_aspect_ratio=lowercase , multiple=lowercase , ) return resize(lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase ) def A_ ( self , lowercase , lowercase , lowercase = None , **lowercase , ): return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def A_ ( self , lowercase , lowercase , lowercase , lowercase = None , **lowercase , ): return normalize(lowercase , mean=lowercase , std=lowercase , data_format=lowercase , **lowercase ) def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ): _lowerCamelCase : List[str] = do_resize if do_resize is not None else self.do_resize _lowerCamelCase : List[str] = size if size is not None else self.size _lowerCamelCase : Tuple = get_size_dict(lowercase ) _lowerCamelCase : Any = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _lowerCamelCase : int = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _lowerCamelCase : int = resample if resample is not None else self.resample _lowerCamelCase : int = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize _lowerCamelCase : Dict = image_mean if image_mean is not None else self.image_mean _lowerCamelCase : Tuple = image_std if image_std is not None else self.image_std _lowerCamelCase : List[Any] = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. _lowerCamelCase : Tuple = [to_numpy_array(lowercase ) for image in images] if do_resize: _lowerCamelCase : List[Any] = [self.resize(image=lowercase , size=lowercase , resample=lowercase ) for image in images] if do_rescale: _lowerCamelCase : List[Any] = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_normalize: _lowerCamelCase : List[str] = [self.normalize(image=lowercase , mean=lowercase , std=lowercase ) for image in images] _lowerCamelCase : Optional[Any] = [to_channel_dimension_format(lowercase , lowercase ) for image in images] _lowerCamelCase : Dict = {'pixel_values': images} return BatchFeature(data=lowercase , tensor_type=lowercase ) def A_ ( self , lowercase , lowercase = None ): _lowerCamelCase : int = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase ) != len(lowercase ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(lowercase ): _lowerCamelCase : Union[str, Any] = target_sizes.numpy() _lowerCamelCase : Union[str, Any] = [] for idx in range(len(lowercase ) ): _lowerCamelCase : Tuple = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=lowercase ) _lowerCamelCase : Dict = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowercase ) else: _lowerCamelCase : Dict = logits.argmax(dim=1 ) _lowerCamelCase : int = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
96
from abc import ABC, abstractmethod from argparse import ArgumentParser class _SCREAMING_SNAKE_CASE ( snake_case_ ): @staticmethod @abstractmethod def SCREAMING_SNAKE_CASE_( lowercase ) -> int: raise NotImplementedError() @abstractmethod def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: raise NotImplementedError()
19
0
'''simple docstring''' import math import sys import cva import numpy as np def a ( __a , __a ) -> np.ndarray: '''simple docstring''' UpperCamelCase__ :Optional[int] = math.sqrt(__a ) UpperCamelCase__ :Tuple = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def a ( __a , __a , __a , __a ) -> np.ndarray: '''simple docstring''' UpperCamelCase__ :Optional[int] = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def a ( __a , __a ) -> np.ndarray: '''simple docstring''' UpperCamelCase__ :Optional[int] = np.zeros((kernel_size, kernel_size) ) for i in range(0 , __a ): for j in range(0 , __a ): UpperCamelCase__ :Any = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(__a , __a ) def a ( __a , __a , __a , __a , ) -> np.ndarray: '''simple docstring''' UpperCamelCase__ :Optional[Any] = np.zeros(img.shape ) UpperCamelCase__ :str = get_gauss_kernel(__a , __a ) UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): UpperCamelCase__ :str = get_slice(__a , __a , __a , __a ) UpperCamelCase__ :Any = img_s - img_s[kernel_size // 2, kernel_size // 2] UpperCamelCase__ :Optional[Any] = vec_gaussian(__a , __a ) UpperCamelCase__ :int = np.multiply(__a , __a ) UpperCamelCase__ :Optional[Any] = np.multiply(__a , __a ) UpperCamelCase__ :Dict = np.sum(__a ) / np.sum(__a ) UpperCamelCase__ :List[str] = val return imga def a ( __a ) -> tuple: '''simple docstring''' UpperCamelCase__ :List[str] = args[1] if args[1:] else '''../image_data/lena.jpg''' UpperCamelCase__ :Union[str, Any] = float(args[2] ) if args[2:] else 1.0 UpperCamelCase__ :Optional[int] = float(args[3] ) if args[3:] else 1.0 if args[4:]: UpperCamelCase__ :Tuple = int(args[4] ) UpperCamelCase__ :Optional[Any] = kernel_size + abs(kernel_size % 2 - 1 ) else: UpperCamelCase__ :Optional[Any] = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": __snake_case , __snake_case , __snake_case , __snake_case = parse_args(sys.argv) __snake_case = cva.imread(filename, 0) cva.imshow('''input image''', img) __snake_case = img / 255 __snake_case = out.astype('''float32''') __snake_case = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) __snake_case = out * 255 __snake_case = np.uinta(out) cva.imshow('''output image''', out) cva.waitKey(0) cva.destroyAllWindows()
97
from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging __A =logging.get_logger(__name__) # pylint: disable=invalid-name class _SCREAMING_SNAKE_CASE ( snake_case_ ): def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> List[Any]: super().__init__() if hasattr(scheduler.config , "steps_offset" ) and scheduler.config.steps_offset != 1: lowerCamelCase_ = ( f'The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`' f' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ' "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1" , "1.0.0" , lowercase , standard_warn=lowercase ) lowerCamelCase_ = dict(scheduler.config ) lowerCamelCase_ = 1 lowerCamelCase_ = FrozenDict(lowercase ) if hasattr(scheduler.config , "skip_prk_steps" ) and scheduler.config.skip_prk_steps is False: lowerCamelCase_ = ( f'The configuration file of this scheduler: {scheduler} has not set the configuration' " `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make" " sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to" " incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face" " Hub, it would be very nice if you could open a Pull request for the" " `scheduler/scheduler_config.json` file" ) deprecate("skip_prk_steps not set" , "1.0.0" , lowercase , standard_warn=lowercase ) lowerCamelCase_ = dict(scheduler.config ) lowerCamelCase_ = True lowerCamelCase_ = FrozenDict(lowercase ) if safety_checker is None: logger.warning( f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure' " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( segmentation_model=lowercase , segmentation_processor=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , unet=lowercase , scheduler=lowercase , safety_checker=lowercase , feature_extractor=lowercase , ) def SCREAMING_SNAKE_CASE_( self , lowercase = "auto" ) -> Tuple: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowerCamelCase_ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: self.enable_attention_slicing(lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> str: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) lowerCamelCase_ = torch.device("cuda" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(lowercase , lowercase ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: if self.device != torch.device("meta" ) or not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self , lowercase , lowercase , lowercase , lowercase = 512 , lowercase = 512 , lowercase = 50 , lowercase = 7.5 , lowercase = None , lowercase = 1 , lowercase = 0.0 , lowercase = None , lowercase = None , lowercase = "pil" , lowercase = True , lowercase = None , lowercase = 1 , **lowercase , ) -> int: lowerCamelCase_ = self.segmentation_processor( text=[text] , images=[image] , padding="max_length" , return_tensors="pt" ).to(self.device ) lowerCamelCase_ = self.segmentation_model(**lowercase ) lowerCamelCase_ = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() lowerCamelCase_ = self.numpy_to_pil(lowercase )[0].resize(image.size ) # Run inpainting pipeline with the generated mask lowerCamelCase_ = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=lowercase , image=lowercase , mask_image=lowercase , height=lowercase , width=lowercase , num_inference_steps=lowercase , guidance_scale=lowercase , negative_prompt=lowercase , num_images_per_prompt=lowercase , eta=lowercase , generator=lowercase , latents=lowercase , output_type=lowercase , return_dict=lowercase , callback=lowercase , callback_steps=lowercase , )
19
0
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ : Tuple = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowerCAmelCase__ : int = 250_004 lowerCAmelCase__ : Optional[int] = 250_020 @require_sentencepiece @require_tokenizers class snake_case ( __UpperCAmelCase , unittest.TestCase ): """simple docstring""" snake_case__ = MBartTokenizer snake_case__ = MBartTokenizerFast snake_case__ = True snake_case__ = True def __lowerCAmelCase ( self : str ): super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase__ = MBartTokenizer(lowerCamelCase__ ,keep_accents=lowerCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : List[str] ): UpperCAmelCase__ = MBartTokenizer(lowerCamelCase__ ,keep_accents=lowerCamelCase__ ) UpperCAmelCase__ = tokenizer.tokenize('This is a test' ) self.assertListEqual(lowerCamelCase__ ,['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) ,[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] ,) UpperCAmelCase__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowerCamelCase__ ,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] ,) UpperCAmelCase__ = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ ,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] ,) UpperCAmelCase__ = tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ ,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] ,) def __lowerCAmelCase ( self : int ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCAmelCase__ = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCAmelCase__ = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) UpperCAmelCase__ = self.tokenizer_class.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) UpperCAmelCase__ = tempfile.mkdtemp() UpperCAmelCase__ = tokenizer_r.save_pretrained(lowerCamelCase__ ) UpperCAmelCase__ = tokenizer_p.save_pretrained(lowerCamelCase__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) UpperCAmelCase__ = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(lowerCamelCase__ ,lowerCamelCase__ ) # Checks everything loads correctly in the same way UpperCAmelCase__ = tokenizer_r.from_pretrained(lowerCamelCase__ ) UpperCAmelCase__ = tokenizer_p.from_pretrained(lowerCamelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase__ ,lowerCamelCase__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCamelCase__ ) # Save tokenizer rust, legacy_format=True UpperCAmelCase__ = tempfile.mkdtemp() UpperCAmelCase__ = tokenizer_r.save_pretrained(lowerCamelCase__ ,legacy_format=lowerCamelCase__ ) UpperCAmelCase__ = tokenizer_p.save_pretrained(lowerCamelCase__ ) # Checks it save with the same files self.assertSequenceEqual(lowerCamelCase__ ,lowerCamelCase__ ) # Checks everything loads correctly in the same way UpperCAmelCase__ = tokenizer_r.from_pretrained(lowerCamelCase__ ) UpperCAmelCase__ = tokenizer_p.from_pretrained(lowerCamelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase__ ,lowerCamelCase__ ) ) shutil.rmtree(lowerCamelCase__ ) # Save tokenizer rust, legacy_format=False UpperCAmelCase__ = tempfile.mkdtemp() UpperCAmelCase__ = tokenizer_r.save_pretrained(lowerCamelCase__ ,legacy_format=lowerCamelCase__ ) UpperCAmelCase__ = tokenizer_p.save_pretrained(lowerCamelCase__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCAmelCase__ = tokenizer_r.from_pretrained(lowerCamelCase__ ) UpperCAmelCase__ = tokenizer_p.from_pretrained(lowerCamelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase__ ,lowerCamelCase__ ) ) shutil.rmtree(lowerCamelCase__ ) @require_torch @require_sentencepiece @require_tokenizers class snake_case ( unittest.TestCase ): """simple docstring""" snake_case__ = "facebook/mbart-large-en-ro" snake_case__ = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] snake_case__ = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] snake_case__ = [82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2, EN_CODE] @classmethod def __lowerCAmelCase ( cls : int ): UpperCAmelCase__ = MBartTokenizer.from_pretrained( cls.checkpoint_name ,src_lang='en_XX' ,tgt_lang='ro_RO' ) UpperCAmelCase__ = 1 return cls def __lowerCAmelCase ( self : int ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] ,250_001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] ,250_004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] ,250_020 ) def __lowerCAmelCase ( self : Optional[Any] ): UpperCAmelCase__ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens ,lowerCamelCase__ ) def __lowerCAmelCase ( self : str ): self.assertIn(lowerCamelCase__ ,self.tokenizer.all_special_ids ) UpperCAmelCase__ = [RO_CODE, 884, 9_019, 96, 9, 916, 86_792, 36, 18_743, 15_596, 5, 2] UpperCAmelCase__ = self.tokenizer.decode(lowerCamelCase__ ,skip_special_tokens=lowerCamelCase__ ) UpperCAmelCase__ = self.tokenizer.decode(generated_ids[1:] ,skip_special_tokens=lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ ,lowerCamelCase__ ) self.assertNotIn(self.tokenizer.eos_token ,lowerCamelCase__ ) def __lowerCAmelCase ( self : List[str] ): UpperCAmelCase__ = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] ,lowerCamelCase__ ) UpperCAmelCase__ = 10 UpperCAmelCase__ = self.tokenizer(lowerCamelCase__ ,max_length=lowerCamelCase__ ,truncation=lowerCamelCase__ ).input_ids[0] self.assertEqual(ids[-2] ,2 ) self.assertEqual(ids[-1] ,lowerCamelCase__ ) self.assertEqual(len(lowerCamelCase__ ) ,lowerCamelCase__ ) def __lowerCAmelCase ( self : Union[str, Any] ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) ,[250_026, 250_001] ) def __lowerCAmelCase ( self : str ): UpperCAmelCase__ = tempfile.mkdtemp() UpperCAmelCase__ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCamelCase__ ) UpperCAmelCase__ = MBartTokenizer.from_pretrained(lowerCamelCase__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids ,lowerCamelCase__ ) @require_torch def __lowerCAmelCase ( self : List[str] ): UpperCAmelCase__ = self.tokenizer(self.src_text ,text_target=self.tgt_text ,padding=lowerCamelCase__ ,return_tensors='pt' ) UpperCAmelCase__ = shift_tokens_right(batch['labels'] ,self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def __lowerCAmelCase ( self : List[str] ): UpperCAmelCase__ = self.tokenizer( self.src_text ,text_target=self.tgt_text ,padding=lowerCamelCase__ ,truncation=lowerCamelCase__ ,max_length=len(self.expected_src_tokens ) ,return_tensors='pt' ,) UpperCAmelCase__ = shift_tokens_right(batch['labels'] ,self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) self.assertEqual((2, 14) ,batch.input_ids.shape ) self.assertEqual((2, 14) ,batch.attention_mask.shape ) UpperCAmelCase__ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens ,lowerCamelCase__ ) self.assertEqual(2 ,batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens ,[] ) self.assertEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id, EN_CODE] ) def __lowerCAmelCase ( self : Tuple ): UpperCAmelCase__ = self.tokenizer(self.src_text ,padding=lowerCamelCase__ ,truncation=lowerCamelCase__ ,max_length=3 ,return_tensors='pt' ) UpperCAmelCase__ = self.tokenizer( text_target=self.tgt_text ,padding=lowerCamelCase__ ,truncation=lowerCamelCase__ ,max_length=10 ,return_tensors='pt' ) UpperCAmelCase__ = targets['input_ids'] UpperCAmelCase__ = shift_tokens_right(lowerCamelCase__ ,self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] ,3 ) self.assertEqual(batch.decoder_input_ids.shape[1] ,10 ) @require_torch def __lowerCAmelCase ( self : Tuple ): UpperCAmelCase__ = self.tokenizer._build_translation_inputs( 'A test' ,return_tensors='pt' ,src_lang='en_XX' ,tgt_lang='ar_AR' ) self.assertEqual( nested_simplify(lowerCamelCase__ ) ,{ # A, test, EOS, en_XX 'input_ids': [[62, 3_034, 2, 250_004]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 250_001, } ,)
98
from collections import deque def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = len(lowerCamelCase__ ) lowerCamelCase_ = deque() lowerCamelCase_ = [False for _ in range(lowerCamelCase__ )] lowerCamelCase_ = [-1 for _ in range(lowerCamelCase__ )] lowerCamelCase_ = index_of[:] def strong_connect(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = index # the number when this node is seen lowerCamelCase_ = index # lowest rank node reachable from here index += 1 stack.append(lowerCamelCase__ ) lowerCamelCase_ = True for w in g[v]: if index_of[w] == -1: lowerCamelCase_ = strong_connect(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: lowerCamelCase_ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: lowerCamelCase_ = [] lowerCamelCase_ = stack.pop() lowerCamelCase_ = False component.append(lowerCamelCase__ ) while w != v: lowerCamelCase_ = stack.pop() lowerCamelCase_ = False component.append(lowerCamelCase__ ) components.append(lowerCamelCase__ ) return index lowerCamelCase_ = [] for v in range(lowerCamelCase__ ): if index_of[v] == -1: strong_connect(lowerCamelCase__ , 0 , lowerCamelCase__ ) return components def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = [[] for _ in range(lowerCamelCase__ )] for u, v in edges: g[u].append(lowerCamelCase__ ) return g if __name__ == "__main__": # Test __A =7 __A =[0, 0, 1, 2, 3, 3, 4, 4, 6] __A =[1, 3, 2, 0, 1, 4, 5, 6, 5] __A =[(u, v) for u, v in zip(source, target)] __A =create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
19
0
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def A_ ( A__ ) -> tuple: return (data["data"], data["target"]) def A_ ( A__ , A__ , A__ ) -> np.ndarray: a__ : int = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(A__ , A__ ) # Predict target for test data a__ : Union[str, Any] = xgb.predict(A__ ) a__ : Optional[Any] = predictions.reshape(len(A__ ) , 1 ) return predictions def A_ ( ) -> None: a__ : List[str] = fetch_california_housing() a__ , a__ : int = data_handling(A__ ) a__ , a__ , a__ , a__ : Optional[int] = train_test_split( A__ , A__ , test_size=0.25 , random_state=1 ) a__ : Optional[Any] = xgboost(A__ , A__ , A__ ) # Error printing print(F'Mean Absolute Error : {mean_absolute_error(A__ , A__ )}' ) print(F'Mean Square Error : {mean_squared_error(A__ , A__ )}' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
99
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A ={'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys __A =_LazyModule(__name__, globals()['''__file__'''], _import_structure)
19
0
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING __magic_name__ = logging.get_logger(__name__) @add_end_docstrings(__a ) class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__) requires_backends(self , """vision""") self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING) def snake_case_ ( self , lowerCAmelCase__=None): __SCREAMING_SNAKE_CASE = {} if top_k is not None: __SCREAMING_SNAKE_CASE = top_k return {}, {}, postprocess_params def __call__( self , lowerCAmelCase__ , **lowerCAmelCase__): return super().__call__(lowerCAmelCase__ , **lowerCAmelCase__) def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = load_image(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self.image_processor(images=lowerCAmelCase__ , return_tensors=self.framework) return model_inputs def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = self.model(**lowerCAmelCase__) return model_outputs def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__=5): if top_k > self.model.config.num_labels: __SCREAMING_SNAKE_CASE = self.model.config.num_labels if self.framework == "pt": __SCREAMING_SNAKE_CASE = model_outputs.logits.softmax(-1)[0] __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = probs.topk(lowerCAmelCase__) elif self.framework == "tf": __SCREAMING_SNAKE_CASE = stable_softmax(model_outputs.logits , axis=-1)[0] __SCREAMING_SNAKE_CASE = tf.math.top_k(lowerCAmelCase__ , k=lowerCAmelCase__) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f"Unsupported framework: {self.framework}") __SCREAMING_SNAKE_CASE = scores.tolist() __SCREAMING_SNAKE_CASE = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowerCAmelCase__ , lowerCAmelCase__)]
100
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A ={'''configuration_wavlm''': ['''WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WavLMConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WavLMForAudioFrameClassification''', '''WavLMForCTC''', '''WavLMForSequenceClassification''', '''WavLMForXVector''', '''WavLMModel''', '''WavLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys __A =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
0
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowercase__ :List[str] = logging.get_logger(__name__) class lowercase ( SCREAMING_SNAKE_CASE__ ): lowercase_ : Optional[Any] =['''pixel_values'''] def __init__( self ,A__ = True ,A__ = 3_2 ,A__=PILImageResampling.BILINEAR ,A__ = True ,**A__ ,): lowercase = do_resize lowercase = do_rescale lowercase = size_divisor lowercase = resample super().__init__(**A__) def A__ ( self ,A__ ,A__ ,A__ ,A__ = None ,**A__): lowercase , lowercase = get_image_size(A__) # Rounds the height and width down to the closest multiple of size_divisor lowercase = height // size_divisor * size_divisor lowercase = width // size_divisor * size_divisor lowercase = resize(A__ ,(new_h, new_w) ,resample=A__ ,data_format=A__ ,**A__) return image def A__ ( self ,A__ ,A__ ,A__ = None ,**A__): return rescale(image=A__ ,scale=A__ ,data_format=A__ ,**A__) def A__ ( self ,A__ ,A__ = None ,A__ = None ,A__=None ,A__ = None ,A__ = None ,A__ = ChannelDimension.FIRST ,**A__ ,): lowercase = do_resize if do_resize is not None else self.do_resize lowercase = do_rescale if do_rescale is not None else self.do_rescale lowercase = size_divisor if size_divisor is not None else self.size_divisor lowercase = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''') lowercase = make_list_of_images(A__) if not valid_images(A__): raise ValueError('''Invalid image(s)''') # All transformations expect numpy arrays. lowercase = [to_numpy_array(A__) for img in images] if do_resize: lowercase = [self.resize(A__ ,size_divisor=A__ ,resample=A__) for image in images] if do_rescale: lowercase = [self.rescale(A__ ,scale=1 / 2_5_5) for image in images] lowercase = [to_channel_dimension_format(A__ ,A__) for image in images] lowercase = {'''pixel_values''': images} return BatchFeature(data=A__ ,tensor_type=A__)
101
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __A ='''2.13.1''' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('''3.7'''): raise ImportWarning( '''To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.''' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( '''To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n''' '''If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.''' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __A =concatenate_datasets __A =DownloadConfig __A =DownloadManager __A =DownloadMode __A =DownloadConfig __A =DownloadMode __A =DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
19
0
"""simple docstring""" import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def lowercase ( _snake_case : Union[str, Any] , _snake_case : Dict , _snake_case : Union[str, Any] ) ->Optional[Any]: """simple docstring""" __snake_case : Optional[Any] = AlbertConfig.from_json_file(_snake_case ) print(f"""Building PyTorch model from configuration: {config}""" ) __snake_case : Tuple = AlbertForPreTraining(_snake_case ) # Load weights from tf checkpoint load_tf_weights_in_albert(_snake_case , _snake_case , _snake_case ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , _snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--albert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained ALBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
102
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A ={ '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __A =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
0
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def UpperCamelCase( __UpperCamelCase : Optional[int] ): lowerCAmelCase_ : Union[str, Any] = int(__UpperCamelCase ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = t // 3600, (t // 60) % 60, t % 60 return f"""{h}:{m:02d}:{s:02d}""" if h != 0 else f"""{m:02d}:{s:02d}""" def UpperCamelCase( __UpperCamelCase : Dict ,__UpperCamelCase : Tuple ,__UpperCamelCase : List[str] ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : int=300 ): # docstyle-ignore return f""" <div> {prefix} <progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress> {label} </div> """ def UpperCamelCase( __UpperCamelCase : int ): lowerCAmelCase_ : str = '''<table border="1" class="dataframe">\n''' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f""" <th>{i}</th>\n""" html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: lowerCAmelCase_ : Optional[Any] = f"""{elt:.6f}""" if isinstance(__UpperCamelCase ,__UpperCamelCase ) else str(__UpperCamelCase ) html_code += f""" <td>{elt}</td>\n""" html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class __snake_case : _a = 5 _a = 0.2 def __init__( self : Optional[Any] , A_ : int , A_ : Optional[str] = None , A_ : bool = True , A_ : Optional["NotebookTrainingTracker"] = None , A_ : int = 3_0_0 , ): lowerCAmelCase_ : Union[str, Any] = total lowerCAmelCase_ : int = '''''' if prefix is None else prefix lowerCAmelCase_ : Optional[Any] = leave lowerCAmelCase_ : Union[str, Any] = parent lowerCAmelCase_ : Any = width lowerCAmelCase_ : Optional[Any] = None lowerCAmelCase_ : Tuple = None lowerCAmelCase_ : str = None def UpperCAmelCase__ ( self : Union[str, Any] , A_ : int , A_ : bool = False , A_ : str = None): lowerCAmelCase_ : Dict = value if comment is not None: lowerCAmelCase_ : List[str] = comment if self.last_value is None: lowerCAmelCase_ : List[str] = time.time() lowerCAmelCase_ : Dict = value lowerCAmelCase_ : Union[str, Any] = None lowerCAmelCase_ : str = self.warmup lowerCAmelCase_ : List[Any] = 1 self.update_bar(A_) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total): if self.first_calls > 0: self.first_calls -= 1 lowerCAmelCase_ : Tuple = time.time() lowerCAmelCase_ : List[str] = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: lowerCAmelCase_ : int = self.elapsed_time / (value - self.start_value) else: lowerCAmelCase_ : str = None if value >= self.total: lowerCAmelCase_ : int = self.total lowerCAmelCase_ : List[str] = None if not self.leave: self.close() elif self.average_time_per_item is not None: lowerCAmelCase_ : List[str] = self.average_time_per_item * (self.total - value) self.update_bar(A_) lowerCAmelCase_ : Tuple = value lowerCAmelCase_ : Optional[int] = current_time if self.average_time_per_item is None: lowerCAmelCase_ : List[Any] = 1 else: lowerCAmelCase_ : Any = max(int(self.update_every / self.average_time_per_item) , 1) def UpperCAmelCase__ ( self : int , A_ : Optional[int] , A_ : List[str]=None): lowerCAmelCase_ : str = ''' ''' * (len(str(self.total)) - len(str(A_))) + str(A_) if self.elapsed_time is None: lowerCAmelCase_ : str = F"""[{spaced_value}/{self.total} : < :""" elif self.predicted_remaining is None: lowerCAmelCase_ : Tuple = F"""[{spaced_value}/{self.total} {format_time(self.elapsed_time)}""" else: lowerCAmelCase_ : Any = ( F"""[{spaced_value}/{self.total} {format_time(self.elapsed_time)} <""" F""" {format_time(self.predicted_remaining)}""" ) self.label += F""", {1/self.average_time_per_item:.2f} it/s""" self.label += "]" if self.comment is None or len(self.comment) == 0 else F""", {self.comment}]""" self.display() def UpperCAmelCase__ ( self : Tuple): lowerCAmelCase_ : Union[str, Any] = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: lowerCAmelCase_ : int = disp.display(disp.HTML(self.html_code) , display_id=A_) else: self.output.update(disp.HTML(self.html_code)) def UpperCAmelCase__ ( self : Optional[int]): if self.parent is None and self.output is not None: self.output.update(disp.HTML('''''')) class __snake_case ( UpperCamelCase_ ): def __init__( self : Union[str, Any] , A_ : Optional[int] , A_ : Dict=None): super().__init__(A_) lowerCAmelCase_ : int = None if column_names is None else [column_names] lowerCAmelCase_ : Optional[int] = None def UpperCAmelCase__ ( self : List[str]): lowerCAmelCase_ : Optional[Any] = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: lowerCAmelCase_ : Optional[Any] = disp.display(disp.HTML(self.html_code) , display_id=A_) else: self.output.update(disp.HTML(self.html_code)) def UpperCAmelCase__ ( self : List[str] , A_ : Optional[int]): if self.inner_table is None: lowerCAmelCase_ : List[Any] = [list(values.keys()), list(values.values())] else: lowerCAmelCase_ : List[Any] = self.inner_table[0] if len(self.inner_table) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(A_) lowerCAmelCase_ : str = columns self.inner_table.append([values[c] for c in columns]) def UpperCAmelCase__ ( self : Optional[Any] , A_ : Optional[Any] , A_ : Any=None , A_ : Optional[int]=3_0_0): lowerCAmelCase_ : Any = NotebookProgressBar(A_ , prefix=A_ , parent=self , width=A_) return self.child_bar def UpperCAmelCase__ ( self : List[str]): lowerCAmelCase_ : Dict = None self.display() class __snake_case ( UpperCamelCase_ ): def __init__( self : Dict): lowerCAmelCase_ : str = None lowerCAmelCase_ : List[str] = None lowerCAmelCase_ : Tuple = False def UpperCAmelCase__ ( self : int , A_ : Optional[Any] , A_ : List[Any] , A_ : Union[str, Any] , **A_ : str): lowerCAmelCase_ : str = '''Epoch''' if args.evaluation_strategy == IntervalStrategy.EPOCH else '''Step''' lowerCAmelCase_ : Optional[int] = 0 lowerCAmelCase_ : Any = 0 lowerCAmelCase_ : List[str] = [self.first_column] + ['''Training Loss'''] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('''Validation Loss''') lowerCAmelCase_ : str = NotebookTrainingTracker(state.max_steps , A_) def UpperCAmelCase__ ( self : Optional[int] , A_ : Optional[Any] , A_ : Optional[int] , A_ : List[str] , **A_ : List[Any]): lowerCAmelCase_ : int = int(state.epoch) if int(state.epoch) == state.epoch else F"""{state.epoch:.2f}""" self.training_tracker.update( state.global_step + 1 , comment=F"""Epoch {epoch}/{state.num_train_epochs}""" , force_update=self._force_next_update , ) lowerCAmelCase_ : Dict = False def UpperCAmelCase__ ( self : Optional[Any] , A_ : List[str] , A_ : Optional[Any] , A_ : int , A_ : List[str]=None , **A_ : List[str]): if not has_length(A_): return if self.prediction_bar is None: if self.training_tracker is not None: lowerCAmelCase_ : int = self.training_tracker.add_child(len(A_)) else: lowerCAmelCase_ : List[str] = NotebookProgressBar(len(A_)) self.prediction_bar.update(1) else: self.prediction_bar.update(self.prediction_bar.value + 1) def UpperCAmelCase__ ( self : List[Any] , A_ : Optional[Any] , A_ : List[str] , A_ : Dict , **A_ : Tuple): if self.prediction_bar is not None: self.prediction_bar.close() lowerCAmelCase_ : List[Any] = None def UpperCAmelCase__ ( self : List[Any] , A_ : Optional[Any] , A_ : str , A_ : Any , A_ : Tuple=None , **A_ : str): # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: lowerCAmelCase_ : List[str] = {'''Training Loss''': logs['''loss''']} # First column is necessarily Step sine we're not in epoch eval strategy lowerCAmelCase_ : int = state.global_step self.training_tracker.write_line(A_) def UpperCAmelCase__ ( self : int , A_ : Union[str, Any] , A_ : Tuple , A_ : Tuple , A_ : Optional[Any]=None , **A_ : Optional[Any]): if self.training_tracker is not None: lowerCAmelCase_ : Any = {'''Training Loss''': '''No log''', '''Validation Loss''': '''No log'''} for log in reversed(state.log_history): if "loss" in log: lowerCAmelCase_ : Dict = log['''loss'''] break if self.first_column == "Epoch": lowerCAmelCase_ : str = int(state.epoch) else: lowerCAmelCase_ : Optional[int] = state.global_step lowerCAmelCase_ : Optional[Any] = '''eval''' for k in metrics: if k.endswith('''_loss'''): lowerCAmelCase_ : str = re.sub(r'''\_loss$''' , '''''' , A_) lowerCAmelCase_ : Any = metrics.pop('''total_flos''' , A_) lowerCAmelCase_ : List[Any] = metrics.pop('''epoch''' , A_) lowerCAmelCase_ : Optional[Any] = metrics.pop(F"""{metric_key_prefix}_runtime""" , A_) lowerCAmelCase_ : List[Any] = metrics.pop(F"""{metric_key_prefix}_samples_per_second""" , A_) lowerCAmelCase_ : List[Any] = metrics.pop(F"""{metric_key_prefix}_steps_per_second""" , A_) lowerCAmelCase_ : Tuple = metrics.pop(F"""{metric_key_prefix}_jit_compilation_time""" , A_) for k, v in metrics.items(): if k == F"""{metric_key_prefix}_loss""": lowerCAmelCase_ : Optional[int] = v else: lowerCAmelCase_ : str = k.split('''_''') lowerCAmelCase_ : List[str] = ''' '''.join([part.capitalize() for part in splits[1:]]) lowerCAmelCase_ : List[Any] = v self.training_tracker.write_line(A_) self.training_tracker.remove_child() lowerCAmelCase_ : Any = None # Evaluation takes a long time so we should force the next update. lowerCAmelCase_ : str = True def UpperCAmelCase__ ( self : Union[str, Any] , A_ : Optional[int] , A_ : Union[str, Any] , A_ : Any , **A_ : int): self.training_tracker.update( state.global_step , comment=F"""Epoch {int(state.epoch)}/{state.num_train_epochs}""" , force_update=A_) lowerCAmelCase_ : str = None
103
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class _SCREAMING_SNAKE_CASE : def __init__( self , lowercase , ) -> Optional[int]: lowerCamelCase_ = parent lowerCamelCase_ = 13 lowerCamelCase_ = 7 lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = 99 lowerCamelCase_ = 32 lowerCamelCase_ = 2 lowerCamelCase_ = 4 lowerCamelCase_ = 37 lowerCamelCase_ = "gelu" lowerCamelCase_ = 0.1 lowerCamelCase_ = 0.1 lowerCamelCase_ = 512 lowerCamelCase_ = 16 lowerCamelCase_ = 2 lowerCamelCase_ = 0.0_2 lowerCamelCase_ = 3 lowerCamelCase_ = 4 lowerCamelCase_ = None def SCREAMING_SNAKE_CASE_( self ) -> Any: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_input_mask: lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_( self ) -> List[str]: ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = self.prepare_config_and_inputs() lowerCamelCase_ = True lowerCamelCase_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Any: lowerCamelCase_ = TFEsmModel(config=lowercase ) lowerCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} lowerCamelCase_ = model(lowercase ) lowerCamelCase_ = [input_ids, input_mask] lowerCamelCase_ = model(lowercase ) lowerCamelCase_ = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> Tuple: lowerCamelCase_ = True lowerCamelCase_ = TFEsmModel(config=lowercase ) lowerCamelCase_ = { "input_ids": input_ids, "attention_mask": input_mask, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": encoder_attention_mask, } lowerCamelCase_ = model(lowercase ) lowerCamelCase_ = [input_ids, input_mask] lowerCamelCase_ = model(lowercase , encoder_hidden_states=lowercase ) # Also check the case where encoder outputs are not passed lowerCamelCase_ = model(lowercase , attention_mask=lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: lowerCamelCase_ = TFEsmForMaskedLM(config=lowercase ) lowerCamelCase_ = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> int: lowerCamelCase_ = self.num_labels lowerCamelCase_ = TFEsmForTokenClassification(config=lowercase ) lowerCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} lowerCamelCase_ = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , unittest.TestCase ): lowerCAmelCase__ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) lowerCAmelCase__ = ( { 'feature-extraction': TFEsmModel, 'fill-mask': TFEsmForMaskedLM, 'text-classification': TFEsmForSequenceClassification, 'token-classification': TFEsmForTokenClassification, 'zero-shot': TFEsmForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = TFEsmModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=lowercase , hidden_size=37 ) def SCREAMING_SNAKE_CASE_( self ) -> Any: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Tuple: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase ) @slow def SCREAMING_SNAKE_CASE_( self ) -> Dict: for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFEsmModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @unittest.skip("Protein models do not support embedding resizing." ) def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: pass @unittest.skip("Protein models do not support embedding resizing." ) def SCREAMING_SNAKE_CASE_( self ) -> Any: pass def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(lowercase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer lowerCamelCase_ = model.get_bias() assert isinstance(lowercase , lowercase ) for k, v in name.items(): assert isinstance(lowercase , tf.Variable ) else: lowerCamelCase_ = model.get_output_embeddings() assert x is None lowerCamelCase_ = model.get_bias() assert name is None @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ = TFEsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D" ) lowerCamelCase_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase_ = model(lowercase )[0] lowerCamelCase_ = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , lowercase ) # compare the actual values for a slice. lowerCamelCase_ = tf.constant( [ [ [8.9_2_1_5_1_8, -1_0.5_8_9_8_1_4, -6.4_6_7_1_3_0_7], [-6.3_9_6_7_1_5_6, -1_3.9_1_1_3_7_7, -1.1_2_1_1_9_1_5], [-7.7_8_1_2_4_7, -1_3.9_5_1_5_5_7, -3.7_4_0_5_9_2], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) ) @slow def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ = TFEsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D" ) lowerCamelCase_ = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCamelCase_ = model(lowercase )[0] # compare the actual values for a slice. lowerCamelCase_ = tf.constant( [ [ [0.1_4_4_4_3_0_9_2, 0.5_4_1_2_5_3_2_7, 0.3_2_4_7_7_3_9], [0.3_0_3_4_0_4_8_4, 0.0_0_5_2_6_6_7_6, 0.3_1_0_7_7_7_2_2], [0.3_2_2_7_8_0_4_3, -0.2_4_9_8_7_0_9_6, 0.3_4_1_4_6_2_8], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
19
0
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu lowerCAmelCase__ = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json''' with io.open(filename, '''r''', encoding='''utf-8''') as f: lowerCAmelCase__ = json.load(f) @require_torch class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Tuple ): return FSMTTokenizer.from_pretrained(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Optional[int] ): __lowercase = FSMTForConditionalGeneration.from_pretrained(lowercase__ ).to(lowercase__ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['''en-ru''', 2_6.0], ['''ru-en''', 2_2.0], ['''en-de''', 2_2.0], ['''de-en''', 2_9.0], ] ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : str ,lowercase__ : List[str] ): # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality __lowercase = F"facebook/wmt19-{pair}" __lowercase = self.get_tokenizer(lowercase__ ) __lowercase = self.get_model(lowercase__ ) __lowercase = bleu_data[pair]['''src'''] __lowercase = bleu_data[pair]['''tgt'''] __lowercase = tokenizer(lowercase__ ,return_tensors='''pt''' ,truncation=lowercase__ ,padding='''longest''' ).to(lowercase__ ) __lowercase = model.generate( input_ids=batch.input_ids ,num_beams=8 ,) __lowercase = tokenizer.batch_decode( lowercase__ ,skip_special_tokens=lowercase__ ,clean_up_tokenization_spaces=lowercase__ ) __lowercase = calculate_bleu(lowercase__ ,lowercase__ ) print(lowercase__ ) self.assertGreaterEqual(scores['''bleu'''] ,lowercase__ )
104
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging __A =logging.get_logger(__name__) def lowerCamelCase_ ( ): # Get the sagemaker specific mp parameters from smp_options variable. lowerCamelCase_ = os.getenv("SM_HP_MP_PARAMETERS" , "{}" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. lowerCamelCase_ = json.loads(lowerCamelCase__ ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. lowerCamelCase_ = os.getenv("SM_FRAMEWORK_PARAMS" , "{}" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". lowerCamelCase_ = json.loads(lowerCamelCase__ ) if not mpi_options.get("sagemaker_mpi_enabled" , lowerCamelCase__ ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("smdistributed" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = field( default='' , metadata={'help': 'Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'} , ) def SCREAMING_SNAKE_CASE_( self ) -> Tuple: super().__post_init__() warnings.warn( "`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use " "`TrainingArguments` instead." , lowercase , ) @cached_property def SCREAMING_SNAKE_CASE_( self ) -> "torch.device": logger.info("PyTorch: setting up devices" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( "torch.distributed process group is initialized, but local_rank == -1. " "In order to use Torch DDP, launch your script with `python -m torch.distributed.launch" ) if self.no_cuda: lowerCamelCase_ = torch.device("cpu" ) lowerCamelCase_ = 0 elif is_sagemaker_model_parallel_available(): lowerCamelCase_ = smp.local_rank() lowerCamelCase_ = torch.device("cuda" , lowercase ) lowerCamelCase_ = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="smddp" , timeout=self.ddp_timeout_delta ) lowerCamelCase_ = int(os.getenv("SMDATAPARALLEL_LOCAL_RANK" ) ) lowerCamelCase_ = torch.device("cuda" , self.local_rank ) lowerCamelCase_ = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 lowerCamelCase_ = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. lowerCamelCase_ = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="nccl" , timeout=self.ddp_timeout_delta ) lowerCamelCase_ = torch.device("cuda" , self.local_rank ) lowerCamelCase_ = 1 if device.type == "cuda": torch.cuda.set_device(lowercase ) return device @property def SCREAMING_SNAKE_CASE_( self ) -> Tuple: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def SCREAMING_SNAKE_CASE_( self ) -> List[str]: return not is_sagemaker_model_parallel_available() @property def SCREAMING_SNAKE_CASE_( self ) -> Dict: return False
19
0
"""simple docstring""" from __future__ import annotations from typing import Any def _SCREAMING_SNAKE_CASE ( _lowercase : list ) ->int: '''simple docstring''' if not postfix_notation: return 0 a : List[str] = {"+", "-", "*", "/"} a : list[Any] = [] for token in postfix_notation: if token in operations: a, a : int = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(_lowercase ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
105
import math def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ = 0 , lowerCamelCase__ = 0 ): lowerCamelCase_ = end or len(lowerCamelCase__ ) for i in range(lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = i lowerCamelCase_ = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: lowerCamelCase_ = array[temp_index - 1] temp_index -= 1 lowerCamelCase_ = temp_index_value return array def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): # Max Heap lowerCamelCase_ = index lowerCamelCase_ = 2 * index + 1 # Left Node lowerCamelCase_ = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: lowerCamelCase_ = left_index if right_index < heap_size and array[largest] < array[right_index]: lowerCamelCase_ = right_index if largest != index: lowerCamelCase_ , lowerCamelCase_ = array[largest], array[index] heapify(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = len(lowerCamelCase__ ) for i in range(n // 2 , -1 , -1 ): heapify(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) for i in range(n - 1 , 0 , -1 ): lowerCamelCase_ , lowerCamelCase_ = array[0], array[i] heapify(lowerCamelCase__ , 0 , lowerCamelCase__ ) return array def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = low lowerCamelCase_ = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i lowerCamelCase_ , lowerCamelCase_ = array[j], array[i] i += 1 def lowerCamelCase_ ( lowerCamelCase__ ): if len(lowerCamelCase__ ) == 0: return array lowerCamelCase_ = 2 * math.ceil(math.loga(len(lowerCamelCase__ ) ) ) lowerCamelCase_ = 1_6 return intro_sort(lowerCamelCase__ , 0 , len(lowerCamelCase__ ) , lowerCamelCase__ , lowerCamelCase__ ) def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): while end - start > size_threshold: if max_depth == 0: return heap_sort(lowerCamelCase__ ) max_depth -= 1 lowerCamelCase_ = median_of_a(lowerCamelCase__ , lowerCamelCase__ , start + ((end - start) // 2) + 1 , end - 1 ) lowerCamelCase_ = partition(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) intro_sort(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = p return insertion_sort(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() __A =input('''Enter numbers separated by a comma : ''').strip() __A =[float(item) for item in user_input.split(''',''')] print(sort(unsorted))
19
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class SCREAMING_SNAKE_CASE : """simple docstring""" lowercase__ = LEDConfig lowercase__ = {} lowercase__ = "gelu" def __init__( self : Any ,lowercase_ : Optional[Any] ,lowercase_ : Optional[int]=1_3 ,lowercase_ : List[str]=7 ,lowercase_ : Any=True ,lowercase_ : Tuple=False ,lowercase_ : Optional[int]=9_9 ,lowercase_ : str=3_2 ,lowercase_ : Dict=2 ,lowercase_ : Dict=4 ,lowercase_ : int=3_7 ,lowercase_ : Optional[int]=0.1 ,lowercase_ : Tuple=0.1 ,lowercase_ : str=2_0 ,lowercase_ : Tuple=2 ,lowercase_ : Dict=1 ,lowercase_ : List[Any]=0 ,lowercase_ : List[str]=4 ,): lowerCAmelCase__ : Tuple = parent lowerCAmelCase__ : int = batch_size lowerCAmelCase__ : str = seq_length lowerCAmelCase__ : List[str] = is_training lowerCAmelCase__ : List[str] = use_labels lowerCAmelCase__ : str = vocab_size lowerCAmelCase__ : Tuple = hidden_size lowerCAmelCase__ : Dict = num_hidden_layers lowerCAmelCase__ : List[str] = num_attention_heads lowerCAmelCase__ : Any = intermediate_size lowerCAmelCase__ : Any = hidden_dropout_prob lowerCAmelCase__ : List[str] = attention_probs_dropout_prob lowerCAmelCase__ : Optional[Any] = max_position_embeddings lowerCAmelCase__ : List[Any] = eos_token_id lowerCAmelCase__ : Optional[int] = pad_token_id lowerCAmelCase__ : Any = bos_token_id lowerCAmelCase__ : Any = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after lowerCAmelCase__ : List[str] = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests lowerCAmelCase__ : Optional[Any] = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def __lowerCAmelCase ( self : int ): lowerCAmelCase__ : str = ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size ) lowerCAmelCase__ : Any = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) ,1 ) lowerCAmelCase__ : Dict = tf.concat([input_ids, eos_tensor] ,axis=1 ) lowerCAmelCase__ : int = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowerCAmelCase__ : int = self.config_cls( vocab_size=self.vocab_size ,d_model=self.hidden_size ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_ids=[2] ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.pad_token_id ,attention_window=self.attention_window ,**self.config_updates ,) lowerCAmelCase__ : List[Any] = prepare_led_inputs_dict(lowercase_ ,lowercase_ ,lowercase_ ) lowerCAmelCase__ : Any = tf.concat( [tf.zeros_like(lowercase_ )[:, :-1], tf.ones_like(lowercase_ )[:, -1:]] ,axis=-1 ,) lowerCAmelCase__ : Optional[int] = global_attention_mask return config, inputs_dict def __lowerCAmelCase ( self : Any ,lowercase_ : str ,lowercase_ : Any ): lowerCAmelCase__ : Optional[int] = TFLEDModel(config=lowercase_ ).get_decoder() lowerCAmelCase__ : Tuple = inputs_dict['''input_ids'''] lowerCAmelCase__ : Optional[int] = input_ids[:1, :] lowerCAmelCase__ : Optional[Any] = inputs_dict['''attention_mask'''][:1, :] lowerCAmelCase__ : str = 1 # first forward pass lowerCAmelCase__ : List[Any] = model(lowercase_ ,attention_mask=lowercase_ ,use_cache=lowercase_ ) lowerCAmelCase__ ,lowerCAmelCase__ : Tuple = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCAmelCase__ : int = ids_tensor((self.batch_size, 3) ,config.vocab_size ) lowerCAmelCase__ : Union[str, Any] = tf.cast(ids_tensor((self.batch_size, 3) ,2 ) ,tf.inta ) # append to next input_ids and lowerCAmelCase__ : List[str] = tf.concat([input_ids, next_tokens] ,axis=-1 ) lowerCAmelCase__ : Optional[int] = tf.concat([attention_mask, next_attn_mask] ,axis=-1 ) lowerCAmelCase__ : int = model(lowercase_ ,attention_mask=lowercase_ )[0] lowerCAmelCase__ : int = model(lowercase_ ,attention_mask=lowercase_ ,past_key_values=lowercase_ )[0] self.parent.assertEqual(next_tokens.shape[1] ,output_from_past.shape[1] ) # select random slice lowerCAmelCase__ : Union[str, Any] = int(ids_tensor((1,) ,output_from_past.shape[-1] ) ) lowerCAmelCase__ : List[Any] = output_from_no_past[:, -3:, random_slice_idx] lowerCAmelCase__ : Any = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase_ ,lowercase_ ,rtol=1E-3 ) def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_=None , A_=None , A_=None , A_=None , ): if attention_mask is None: lowerCAmelCase__ : Optional[Any] = tf.cast(tf.math.not_equal(A_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowerCAmelCase__ : Optional[int] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowerCAmelCase__ : int = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCAmelCase__ : Optional[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class SCREAMING_SNAKE_CASE ( a_ , a_ , unittest.TestCase ): """simple docstring""" lowercase__ = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () lowercase__ = (TFLEDForConditionalGeneration,) if is_tf_available() else () lowercase__ = ( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) lowercase__ = True lowercase__ = False lowercase__ = False lowercase__ = False def __lowerCAmelCase ( self : List[str] ): lowerCAmelCase__ : int = TFLEDModelTester(self ) lowerCAmelCase__ : Union[str, Any] = ConfigTester(self ,config_class=lowercase_ ) def __lowerCAmelCase ( self : Dict ): self.config_tester.run_common_tests() def __lowerCAmelCase ( self : str ): lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase_ ) def __lowerCAmelCase ( self : List[Any] ): lowerCAmelCase__ ,lowerCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Any = tf.zeros_like(inputs_dict['''attention_mask'''] ) lowerCAmelCase__ : str = 2 lowerCAmelCase__ : Dict = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices ,1 ,inputs_dict['''global_attention_mask'''] ,) lowerCAmelCase__ : Union[str, Any] = True lowerCAmelCase__ : Dict = self.model_tester.seq_length lowerCAmelCase__ : List[Any] = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowercase_ : List[str] ): lowerCAmelCase__ : str = outputs.decoder_attentions self.assertEqual(len(lowercase_ ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_length, seq_length] ,) def check_encoder_attentions_output(lowercase_ : Optional[Any] ): lowerCAmelCase__ : Optional[Any] = [t.numpy() for t in outputs.encoder_attentions] lowerCAmelCase__ : str = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowercase_ ) ,self.model_tester.num_hidden_layers ) self.assertEqual(len(lowercase_ ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_length, seq_length] ,) self.assertListEqual( list(global_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] ,) for model_class in self.all_model_classes: lowerCAmelCase__ : Union[str, Any] = True lowerCAmelCase__ : Dict = False lowerCAmelCase__ : Optional[Any] = False lowerCAmelCase__ : Tuple = model_class(lowercase_ ) lowerCAmelCase__ : List[str] = model(self._prepare_for_class(lowercase_ ,lowercase_ ) ) lowerCAmelCase__ : Dict = len(lowercase_ ) self.assertEqual(config.output_hidden_states ,lowercase_ ) check_encoder_attentions_output(lowercase_ ) if self.is_encoder_decoder: lowerCAmelCase__ : Tuple = model_class(lowercase_ ) lowerCAmelCase__ : Any = model(self._prepare_for_class(lowercase_ ,lowercase_ ) ) self.assertEqual(config.output_hidden_states ,lowercase_ ) check_decoder_attentions_output(lowercase_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] lowerCAmelCase__ : List[Any] = True lowerCAmelCase__ : Optional[int] = model_class(lowercase_ ) lowerCAmelCase__ : List[Any] = model(self._prepare_for_class(lowercase_ ,lowercase_ ) ) self.assertEqual(config.output_hidden_states ,lowercase_ ) check_encoder_attentions_output(lowercase_ ) # Check attention is always last and order is fine lowerCAmelCase__ : Any = True lowerCAmelCase__ : Union[str, Any] = True lowerCAmelCase__ : str = model_class(lowercase_ ) lowerCAmelCase__ : str = model(self._prepare_for_class(lowercase_ ,lowercase_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) ,len(lowercase_ ) ) self.assertEqual(model.config.output_hidden_states ,lowercase_ ) check_encoder_attentions_output(lowercase_ ) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' ) def __lowerCAmelCase ( self : Dict ): pass def __lowerCAmelCase ( self : Dict ): # TODO: Head-masking not yet implement pass def __SCREAMING_SNAKE_CASE ( A_ ): return tf.constant(A_ , dtype=tf.intaa ) __UpperCamelCase : Any = 1e-4 @slow @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : Dict ): lowerCAmelCase__ : Tuple = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led # change to intended input here lowerCAmelCase__ : Tuple = _long_tensor([5_1_2 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) lowerCAmelCase__ : Any = _long_tensor([1_2_8 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) lowerCAmelCase__ : str = prepare_led_inputs_dict(model.config ,lowercase_ ,lowercase_ ) lowerCAmelCase__ : str = model(**lowercase_ )[0] lowerCAmelCase__ : str = (1, 1_0_2_4, 7_6_8) self.assertEqual(output.shape ,lowercase_ ) # change to expected output here lowerCAmelCase__ : List[str] = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] ,) tf.debugging.assert_near(output[:, :3, :3] ,lowercase_ ,atol=1E-3 ) def __lowerCAmelCase ( self : int ): lowerCAmelCase__ : Any = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ) # change to intended input here lowerCAmelCase__ : List[str] = _long_tensor([5_1_2 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) lowerCAmelCase__ : Dict = _long_tensor([1_2_8 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) lowerCAmelCase__ : Any = prepare_led_inputs_dict(model.config ,lowercase_ ,lowercase_ ) lowerCAmelCase__ : List[str] = model(**lowercase_ )[0] lowerCAmelCase__ : Any = (1, 1_0_2_4, model.config.vocab_size) self.assertEqual(output.shape ,lowercase_ ) # change to expected output here lowerCAmelCase__ : int = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] ,) tf.debugging.assert_near(output[:, :3, :3] ,lowercase_ ,atol=1E-3 ,rtol=1E-3 )
106
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _SCREAMING_SNAKE_CASE ( snake_case_ ): def __init__( self , *lowercase , lowercase=None , lowercase=None , **lowercase ) -> List[str]: super().__init__(*lowercase , **lowercase ) lowerCamelCase_ = eval_examples lowerCamelCase_ = post_process_function def SCREAMING_SNAKE_CASE_( self , lowercase = None , lowercase=None , lowercase = None , lowercase = "eval" , **lowercase , ) -> Dict[str, float]: lowerCamelCase_ = gen_kwargs.copy() lowerCamelCase_ = ( gen_kwargs["max_length"] if gen_kwargs.get("max_length" ) is not None else self.args.generation_max_length ) lowerCamelCase_ = ( gen_kwargs["num_beams"] if gen_kwargs.get("num_beams" ) is not None else self.args.generation_num_beams ) lowerCamelCase_ = gen_kwargs lowerCamelCase_ = self.eval_dataset if eval_dataset is None else eval_dataset lowerCamelCase_ = self.get_eval_dataloader(lowercase ) lowerCamelCase_ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowerCamelCase_ = self.compute_metrics lowerCamelCase_ = None lowerCamelCase_ = time.time() lowerCamelCase_ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowerCamelCase_ = eval_loop( lowercase , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase , metric_key_prefix=lowercase , ) finally: lowerCamelCase_ = compute_metrics lowerCamelCase_ = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( lowercase , lowercase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowerCamelCase_ = self.post_process_function(lowercase , lowercase , lowercase ) lowerCamelCase_ = self.compute_metrics(lowercase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowerCamelCase_ = metrics.pop(lowercase ) metrics.update(output.metrics ) else: lowerCamelCase_ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowercase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowerCamelCase_ = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowercase ) return metrics def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase=None , lowercase = "test" , **lowercase ) -> Union[str, Any]: lowerCamelCase_ = gen_kwargs.copy() lowerCamelCase_ = self.get_test_dataloader(lowercase ) # Temporarily disable metric computation, we will do it in the loop here. lowerCamelCase_ = self.compute_metrics lowerCamelCase_ = None lowerCamelCase_ = time.time() lowerCamelCase_ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowerCamelCase_ = eval_loop( lowercase , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase , metric_key_prefix=lowercase , ) finally: lowerCamelCase_ = compute_metrics lowerCamelCase_ = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( lowercase , lowercase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output lowerCamelCase_ = self.post_process_function(lowercase , lowercase , lowercase , "predict" ) lowerCamelCase_ = self.compute_metrics(lowercase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowerCamelCase_ = metrics.pop(lowercase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowercase )
19
0
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class snake_case__ : """simple docstring""" def __init__( self : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[Any]=13 , __lowerCamelCase : Tuple=10 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : List[Any]=2 , __lowerCamelCase : List[Any]=2 , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Union[str, Any]=32 , __lowerCamelCase : Any=5 , __lowerCamelCase : str=4 , __lowerCamelCase : Optional[Any]=37 , __lowerCamelCase : str="gelu" , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : Dict=10 , __lowerCamelCase : Optional[int]=0.02 , __lowerCamelCase : Optional[int]="divided_space_time" , __lowerCamelCase : Tuple=None , ) -> Optional[int]: a = parent a = batch_size a = image_size a = num_channels a = patch_size a = num_frames a = is_training a = use_labels a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = attention_type a = initializer_range a = scope a = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token a = (image_size // patch_size) ** 2 a = (num_frames) * self.num_patches_per_frame + 1 def __UpperCAmelCase ( self : Dict ) -> Dict: a = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) a = None if self.use_labels: a = ids_tensor([self.batch_size] , self.num_labels ) a = self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self : Any ) -> List[str]: a = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) a = self.num_labels return config def __UpperCAmelCase ( self : Any , __lowerCamelCase : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] ) -> Optional[Any]: a = TimesformerModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : Dict ) -> Tuple: a = TimesformerForVideoClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model(__lowerCamelCase ) # verify the logits shape a = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , __lowerCamelCase ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Any: a = self.prepare_config_and_inputs() a , a , a = config_and_inputs a = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class snake_case__ (_UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : str = ( {"""feature-extraction""": TimesformerModel, """video-classification""": TimesformerForVideoClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Tuple = False SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : Any = False SCREAMING_SNAKE_CASE_ : str = False def __UpperCAmelCase ( self : List[Any] ) -> Any: a = TimesformerModelTester(self ) a = ConfigTester( self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def __UpperCAmelCase ( self : Any , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : Any=False ) -> Any: a = copy.deepcopy(__lowerCamelCase ) if return_labels: if model_class in get_values(__lowerCamelCase ): a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) return inputs_dict def __UpperCAmelCase ( self : Union[str, Any] ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason="TimeSformer does not use inputs_embeds" ) def __UpperCAmelCase ( self : List[Any] ) -> int: pass def __UpperCAmelCase ( self : Optional[int] ) -> Any: a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = model_class(__lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear ) ) def __UpperCAmelCase ( self : int ) -> Tuple: a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = model_class(__lowerCamelCase ) a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a = [*signature.parameters.keys()] a = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def __UpperCAmelCase ( self : List[str] ) -> str: a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def __UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__lowerCamelCase ) @slow def __UpperCAmelCase ( self : int ) -> List[str]: for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a = TimesformerModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def __UpperCAmelCase ( self : Union[str, Any] ) -> str: if not self.has_attentions: pass else: a , a = self.model_tester.prepare_config_and_inputs_for_common() a = True for model_class in self.all_model_classes: a = self.model_tester.seq_length a = self.model_tester.num_frames a = True a = False a = True a = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): a = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) a = outputs.attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] a = True a = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): a = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) a = outputs.attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) a = len(__lowerCamelCase ) # Check attention is always last and order is fine a = True a = True a = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): a = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(out_len + 1 , len(__lowerCamelCase ) ) a = outputs.attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def __UpperCAmelCase ( self : List[Any] ) -> Dict: def check_hidden_states_output(__lowerCamelCase : Dict , __lowerCamelCase : str , __lowerCamelCase : Any ): a = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): a = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) a = outputs.hidden_states a = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) a = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def __magic_name__ ( ): '''simple docstring''' a = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video", filename="eating_spaghetti.npy", repo_type="dataset" ) a = np.load(A ) return list(A ) @require_torch @require_vision class snake_case__ (unittest.TestCase ): """simple docstring""" @cached_property def __UpperCAmelCase ( self : List[str] ) -> List[Any]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __UpperCAmelCase ( self : int ) -> List[Any]: a = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400" ).to( __lowerCamelCase ) a = self.default_image_processor a = prepare_video() a = image_processor(video[:8] , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): a = model(**__lowerCamelCase ) # verify the logits a = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) a = torch.tensor([-0.3_016, -0.7_713, -0.4_205] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
107
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer __A =logging.get_logger(__name__) # pylint: disable=invalid-name __A =''' Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu") >>> repo = "openai/shap-e-img2img" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png" >>> image = load_image(image_url).convert("RGB") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], "corgi_3d.gif") ``` ''' @dataclass class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = 42 class _SCREAMING_SNAKE_CASE ( snake_case_ ): def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> List[str]: super().__init__() self.register_modules( prior=lowercase , image_encoder=lowercase , image_processor=lowercase , scheduler=lowercase , renderer=lowercase , ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> int: if latents is None: lowerCamelCase_ = randn_tensor(lowercase , generator=lowercase , device=lowercase , dtype=lowercase ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) lowerCamelCase_ = latents.to(lowercase ) lowerCamelCase_ = latents * scheduler.init_noise_sigma return latents def SCREAMING_SNAKE_CASE_( self , lowercase=0 ) -> int: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) lowerCamelCase_ = torch.device(f'cuda:{gpu_id}' ) lowerCamelCase_ = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase , lowercase ) @property def SCREAMING_SNAKE_CASE_( self ) -> List[str]: if self.device != torch.device("meta" ) or not hasattr(self.image_encoder , "_hf_hook" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(lowercase , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , ) -> List[str]: if isinstance(lowercase , lowercase ) and isinstance(image[0] , torch.Tensor ): lowerCamelCase_ = torch.cat(lowercase , axis=0 ) if image[0].ndim == 4 else torch.stack(lowercase , axis=0 ) if not isinstance(lowercase , torch.Tensor ): lowerCamelCase_ = self.image_processor(lowercase , return_tensors="pt" ).pixel_values[0].unsqueeze(0 ) lowerCamelCase_ = image.to(dtype=self.image_encoder.dtype , device=lowercase ) lowerCamelCase_ = self.image_encoder(lowercase )["last_hidden_state"] lowerCamelCase_ = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 lowerCamelCase_ = image_embeds.repeat_interleave(lowercase , dim=0 ) if do_classifier_free_guidance: lowerCamelCase_ = torch.zeros_like(lowercase ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase_ = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(lowercase ) def __call__( self , lowercase , lowercase = 1 , lowercase = 25 , lowercase = None , lowercase = None , lowercase = 4.0 , lowercase = 64 , lowercase = "pil" , lowercase = True , ) -> Union[str, Any]: if isinstance(lowercase , PIL.Image.Image ): lowerCamelCase_ = 1 elif isinstance(lowercase , torch.Tensor ): lowerCamelCase_ = image.shape[0] elif isinstance(lowercase , lowercase ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): lowerCamelCase_ = len(lowercase ) else: raise ValueError( f'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(lowercase )}' ) lowerCamelCase_ = self._execution_device lowerCamelCase_ = batch_size * num_images_per_prompt lowerCamelCase_ = guidance_scale > 1.0 lowerCamelCase_ = self._encode_image(lowercase , lowercase , lowercase , lowercase ) # prior self.scheduler.set_timesteps(lowercase , device=lowercase ) lowerCamelCase_ = self.scheduler.timesteps lowerCamelCase_ = self.prior.config.num_embeddings lowerCamelCase_ = self.prior.config.embedding_dim lowerCamelCase_ = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , lowercase , lowercase , lowercase , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim lowerCamelCase_ = latents.reshape(latents.shape[0] , lowercase , lowercase ) for i, t in enumerate(self.progress_bar(lowercase ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase_ = self.scheduler.scale_model_input(lowercase , lowercase ) lowerCamelCase_ = self.prior( lowercase , timestep=lowercase , proj_embedding=lowercase , ).predicted_image_embedding # remove the variance lowerCamelCase_ , lowerCamelCase_ = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: lowerCamelCase_ , lowerCamelCase_ = noise_pred.chunk(2 ) lowerCamelCase_ = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) lowerCamelCase_ = self.scheduler.step( lowercase , timestep=lowercase , sample=lowercase , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=lowercase ) lowerCamelCase_ = [] for i, latent in enumerate(lowercase ): print() lowerCamelCase_ = self.renderer.decode( latent[None, :] , lowercase , size=lowercase , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(lowercase ) lowerCamelCase_ = torch.stack(lowercase ) if output_type not in ["np", "pil"]: raise ValueError(f'Only the output types `pil` and `np` are supported not output_type={output_type}' ) lowerCamelCase_ = images.cpu().numpy() if output_type == "pil": lowerCamelCase_ = [self.numpy_to_pil(lowercase ) for image in images] # Offload last model to CPU if hasattr(self , "final_offload_hook" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=lowercase )
19
0
"""simple docstring""" from __future__ import annotations import math class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Any = size # approximate the overall size of segment tree with given value lowerCAmelCase : Optional[int] = [0 for i in range(0 , 4 * size )] # create array to store lazy update lowerCAmelCase : List[str] = [0 for i in range(0 , 4 * size )] lowerCAmelCase : Dict = [0 for i in range(0 , 4 * size )] # flag for lazy update def lowercase__ ( self , snake_case__ ): """simple docstring""" return idx * 2 def lowercase__ ( self , snake_case__ ): """simple docstring""" return idx * 2 + 1 def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" if left_element == right_element: lowerCAmelCase : List[str] = a[left_element - 1] else: lowerCAmelCase : Tuple = (left_element + right_element) // 2 self.build(self.left(snake_case__ ) , snake_case__ , snake_case__ , snake_case__ ) self.build(self.right(snake_case__ ) , mid + 1 , snake_case__ , snake_case__ ) lowerCAmelCase : Tuple = max( self.segment_tree[self.left(snake_case__ )] , self.segment_tree[self.right(snake_case__ )] ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" if self.flag[idx] is True: lowerCAmelCase : Optional[int] = self.lazy[idx] lowerCAmelCase : List[str] = False if left_element != right_element: lowerCAmelCase : Optional[Any] = self.lazy[idx] lowerCAmelCase : List[Any] = self.lazy[idx] lowerCAmelCase : List[Any] = True lowerCAmelCase : Optional[Any] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: lowerCAmelCase : str = val if left_element != right_element: lowerCAmelCase : Optional[Any] = val lowerCAmelCase : Union[str, Any] = val lowerCAmelCase : int = True lowerCAmelCase : int = True return True lowerCAmelCase : List[str] = (left_element + right_element) // 2 self.update(self.left(snake_case__ ) , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) self.update(self.right(snake_case__ ) , mid + 1 , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : Optional[int] = max( self.segment_tree[self.left(snake_case__ )] , self.segment_tree[self.right(snake_case__ )] ) return True def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" if self.flag[idx] is True: lowerCAmelCase : List[Any] = self.lazy[idx] lowerCAmelCase : str = False if left_element != right_element: lowerCAmelCase : Tuple = self.lazy[idx] lowerCAmelCase : List[Any] = self.lazy[idx] lowerCAmelCase : Optional[int] = True lowerCAmelCase : str = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] lowerCAmelCase : Any = (left_element + right_element) // 2 lowerCAmelCase : Optional[int] = self.query(self.left(snake_case__ ) , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : Dict = self.query(self.right(snake_case__ ) , mid + 1 , snake_case__ , snake_case__ , snake_case__ ) return max(snake_case__ , snake_case__ ) def __str__( self ): """simple docstring""" return str([self.query(1 , 1 , self.size , snake_case__ , snake_case__ ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": lowerCAmelCase__ = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] lowerCAmelCase__ = 15 lowerCAmelCase__ = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
108
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowerCamelCase_ ( ): lowerCamelCase_ , lowerCamelCase_ = 9, 1_4 # noqa: F841 lowerCamelCase_ = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 1_4], [3, 4, 9], [5, 4, 1_0], [1, 7, 1_1], ] lowerCamelCase_ = defaultdict(lowerCamelCase__ ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) lowerCamelCase_ = mst(lowerCamelCase__ ) lowerCamelCase_ = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: lowerCamelCase_ = tuple(answer[:2] ) lowerCamelCase_ = tuple(edge[::-1] ) assert edge in result or reverse in result
19
0
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def _snake_case ( UpperCamelCase : int = 1000000 , UpperCamelCase : int = 10 ): UpperCAmelCase : defaultdict = defaultdict(UpperCamelCase ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: UpperCAmelCase : str = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: UpperCAmelCase : Optional[Any] = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(UpperCamelCase , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f"""{solution() = }""")
109
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __A =1_6 __A =3_2 def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ = 1_6 ): lowerCamelCase_ = AutoTokenizer.from_pretrained("bert-base-cased" ) lowerCamelCase_ = load_dataset("glue" , "mrpc" ) def tokenize_function(lowerCamelCase__ ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase_ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCamelCase_ = datasets.map( lowerCamelCase__ , batched=lowerCamelCase__ , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase_ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowerCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCamelCase_ = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCamelCase_ = 1_6 elif accelerator.mixed_precision != "no": lowerCamelCase_ = 8 else: lowerCamelCase_ = None return tokenizer.pad( lowerCamelCase__ , padding="longest" , max_length=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_tensors="pt" , ) # Instantiate dataloaders. lowerCamelCase_ = DataLoader( tokenized_datasets["train"] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ ) lowerCamelCase_ = DataLoader( tokenized_datasets["validation"] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders __A =mocked_dataloaders # noqa: F811 def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS" , lowerCamelCase__ ) == "1": lowerCamelCase_ = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: lowerCamelCase_ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: lowerCamelCase_ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase_ = config["lr"] lowerCamelCase_ = int(config["num_epochs"] ) lowerCamelCase_ = int(config["seed"] ) lowerCamelCase_ = int(config["batch_size"] ) set_seed(lowerCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ = get_dataloaders(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation lowerCamelCase_ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowerCamelCase_ = batch_size // MAX_GPU_BATCH_SIZE lowerCamelCase_ = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase_ = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=lowerCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCamelCase_ = model.to(accelerator.device ) # Instantiate optimizer lowerCamelCase_ = AdamW(params=model.parameters() , lr=lowerCamelCase__ ) # Instantiate scheduler lowerCamelCase_ = get_linear_schedule_with_warmup( optimizer=lowerCamelCase__ , num_warmup_steps=1_0_0 , num_training_steps=(len(lowerCamelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: lowerCamelCase_ = os.path.split(lowerCamelCase__ )[-1].split("." )[0] accelerator.init_trackers(lowerCamelCase__ , lowerCamelCase__ ) # Now we train the model for epoch in range(lowerCamelCase__ ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: lowerCamelCase_ = 0 for step, batch in enumerate(lowerCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCamelCase_ = model(**lowerCamelCase__ ) lowerCamelCase_ = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() lowerCamelCase_ = loss / gradient_accumulation_steps accelerator.backward(lowerCamelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase_ = model(**lowerCamelCase__ ) lowerCamelCase_ = outputs.logits.argmax(dim=-1 ) lowerCamelCase_ , lowerCamelCase_ = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=lowerCamelCase__ , references=lowerCamelCase__ , ) lowerCamelCase_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , lowerCamelCase__ ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { "accuracy": eval_metric["accuracy"], "f1": eval_metric["f1"], "train_loss": total_loss.item() / len(lowerCamelCase__ ), "epoch": epoch, } , step=lowerCamelCase__ , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def lowerCamelCase_ ( ): lowerCamelCase_ = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=lowerCamelCase__ , default=lowerCamelCase__ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=lowerCamelCase__ , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) lowerCamelCase_ = parser.parse_args() lowerCamelCase_ = {"lr": 2e-5, "num_epochs": 3, "seed": 4_2, "batch_size": 1_6} training_function(lowerCamelCase__ , lowerCamelCase__ ) if __name__ == "__main__": main()
19
0
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _a ( UpperCamelCase__ ): def __init__( self: str , UpperCamelCase_: str , UpperCamelCase_: int ) -> Optional[int]: """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM lowercase__ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) @torch.no_grad() def __call__( self: int , UpperCamelCase_: int = 1 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: float = 0.0 , UpperCamelCase_: int = 50 , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" if isinstance(self.unet.config.sample_size , UpperCamelCase_ ): lowercase__ = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: lowercase__ = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size: raise ValueError( f'You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch' f' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) lowercase__ = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(UpperCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowercase__ = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowercase__ = self.scheduler.step( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , eta=UpperCamelCase_ , use_clipped_model_output=UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample lowercase__ = (image / 2 + 0.5).clamp(0 , 1 ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase__ = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
110
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: __A =None __A =logging.get_logger(__name__) __A ={'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __A ={ '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } __A ={ '''facebook/mbart-large-en-ro''': 1_0_2_4, '''facebook/mbart-large-cc25''': 1_0_2_4, } # fmt: off __A =['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = ['input_ids', 'attention_mask'] lowerCAmelCase__ = MBartTokenizer lowerCAmelCase__ = [] lowerCAmelCase__ = [] def __init__( self , lowercase=None , lowercase=None , lowercase="<s>" , lowercase="</s>" , lowercase="</s>" , lowercase="<s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase="<mask>" , lowercase=None , lowercase=None , lowercase=None , **lowercase , ) -> Dict: # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else mask_token super().__init__( vocab_file=lowercase , tokenizer_file=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , cls_token=lowercase , unk_token=lowercase , pad_token=lowercase , mask_token=lowercase , src_lang=lowercase , tgt_lang=lowercase , additional_special_tokens=lowercase , **lowercase , ) lowerCamelCase_ = vocab_file lowerCamelCase_ = False if not self.vocab_file else True lowerCamelCase_ = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens} ) lowerCamelCase_ = { lang_code: self.convert_tokens_to_ids(lowercase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCamelCase_ = src_lang if src_lang is not None else "en_XX" lowerCamelCase_ = self.convert_tokens_to_ids(self._src_lang ) lowerCamelCase_ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def SCREAMING_SNAKE_CASE_( self ) -> str: return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE_( self , lowercase ) -> None: lowerCamelCase_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> List[int]: lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , **lowercase ) -> List[Any]: if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) lowerCamelCase_ = src_lang lowerCamelCase_ = self(lowercase , add_special_tokens=lowercase , return_tensors=lowercase , **lowercase ) lowerCamelCase_ = self.convert_tokens_to_ids(lowercase ) lowerCamelCase_ = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = "en_XX" , lowercase = None , lowercase = "ro_RO" , **lowercase , ) -> BatchEncoding: lowerCamelCase_ = src_lang lowerCamelCase_ = tgt_lang return super().prepare_seqaseq_batch(lowercase , lowercase , **lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Dict: return self.set_src_lang_special_tokens(self.src_lang ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> None: lowerCamelCase_ = self.convert_tokens_to_ids(lowercase ) lowerCamelCase_ = [] lowerCamelCase_ = [self.eos_token_id, self.cur_lang_code] lowerCamelCase_ = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase_ = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase_ = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> None: lowerCamelCase_ = self.convert_tokens_to_ids(lowercase ) lowerCamelCase_ = [] lowerCamelCase_ = [self.eos_token_id, self.cur_lang_code] lowerCamelCase_ = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase_ = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase_ = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory.' ) return lowerCamelCase_ = os.path.join( lowercase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ): copyfile(self.vocab_file , lowercase ) return (out_vocab_file,)
19
0
'''simple docstring''' from functools import reduce a_ = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def _a( UpperCamelCase__ : List[Any] = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda UpperCamelCase__, UpperCamelCase__ : str(int(lowerCamelCase__ ) * int(lowerCamelCase__ ) ), n[i : i + 1_3] ) ) for i in range(len(lowerCamelCase__ ) - 1_2 ) ) if __name__ == "__main__": print(F'''{solution() = }''')
152
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss __A =pytest.mark.integration @require_faiss class _SCREAMING_SNAKE_CASE ( snake_case_ ): def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(lowercase ) for x in np.arange(30 ).tolist()]} ) return dset def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: import faiss lowerCamelCase_ = self._create_dummy_dataset() lowerCamelCase_ = dset.map( lambda lowercase , lowercase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=lowercase , keep_in_memory=lowercase ) lowerCamelCase_ = dset.add_faiss_index("vecs" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCamelCase_ , lowerCamelCase_ = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) dset.drop_index("vecs" ) def SCREAMING_SNAKE_CASE_( self ) -> Dict: import faiss lowerCamelCase_ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCamelCase_ , lowerCamelCase_ = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: import faiss lowerCamelCase_ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowercase ) as tmp_file: dset.save_faiss_index("vecs" , tmp_file.name ) dset.load_faiss_index("vecs2" , tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase_ , lowerCamelCase_ = dset.get_nearest_examples("vecs2" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: lowerCamelCase_ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" ) dset.drop_index("vecs" ) self.assertRaises(lowercase , partial(dset.get_nearest_examples , "vecs2" , np.ones(5 , dtype=np.floataa ) ) ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: from elasticsearch import Elasticsearch lowerCamelCase_ = self._create_dummy_dataset() with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: lowerCamelCase_ = {"acknowledged": True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 29}]}} lowerCamelCase_ = Elasticsearch() dset.add_elasticsearch_index("filename" , es_client=lowercase ) lowerCamelCase_ , lowerCamelCase_ = dset.get_nearest_examples("filename" , "my_name-train_29" ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) @require_faiss class _SCREAMING_SNAKE_CASE ( snake_case_ ): def SCREAMING_SNAKE_CASE_( self ) -> Tuple: import faiss lowerCamelCase_ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCamelCase_ = np.zeros(5 , dtype=np.floataa ) lowerCamelCase_ = 1 lowerCamelCase_ , lowerCamelCase_ = index.search(lowercase ) self.assertRaises(lowercase , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCamelCase_ = np.eye(5 , dtype=np.floataa )[::-1] lowerCamelCase_ , lowerCamelCase_ = index.search_batch(lowercase ) self.assertRaises(lowercase , index.search_batch , queries[0] ) lowerCamelCase_ = [scores[0] for scores in total_scores] lowerCamelCase_ = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Any: import faiss lowerCamelCase_ = FaissIndex(string_factory="Flat" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCamelCase_ = FaissIndex(string_factory="LSH" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(lowercase ): lowerCamelCase_ = FaissIndex(string_factory="Flat" , custom_index=faiss.IndexFlat(5 ) ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: import faiss lowerCamelCase_ = faiss.IndexFlat(5 ) lowerCamelCase_ = FaissIndex(custom_index=lowercase ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: import faiss lowerCamelCase_ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowercase ) as tmp_file: index.save(tmp_file.name ) lowerCamelCase_ = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase_ = np.zeros(5 , dtype=np.floataa ) lowerCamelCase_ = 1 lowerCamelCase_ , lowerCamelCase_ = index.search(lowercase ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def lowerCamelCase_ ( lowerCamelCase__ ): import faiss lowerCamelCase_ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCamelCase_ = "index.faiss" lowerCamelCase_ = F'mock://{index_name}' index.save(lowerCamelCase__ , storage_options=mockfs.storage_options ) lowerCamelCase_ = FaissIndex.load(lowerCamelCase__ , storage_options=mockfs.storage_options ) lowerCamelCase_ = np.zeros(5 , dtype=np.floataa ) lowerCamelCase_ = 1 lowerCamelCase_ , lowerCamelCase_ = index.search(lowerCamelCase__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _SCREAMING_SNAKE_CASE ( snake_case_ ): def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: from elasticsearch import Elasticsearch with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: lowerCamelCase_ = Elasticsearch() lowerCamelCase_ = {"acknowledged": True} lowerCamelCase_ = ElasticSearchIndex(es_client=lowercase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["foo", "bar", "foobar"] ) # single query lowerCamelCase_ = "foo" lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} lowerCamelCase_ , lowerCamelCase_ = index.search(lowercase ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCamelCase_ = "foo" lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} lowerCamelCase_ , lowerCamelCase_ = index.search(lowercase , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCamelCase_ = ["foo", "bar", "foobar"] lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} lowerCamelCase_ , lowerCamelCase_ = index.search_batch(lowercase ) lowerCamelCase_ = [scores[0] for scores in total_scores] lowerCamelCase_ = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase ) , 0 ) self.assertListEqual([1, 1, 1] , lowercase ) # batched queries with timeout lowerCamelCase_ = ["foo", "bar", "foobar"] lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} lowerCamelCase_ , lowerCamelCase_ = index.search_batch(lowercase , request_timeout=30 ) lowerCamelCase_ = [scores[0] for scores in total_scores] lowerCamelCase_ = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase ) , 0 ) self.assertListEqual([1, 1, 1] , lowercase )
19
0
import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class __A ( snake_case_ ): """simple docstring""" UpperCamelCase__ : Any ="""MCTCTFeatureExtractor""" UpperCamelCase__ : Union[str, Any] ="""AutoTokenizer""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" super().__init__(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Tuple =self.feature_extractor __UpperCamelCase : Union[str, Any] =False def __call__( self , *lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*lowerCamelCase__ , **lowerCamelCase__ ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) __UpperCamelCase : List[str] =kwargs.pop('raw_speech' ) else: __UpperCamelCase : Any =kwargs.pop('audio' , lowerCamelCase__ ) __UpperCamelCase : List[Any] =kwargs.pop('sampling_rate' , lowerCamelCase__ ) __UpperCamelCase : Dict =kwargs.pop('text' , lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: __UpperCamelCase : Union[str, Any] =args[0] __UpperCamelCase : int =args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: __UpperCamelCase : Dict =self.feature_extractor(lowerCamelCase__ , *lowerCamelCase__ , sampling_rate=lowerCamelCase__ , **lowerCamelCase__ ) if text is not None: __UpperCamelCase : Optional[Any] =self.tokenizer(lowerCamelCase__ , **lowerCamelCase__ ) if text is None: return inputs elif audio is None: return encodings else: __UpperCamelCase : List[str] =encodings['input_ids'] return inputs def __lowercase ( self , *lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCamelCase__ , **lowerCamelCase__ ) def __lowercase ( self , *lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" if self._in_target_context_manager: return self.current_processor.pad(*lowerCamelCase__ , **lowerCamelCase__ ) __UpperCamelCase : Any =kwargs.pop('input_features' , lowerCamelCase__ ) __UpperCamelCase : Any =kwargs.pop('labels' , lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: __UpperCamelCase : int =args[0] __UpperCamelCase : Union[str, Any] =args[1:] if input_features is not None: __UpperCamelCase : Tuple =self.feature_extractor.pad(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) if labels is not None: __UpperCamelCase : Any =self.tokenizer.pad(lowerCamelCase__ , **lowerCamelCase__ ) if labels is None: return input_features elif input_features is None: return labels else: __UpperCamelCase : str =labels['input_ids'] return input_features def __lowercase ( self , *lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" return self.tokenizer.decode(*lowerCamelCase__ , **lowerCamelCase__ ) @contextmanager def __lowercase ( self ): """simple docstring""" warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) __UpperCamelCase : Optional[Any] =True __UpperCamelCase : Union[str, Any] =self.tokenizer yield __UpperCamelCase : int =self.feature_extractor __UpperCamelCase : int =False
71
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class _SCREAMING_SNAKE_CASE : def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=99 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.0_2 , lowercase=3 , lowercase=4 , lowercase=None , ) -> List[str]: lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_token_type_ids lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = num_labels lowerCamelCase_ = num_choices lowerCamelCase_ = scope lowerCamelCase_ = self.vocab_size - 1 def SCREAMING_SNAKE_CASE_( self ) -> Any: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_token_type_ids: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) lowerCamelCase_ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , *lowercase ) -> Dict: lowerCamelCase_ = OpenAIGPTModel(config=lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = model(lowercase , token_type_ids=lowercase , head_mask=lowercase ) lowerCamelCase_ = model(lowercase , token_type_ids=lowercase ) lowerCamelCase_ = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , *lowercase ) -> int: lowerCamelCase_ = OpenAIGPTLMHeadModel(lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = model(lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , *lowercase ) -> Dict: lowerCamelCase_ = OpenAIGPTDoubleHeadsModel(lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = model(lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , *lowercase ) -> int: lowerCamelCase_ = self.num_labels lowerCamelCase_ = OpenAIGPTForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = model(lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = { "input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask, } return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): lowerCAmelCase__ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) lowerCAmelCase__ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly lowerCAmelCase__ = ( { 'feature-extraction': OpenAIGPTModel, 'text-classification': OpenAIGPTForSequenceClassification, 'text-generation': OpenAIGPTLMHeadModel, 'zero-shot': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase ) -> int: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase=False ) -> Any: lowerCamelCase_ = super()._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": lowerCamelCase_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=lowercase , ) lowerCamelCase_ = inputs_dict["labels"] lowerCamelCase_ = inputs_dict["labels"] lowerCamelCase_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=lowercase , ) lowerCamelCase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase ) return inputs_dict def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ = OpenAIGPTModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=lowercase , n_embd=37 ) def SCREAMING_SNAKE_CASE_( self ) -> Any: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Tuple: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowercase ) @slow def SCREAMING_SNAKE_CASE_( self ) -> Any: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = OpenAIGPTModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ = OpenAIGPTLMHeadModel.from_pretrained("openai-gpt" ) model.to(lowercase ) lowerCamelCase_ = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=lowercase ) # the president is lowerCamelCase_ = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the lowerCamelCase_ = model.generate(lowercase , do_sample=lowercase ) self.assertListEqual(output_ids[0].tolist() , lowercase )
19
0
'''simple docstring''' import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset a_ : Any = "bert-base-cased" a_ : Dict = "google/pegasus-xsum" a_ : Any = [" Sam ate lunch today.", "Sams lunch ingredients."] a_ : Optional[int] = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"] a_ : Any = "patrickvonplaten/t5-tiny-random" a_ : Tuple = "sshleifer/bart-tiny-random" a_ : str = "sshleifer/tiny-mbart" a_ : List[str] = "sshleifer/tiny-marian-en-de" def _A (lowerCAmelCase__ :Tuple , lowerCAmelCase__ :int ) -> Optional[int]: '''simple docstring''' _a = '\n'.join(lowerCamelCase__ ) Path(lowerCamelCase__ ).open('w' ).writelines(lowerCamelCase__ ) def _A (lowerCAmelCase__ :Any ) -> Optional[int]: '''simple docstring''' for split in ["train", "val", "test"]: _dump_articles(os.path.join(lowerCamelCase__ , f'{split}.source' ) , lowerCamelCase__ ) _dump_articles(os.path.join(lowerCamelCase__ , f'{split}.target' ) , lowerCamelCase__ ) return tmp_dir class a ( snake_case_ ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def __UpperCAmelCase ( self , __magic_name__ ) -> List[Any]: _a = AutoTokenizer.from_pretrained(__magic_name__ ) _a = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _a = max(len(tokenizer.encode(__magic_name__ ) ) for a in ARTICLES ) _a = max(len(tokenizer.encode(__magic_name__ ) ) for a in SUMMARIES ) _a = 4 _a = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated _a , _a = 'ro_RO', 'de_DE' # ignored for all but mbart, but never causes error. _a = SeqaSeqDataset( __magic_name__ , data_dir=__magic_name__ , type_path='train' , max_source_length=__magic_name__ , max_target_length=__magic_name__ , src_lang=__magic_name__ , tgt_lang=__magic_name__ , ) _a = DataLoader(__magic_name__ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(__magic_name__ , __magic_name__ ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place _a = shift_tokens_right(batch['labels'] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def __UpperCAmelCase ( self , __magic_name__ ) -> str: _a = AutoTokenizer.from_pretrained(__magic_name__ ) _a = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _a = max(len(tokenizer.encode(__magic_name__ ) ) for a in ARTICLES ) _a = max(len(tokenizer.encode(__magic_name__ ) ) for a in SUMMARIES ) _a = 4 _a = LegacySeqaSeqDataset( __magic_name__ , data_dir=__magic_name__ , type_path='train' , max_source_length=20 , max_target_length=__magic_name__ , ) _a = DataLoader(__magic_name__ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def __UpperCAmelCase ( self ) -> str: _a = AutoTokenizer.from_pretrained('facebook/mbart-large-cc25' ) _a = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) _a = tmp_dir.joinpath('train.source' ).open().readlines() _a = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(__magic_name__ , __magic_name__ , 1_28 , __magic_name__ ) _a = {x.name for x in tmp_dir.iterdir()} _a = {x.name for x in save_dir.iterdir()} _a = save_dir.joinpath('train.source' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(__magic_name__ ) < len(__magic_name__ ) assert len(__magic_name__ ) == 1 assert len(packed_examples[0] ) == sum(len(__magic_name__ ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='This test requires fairseq' ) def __UpperCAmelCase ( self ) -> Optional[Any]: if not FAIRSEQ_AVAILABLE: return _a , _a , _a = self._get_dataset(max_len=64 ) _a = 64 _a = ds.make_dynamic_sampler(__magic_name__ , required_batch_size_multiple=__magic_name__ ) _a = [len(__magic_name__ ) for x in batch_sampler] assert len(set(__magic_name__ ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(__magic_name__ ) == len(__magic_name__ ) # no dropped or added examples _a = DataLoader(__magic_name__ , batch_sampler=__magic_name__ , collate_fn=ds.collate_fn , num_workers=2 ) _a = [] _a = [] for batch in data_loader: _a = batch['input_ids'].shape _a = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple _a = np.product(batch['input_ids'].shape ) num_src_per_batch.append(__magic_name__ ) if num_src_tokens > (max_tokens * 1.1): failures.append(__magic_name__ ) assert num_src_per_batch[0] == max(__magic_name__ ) if failures: raise AssertionError(f'too many tokens in {len(__magic_name__ )} batches' ) def __UpperCAmelCase ( self ) -> Tuple: _a , _a , _a = self._get_dataset(max_len=5_12 ) _a = 2 _a = ds.make_sortish_sampler(__magic_name__ , shuffle=__magic_name__ ) _a = DataLoader(__magic_name__ , batch_size=__magic_name__ , collate_fn=ds.collate_fn , num_workers=2 ) _a = DataLoader(__magic_name__ , batch_size=__magic_name__ , collate_fn=ds.collate_fn , num_workers=2 , sampler=__magic_name__ ) _a = tokenizer.pad_token_id def count_pad_tokens(__magic_name__ , __magic_name__="input_ids" ): return [batch[k].eq(__magic_name__ ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(__magic_name__ , k='labels' ) ) < sum(count_pad_tokens(__magic_name__ , k='labels' ) ) assert sum(count_pad_tokens(__magic_name__ ) ) < sum(count_pad_tokens(__magic_name__ ) ) assert len(__magic_name__ ) == len(__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__=10_00 , __magic_name__=1_28 ) -> str: if os.getenv('USE_REAL_DATA' , __magic_name__ ): _a = 'examples/seq2seq/wmt_en_ro' _a = max_len * 2 * 64 if not Path(__magic_name__ ).joinpath('train.len' ).exists(): save_len_file(__magic_name__ , __magic_name__ ) else: _a = 'examples/seq2seq/test_data/wmt_en_ro' _a = max_len * 4 save_len_file(__magic_name__ , __magic_name__ ) _a = AutoTokenizer.from_pretrained(__magic_name__ ) _a = SeqaSeqDataset( __magic_name__ , data_dir=__magic_name__ , type_path='train' , max_source_length=__magic_name__ , max_target_length=__magic_name__ , n_obs=__magic_name__ , ) return ds, max_tokens, tokenizer def __UpperCAmelCase ( self ) -> int: _a , _a , _a = self._get_dataset() _a = set(DistributedSortishSampler(__magic_name__ , 2_56 , num_replicas=2 , rank=0 , add_extra_examples=__magic_name__ ) ) _a = set(DistributedSortishSampler(__magic_name__ , 2_56 , num_replicas=2 , rank=1 , add_extra_examples=__magic_name__ ) ) assert idsa.intersection(__magic_name__ ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def __UpperCAmelCase ( self , __magic_name__ ) -> Union[str, Any]: _a = AutoTokenizer.from_pretrained(__magic_name__ , use_fast=__magic_name__ ) if tok_name == MBART_TINY: _a = SeqaSeqDataset( __magic_name__ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , src_lang='EN' , tgt_lang='FR' , ) _a = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: _a = SeqaSeqDataset( __magic_name__ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , ) _a = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(__magic_name__ ) == 1 if tok_name == BART_TINY else len(__magic_name__ ) == 0
168
__A ={str(digit): digit**5 for digit in range(1_0)} def lowerCamelCase_ ( lowerCamelCase__ ): return sum(DIGITS_FIFTH_POWER[digit] for digit in str(lowerCamelCase__ ) ) def lowerCamelCase_ ( ): return sum( number for number in range(1_0_0_0 , 1_0_0_0_0_0_0 ) if number == digits_fifth_powers_sum(lowerCamelCase__ ) ) if __name__ == "__main__": print(solution())
19
0
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig lowercase_ = logging.get_logger(__name__) # General docstring lowercase_ = 'ResNetConfig' # Base docstring lowercase_ = 'microsoft/resnet-50' lowercase_ = [1, 2_0_4_8, 7, 7] # Image classification docstring lowercase_ = 'microsoft/resnet-50' lowercase_ = 'tiger cat' lowercase_ = [ 'microsoft/resnet-50', # See all resnet models at https://huggingface.co/models?filter=resnet ] class __lowerCAmelCase ( nn.Module ): def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 3 , lowerCAmelCase = 1 , lowerCAmelCase = "relu" ) -> List[Any]: '''simple docstring''' super().__init__() _lowercase =nn.Convad( lowerCAmelCase , lowerCAmelCase , kernel_size=lowerCAmelCase , stride=lowerCAmelCase , padding=kernel_size // 2 , bias=lowerCAmelCase ) _lowercase =nn.BatchNormad(lowerCAmelCase ) _lowercase =ACTaFN[activation] if activation is not None else nn.Identity() def A__ ( self , lowerCAmelCase ) -> Tensor: '''simple docstring''' _lowercase =self.convolution(lowerCAmelCase ) _lowercase =self.normalization(lowerCAmelCase ) _lowercase =self.activation(lowerCAmelCase ) return hidden_state class __lowerCAmelCase ( nn.Module ): def __init__( self , lowerCAmelCase ) -> List[str]: '''simple docstring''' super().__init__() _lowercase =ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) _lowercase =nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) _lowercase =config.num_channels def A__ ( self , lowerCAmelCase ) -> Tensor: '''simple docstring''' _lowercase =pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) _lowercase =self.embedder(lowerCAmelCase ) _lowercase =self.pooler(lowerCAmelCase ) return embedding class __lowerCAmelCase ( nn.Module ): def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 2 ) -> Dict: '''simple docstring''' super().__init__() _lowercase =nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , stride=lowerCAmelCase , bias=lowerCAmelCase ) _lowercase =nn.BatchNormad(lowerCAmelCase ) def A__ ( self , lowerCAmelCase ) -> Tensor: '''simple docstring''' _lowercase =self.convolution(lowerCAmelCase ) _lowercase =self.normalization(lowerCAmelCase ) return hidden_state class __lowerCAmelCase ( nn.Module ): def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1 , lowerCAmelCase = "relu" ) -> List[Any]: '''simple docstring''' super().__init__() _lowercase =in_channels != out_channels or stride != 1 _lowercase =( ResNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase ) if should_apply_shortcut else nn.Identity() ) _lowercase =nn.Sequential( ResNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase ) , ResNetConvLayer(lowerCAmelCase , lowerCAmelCase , activation=lowerCAmelCase ) , ) _lowercase =ACTaFN[activation] def A__ ( self , lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' _lowercase =hidden_state _lowercase =self.layer(lowerCAmelCase ) _lowercase =self.shortcut(lowerCAmelCase ) hidden_state += residual _lowercase =self.activation(lowerCAmelCase ) return hidden_state class __lowerCAmelCase ( nn.Module ): def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1 , lowerCAmelCase = "relu" , lowerCAmelCase = 4 ) -> List[Any]: '''simple docstring''' super().__init__() _lowercase =in_channels != out_channels or stride != 1 _lowercase =out_channels // reduction _lowercase =( ResNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase ) if should_apply_shortcut else nn.Identity() ) _lowercase =nn.Sequential( ResNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 ) , ResNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase ) , ResNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase ) , ) _lowercase =ACTaFN[activation] def A__ ( self , lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' _lowercase =hidden_state _lowercase =self.layer(lowerCAmelCase ) _lowercase =self.shortcut(lowerCAmelCase ) hidden_state += residual _lowercase =self.activation(lowerCAmelCase ) return hidden_state class __lowerCAmelCase ( nn.Module ): def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 2 , lowerCAmelCase = 2 , ) -> Union[str, Any]: '''simple docstring''' super().__init__() _lowercase =ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer _lowercase =nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , activation=config.hidden_act ) , *[layer(lowerCAmelCase , lowerCAmelCase , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def A__ ( self , lowerCAmelCase ) -> Tensor: '''simple docstring''' _lowercase =input for layer in self.layers: _lowercase =layer(lowerCAmelCase ) return hidden_state class __lowerCAmelCase ( nn.Module ): def __init__( self , lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' super().__init__() _lowercase =nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( lowerCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _lowercase =zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowerCAmelCase , config.depths[1:] ): self.stages.append(ResNetStage(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , depth=lowerCAmelCase ) ) def A__ ( self , lowerCAmelCase , lowerCAmelCase = False , lowerCAmelCase = True ) -> BaseModelOutputWithNoAttention: '''simple docstring''' _lowercase =() if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _lowercase =hidden_states + (hidden_state,) _lowercase =stage_module(lowerCAmelCase ) if output_hidden_states: _lowercase =hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=lowerCAmelCase , hidden_states=lowerCAmelCase , ) class __lowerCAmelCase ( snake_case_ ): _a = ResNetConfig _a = """resnet""" _a = """pixel_values""" _a = True def A__ ( self , lowerCAmelCase ) -> Tuple: '''simple docstring''' if isinstance(lowerCAmelCase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(lowerCAmelCase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def A__ ( self , lowerCAmelCase , lowerCAmelCase=False ) -> Tuple: '''simple docstring''' if isinstance(lowerCAmelCase , lowerCAmelCase ): _lowercase =value lowercase_ = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowercase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( """The bare ResNet model outputting raw features without any specific head on top.""" , snake_case_ , ) class __lowerCAmelCase ( snake_case_ ): def __init__( self , lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' super().__init__(lowerCAmelCase ) _lowercase =config _lowercase =ResNetEmbeddings(lowerCAmelCase ) _lowercase =ResNetEncoder(lowerCAmelCase ) _lowercase =nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def A__ ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None ) -> BaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' _lowercase =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowercase =return_dict if return_dict is not None else self.config.use_return_dict _lowercase =self.embedder(lowerCAmelCase ) _lowercase =self.encoder( lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase ) _lowercase =encoder_outputs[0] _lowercase =self.pooler(lowerCAmelCase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase , pooler_output=lowerCAmelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( """\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n """ , snake_case_ , ) class __lowerCAmelCase ( snake_case_ ): def __init__( self , lowerCAmelCase ) -> str: '''simple docstring''' super().__init__(lowerCAmelCase ) _lowercase =config.num_labels _lowercase =ResNetModel(lowerCAmelCase ) # classification head _lowercase =nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def A__ ( self , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , ) -> ImageClassifierOutputWithNoAttention: '''simple docstring''' _lowercase =return_dict if return_dict is not None else self.config.use_return_dict _lowercase =self.resnet(lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase ) _lowercase =outputs.pooler_output if return_dict else outputs[1] _lowercase =self.classifier(lowerCAmelCase ) _lowercase =None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _lowercase ='regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _lowercase ='single_label_classification' else: _lowercase ='multi_label_classification' if self.config.problem_type == "regression": _lowercase =MSELoss() if self.num_labels == 1: _lowercase =loss_fct(logits.squeeze() , labels.squeeze() ) else: _lowercase =loss_fct(lowerCAmelCase , lowerCAmelCase ) elif self.config.problem_type == "single_label_classification": _lowercase =CrossEntropyLoss() _lowercase =loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _lowercase =BCEWithLogitsLoss() _lowercase =loss_fct(lowerCAmelCase , lowerCAmelCase ) if not return_dict: _lowercase =(logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase , logits=lowerCAmelCase , hidden_states=outputs.hidden_states ) @add_start_docstrings( """\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n """ , snake_case_ , ) class __lowerCAmelCase ( snake_case_ , snake_case_ ): def __init__( self , lowerCAmelCase ) -> Optional[int]: '''simple docstring''' super().__init__(lowerCAmelCase ) super()._init_backbone(lowerCAmelCase ) _lowercase =[config.embedding_size] + config.hidden_sizes _lowercase =ResNetEmbeddings(lowerCAmelCase ) _lowercase =ResNetEncoder(lowerCAmelCase ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase ) @replace_return_docstrings(output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC ) def A__ ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None ) -> BackboneOutput: '''simple docstring''' _lowercase =return_dict if return_dict is not None else self.config.use_return_dict _lowercase =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowercase =self.embedder(lowerCAmelCase ) _lowercase =self.encoder(lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase ) _lowercase =outputs.hidden_states _lowercase =() for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _lowercase =(feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=lowerCAmelCase , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowerCAmelCase , )
205
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() __A =logging.get_logger(__name__) def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: lowerCamelCase_ = 1_9_2 lowerCamelCase_ = 7_6_8 lowerCamelCase_ = 1_2 lowerCamelCase_ = 3 lowerCamelCase_ = [8_0_0, 1_3_3_3] lowerCamelCase_ = False elif yolos_name == "yolos_s_dWr": lowerCamelCase_ = 3_3_0 lowerCamelCase_ = 1_4 lowerCamelCase_ = 6 lowerCamelCase_ = 1_3_2_0 elif "yolos_s" in yolos_name: lowerCamelCase_ = 3_8_4 lowerCamelCase_ = 1_5_3_6 lowerCamelCase_ = 1_2 lowerCamelCase_ = 6 elif "yolos_b" in yolos_name: lowerCamelCase_ = [8_0_0, 1_3_4_4] lowerCamelCase_ = 9_1 lowerCamelCase_ = "huggingface/label-files" lowerCamelCase_ = "coco-detection-id2label.json" lowerCamelCase_ = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="dataset" ) , "r" ) ) lowerCamelCase_ = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} lowerCamelCase_ = idalabel lowerCamelCase_ = {v: k for k, v in idalabel.items()} return config def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase_ = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) lowerCamelCase_ = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase_ = in_proj_weight[: config.hidden_size, :] lowerCamelCase_ = in_proj_bias[: config.hidden_size] lowerCamelCase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase_ = in_proj_weight[-config.hidden_size :, :] lowerCamelCase_ = in_proj_bias[-config.hidden_size :] def lowerCamelCase_ ( lowerCamelCase__ ): if "backbone" in name: lowerCamelCase_ = name.replace("backbone" , "vit" ) if "cls_token" in name: lowerCamelCase_ = name.replace("cls_token" , "embeddings.cls_token" ) if "det_token" in name: lowerCamelCase_ = name.replace("det_token" , "embeddings.detection_tokens" ) if "mid_pos_embed" in name: lowerCamelCase_ = name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" ) if "pos_embed" in name: lowerCamelCase_ = name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: lowerCamelCase_ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "blocks" in name: lowerCamelCase_ = name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: lowerCamelCase_ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: lowerCamelCase_ = name.replace("attn" , "attention.self" ) if "norm1" in name: lowerCamelCase_ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowerCamelCase_ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: lowerCamelCase_ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowerCamelCase_ = name.replace("mlp.fc2" , "output.dense" ) if "class_embed" in name: lowerCamelCase_ = name.replace("class_embed" , "class_labels_classifier" ) if "bbox_embed" in name: lowerCamelCase_ = name.replace("bbox_embed" , "bbox_predictor" ) if "vit.norm" in name: lowerCamelCase_ = name.replace("vit.norm" , "vit.layernorm" ) return name def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): for key in orig_state_dict.copy().keys(): lowerCamelCase_ = orig_state_dict.pop(lowerCamelCase__ ) if "qkv" in key: lowerCamelCase_ = key.split("." ) lowerCamelCase_ = int(key_split[2] ) lowerCamelCase_ = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: lowerCamelCase_ = val[:dim, :] lowerCamelCase_ = val[ dim : dim * 2, : ] lowerCamelCase_ = val[-dim:, :] else: lowerCamelCase_ = val[:dim] lowerCamelCase_ = val[dim : dim * 2] lowerCamelCase_ = val[-dim:] else: lowerCamelCase_ = val return orig_state_dict def lowerCamelCase_ ( ): lowerCamelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase_ = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ) return im @torch.no_grad() def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ): lowerCamelCase_ = get_yolos_config(lowerCamelCase__ ) # load original state_dict lowerCamelCase_ = torch.load(lowerCamelCase__ , map_location="cpu" )["model"] # load 🤗 model lowerCamelCase_ = YolosForObjectDetection(lowerCamelCase__ ) model.eval() lowerCamelCase_ = convert_state_dict(lowerCamelCase__ , lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) # Check outputs on an image, prepared by YolosImageProcessor lowerCamelCase_ = 8_0_0 if yolos_name != "yolos_ti" else 5_1_2 lowerCamelCase_ = YolosImageProcessor(format="coco_detection" , size=lowerCamelCase__ ) lowerCamelCase_ = image_processor(images=prepare_img() , return_tensors="pt" ) lowerCamelCase_ = model(**lowerCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ = outputs.logits, outputs.pred_boxes lowerCamelCase_ , lowerCamelCase_ = None, None if yolos_name == "yolos_ti": lowerCamelCase_ = torch.tensor( [[-39.50_22, -11.98_20, -17.68_88], [-29.95_74, -9.97_69, -17.76_91], [-42.32_81, -20.72_00, -30.62_94]] ) lowerCamelCase_ = torch.tensor( [[0.40_21, 0.08_36, 0.79_79], [0.01_84, 0.26_09, 0.03_64], [0.17_81, 0.20_04, 0.20_95]] ) elif yolos_name == "yolos_s_200_pre": lowerCamelCase_ = torch.tensor( [[-24.02_48, -10.30_24, -14.82_90], [-42.03_92, -16.82_00, -27.43_34], [-27.27_43, -11.81_54, -18.71_48]] ) lowerCamelCase_ = torch.tensor( [[0.25_59, 0.54_55, 0.47_06], [0.29_89, 0.72_79, 0.18_75], [0.77_32, 0.40_17, 0.44_62]] ) elif yolos_name == "yolos_s_300_pre": lowerCamelCase_ = torch.tensor( [[-36.22_20, -14.43_85, -23.54_57], [-35.69_70, -14.75_83, -21.39_35], [-31.59_39, -13.60_42, -16.80_49]] ) lowerCamelCase_ = torch.tensor( [[0.76_14, 0.23_16, 0.47_28], [0.71_68, 0.44_95, 0.38_55], [0.49_96, 0.14_66, 0.99_96]] ) elif yolos_name == "yolos_s_dWr": lowerCamelCase_ = torch.tensor( [[-42.86_68, -24.10_49, -41.16_90], [-34.74_56, -14.12_74, -24.91_94], [-33.78_98, -12.19_46, -25.64_95]] ) lowerCamelCase_ = torch.tensor( [[0.55_87, 0.27_73, 0.06_05], [0.50_04, 0.30_14, 0.99_94], [0.49_99, 0.15_48, 0.99_94]] ) elif yolos_name == "yolos_base": lowerCamelCase_ = torch.tensor( [[-40.60_64, -24.30_84, -32.64_47], [-55.19_90, -30.77_19, -35.58_77], [-51.43_11, -33.35_07, -35.64_62]] ) lowerCamelCase_ = torch.tensor( [[0.55_55, 0.27_94, 0.06_55], [0.90_49, 0.26_64, 0.18_94], [0.91_83, 0.19_84, 0.16_35]] ) else: raise ValueError(F'Unknown yolos_name: {yolos_name}' ) assert torch.allclose(logits[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) print(F'Saving model {yolos_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCamelCase__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: lowerCamelCase_ = { "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) lowerCamelCase_ = model_mapping[yolos_name] image_processor.push_to_hub(lowerCamelCase__ , organization="hustvl" ) model.push_to_hub(lowerCamelCase__ , organization="hustvl" ) if __name__ == "__main__": __A =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--yolos_name''', default='''yolos_s_200_pre''', type=str, help=( '''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',''' ''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.''' ), ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __A =parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
19
0
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowerCAmelCase__ = get_tests_dir('fixtures') class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' def _lowerCamelCase ( self) -> List[str]: # A mock response for an HTTP head request to emulate server down _A : List[Any] = mock.Mock() _A : int = 5_0_0 _A : List[str] = {} _A : Optional[int] = HTTPError _A : Optional[Any] = {} # Download this model to make sure it's in the cache. _A : Dict = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2") # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=__lowerCamelCase) as mock_head: _A : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2") # This check we did call the fake head request mock_head.assert_called() def _lowerCamelCase ( self) -> Optional[Any]: # This test is for deprecated behavior and can be removed in v5 _A : List[str] = WavaVecaFeatureExtractor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json") @is_staging_test class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' @classmethod def _lowerCamelCase ( cls) -> Optional[Any]: _A : Tuple = TOKEN HfFolder.save_token(__lowerCamelCase) @classmethod def _lowerCamelCase ( cls) -> List[str]: try: delete_repo(token=cls._token , repo_id="test-feature-extractor") except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-feature-extractor-org") except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-feature-extractor") except HTTPError: pass def _lowerCamelCase ( self) -> Optional[Any]: _A : Tuple = WavaVecaFeatureExtractor.from_pretrained(__lowerCamelCase) feature_extractor.push_to_hub("test-feature-extractor" , use_auth_token=self._token) _A : List[str] = WavaVecaFeatureExtractor.from_pretrained(F"{USER}/test-feature-extractor") for k, v in feature_extractor.__dict__.items(): self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase)) # Reset repo delete_repo(token=self._token , repo_id="test-feature-extractor") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( __lowerCamelCase , repo_id="test-feature-extractor" , push_to_hub=__lowerCamelCase , use_auth_token=self._token) _A : Tuple = WavaVecaFeatureExtractor.from_pretrained(F"{USER}/test-feature-extractor") for k, v in feature_extractor.__dict__.items(): self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase)) def _lowerCamelCase ( self) -> List[Any]: _A : Tuple = WavaVecaFeatureExtractor.from_pretrained(__lowerCamelCase) feature_extractor.push_to_hub("valid_org/test-feature-extractor" , use_auth_token=self._token) _A : Dict = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor") for k, v in feature_extractor.__dict__.items(): self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase)) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-feature-extractor") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( __lowerCamelCase , repo_id="valid_org/test-feature-extractor-org" , push_to_hub=__lowerCamelCase , use_auth_token=self._token) _A : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org") for k, v in feature_extractor.__dict__.items(): self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase)) def _lowerCamelCase ( self) -> Any: CustomFeatureExtractor.register_for_auto_class() _A : int = CustomFeatureExtractor.from_pretrained(__lowerCamelCase) feature_extractor.push_to_hub("test-dynamic-feature-extractor" , use_auth_token=self._token) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"} , ) _A : str = AutoFeatureExtractor.from_pretrained( F"{USER}/test-dynamic-feature-extractor" , trust_remote_code=__lowerCamelCase) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , "CustomFeatureExtractor")
11
def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = [0 for i in range(r + 1 )] # nc0 = 1 lowerCamelCase_ = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. lowerCamelCase_ = min(lowerCamelCase__ , lowerCamelCase__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=1_0, r=5))
19
0
'''simple docstring''' import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class a__ ( snake_case_ , snake_case_ ): @register_to_config def __init__( self : List[Any] , a : Any = 1_28 , a : Tuple = 2_56 , a : List[str] = 20_00.0 , a : Optional[int] = 7_68 , a : List[str] = 12 , a : Dict = 12 , a : Optional[Any] = 64 , a : Union[str, Any] = 20_48 , a : Any = 0.1 , ): """simple docstring""" super().__init__() __lowerCamelCase = nn.Sequential( nn.Linear(a , d_model * 4 , bias=a ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=a ) , nn.SiLU() , ) __lowerCamelCase = nn.Embedding(a , a ) __lowerCamelCase = False __lowerCamelCase = nn.Linear(a , a , bias=a ) __lowerCamelCase = nn.Dropout(p=a ) __lowerCamelCase = nn.ModuleList() for lyr_num in range(a ): # FiLM conditional T5 decoder __lowerCamelCase = DecoderLayer(d_model=a , d_kv=a , num_heads=a , d_ff=a , dropout_rate=a ) self.decoders.append(a ) __lowerCamelCase = TaLayerNorm(a ) __lowerCamelCase = nn.Dropout(p=a ) __lowerCamelCase = nn.Linear(a , a , bias=a ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , a : Optional[Any] , a : Any ): """simple docstring""" __lowerCamelCase = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , a : Dict , a : Any , a : Tuple ): """simple docstring""" __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. __lowerCamelCase = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) __lowerCamelCase = self.conditioning_emb(a ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) __lowerCamelCase = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. __lowerCamelCase = torch.broadcast_to( torch.arange(a , device=decoder_input_tokens.device ) , (batch, seq_length) , ) __lowerCamelCase = self.position_encoding(a ) __lowerCamelCase = self.continuous_inputs_projection(a ) inputs += position_encodings __lowerCamelCase = self.dropout(a ) # decoder: No padding present. __lowerCamelCase = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. __lowerCamelCase = [(x, self.encoder_decoder_mask(a , a )) for x, y in encodings_and_masks] # cross attend style: concat encodings __lowerCamelCase = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) __lowerCamelCase = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: __lowerCamelCase = lyr( a , conditioning_emb=a , encoder_hidden_states=a , encoder_attention_mask=a , )[0] __lowerCamelCase = self.decoder_norm(a ) __lowerCamelCase = self.post_dropout(a ) __lowerCamelCase = self.spec_out(a ) return spec_out class a__ ( nn.Module ): def __init__( self : Tuple , a : List[str] , a : List[str] , a : Any , a : Optional[int] , a : List[Any] , a : Tuple=1e-6 ): """simple docstring""" super().__init__() __lowerCamelCase = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=a , d_kv=a , num_heads=a , dropout_rate=a ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=a , d_kv=a , num_heads=a , dropout_rate=a , layer_norm_epsilon=a , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=a , d_ff=a , dropout_rate=a , layer_norm_epsilon=a ) ) def SCREAMING_SNAKE_CASE__ ( self : Any , a : int , a : Any=None , a : List[Any]=None , a : List[Any]=None , a : Union[str, Any]=None , a : Optional[int]=None , ): """simple docstring""" __lowerCamelCase = self.layer[0]( a , conditioning_emb=a , attention_mask=a , ) if encoder_hidden_states is not None: __lowerCamelCase = torch.where(encoder_attention_mask > 0 , 0 , -1e1_0 ).to( encoder_hidden_states.dtype ) __lowerCamelCase = self.layer[1]( a , key_value_states=a , attention_mask=a , ) # Apply Film Conditional Feed Forward layer __lowerCamelCase = self.layer[-1](a , a ) return (hidden_states,) class a__ ( nn.Module ): def __init__( self : str , a : List[Any] , a : Optional[Any] , a : Tuple , a : Optional[Any] ): """simple docstring""" super().__init__() __lowerCamelCase = TaLayerNorm(a ) __lowerCamelCase = TaFiLMLayer(in_features=d_model * 4 , out_features=a ) __lowerCamelCase = Attention(query_dim=a , heads=a , dim_head=a , out_bias=a , scale_qk=a ) __lowerCamelCase = nn.Dropout(a ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : List[str] , a : List[str]=None , a : Tuple=None , ): """simple docstring""" __lowerCamelCase = self.layer_norm(a ) if conditioning_emb is not None: __lowerCamelCase = self.FiLMLayer(a , a ) # Self-attention block __lowerCamelCase = self.attention(a ) __lowerCamelCase = hidden_states + self.dropout(a ) return hidden_states class a__ ( nn.Module ): def __init__( self : int , a : str , a : str , a : Dict , a : Any , a : List[str] ): """simple docstring""" super().__init__() __lowerCamelCase = Attention(query_dim=a , heads=a , dim_head=a , out_bias=a , scale_qk=a ) __lowerCamelCase = TaLayerNorm(a , eps=a ) __lowerCamelCase = nn.Dropout(a ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , a : Union[str, Any] , a : Union[str, Any]=None , a : Union[str, Any]=None , ): """simple docstring""" __lowerCamelCase = self.layer_norm(a ) __lowerCamelCase = self.attention( a , encoder_hidden_states=a , attention_mask=attention_mask.squeeze(1 ) , ) __lowerCamelCase = hidden_states + self.dropout(a ) return layer_output class a__ ( nn.Module ): def __init__( self : str , a : List[str] , a : int , a : Tuple , a : Tuple ): """simple docstring""" super().__init__() __lowerCamelCase = TaDenseGatedActDense(d_model=a , d_ff=a , dropout_rate=a ) __lowerCamelCase = TaFiLMLayer(in_features=d_model * 4 , out_features=a ) __lowerCamelCase = TaLayerNorm(a , eps=a ) __lowerCamelCase = nn.Dropout(a ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , a : Any , a : List[str]=None ): """simple docstring""" __lowerCamelCase = self.layer_norm(a ) if conditioning_emb is not None: __lowerCamelCase = self.film(a , a ) __lowerCamelCase = self.DenseReluDense(a ) __lowerCamelCase = hidden_states + self.dropout(a ) return hidden_states class a__ ( nn.Module ): def __init__( self : Optional[Any] , a : int , a : List[Any] , a : Optional[Any] ): """simple docstring""" super().__init__() __lowerCamelCase = nn.Linear(a , a , bias=a ) __lowerCamelCase = nn.Linear(a , a , bias=a ) __lowerCamelCase = nn.Linear(a , a , bias=a ) __lowerCamelCase = nn.Dropout(a ) __lowerCamelCase = NewGELUActivation() def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , a : List[str] ): """simple docstring""" __lowerCamelCase = self.act(self.wi_a(a ) ) __lowerCamelCase = self.wi_a(a ) __lowerCamelCase = hidden_gelu * hidden_linear __lowerCamelCase = self.dropout(a ) __lowerCamelCase = self.wo(a ) return hidden_states class a__ ( nn.Module ): def __init__( self : Union[str, Any] , a : Union[str, Any] , a : Optional[int]=1e-6 ): """simple docstring""" super().__init__() __lowerCamelCase = nn.Parameter(torch.ones(a ) ) __lowerCamelCase = eps def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : Tuple ): """simple docstring""" __lowerCamelCase = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=a ) __lowerCamelCase = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: __lowerCamelCase = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class a__ ( nn.Module ): def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , a : Any ): """simple docstring""" return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_47_15 * torch.pow(a , 3.0 )) )) class a__ ( nn.Module ): def __init__( self : Any , a : str , a : Dict ): """simple docstring""" super().__init__() __lowerCamelCase = nn.Linear(a , out_features * 2 , bias=a ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , a : Optional[Any] , a : str ): """simple docstring""" __lowerCamelCase = self.scale_bias(a ) __lowerCamelCase , __lowerCamelCase = torch.chunk(a , 2 , -1 ) __lowerCamelCase = x * (1 + scale) + shift return x
67
import math def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(lowerCamelCase__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("This should never happen" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. __A ='''Enter the base and the power separated by a comma: ''' __A, __A =map(int, input(prompt).split(''',''')) __A, __A =map(int, input(prompt).split(''',''')) # We find the log of each number, using the function res(), which takes two # arguments. __A =res(xa, ya) __A =res(xa, ya) # We check for the largest number if resa > resa: print('''Largest number is''', xa, '''^''', ya) elif resa > resa: print('''Largest number is''', xa, '''^''', ya) else: print('''Both are equal''')
19
0
def _lowerCAmelCase ( lowerCAmelCase_ :Dict , lowerCAmelCase_ :List[Any] )->Optional[int]: '''simple docstring''' snake_case_ = len(lowerCamelCase__ ) snake_case_ = [] for i in range(len(lowerCamelCase__ ) - pat_len + 1 ): snake_case_ = True for j in range(lowerCamelCase__ ): if s[i + j] != pattern[j]: snake_case_ = False break if match_found: position.append(lowerCamelCase__ ) return position if __name__ == "__main__": assert naive_pattern_search('''ABCDEFG''', '''DE''') == [3] print(naive_pattern_search('''ABAAABCDBBABCDDEBCABC''', '''ABC'''))
159
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features __A =logging.get_logger(__name__) __A =list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) __A =tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _SCREAMING_SNAKE_CASE : lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Model type selected in the list: ' + ', '.join(snake_case_ )} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) lowerCAmelCase__ = field( default=1_28 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase__ = field( default=1_28 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) lowerCAmelCase__ = field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) lowerCAmelCase__ = field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) lowerCAmelCase__ = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase__ = field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase__ = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) lowerCAmelCase__ = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = 'train' lowerCAmelCase__ = 'dev' class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 def __init__( self , lowercase , lowercase , lowercase = None , lowercase = Split.train , lowercase = False , lowercase = None , lowercase = "pt" , ) -> List[str]: lowerCamelCase_ = args lowerCamelCase_ = is_language_sensitive lowerCamelCase_ = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(lowercase , lowercase ): try: lowerCamelCase_ = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) lowerCamelCase_ = mode # Load data features from cache or dataset file lowerCamelCase_ = "v2" if args.version_2_with_negative else "v1" lowerCamelCase_ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase_ = cached_features_file + ".lock" with FileLock(lowercase ): if os.path.exists(lowercase ) and not args.overwrite_cache: lowerCamelCase_ = time.time() lowerCamelCase_ = torch.load(lowercase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. lowerCamelCase_ = self.old_features["features"] lowerCamelCase_ = self.old_features.get("dataset" , lowercase ) lowerCamelCase_ = self.old_features.get("examples" , lowercase ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' " future run" ) else: if mode == Split.dev: lowerCamelCase_ = self.processor.get_dev_examples(args.data_dir ) else: lowerCamelCase_ = self.processor.get_train_examples(args.data_dir ) lowerCamelCase_ , lowerCamelCase_ = squad_convert_examples_to_features( examples=self.examples , tokenizer=lowercase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=lowercase , ) lowerCamelCase_ = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples} , lowercase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ) -> Tuple: return len(self.features ) def __getitem__( self , lowercase ) -> Dict[str, torch.Tensor]: # Convert to Tensors and build dataset lowerCamelCase_ = self.features[i] lowerCamelCase_ = torch.tensor(feature.input_ids , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.attention_mask , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.token_type_ids , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.cls_index , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.p_mask , dtype=torch.float ) lowerCamelCase_ = torch.tensor(feature.is_impossible , dtype=torch.float ) lowerCamelCase_ = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: lowerCamelCase_ = torch.tensor(feature.start_position , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
19
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : List[str] = {"configuration_xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = ["XGLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = ["XGLMTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = [ "XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XGLMForCausalLM", "XGLMModel", "XGLMPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[int] = [ "FlaxXGLMForCausalLM", "FlaxXGLMModel", "FlaxXGLMPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ "TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXGLMForCausalLM", "TFXGLMModel", "TFXGLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys A : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure)
57
from abc import ABC, abstractmethod from argparse import ArgumentParser class _SCREAMING_SNAKE_CASE ( snake_case_ ): @staticmethod @abstractmethod def SCREAMING_SNAKE_CASE_( lowercase ) -> int: raise NotImplementedError() @abstractmethod def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: raise NotImplementedError()
19
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ : List[Any] =logging.get_logger(__name__) lowerCAmelCase__ : Optional[Any] ={ '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/config.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/config.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json''' ), '''distilbert-base-uncased-finetuned-sst-2-english''': ( '''https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json''' ), } class UpperCAmelCase_ ( snake_case_ ): '''simple docstring''' UpperCamelCase__ : Optional[int] = '''distilbert''' UpperCamelCase__ : Dict = { '''hidden_size''': '''dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', } def __init__( self , _A=30_522 , _A=512 , _A=False , _A=6 , _A=12 , _A=768 , _A=4 * 768 , _A=0.1 , _A=0.1 , _A="gelu" , _A=0.0_2 , _A=0.1 , _A=0.2 , _A=0 , **_A , ): '''simple docstring''' __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = sinusoidal_pos_embds __SCREAMING_SNAKE_CASE = n_layers __SCREAMING_SNAKE_CASE = n_heads __SCREAMING_SNAKE_CASE = dim __SCREAMING_SNAKE_CASE = hidden_dim __SCREAMING_SNAKE_CASE = dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = qa_dropout __SCREAMING_SNAKE_CASE = seq_classif_dropout super().__init__(**_A , pad_token_id=_A ) class UpperCAmelCase_ ( snake_case_ ): '''simple docstring''' @property def _A ( self ): '''simple docstring''' if self.task == "multiple-choice": __SCREAMING_SNAKE_CASE = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __SCREAMING_SNAKE_CASE = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
257
from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging __A =logging.get_logger(__name__) # pylint: disable=invalid-name class _SCREAMING_SNAKE_CASE ( snake_case_ ): def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> List[Any]: super().__init__() if hasattr(scheduler.config , "steps_offset" ) and scheduler.config.steps_offset != 1: lowerCamelCase_ = ( f'The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`' f' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ' "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1" , "1.0.0" , lowercase , standard_warn=lowercase ) lowerCamelCase_ = dict(scheduler.config ) lowerCamelCase_ = 1 lowerCamelCase_ = FrozenDict(lowercase ) if hasattr(scheduler.config , "skip_prk_steps" ) and scheduler.config.skip_prk_steps is False: lowerCamelCase_ = ( f'The configuration file of this scheduler: {scheduler} has not set the configuration' " `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make" " sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to" " incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face" " Hub, it would be very nice if you could open a Pull request for the" " `scheduler/scheduler_config.json` file" ) deprecate("skip_prk_steps not set" , "1.0.0" , lowercase , standard_warn=lowercase ) lowerCamelCase_ = dict(scheduler.config ) lowerCamelCase_ = True lowerCamelCase_ = FrozenDict(lowercase ) if safety_checker is None: logger.warning( f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure' " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( segmentation_model=lowercase , segmentation_processor=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , unet=lowercase , scheduler=lowercase , safety_checker=lowercase , feature_extractor=lowercase , ) def SCREAMING_SNAKE_CASE_( self , lowercase = "auto" ) -> Tuple: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowerCamelCase_ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: self.enable_attention_slicing(lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> str: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) lowerCamelCase_ = torch.device("cuda" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(lowercase , lowercase ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: if self.device != torch.device("meta" ) or not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self , lowercase , lowercase , lowercase , lowercase = 512 , lowercase = 512 , lowercase = 50 , lowercase = 7.5 , lowercase = None , lowercase = 1 , lowercase = 0.0 , lowercase = None , lowercase = None , lowercase = "pil" , lowercase = True , lowercase = None , lowercase = 1 , **lowercase , ) -> int: lowerCamelCase_ = self.segmentation_processor( text=[text] , images=[image] , padding="max_length" , return_tensors="pt" ).to(self.device ) lowerCamelCase_ = self.segmentation_model(**lowercase ) lowerCamelCase_ = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() lowerCamelCase_ = self.numpy_to_pil(lowercase )[0].resize(image.size ) # Run inpainting pipeline with the generated mask lowerCamelCase_ = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=lowercase , image=lowercase , mask_image=lowercase , height=lowercase , width=lowercase , num_inference_steps=lowercase , guidance_scale=lowercase , negative_prompt=lowercase , num_images_per_prompt=lowercase , eta=lowercase , generator=lowercase , latents=lowercase , output_type=lowercase , return_dict=lowercase , callback=lowercase , callback_steps=lowercase , )
19
0
"""simple docstring""" from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''google/umt5-small''': '''https://huggingface.co/google/umt5-small/resolve/main/config.json''', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class lowerCAmelCase_ ( snake_case_ ): '''simple docstring''' _lowerCamelCase: Optional[int] = '''umt5''' _lowerCamelCase: List[str] = ['''past_key_values'''] def __init__( self : Optional[Any] ,A_ : int=25_0112 ,A_ : List[str]=512 ,A_ : List[str]=64 ,A_ : int=1024 ,A_ : List[Any]=8 ,A_ : Union[str, Any]=None ,A_ : Any=6 ,A_ : Union[str, Any]=32 ,A_ : int=128 ,A_ : int=0.1 ,A_ : str=1e-6 ,A_ : int=1.0 ,A_ : int="gated-gelu" ,A_ : Optional[int]=True ,A_ : Any=True ,A_ : Optional[Any]="T5Tokenizer" ,A_ : str=True ,A_ : Any=0 ,A_ : Tuple=1 ,A_ : Dict=0 ,**A_ : Optional[Any] ,) -> List[Any]: super().__init__( is_encoder_decoder=A_ ,tokenizer_class=A_ ,tie_word_embeddings=A_ ,pad_token_id=A_ ,eos_token_id=A_ ,decoder_start_token_id=A_ ,**A_ ,) A = vocab_size A = d_model A = d_kv A = d_ff A = num_layers A = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry A = num_heads A = relative_attention_num_buckets A = relative_attention_max_distance A = dropout_rate A = layer_norm_epsilon A = initializer_factor A = feed_forward_proj A = use_cache A = self.feed_forward_proj.split('-' ) A = act_info[-1] A = act_info[0] == 'gated' if len(A_ ) > 1 and act_info[0] != "gated" or len(A_ ) > 2: raise ValueError( F'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) if feed_forward_proj == "gated-gelu": A = 'gelu_new' @property def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: return self.d_model @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> str: return self.num_heads @property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: return self.num_layers class lowerCAmelCase_ ( snake_case_ ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: A = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: A = 'past_encoder_sequence + sequence' A = {0: 'batch'} A = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: A = {0: 'batch', 1: 'decoder_sequence'} A = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(A_ ,direction='inputs' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def _SCREAMING_SNAKE_CASE ( self : int ) -> int: return 13 @property def _SCREAMING_SNAKE_CASE ( self : int ) -> float: return 5e-4
74
from collections import deque def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = len(lowerCamelCase__ ) lowerCamelCase_ = deque() lowerCamelCase_ = [False for _ in range(lowerCamelCase__ )] lowerCamelCase_ = [-1 for _ in range(lowerCamelCase__ )] lowerCamelCase_ = index_of[:] def strong_connect(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = index # the number when this node is seen lowerCamelCase_ = index # lowest rank node reachable from here index += 1 stack.append(lowerCamelCase__ ) lowerCamelCase_ = True for w in g[v]: if index_of[w] == -1: lowerCamelCase_ = strong_connect(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: lowerCamelCase_ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: lowerCamelCase_ = [] lowerCamelCase_ = stack.pop() lowerCamelCase_ = False component.append(lowerCamelCase__ ) while w != v: lowerCamelCase_ = stack.pop() lowerCamelCase_ = False component.append(lowerCamelCase__ ) components.append(lowerCamelCase__ ) return index lowerCamelCase_ = [] for v in range(lowerCamelCase__ ): if index_of[v] == -1: strong_connect(lowerCamelCase__ , 0 , lowerCamelCase__ ) return components def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = [[] for _ in range(lowerCamelCase__ )] for u, v in edges: g[u].append(lowerCamelCase__ ) return g if __name__ == "__main__": # Test __A =7 __A =[0, 0, 1, 2, 3, 3, 4, 4, 6] __A =[1, 3, 2, 0, 1, 4, 5, 6, 5] __A =[(u, v) for u, v in zip(source, target)] __A =create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
19
0